WorldWideScience

Sample records for hgcdte infrared detectors

  1. HgCdTe barrier infrared detectors

    Science.gov (United States)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  2. Can graphene make better HgCdTe infrared detectors?

    Directory of Open Access Journals (Sweden)

    Shi Yanli

    2011-01-01

    Full Text Available Abstract We develop a simple and low-cost technique based on chemical vapor deposition from which large-size graphene films with 5-10 graphene layers can be produced reliably and the graphene films can be transferred easily onto HgCdTe (MCT thin wafers at room temperature. The proposed technique does not cause any thermal and mechanical damages to the MCT wafers. It is found that the averaged light transmittance of the graphene film on MCT thin wafer is about 80% in the mid-infrared bandwidth at room temperature and 77 K. Moreover, we find that the electrical conductance of the graphene film on the MCT substrate is about 25 times larger than that of the MCT substrate at room temperature and 77 K. These experimental findings suggest that, from a physics point of view, graphene can be utilized as transparent electrodes as a replacement for metal electrodes while producing better and cheaper MCT infrared detectors.

  3. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    Science.gov (United States)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  4. DRIFT EFFECTS IN HGCDTE DETECTORS

    Directory of Open Access Journals (Sweden)

    B. PAVAN KUMAR

    2013-08-01

    Full Text Available The characteristics of temporal drift in spectral responsivity of HgCdTe photodetectors is investigated and found to have an origin different from what has been reported in literature. Traditionally, the literature attributes the cause of drift due to the deposition of thin film of ice water on the active area of the cold detector. The source of drift as proposed in this paper is more critical owing to the difficulties in acquisition of infrared temperature measurements. A model explaining the drift phenomenon in HgCdTe detectors is described by considering the deep trapping of charge carriers and generation of radiation induced deep trap centers which are meta-stable in nature. A theoretical model is fitted to the experimental data. A comparison of the model with the experimental data shows that the radiation induced deep trap centers and charge trapping effects are mainly responsible for the drift phenomenon observed in HgCdTe detectors.

  5. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    Science.gov (United States)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  6. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    Science.gov (United States)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  7. Theoretical Study of Midwave Infrared HgCdTe nBn Detectors Operating at Elevated Temperatures

    Science.gov (United States)

    Akhavan, Nima Dehdashti; Jolley, Gregory; Umana-Membreno, Gilberto A.; Antoszewski, Jarek; Faraone, Lorenzo

    2015-09-01

    We report a theoretical study of mercury cadmium telluride (HgCdTe) unipolar n-type/barrier/ n-type (nBn) detectors for midwave infrared (MWIR) applications at elevated temperatures. The results obtained indicate that the composition, doping, and thickness of the barrier layer in MWIR HgCdTe nBn detectors can be optimized to yield performance levels comparable with those of ideal HgCdTe p- n photodiodes. It is also shown that introduction of an additional barrier at the back contact layer of the detector structure (nBnn+) leads to substantial suppression of the Auger generation-recombination (GR) mechanism; this results in an order-of-magnitude reduction in the dark current level compared with conventional nBn or p- n junction-based detectors, thus enabling background-limited detector operation above 200 K.

  8. HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning

    2017-01-01

    We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at infrared wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.

  9. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    Science.gov (United States)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  10. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  11. Proton irradiation results for long-wave HgCdTe infrared detector arrays for NEOCam

    CERN Document Server

    Dorn, M; McMurtry, C; Hartman, S; Mainzer, A; McKelvey, M; McMurray, R; Chevara, D; Rosser, J

    2016-01-01

    HgCdTe detector arrays with a cutoff wavelength of ~10 ${\\mu}$m intended for the NEOCam space mission were subjected to proton beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested - one with 800 $\\mu$m substrate intact, one with 30 $\\mu$m substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes elevated signal in non-hit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in non-hit pixels during proton testing for both the substrate-removed detector array and the array with 30 ${\\mu}$m substrate. The detector array with full 800 ${\\mu}$m substrate exhibited substantial photocurrent for a flux of 103 protons/cm$^2$-s at a beam energy of 18.1 MeV (~ 750 e$^-$/s) and 34.4 MeV ($\\sim$ 6...

  12. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  13. HgCdTe Infrared Avalanche Photodiode Single Photon Detector Arrays for the LIST and Other Decadal Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a HgCdTe avalanche photodiode (APD)  SWIR/IR linear mode photon counting (LMPC) array detector system in support of the LIST lidar. Provide a new type...

  14. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    Science.gov (United States)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  15. Evaluation of HgCdTe on GaAs Grown by Molecular Beam Epitaxy for High-Operating-Temperature Infrared Detector Applications

    Science.gov (United States)

    Wenisch, J.; Schirmacher, W.; Wollrab, R.; Eich, D.; Hanna, S.; Breiter, R.; Lutz, H.; Figgemeier, H.

    2015-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe (MCT) on alternative substrates enables production of both cheaper and more versatile (third-generation) infrared (IR) detectors. After rapid progress in the development of MBE-grown MCT on GaAs in recent years, the question of whether the considerable benefits of this material system are also applicable to high-operating-temperature (HOT) applications demands attention. In this paper, we present a mid-wavelength-IR 640 × 512 pixel, 15- μm-pitch focal-plane array with operability of 99.71% at operating temperature of 120 K and low dark current density. In the second part of the paper, MBE growth of short-wavelength IR material with Cd fraction of up to 0.8 is investigated as the basis for future evaluation of the material for low-light-level imaging HOT applications.

  16. MBE HgCdTe heterostructure detectors

    Science.gov (United States)

    Schulman, Joel N.; Wu, Owen K.

    1990-01-01

    HgCdTe has been the mainstay for medium (3 to 5 micron) and long (10 to 14 micron) wavelength infrared detectors in recent years. Conventional growth and processing techniques are continuing to improve the material. However, the additional ability to tailor composition and placement of doped layers on the tens of angstroms scale using molecular beam epitaxy (MBE) provides the opportunity for new device physics and concepts to be utilized. MBE-based device structures to be discussed here can be grouped into two categories: tailored conventional structures and quantum structures. The tailored conventional structures are improvements on familiar devices, but make use of the ability to create layers of varying composition, and thus band gap, at will. The heterostructure junction can be positioned independently of doping p-n junctions. This allows the small band gap region in which the absorption occurs to be separated from a larger band gap region in which the electric field is large and where unwanted tunneling can occur. Data from hybrid MBE/liquid phase epitaxy (LPE)/bulk structures are given. Quantum structures include the HgTe-CdTe superlattice, in which the band gap and transport can be controlled by alternating thin layers (tens of angstroms thick) of HgTe and CdTe. The superlattice has been shown to exhibit behavior which is non-alloy like, including very high hole mobilities, two-dimensional structure in the absorption coefficient, resonant tunneling, and anisotropic transport.

  17. Characterization of HgCdTe and HgCdSe Materials for Third Generation Infrared Detectors

    Science.gov (United States)

    2011-12-01

    etched HgCdTe photodiode .................................. 13 1.6 (a) Hybrid IR FPA, (b) cross section of structure, (c) indium bumps on Si...to areas of approximately 30 cm2. At this size, the wafers used for growth are unable to accommodate more than two 1024 × 1024 FPAs.3 For more...clear advantages over the other substrates because of its low cost, large wafer size, and a thermal-expansion coefficient that perfectly matches

  18. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, A. V.; Stuchinsky, V. A., E-mail: stuchin@isp.nsc.ru; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A. [Institute of Semiconductor Physics, Russian Academy of Science, Siberian Division, 13, Acad. Lavrent' ev Avenue, Novosibirsk 630090 (Russian Federation)

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  19. DUAL-BAND INFRARED DETECTORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two-color HgCdTe photodiodes and quantum well infrared photodetectors is presented.More attention is devoted to HgCdTe detectors. The two-color detector arrays are based upon an n-P-N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p-n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials.Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP's narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.

  20. Development of an infrared detector: Quantum well infrared photodetector

    Institute of Scientific and Technical Information of China (English)

    LU Wei; LI Ling; ZHENG HongLou; XU WenLan; XIONG DaYuan

    2009-01-01

    The progress in the quantum well infrared photo-detector (QWIP) based on quantum confinement in semiconductor in recent 10 years has been reviewed. The differences between QWlP and the HgCdTe (HCT) infrared detector as well as their compensation are analyzed. The outlook for near-future trends in QWIP technologies is also presented.

  1. Development of an infrared detector: Quantum well infrared photodetector

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The progress in the quantum well infrared photo-detector (QWIP) based on quantum confinement in semiconductor in recent 10 years has been reviewed. The differences between QWIP and the HgCdTe (HCT) infrared detector as well as their compensation are analyzed. The outlook for near-future trends in QWIP technologies is also presented.

  2. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  3. HgCdTe detector technology at Kunming Institute of Physics

    Science.gov (United States)

    Su, Junhong; Zeng, Gehong

    1996-09-01

    HgCdTe detector and thermal image system laboratories at Kunming Institute of Physics have been carrying the research and development of HgCdTe detectors and thermal imaging systems for a wide range applications for over 20 years. During this period, significant progress has been made in many areas such as HgCdTe material, detector, miniature dewar and cooler to meet the requirements of civil and military operations. This paper describes these activities and present status of HgCdTe technology at Kunming Institute of Physics, and some of the problems we faced and how they were solved.

  4. HgCdTe and silicon detectors and FPAs for remote sensing applications

    Science.gov (United States)

    D'Souza, Arvind I.; Stapelbroek, Maryn G.; Robinson, James E.

    2004-02-01

    Photon detectors and focal plane arrays (FPAs) are fabricated from HgCdTe and silicon in many varieties. With appropriate choices for bandgap in HgCdTe, detector architecture, dopants, and operating temperature, HgCdTe and silicon can cover the spectral range from ultraviolet to the very-long-wavelength infrared (VLWIR), exhibit high internal gain to allow photon counting over this broad spectral range, and can be made in large array formats for imaging. DRS makes HgCdTe and silicon detectors and FPAs with unique architectures for a variety of applications. Detector characteristics of High Density Vertically Integrated Photodiode (HDVIP) HdCdTe detectors as well as Focal Plane Arrays (FPAs) are presented in this paper. MWIR[λc(78 K) = 5 μm] HDVIP detectors RoA performance was measured to within a factor or two or three of theoretical. In addition, 256 x 256 detector arrays were fabricated. Initial measurements had seven out of ten FPAs having operabilities greater than 99.45% with the best 256 x 256 array having only two inoperable pixels. LWIR [λc(78K)~10 μm] 640 X 480 arrays and a variety of single color linear arrays have also been fabricated. In addition, two-color arrays have been fabricated. DRS has explored HgCdTe avalanche photo diodes (APDs) in the λc = 2.2 μm to 5 μm range. The λc = 5 μm APDs have greater than 200 DC gain values at 8 Volts bias. Large-format to 10242 Arsenic-doped (Si:As, λc ~ 28 μm), Blocked-Impurity-Band (BIB) detectors have been developed for a variety of pixel formats and have been optimized for low, moderate, and high infrared backgrounds. Antimony-doped silicon (Si:Sb) BIB arrays having response to wavelengths > 40 μm have also been demonstrated. Avalanche processes in Si:As at low temperatures (~ 8 K) have led to two unique solid-state photon-counting detectors adapted to infrared and visible wavelengths. The infrared device is the solid-state photomultiplier (SSPM). A related device optimized for the visible spectral

  5. (55)Fe X-ray Response of HgCdTe NIR Detector Arrays

    Science.gov (United States)

    Fox, Ori; Rauscher, Bernard J.

    2008-01-01

    Conversion gain is a fundamental parameter in detector characteristics that is used to measure many identifying detector properties, including read noise, dark current, and quantum efficiency (QE). Charge coupling effects, such as inter-pixel capacitance, attenuate photon shot noise and result in an overestimation of of conversion gain when implementing the photon transfer technique. The (55)Fe X-ray technique is a direct and simple method by which to measure the conversion gain by comparing the observed instrumental counts (ADU) to the known charge (e-) liberated by a single X-ray photon. Here we present the calibrated pair production energy for 1.7 micron HgCdTe infrared detectors.

  6. Developments in MOVPE HgCdTe arrays for passive and active infrared imaging

    Science.gov (United States)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Weller, Harald; Thorne, Peter

    2012-09-01

    SELEX Galileo Infrared Ltd has developed a range of 3rd Generation infrared detectors based on HgCdTe grown by Metal Organic Vapour Phase Epitaxy (MOVPE) on low cost GaAs substrates. There have been four key development aims: reducing the cost especially for large arrays, extending the wavelength range, improving the operating temperature for lower power, size and weight cameras and increasing the functionality. Despite a 14% lattice mismatch between GaAs and HgCdTe MOVPE arrays show few symptoms of misfit dislocations even in longwave detectors. The key factors in the growth and device technology are described in this paper to explain at a scientific level the radiometric quality of MOVPE arrays. A feature of the past few years has been the increasingly sophisticated products that are emerging thanks to custom designed silicon readout devices. Three devices are described as examples: a multifunctional device that can operate as an active or passive imager with built-in range finder, a 3-side buttable megapixel array and an ultra-low noise device designed for scientific applications.

  7. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    Science.gov (United States)

    Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.

    2016-06-01

    In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  8. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  9. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    Science.gov (United States)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  10. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements

    Science.gov (United States)

    Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J. P.; Boulade, O.; Moreau, V.; Fieque, B.

    2016-09-01

    HgCdTe (MCT) is a very versatile material system for infrared (IR) detection, suitable for high performance detection in a wide range of applications and spectral ranges. Indeed, the ability to tailor the cutoff frequency as close as possible to the needs makes it a perfect candidate for high performance detection. Moreover, the high quality material available today, grown either by molecular beam epitaxy or liquid phase epitaxy, allows for very low dark currents at low temperatures, suitable for low flux detection applications such as science imaging. MCT has also demonstrated robustness to the aggressive environment of space and faces, therefore, a large demand for space applications. A satellite may stare at the earth, in which case detection usually involves a lot of photons, called a high flux scenario. Alternatively, a satellite may stare at outer space for science purposes, in which case the detected photon number is very low, leading to low flux scenarios. This latter case induces very strong constraints onto the detector: low dark current, low noise, (very) large focal plane arrays. The classical structure used to fulfill those requirements are usually p/ n MCT photodiodes. This type of structure has been deeply investigated in our laboratory for different spectral bands, in collaboration with the CEA Astrophysics lab. However, another alternative may also be investigated with low excess noise: MCT n/ p avalanche photodiodes (APD). This paper reviews the latest achievements obtained on this matter at DEFIR (LETI and Sofradir common laboratory) from the short wave infrared (SWIR) band detection for classical astronomical needs, to long wave infrared (LWIR) band for exoplanet transit spectroscopy, up to very long wave infrared (VLWIR) bands. The different available diode architectures ( n/ p VHg or p/ n, or even APDs) are reviewed, including different available ROIC architectures for low flux detection.

  11. Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The end goal of this project is to develop proof-of-concept infrared detectors which can be integrated in future infrared instruments engaged in remote...

  12. Development of non-hybridised HgCdTe detectors for the next generation of astronomical instrumentation

    Science.gov (United States)

    Dalton, Gavin B.; Dennis, Peter N.; Lees, David J.; Hall, David J.; Cairns, John W.; Gordon, Neil T.; Hails, Janet E.; Giess, Jean

    2008-07-01

    The superb image quality that is predicted, and even demanded, for the next generation of Extremely Large Telescopes (ELT) presents a potential crisis in terms of the sheer number of detectors that may be required. Developments in infrared technology have progressed dramatically in recent years, but a substantial reduction in the cost per pixel of these IR arrays will be necessary to permit full exploitation of the capabilities of these telescopes. Here we present an outline and progress report of an initiative to develop a new generation of astronomical grade Cadmium Mercury Telluride (HgCdTe) array detectors using a novel technique which enables direct growth of the sensor diodes onto the Read Out Integrated Circuit (ROIC). This technique removes the need to hybridise the detector material to a separate Silicon readout circuit and provides a route to very large monolithic arrays. We present preliminary growth and design simulation results for devices based on this technique, and discuss the prospects for deployment of this technology in the era of extremely large telescopes.

  13. Photocapacitive MIS infrared detectors

    Science.gov (United States)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  14. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    Science.gov (United States)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2016-09-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on-p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  15. Active Pixel HgCdTe Detectors With Built-in Dark Current Reduction for Near-Room Temperature Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High sensitivity HgCdTe infrared arrays operating at 77K can now be tailored in a wide range of wavelengths from 1 to 14 microns. However, due to the cooling...

  16. Active Pixel HgCdTe Detectors With Built-in Dark Current Reduction for Near-Room Temperature Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High sensitivity HgCdTe infrared arrays operating at 77K can now be tailored in a wide range of wavelengths from 1 to14 um. However, the cooling requirements make...

  17. Measurements of Low Frequency Noise of Infrared Photo-Detectors with Transimpedance Detection System

    Directory of Open Access Journals (Sweden)

    Ciura Łukasz

    2014-08-01

    Full Text Available The paper presents the method and results of low-frequency noise measurements of modern mid-wavelength infrared photodetectors. A type-II InAs/GaSb superlattice based detector with nBn barrier architecture is compared with a high operating temperature (HOT heterojunction HgCdTe detector. All experiments were made in the range 1 Hz - 10 kHz at various temperatures by using a transimpedance detection system, which is examined in detail. The power spectral density of the nBn’s dark current noise includes Lorentzians with different time constants while the HgCdTe photodiode has more uniform 1/f - shaped spectra. For small bias, the low-frequency noise power spectra of both devices were found to scale linearly with bias voltage squared and were connected with the fluctuations of the leakage resistance. Leakage resistance noise defines the lower noise limit of a photodetector. Other dark current components give raise to the increase of low-frequency noise above this limit. For the same voltage biasing devices, the absolute noise power densities at 1 Hz in nBn are 1 to 2 orders of magnitude lower than in a MCT HgCdTe detector. In spite of this, low-frequency performance of the HgCdTe detector at ~ 230K is still better than that of InAs/GaSb superlattice nBn detector.

  18. Two-color HgCdTe infrared staring focal plane arrays

    Science.gov (United States)

    Smith, Edward P.; Pham, Le T.; Venzor, Gregory M.; Norton, Elyse; Newton, Michael; Goetz, Paul; Randall, Valerie; Pierce, Gregory; Patten, Elizabeth A.; Coussa, Raymond A.; Kosai, Ken; Radford, William A.; Edwards, John; Johnson, Scott M.; Baur, Stefan T.; Roth, John A.; Nosho, Brett; Jensen, John E.; Longshore, Randolph E.

    2003-12-01

    Raytheon Vision Systems (RVS) in collaboration with HRL Laboratories is contributing to the maturation and manufacturing readiness of third-generation two-color HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256x256 30μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) spectral regions. FPAs configured for MWIR/MWIR, MWIR/LWIR and LWIR/LWIR detection are used for target identification, signature recognition and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer-heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all two-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single mesa, single indium bump, and sequential mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.

  19. Visible to SWIR response of HgCdTe HDVIP detectors

    Science.gov (United States)

    D'Souza, A. I.; Robinson, E. W.; Stapelbroek, M. G.; Wong, W.; Skokan, M.; Shih, H.-D.

    2009-05-01

    Detectors that have broadband response from the visible (~ 400 nm) to near infrared (~ 2.5 μm) have remote sensing hyperspectral applications on a single chip. 2.2 and 2.5 μm cutoff detectors permit operation in the 200 K range. The DRS HDVIP detector technology is a front side illuminated detector technology. Consequently, there is no substrate to absorb the visible photons as in backside-illuminated detectors and these 2.2 and 2.5-μm-cutoff detectors should be well suited to respond to visible light. However, HDVIP detectors are passivated using CdTe that absorbs the visible light photons. CdTe with a direct bandgap ~ 1.6 eV strongly absorbs photons of wavelength shorter than about 800 nm. Detectors in 320 x 6 arrays with varying thickness of CdTe passivation layers were fabricated to investigate the visible response of the 2.5-μm-cutoff detectors. The SWIR HDVIP detectors have well known high quantum efficiency (QE) in the near infrared region. Focus here was in acquiring array level data in the visible region of the spectrum. 320 x 6 FPA QE and NEI data was acquired using a 642 nm narrow band filter with 50 % points at 612 nm and 698 nm. The array QE average is ~ 70 % for the array with CdTe passivation thickness = 44.5 nm. The NEI is ~ 5 x 1010 ph/cm2/s at a flux Φ = 5.36 x 1013 ph/cm2/s. QE for an array with CdTe passivation thickness = 44.5 nm is ~ 10 % higher than an array with CdTe passivation thickness = 79.3 nm. In addition, a model that takes into account the complex optical properties of every layer in the HDVIP photodiode architecture was developed to predict the QE of the detectors in the near infrared and visible wavelength regions as a function of CdTe thickness. Measured QE as a function of wavelength is not a good match to the model QE probably due to limitations in the measured QE and knowledge of optical constants that are input into the model.

  20. A 4K x 4K HgCdTe astronomical camera enabled by the JWST NIR detector development program

    Science.gov (United States)

    Hall, Donald N. B.; Luppino, Gerard; Hodapp, Klaus W.; Garnett, James D.; Loose, Markus; Zandian, Majid

    2004-09-01

    The ambitious science goals of the James Webb Space Telescope (JWST) have driven spectacular advances in λco ~ 5um detector technology over the past five years. This paper reviews both the UH/RSC team"s Phase A development and evaluation of 2Kx2K arrays exceeding the detector requirements for JWST"s near infrared instruments and also the hardware integration of these into a 4Kx4K (16Mpxl) close packed mosaic focal plane array housed in an Ultra Low Background test facility. Both individual first generation 2Kx2K SCA"s and 4Kx4K mosaic focal planes have been extensively characterized in the laboratory and, since September 2003, a NIR camera utilizing the 4Kx4K mosaic focal plane has been in use for nearly 100 nights at the UH 2.2 m telescope on Mauna Kea. Typical test results for the first generation 2Kx2K arrays and their integration into 4Kx4K mosaic focal planes are reported. Demonstration of the design concepts and both array and mosaic focal plane performance in actual hardware, as described here, has provided the foundation for design iterations leading to later generations of 2Kx2K arrays and 4Kx4K mosaic focal planes. Four major technology developments leading to first generation hardware demonstrations of both 2Kx2K SCA"s and a 4Kx4K mosaic FPA are reviewed. These are: 1) improvement in test equipment and procedures to characterize the detectors against JWST requirements and goals, primarily at 37K but with the capability to test from 30K to 100K; 2) optimization of λc ~ 5 um MBE HgCdTe material on a CZT substrate for low dark current (goal of 0.003 e-/sec at 37K) with high quantum efficiency, low cross-talk and greatly reduced image persistence; 3) development of the 2Kx2K HAWAII-2RG multiplexer designed specifically to take full advantage of these detector characteristics for a wide range of astronomical applications (and fully compatible with an ASIC controller developed under the JWST Instrument Technology Development initiative) and 4) development of

  1. The SNAP near infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Tarle, G.; Akerlof, C.; Aldering, G.; Amanullah, R.; Astier, P.; Barrelet, E.; Bebek, C.; Bergstrom, L.; Bercovitz, J.; Bernstein, G.; Bester, M.; Bonissent, A.; Bower, C.; Carithers, W.; Commins, E.D.; Day, C.; Deustua, S.; DiGennaro, R.; Ealet, Anne; Ellis, R.S.; Eriksson, M.; Fruchter, A.; Genat, J.-F.; Goldhaber, G.; Goobar, A.; Groom, D.; Harris, S.; Harvey, P.; Heetderks, H.; Holland, S.; Huterer, D.; Karcher, A.; Kim, A.; Kolbe, W.; Krieger, B.; Lafever, R.; Lamoureux, J.; Lampton, M.; Levi, M.E.; Levin, D.; Linder, E.; Loken, S.; Malina, R.; Massey, R.; Miguel, R.; McKay, T.; McKee, S.; Mortsell, E.; Mostek, N.; Mufson, S.; Musser, J.; Nugent, P.; Oluseyi, H.; Pain, R.; Palaio, N.; Pankow, D.; Perlmutter, S.; Pratt, R.; Prieto, E.; Refregier, A.; Rhodes, J.; Robinson, K.; Roe, N.; Sholl, M.; Schubnell, M.; Smadja, G.; Smoot, G.; Spadafora, A.; Tomasch, A.; von der Lippe, H.; Vincent, R.; Walder, J.; Wang, G.

    2002-07-29

    The SuperNova/Acceleration Probe (SNAP) will measure precisely the cosmological expansion history over both the acceleration and deceleration epochs and thereby constrain the nature of the dark energy that dominates our universe today. The SNAP focal plane contains equal areas of optical CCDs and NIR sensors and an integral field spectrograph. Having over 150 million pixels and a field-of-view of 0.34 square degrees, the SNAP NIR system will be the largest yet constructed. With sensitivity in the range 0.9-1.7 {micro}m, it will detect Type Ia supernovae between z = 1 and 1.7 and will provide follow-up precision photometry for all supernovae. HgCdTe technology, with a cut-off tuned to 1.7 {micro}m, will permit passive cooling at 140 K while maintaining noise below zodiacal levels. By dithering to remove the effects of intrapixel variations and by careful attention to other instrumental effects, we expect to control relative photometric accuracy below a few hundredths of a magnitude. Because SNAP continuously revisits the same fields we will be able to achieve outstanding statistical precision on the photometry of reference stars in these fields, allowing precise monitoring of our detectors. The capabilities of the NIR system for broadening the science reach of SNAP are discussed.

  2. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    Science.gov (United States)

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  3. Infrared detectors for space applications

    Science.gov (United States)

    Fick, Wolfgang; Gassmann, Kai Uwe; Haas, Luis-Dieter; Haiml, Markus; Hanna, Stefan; Hübner, Dominique; Höhnemann, Holger; Nothaft, Hans-Peter; Thöt, Richard

    2013-12-01

    The motivation and intended benefits for the use of infrared (IR) detectors for space applications are highlighted. The actual status of state-of-the-art IR detectors for space applications is presented based on some of AIM's currently ongoing focal plane detector module developments covering the spectral range from the short-wavelength IR (SWIR) to the long-wavelength IR (LWIR) and very long-wavelength IR (VLWIR), where both imaging and spectroscopy applications will be addressed. In particular, the integrated detector cooler assemblies for a mid-wavelength IR (MWIR) push-broom imaging satellite mission, for the German hyperspectral satellite mission EnMAP and the IR detectors for the Sentinel 3 SLSTR will be elaborated. Additionally, dedicated detector modules for LWIR/VLWIR sounding, providing the possibility to have two different PVs driven by one ROIC, will be addressed.

  4. JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward

    Science.gov (United States)

    Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente; Engelbracht, Chad; Hall, Don; Hoffman, Alan; Jeffers, Basil; Jhabvala, Christine; Kimble, Randy; Kopp, Robert; Lee, Don; Leidecker, Henning; Lindler, Don; McMurray, Bob; Mott, D. Brent; Ohl, Ray; Polis, Don; Pontius, Jim

    2012-01-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  5. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes

    Science.gov (United States)

    Madejczyk, Pawel; Gawron, Waldemar; Martyniuk, Piotr; Keblowski, Artur; Pusz, Wioletta; Pawluczyk, Jaroslaw; Kopytko, Malgorzata; Rutkowski, Jaroslaw; Rogalski, Antoni; Piotrowski, Jozef

    2017-03-01

    The authors report on energy gap engineering solutions to improve the high-temperature performance of long-wave infrared (LWIR) HgCdTe photodiodes. Metalorganic chemical vapour deposition (MOCVD) technology with a wide range of composition and donor/acceptor doping and without ex-situ post grown annealing seems to be an excellent tool for HgCdTe heterostructure epitaxial growth. The heterojunction HgCdTe photovoltaic device based on epitaxial graded gap structures integrated with Auger-suppression is a magnificent solution for high operating temperature (HOT) infrared detectors. The thickness, composition and doping of HgCdTe heterostructure were optimized with respect to photoelectrical parameters like dark current, the responsivity and the response time. In this paper we focus on graded interface abruptness in the progressive optimization.

  6. Recent progress in MBE grown HgCdTe materials and devices at UWA

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  7. Infrared limb sounding of Titan with the Cassini Composite InfraRed Spectrometer: effects of the mid-IR detector spatial responses.

    Science.gov (United States)

    Nixon, Conor A; Teanby, Nicholas A; Calcutt, Simon B; Aslam, Shahid; Jennings, Donald E; Kunde, Virgil G; Flasar, F Michael; Irwin, Patrick G; Taylor, Fredric W; Glenar, David A; Smith, Michael D

    2009-04-01

    The composite infrared spectrometer (CIRS) instrument on board the Cassini Saturn orbiter employs two 1x10 HgCdTe detector arrays for mid-infrared remote sensing of Titan's and Saturn's atmospheres. In this paper we show that the real detector spatial response functions, as measured in ground testing before launch, differ significantly from idealized "boxcar" responses. We further show that neglecting this true spatial response function when modeling CIRS spectra can have a significant effect on interpretation of the data, especially in limb-sounding mode, which is frequently used for Titan science. This result has implications not just for CIRS data analysis but for other similar instrumental applications.

  8. Infrared-transparent microstrip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, M. [Instituto de Fisica de Cantabria (IFCA), Ed. Juan Jorda, E-39005 Santander (Spain)], E-mail: Marcos.Fernandez@cern.ch; Duarte, J.; Gonzalez, J.; Heinemeyer, S.; Jaramillo, R.; Lopez, A.; Martinez, C.; Ruiz, A.; Vila, I. [Instituto de Fisica de Cantabria (IFCA), Ed. Juan Jorda, E-39005 Santander (Spain); Cabruja, E.; Lozano, M.; Pellegrini, G. [Centro Nacional de Microelectronica CNM-IMB, Campus Universidad Autonoma Barcelona, 08193 Bellaterra, Barcelona (Spain)

    2009-01-01

    The two main limiting factors in the accuracy of an optomechanical position monitoring system based on laser sources and photosensors are mechanical transfer between the monitored imaging sensors to the active particle tracking elements and non-straight propagation of the reference laser lines. Laser based alignment systems of Si trackers that use their own tracking detectors as photosensors are not affected by the first factor. Improving the transmittance of Si to infrared beams certainly minimizes the second one. Simulation of the passage of a light beam through a real microstrip detector and analysis of first measurements of samples are presented in this paper.

  9. InAs/GaSb type-II superlattice infrared detectors: Future prospect

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2017-09-01

    Investigations of antimonide-based materials began at about the same time as HgCdTe ternary alloys—in the 1950s, and the apparent rapid success of their technology, especially low-dimensional solids, depends on the previous five decades of III-V materials and device research. However, the sophisticated physics associated with the antimonide-based bandgap engineering concept started at the beginning of 1990s gave a new impact and interest in development of infrared detector structures within academic and national laboratories. The development of InAs/GaSb type-II superlattices (T2SLs) results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe focal plane arrays (FPAs) at reasonable cost and the theoretical predictions of lower Auger recombination for type T2SL detectors compared with HgCdTe. Second motivation—lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall (SRH) lifetime are equal. InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cut-off wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in SRH lifetimes. It is predicted that since the future infrared (IR) systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long SRH lifetime will be required. Since T2SLs are very much resisted in attempts to improve its SRH lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability

  10. Analysis of the auger recombination rate in P+N-n-N-N HgCdTe detectors for HOT applications

    Science.gov (United States)

    Schuster, J.; Tennant, W. E.; Bellotti, E.; Wijewarnasuriya, P. S.

    2016-05-01

    Infrared (IR) photon detectors must be cryogenically cooled to provide the highest possible performance, usually to temperatures at or below ~ 150K. Such low operating temperatures (Top) impose very stringent requirements on cryogenic coolers. As such, there is a constant push in the industry to engineer new detector architectures that operate at higher temperatures, so called higher operating temperature (HOT) detectors. The ultimate goal for HOT detectors is room temperature operation. While this is not currently possibly for photon detectors, significant increases in Top are nonetheless beneficial in terms of reduced size, weight, power and cost (SWAP-C). The most common HgCdTe IR detector architecture is the P+n heterostructure photodiode (where a capital letter indicates a wide band gap relative to the active layer or "AL"). A variant of this architecture, the P+N-n-N-N heterostructure photodiode, should have a near identical photo-response to the P+n heterostructure, but with significantly lower dark diffusion current. The P+N-n-N-N heterostructure utilizes a very low doped AL, surrounded on both sides by wide-gap layers. The low doping in the AL, allows the AL to be fully depleted, which drastically reduces the Auger recombination rate in that layer. Minimizing the Auger recombination rate reduces the intrinsic dark diffusion current, thereby increasing Top. Note when we use the term "recombination rate" for photodiodes, we are actually referring to the net generation and recombination of minority carriers (and corresponding dark currents) by the Auger process. For these benefits to be realized, these devices must be intrinsically limited and well passivated. The focus of this proceeding is on studying the fundamental physics of the intrinsic dark currents in ideal P+N-n-N-N heterostructures, namely Auger recombination. Due to the complexity of these devices, specifically the presence of multiple heterojunctions, numerical device modeling techniques must be

  11. The Future of Infrared; III-Vs or HgCdTe?

    Science.gov (United States)

    Kinch, Michael A.

    2015-09-01

    For reasons associated with size, weight, power consumption, and cost, the future of infrared systems for all spectral bands is being driven towards megapixel formats operating under diffraction- and background-limited conditions with ever-smaller pixel pitches and ever-higher operating temperatures. The performance requirements of such systems with regard to both optical and detector limitations are examined for the materials technologies and device architectures that are in vogue today. At elevated operating temperatures, available noise equivalent temperature difference values for diffraction-limited operation are found to be strongly dependent on the available pixel pitch, optimizing at values ˜ λ/4, where λ is the operating wavelength. The possibility for extending the operation of mid- and long-wavelength focal plane arrays to room temperature with diffraction- and background-limited performance is discussed, together with the potential issues that must be addressed in order to achieve this ultimate goal.

  12. Type-II indium arsenide/gallium antimonide superlattices for infrared detectors

    Science.gov (United States)

    Mohseni, Hooman

    In this work, the unique properties of type-II InAs/GaSb heterojunctions were utilized for the realization of novel infrared photodetectors with higher operating temperature, detectivity and uniformity than the commonly available infrared detectors. This effort was concentrated on two major devices: uncooled infrared detectors in the long wavelength infrared (LWIR) range, and cooled devices in the very long wavelength infrared (VLWIR) range. Uncooled infrared (IR) detectors are required for low-cost, lightweight sensor systems that have many industrial and medical applications. Commercially available uncooled IR sensors use ferroelectric or microbolometer detectors. These sensors are inherently slow and cannot detect rapid signal changes needed for high-speed infrared systems. Some of the applications which require a fast detector (tau LIDARs. Although photon detectors have frequency responses in the megahertz range, their high temperature detectivity is severely degraded due to high Auger recombination rates. Bandgap engineering was used in order to suppress Auger recombination at room temperature in type-II superlattices. Our experimental results demonstrated nearly one order of magnitude lower Auger recombination rate at room temperature in these type-II superlattices compared to typical intrinsic detectors, such as HgCdTe, with similar bandgap. Uncooled detectors based on the engineered superlattices showed a detectivity of 1.3 x 108g cmHz 1/2/W at 11 Et m, which is comparable to microbolometers. However, the measured response time of the detectors was more than five orders of magnitude faster than microbolometers. In parallel, devices for operation in the VLWIR were developed. High-performance infrared detectors with cutoff wavelength above 14 mum are highly needed for many space-based applications. Commonly used detectors are extrinsic silicon and HgCdTe. However, the former has to be cooled below 10K, and the latter do not have good uniformity in the VLWIR

  13. Infrared detectors for Earth observation

    Science.gov (United States)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  14. Compact dewar and electronics for large-format infrared detectors

    Science.gov (United States)

    Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.

    2011-06-01

    Infrared systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring detectors do show constant improvements regarding detector performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced detectors, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.

  15. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Sizov, F.; Zabudsky, V.; Petryakov, V.; Golenkov, A.; Andreyeva, K.; Tsybrii, Z. [Institute of Semiconductor Physics, 03028 Kiev (Ukraine); Dvoretskii, S. [Institute of Semiconductor Physics of SB RAS, 630090 Novosibirsk (Russian Federation)

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noise ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.

  16. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes

    Science.gov (United States)

    He, Kai; Zhou, Song-Min; Li, Yang; Wang, Xi; Zhang, Peng; Chen, Yi-Yu; Xie, Xiao-Hui; Lin, Chun; Ye, Zhen-Hua; Wang, Jian-Xin; Zhang, Qin-Yao

    2015-05-01

    This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V F B = - 5.7 V by capacitance-voltage measurement, and then the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R 0 A product and corresponding dark current calculated from the proposed model as functions of the gate voltage Vg demonstrate good consistency with the measured values. The R 0 A product remarkably degenerates when Vg is far below or above VFB because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7 × 10 7 Ω . cm 2 around the transition between surface depletion and weak inversion when V g ≈ - 4 V , which might result from reduced generation-recombination current.

  17. Commentary: JWST near-infrared detector degradation— finding the problem, fixing the problem, and moving forward

    Directory of Open Access Journals (Sweden)

    Bernard J. Rauscher

    2012-06-01

    Full Text Available The James Webb Space Telescope (JWST is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST’s four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 μm cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a “Detector Degradation Failure Review Board” (DD-FRB to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB “Executive Summaries” that: (1 determined the root cause of the detector degradation and (2 defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  18. Visible response of λc=2.5´m HgCdTe HDVIP detectors

    Science.gov (United States)

    Stapelbroek, Maryn G.; Guptill, Matthew; D'Souza, Arvind I.; Bryan, Elizabeth R.; Beck, J. D.; Kinch, M. A.; Robinson, James E.

    2004-08-01

    Cu-doped HDVIP detectors with different cut-off wavelengths are routinely manufactured. The DRS HDVIP detector technology is a front-side-illuminated detector technology. There is no substrate to absorb the visible photons as in backside-illuminated detectors and these detectors should be well suited to respond to visible light. However, HDVIP detectors are passivated using CdTe that absorbs the visible light photons. CdTe strongly absorbs photons of wavelength shorter than about 800 nm. Detectors with varying thickness of CdTe passivation layers were fabricated to investigate the visible response of the 2.5-μm-cutoff detectors. A model was developed to predict the quantum efficiency of the detectors in the near infrared and visible wavelength regions as a function of CdTe thickness. Individual photodiodes (λc = 2.5 μm) in test bars were examined. Measurements of the quantum efficiency as a function of wavelength region will be presented and compared to the model predictions.

  19. MBE Growth and Transfer of HgCdTe Epitaxial Films from InSb Substrates

    Science.gov (United States)

    de Lyon, T. J.; Rajavel, R. D.; Nosho, B. Z.; Terterian, S.; Beliciu, M. L.; Patterson, P. R.; Chang, D. T.; Boag-O'Brien, M. F.; Holden, B. T.; Jacobs, R. N.; Benson, J. D.

    2010-07-01

    An investigation of the heteroepitaxial growth of HgCdTe films onto InSb(211)B substrates is reported. High-quality HgCdTe(211)B single-crystal films have been successfully deposited onto InSb(211)B substrates and have been characterized with x-ray diffraction rocking curve analysis, etch pit density analysis, and surface void defect mapping. X-ray rocking curve (422) reflection full-width at half-maximum of 60 arcsec has been obtained for 7- μm-thick x = 0.22 HgCdTe epitaxial films, and etch pit densities of 3 × 106 cm-2 to 3 × 107 cm-2 have been observed. A significant reduction in HgCdTe void defect densities to 100 cm-2 to 200 cm-2 has been observed on InSb, including a complete absence of large “void cluster” defects that are often observed for growth on CdZnTe. Wafer bow induced by the growth of HgCdTe on InSb is less than 1 μm for 2-inch-diameter substrates. Significant diffusion of In into HgCdTe is observed for HgCdTe/InSb wafers that are subjected to Hg anneals at 250°C to 300°C. A preliminary investigation of the transfer of HgCdTe films from InSb onto Si substrates has also been undertaken, using an adhesive wafer bonding approach evaluated with scanning acoustic microscopy. The infrared transmission characteristics of the bonding adhesive have been investigated with respect to postgrowth annealing procedures to establish the compatibility of the bonding approach with HgCdTe device processing and detector operation.

  20. Effect of surface fields on the dynamic resistance of planar HgCdTe mid-wavelength infrared photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    He, Kai; Wang, Xi; Zhang, Peng; Chen, Yi-Yu [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Song-Min; Xie, Xiao-Hui; Lin, Chun, E-mail: chun-lin@mail.sitp.ac.cn; Ye, Zhen-Hua; Wang, Jian-Xin; Zhang, Qin-Yao, E-mail: qinyao@mail.sitp.ac.cn [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Li, Yang [Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2015-05-28

    This work investigates the effect of surface fields on the dynamic resistance of a planar HgCdTe mid-wavelength infrared photodiode from both theoretical and experimental aspects, considering a gated n-on-p diode with the surface potential of its p-region modulated. Theoretical models of the surface leakage current are developed, where the surface tunnelling current in the case of accumulation is expressed by modifying the formulation of bulk tunnelling currents, and the surface channel current for strong inversion is simulated with a transmission line method. Experimental data from the fabricated devices show a flat-band voltage of V{sub FB}=−5.7 V by capacitance-voltage measurement, and then the physical parameters for bulk properties are determined from the resistance-voltage characteristics of the diode working at a flat-band gate voltage. With proper values of the modeling parameters such as surface trap density and channel electron mobility, the theoretical R{sub 0}A product and corresponding dark current calculated from the proposed model as functions of the gate voltage V{sub g} demonstrate good consistency with the measured values. The R{sub 0}A product remarkably degenerates when V{sub g} is far below or above V{sub FB} because of the surface tunnelling current or channel current, respectively; and it attains the maximum value of 5.7×10{sup 7} Ω · cm{sup 2} around the transition between surface depletion and weak inversion when V{sub g}≈−4 V, which might result from reduced generation-recombination current.

  1. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  2. Infrared microcalorimetric spectroscopy using uncooled thermal detectors

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Physics and Astronomy]|[Oak Ridge National Lab., TN (United States); Rajic, S.; Datskou, I.; Egert, C.M. [Oak Ridge National Lab., TN (United States)

    1997-10-01

    The authors have investigated a novel infrared microcalorimetric spectroscopy technique that can be used to detect the presence of trace amounts of target molecules. The chemical detection is accomplished by obtaining the infrared photothermal spectra of molecules absorbed on the surface of an uncooled thermal detector. Traditional gravimetric based chemical detectors (surface acoustic waves, quartz crystal microbalances) require highly selective coatings to achieve chemical specificity. In contrast, infrared microcalorimetric based detection requires only moderately specific coatings since the specificity is a consequence of the photothermal spectrum. They have obtained infrared photothermal spectra for trace concentrations of chemical analytes including diisopropyl methylphosphonate (DIMP), 2-mercaptoethanol and trinitrotoluene (TNT) over the wavelength region2.5 to 14.5 {micro}m. They found that in the wavelength region 2.5 to 14.5 {micro}m DIMP exhibits two strong photothermal peaks. The photothermal spectra of 2-mercaptoethanol and TNT exhibit a number of peaks in the wavelength region 2.5 to 14.5 {micro}m and the photothermal peaks for 2-mercaptoethanol are in excellent agreement with infrared absorption peaks present in its IR spectrum. The photothermal response of chemical detectors based on microcalorimetric spectroscopy has been found to vary reproducibly and sensitively as a consequence of adsorption of small number of molecules on a detector surface followed by photon irradiation and can be used for improved chemical characterization.

  3. Measuring extended red sensitivity in a 1.7μm-cutoff HgCdTe detector array

    Science.gov (United States)

    Terrien, Ryan C.; Monson, Andrew J.; Mahadevan, Suvrath; Bender, Chad; Halverson, Samuel P.; Ramsey, Larry

    2016-08-01

    Infrared detectors with cutoff wavelengths of 1.7 μm have much lower sensitivity to thermal background contamination than those with longer cutoff wavelengths. This low sensitivity offers the attractive possibility of reducing the need for fully cryogenic systems for YJH-band work, offering the potential for "warm-pupil" instrumentation that nonetheless reduces detected thermal background to the level of dark current. However, residual sensitivity beyond the cutoff wavelength is not well characterized, and may preclude the implementation of such warm-pupil instruments. We describe an experiment to evaluate the long-wavelength sensitivity tail of a 1.7 µm-cutoff HAWAII-2RG array using a thermal blocking filter. Our results suggest the possibility of measurable red sensitivity beyond 2 μm. Ongoing improvements will confirm and refine this measurement. The thermal blocking filter offers the prospect of warm-pupil NIR instrument operation, which is particularly valuable for cost-effective and efficient testing systems: it has facilitated NIR detector characterization and will enable crucial laboratory tests of laser frequency comb calibration systems and other NIR calibration sources.

  4. Ferroelectric infrared detector and method

    Science.gov (United States)

    Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence

    2010-03-30

    An apparatus and method are provided for sensing infrared radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.

  5. Ge photocapacitive MIS infrared detectors

    Science.gov (United States)

    Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.

    1979-01-01

    An undoped Ge photocapacitive detector is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.

  6. COMPARISON OF CHARACTERIZATION TECHNIQUES IN P-ON-N HgCdTe LWIR PHOTODIODES TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper standard techniques for characterization of HgCdTe liquid phase epitaxial layers (LPE) were presented. The performance of long wavelength p-on-n HgCdTe photodiodes fabricated by arsenic diffusion was described. The correlation between LPE HgCdTe material parameters and properties of the infrared photodiodes was demonstrated.

  7. The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

    Directory of Open Access Journals (Sweden)

    Haoyang Cui

    2013-01-01

    Full Text Available The transient photovoltaic (PV characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  8. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    Science.gov (United States)

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  9. Two-color infrared detector

    Science.gov (United States)

    Klem, John F; Kim, Jin K

    2014-05-13

    A two-color detector includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.

  10. Experimental Determination of Effective Minority Carrier Lifetime in HgCdTe Photovoltaic Detectors Using Optical and Electrical Methods

    Directory of Open Access Journals (Sweden)

    Haoyang Cui

    2015-01-01

    Full Text Available This paper presents experiment measurements of minority carrier lifetime using three different methods including modified open-circuit voltage decay (PIOCVD method, small parallel resistance (SPR method, and pulse recovery technique (PRT on pn junction photodiode of the HgCdTe photodetector array. The measurements are done at the temperature of operation near 77 K. A saturation constant background light and a small resistance paralleled with the photodiode are used to minimize the influence of the effect of junction capacitance and resistance on the minority carrier lifetime extraction in the PIOCVD and SPR measurements, respectively. The minority carrier lifetime obtained using the two methods is distributed from 18 to 407 ns and from 0.7 to 110 ns for the different Cd compositions. The minority carrier lifetime extracted from the traditional PRT measurement is found in the range of 4 to 20 ns for x=0.231–0.4186. From the results, it can be concluded that the minority carrier lifetime becomes longer with the increase of Cd composition and the pixels dimensional area.

  11. New and Better Near-Infrared Detectors for JWST Near Infrared Spectrograph

    Science.gov (United States)

    Rauscher, Bernard J.; Mott, D. Brent; Wen, Yiting; Linder, Don; Greenhouse, Matthew A.; Hill, Robert J.

    2014-01-01

    ESA and NASA recently selected two 5 m cutoff Teledyne H2RG sensor chip assemblies (SCA) for flight on the James Webb Space Telescope (JWST) Near Infrared Spectrograph (NIRSpec). These HgCdTe SCAs incorporate Teledynes improved barrier layer design that eliminates the degradation that affected earlier JWST H2RGs(Rauscher et al. 2012a). The better indium barrier, together with other design changes, has improved the performance and reliability of JWSTs SCAs. In this article, we describe the measured performance characteristics that most directly affect scientific observations including read noise, total noise, dark current, quantum efficiency (QE), and image persistence. As part of measuring QE, we measured the quantum yield as a function of photon energy,, and found that it exceeds unity for photon energies E (2.65.2) Eg, where Eg is the HgCdTe bandgap energy. This corresponds to. 2 m for NIRSpecs 5 m cutoff HgCdTe. Our measurements agree well with a previous measurement by McCullough et al. (2008) for. 1.3. For 1.3, we find a slower increase in with photon energy than McCullough et al. did. However, and as McCullough et al. note, their two state model of the yield process is not valid for large 1.

  12. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    Science.gov (United States)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-09-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  13. Characterization of HgCdTe and Related Materials and Substrates for Third Generation Infrared Detectors

    Science.gov (United States)

    2012-12-01

    Markunas. J. D. Benson, and D. J. Smith, J. Electron. Mater. (2012). submitted. 5 J. Chai, O. C. Noriega , J. H. Dinan, and T. H. Myers, J. Electron...127 110 REFERENCES 1 J. Chai, O. C. Noriega , J. H. Dinan, and T. H. Myers, J. Electron. Mater. 41...3001(2012) 2 J. Chai, O.C. Noriega , J. H. Dinan, J. J. Kim, D. J. Smith, and T. H. Myers, J. Electron. Mater. (2012), submitted. 3 Y.-H. Zhang

  14. Si Based Large Area Substrates for HgCdTe Infrared Detectors

    Science.gov (United States)

    2010-10-06

    journals (N/A for none) M. C. Debnath, T. D. Mishima , M. B. Santos, K. Hossain, and O. W. Holland, Growth of InSb epilayers and quantum wells on Ge(001...publications (other than abstracts): M. C. Debnath, T. D. Mishima , M. B. Santos, K. Hossain, and O. W. Holland, InSb-based epilayers and quantum wells on

  15. Candidate 10 micron HgCdTe arrays for the NEOCam space mission

    Science.gov (United States)

    McMurtry, Craig W.; Dorn, Meghan; Cabrera, Mario S.; Pipher, Judith L.; Forrest, William J.; Mainzer, Amy K.; Wong, Andre

    2016-08-01

    The Near Earth Object Camera (NEOCam, Mainzer et al. 2015) is one of five NASA Discovery Class mission experiments selected for Phase A: down-select to one or two experiments will take place late in 2016. NEOCam will survey the sky in search of asteroids and comets, particularly those close to the Earth's orbit. The NEOCam infrared telescope will have two infrared (IR) channels; one covering 4 to 5 microns, and one covering 6-10 microns. Both IR cameras will use multiple 2Kx2K pixel format HAWAII-2RG arrays with different cutoff wavelength HgCdTe detectors from Teledyne Imaging Sensors. Past development work by the University of Rochester with Teledyne Imaging Sensors and JPL (McMurtry et al. 2013, Dorn et al. 2016) focused upon bringing the 10 micron HgCdTe detector technology up to NASA TRL 6+. This work extends that development program to push the format from 1Kx1K to the larger 2Kx2K pixel array. We present results on the first 2Kx2K candidate 10 micron cutoff HgCdTe arrays, where we measured the dark current, read noise, and total noise.

  16. Infrared SWAP detectors: pushing the limits

    Science.gov (United States)

    Reibel, Yann; Taalat, R.; Brunner, A.; Rubaldo, L.; Augey, T.; Kerlain, A.; Péré-Laperne, N.; Manissadjian, A.; Gravrand, O.; Castelein, P.; Destéfanis, G.

    2015-06-01

    The growing demand for compact and low consumption infrared cooled detectors is driven by different products segments. Hand Held Thermal Imagers, UAV, small gimbals are some of them. End users are requiring devices easy to use with fast cool down time, excellent portability, low acoustic noise with no trade-offs in reliability and performance. These requirements are pushing the technology developments toward constant innovations on detectors, coolers, read out circuits and proximity electronic boards. In this paper we are discussing the different figures of merit and highlighting the challenges for the different components. An update on the developments of HOT technology for most advanced pixel pitch will be presented. Very compact products are driving the developments for innovative coolers and cryogenic solutions. A low power compact architecture is a must for electronic boards to optimize the overall system power consumption. Finally a look to the future requirements for further shrink will be addressed.

  17. InAs/GaSb type-II superlattice infrared detectors: three decades of development

    Science.gov (United States)

    Rogalski, A.; Kopytko, M.; Martyniuk, P.

    2017-02-01

    Recently, there has been considerable progress towards III-V antimonide-based low dimensional solids development and device design innovations. From a physics point of view, the type-II InAs/GaSb superlattice is an extremely attractive proposition. Their development results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe FPAs at reasonable cost and theoretical predictions of lower Auger recombination for type-II superlattice (T2SL) detectors compared to HgCdTe. Lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall lifetime are equal. Based on these promising results it is obvious now that the InAs/GaSb superlattice technology is competing with HgCdTe third generation detector technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing. Comments to the statement whether the superlattice IR photodetectors can outperform the "bulk" narrow gap HgCdTe detectors is one of the most important questions for the future of IR photodetectors presented by Rogalski at the April 2006 SPIE meeting in Orlando, Florida, are more credible today and are presented in this paper. It concerns the trade-offs between two most competing IR material technologies: InAs/GaSb type-II superlattices and HgCdTe ternary alloy system.

  18. Single-Band and Dual-Band Infrared Detectors

    Science.gov (United States)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  19. Gerard Kuiper and the Infrared Detector

    Science.gov (United States)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  20. Growth, properties and applications of HgCdTe

    Science.gov (United States)

    Schmit, J. L.

    1983-12-01

    · p calculations, gives the intrinsic carrier concentration as a function of composition and temperature: ni = (5.585-3.820x+1.753×10 -3T-1.364×10 -3xT)×10 14E3/4gT3/2 exp(- Eg/2 kT). HgCdTe is typically used in the manufacture of infrared (IR) detectors, with both commercial applications such as medical thermography and building heat loss analysis and military applications such as surveillance of activities on the surface of the earth and terminal guidance of missiles. Detectors operating in the atmospheric windows are able to see both in the dark and through clouds. HgCdTe is the material of choice for the 3-5 μm and the 8-12 μm wavelength IR detectors. HgCdTe is not strong or easy to work with, but the technology is maturing and sophisticated devices are now being built.

  1. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    Science.gov (United States)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  2. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers

    Science.gov (United States)

    Carmody, M.; Lee, D.; Zandian, M.; Phillips, J.; Arias, J.

    2003-07-01

    Lattice mismatch between the substrate and the absorber layer in single-color HgCdTe infrared (IR) detectors and between band 1 and band 2 in two-color detectors results in the formation of crosshatch lines on the surface and an array of misfit dislocations at the epi-interfaces. Threading dislocations originating in the substrate can also bend into the interface plane and result in misfit dislocations because of the lattice mismatch. The existence of dislocations threading through the junction region of HgCdTe IR-photovoltaic detectors can greatly affect device performance. High-quality CdZnTe substrates and controlled molecular-beam epitaxy (MBE) growth of HgCdTe can result in very low threading-dislocation densities as measured by the etch-pit density (EPD ˜ 104cm-2). However, dislocation gettering to regions of high stress (such as etched holes, voids, and implanted-junction regions) at elevated-processing temperatures can result in a high density of dislocations in the junction region that can greatly reduce detector performance. We have performed experiments to determine if the dislocations that getter to these regions of high stress are misfit dislocations at the substrate/absorber interface that have a threading component extending to the upper surface of the epilayer, or if the dislocations originate at the cap/absorber interface as misfit dislocations. The preceding mechanisms for dislocation motion are discussed in detail, and the possible diode-performance consequences are explored.

  3. Research of High Sensitivity Uncooled Infrared Detector Array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pingchuan [Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Bo, E-mail: redmoon123456@126.com, E-mail: lhzyzb@126.com [Luohe Vocational Technology College, Luohe 462002 (China)

    2011-02-01

    The infrared thermal imaging technology has been widely used in military and civilian fields and the field of the infrared detection and infrared thermal imaging technology has been of concern for a long time. On infrared thermal imaging, its core components for the infrared focal plane arrays, how to develop a high sensitivity of the multi-focal plane infrared detector is a key issue. Although the Common focal plane array of quantum has high sensitivity, but it requires low temperature cooling work environment and led to complexity and high cost, difficult to compact. Conventional uncooled infrared focal plane array is contrast to the quantum focal plane arrays. Therefore, this article preceded by the uncooled infrared detector array to improve the wide temperature sensitivity in examining the feasibility PMN composite film, materials composition, structure design and preparation process technology.

  4. Multi-spectral black meta-infrared detectors (Conference Presentation)

    Science.gov (United States)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  5. Using quantum filters as edge detectors in infrared images

    Science.gov (United States)

    Bolaños Marín, Daniela

    2014-06-01

    Some new filters inspired in quantum models are used as edge detectors in infrared images. In this case, Bessel, Hermite and Morse filters will be applied to detect edges and fibrillar structures in infrared images. The edge detectors will be built by the Laplacian of the mentioned quantum filters. Furthermore, using curvature operators, curvature detectors and amplifiers of contrast will be constructed to analyze infrared images. The quantum filter prototyping will be done using computer algebra software, specifically Maple and its package, ImageTools. The quantum filters will be applied to infrared images using the technique of convolutions and blurred derivatives. It is expected that designed quantum filters will be useful for analysis and processing of infrared images. As future investigations, we propose to design plugins with the quantum filters that can be incorporated into the program ImageJ, which will facilitate the use of the quantum filters for the infrared image processing.

  6. Effect of space exposure on pyroelectric infrared detectors (A0135)

    Science.gov (United States)

    Robertson, J. B.; Clark, I. O.; Crouch, R. K.

    1984-01-01

    The effects of long-duration space exposure and launch environment on the performance of pyroelectric detectors which is important for the prediction of performance degradation, setting exposure limits, or determining shielding requirements was investigated. Air pollution monitoring and thermal mapping of the Earth, which includes the remote sensing of aerosols and limb scanning infrared radiometer projects, requires photodetection in the 6- to 20 micro m region of the spectrum. Pyroelectric detectors can detect radiation in the 1- to 100 micro m region while operating at room temperature. This makes tahe pyroelectric detector a prime candidate to fill the thermal infrared detector requirements.

  7. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; Gunapala, Sarath D.

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  8. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  9. Receiver Performance of CO2 and CH4 Lidar with Low Noise HgCdTe Avalanche Photodiodes

    Science.gov (United States)

    Sun, X.; Abshire, J. B.

    2012-12-01

    NASA Goddard Space Flight Center (GSFC) is currently developing CO2 lidars at 1.57 μm wavelength for the Active Sensing of CO2 Emission over Days, Nights, and Seasons (ASCENDS) mission. One of the major technical challenges is the photodetectors that have to operate in short wave infrared (SWIR) wavelength region and sensitive to received laser pulses of only a few photons. We have been using InGaAs photocathode photomultiplier tubes (PMT) in our airborne simulator of the CO2 lidar that can detect single photon with up to 10% quantum efficiency at photodetector for our CO2 lidars. The new HgCdTe APDs have typically a >50% quantum efficiency, including the effect of fill-factor, from 0.9 to 4.5 μm wavelength. DRS RSTA will integrate a low noise read-out integrated circuit (ROIC) with the HgCdTe APD array into a low noise analog SWIR detector with near single photon sensitivity. The new HgCdTe APD SWIR detector assembly is expected to improve the receiver sensitivity of our CO2 lidar by at least a factor of two and provide a sufficient wide signal dynamic range. The new SWIR detector systems can also be used in the CH4 lidars at 1.65 μm wavelength currently being developed at GSFC. The near infrared PMTs have diminishing quantum efficiency as the wavelength exceeds 1.6 μm. InGaAs APDs have a high quantum efficiency but too high an excess noise factor to achieve near quantum limited performance. The new HgCdTe APDs is expected to give a much superior performance than the PMTs and the InGaAs APDs. In this paper, we will give a brief description of the new HgCdTe APD assembly and present a receiver performance analysis of our CO2 lidar and a CH4 lidar with the new detector system in comparison to the near infrared PMTs and InGaAs APDs.

  10. Heterojunction and superlattice detectors for infrared to ultraviolet

    Science.gov (United States)

    Perera, A. G. U.

    2016-07-01

    The interest in Infrared and Ultraviolet detectors has increased immensely due to the emergence of important applications over a wide range of activities. Detectors based on free carrier absorption known as Hetero-junction Interfacial Workfunction Internal Photoemission (HEIWIP) detectors and variations of these heterojunction structures to be used as intervalence band detectors for a wide wavelength region are presented. Although this internal photoemission concept is valid for all semiconductor materials systems, using a well-studied III-V system of GaAs/AlxGa1-x As to cover a wide wavelength range from UV to far-infrared (THz) is an important development in detector technology. Using the intervalence band (heavy hole, light hole and split off) transitions for high operating temperature detection of mid Infrared radiation is also discussed. A promising new way to extend the detection wavelength threshold beyond the standard threshold connected with the energy gap in a GaAs/AlxGa1-x As system is also presented. Superlattice detector technology, which is another promising detector architecture, can be optimized using both Type I and Type II heterostructures. Here the focus will be on Type II Strained Layer (T2SL) Superlattice detectors. T2SL Superlattices based on InAs/(In,GA)Sb have made significant improvements demonstrating focal plane arrays operating around 80 K and with multiple band detection capability. A novel spectroscopic method to evaluate the band offsets of both heterojunction and superlattice detectors is also discussed.

  11. A 1.5k x 1.5k class photon counting HgCdTe linear avalanche photo-diode array for low background space astronomy in the 1-5micron infrared

    Science.gov (United States)

    Hall, Donald

    Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L

  12. Infra-red signature neutron detector

    Science.gov (United States)

    Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN

    2009-10-13

    A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates infrared radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the infrared radiation. Identifying a characteristic of the activator based on the infrared radiation.

  13. Plasmonic lens enhanced mid-infrared quantum cascade detector

    Energy Technology Data Exchange (ETDEWEB)

    Harrer, Andreas, E-mail: andreas.harrer@tuwien.ac.at; Schwarz, Benedikt; Gansch, Roman; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried [Institute for Solid State Electronics and Center for Micro- and Nanostructures, Vienna University of Technology, 1040 Vienna (Austria)

    2014-10-27

    We demonstrate monolithic integrated quantum cascade detectors enhanced by plasmonic lenses. Surface normal incident mid-infrared radiation is coupled to surface plasmon polaritons guided to and detected by the active region of the detector. The lens extends the optical effective active area of the device up to a 5 times larger area than for standard mesa detectors or pixel devices while the electrical active region stays the same. The extended optical area increases the absorption efficiency of the presented device as well as the room temperature performance while it offers a flexible platform for various detector geometries. A photocurrent response increase at room temperature up to a factor of 6 was observed.

  14. Precision Calibration of Infrared Synchrotron Radiation Detectors

    CERN Document Server

    Maltsev, A A; Maslova, M V

    2003-01-01

    The technique of calibration of synchrotron radiation precision detectors on a tungsten source based on similarity (close similarity) of character of spectral distributions of synchrotron and thermal radiations is given. The characteristics of various commonly used lamps, used as "standard" ones, are given. The errors of measurements are analyzed. The detectors are intended for absolute measurements of the number of electrons in a ring-shaped bunch.

  15. High performance infrared fast cooled detectors for missile applications

    Science.gov (United States)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  16. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  17. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    Science.gov (United States)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  18. Infrared Superconducting Single-Photon Detectors

    Science.gov (United States)

    2012-10-05

    group realized small microstrip devices, the next iteration of which may narrow the line width to below 100 nm, entering the single-photon detection...and will explore superconducting detectors with integrated waveguide circuits and novel deposition techniques. 15. SUBJECT...world record quantum cryptography demonstrations [9] and operation of quantum waveguide circuits at telecom wavelengths [10]. Beyond the quantum

  19. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    Directory of Open Access Journals (Sweden)

    Hans Zogg

    2008-09-01

    Full Text Available Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA.

  20. Silicon-Germanium Alloys for Infrared Detectors.

    Science.gov (United States)

    1980-04-01

    crystals, aiming at improved crystallinity and higher resistivity and to extend the Czochralski growth method to indium-doped Si-Ge alloys. Our intention...of the disappointingly high boron concentrations achieved in Czochralski growth, we decided to explore a crucible-free method for preparing Si-Ge...material was not high enough to allow an adequately long depletion region in a p-i-n detector. It does not appear that any Czochralski -type growth method

  1. Center for Research on Infrared Detectors (CENTROID)

    Science.gov (United States)

    2006-09-30

    Average carper energy in a bound-to-continuum detector for va:rious val- ue~ of tow-field capture tillllt . Figure 5. Results of Monte Carlo studies...Orlando and Santa Barbara Focal Plane in the realization of QDIP-based IR cameras. We have fabricated and shipped 320x256 QDIP arrays to them for...International Science Center HRL Laboratories Texas Instruments/DRS Technologies EPIR Limited Lockheed Martin Santa Barbara Focalplane BAE Systems AFRL

  2. Field guide to infrared systems, detectors, and FPAs

    CERN Document Server

    Daniels, Arnold

    2011-01-01

    This second edition is written to clarify and summarize the theoretical principles of infrared technology. It is intended as a reference for the practicing engineer and/or scientist who requires effective practical information to design, build, and/or test infrared equipment in a wide variety of applications. This Field Guide combines numerous engineering disciplines necessary for the development of an infrared system. It describes the basic elements involving image formation and image quality, radiometry and flux transfer, and explains the figures of merit involving detector performance. It c

  3. Challenges of small-pixel infrared detectors: a review

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology—HgCdTe material systems and III-V materials (mainly barrier detectors)—have been investigated.

  4. Development of Kinetic Inductance Detectors for Far-Infrared Spectroscopy

    Science.gov (United States)

    Barlis, Alyssa; Aguirre, James E.; Stevenson, Thomas

    2016-01-01

    An instrument with high sensitivity and spectral resolution at far-infrared wavelengths could contribute significantly to several currently unanswered questions in astrophysics. Here, we describe a detector system suitable for a spectroscopic experiment at far-infrared wavelengths using kinetic inductance detectors (KIDs). KIDs have the potential to achieve high sensitivity and low noise levels. Specifically, the approach we take uses lumped-element KIDs, which consist of separate capacitive and inductive elements combined to form a microresonator. The inductive element serves as a direct radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels, along with results from a prototype detector array.

  5. Improved mid infrared detector for high spectral or spatial resolution and synchrotron radiation use

    Science.gov (United States)

    Faye, Mbaye; Bordessoule, Michel; Kanouté, Brahim; Brubach, Jean-Blaise; Roy, Pascale; Manceron, Laurent

    2016-06-01

    When using bright, small effective size sources, such as synchrotron radiation light beam, for broadband spectroscopy at spectral or spatial high resolution for mid-IR FTIR measurements, a marked detectivity improvement can be achieved by setting up a device matching the detector optical étendue to that of the source. Further improvement can be achieved by reducing the background unmodulated flux and other intrinsic noise sources using a lower temperature cryogen, such as liquid helium. By the combined use of cooled apertures, cold reimaging optics, filters and adapted detector polarization, and preamplification electronics, the sensitivity of a HgCdTe photoconductive IR detector can be improved by a significant factor with respect to standard commercial devices (more than one order of magnitude on average over 6-20 μm region) and the usable spectral range extended to longer wavelengths. The performances of such an optimized detector developed on the AILES Beamline at SOLEIL are presented here.

  6. Type-ii binary superlattices for infrared detector

    Energy Technology Data Exchange (ETDEWEB)

    Razeghi, M.; Mohseni, H. [Northwestern Univ., Evanston (United States); Brown, G. J. [WPAFB, Colombus (United States)

    2001-12-01

    III-V quantum wells and superlattices based on InAs/GaSb/AlSb, and related compounds have attracted many attentions due to their unique band alignments and physical properties. Recently, novel electronic and optoelectronic heterostructures have been proposed from this material system for hundred gigahertz logic circuits, terahertz transistors. RTDs, infrared lasers, and infrared detectors. In this paper we will describe the ongoing research at the Center for Quantum Devices to develop the theory, modeling, growth, characterization, and device fabrication techniques for this material system. We have demonstarted the first uncooled infrared detectors from type-II superlattices. The measured detectivity is more than 1 x 10{sup 8} cmHz{sup 1/2}/W at 10.6 {mu}m at room temperature which is higher than the commercially available uncooled photon detectors at similar wavelength. In paralle, we have demonstraed the first high-performance p-i-n type-II photodiode in the very long wavelength infrared (VLWIR) range operating at T=80K. The devices with cutoff wavelength of 16 mm showed a responsivity of 3.5 A/W at 80 K leading to a detectivity of {approx}1.51x10{sup 10} cmHz{sup 1/2}/W. Similar devices with cutoff wavelengths up to 25 {mu}m was demonstrated at 80 K. To enhance this technology further, we plan to move from quantum wells to quantum wire and quantum dots.

  7. Performance overview of the Euclid infrared focal plane detector subsystems

    Science.gov (United States)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  8. Cooled and uncooled infrared detectors for missile seekers

    Science.gov (United States)

    Fraenkel, Rami; Haski, Jacob; Mizrahi, Udi; Shkedy, Lior; Shtrichman, Itay; Pinsky, Ephi

    2014-06-01

    Electro-optical missile seekers pose exceptional requirements for infrared (IR) detectors. These requirements include: very short mission readiness (time-to-image), one-time and relatively short mission duration, extreme ambient conditions, high sensitivity, fast frame rate, and in some cases small size and cost. SCD is engaged in the development and production of IR detectors for missile seeker applications for many years. 0D, 1D and 2D InSb focal plane arrays (FPAs) are packaged in specially designed fast cool-down Dewars and integrated with Joule-Thomson (JT) coolers. These cooled MWIR detectors were integrated in numerous seekers of various missile types, for short and long range applications, and are combat proven. New technologies for the MWIR, such as epi-InSb and XBn-InAsSb, enable faster cool-down time and higher sensitivity for the next generation seekers. The uncooled micro-bolometer technology for IR detectors has advanced significantly over the last decade, and high resolution - high sensitivity FPAs are now available for different applications. Their much smaller size and cost with regard to the cooled detectors makes these uncooled LWIR detectors natural candidates for short and mid-range missile seekers. In this work we will present SCD's cooled and uncooled solutions for advanced electro-optical missile seekers.

  9. Portable He-3 detector cryostat for the far infrared

    Science.gov (United States)

    Radostitz, J. V.; Nolt, I. G.; Kittel, P.; Donnelly, R. J.

    1978-01-01

    The design of a portable He-3 cryostat for far infrared detection applications is described, with a cutaway drawing of the cryostat, including bolometer and cooled optics, provided. Consideration is given to the selection and testing of various bolometer materials, including Ge:Ga and Ge:InSb; the resistance-temperature coefficients of the materials examined are presented. The absolute flux calibration of the detector system using a new temperature-modulated cold source method is described.

  10. Optical Studies on Antimonide Superlattice Infrared Detector Material

    Science.gov (United States)

    Hoglund, Linda; Soibel, Alexander; Hill, Cory J.; Ting, David Z.; Khoshakhlagh, Arezou; Liao, Anna; Keo, Sam; Lee, Michael C.; Nguyen, Jean; Mumolo, Jason M.; hide

    2010-01-01

    In this study the material quality and optical properties of type II InAs/GaSb superlattices are investigated using transmission and photoluminescence (PL) spectroscopy. The influence of the material quality on the intensity of the luminescence and on the electrical properties of the detectors is studied and a good correlation between the photodetector current-voltage (IV) characteristics and the PL intensity is observed. Studies of the temperature dependence of the PL reveal that Shockley-Read-Hall processes are limiting the minority carrier lifetime in both the mid-IR wavelength and the long-IR wavelength detector material studied. These results demonstrate that PL spectroscopy is a valuable tool for optimization of infrared detectors.

  11. Kinetic inductance detectors for far-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barlis, A., E-mail: abarlis@physics.upenn.edu [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Aguirre, J. [University of Pennsylvania Department of Physics and Astronomy, Philadelphia, Pennsylvania (United States); Stevenson, T. [NASA Goddard Space Flight Center, Greenbelt, Maryland (United States)

    2016-07-11

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (at redshift of about 2.5) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation. Here, we describe a detector system suitable for a balloon-borne spectroscopic intensity mapping experiment at far-infrared wavelengths. The system uses lumped-element kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity and low noise levels. KIDs consist of separate capacitive and inductive elements, and use the inductive element as the radiation absorber. We describe the design considerations, fabrication process, and readout scheme for a prototype LEKID array of 1600 pixels. - Highlights: • We describe a concept for a balloon-borne telescope for far-IR wavelengths. • Telescope would use high-sensitivity kinetic inductance detectors. • Design considerations and fabrication process for prototype detectors.

  12. Dry etched SiO2 Mask for HgCdTe Etching Process

    Science.gov (United States)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  13. Cooling and shielding systems for infrared detectors - requirements and limits.

    Science.gov (United States)

    Wiecek, B

    2005-01-01

    This paper presents three main cooling systems used for infrared detectors. At first thermoelectric devices are discussed. They allow cooling down the detector with low efficiency and not to the very low temperature. They do not generate any vibrations and therefore are suitable for thermal detectors, where the microphone effect can decrease their performance. Photon detectors need to be cooled down even to 77K or better. The only way to have such deep cooling is to use the cooler based on thermodynamic cycle such as Stirling one. With the high efficiency one can easily obtain cryogenic temperature for a detector. The electromagnetic noise and vibration generation are the main disadvantages of using such devices. Joule-Thomson effect during gas expansion is 3rdcooling system discussed in the paper. It is highly effective process, used for gas liquefaction too. The working gas is being removed during cooling into the atmosphere, so the need of continuous supplying with compressed one, what makes this system very difficult for remote applications. In the paper, simple calculations are presented to illustrate the advantages and disadvantages of the different cooling systems.

  14. Surface Leakage Mechanisms in III-V Infrared Barrier Detectors

    Science.gov (United States)

    Sidor, D. E.; Savich, G. R.; Wicks, G. W.

    2016-09-01

    Infrared detector epitaxial structures employing unipolar barriers exhibit greatly reduced dark currents compared to simple pn-based structures. When correctly positioned within the structure, unipolar barriers are highly effective at blocking bulk dark current mechanisms. Unipolar barriers are also effective at suppressing surface leakage current in infrared detector structures employing absorbing layers that possess the same conductivity type in their bulk and at their surface. When an absorbing layer possesses opposite conductivity types in its bulk and at its surface, unipolar barriers are not solutions to surface leakage. This work reviews empirically determined surface band alignments of III-V semiconductor compounds and modeled surface band alignments of both gallium-free and gallium-containing type-II strained layer superlattice material systems. Surface band alignments are used to predict surface conductivity types in several detector structures, and the relationship between surface and bulk conductivity types in the absorbing layers of these structures is used as the basis for explaining observed surface leakage characteristics.

  15. Megapixel digital InSb detector for midwave infrared imaging

    Science.gov (United States)

    Shkedy, Lior; Markovitz, Tuvy; Calahorra, Zipi; Hirsh, Itay; Shtrichman, Itay

    2011-06-01

    Since the late 1990s Semiconductor devices (SCDs) has developed and manufactured a variety of InSb two-dimensional (2D) focal plane arrays (FPAs) that were implemented in many infrared (IR) systems and applications. SCD routinely manufactures both analog and digital InSb FPAs with array formats of 320×256, 480×384, and 640×512 elements, and pitch size in the range 15 to 30 μm. These FPAs are available in many packaging configurations, including fully integrated detector-Dewar-cooler-assembly, with either closed-cycle Stirling or open-loop Joule-Thomson coolers. In response to a need for very high resolution midwave IR (MWIR) detectors and systems, SCD has developed a large format 2D InSb detector with 1280×1024 elements and pixel size of 15 μm. A digital readout integrated circuit (ROIC) is coupled by flip-chip bonding to the megapixel InSb array. The ROIC is fabricated in CMOS 0.18-μm technology, that enables the small pixel circuitry and relatively low power generation at the focal plane. The digital ROIC has an analog to digital (A/D) converter per-channel and allows for full frame readout at a rate of 100 Hz. Such on-chip A/D conversion eliminates the need for several A/D converters with fairly high power consumption at the system level. The digital readout, together with the InSb detector technology, lead to a wide linear dynamic range and low residual nonuniformity, which is stable over a long period of time following a nonuniformity correction procedure. A special Dewar was designed to withstand harsh environmental conditions while minimizing the contribution to the heat load of the detector. The Dewar together with the low power ROIC, enable a megapixel detector with overall low size, weight, and power with respect to comparable large format detectors. A variety of applications with this detector make use of different cold shields with different f-number and spectral filters. In this paper we present actual performance characteristics of the

  16. Crosstalk study of near infrared InGaAs detectors

    Science.gov (United States)

    Li, Xue; Tang, Hengjing; Li, Tao; Fan, Cui; Shao, Xiumei; Li, Jianwei; Wei, Jun; Gong, Haimei

    2016-05-01

    Crosstalk characteristics of high density FPA detectors attract widespread attention in the application of electro-optical systems. Crosstalk characteristics of near-infrared (NIR) InGaAs photodiodes and focal plane arrays (FPAs) were studied in this paper. The mesa type detector was investigated by using laser beam induced current technique (LBIC) to measure the absorption outside the designed photosensitive area, and the results show that the excess absorption enlarges the crosstalk of the adjacent pixels. The structure optimization using the effective absorption layer between the pixels can effectively reduce the crosstalk to 2.5%. The major crosstalk components of the optimization photodiode come from the electronic signal caused by carrier lateral diffusion. For the planar type detectors, test structures were used to compare the crosstalk of different structures, and the guard ring structure shows good suppression of the crosstalk. Then the back-illuminated 32x32 InGaAs photodiodes with 30μm pitch were designed, and LBIC was used to measure its lateral diffusion of the effective carriers and fill factor of photosensitive area. The results indicate that the fill factor of detectors can reach up to 98% when the diffusion region is optimized, and the minimum response exists between two neighborhood pixels. Based on these crosstalk measurement results and optimizing structure designs, the linear InGaAs photodiodes were designed and thus the InGaAs FPA assembly was fabricated. The assembly shows higher electro-optical performance and good improvement on crosstalk. The assembly was applied in infrared imaging system and modulation transfer function (MTF) of FPA assembly was calculated to be above 0.50. The clear image based on FPA assembly was obtained.

  17. Kinetic inductance detectors for far-infrared spectroscopy

    Science.gov (United States)

    Barlis, Alyssa; Aguirre, James; Stevenson, Thomas

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (between redshifts 1 and 3) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation during that period, in particular fine structure lines of nitrogen, carbon, and oxygen, as well as the carbon monoxide molecule. Using an observation technique known as intensity mapping, it would be possible to observe the total line intensity for a given redshift range even without detecting individual sources. Here, we describe a detector system suitable for a balloonborne spectroscopic intensity mapping experiment at far-infrared wavelengths. The experiment requires an "integralfield" type spectrograph, with modest spectral resolution (R 100) for each of a number of spatial pixels spanning several octaves in wavelength. The detector system uses lumped-element kinetic inductance detectors (LEKIDs), which have the potential to achieve the high sensitivity, low noise, and high multiplexing factor required for this experiment. We detail the design requirements and considerations, and the fabrication process for a prototype LEKID array of 1600 pixels. The pixel design is driven by the need for high responsivity, which requires a small physical volume for the LEKID inductor. In order to minimize two-level system noise, the resonators include large-area interdigitated capacitors. High quality factor resonances are required for a large frequency multiplexing factor. Detectors were fabricated using both trilayer TiN/Ti/TiN recipes and thin-film Al, and are operated at base temperatures near 250 mK.

  18. ESTIMATION OF INTRUSION DETECTION PROBABILITY BY PASSIVE INFRARED DETECTORS

    Directory of Open Access Journals (Sweden)

    V. V. Volkhonskiy

    2015-07-01

    Full Text Available Subject of Research. The paper deals with estimation of detection probability of intruder by passive infrared detector in different conditions of velocity and direction for automated analyses of physical protection systems effectiveness. Method. Analytic formulas for detection distance distribution laws obtained by means of experimental histogram approximation are used. Main Results. Applicability of different distribution laws has been studied, such as Rayleigh, Gauss, Gamma, Maxwell and Weibull distribution. Based on walk tests results, approximation of experimental histograms of detection distance probability distribution laws by passive infrared detectors was done. Conformity of the histograms to the mentioned analytical laws according to fitting criterion 2 has been checked for different conditions of velocity and direction of intruder movement. Mean and variance of approximate distribution laws were equal to the same parameters of experimental histograms for corresponding intruder movement parameters. Approximation accuracy evaluation for above mentioned laws was done with significance level of 0.05. According to fitting criterion 2, the Rayleigh and Gamma laws are corresponded mostly close to the histograms for different velocity and direction of intruder movement. Dependences of approximation accuracy for different conditions of intrusion have been got. They are usable for choosing an approximation law in the certain condition. Practical Relevance. Analytic formulas for detection probability are usable for modeling of intrusion process and objective effectiveness estimation of physical protection systems by both developers and users.

  19. Low-Roughness Plasma Etching of HgCdTe Masked with Patterned Silicon Dioxide

    Science.gov (United States)

    Ye, Z. H.; Hu, W. D.; Yin, W. T.; Huang, J.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2011-08-01

    A novel mask technique utilizing patterned silicon dioxide films has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal-plane arrays (IRFPAs). High-density silicon dioxide films were deposited at temperature of 80°C, and a procedure for patterning and etching of HgCdTe was developed by standard photolithography and wet chemical etching. Scanning electron microscopy (SEM) showed that the surfaces of inductively coupled plasma (ICP) etched samples were quite clean and smooth. Root-mean-square (RMS) roughness characterized by atomic force microscopy (AFM) was less than 1.5 nm. The etching selectivity between a silicon dioxide film and HgCdTe in the samples masked with patterned silicon dioxide films was greater than 30:1. These results show that the new masking technique is readily available and promising for HgCdTe mesa etching.

  20. 640 X 480 Pace HgCdTe FPA

    Science.gov (United States)

    Kozlowski, Lester J.; Bailey, Robert B.; Cabelli, Scott A.; Cooper, Donald E.; McComas, Gail D.; Vural, Kadri; Tennant, William E.

    1992-12-01

    A hybrid HgCdTe 640 X 480 infrared (IR) focal plane array (FPA) that meets the sensitivity, resolution, and field-of-view requirements of high-performance medium wavelength infrared (MWIR) imaging systems has been developed. The key technology making this large, high sensitivity device producible is the epitaxial growth of HgCdTe on a CdTe-buffered, sapphire substrate (referred to as PACE, for Producible Alternative to CdTe for Epitaxy; PACE-I refers to sapphire). The device offers TV resolution with excellent sensitivity at temperatures below 120 K. Mean NE(Delta) T as low as 13 mK has been achieved at operating temperatures nonuniformity compensation.

  1. HgZnTe-based detectors for LWIR NASA applications

    Science.gov (United States)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  2. Curved infrared detectors: application to spectrometry and astronomy

    Science.gov (United States)

    Dumas, D.; Fendler, M.; Berger, F.; Marion, F.; Arnaud, A.; Vialle, C.; Goudon, V.; Primot, J.; Le Coarer, E.; Ribot, H.

    2010-07-01

    The traditional design of optical systems is severely complicated by the curved shape of the image surface which has to be recorded on a planar retina. This constraint decreases the image quality; optical elements are then added to avoid aberrations and lead to increase the dimensions of the system. However, miniaturization could be achieved, without decreasing resolution and sensibility, by recording the image surface on a curved retina. The optical advantages of curved sensors have been demonstrated; the simplification leads to scale down the entire system. Moreover, the hemispherical shape increases the field of view (FOV). In this paper the advantages of curved focal plane will be detailed through two applications: spectrometry and large FOV telescopes. In astronomy, large FOV and miniaturization with good resolution can only be achieved by curving the focal plane; the difficulty is to curve in a hemispherical shape large detectors. The advantages are highlighted by the European Extremely Large Telescope (E-ELT) project. Despite this high interest in curved detectors, only few articles are dedicated to this hemispherical shape technology. Some solutions exist, which mainly consist in structuring the die in sub-devices. We propose a solution to curve an IR sensor with a fill factor equal to 100%. To do so, we developed a dedicated bonding process which allows curving silicon using its mechanical properties. A curved uncooled infrared detector has been performed without mechanical and electrical damage.

  3. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  4. Minority carrier lifetimes in different doped LWIR HgCdTe grown by LPE

    Science.gov (United States)

    Qiu, GuangYin; Wei, YanFeng; Sun, QuanZhi; Yang, JianRong

    2012-10-01

    The carrier lifetimes of different types of p-type doped HgCdTe(x~0.23) long wavelength infrared (LWIR) epilayers were measured which were Hg-vacancy, Au and arsenic doped ones prepared by Te-rich Liquid-phase epitaxy (LPE). By comparing the lifetimes of Hg-vacancy and extrinsic doped HgCdTe, we focus on three primary mechanisms limiting the lifetimes in these different p-type HgCdTe samples: radiative recombination, Auger recombination and Schokley-Read- Hall (SRH) Recombination. The recombination mechanism in p-type HgCdTe is the SRH recombination at low temperatures and Auger and radiative recombination at high temperature. It is found that the lifetime of As-doped and Au-doped HgCdTe is far longer than that of Hg-vacancy-doped sample which is caused by the deep energy level of the Hg-vacancy acceptor that is considered as a recombination center in HgCdTe. Also we found lifetime in those p-type doped HgCdTe LWIR epilayers is limited by SRH by comparing the experimental lifetimes with the calculated data. Impurity doping was found to have a main effect on minority carrier lifetime.

  5. The ^{55}Fe X-ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays

    CERN Document Server

    Fox, Ori D; Wen, Yiting; Foltz, Roger D; Hill, Robert J; Kimble, Randy A; Malumuth, Eliot; Rauscher, Bernard J

    2009-01-01

    A technique involving ^{55}Fe X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e^- ADU^{-1}), as well as aid detector design and performance studies. We calibrate the ^{55}Fe X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 \\micron flight grade detectors. The results show that each K$\\alpha$ X-ray generates 2273 \\pm 137 electrons, which corresponds to a pair-production energy of 2.61 \\pm 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.

  6. Multi-color IRFPAs made from HgCdTe grown by MOVPE

    Science.gov (United States)

    Jones, C. L.; Hipwood, L. G.; Price, J.; Shaw, C. J.; Abbott, P.; Maxey, C. D.; Lau, H. W.; Catchpole, R. A.; Ordish, M.; Knowles, P.; Gordon, N. T.

    2007-04-01

    The drive towards improved target recognition has led to an increasing interest in detection in more than one infrared band. This paper describes the design, fabrication and performance of two-colour and three-colour infrared detectors made from HgCdTe grown by Metal Organic Vapour Phase Epitaxy (MOVPE). The detectors are staring, focal plane arrays consisting of HgCdTe mesa-diode arrays bump bonded to silicon read-out integrated circuits (ROICs). Each mesa diode has one connection to the ROIC and the colours are selected by varying the applied bias. Results will be presented for both two-colour and three-colour devices. In a two-colour n-p-n design the cut-off wavelengths are defined by the compositions of the two n-type absorbers and the doping and composition of the p-type layer are chosen to prevent transistor action. The bias polarity is used to switch the output between colours. This design has been used to make MW/LW detectors with a MW band covering 3 to 5 μm and a LW band covering 5 to 10 μm. In a three-colour n-p-n design the cut-off wavelengths are defined by the compositions of the two n-type absorbers and the p-type absorber, which has an intermediate cut-off wavelength. The absorbers are separated from each other by electronic barriers consisting of wide band-gap material. At low applied bias these barriers prevent photo-electrons generated in the p-type absorber from escaping and the device then gives an output from one of the n-type absorbers. At high applied bias the electronic barrier is pulled down and the device gives an output from both the p-type absorber and one of the n-type absorbers. Thus by varying the polarity and magnitude of the bias it is possible to obtain three-colours from a two-terminal device. This design has been used to make a SW/MW/MW detector with cut-off wavelengths of approximately 3, 4 and 6 μm.

  7. Fluid flow and heat transfer in Joule-Thomson coolers coupled with infrared detectors

    Science.gov (United States)

    Du, Bingyan; Jia, Weimin

    2011-08-01

    Joule-Thomson coolers have been widely used in infrared detectors with respect to compact, light and low cost. For self-regulating Joule-Thomson cooler, its performance is required to be improved with the development of higher mass and larger diameter of focal plane infrared detectors. Self-regulating Joule-Thomson coolers use a limited supply of high pressure gas to support the cooling of infrared detectors. In order to develop Joule-Thomson coolers with a given volume of stored gas, it is important to study on fluid flow and heat transfer of Joule-Thomson coolers coupled with infrared detectors, especially the starting time of Joule-Thomson coolers. A serial of experiments of Joule-Thomson coolers coupled with 128×128 focal plane infrared detectors have been carried out. The exchanger of coolers are made of a d=0.5mm capillary finned with a copper wire. The coolers are self-regulated by bellows and the diameters are about 8mm. Nitrogen is used as working gas. The effect of pressure of working gas has been studied. The relation between starting time and pressure of working gas is proved to fit exponential decay. Error analysis has also been carried. It is crucial to study the performance of Joule-Thomson coolers coupled with infrared detectors. Deeper research on Joule-Thomson coolers will be carried on to improve the Joule-Thomson coolers for infrared detectors.

  8. 10.6μm激光对HgCdTe焦平面器件热应力的分析%Theoretical analysis of thermal-stress effect of HgCdTe infrared focal plane device induced by 10.6 μm laser

    Institute of Scientific and Technical Information of China (English)

    郝向南; 聂劲松; 李化; 卞进田; 雷鹏

    2012-01-01

    建立了HgCdTe红外焦平面器件的多膜层理论模型,利用有限元分析的方法,对10.6 μm激光辐照下HgCdTe红外焦平面器件的升温情况与热应力分布情况进行模拟,并通过参考已有文献的实验结果,验证了理论模型的合理性.理论分析结果表明:激光作用时探测器的温度场变化剧烈,200 W/cm2连续激光作用1 s后,HgCdTe感光层所受热应力为-986 MPa;脉宽100 ns,功率密度15 MW/cm2脉冲激光作用后,HgCdTe感光层所受热应力为-1300 MPa,都比器件制造过程中由于热失配而产生的热应力大;应力损伤发生的概率增大,可能比热损伤先发生,是HgCdTe红外焦平面器件激光损伤中的重要原因.%Muti-layer theoretical Model of HgCdTe Infrared Focal Plane Device was established. With the method of finite element analysis, temperature field and thermal-stress field induced by 10.6 μm laser were simulated. By considering experiments carried out in other papers as reference,the rationality and feasibility of the muti-layer model are proved. Results of theoretical analysis indicates that the temperature field changes greatly when irradiated by laser. With CW laser of 200 W/cm2 power density irradiating the sensor for 1 s, thermal-stress of HgCdTe photo-sensitive surface is -986MPa:With pulsed laser of 100 ns and 15 MW/cm2 irradiating the sensor,thermal-stress of HgCdTe photo-sensitive surface is - 1300 Mpa. The thermal-stress mentioned above are both beyond that caused by thermal-mismatch in the production process. Besides, the probability of thermal-stress damage increases and may happen before thermal damage,which should be an important factor in the research of laser damage to HgCdTe Infrared Focal Plane Device.

  9. High operating temperature InAlSb infrared detectors

    Science.gov (United States)

    Li, Mo; Chen, Gang; Li, Hao; Zhang, Zhaofan; Peng, Pan; Lv, Yanqiu

    2016-10-01

    The recent progresses of our research in InxAl1-xSb infrared detector based on molecular beam epitaxy are presented. Al composition with 0-0.3 is used for adjusting energy gaps of InSb and a p-i-n structure is utilized to decrease dark current. InxAl1-xSb ternary alloys are grown by molecular beam epitaxy on InSb substrates, and the material quality is characterized using high resolution x-ray diffraction. In order to exploit this epitaxial material we have developed new mesa and passivation technology based on matured InSb fabrication process. The InAlSb diodes has a cut-off wavelength of around 4.8μm. The reverse bias dark current of InAlSb diodes have been measured. The dark current of the pin InAlSb diode is seen to smaller that of the bulk p+n InSb diodes by 4-5 times in 77K.

  10. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and deliver a turn-key photon counting detector module for near-infrared wavelengths, based on large-area InGaAs/InP avalanche photodiodes...

  11. Doping-Spike PtSi Schottky Infrared Detectors with Extended Cutoff Wavelengths

    Science.gov (United States)

    Lin, T. L.; Park, J. S.; Gunapala, S. D.; Jones, E. W.; Castillo, H. M. Del

    1994-01-01

    A technique incorporating a p+ doping spike at the silicide/Si interface to reduce the effective Schottky barrier of the silicide infrared detectors and thus extend the cutoff wavelength has been developed.

  12. Fast Readout for Large Area Photon-Counting Infrared Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Many NASA space and Earth programs in the infrared range 1060-1550 nm are limited by the detector performance that require long exposure time due to their low...

  13. Visible and infrared detectors at Rockwell Science Center

    Science.gov (United States)

    Kozlowski, Lester J.; Montroy, John T.; Cabelli, Craig A.; Cooper, Donald E.; Chen, Annie C.; Bostrup, Gary L.; Bai, Yibin; Vural, Kadri; Hodapp, Klaus-Werner; Hall, Donald N.

    2000-08-01

    Rockwell Space Center is developing low-noise visible and IR imaging sensors and systems for astronomy, high-end commercial, NASA, and advanced military applications. The first science grade 2048 by 2048 HAWAII-2 focal plane array (FPA) for astronomy was recently demonstrated for the SWIR waveband. Science-grade deliveries to the University of Hawaii's Institute for Astronomy, the European Southern Observatory and the Subaru Telescope, among others, will soon start. MWIR/visible 2048 by 2048 HAWAII-2 arrays are also being developed for the NGST program using our process for removing the CdZnTe substrate from the back-side illuminated HgCdTe FPAs to detect visible radiation in addition to IR. Previously, more than 25 science grade 2.5micrometers 1024 by 1024 HAWAII FPAs were delivered for use in many observatories; these typically exhibit 90 percent with near-100 percent fill factor, and the dark current is negligible with minimum cooling. Our near-term plan to develop 4096 by 4096 visible and IR FPAs will also be discussed.

  14. High-Operating Temperature HgCdTe: A Vision for the Near Future

    Science.gov (United States)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the

  15. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  16. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  17. Real-Time Monitoring and Control of HgCdTe MBE Using an Integrated Multi-Sensor System

    Science.gov (United States)

    1998-08-01

    layer composition, and effusion cell flux during MBE growth of HgCdTe epilayers for advanced IR detectors. Substrate temperature is measured and...HgCdTe MBE growth of high performance IR detector structures over a wide range of compositions, layer thickness and substrate temperature.

  18. Equipment for Topographical Preparation and Analysis of Various Semiconductor Infrared Detector Samples

    Science.gov (United States)

    2015-11-13

    Approved for Public Release; Distribution Unlimited Final Report: Equipment for Topographical Preparation and Analysis of Various Semiconductor Infrared...Final Report: Equipment for Topographical Preparation and Analysis of Various Semiconductor Infrared Detector Samples Report Title A used calibrated...camera will reinitialize and the video settings have to be reset. 6 Figure 4. This will open the both video overlay and the Dektak

  19. Performance and Calibration of H2RG Detectors and SIDECAR ASICs for the RATIR Camera

    Science.gov (United States)

    Fox, Ori D.; Kutyrev, Alexander S.; Rapchun, David A.; Klein, Christopher R.; Butler, Nathaniel R.; Bloom, Josh; de Diego, Jos A.; Simn Farah, Alejandro D.; Gehrels, Neil A.; Georgiev, Leonid; Gonzlez-Hernandez, J. Jess; Lee, William H.; Loose, Markus; Lotkin, Gennadiy; Moseley, Samuel H.; Prochaska, J. Xavier; Ramirez-Ruiz, Enrico; Richer, Michael G.; Robinson, Frederick D.; Romn-Zuniga, Carols; Samuel, Mathew V.; Sparr, Leroy M.; Watson, Alan M.

    2012-01-01

    The Reionization And Transient Infra,.Red (RATIR) camera has been built for rapid Gamma,.Ray Burst (GRE) followup and will provide simultaneous optical and infrared photometric capabilities. The infrared portion of this camera incorporates two Teledyne HgCdTe HAWAII-2RG detectors, controlled by Teledyne's SIDECAR ASICs. While other ground-based systems have used the SIDECAR before, this system also utilizes Teledyne's JADE2 interface card and IDE development environment. Together, this setup comprises Teledyne's Development Kit, which is a bundled solution that can be efficiently integrated into future ground-based systems. In this presentation, we characterize the system's read noise, dark current, and conversion gain.

  20. 中波HgCdTe光导探测器组件的故障树和失效研究%Study on HgCdTe Detector Assemble Fault Tree and Failure Analysis

    Institute of Scientific and Technical Information of China (English)

    王韡; 许金通; 周青; 张立瑶; 李向阳

    2012-01-01

    Discussed are the reliability problems of HgCdTe(MCT) infrared photoconductive detectors working at near room temperature,including package failure,chip bonding failure and performance attenuation.Based on collecting the failure data of the detectors,fault tree analysis(FTA) was built by analyzing the failure mechanism of physics and chemistry,manufacturing process and parameters of the detectors.Minimal cut sets of FTA were obtained from qualitative analysis and the failure probability of top event was calculated.The failure modes in detectors,structures and process were analyzed.%讨论了近室温工作的HgCdTe中波光导探测器组件的可靠性问题,包括组件封装失效、引线键合失效和探测器的性能衰减等。通过收集探测器组件的失效信息,对其失效物理化学机制、制造工艺和探测器参数进行了分析,建立了组件的故障树(FTA),为探测器组件的失效分析提供了理论依据。由FTA定性分析得出探测器组件FTA的最小割集;计算了顶事件的失效几率。通过计算底事件概率重要度,得出组件封装失效是探测器组件失效的主要故障途径;同时实验发现,失效组件探测器的少子寿命值有较大的衰减,这可能起源于失效探测器的表面钝化层退化。

  1. Investigation of Substrate Effects on Interface Strain and Defect Generation in MBE-Grown HgCdTe

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Faraone, L.

    2016-09-01

    Si, Ge, and GaAs have been extensively investigated as alternative substrates for molecular-beam epitaxy (MBE) growth of HgCdTe and, at present, are widely used for HgCdTe-based infrared focal-plane arrays. However, the problem of high dislocation density in HgCdTe layers grown on these lattice-mismatched substrates has yet to be resolved. In this work, we investigated another alternative substrate, GaSb, which has a significantly smaller lattice mismatch with HgCdTe in comparison with Si, Ge, and GaAs, and is readily available as large-area, epiready wafers at much lower cost in comparison with lattice-matched CdZnTe substrates. The resultant stress due to lattice and thermal mismatch between the HgCdTe epilayer and various substrates has been calculated in this work using the elasticity matrix, and the corresponding stress distribution simulated using ANSYS. The simulated structures were matched by experimental samples involving MBE growth of HgCdTe on GaAs, GaSb, and CdZnTe substrates, and were characterized via reflection high-energy electron diffraction and x-ray diffraction analysis, followed by etch pit density (EPD) analysis. In comparison with other alternative substrates, GaSb is shown to have lower interface stress and lower EPD, rendering it an interesting and promising alternative substrate material for HgCdTe epitaxy.

  2. Characterization of a Polymer-Based MEMS Pyroelectric Infrared Detector

    Science.gov (United States)

    2007-03-01

    engineered protein in hydrogels tailors stimuli-responsive characteristics.” Nature, vol 4, pp 298 – 302, Apr 2005. [8] Brott, Lawrence L...CR Detector Pre- amp Φe (t) 38 three regimes can be seen in Figure 14, which represents the voltage reponsivity...detector needs amplification, using one of the two circuits shown in Figure 19 or 20. In lieu of this circuit, a voltage pre- amp was used

  3. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    Science.gov (United States)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  4. Dislocation reduction in HgCdTe grown on CdTe/Si

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Bulk-grown CdZnTe (Zn = 3%) substrates are the natural choice for HgCdTe epitaxy since it is lattice matched to long wave LW-HgCdTe alloy. However, lack of large area CdZnTe substrates, high production costs, and more importantly, the difference in thermal expansion coefficients between CdZnTe and silicon Read out Integrated Circuits (ROIC) are some of the inherent drawbacks of CdZnTe substrates. Consequently, Hg1-xCdxTe detectors fabricated on silicon substrates are an attractive alternative. Recent developments in the molecular beam epitaxy (MBE) buffer layer growth technology on Si substrates has revolutionized the HgCdTe research and offered a new dimension to HgCdTe-based IR technology. Si substrates provide advantages in terms of relatively large area (3 to 6-inch diameter is easily obtained) compared to CZT substrate materials, durability during processing, and reliability to thermal cycling. Innovations in Si-based composite substrates made it possible to fabricate very large-format IR arrays that offer higher resolution, low-cost arrays and more dies per wafer. Between Si substrates and HgCdTe has large lattice mismatch of 19%. This leads to dislocation densities of low-107 cm-2 for optimal growth of HgCdTe on silicon-based substrates as compared to the mid-104 cm-2 dislocation density of HgCdTe grown on CdZnTe. This paper present dislocation reduction by two orders of magnitude using thermal cycle anneal under Hg environment on HgCdTe grown on Si substrates and as well as defect reduction in Cd(Se)Te buffer layers grown on Si Substrates.

  5. STUDY ON INFRARED PBS DETECTOR PREPARED USING COPPER ELECTRODES OF PRINTED CIRCUIT BOARD

    Directory of Open Access Journals (Sweden)

    Hariyadi Soetedjo

    2013-01-01

    Full Text Available Copper layers of Printed Circuit Board (PCB have been used as electrodes for PbS infrared structure detector to introduce low cost and simple in preparation. PbS deposition as an active layer detector has been prepared for a few micrometers in thickness using an evaporation technique under vacuum pressure at 10-6 Torr. Photoconductivity phenomenon has been observed from the measurement when IR radiation of a Tungsten lamp introduced to the detector. The sensitivity of the detector respects to the variation of radiation intensities was also observed. The results showed that the detector has good sensitivity indicated by rapid drop voltages at a short-wavelength IR region (1-3 µm. This phenomenon is encouraging for further applications of detector prepared using the electrodes from a commercialized PCB.

  6. Passively-Cooled Hyperspectral Infrared Detectors and Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A constant demand exists to improve the sensitivity of trace chemical species measurement systems, which is often limited by the performance of the infrared photon...

  7. Miniature Uncooled Infrared Sensitive Detectors for in Vivo Biomedical Imaging Applications

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P. G.; Demos, S. G.; Rajic, S.

    1998-06-01

    Broadband infrared (OR) radiation detectors have been developed using miniature, inexpensive, mass produced microcantilevers capable of detecting temperature differences as small as lea(-6) K. Microcantilevers made out of semiconductor materials can be used either as uncurled photon or thermal detectors. Mounted on a probe mm in diameter a number of microcantilevers can be accommodated in the working channel of existing endoscopes for in vivo proximity focus measurements inside the human body.

  8. Physics and Applications of Unipolar Barriers in Infrared (IR) Detectors

    Science.gov (United States)

    2016-08-23

    Minerals , Metals & Materials Society 466325 Approved for public release; distribution is unlimited. Appendix E considers the general limitations of...shares the same spatial makeup as the photocurrent.16 Therefore, under the condition that the absorbing layer of a detector must be doped to have the

  9. Infrared Responsivity of a Pyroelectric Detector with a Single-Wall Carbon Nanotube Coating

    Energy Technology Data Exchange (ETDEWEB)

    Theocharous, E.; Engtrakul, C.; Dillon, A. C.; Lehman, J.

    2008-08-01

    The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 {micro}m wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 {micro}m thick LiTaO{sub 3} crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10{sup -9} A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.

  10. The Numerical-Experimental Enhanced Analysis of HOT MCT Barrier Infrared Detectors

    Science.gov (United States)

    Jóźwikowski, K.; Piotrowski, J.; Jóźwikowska, A.; Kopytko, M.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Martyniuk, A.; Rogalski, A.

    2017-04-01

    We present the results of numerical simulations and experimental data of band gap-engineered higher operating temperature mercury cadmium telluride barrier photodiodes working in a middle wavelength infrared radiation and a long wavelength infrared radiation range of an infrared radiation spectrum. Detailed numerical calculations of the detector performance were made with our own computer software taking into account Shockley Hall Read, Auger, band-to-band and trap-assisted tunneling and dislocation-related currents. We have also simulated a fluctuation phenomena by using our Langevin-like numerical method to analyze shot, diffusion, generation-recombination and 1/f noise.

  11. Reduced graphene oxide film based highly responsive infrared detector

    Science.gov (United States)

    Khan, Mustaque A.; Nanda, Karuna K.; Krupanidhi, Saluru B.

    2017-08-01

    Due to the unique optical properties, graphene can effectively be used for the detection of infrared light. In this regard, reduced graphene oxide (RGO) has drawn considerable attention in scientific society because of simplicity of preparation and tunable properties. Here, we report the synthesis of RGO by solvothermal reduction of graphene oxide (GO) in ethanol and the detection of infrared light (1064 and 1550 nm) with metal—RGO—metal configuration. We have observed that photocurrent, responsivity as well as the external quantum efficiency increase with C/O ratio. The responsivity value in near-infrared region can be as high as 1.34 A · W-1 and the external quantum efficiency is more than 100%. Response times of these devices are in the order of few seconds. Overall, the responsivity of our device is found to be better than many of the already reported values where graphene or reduced graphene oxide is the only active material. The high value of quantum efficiency is due to strong light absorption and the presence of mid-gap states band in RGOs.

  12. Improvement of Infrared Detectors for Tissue Oximetry using Black Silicon Nanostructures

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl; Davidsen, Rasmus Schmidt; Alcala, Lucia R.;

    2014-01-01

    We present a nanostructured surface, made of dry etched black silicon, which lowers the reflectance for light incident at all angles. This surface is fabricated on infrared detectors used for tissue oximetry, where the detection of weak diffuse light signals is important. Monte Carlo simulations...

  13. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    Energy Technology Data Exchange (ETDEWEB)

    Allman, M. S., E-mail: shane.allman@boulder.nist.gov; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328 (United States); Marsili, F.; Beyer, A.; Shaw, M. D. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States); Kumor, D. [Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907 (United States)

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  14. A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout

    CERN Document Server

    Allman, M S; Stevens, M; Gerrits, T; Horansky, R D; Lita, A E; Marsili, F; Beyer, A; Shaw, M D; Kumor, D; Mirin, R; Nam, S W

    2015-01-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  15. Temperature-driven massless Kane fermions in HgCdTe crystals

    Science.gov (United States)

    Teppe, F.; Marcinkiewicz, M.; Krishtopenko, S. S.; Ruffenach, S.; Consejo, C.; Kadykov, A. M.; Desrat, W.; But, D.; Knap, W.; Ludwig, J.; Moon, S.; Smirnov, D.; Orlita, M.; Jiang, Z.; Morozov, S. V.; Gavrilenko, V. I.; Mikhailov, N. N.; Dvoretskii, S. A.

    2016-08-01

    It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously tailored by modifying cadmium content or temperature. At critical concentration or temperature, the bandgap collapses as the system undergoes a semimetal-to-semiconductor topological phase transition between the inverted and normal alignments. Here, using far-infrared magneto-spectroscopy we explore the continuous evolution of band structure of bulk HgCdTe as temperature is tuned across the topological phase transition. We demonstrate that the rest mass of Kane fermions changes sign at critical temperature, whereas their velocity remains constant. The velocity universal value of (1.07+/-0.05) × 106 m s-1 remains valid in a broad range of temperatures and Cd concentrations, indicating a striking universality of the pseudo-relativistic description of the Kane fermions in HgCdTe.

  16. Status of Uncooled Infrared Detector Technology at ULIS, France

    Directory of Open Access Journals (Sweden)

    J.L. Tissot

    2013-12-01

    Full Text Available The high level of accumulated expertise by ULIS and CEA/LETI on uncooled microbolometers made from amorphous silicon enables ULIS to develop uncooled IRFPA with 17 µm pixel-pitch to enable the development of small power, small weight and power (SWaP and high performance IR systems. Key characteristics of amorphous silicon based uncooled IR detector is described to highlight the advantage of this technology for system operation. A full range of products from 160 x 120 to 1024 x 768 has been developed and we will focus the paper on the ¼ VGA with 17 µm pixel pitch. Readout integrated circuit (ROIC architecture is described highlighting innovations that are widely on-chip implemented to enable an easier operation by the user. The detector configuration (integration time, windowing, gain, scanning direction, is driven by a standard I²C link. Like most of the visible arrays, the detector adopts the HSYNC/VSYNC free-run mode of operation driven with only one master clock (MC supplied to the ROIC which feeds back pixel, line and frame synchronisation. On-chip PROM memory for customer operational condition storage is available for detector characteristics. Low power consumption has been taken into account and less than 60 mW is possible in analogue mode at 60 Hz. A wide electrical dynamic range (2.4V is maintained despite the use of advanced CMOS node. The specific appeal of this unit lies in the high uniformity and easy operation it provides. The reduction of the pixel-pitch turns this TEC-less ¼ VGA array into a product well adapted for high resolution and compact systems. Noise equivalent temperature difference (NETD of 35 mK and thermal time constant of 10 ms have been measured leading to 350 mK.ms figure of merit. We insist on NETD trade-off with wide thermal dynamic range, as well as the high characteristics uniformity and pixel operability, achieved thanks to the mastering of the amorphous silicon technology coupled with the ROIC design

  17. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    Science.gov (United States)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  18. An Infrared Laser Testing Facility for the Characterization of the CLAS12 Silicon Detectors

    Science.gov (United States)

    Phillips, Sarah

    2011-04-01

    During the 12 GeV upgrade to the CEBAF accelerator at Jefferson Lab, a new spectrometer, CLAS12, will be built in Hall B. The Nuclear Physics Group at the University of New Hampshire is part of the collaboration working to design and build this new detector system. Among the new detector systems being developed for CLAS12 is a silicon vertex tracker that will be placed close to the target, providing excellent position resolution for vertex determination. It is essential to have the ability to perform quality assurance tests and to evaluate the performance of the individual silicon strip detectors before their installation in the full detector system. The UNH Nuclear Physics Group is designing and building a laser testing facility at UNH to perform this task. The design for the testing facility consists of a 1064 nm infrared laser system and a precision positioning mechanism to scan the laser light on the detector by a computer controlled system designed to efficiently test the large number of detectors prior to installation. The detector signals are read out by a computer data acquisition system for analysis. The facility also includes a cleanroom area to house the test stand, and a dry storage containment system for the storage of the detectors.

  19. Photoluminescence Study of Long Wavelength Superlattice Infrared Detectors

    Science.gov (United States)

    Hoglund, Linda; Khoshakhlagh, Arezou; Soibel, Alexander; Ting, David Z.; Hill, Cory J.; Keo, Sam; Gunapala, Sarath D.

    2011-01-01

    In this paper, the relation between the photoluminescence (PL) intensity and the PL peak wavelength was studied. A linear decrease of the PL intensity with increasing cut-off wavelength of long wavelength infrared CBIRDs was observed at 77 K and the trend remained unchanged in the temperature range 10 - 77 K. This relation between the PL intensity and the peak wavelength can be favorably used for comparison of the optical quality of samples with different PL peak wavelengths. A strong increase of the width of the PL spectrum in the studied temperature interval was observed, which was attributed to thermal broadening.

  20. Investigation of possibility of VLWIR lasing in HgCdTe based heterostructures

    Science.gov (United States)

    Morozov, S. V.; Rumyantsev, V. V.; Kadykov, A. M.; Dubinov, A. A.; Antonov, A. V.; Kudryavtsev, K. E.; Kuritsin, D. I.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Gavrilenko, V. I.

    2015-10-01

    The optical properties of a number of Hg1-xCdxTe bulk epilayers (x = 0.152 - 0.23) and heterostructures with quantum wells (QW) based on narrow gap HgCdTe are examined aiming to reveal the prospects of such structures for laser development in long wave infrared and very long wave infrared ranges. Experimental evidence of long wavelength superluminescence, i.e. amplification of spontaneous emission, at 8.4 μm in narrow gap HgCdTe bulk epitaxial film at 100 K is reported. Employing heterostructures with QW is demonstrated to be promissory for furthering the radiation wavelength to 10 - 30 μm range.

  1. Design of MWIR Type-II Superlattices for Infrared Photon Detectors

    Science.gov (United States)

    Grein, Christoph

    The Type II InAs/GaInSb and InAs/InAsSb superlattices are material systems for implementation as photodetector absorbers in infrared imaging applications. In addition to cutoff wavelengths spanning the infrared spectrum, they offer degrees of freedom in their materials design (e.g. layer thicknesses, alloy compositions, number of layers in one superlattice period) that permit the optimization of an infrared photon detector's figures of merit such as detectivity through the tuning of material properties like generation/recombination lifetimes and optical absorption. We describe efforts to obtain accurate electronic band structures of superlattice semiconductors with infrared energy gaps, and employing them to evaluate nonradiative minority carrier lifetimes. Simple device models are utilized to suggest potential performance enhancements that arise from employing superlattices as infrared absorber. We also discuss current efforts to simulate the molecular beam epitaxial growth of InAs/InAsSb superlattices to predict dominant native point defects and other growth nonidealities. Design of MWIR Type-II Superlattices for Infrared Photon Detectors.

  2. New resonant cavity-enhanced absorber structures for mid-infrared detector application

    CERN Document Server

    Zohar, Moshe; Faraone, Lorenzo; Hava, Shlomo

    2012-01-01

    A new dielectric Fabry-Perot cavity was designed for a resonant enhancing optical absorption by a thin absorber layer embedded into the cavity. In this cavity, the front mirror is a subwavelength grating with $\\sim 100$% retroreflection. For a HgCdTe absorber in a matching cavity of the new type, the design is shown to meet the combined challenges of increasing the absorbing efficiency of the entire device up to $\\sim 100$% and reducing its size and overall complexity, compared to a conventional resonant cavity enhanced HgCdTe absorber, while maintaining a fairly good tolerance against the grating's fabrication errors.

  3. 32 Bin Near-Infrared Time-Multiplexing Detector with Attojoule Single-Shot Energy Resolution

    CERN Document Server

    Eraerds, Patrick; Pomarico, Enrico; Sanguinetti, Bruno; Thew, Rob; Zbinden, Hugo

    2010-01-01

    We present two implementations of photon counting time-multiplexing detectors for near-infrared wavelengths, based on Peltier cooled InGaAs/InP avalanche photo diodes (APDs). A first implementation is motivated by practical considerations using only commercially available components. It features 16 bins, pulse repetition rates of up to 22 kHz and a large range of applicable pulse widths of up to 100 ns. A second implementation is based on rapid gating detectors, permitting deadtimes below 10 ns. This allows one to realize a high dynamic-range 32 bin detector, able to process pulse repetition rates of up to 6 MHz for pulse width of up to 200 ps. Analysis of the detector response at 16.5% detection efficiency, reveals a single-shot energy resolution on the attojoule level.

  4. High-resolution infrared detector and its electronic unit for space application

    Science.gov (United States)

    Meftah, M.; Montmessin, F.; Korablev, O.; Trokhimovsky, A.; Poiet, G.; Bel, J.-B.

    2015-05-01

    High-resolution infrared detector is used extensively for military and civilian purposes. Military applications include target acquisition, surveillance, night vision, and tracking. Civilian applications include, among others, scientific observations. For our space systems, we want to use the products developed by SOFRADIR Company. Thus, we have developed a space electronic unit that is used to control the high-resolution SCORPIO-MW infrared detector, which has a format of 640×512 pixels with 15μm×15μm pixel pitch. The detector within microelectronics based on infrared mid-wave (MW) complementary metal oxide semiconductors (CMOS) uses a micro-cooler in order to keep its temperature around 100 K. The standard wavelength range (3 to 5μm) is adapted to the 2.2 to 4.3μm wavelength range thanks to adaptation of the optical interface of the detector and with an antireflection coating. With our electronic system, we can acquire 3 images per second. To increase the signal to noise ratio, we have the opportunity to make a summation of 15 frames per image. Through this article, we will describe the space electronic system that we have developed in order to achieve space observations (e.g. Atmospheric Chemistry Suite package for ExoMars Trace Gas Orbiter).

  5. A new generation of small pixel pitch/SWaP cooled infrared detectors

    Science.gov (United States)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  6. Hetero-engineering infrared detectors with type-II superlattices

    Science.gov (United States)

    Tian, Z.-B.; DeCuir, E. A.; Gautam, N.; Krishna, S.; Wijewarnasuriya, P. S.; Pattison, J. W.; Dhar, N.; Welser, R. E.; Sood, A. K.

    2013-09-01

    InAs/GaSb type-II superlattices (T2-SLs) are of great interest as they provide a lot of band engineering flexibility. A wide variety of unipolar barrier structures have been investigated with this material system. In this report, we will present our recent work on the development of low noise long-wave infrared (LWIR) InAs/GaSb T2-SLs photodetectors. By adopting a so-called pBiBn design, the dark current of LWIR photodetectors is greatly suppressed. The LWIR pBiBn device has demonstrated a dark current density as low as 1.42×10-5 A/cm2 at -60 mV, and R0A of 5365 Ωcm2 at 76 K. A peak detectivity at 7.8 μm of 7.7×1011 cmHz1/2W-1 is obtained at 76 K. Further effort to reduce the operating bias is also reported. By refining the energy-band alignment, a 2-μm-thick LWIR pBiBn device has demonstrated a single pass (no AR coating) quantum efficiency of 20% at 10 μm under zero-bias at 77 K. We have recently extended our efforts to further reduce the dark current by using an interband cascade (IC) photodetector structure. Some further details about the device operation and results will be discussed.

  7. Optical readout uncooled infrared imaging detector using knife-edge filter operation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Q; MIAO Z; GUO Z; DONG F; XIONG Z; WU X; CHEN D; LI C; JIAO B

    2007-01-01

    An optical readout uncooled infrared (IR) imaging detector of bimaterial cantilever array using knife-edge filter operation(KEFO) is demonstrated. The angle change of each cantilever in a focal plane array (FPA) can be simultaneously detected with a resolution of 10-5 degree. A deformation magnifying substrate-free micro-cantilever unit with multi-fold interval metallized legs is specially designed and modeled. A FPA with 160× 160 pixels is fabricated and thermal images with noise equivalent temperature difference (NETD) of 400 mK are obtained by this imaging detector.

  8. Single-photon source characterization with infrared-sensitive superconducting single-photon detectors

    CERN Document Server

    Hadfield, R H; Nam, S W; Stevens, M J; Hadfield, Robert H.; Mirin, Richard P.; Nam, Sae Woo; Stevens, Martin J.

    2006-01-01

    Single-photon sources and detectors are key enabling technologies in quantum information processing. Nanowire-based superconducting single-photon detectors (SSPDs) offer single-photon detection from the visible well into the infrared with low dark counts, low jitter and short dead times. We report on the high fidelity characterization (via antibunching and spontaneous emission lifetime measurements) of a cavity-coupled single-photon source at 902 nm using a pair of SSPDs. The twin SSPD scheme reported here is well-suited to the characterization of single-photon sources at telecom wavelengths (1310 nm, 1550 nm).

  9. Nanopillar optical antenna nBn detectors for subwavelength infrared pixels

    Science.gov (United States)

    Hung, Chung Hong; Senanayake, Pradeep; Lee, Wook-Jae; Farrell, Alan; Hsieh, Nick; Huffaker, Diana L.

    2015-06-01

    The size, weight and power (SWaP) of state of the art infrared focal plane arrays are limited by the pixel size approaching the diffraction limit. We investigate a novel detector architecture which allows improvements in detectivity by shrinking the absorber volume while maintaining high quantum efficiency and wide field of view (FOV). It has been previously shown that the Nanopillar Optical Antenna (NOA) utilizes 3D plasmonic modes to funnel light into a subwavelength nanopillar absorber. We show detailed electro-optical simulations for the NOA-nBn architecture for overcoming generation recombination current with suitable surface passivation to achieve background limited infrared performance.

  10. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    Science.gov (United States)

    Goldflam, M. D.; Kadlec, E. A.; Olson, B. V.; Klem, J. F.; Hawkins, S. D.; Parameswaran, S.; Coon, W. T.; Keeler, G. A.; Fortune, T. R.; Tauke-Pedretti, A.; Wendt, J. R.; Shaner, E. A.; Davids, P. S.; Kim, J. K.; Peters, D. W.

    2016-12-01

    We examined the spectral responsivity of a 1.77 μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber's subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency. The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.

  11. Modeling effects of common molecular contaminants on the Euclid infrared detectors

    Science.gov (United States)

    Holmes, W.; McKenney, C.; Barbier, R.; Cho, H.; Cillis, A.; Clemens, J.-C.; Dawson, O.; Delo, G.; Ealet, A.; Feizi, A.; Ferraro, N.; Foltz, R.; Goodsall, T.; Hickey, M.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Lotkin, G.; Maciaszek, T.; McClure, S.; Miko, L.; Nguyen, L.; Pravdo, S.; Prieto, E.; Powers, T.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Waczynski, A.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    Cleanliness specifications for infrared detector arrays are usually so stringent that effects are neglibile. However, the specifications determine only the level of particulates and areal density of molecular layer on the surface, but the chemical composition of these contaminants are not specified. Here, we use a model to assess the impact on system quantum efficiency from possible contaminants that could accidentally transfer or cryopump to the detector during instrument or spacecraft testing and on orbit operation. Contaminant layers thin enough to meet typical specifications, < 0.5μgram/cm2, have a negligible effect on the net quantum efficiency of the detector, provided that the contaminant does not react with the detector surface, Performance impacts from these contaminant plating onto the surface become important for thicknesses 5 - 50μgram/cm2. Importantly, detectable change in the "ripple" of the anti reflection coating occurs at these coverages and can enhance the system quantum efficiency. This is a factor 10 less coverage for which loss from molecular absorption lines is important. Thus, should contamination be suspected during instrument test or flight, detailed modelling of the layer on the detector and response to very well known calibrations sources would be useful to determine the impact on detector performance.

  12. Characterisation of an inhomogeneously irradiated microstrip detector using a fine spot infrared laser

    Energy Technology Data Exchange (ETDEWEB)

    Casse, G. E-mail: gcasse@hep.ph.liv.ac.uk; Allport, P.P.; Biagi, S.F.; Bowcock, T.J.V.; Greenall, A.; Turner, P.R

    2003-10-11

    A prototype silicon microstrip detector with p-strip read-out on oxygen enriched n-type substrate has been non-homogeneously irradiated using a 24 GeV/c proton beam at the CERN-PS accelerator. The detector has a semicircular shape with radial strip geometry. The peak fluence received by the detector was 4.6x10{sup 14} p/cm{sup 2} though the non-uniform nature of the exposure left part of the detector unirradiated. The inhomogeneous irradiation introduced a damage profile in the detector approximating to that expected in the inner LHC region. High-irradiation gradients are important to study as they can modify the electric field within the silicon. Of special interest are changes in the component of the electric field parallel to the strip plane but perpendicular to the strips, which could lead to systematic shifts in the reconstructed cluster position. If these (flux and position dependent) shifts are sufficiently large they could contribute to degrading the spatial resolution of the detector. In order to quantify these effects, a precision narrow focus light spot from an infrared laser was used to investigate the charge collection properties of the sensor. Particular attention was devoted to the regions where a high gradient of the fluence will have introduced a large gradient in the effective local space charge. The results reported below place limits on the 'distortions' due to non-uniform irradiation.

  13. Analysis and Control of Carrier Transport in Unipolar Barrier Mid-Infrared (IR) Detectors

    Science.gov (United States)

    2017-01-03

    permission to manufacture, use, or sell any patented invention that may relate to them. This report is the result of contracted fundamental research...infrared detectors constructed of InAs-based materials. MBE growth temperature affects the quality of InAs materials, as assessed by measured ...490ºC (solid red line), measured at 15K………….3 Figure 4. (Color online) Minority carrier recombination lifetimes determined by fitting a single

  14. A new test facility for the E-ELT infrared detector program

    Science.gov (United States)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  15. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    Science.gov (United States)

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  16. Thermal imager fixed pattern noise prediction using a characterization of the infrared detector

    Science.gov (United States)

    Mariani, Paolo; Zatti, Stefano; Giunti, Claudio; Sozzi, Barbara; Guadagnoli, Emanuele; Porta, Antonio

    2014-12-01

    Cooled infrared detectors are typically characterized by well-known electro-optical parameters: responsivity, noise equivalent temperature difference, shot noise, 1/f noise, and so on. Particularly important for staring arrays is also the residual fixed pattern noise (FPN) that can be obtained after the application of the nonuniformity correction (NUC) algorithm. A direct measure of this parameter is usually hard to define because the residual FPN strongly depends, other than on the detector, on the choice of the NUC algorithm and the operative scenario. We introduce three measurable parameters: instability, nonlinearity, and a residual after a polynomial fitting of the detector response curve, and we demonstrate how they are related to the residual FPN after the application of an NUC (the relationship with three common correction algorithms is discussed). A comparison with experimental data is also presented and discussed.

  17. InSb Mid-Infrared Photon Detector for Room-Temperature Operation

    Science.gov (United States)

    Ueno, Koichiro; Gomes Camargo, Edson; Katsumata, Takashi; Goto, Hiromasa; Kuze, Naohiro; Kangawa, Yoshihiro; Kakimoto, Koichi

    2013-09-01

    We developed a small InSb mid-infrared (2-7 µm wavelength range) photon detector that operates at room temperature. The photodiode was made from (hetero epitaxial) InSb layers that were grown on a semi-insulating GaAs substrate by molecular beam epitaxy. To suppress the effects of the diffusion current of the p-i-n photodiode, we used an AlInSb barrier layer that raises the resistance of the photodiode. We also optimized the device's doping concentration and the infrared incidence window structure. These optimization steps realized high photoelectric current output in a room-temperature environment. We also increased the signal-to-noise ratio of the detector by connecting multiple photodiodes in series. The size of this detector is 1.9×2.7×0.4 mm3 and the detectivity is 2.8×108 cm Hz1/2/W at 300 K. This is a practical IR detector that can be used in general signal amplification ICs.

  18. Bismuth Oxide Thin Films Deposited on Silicon Through Pulsed Laser Ablation, for Infrared Detectors

    Science.gov (United States)

    Condurache-Bota, Simona; Constantinescu, Catalin; Tigau, Nicolae; Praisler, Mirela

    2016-12-01

    Infrared detectors are used in many human activities, from industry to military, telecommunications, environmental studies and even medicine. Bismuth oxide thin films have proved their potential for optoelectronic applications, but their uses as infrared sensors have not been thoroughly studied so far. In this paper, pulsed laser ablation of pure bismuth targets within a controlled oxygen atmosphere is proposed for the deposition of bismuth oxide films on Si (100) substrates. Crystalline films were obtained, whose uniformity depends on the deposition conditions (number of laser pulses and the use of a radio-frequency (RF) discharge of the oxygen inside the deposition chamber). The optical analysis proved that the refractive index of the films is higher than 3 and that their optical bandgap is around 1eV, recommending them for infrared applications.

  19. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  20. Development of low-noise kinetic inductance detectors for far-infrared astrophysics

    Science.gov (United States)

    Barlis, Alyssa; Hailey-Dunsheath, Steven; Bradford, Charles M.; McKenney, Christopher; Le Duc, Henry G.; Aguirre, James

    2017-01-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many spectral lines at far-infrared wavelengths (10 μm working to develop a detector system for a far-infrared balloon-borne spectroscopic experiment using kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity, low noise levels, high multiplexing factor, and may enable future space missions. We describe the design, fabrication, and noise performance measurements of prototype detector devices targeting an optical noise equivalent power below 1 ×10-17 WHz - 1 / 2 with readout frequencies below 250 MHz. The devices consist of arrays of 45 lumped-element KID pixels patterned out of thin-film aluminum on silicon wafers. They are optically coupled to incident radiation with a set of feedhorns. We use an FPGA-based readout system to read out the response of all the pixels in the array simultaneously. This work was supported by a NASA Space Technology Research Fellowship.

  1. Sub-nanosecond, time-resolved, broadband infrared spectroscopy using synchrotron radiation

    CERN Document Server

    Lobo, R; Reitze, D H; Tanner, D B; Carr, G L

    2001-01-01

    A facility for sub-nanosecond time-resolved (pump-probe) infrared spectroscopy has been developed at the National Synchrotron Light Source of Brookhaven National Laboratory. A mode-locked Ti:sapphire laser produces 2 ps duration, tunable near-IR pump pulses synchronized to probe pulses from a synchrotron storage ring. The facility is unique on account of the broadband infrared from the synchrotron, which allows the entire spectral range from 2 cm-1 (0.25 meV) to 20,000 cm-1 (2.5 eV) to be probed. A temporal resolution of 200 ps, limited by the infrared synchrotron-pulse duration, is achieved. A maximum time delay of 170 ns is available without gating the infrared detector. To illustrate the performance of the facility, a measurement of electron-hole recombination dynamics for an HgCdTe semiconductor film in the far- and mid infrared range is presented.

  2. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Benjamin Lewin

    2004-12-21

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 10{sup 13} cm{sup -3}, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  3. Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors

    Science.gov (United States)

    Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey

    2009-01-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  4. GaAs Blocked-Impurity-Band Detectors for Far-Infrared Astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Cardozo, Benjamin Lewin [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    High-purity and doped GaAs films have been grown by Liquid-phase epitaxy (LPE) for development of a blocked impurity band (BIB) detector for far-infrared radiation. The film growth process developed has resulted in the capability to grow GaAs with a net active impurity concentration below 1 x 1013 cm-3, ideal for the blocking layer of the BIB detector. The growth of n-type LPE GaAs films with donor concentrations below the metal-insulator transition, as required for the absorbing layer of a BIB detector, has been achieved. The control of the donor concentration, however, was found to be insufficient for detector production. The growth by LPE of a high-purity film onto a commercially grown vapor-phase epitaxial (VPE) n-type GaAs doped absorbing layer resulted in a BIB device that showed a significant reduction in the low-temperature dark current compared to the absorbing layer only. Extended optical response was not detected, most likely due to the high compensation of the commercially grown GaAs absorbing layer, which restricts the depletion width of the device.

  5. True differential pyroelectric infrared detector with improved D* test results with analysis

    Science.gov (United States)

    Doctor, Alan

    2016-10-01

    Pyroelectric infrared detectors are used in many commercial and industrial applications. Typically these devices have been "single ended" and thus any electronic perturbation from a non-detector related noise source such as line frequency interference or microprocessor clock and other sources of electronic noise can be coupled onto the detector's output signal. We have solved this problem by employing a rather unique connection which also provides an increase in the signal to noise of any pyroelectric detector by a factor of the square root of 2 or by about 1.41 times greater than devices not utilizing this connection. Many devices using this connection have been built, fully tested and the data analyzed which provide a true differential or double ended output and the increase in D* as predicted. This scheme will work with any pyroelectric material (LTO, DLATGS, PLZT, PVDF etc.) with current or voltage mode impedance conversion and configurations such as parallel or series with and without temperature fluctuation compensation and of course with standard single elements. This talk will present this data and conclusions regarding the approach.

  6. Detector Response and Beam Line Transmission Measurements with Far-Infrared Radiation

    CERN Document Server

    Grimm, O; Fröhlich, L

    2005-01-01

    Various activities at the TTF linear accelerator at DESY, Hamburg, that drives the VUV-FEL are geared towards measuring the longitudinal charge distribution of electron bunches with coherent far-infrared radiation. Examples are beam lines transporting synchrotron or transition radiation to interferometers mounted inside or outside the tunnel, and studies of single-shot grating spectrometers. All such approaches require a good understanding of the radiation generation and transport mechanism and of the detector characteristics to extract useful information on the charge distribution. Simulations and measurements of the expected transverse intensity distribution and polarization of synchrotron radiation emitted at the first bunch compressor of TTF have been performed. The transverse intensity scanning provided for the first time at DESY a visual image of the footprint of terahertz radiation. Detector response measurements have been performed at the FELIX facility, Netherlands, for wavelengths between 100-160 mi...

  7. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  8. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  9. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  10. ROIC for HgCdTe e-APD FPA

    Science.gov (United States)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-08-01

    Ultra-low light imaging and passive/active dual mode imaging require very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In my work, a passive/active dual mode readout integrated circuit (ROIC) of e-APD focal plane array (FPA) is designed. Unit cell circuit architecture of ROIC includes a capacitance feedback transimpedance amplifier (CTIA) as preamplifier of ROIC, a high voltage protection module, a comparator, a Sample-Hold circuit module, and output driver stage. There is a protection module in every unit cell circuit which can avoid ROIC to be damaged from avalanche breakdown of some diodes of detector. Conventional 5V CMOS process is applied to implement the high voltage protection with the small area rather than Laterally Diffused Metal Oxide Semiconductor (LDMOS) in high voltage BCD process in the limited 100um×100um pitch area. In CTIA module, three integration capacitances are included in the CTIA module, two of them are switchable to provide different well capacity and noise. Constraints such as pixel area, stability and power lead us design toward a simple one-stage cascade operational transconductance amplifier (OTA) as pre-amplifier. High voltage protection module can protect ROIC to be damaged because of breakdown of some avalanche diodes.

  11. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology

    Science.gov (United States)

    Péré-Laperne, Nicolas; Berthoz, Jocelyn; Taalat, Rachid; Rubaldo, Laurent; Kerlain, Alexandre; Carrère, Emmanuel; Dargent, Loïc.

    2016-05-01

    Sofradir recently presented Daphnis, its latest 10 μm pitch product family. Both Daphnis XGA and HD720 are 10μm pitch mid-wave infrared focal plane array. Development of small pixel pitch is opening the way to very compact products with a high spatial resolution. This new product is taking part in the HOT technology competition allowing reductions in size, weight and power of the overall package. This paper presents the recent developments achieved at Sofradir to make the 10μm pitch HgCdTe focal plane array based on the legacy technology. Electrical and electro-optical characterizations are presented to define the appropriate design of 10μm pitch diode array. The technological tradeoffs are explained to lower the dark current, to keep high quantum efficiency with a high operability above 110K, F/4. Also, Sofradir recently achieved outstanding Modulation Transfer Function (MTF) demonstration at this pixel pitch, which clearly demonstrates the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. Furthermore, the HgCdTe technology has demonstrated an increase of the operating temperature, plus 40K, moving from the legacy to the P-on-n one at a 15μm pitch in mid-wave band. The first realizations using the extrinsic P-on-n technology and the characterizations of diodes with a 10μm pitch neighborhood will be presented in both mid-wave and long-wave bands.

  12. Preliminary validation results of an ASIC for the readout and control of near-infrared large array detectors

    Science.gov (United States)

    Pâhlsson, Philip; Meier, Dirk; Otnes Berge, Hans Kristian; Øya, Petter; Steenari, David; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar

    2015-06-01

    In this paper we present initial test results of the Near Infrared Readout and Controller ASIC (NIRCA), designed for large area image sensors under contract from the European Space Agency (ESA) and the Norwegian Space Center. The ASIC is designed to read out image sensors based on mercury cadmium telluride (HgCdTe, or MCT) operating down to 77 K. IDEAS has developed, designed and initiated testing of NIRCA with promising results, showing complete functionality of all ASIC sub-components. The ASIC generates programmable digital signals to clock out the contents of an image array and to amplify, digitize and transfer the resulting pixel charge. The digital signals can be programmed into the ASIC during run-time and allows for windowing and custom readout schemes. The clocked out voltages are amplified by programmable gain amplifiers and digitized by 12-bit, 3-Msps successive approximation register (SAR) analogue-to-digital converters (ADC). Digitized data is encoded using 8-bit to 10-bit encoding and transferred over LVDS to the readout system. The ASIC will give European researchers access to high spectral sensitivity, very low noise and radiation hardened readout electronics for astronomy and Earth observation missions operating at 77 K and room temperature. The versatility of the chip makes the architecture a possible candidate for other research areas, or defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  13. Innovative design of a calibration mechanism for the space infrared detector

    Science.gov (United States)

    Sun, De-wei; Li, Bo; Liu, Jian-feng; Ruan, Ning-juan

    2013-09-01

    A new style calibration mechanism is designed for the infrared camera working in space. This calibration mechanism adds a locking device, which will produce magnetic force to fix the moving parts on the stage of launch. It has not been taken into account in past calibration mechanism of space infrared camera. In order to simplify structure and control system, an alnico is adopted in locking device as the source of magnetic field, which interacts with magnetic material and produces locking force. In addition, there is also a special structural design, which makes magnetic circuit closeitself to control magnetic leakage interfering with other equipment. Besides, another important component of calibration mechanism is a permanent magnet torquer. It can provide driving force for the blackbody to complete two state conversions of calibration and Non-calibration. High magnetic induction intensity and coercivity alnico is used as the stator, which will lighten the weight of torquer. On-off control strategy is selected in order to simplify the control system. Because calibration is only a temporary state, temperature rise has little influence on torquer. This setup is favorable to increase its reliability. There are guard plates on the axial direction shielding electromagnetism, also reducing magnetic leakage. Experimental investigations have been carried out to verify the feasibility and reliability of design. Result indicates the calibration mechanism can primely complete the calibration task of the space infrared detector. It has an important application value on the field of infrared detection.

  14. Fast sub-electron detectors review for interferometry

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe

    2016-08-01

    New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA

  15. Simulation of Small-Pitch HgCdTe Photodetectors

    Science.gov (United States)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2017-09-01

    Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.

  16. Hole effective masses and subband splitting in type-II superlattice infrared detectors

    Science.gov (United States)

    Ting, David Z.; Soibel, Alexander; Gunapala, Sarath D.

    2016-05-01

    We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for infrared detectors. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength infrared (LWIR) T2SL would lead to low hole mobility and therefore low detector collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass than its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.

  17. APPROACH TO SYNTHESIS OF PASSIVE INFRARED DETECTORS BASED ON QUASI-POINT MODEL OF QUALIFIED INTRUDER

    Directory of Open Access Journals (Sweden)

    I. V. Bilizhenko

    2017-01-01

    Full Text Available Subject of Research. The paper deals with synthesis of passive infra red (PIR detectors with enhanced detection capability of qualified intruder who uses different types of detection countermeasures: the choice of specific movement direction and disguise in infrared band. Methods. We propose an approach based on quasi-point model of qualified intruder. It includes: separation of model priority parameters, formation of partial detection patterns adapted to those parameters and multi channel signal processing. Main Results. Quasi-pointmodel of qualified intruder consisting of different fragments was suggested. Power density difference was used for model parameters estimation. Criteria were formulated for detection pattern parameters choice on the basis of model parameters. Pyroelectric sensor with nine sensitive elements was applied for increasing the signal information content. Multi-channel processing with multiple partial detection patterns was proposed optimized for detection of intruder's specific movement direction. Practical Relevance. Developed functional device diagram can be realized both by hardware and software and is applicable as one of detection channels for dual technology passive infrared and microwave detectors.

  18. Free space-coupled superconducting nanowire single photon detectors for infrared optical communications

    CERN Document Server

    Bellei, Francesco; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Quinyuan; Berggren, Karl K

    2015-01-01

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% +/- 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 +/- 0.11 {\\mu}m starting from a fiber source at wavelength, {\\lambda} = 1.55 {\\mu}m. We demonstrated efficient photon counting on a detector with an 8 x 7.3 {\\mu}m^2 area. We measured a dark count rate of 95 +/- 3.35 kcps and a system detection efficiency of 1.64% +/- 0.13%. We explain the key steps that are required to further improve the coupling efficiency.

  19. An infrared motion detector system for lossless real-time monitoring of animal preference tests.

    Science.gov (United States)

    Pogány, A; Heszberger, J; Szurovecz, Zita; Vincze, E; Székely, T

    2014-12-01

    Automated behavioural observations are routinely used in many fields of biology, including ethology, behavioural ecology and physiology. When preferences for certain resources are investigated, the focus is often on simple response variables, such as duration and frequency of visits to choice chambers. Here we present an automated motion detector system that use passive infrared sensors to eliminate many drawbacks of currently existing methods. Signals from the sensors are processed by a custom-built interface, and after unnecessary data is filtered by a computer software, the total time and frequency of the subject's visits to each of the choice chambers are calculated. We validate the detector system by monitoring (using the system) and in the same time video recording mating preferences of zebra finches in a four-way choice apparatus. Manual scoring of the video recordings showed very high consistency with data from the detector system both for time and for frequency of visits. Furthermore, the validation revealed that if we used micro-switches or light barriers, the most commonly applied automatic detection techniques, this would have resulted in approximately 22% less information compared to our lossless system. The system provides a low-cost alternative for monitoring animal movements, and we discuss its further applicability.

  20. Development and application of InAsP/InP quantum well infrared detector

    Science.gov (United States)

    Geetanjali, Porwal, S.; Kumar, R.; Dixit, V. K.; Sharma, T. K.; Oak, S. M.

    2016-05-01

    InAsxP1-x/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for infrared detector applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR detectors in the wide wavelength range, i.e. 0.9-1.46 µm by inter-band transitions and 7-18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAsxP1-x/InPQW detector is verified by measuring the photoluminescence of suitable semiconductor quantum well structure. At the request of all authors of the paper, and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 June 2016. The original version supplied to AIP Publishing contained an error in the Figures 1 and 2 where the right side of the images were cutoff. The error has been corrected in the updated and re-published article.

  1. Operation and performance of new NIR detectors from SELEX

    Science.gov (United States)

    Atkinson, D.; Bezawada, N.; Hipwood, L. G.; Shorrocks, N.; Milne, H.

    2012-07-01

    The European Space Agency (ESA) has funded SELEX Galileo, Southampton, UK to develop large format near infrared (NIR) detectors for its future space and ground based programmes. The UKATC has worked in collaboration with SELEX Galileo to test and characterise the new detectors produced during phase-1 of the development. In order to demonstrate the detector material performance, the HgCdTe (MCT) detector diodes (grown on GaAs substrate through MOVPE process in small 320×256, 24μm pixel format) are hybridised to the existing SELEX Galileo SWALLOW CMOS readout chip. The substrate removed and MCT thinned detector arrays were then tested and evaluated at the UKATC following screening tests at SELEX. This paper briefly describes the test setup, the operational aspects of the readout multiplexer and presents the performance parameters of the detector arrays including: conversion gain, detector dark current, read noise, linearity, quantum efficiency and persistence for various detector temperatures between 80K and 140K.

  2. Recent progress for HGCDTE quantum detection in France

    Science.gov (United States)

    Gravrand, O.; Destefanis, G.

    2013-07-01

    Due to its tuneable narrow band gap, HgCdTe (MCT) is a material of choice for high complexity IR focal plane arrays (FPAs). Being a strategic defence technology, MCT detector developments is totally mastered at every stage of fabrication at LETI and Sofradir, from the lattice matched CZT substrate growth, the active layer MCT growth, to PV technology, silicon ROIC design and flip chip hybridization. Within the last few years, MCT devices have considerably evolved in terms of device complexity, performances, and field of action. n/p standard technology has been developed in all spectral ranges, from VLWIR (20 μm) down SWIR (1.7 μm). MCT photodiode sensibility goes even lower, down to visible and even UV with a constant quantum efficiency. Moreover, MCT material provides us with high and noiseless avalanche gains inside the photodiode itself, which we are now fully able to use for the optimization of FPA performances. Besides, p/n diode structure is a new emerging process which improves detector performances by several orders of magnitude in terms of dark current, by comparison with the n/p historical structure. This technology has been successfully demonstrated from VLWIR (15 μm cut off) down to the SWIR range (2 μm cut off) where ultra low dark currents are recorded at low temperatures (0.4 e/s). In the same time, first dual band FPAs are delivered, which are expected to be the 3rd generation of IR detectors. At last, considerable efforts are made in order to increase the operational temperature, going from 100 K to 150 K for MWIR FPAs at constant performances, optimizing all technological steps, especially growth issues. Going at even higher operating temperatures (HOTs) is also under active study.

  3. An investigation for the HgCdTe cleaning process

    Science.gov (United States)

    Lan, Tian-Yi; Wang, Nili; Zhao, Shuiping; Liu, Shi-Jia; Li, Xiang-Yang

    2014-11-01

    A new cleaning process for HgCdTe was designed - which used the improved SC-1,SC-2 and Br2- C2H5OH solutions as the main cleaning fluid and applied mega sound waves in the cleaning process. By analyzing the test results carried out on the HgCdTe surface, it was found that the material of HgCdTe for the application of new cleaning process was better than the one for the application of conventional cleaning process in the minority carrier lifetime, residual organic contamination, responsivity and specific detectivity.

  4. Measuring Io's Lava Eruption Temperatures with a Novel Infrared Detector and Digital Readout Circuit

    Science.gov (United States)

    Davies, Ashley; Gunapala, Sarath; Rafol, B., Sir; Soibel, Alexander; Ting, David Z.

    2016-10-01

    One method of determining lava eruption temperature of Io's dominant silicate lavas is by measuring radiant flux at two or more wavelengths and fitting a black-body thermal emission function. Only certain styles of volcanic activity are suitable, those where thermal emission is from a restricted range of surface temperatures close to eruption temperature. Such processes include [1] large lava fountains; [2] fountaining in lava lakes; and [3] lava tube skylights. Problems that must be overcome are (1) the cooling of the lava between data acquisitions at different wavelengths; (2) the unknown magnitude of thermal emission, which often led to detector saturation; and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD detector [4] and an advanced digital readout circuit [5]. We have created an instrument model that allows different instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested so as to determine eruption detectability. We find that a short-wavelength infrared instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures exposed. Observations at 1 and 1.5 μm are sufficient to do this. Lava temperature determinations are also possible with a visible wavelength detector [3] so long as data at different wavelengths are obtained simultaneously and integration time is very short. This is especially important for examining the thermal emission from lava tube skylights [3] due to rapidly-changing viewing geometry during close flybys. References: [1] Davies et al., 2001, JGR, 106, 33079-33104. [2] Davies et al., 2011, GRL, 38, L21308. [3] Davies et al., 2016, Icarus, in press. [4

  5. Study of polymorphous silicon as thermo-sensing film for infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, M., E-mail: mariomoreno78@hotmail.com [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Torres, A. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Ambrosio, R. [Universidad Autonoma de Ciudad Juarez, Chihuahua (Mexico); Torres, E. [Universidad Popular Autonoma del estado de Puebla, Puebla (Mexico); Rosales, P.; Zuniga, C.; Reyes-Betanzo, C.; Calleja, W.; De la Hidalga, J. [Instituto Nacional de Astrofisica, Optica y Electronica, INAOE, Puebla (Mexico); Monfil, K. [Universidad Autonoma de Ciudad Juarez, Chihuahua (Mexico)

    2012-06-05

    In this work we have deposited and characterized pm-Si:H thin films obtained by plasma deposition. Our aim is to use pm-Si:H as thermo-sensing element for infrared (IR) detectors based on un-cooled microbolometers. We have studied the electrical characteristics of pm-Si:H that are figures of merit important for IR detection, as activation energy, thermal coefficient of resistance (TCR), room temperature conductivity ({sigma}{sub RT}) and responsivity under IR radiation. The influence of the substrate temperature (200 Degree-Sign C and 300 Degree-Sign C) on the pm-Si:H characteristics has been also studied. Our results shown that pm-Si:H is an excellent candidate to be used as thermo-sensing film for microbolometers, due to its large activation energy and TCR, with an improved {sigma}{sub RT}.

  6. Symmetric Absorber-Coupled Far-Infrared Microwave Kinetic Inductance Detector

    Science.gov (United States)

    U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)

    2016-01-01

    The present invention relates to a symmetric absorber-coupled far-infrared microwave kinetic inductance detector including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.

  7. Mid/far-infrared photo-detectors based on graphene asymmetric quantum wells

    Science.gov (United States)

    Ben Salem, E.; Chaabani, R.; Jaziri, S.

    2016-09-01

    We conducted a theoretical study on the electronic properties of a single-layer graphene asymmetric quantum well. Quantification of energy levels is limited by electron-hole conversion at the barrier interfaces and free-electron continuum. Electron-hole conversion at the barrier interfaces can be controlled by introducing an asymmetry between barriers and taking into account the effect of the interactions of the graphene sheet with the substrate. The interaction with the substrate induces an effective mass to carriers, allowing observation of Fabry-Pérot resonances under normal incidence and extinction of Klein tunneling. The asymmetry, between barriers creates a transmission gap between confined states and free-electron continuum, allowing the large graphene asymmetric quantum well to be exploited as a photo-detector operating at mid- and far-infrared frequency regimes.

  8. CdS/PbSe heterojunction for high temperature mid-infrared photovoltaic detector applications

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Binbin, E-mail: binbinweng@ou.edu, E-mail: shi@ou.edu; Qiu, Jijun; Zhao, Lihua; Chang, Caleb [The School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Shi, Zhisheng, E-mail: binbinweng@ou.edu, E-mail: shi@ou.edu [The School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States); Nanolight, Inc., Norman, Oklahoma 73069 (United States)

    2014-03-24

    n-CdS/p-PbSe heterojunction is investigated. A thin CdS film is deposited by chemical bath deposition on top of epitaxial PbSe film by molecular beam epitaxy on Silicon. Current-voltage measurements demonstrate very good junction characteristics with rectifying ratio of ∼178 and ideality factor of 1.79 at 300 K. Detectors made with such structure exhibit mid-infrared spectral photoresponse at room temperature. The peak responsivity R{sub λ} and specific detectivity D{sup *} are 0.055 A/W and 5.482 × 10{sup 8} cm·Hz{sup 1/2}/W at λ = 4.7 μm under zero-bias photovoltaic mode. Temperature-dependent photoresponse measurements show abnormal intensity variation below ∼200 K. Possible reasons for this phenomenon are also discussed.

  9. Detecting an infrared photon within an hour. Transition-edge detector at ALPS-II

    Energy Technology Data Exchange (ETDEWEB)

    Dreyling-Eschweiler, Jan [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Horns, Dieter [Hamburg Univ. (Germany). Inst. fuer Experimentalphysik; Collaboration: ALPS-II collaboration

    2013-09-15

    An essential design requirement of the ALPS-II experiment is the efficient detection of single photons with a very low instrumental background of 10 {mu}Hz. In 2011 the ALPS collaboration started to set up a TES detector (Transition-Edge Sensor) for ALPS-II, the second phase of the experiment. Since mid of 2013 the setup is ready for characterization in the ALPS laboratory: an ADR cryostat (Adiabatic Demagnetization Refrigerator) as millikelvin environment, a low noise SQUID (Superconducting Quantum Interference Device) with electronics for read-out and a fiber-coupled high-efficient TES for near-infrared photons as sensor. First measurements have shown a good discrimination between noise and 1064 nm signals.

  10. HREM study on stacking structure of SiGe/Si infrared detector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Stacking structure and defects in SiGe/P-Si infrared detector were studied by using localization high resolutionelectron microscopy (HREM). The photosensitive region in the detector consists of 3 P+-Si0.65 Ge0.35 layers and 2 UD-Si(undoped Si) layers. The interface between Si0.65 Ge0.35 and UD-Si is not sharp and has a transition zone with non-uniform contrast. The misfit stress of interface is distributed gradiently along the normal direction of the interface. Thereforethe crystal defects and serious lattice deformations on the interface have not been found. A defect area with a shape of in-verted triangle exists in the edge of photosensitive region. The main types of the defects in the area are stacking faults andmicrotwins. The stacking faults are on ( 1 11), and the thickness of the most microtwins is less than 4 interplanar spacingand the twin plane is (111). The Si0.65Ge0.35 and UD-Si layers on amorphous SiO2 layer consist of polycrystals grown byrandom nueleation, and are in wave

  11. Study of a Vuilleumier cycle cryogenic refrigerator for detector cooling on the limb scanning infrared radiometer

    Science.gov (United States)

    Russo, S. C.

    1976-01-01

    A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning Infrared Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a detector assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type detector package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.

  12. A long-range, wide field-of-view infrared eyeblink detector.

    Science.gov (United States)

    Ryan, Steven B; Detweiler, Krystal L; Holland, Kyle H; Hord, Michael A; Bracha, Vlastislav

    2006-04-15

    Classical conditioning of the eyeblink response in the rabbit is one of the most advanced models of learning and memory in the mammalian brain. Successful use of the eyeblink conditioning paradigm requires precise measurements of the eyeblink response. One common technique of eyelid movement detection utilizes measurements of infrared (IR) light reflected from the surface of the eye. The performance of current IR sensors, however, is limited by their sensitivity to ambient infrared noise, by their small field-of-view and by short working distances. To address these limitations, we developed an IR eyeblink detector consisting of a pulsing (62.5 kHz) IR light emitting diode (LED) paired with a silicon IR photodiode and circuit that synchronously demodulates the recorded signal and rejects background IR noise. The working distance of the sensor exceeds 20 mm, and the field-of-view is larger than the area of a rabbit's eye. Due to its superior characteristics, the new sensor is ideally suited for both standard eyeblink conditioning and for studies that utilize IR-containing visual stimuli and/or that are conducted in an environment contaminated with IR noise.

  13. Visible and Infrared Wavefront Sensing detectors review in Europe - part I

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-luc

    2013-12-01

    The purpose of this review is to give an overview of the state of the art wavefront sensor detectors developments held in Europe for the last decade. A major breakthrough has been achieved with the development by e2v technologies of the CCD220 between 2004 and 2012. Another major breakthrough is currently achieved with the very successful development of fast low noise infrared arrays called RAPID. The astonishing results of this device will be showed for the first time in an international conference at AO4ELT3.The CCD220, a 240x240 pixels 8 outputs EMCCD (CCD with internal multiplication), offers less than 0.2 e readout noise at a frame rate of 1500 Hz with negligible dark current. The OCAM2 camera is the commercial product that drives this advanced device. This system, commercialized by First Light Imaging, is quickly described in this paper. An upgrade of OCAM2 is currently developed to boost its frame rate to 2 kHz, opening the window of XAO wavefront sensing for the ELT using 4 synchronized cameras and pyramid wavefront sensing. This upgrade and the results obtained are described extensively elsewhere in this conference (Gach et al).Since this major success, new detector developments started in Europe. The NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with ESO involvement. The spot elongation from a LGS Shack Hartman wavefront sensor necessitates an increase of the pixel format. The NGSD will be a 880x840 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. This innovative device will be used on the European ELT but also interests potentially all giant telescopes.Additional developments also started in 2009 for wavefront sensing in the infrared based on a new technological breakthrough

  14. PANIC: A Near-infrared Camera for the Magellan Telescopes

    CERN Document Server

    Martini, P; Murphy, D C; Birk, C; Shectman, S A; Grunnels, S M; Koch, E

    2004-01-01

    PANIC (Persson's Auxiliary Nasmyth Infrared Camera) is a near-infrared camera designed to operate at any one of the f/11 folded ports of the 6.5m Magellan telescopes at Las Campanas Observatory, Chile. The instrument is built around a simple, all-refractive design that reimages the Magellan focal plane to a plate scale of 0.125'' pixel^{-1} onto a Rockwell 1024x1024 HgCdTe detector. The design goals for PANIC included excellent image quality to sample the superb seeing measured with the Magellan telescopes, high throughput, a relatively short construction time, and low cost. PANIC has now been in regular operation for over one year and has proved to be highly reliable and produce excellent images. The best recorded image quality has been ~0.2'' FWHM.

  15. Near-Infrared Image Reconstruction of Newborns' Brains: Robustness to Perturbations of the Source/Detector Location.

    Science.gov (United States)

    Ahnen, L; Wolf, M; Hagmann, C; Sanchez, S

    2016-01-01

    The brain of preterm infants is the most vulnerable organ and can be severely injured by cerebral ischemia. We are working on a near-infrared imager to early detect cerebral ischemia. During imaging of the brain, movements of the newborn infants are inevitable and the near-infrared sensor has to be able to function on irregular geometries. Our aim is to determine the robustness of the near-infrared image reconstruction to small variations of the source and detector locations. In analytical and numerical simulations, the error estimations for a homogeneous medium agree well. The worst case estimates of errors in reduced scattering and absorption coefficient for distances of r=40 mm are acceptable for a single source-detector pair. The optical properties of an inhomogeneity representing an ischemia are reconstructed correctly within a homogeneous medium, if the error in placement is random.

  16. Characterisation activities of new NIR to VLWIR detectors from Selex ES Ltd at the UK ATC

    Science.gov (United States)

    Bezawada, Naidu; Atkinson, David; Shorrocks, Nick; Hipwood, Les; Weller, Harald; Bryson, Ian; Jackson, Malcolm; Davis, Ray P.; Barnes, Keith; Baker, Ian

    2014-07-01

    The UKATC has undertaken to test and evaluate new infrared detectors being developed at Selex ES Ltd, Southampton in the UK for astronomy and space applications. Current programmes include: the evaluation of large format (1280×1024), near-infrared detectors for astronomy, the characterisation of shortwave infrared detectors (up to 2.5μm) for satellite-based earth observation, long wavelength (8 to 11μm) and very long wavelength (10 to 14.5μm cut-off) devices for cosmos applications. Future programmes include the evaluation of large format, avalanche photodiode arrays for photon-level sensing and high speed applications. Custom test facilities are being setup in order to drive and characterise the detectors at the ATC under conditions representative of the applications. In this paper the test facilities will be described along with the associated challenges to evaluate the performance of these detectors. The paper also includes an overview of the Selex ES detectors, including the ROICs and the MOVPE HgCdTe arrays, and will present the latest results from the characterisation program.

  17. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    Science.gov (United States)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  18. Design of non-dispersion Infrared detector's data processor on measurement of automobile emission CO and CO2

    Science.gov (United States)

    Liu, Guohua; Zhang, Yujun; Chen, Chen; Lu, Yibing; He, Chungui; Gao, Yanwei; You, Kun; He, Ying; Zhang, Kai; Liu, Wenqing

    2016-10-01

    For the technical requirements of automobile emission CO and CO2 detector's data processor, the scheme is based on the detection principle of NDIR method and the implementation of the data processor software as well as hardware is discussed. High-speed, high-precision DSP is selected as the core of the detector's data acquisition and processing, while four-channel thermoelectricity sensor TPS4339 as infrared detector, digital-analog data acquisition circuit of NDIR is designed and simulated. Then Fast Fourier Transform (FFT) is adopted for signal processing. Automobile emission CO and CO2 concentration can be accurately obtained by appropriately adjusting sampling period and the light source modulation frequencies, the system SNR is improved and the detection limit is reduced. The experimental results show that the detector's data processor has 3% accuracy and stability which can meet the measurement and analysis of automobile emission CO and CO2 concentration.

  19. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  20. Simulation and analysis of grating-integrated quantum dot infrared detectors for spectral response control and performance enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Oh Kim, Jun [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Ku, Zahyun; Urbas, Augustine, E-mail: youngchul.jun@inha.ac.kr, E-mail: Augustine.Urbas@wpafb.af.mil [Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433 (United States); Krishna, Sanjay [Center for High Technology Materials, University of New Mexico, Albuquerque, New Mexico 87106 (United States); Kang, Sang-Woo; Jun Lee, Sang [Division of Industrial Metrology, Korea Research Institute of Standards and Science, Daejeon 305-340 (Korea, Republic of); Chul Jun, Young, E-mail: youngchul.jun@inha.ac.kr, E-mail: Augustine.Urbas@wpafb.af.mil [Department of Physics, Inha University, Incheon 402-751 (Korea, Republic of)

    2014-04-28

    We propose and analyze a novel detector structure for pixel-level multispectral infrared imaging. More specifically, we investigate the device performance of a grating-integrated quantum dots-in-a-well photodetector under backside illumination. Our design uses 1-dimensional grating patterns fabricated directly on a semiconductor contact layer and, thus, adds a minimal amount of additional effort to conventional detector fabrication flows. We show that we can gain wide-range control of spectral response as well as large overall detection enhancement by adjusting grating parameters. For small grating periods, the spectral responsivity gradually changes with parameters. We explain this spectral tuning using the Fabry–Perot resonance and effective medium theory. For larger grating periods, the responsivity spectra get complicated due to increased diffraction into the active region, but we find that we can obtain large enhancement of the overall detector performance. In our design, the spectral tuning range can be larger than 1 μm, and, compared to the unpatterned detector, the detection enhancement can be greater than 92% and 148% for parallel and perpendicular polarizations. Our work can pave the way for practical, easy-to-fabricate detectors, which are highly useful for many infrared imaging applications.

  1. HgCdTe technology in Germany: the past, the present, and the future

    Science.gov (United States)

    Cabanski, W.; Ziegler, J.

    2009-05-01

    The first HgCdTe (MCT) activities at AEG-Telefunken in Germany were started in 1976. As part of the closing of AEG, the Heilbronn based IR-technology division was established as a spin-off company in 1995, under the brand name of AIM Infrarot-Module GmbH. A rapidly growing team of scientists focused on the detector-dewar-cooler technology and the development of linear photoconductive MCT arrays by applying the solid-state-recrystallization (SSR) technique for MCT growth, depositing and thinning MCT on sapphire substrates and oxide passivation. In 1979, after successful development of an own MCT-technology base, AEG-Telefunken entered into a license agreement with Texas Instruments for US Common Module (CM) technology in order to speed up the entry into full scale production with a transfer of MCT-material, dewar and cooler processes. CMs are still manufactured in small numbers. At the same time, a proprietary pc-MCT technology, independent of the CM production line, was developed and continuously matured and is today successfully applied in various custom designs like detectors for smart ammunition, for commercial and space applications. In 1982 started the development of 2nd Gen. photovoltaic MCT detectors, based on liquid-phase-epitaxy (LPE) in tilting and dipping technique and on planar array technology with Hg-Diffusion and ion implantation for pn-junction formation and CdTe/ZnS passivation. Linear MCT arrays in the 8-10,5 μm wavelength range with state of the art electro-optical performance have rapidly been demonstrated. Within the frame of the European anti-tank program TRIGAT, a two-way know-how-transfer between AEGTelefunken and SOFRADIR was established for linear LW MCT array processing, flip-chip-technology and dewar technology. Today, AIM's 2nd Gen. portfolio is based on MCT-LPE in dipping technique on CdZnTe substrates, characterized by a very low defect and dislocation density for 0,9 μm to 15μm wavelength application. Array processing is performed

  2. Development of a miniature coaxial pulse tube cryocooler for a space-borne infrared detector system

    Science.gov (United States)

    Dang, H. Z.; Wang, L. B.; Wu, Y. N.; Yang, K. X.; Shen, W. B.

    2010-04-01

    A single-stage miniature coaxial pulse tube cryocooler prototype is developed to provide reliable low-noise cooling for an infrared detector system to be equipped in the future space mission. The challenging work is the exacting requirement on its dimensions due to the given miniature Dewar. The limited dimensions result in the insufficiency of the phaseshifting ability of the system when inertance tubes alone are employed. A larger filling pressure of 3.5 Mpa and higher operating frequency up to 70 Hz are adopted to increase the energy density, which compensates for the decrease in working gas volume due to the miniature structure, and realize a fast cool down process. A 1.5 kg dual opposed linear compressor based on flexure bearing and moving magnet technology is used to realize light weight, high efficiency and low contamination. The design and optimization are based on the theoretical CFD model developed by the analyses of thermodynamic behaviors of gas parcels in the oscillating flow. This paper describes the design approach and trade-offs. The cooler performance and characteristics are presented.

  3. Detector control and data acquisition for the wide field infrared survey telescope (WFIRST) with a custom ASIC

    Science.gov (United States)

    Smith, Brian; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; Luppino, Gerard; Culver, Harry; Wollack, Edward; Content, David

    2016-07-01

    The Wide-Field Infrared Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to detector control and data acquisition where 1) control and processing intelligence is pushed into components closer to the detector to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic detector noise is the limiting factor for system performance. For WFIRST, the detector arrays operate at 90 to 100 K, the detector control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally 300 K. The new ASIC is the main interface between the cryogenic detectors and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid detectors with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby detectors with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control detectors that may have more capability or requirements than can be supported by a single chip.

  4. Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for infrared detector applications

    Science.gov (United States)

    Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.

    1992-01-01

    SiGe/Si heterojunction internal photoemission (HIP) detectors have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong infrared absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP detectors in the long-wavelength infrared regime has been demonstrated.

  5. GaAs Based InAs/GaSb Superlattice Short Wavelength Infrared Detectors Grown by Molecular Beam Epitaxy

    Institute of Scientific and Technical Information of China (English)

    TANG Bao; XU Ying-Qiang; ZHOU Zhi-Qiang; HAO Rui-Ting; WANG Guo-Wei; REN Zheng-Wei; NIU Zhi-Chuan

    2009-01-01

    InAs/GaSb superlattice (SL) short wavelength infrared photoconduction detectors are grown by molecular beam epitaxy on GaAs(O01) semi-insulating substrates. An interracial misfit mode A1Sb quantum dot layer and a thick GaSb layer are grown as buffer layers. The detectors containing a 200-period 2 ML/8 ML InAs/GaSb SL active layer are fabricated with a pixel area of 800×800 μm2 without using passivation or antireflection coatings. Corresponding to the 50% cutoff wavelengths of 2.05 μm at 77K and 2.25 μ m at 300 K, the peak detectivities of the detectors are 4 × 109 cm·Hz1/2/W at 77K and 2 × 108 cm.Hz1/2/W at 30OK, respectively.

  6. High-Performance MWIR HgCdTe on Si Substrate Focal Plane Array Development

    Science.gov (United States)

    Bommena, R.; Ketharanathan, S.; Wijewarnasuriya, P. S.; Dhar, N. K.; Kodama, R.; Zhao, J.; Buurma, C.; Bergeson, J. D.; Aqariden, F.; Velicu, S.

    2015-09-01

    The development of low noise-equivalent differential temperature (NEDT), high-operability midwave infrared (MWIR) focal plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates is reported. High-quality n-type MWIR HgCdTe layers with a cutoff wavelength of 4.90 μm at 77 K and a carrier concentration of 1-2 × 1015 cm-3 were grown on CdTe/Si substrates by MBE. Highly uniform composition and thickness over 3-inch areas were demonstrated, and low surface defect densities (voids ~5 × 102 cm-2, micro-defects ~5 × 103 cm-2) and etch pit density (~3.5 × 106 cm-2) were measured. This material was used to fabricate 320 × 256, 30 μm pitch FPAs with planar device architecture; arsenic implantation was used to achieve p-type doping. Radiometric and noise characterization was also performed. A low NEDT of 13.8 m K at 85 K for a 1 ms integration time with f/#2 optics was measured. The NEDT operability was 99% at 120 K with a mean dark current noise of 8.14 × 10-13 A/pixel. High-quality thermal images were obtained from the FPA up to a temperature of 150 K.

  7. Studies on a novel mask technique with high selectivity and aspect-ratio patterns for HgCdTe trenches ICP etching

    Science.gov (United States)

    Ye, Z. H.; Hu, W. D.; Li, Y.; Huang, J.; Yin, W. T.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2012-06-01

    A novel mask technique, combining high selectivity silicon dioxide patterns over high aspect-ratio photoresist (PR) patterns has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal plane arrays (IRFPAs). High-density silicon dioxide film covering high aspect-ratio PR patterns was deposited at the temperature of 80°C and silicon dioxide film patterns over high aspect-ratio PR patterns of HgCdTe etching samples was developed by standard photolithography and wet chemical etch. Scanning electron microscopy (SEM) shows that the surfaces of inductively coupled plasma (ICP) etched samples are quite clean and smooth. The etching selectivity between the novel mask and HgCdTe of the samples is increased to above 32: 1 while the side-wall impact of etching plasma is suppressed by the high aspect ratio patterns. These results show that the combined patterning of silicon dioxide film and thick PR film is a readily available and promising masking technique for HgCdTe mesa etching.

  8. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J; Marcott, Curtis; Story, Gloria M

    2007-11-01

    Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.

  9. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays

    Directory of Open Access Journals (Sweden)

    Jakub Pekárek

    2016-09-01

    Full Text Available This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm − 2 ·s − 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  10. Infrared LED Enhanced Spectroscopic CdZnTe Detector Working under High Fluxes of X-rays.

    Science.gov (United States)

    Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef

    2016-09-27

    This paper describes an application of infrared light-induced de-polarization applied on a polarized CdZnTe detector working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe detector. CdZnTe detectors operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of detector charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5 × 10 5 and 8 × 10 6 photons per mm 2 per second. It was observed that polarization occurs at an X-ray flux higher than 3 × 10 6 mm - 2 ·s - 1 . Using simultaneous illumination of the detector by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect.

  11. The Design of Outdoor Passive Infrared Detector%户外被动红外探测器的设计

    Institute of Scientific and Technical Information of China (English)

    谢白玉

    2013-01-01

    This paper introduced the structure theory and application circuit of a passive-type pyroelectric infrared detector. This circuit possesses certain practical application value. The core part of this type control circuit is pyroelectric infrared sensor,which mainly uses its infrared radiation and infrared detection characteristic. This circuit uses the hidden nature of infrared to the warning systems. Thus,it realizes the function of burglar alarm and achieves the purpose of security protection.%本文主要介绍了一种被动式红外探测器的结构原理及其应用电路,此电路具有一定的实际应用价值。该类型控制电路的核心器件为热释电红外传感器,并且主要利用了它的红外辐射和红外探测的特性。这种电路把红外线的隐蔽性很好地应用于报警系统之中,从而实现了防盗报警功能,达到了安全防护之目的。

  12. CISCO Cooled Infrared Spectrograph and Camera for OHS on the Subaru Telescope

    CERN Document Server

    Motohara, K; Maihara, T; Oya, S; Tsukamoto, H; Imanishi, M; Terada, H; Goto, M; Iwai, J; Tanabe, H; Hata, R; Taguchi, T; Harashima, T

    2002-01-01

    This paper describes a Cooled Infrared Spectrograph and Camera for OHS (CISCO), mounted on the Nasmyth focus of the Subaru telescope. It is primarily designed as a back-end camera of the OH-Airglow Suppressor (OHS), and is also used as an independent, general-purpose near-infrared camera/spectrograph. CISCO is based on a single 1024x1024 format HgCdTe HAWAII array detector, and is capable of either wide-field imaging of 1.8'x1.8' field-of-view or low-resolution spectroscopy from 0.9 to 2.4 um. The limiting magnitudes measured during test observations were found to be J=23.5mag and K'=22.4mag (imaging, 1" aperture, S/N=5, 1 hr exposure).

  13. CISCO: Cooled Infrared Spectrograph and Camera for OHS on the Subaru Telescope

    Science.gov (United States)

    Motohara, Kentaro; Iwamuro, Fumihide; Maihara, Toshinori; Oya, Shin; Tsukamoto, Hiroyuki; Imanishi, Masatoshi; Terada, Hiroshi; Goto, Miwa; Iwai, Jun'ichi; Tanabe, Hirohisa; Hata, Ryuji; Taguchi, Tomoyuki; Harashima, Takashi

    2002-04-01

    This paper describes a Cooled Infrared Spectrograph and Camera for OHS (CISCO), mounted on the Nasmyth focus of the Subaru telescope. It is primarily designed as a back-end camera of the OH-Airglow Suppressor (OHS), and is also used as an independent, general-purpose near-infrared camera/spectrograph. CISCO is based on a single 1024 × 1024 format HgCdTe HAWAII array detector, and is capable of either wide-field imaging of 1'.8 × 1'.8 field-of-view or low-resolution spectroscopy from 0.9 to 2.4 μm. The limiting magnitudes measured during test observations were found to be J=23.5 mag and K' = 22.4 mag (imaging, 1" aperture, S/N = 5, 1hr exposure).

  14. Superconducting nanowire single-photon detectors (SNSPDs) on SOI for near-infrared range

    Energy Technology Data Exchange (ETDEWEB)

    Trojan, Philipp; Il' in, Konstantin; Henrich, Dagmar; Hofherr, Matthias; Doerner, Steffen; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme (IMS), Karlsruher Institut fuer Technologie (KIT) (Germany); Semenov, Alexey [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Huebers, Heinz-Wilhelm [Institut fuer Planetenforschung, DLR, Berlin-Adlershof (Germany); Institut fuer Optik und Atomare Physik, Technische Universitaet Berlin (Germany)

    2013-07-01

    Superconducting nanowire single-photon detectors are promising devices for photon detectors with high count rates, low dark count rates and low dead times. At wavelengths beyond the visible range, the detection efficiency of today's SNSPDs drops significantly. Moreover, the low absorption in ultra-thin detector films is a limiting factor over the entire spectral range. Solving this problem requires approaches for an enhancement of the absorption range in feeding the light to the detector element. A possibility to obtain a better absorption is the use of multilayer substrate materials for photonic waveguide structures. We present results on development of superconducting nanowire single-photon detectors made from niobium nitride on silicon-on-insulator (SOI) multilayer substrates. Optical and superconducting properties of SNSPDs on SOI will be discussed and compared with the characteristics of detectors on common substrates.

  15. High-Bandwidth Photon-Counting Detectors with Enhanced Near-Infrared Response Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Long-range optical telecommunications (LROT) impose challenging requirements on detector array sensitivity at 1064nm and arrays timing bandwidth. Large photonic...

  16. Performance of the Imaging Fourier Transform Spectrometer with Photoconductive Detector Arrays: An Application for the AKARI Far-Infrared Instrument

    CERN Document Server

    Kawada, Mitsunobu; Murakami, Noriko; Matsuo, Hiroshi; Okada, Yoko; Yasuda, Akiko; Matsuura, Shuji; Shirahata, Mai; Doi, Yasuo; Kaneda, Hidehiro; Ootsubo, Takafumi; Nakagawa, Takao; Shibai, Hiroshi

    2008-01-01

    We have developed an imaging Fourier transform spectrometer (FTS) for space-based far-infrared astronomical observations. The FTS employs a newly developed photoconductive detector arrays with a capacitive trans-impedance amplifier, which makes the FTS a completely unique instrument. The FTS was installed as a function of the far-infrared instrument (FIS: Far-Infrared Surveyor) on the Japanese astronomical satellite, AKARI, which was launched on February 21, 2006 (UT) from the Uchinoura Space Center. The FIS-FTS had been operated for more than one year before liquid helium ran out on August 26, 2007. The FIS-FTS was operated nearly six hundreds times, which corresponds to more than one hundred hours of astronomical observations and almost the same amount of time for calibrations. As expected from laboratory measurements, the FIS-FTS performed well and has produced a large set of astronomical data for valuable objects. Meanwhile, it becomes clear that the detector transient effect is a considerable factor for ...

  17. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.

    Science.gov (United States)

    Ogawa, Shinpei; Kimata, Masafumi

    2017-05-04

    Wavelength- or polarization-selective thermal infrared (IR) detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  18. Wavelength- or Polarization-Selective Thermal Infrared Detectors for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials

    Directory of Open Access Journals (Sweden)

    Shinpei Ogawa

    2017-05-01

    Full Text Available Wavelength- or polarization-selective thermal infrared (IR detectors are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel detectors, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs can impart wavelength or polarization selectivity to conventional thermal IR detectors simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR detectors with wavelength or polarization selectivity will provide great benefits for a wide range of applications.

  19. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Craig, A. P.; Percy, B.; Marshall, A. R. J. [Physics Department, Lancaster University, Lancaster LA1 4YB (United Kingdom); Jain, M. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Wicks, G.; Hossain, K. [Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); Golding, T. [Amethyst Research Ltd., Kelvin Campus, West of Scotland Science Park, Glasgow G20 0SP (United Kingdom); Amethyst Research, Inc., 123 Case Circle, Ardmore, Oklahoma 73401 (United States); McEwan, K.; Howle, C. [Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ (United Kingdom)

    2015-05-18

    Short-wave infrared barriode detectors were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based detectors. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.

  20. In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique

    Science.gov (United States)

    Mukai, K.; Peterson, B. J.; Takayama, S.; Sano, R.

    2016-11-01

    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.

  1. Use of an infrared detector to analyze the temperature evolution of a droplet impacting on a heating wall

    Science.gov (United States)

    Amiel, Clarisse; Le Clercq, Patrick; Ravel, Olivier; Lavergne, Gerard; Berthoumieu, Pierre; Farre, Jean A.

    2001-03-01

    The improvement of the combustion performance in combustor engines in terms of the reduction of the pollutant emissions is an important objective in Automotive and Aerospace Research and Development. Many phenomena occur during the spray injection in the combustor engine: droplet turbulent dispersion, droplet wall interaction, droplets interaction, droplet evaporation, primary and secondary breakup, auto- ignition, combustion, etc. To improve and to validate the heat exchange models between the droplet and a heated wall, an experimental set-up is developed at the ONERA Toulouse Centre on fundamental studies involving single droplets. An Infrared detector measures the temperature evolution of the surface droplet which impinges on a heated wall.

  2. Long-wavelength PtSi infrared detectors fabricated by incorporating a p(+) doping spike grown by molecular beam epitaxy

    Science.gov (United States)

    Lin, T. L.; Park, J. S.; George, T.; Jones, E. W.; Fathauer, R. W.; Maserjian, J.

    1993-01-01

    By incorporating a 1-nm-thick p(+) doping spike at the PtSi/Si interface, we have successfully demonstrated extended cutoff wavelengths of PtSi Schottky infrared detectors in the long wavelength infrared (LWIR) regime for the first time. The extended cutoff wavelengths resulted from the combined effects of an increased electric field near the silicide/Si interface due to the p(+) doping spike and the Schottky image force. The p(+) doping spikes were grown by molecular beam epitaxy at 450 C, using elemental boron as the dopant source, with doping concentrations ranging from 5 x 10 exp 19 to 2 x 10 exp 20/cu cm. Transmission electron microscopy indicated good crystalline quality of the doping spikes. The cutoff wavelengths were shown to increase with increasing doping concentrations of the p(+) spikes. Thermionic emission dark current characteristics were observed and photoresponses in the LWIR regime were demonstrated.

  3. High-Speed Incoming Infrared Target Detection by Fusion of Spatial and Temporal Detectors

    Science.gov (United States)

    Kim, Sungho

    2015-01-01

    This paper presents a method for detecting high-speed incoming targets by the fusion of spatial and temporal detectors to achieve a high detection rate for an active protection system (APS). The incoming targets have different image velocities according to the target-camera geometry. Therefore, single-target detector-based approaches, such as a 1D temporal filter, 2D spatial filter and 3D matched filter, cannot provide a high detection rate with moderate false alarms. The target speed variation was analyzed according to the incoming angle and target velocity. The speed of the distant target at the firing time is almost stationary and increases slowly. The speed varying targets are detected stably by fusing the spatial and temporal filters. The stationary target detector is activated by an almost zero temporal contrast filter (TCF) and identifies targets using a spatial filter called the modified mean subtraction filter (M-MSF). A small motion (sub-pixel velocity) target detector is activated by a small TCF value and finds targets using the same spatial filter. A large motion (pixel-velocity) target detector works when the TCF value is high. The final target detection is terminated by fusing the three detectors based on the threat priority. The experimental results of the various target sequences show that the proposed fusion-based target detector produces the highest detection rate with an acceptable false alarm rate. PMID:25815448

  4. Infrared detector Dewars - Increased LN2 hold time and vacuum jacket life spans

    Science.gov (United States)

    Jennings, D. E.; Boyd, W. J.; Blass, W. E.

    1976-01-01

    IR detector Dewars commonly suffer from shorter than desired LN2 hold times and insulation jacket vacuum corruption over relatively short time periods. In an attempt to solve this problem for a 9144 detector Dewar, small 1 liter/s appendage ion pumps were selected for continuous pumping of the vacuum jackets. This procedure extended LN2 hold times from 20 to 60 h and virtually eliminated vacuum jacket corruption. Thus the detector systems are usable continuously over periods of 6 months or more.

  5. Turn-key Near-Infrared Photon-Counting Detector Module for LIDAR Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Based on the prototype photon counter developed during Phase I, we will deliver a next-generation photon counting detector optimized for LIDAR applications within...

  6. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to fabricate a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate a suitably-doped active layer...

  7. An Implant-Passivated Blocked Impurity Band Germanium Detector for the Far Infrared Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to investigate the feasibility of fabricating a germanium blocked-impurity-band (BIB) detector using a novel process which will enable us to: 1- fabricate...

  8. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    Science.gov (United States)

    Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.

    2017-05-01

    Aims: Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average detector sensitivity =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited detector noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the detectors. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.

  9. Advanced far infrared blocked impurity band detectors based on germanium liquid phase epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Christopher Sean [Univ. of California, Berkeley, CA (United States)

    1998-05-01

    This research has shown that epilayers with residual impurity concentrations of 5 x 1013 cm-3 can be grown by producing the purest Pb available in the world. These epilayers have extremely low minority acceptor concentrations, which is ideal for fabrication of IR absorbing layers. The Pb LPE growth of Ge also has the advantageous property of gettering Cu from the epilayer and the substrate. Epilayers have been grown with intentional Sb doping for IR absorption on lightly doped substrates. This research has proven that properly working Ge BIB detectors can be fabricated from the liquid phase as long as pure enough solvents are available. The detectors have responded at proper wavelengths when reversed biased even though the response did not quite reach minimum wavenumbers. Optimization of the Sb doping concentration should further decrease the photoionization energy of these detectors. Ge BIB detectors have been fabricated that respond to 60 cm-1 with low responsivity. Through reduction of the minority residual impurities, detector performance has reached responsivities of 1 A/W. These detectors have exhibited quantum efficiency and NEP values that rival conventional photoconductors and are expected to provide a much more sensitive tool for new scientific discoveries in a number of fields, including solid state studies, astronomy, and cosmology.

  10. Characterisation of an inhomogeneously irradiated microstrip detector using a fine spot infrared laser

    CERN Document Server

    Casse, G; Bowcock, T J V; Greenall, A; Phillips, JP; Turner, PR; Wright, V

    2001-01-01

    A prototype silicon microstrip detector for the LHCb vertex locator (VELO) has been partially irradiated using a 24 GeV/c proton beam at the CERN-PS accelerator. The detector possesses a radial strip geometry designed to measure the azimuthal coordinate (Phi) of tracks within the VELO. The peak fluence received by the detector was measured to be 4.6×10 14 p/cm 2 though the non-uniform nature of the exposure left part of the detector unirradiated. The inhomogeneous irradiation introduced a damage profile in the detector approximating to that expected in the VELO. High irradiation gradients are important to study as they can modify the electric field within the silicon. Of special interest are changes in the component of the electric field parallel to the strip plane but perpendicular to the strips which lead to systematic shifts in the reconstructed cluster position. If these (flux and position dependent) shifts are sufficiently large they could contribute to a degraded spatial resolution of the detector. In ...

  11. Design, Growth, and Characterization of Mid Infrared and Terahertz Detectors Based on Nanostructures

    Science.gov (United States)

    Choi, Jae Kyu

    In the first part of the dissertation, I present the design, growth, and characterization a multi-color quantum well infrared photodetecor (QWIP). The QWIP is based on GaAs/Al0.2Ga0.8As coupled double-quantum-well structure with asymmetric doping of the wells. The asymmetry resulted into a new property of the detector -- voltage tunability of the QWIP multicolor spectrum. Three major mechanisms contributing into the photoresponse were analyzed: 1) electron energy level shifting due to the quantum-confined Stark effect, 2) tunneling process at the triangular tip of barrier, which is known Fowler-Nordheim effect, and 3) thermoactivation processes. The experimental and theoretical results are in good agreement with the simulation results using Matlab and nextnano3 software. The QWIP structure was grown by the solid source molecular beam epitaxy, and was experimentally characterized by performing current-voltage characteristics and spectral photoresponse measurement. The effective voltage tunability and switchability of spectral photoresponse were demonstrated in the spectral range between 7.5 ˜ 11.1 mum. The low noise QWIP operation (at the dark current as low as 3 ?10-3 A/cm2) was demonstrated up to 60 K. The results are promising for development of accurate remote temperature sensing. In the second part, we present the results on design, fabrication, and characterization of a hot-electron bolometer based on low mobility 2-D electron gas (2-DEG) in an AlGaN/GaN heterostructure. The characterization of the hot-electron bolometer (HEB) demonstrated that we could simultaneously achieve the following conditions required for successful operation of 2-DEG HEB: 1) strong coupling to incident THz radiation due to strong Drude absorption; 2) significant THz heating of 2-DEG due to the small value of the electron heat capacity: and 3) high responsivity due to the strong temperature dependence of 2-DEG resistance. We identified THz response from our HEBs as a bolometric effect

  12. A kilo-pixel imaging system for future space based far-infrared observatories using microwave kinetic inductance detectors

    CERN Document Server

    Baselmans, J J A; Yates, S J C; Yurduseven, O; Llombart, N; Karatsu, K; Baryshev, A M; Ferrari, L; Endo, A; Thoen, D J; de Visser, P J; Janssen, R M J; Murugesan, V; Driessen, E F C; Coiffard, G; Martin-Pintado, J; Hargrave, P; Griffin, M

    2016-01-01

    Future astrophysics and cosmic microwave background space missions operating in the far-infrared to millimetre part of the spectrum will require very large arrays of ultra-sensitive detectors in combination with high multiplexing factors and efficient low- noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance Detectors (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation frequency of 850 GHz. The overall system has an excellent sensitivity, with an average detector sensitivity NEP=2.8 +- 0.8 x 10^-19 W/rt(Hz) measured using a thermal calibration source. The dynamic range wou...

  13. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, H. B. [Lawrence Berkeley Lab., CA (United States); [California Univ., Berkeley, CA (United States). Dept. of Materials Science and Mineral Engineering

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector. Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.

  14. AUTHENTIC: a very low-cost infrared detector and camera system

    Science.gov (United States)

    Mansi, Mike V.; Brookfield, Martin; Porter, Stephen G.; Edwards, Ivan; Bold, Brendon; Shannon, John; Lambkin, Paul; Mathewson, Alan

    2003-01-01

    An Oxide over Titanium metal resistance bolometer technology developed by NMRC, Ireland) has been transferred to the X-FAB UK CMOS foundry at Plymouth, UK. Prototypes of the bolometers have been manufactured in the X-FAB production facility and tests show performance comparable with the NMRC prototypes. The bolometer design has been integrated with a CMOS read-out chip and the first wafers are currently being packaged for evaluation. The development of a low cost thermal imaging camera using the detector is under way. We present an overview of the detector and camera design, together with preliminary results from the detector test programme. The work is partly funded by the European Union IST programme.

  15. Mid infrared emission spectroscopy of carbon plasma

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; Yang, Clayton S.-C.; Hommerich, Uwe

    2017-01-01

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6 μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10 μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5 μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  16. Mid infrared emission spectroscopy of carbon plasma.

    Science.gov (United States)

    Nemes, Laszlo; Brown, Ei Ei; S-C Yang, Clayton; Hommerich, Uwe

    2017-01-05

    Mid infrared time-resolved emission spectra were recorded from laser-induced carbon plasma. These spectra constitute the first study of carbon materials LIB spectroscopy in the mid infrared range. The carbon plasma was induced using a Q-switched Nd: YAG laser. The laser beam was focused to high purity graphite pellets mounted on a translation stage. Mid infrared emission from the plasma in an atmospheric pressure background gas was detected by a cooled HgCdTe detector in the range 4.4-11.6μm, using long-pass filters. LIB spectra were taken in argon, helium and also in air. Despite a gate delay of 10μs was used there were strong backgrounds in the spectra. Superimposed on this background broad and noisy emission bands were observed, the form and position of which depended somewhat on the ambient gas. The spectra were digitally smoothed and background corrected. In argon, for instance, strong bands were observed around 4.8, 6.0 and 7.5μm. Using atomic spectral data by NIST it could be concluded that carbon, argon, helium and nitrogen lines from neutral and ionized atoms are very weak in this spectral region. The width of the infrared bands supports molecular origin. The infrared emission bands were thus compared to vibrational features of carbon molecules (excluding C2) of various sizes on the basis of previous carbon cluster infrared absorption and emission spectroscopic analyses in the literature and quantum chemical calculations. Some general considerations are given about the present results.

  17. 线列TDI型红外探测器组件坏元替代方法%Alternative method of linear TDI infrared detector blind pixel

    Institute of Scientific and Technical Information of China (English)

    郭亮; 李冬冰; 杨微; 石纲; 孙玉杰

    2015-01-01

    The linear TDI infrared detector is widely used in many fields.Due to the influence of some factors such as work materials and manufacturing process,there are blind pixels in infrared detector.Blind pixels will cause image degradation and the distribution distortion of image gray,which affects the performance of infrared system.An alterna-tive method of blind pixel for 576 ×6 linear TDI infrared detector was introduced.Based on this method,blind pixels in channels of the linear TDI infrared detector can be replaced,which improves the image quality.%国产线列TDI型红外探测器组件在红外系统中的应用越来越广泛,但由于加工材料和制造工艺等因素的影响,探测器组件存在坏元,将造成图像质量下降,图像灰度分布失真,进而影响红外系统的性能。本文介绍了576×6线列TDI型红外探测器组件的读出电路坏元替代方法,采用该方法可进行线列TDI型红外探测器组件通道内的坏元替代,提高图像质量。

  18. Extraction of thermal parameters of microbolometer infrared detectors using electrical measurement

    Science.gov (United States)

    Karunasiri, R. P. G.; Xu, Gu; Chen, G. X.; Sridhar, U.

    1998-10-01

    The performance of microbolometer infrared sensors is typically characterized by its thermal time constant, heat capacitance, and thermal conductance. Therefore, the determination of these parameters accurately and efficiently is of considerable interest for the design and operation of microbolometer infrared sensors. Usually, the thermal time constant is obtained by measuring the frequency response of microbolometers under infrared excitation and the thermal conductance and capacity are extracted using electrical measurement. In this paper, a technique is described to extract all three parameters using a single electrical measurement. In the measurement, we have employed a Wheatstone Bridge consisting of a bolometer and three reference resistors. The resistance of the bolometer changes as a result of self-heating under an external bias which in turn generates an output voltage across the Bridge. The time dependence of the output voltage was used to extract thermal parameters of the bolometer. We believe this technique is useful in determining the thermal parameters of microbolometer based sensors.

  19. Near infrared single photon avalanche detector with negative feedback and self quenching

    Science.gov (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-08-01

    We present the design and development of a negative feedback devices using the internal discrete amplifier approach used for the development of a single photon avalanche photodetector in the near infrared wavelength region. This new family of photodetectors with negative feedback, requiring no quenching mechanism using Internal Discrete Amplification (IDA) mechanism for the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions, operates in the non-gated mode under a constant bias voltage. The demonstrated device performance far exceeds any available solid state Photodetectors in the near infrared wavelength range. The measured devices have Gain > 2×105, Excess noise factor Lidar, free space optical communication, 3D imaging, industrial and scientific instrumentation, night vision, quantum cryptography, and other military, defence and aerospace applications.

  20. Leonardo (formerly Selex ES) infrared sensors for astronomy: present and future

    Science.gov (United States)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Barnes, Keith

    2016-07-01

    Many branches of science require infrared detectors sensitive to individual photons. Applications range from low background astronomy to high speed imaging. Leonardo in Southampton, UK, has been developing HgCdTe avalanche photodiode (APD) sensors for astronomy in collaboration with European Southern Observatory (ESO) since 2008 and more recently the University of Hawaii. The devices utilise Metal Organic Vapour Phase Epitaxy, MOVPE, grown on low-cost GaAs substrates and in combination with a mesa device structure achieve very low dark current and near-ideal MTF. MOVPE provides the ability to grow complex HgCdTe heterostructures and these have proved crucial to suppress breakdown currents and allow high avalanche gain in low background situations. A custom device called Saphira (320x256/24μm) has been developed for wavefront sensors, interferometry and transient event imaging. This device has achieved read noise as low as 0.26 electrons rms and single photon imaging with avalanche gain up to x450. It is used in the ESO Gravity program for adaptive optics and fringe tracking and has been successfully trialled on the 3m NASA IRTF, 8.2m Subaru and 60 inch Mt Palomar for lucky imaging and wavefront sensing. In future the technology offers much shorter observation times for read-noise limited instruments, particularly spectroscopy. The paper will describe the MOVPE APD technology and current performance status.

  1. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  2. Fast, High-Precision Readout Circuit for Detector Arrays

    Science.gov (United States)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  3. High-performance MCT and QWIP IR detectors at Sofradir

    Science.gov (United States)

    Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.

    2012-11-01

    Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.

  4. Cross-Sectional Study of Macrodefects in MBE Dual-Band HgCdTe on CdZnTe

    Science.gov (United States)

    Reddy, M.; Lofgreen, D. D.; Jones, K. A.; Peterson, J. M.; Radford, W. A.; Benson, J. D.; Johnson, S. M.

    2013-11-01

    HgCdTe dual-band mid-wave infrared/long-wave infrared focal-plane arrays on CdZnTe are a key component in advanced electrooptic sensor applications. Molecular beam epitaxy (MBE) has been used successfully for growth of dual-band layers on larger CdZnTe substrates. However, the macrodefect density, which is known to reduce the pixel operability and its run-to-run variation, is larger when compared with layers grown on Si substrate. This paper reports the macrodefect density versus size signature of a well-optimized MBE dual-band growth and a cross-sectional study of a macrodefect that represents the most prevalent class using focused ion beam, scanning transmission electron microscopy, and energy-dispersive x-ray spectroscopy. The results show that the macrodefect originates from a void, which in turn is associated with a pit on the CdZnTe substrate.

  5. Increasing sensitivity and angle-of-view of mid-wave infrared detectors by integration with dielectric microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States); Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433 (United States); UES, Dayton, Ohio 45433 (United States); Abolmaali, Farzaneh [Department of Physics and Optical Science, Center for Optoelectronics and Optical Communications, University of North Carolina at Charlotte, Charlotte, North Carolina 28223-0001 (United States); Duran, Joshua M.; Ariyawansa, Gamini; Limberopoulos, Nicholaos I. [Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433 (United States); Urbas, Augustine M. [Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson AFB, Ohio 45433 (United States)

    2016-06-13

    We observed up to 100 times enhancement of sensitivity of mid-wave infrared photodetectors in the 2–5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90–300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the detector mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collection efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.

  6. Feasibility Study for a Dual Field of View-Single Detector Array Infrared System.

    Science.gov (United States)

    1974-06-01

    the background is shown in Figure 2-8. In this system the field stop is scare I with a vertical slit and essentially all the energy falling on the...cylindrical mirror will be o focused as a vertical iine on the detector array. Several of the previous problems have been solved in this system. The...patterns Limillid only by DAC, AD,,.J Access y u, limited by speed. anid Display Mtsaitor strict possible formats. xalbe Modification of timing salto

  7. Room temperature detector array technology for the terahertz to far-infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Ryan; Shaw, Michael; Zhang, X.; Tao, Hu; Lentine, Anthony L.; Wright, Jeremy Benjamin; Shaner, Eric Arthur; Trotter, Douglas Chandler; Averitt, Richard D.; Kadlec, Emil G; Rakich, Peter T.

    2011-10-01

    Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.

  8. The Mid-Infrared Instrument for the James Webb Space Telescope, VII: The MIRI Detectors

    CERN Document Server

    Rieke, G H; Morrison, Jane E; Bergeron, L; Bouchet, Patrice; Garcıa-Marın, Macarena; Greene, T P; Regan, M W; Sukhatme, K G; Walker, Helen

    2015-01-01

    The MIRI Si:As IBC detector arrays extend the heritage technology from the Spitzer IRAC arrays to a 1024 x 1024 pixel format. We provide a short discussion of the principles of operation, design, and performance of the individual MIRI detectors, in support of a description of their operation in arrays provided in an accompanying paper (Ressler et al. (2015)). We then describe modeling of their response. We find that electron diffusion is an important component of their performance, although it was omitted in previous models. Our new model will let us optimize the bias voltage while avoiding avalanche gain. It also predicts the fraction of the IR-active layer that is depleted (and thus contributes to the quantum efficiency) as signal is accumulated on the array amplifier. Another set of models accurately predicts the nonlinearity of the detector-amplifier unit and has guided determination of the corrections for nonlinearity. Finally, we discuss how diffraction at the interpixel gaps and total internal reflecti...

  9. Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission infrared detectors

    Science.gov (United States)

    Lao, Y. F.; Perera, A. G. U.; Wang, H. L.; Zhao, J. H.; Jin, Y. J.; Zhang, D. H.

    2016-03-01

    Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in infrared. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave infrared (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3-5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ0, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μm in the spectral response of p-type GaAs/AlGaAs detectors. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ0 is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ0. This implies the promise of using GaMnAs to develop MWIR IPE detectors. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.

  10. Development of Type-II superlattice VLWIR detectors in JAXA

    Science.gov (United States)

    Sakai, Michito; Murooka, Jumpei; Kumeta, Ayaka; Kimura, Toshiyoshi; Inada, Hiroshi; Iguchi, Yasuhiro; Hiroe, Yuta; Kimata, Masafumi

    2017-02-01

    One of JAXA's future missions, using an imaging Fourier Transform Spectrometer (FTS), requires the focal plane array (FPA) that has high sensitivity up to the very long-wavelength infrared (VLWIR) region. Since a Type-II superlattice (T2SL) is the only known infrared material to exhibit performance that is theoretically predicted to be higher than that of HgCdTe additionally the cutoff wavelength can be tailored in the wavelength region of 3-30 μm, we started the research and development of the T2SL detector in 2009. In order to confirm our final goal, which is to realize the FPA with a cutoff wavelength of 15 μm, we first fabricated the 320 × 256 (QVGA format) InAs/GaInSb T2SL FPA with a cutoff wavelength of 15 μm, and the large-format 640 × 512 (VGA format) T2SL FPA is followed because the other missions, using an infrared imager, require the large-format FPA. The noise-equivalent delta temperature measured with F1.4 optics was 0.15 K for QVGA format T2SL FPA at 77 K. It was 0.35 K for VGA format T2SL FPA at 77 K, but there is non-uniformity, and further improvements are necessary to achieve high performance FPAs.

  11. Nondestructive Characterization of Residual Threading Dislocation Density in HgCdTe Layers Grown on CdZnTe by Liquid-Phase Epitaxy

    Science.gov (United States)

    Fourreau, Y.; Pantzas, K.; Patriarche, G.; Destefanis, V.

    2016-09-01

    The performance of mercury cadmium telluride (MCT)-based infrared (IR) focal-plane arrays is closely related to the crystalline perfection of the HgCdTe thin film. In this work, Te-rich, (111)B-oriented HgCdTe epilayers grown by liquid-phase epitaxy on CdZnTe substrates have been studied. Surface atomic steps are shown on as-grown MCT materials using atomic force microscopy (AFM) and white-light interferometry (WLI), suggesting step-flow growth. Locally, quasiperfect surface spirals are also evidenced. A demonstration is given that these spirals are related to the emergence of almost pure screw threading dislocations. A nondestructive and quantitative technique to measure the threading dislocation density is proposed. The technique consists of counting the surface spirals on the as-grown MCT surface from images obtained by either AFM or WLI measurements. The benefits and drawbacks of both destructive—chemical etching of HgCdTe dislocations—and nondestructive surface imaging techniques are compared. The nature of defects is also discussed. Finally, state-of-the-art threading dislocation densities in the low 104 cm-2 range are evidenced by both etch pit density (EPD) and surface imaging measurements.

  12. Exploring the Saturn System in the Thermal Infrared: The Composite Infrared Spectrometer

    Science.gov (United States)

    Flasar, F. M.; Kunde, V. g.; Abbas, M. M.; Achterberg, R. K.; Ade, P.; Barucci, A.; Bezard, B.; Bjoraker, G. L.; Brasunas, J. C.; Calcutt, S.

    2004-01-01

    The Composite Inbred Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer on the Cassini orbiter that measures thermal radiation over two decades in wave number, from 10 to 1400 cm (1 mm to 7pm), with a spectral resolution that can be set from 0.5 to 20 cm. The far in portion of the spectrum (10 - 600 cm) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view. The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600 - 1100cm, 1100-1400 cm). Each focal plane is composed of a 1x10 array of HgCdTe detectors, each detector having a 0.3-mrad field of view. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS ability to observe atmospheres in the limb viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn's icy satellites. It will similarly map Saturn's rings, characterizing their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.

  13. IO:I: A Near-Infrared Camera for the Liverpool Telescope

    CERN Document Server

    Barnsley, Robert; Steele, Iain; Smith, Robert; Bates, Stuart; Mottram, Chris

    2015-01-01

    IO:I is a new instrument that has recently been commissioned for the Liverpool Telescope, extending current imaging capabilities beyond the optical and into the near infrared. Cost has been minimised by use of a previously decommissioned instrument's cryostat as the base for a prototype and retrofitting it with Teledyne's 1.7$\\mu m$ cutoff Hawaii-2RG HgCdTe detector, SIDECAR ASIC controller and JADE2 interface card. In this paper, the mechanical, electronic and cryogenic aspects of the cryostat retrofitting process will be reviewed together with a description of the software/hardware setup. This is followed by a discussion of the results derived from characterisation tests, including measurements of read noise, conversion gain, full well depth and linearity. The paper closes with a brief overview of the autonomous data reduction process and the presentation of results from photometric testing conducted on on-sky, pipeline processed data.

  14. C-RED One : the infrared camera using the Saphira e-APD detector

    Science.gov (United States)

    Greffe, Timothée.; Feautrier, Philippe; Gach, Jean-Luc; Stadler, Eric; Clop, Fabien; Lemarchand, Stephane; Boutolleau, David; Baker, Ian

    2016-08-01

    Name for Person Card: Observatoire de la Côte d'Azur First Light Imaging' C-RED One infrared camera is capable of capturing up to 3500 full frames per second with a sub-electron readout noise and very low background. This breakthrough has been made possible thanks to the use of an e- APD infrared focal plane array which is a real disruptive technology in imagery. C-RED One is an autonomous system with an integrated cooling system and a vacuum regeneration system. It operates its sensor with a wide variety of read out techniques and processes video on-board thanks to an FPGA. We will show its performances and expose its main features. The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement N° 673944.

  15. TEM study on Si0.65Ge0.35/p-Si HIP infrared detector

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Microstructure of P+ -Si0.65Ge0.35/p-Si HIP infrared detector has been studied by using localization cross-section transmission electron microscopy. The photosensitive region of the detector consists of 6 P+ -Si0.65Ge0.35 layers and 5 UD-Si layers, whichare flat and have thickness of 6 nm and 32 nm, respectively. A stress field exists on the interface between Si0.65Ge0.35 and UD-Si layers, but no any crystal defect has been found in this region, except the edges of this region. Both Si0.65Ge0.35 and UD-Si layers on amorphous SiO2 layer consist of polycrystals and are in wave. There is defect area in the edges of photosensitive region.The area appears in a shape of inverse triangle and the maximum width is less than 120 nm. The crystal defects are stacking faults and microtwins.

  16. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    Science.gov (United States)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  17. Metal-Organic Vapor Phase Epitaxial Reactor for the Deposition of Infrared Detector Materials

    Science.gov (United States)

    2015-04-09

    ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park , NC 27709-2211 Epitaxial reactor, MOCVD, Infrared Materials, CdTe and...researchers from First Solar in depositing single crystal solar cell materials. A research contract worth over $150K was awarded to RPI b First Solar based on...Administrative Support Army Contracting Command - APG Research Triangle Park Division TEL: (919) 549-4269 FAX: (919) 549-4388 Table of

  18. An Array of One-Dimensional Porous Silicon Photonic Crystal Reflector Islands for a Far-Infrared Image Detector

    Institute of Scientific and Technical Information of China (English)

    MIAO Feng-Juan; ZHANG Jie; XU Shao-Hui; WANG Lian-Wei; CHU Jun-Hao; CAO Zhi-Shen; ZHAN Peng; WANG Zhen-Lin

    2009-01-01

    @@ With the aid of photolithography, an array of one-dimensional porous silicon photonic crystal reflector islands for a far infrared image detector ranging from 10μm to 14μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-patteru. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the interconnection of each pixel.

  19. Prospective sur les besoins « défense » en détecteurs infrarougeMid-term defence needs for infrared detectors

    Science.gov (United States)

    Peyrard, Jean-Christophe

    2003-12-01

    In this paper, we propose to present the prospects for mid-term needs for infrared detectors. These needs are derived from expected evolutions in imaging techniques as well as from operational requirements. The main trends that shall allow the direct development in infrared detection are as much the pursuit of greater range, a better discrimination of targets, as the efforts to minimize cost, volume, weigh and consumption. These trends will lead to an examination of the specific needs for some kind of 'smart' infrared detector. Among these applications, we will investigate more deeply the technological requirements for flash and 3D imaging, hyperspectral and uncooled imaging. To cite this article: J.-C. Peyrard, C. R. Physique 4 (2003).

  20. Impact of three-dimensional geometry on the performance of isolated electron-injection infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Fathipour, Vala; Jang, Sung Jun; Nia, Iman Hassani; Mohseni, Hooman, E-mail: hmohseni@northwestern.edu [Bio-Inspired Sensors and Optoelectronics Laboratory, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208 (United States)

    2015-01-12

    We present a quantitative study of the influence of three-dimensional geometry of the isolated electron–injection detectors on their characteristics. Significant improvements in the device performance are obtained as a result of scaling the injector diameter with respect to the trapping/absorbing layer diameters. Devices with about ten times smaller injector area with respect to the trapping/absorbing layer areas show more than an order of magnitude lower dark current, as well as an order of magnitude higher optical gain compared with devices of same size injector and trapping/absorbing layer areas. Devices with 10 μm injector diameter and 30 μm trapping/absorbing layer diameter show an optical gain of ∼2000 at bias voltage of −3 V with a cutoff wavelength of 1700 nm. Analytical expressions are derived for the electron-injection detector optical gain to qualitatively explain the significance of scaling the injector with respect to the absorber.

  1. Far infrared thermal detectors for laser radiometry using a carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, John H.; Lee, Bob; Grossman, Erich N.

    2011-07-20

    We present a description of a 1.5 mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40 {mu}m, 150 {mu}m, and 1.5 mm were evaluated with respect to reflectance at a laser wavelength of 394 {mu}m(760 GHz), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating (98.4 mA/W) was equal to that by optical heating (98.0 mA/W) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500 ms, which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5 mm VANTAs and the fact that the array is readily transferable to the detector's surface is, to our knowledge, unprecedented.

  2. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    Science.gov (United States)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  3. Detectors and cooling technology for direct spectroscopic biosignature characterization

    CERN Document Server

    Rauscher, Bernard J; Moseley, S H; Sadleir, John E; Stevenson, Thomas

    2016-01-01

    Direct spectroscopic biosignature characterization (hereafter "biosignature characterization") will be a major focus for future space observatories equipped with coronagraphs or starshades. Our aim in this article is to provide an introduction to potential detector and cooling technologies for biosignature characterization. We begin by reviewing the needs. These include nearly noiseless photon detection at flux levels as low as $<0.001~\\textrm{photons}~s^{-1}~\\textrm{pixel}^{-1}$ in the visible and near-IR. We then discuss potential areas for further testing and/or development to meet these needs using non-cryogenic detectors (EMCCD, HgCdTe array, HgCdTe APD array), and cryogenic single photon detectors (MKID arrays and TES microcalorimeter arrays). Non-cryogenic detectors are compatible with the passive cooling that is strongly preferred by coronagraphic missions, but would add non-negligible noise. Cryogenic detectors would require active cooling, but in return deliver nearly quantum limited performance....

  4. Advances in research and development homojunction and quantum-well infrared detectors

    CERN Document Server

    Francombe, Maurice H

    1995-01-01

    Physics of Thin Films is one of the longest running continuing series in thin film science, consisting of twenty volumes since 1963. The series contains quality studies of the properties of various thinfilms materials and systems.In order to be able to reflect the development of today''s science and to cover all modern aspects of thin films, the series, starting with Volume 20, has moved beyond the basic physics of thin films. It now addresses the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Therefore, in order to reflect the modern technology-oriented problems, the title has been slightly modified from Physics of Thin Films to Thin Films.Key Features* Discusses the latest research about structure, physics, and infrared photoemissive behavior of heavily doped silicon homojunctions and Ge and GaAs-based alloy junctions* Reviews the current status of SiGe/Si quantum wells for infrared detection* Discusses key developments in the gro...

  5. Research on Spectral Response of an Infrared Detector%一种红外探测器的光谱响应研究

    Institute of Scientific and Technical Information of China (English)

    秦玉伟

    2012-01-01

    A new photoelectric detection system was designed by using Fourier transform infrared spectrometer advantages to detect the infrared detector spectral response. Through the measurement of the infrared interference signals, to Fourier transform, then the spectral response degree which is the important technical indexes of infrared detector performance could be got. This system in measurement of infrared spectral response, inherited the advantages and function of the Fourier transform infrared spectrometer. It realized the measuring high resolution, high accuracy and good stability.%针对傅里叶变换红外光谱仪的优点,测量红外探测器的光谱响应,设计一套新的光电检测系统.通过对测量所得红外干涉信号进行傅里叶变换,得到评判红外探测器性能重要技术指标的光谱响应度.系统在红外探测器光谱响应的测量上,继承了傅里叶变换红外光谱仪的功能和优点,实现了测量分辨率高、精度高和稳定性好.

  6. Development of ultra pure germanium epi layers for blocked impurity band far infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, M.P.

    1991-05-01

    The main goals of this paper are: (1) To develop a low-pressure CVD (LPCVD) process that allows epitaxial growth at lower temperatures. Lower temperatures will allow the achievement of a sharp dopant profile at the substrate/epi-layer interface. Less out-diffusion from the substrate would allow the use of thinner epitaxial layers, which would lead to a larger depletion width in the photoactive region. LPCVD also avoids, to a great extent, gas-phase nucleation, which would cause Ge particulates to fall onto the wafer surface during growth. (2) To reduce high levels of oxygen and copper present at the wafer interface, as observed by secondary ion mass spectroscopy (SIMS). In order to achieve high-quality epitaxial layers, it is imperative that the substrate surface be of excellent quality. (3) To make and test detectors, after satisfactory epitaxial layers have been made.

  7. Doping and Diffusion in HgCdTe

    Science.gov (United States)

    1991-01-28

    In’i, -InT. Te - 1.8 ( - 3 .5 )h ( + 2.9 - 6/) TeT1’- Tej . 4 Hg rich HgCdTe Hg - 1.8 + 1.2 + 1.4 - 2p H - ’g, - H g j.. ’TI - tetrahedral position...A. Anderson, Appl. Phys. Lett. 53, 11.81 (1988). B. D. Patterson, Rev. Mod. Phys. 60, 69 (1988). 60 V. A. Singh , C. Weigel, J. W. Corbett, and L. M

  8. Crystal Growth of Solid Solution HgCdTe Alloys

    Science.gov (United States)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  9. Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection

    Science.gov (United States)

    Tang, Xin; Zhang, Hengkai; Tang, Xiaobing; Lai, King W. C.

    2016-07-01

    Graphene/silicon junction based photodetectors have attracted great interest due to their superior characteristics like large photosensitive area, fast photocarrier collection and low dark current. Currently, the weak optical absorption and short photocarrier lifetime of graphene remain major limitations for detection of infrared light with wavelengths above 1.2 μm. Here, we elucidate the mechanism of photocarrier transport in graphene/silicon junction based photodetector and propose a theoretical model to study the design and effect of finger-electrode structures on the photocurrent in graphene. We demonstrate that the top finger-like electrode in graphene/silicon photodetector can be designed to enhance the photocarrier collection efficiency in graphene by reducing the average transport distance of photocarriers. Therefore, the photoresponsivity of the graphene/silicon junction based photodetector can be increased. Our results have successfully demonstrated that by optimizing the design of finger electrodes, 4 times enhancement of photocurrents in graphene can be obtained at room temperature.

  10. Research on Spectral Response of an Infrared Detector%红外探测器光谱响应测量研究

    Institute of Scientific and Technical Information of China (English)

    陈亚卓; 秦玉伟

    2013-01-01

    A spectral response system for infrared detector is designed.The principle of the system is also analyzed.The spectral response experiment of the pyroelectricity detector is performed with different temperature and frequency The experiment result shows that the response of the pyroelectricity detector to infrared radiation is different,but the change trend curve of the voltage is similar.The theory of the infrared detector is thereby verified.The system has high measurement accuracy and stability,which can suppress the disturbance signal effectively and improve the signal-to-noise ratio of the system.%设计了一个红外探测器的光谱响应测试系统,并对系统原理进行了分析.对不同温度和频率情况下的热释电探测器进行光谱响应实验.实验结果表明,热释电探测器对红外辐射信号的响应不同,但电压变化曲线的趋势基本一致,从而验证了红外探测器光谱响应理论.该设计能有效抑制系统的干扰信号,提高信噪比,具有测量精度高、稳定性好的优点.

  11. Low-volume aluminum and aluminum / titanium nitride bilayer lumped-element kinetic inductance detectors for far-infrared astronomy

    Science.gov (United States)

    Glenn, Jason; Fyhrie, Adalyn; Wheeler, Jordan; Day, Peter K.; Eom, Byeong H.; Leduc, Henry G.

    2016-07-01

    We present the design and characterization of low-volume, lumped-element aluminum kinetic inductance de- tectors for sensitive far-infrared astronomy observations. The lumped-element kinetic inductance detectors are comprised of meandered inductors that serve as radiation absorbers in parallel with interdigitated capacitors, forming high quality factor resonators. Low inductor volumes lead to low noise equivalent powers by raising quasiparticles densities, and hence responsivities, with respect to larger volumes. Low volumes are achieved with thin (20 nm), narrow (150 nm) inductors. The interdigitated capacitor architecture is designed to mitigate two-level system noise by lowering electric fields in the silicon substrate. Resonance frequencies are in the range of 190 to 500 MHz, with measured internal quality factors in excess of 1 x 105. In a prior incarnation, a titanium nitride layer on top of the aluminum served as a protective layer, but complicated the superconducting proper- ties. These results were reported previously. In the current incarnation, the aluminum layer is left bare with no titanium nitride over-layer. The results for these bare aluminum devices include a yield of 88%, frequency responsivity of 109 W-1, and noise equivalent power of 1 x 10-17 W Hz-1/2 for a 350μm array. There is no evidence for 1=f noise down to at least 200 mHz. The sensitivity is currently limited by white noise, very likely from stray light in the testbed; for this detector design, sensitivities limited by generation-recombination noise in a lower-background environment should be several orders of magnitude lower.

  12. Design Optimization of Pixel Structure for α-Si based Uncooled Infrared Detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-11-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.

  13. Improvement of infrared single-photon detectors absorptance by integrated plasmonic structures

    CERN Document Server

    Csete, M; Szalai, A; Najafi, F; Berggren, K K

    2012-01-01

    The absorptance of p-polarized light in superconducting-nanowire single-photon detectors (SNSPDs) was improved by integrating (1) ~quarter-wavelength nano-optical cavity closed by a gold reflector (OC-SNSPD), (2) nano-cavity-array closed by vertical and horizontal gold segments (NCAI-SNSPD), and (3) nano-cavity-deflector-array consisting of longer vertical gold segments (NCDAI-SNSPD) into short- (p-) and long- (3p-) periodic niobium-nitride (NbN) stripe-patterns. In OC-SNSPDs the highest absorptance is observable at perpendicular incidence onto NbN stripes in P-orientation due to E-field concentration at the bottom of nano-optical cavities. In short-periodic NCAI-SNSPDs off-axis illumination results in almost polar-angle-independent perfect absorptance due to collective resonances on plasmonic MIM nano-cavity-arrays in S-orientation. In long-periodic NCAI-SNSPDs the surface wave-excitation phenomena promoting EM-field transportation to the NbN stripes in S-orientation are capable of resulting in local absorpt...

  14. Modeling and optimization of InGaAs infrared photovoltaic detectors

    CERN Document Server

    Piotrowski, J; Reginski, K

    2000-01-01

    The performance of In sub x Ga sub 1 sub - sub x As detectors operating in the 2-3.4 mu m spectral range and temperature of 300 K has been analyzed theoretically as a function of wavelength, band gap and doping level with special emphasis on 2-2.5 mu m and 3-3.5 mu m atmospheric window devices. The calculations show that the dominant generation-recombination mechanism in p-type, intrinsic and in a lightly doped n-type InGaAs is the spin split-off band Auger process (AS). Since the AS generation increases with the square of the hole concentration, the minimum thermal generation and the best performance can be obtained using moderately doped n-type material as the absorber region of a photovoltaic device. In principle, the ultimate performance can be achieved in the optimized homojunction devices with relatively thick n-type absorber region forming n-p junction with a thin p-type material. N-type doping of absorber region of InGaAs photodiodes at 300 K changes from 1x10 sup 1 sup 4 to 5.2x10 sup 1 sup 5 cm sup ...

  15. Mid-infrared pyro-resistive graphene detector on LiNbO3

    CERN Document Server

    Gopalan, Kavitha K; Nanot, Sebastien; Parret, Romain; Lundeberg, Mark B; Koppens, Frank H L; Pruneri, Valerio

    2016-01-01

    Mid-infrared (mid-IR) photo-detection has been recently growing in importance because of its multiple applications, including vibrational spectroscopy and thermal imaging. We propose and demonstrate a novel pyro-resistive photo-detection platform that combines a ferroelectric substrate (a z-cut LiNbO3 crystal) and a graphene layer transferred on top of its surface with electrical connections. Upon strong light absorption in the LiNbO3 substrate and the subsequent temperature increase, via the pyroelectric effect, polarization (bound) charges form at the crystal surface. These causes doping into graphene which in turn changes its carrier density and conductivity. In this way, by monitoring the graphene electrical resistance one can measure the incident optical power. . Detectivities of about 10^5 cm sqrt(Hz)/W in the 6 to 10 microns wavelength region are demonstrated.We explain the underlying physical mechanism of the pyro-resistive photo-detection and propose a model that reproduces accurately the experimenta...

  16. Design optimization of Pixel Structure for α-Si based uncooled Infrared detector

    Directory of Open Access Journals (Sweden)

    Sudha Gupta

    2013-12-01

    Full Text Available In this paper authors present the design and simulation results achieved for pixel structure of amorphous Si (α-Si based bolometer array. Most uncooled IR detectors in the world are based on VOx material. But this is not a standard material in IC technology and has many inherent disadvantages. The α-Si, an alternative material with high TCR is becoming as popular. However, large TCR values, in this material are achieved only in films of high resistivity. To achieve TCR value more than 2.5%/K, α-Si film resistivity is ~ 80 ohms-cm. This gives rise to very large pixel resistance of the order of 100 Mega ohms depending upon the design of the leg structure. This high pixel resistance causes very large noise and hence lower sensitivity. If leg width or membrane thickness is increased in order to reduce the pixel resistance, then this results in higher thermal conductance which also decreases sensitivity. To overcome this problem, pixel structure is so designed that within a pixel, only part of the electrical conduction is through α-Si and rest is through metal. Simulation using Coventorware software has been done to optimize pixel resistance as well as thermal conductance through legs so that maximum sensitivity could be obtained. Optimization is also carried out in order to reduce sensitivity of pixel resistance to variation in material resistivity.Defence Science Journal, 2013, 63(6, pp.581-588, DOI:http://dx.doi.org/10.14429/dsj.63.5758

  17. CATAVIÑA: new infrared camera for OAN-SPM

    Science.gov (United States)

    Iriarte, Arturo; Cruz-González, Irene; Martínez, Luis A.; Tinoco, Silvio; Lara, Gerardo; Ruiz, Elfego; Sohn, Erika; Bernal, Abel; Angeles, Fernando; Moreno, Arturo; Murillo, Francisco; Langarica, Rosalía; Luna, Esteban; Salas, Luis; Cajero, Vicente

    2006-06-01

    CATAVIÑA is a near-infrared camera system to be operated in conjunction with the existing multi-purpose nearinfrared optical bench "CAMALEON" in OAN-SPM. Observing modes include direct imaging, spectroscopy, Fabry- Perot interferometry and polarimetry. This contribution focuses on the optomechanics and detector controller description of CATAVIÑA, which is planned to start operating later in 2006. The camera consists of an 8 inch LN2 dewar containing a 10 filter carousel, a radiation baffle and the detector circuit board mount. The system is based on a Rockwell 1024x1024 HgCdTe (HAWAII-I) FPA, operating in the 1 to 2.5 micron window. The detector controller/readout system was designed and developed at UNAM Instituto de Astronomia. It is based on five Texas Instruments DSK digital signal processor (DSP) modules. One module generates the detector and ADC-system control, while the remaining four are in charge of the acquisition of each of the detector's quadrants. Each DSP has a built-in expanded memory module in order to store more than one image. The detector read-out and signal driver subsystems are mounted onto the dewar in a "back-pack" fashion, each containing four independent pre-amplifiers, converters and signal drivers, that communicate through fiber optics with their respective DSPs. This system has the possibility of programming the offset input voltage and converter gain. The controller software architecture is based on a client/server model. The client sends commands through the TCP/IP protocol and acquires the image. The server consists of a microcomputer with an embedded Linux operating system, which runs the main program that receives the user commands and interacts with the timing and acquisition DSPs. The observer's interface allows for several readout and image processing modes.

  18. APDs as Single-Photon Detectors for Visible and Near-Infrared Wavelenghts down to Hz Rates

    CERN Document Server

    Jöhren, R; Buglak, W; Hampf, D; Hannen, V; Mader, J; Nörtershäuser, W; Sánchez, R; Weinheimer, C

    2011-01-01

    For the SPECTRAP experiment at GSI, Germany, detectors with Single-Photon counting capability in the visible and near-infrared regime are required. For the wavelength region up to 1100 nm we investigate the performance of 2x2 mm^2 avalanche photo diodes (APDs) of type S0223 manufactured by Radiation Monitoring Devices. To minimize thermal noise, the APDs are cooled to approximately -170 deg. C using liquid nitrogen. By operating the diodes close to the breakdown voltage it is possible to achieve gains in excess of 2x10^4. Extremly low noise preamplifiers are used to read out the devices. The measurements presented in this paper have been obtained at a gain of 22,000. At a discriminator threshold of 6 mV the resulting dark count rate is in the region of 200/s. With these settings the studied APDs are able to detect single photons at 628 nm wavelength with a photodetection efficiency of (67+-7)%. Measurements at 1020 nm wavelength have been performed using the attenuated output of a grating spectrograph with a ...

  19. A New nBn IR Detection Concept Using HgCdTe Material

    Science.gov (United States)

    Gravrand, O.; Boulard, F.; Ferron, A.; Ballet, Ph.; Hassis, W.

    2015-09-01

    This paper presents a new HgCdTe-based heterostructure to perform quantum infrared detection. The structure is based on the unipolar barrier concept, introduced by White in the 1980s for HgCdTe. The driving concept is the use of a large gap barrier layer to impede the flow of majority carriers (electrons on the conduction band in the case of n-type material) while facilitating the transport of minority (photo) carriers (holes on the valence band). The issue encountered here is the formation of a small potential barrier on the valence band, blocking photocarriers and therefore killing the quantum efficiency. The idea is to optimize the structure with an asymmetric barrier: abrupt on the contact side to efficiently block the majority carriers, and gradual on the absorption layer side to plane down the remaining potential barrier for the collected photocarriers. The concept has been studied by finite element modeling simulation and showed promising results. An optimal design has been identified in the middle wave band and molecular beam epitaxy layers have been grown then processed. First experimental characterization of the electro-optical properties of such structures showed promising features: 60% quantum efficiency and low turn-on voltage have been measured on single pixels.

  20. HOT MWIR HgCdTe performance on CZT and alternative substrates

    Science.gov (United States)

    Pellegrino, Joseph G.; DeWames, Roger; Perconti, Philip; Billman, Curtis; Maloney, Patrick

    2012-06-01

    Mid wave infrared (MWIR) imaging in the 3-5 um spectral band has traditionally been performed by InSb sensors. InSb technology is presently limited to a near 80K operating temperature and the hunt has been on for a higher operating temperature (HOT) technology that does as well at 150K as InSb at 80K, but with reduced power requirements. Amongst these alternative technologies are photovoltaic sensors consisting of heterostructures of HgCdTe (MCT). In previous work we assessed the device performance of several alternative MWIR HOT technologies (MCT on Si, MCT on GaAs) as a function of operating temperature. In this work we compare the NEDT histograms for these alternative technologies with InSb to better understand how their performance can be improved at higher temperatures. We also present analysis formalism for quantitatively assessing the number of FPA pixels which reside in the central versus the shoulder portions of the histogram.Begin the Introduction two lines below the Keywords. The manuscript should not have headers, footers, or page numbers. It should be in a onecolumn format. References are often noted in the text1 and cited at the end of the paper.

  1. Infrared Spectroscopy with a Cavity Ring-Down Spectrometer

    Science.gov (United States)

    2014-08-01

    Fourier transform infrared spectroscopy ( FTIR ) measures the transmission of the excitation source and then calculates the absorption from that measured...laser FTIR Fourier transform infrared spectroscopy HgCdTe mercury, cadmium, tellurium I absorbed light intensity I0 initial light intensity l...Infrared Spectroscopy with a Cavity Ring-Down Spectrometer by Logan S Marcus, Ellen L Holthoff, and Paul M Pellegrino ARL-TR-7031 August

  2. Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science.

    Science.gov (United States)

    Chen, Li; Schwarzer, Dirk; Verma, Varun B; Stevens, Martin J; Marsili, Francesco; Mirin, Richard P; Nam, Sae Woo; Wodtke, Alec M

    2017-06-20

    In contrast to UV photomultiplier tubes that are widely used in physical chemistry, mid-infrared detectors are notorious for poor sensitivity and slow time response. This helps explain why, despite the importance of infrared spectroscopy in molecular science, mid-infrared fluorescence is not more widely used. In recent years, several new technologies have been developed that open new experimental possibilities for research in the mid-infrared. In this Account, we present one of the more promising technologies, superconducting nanowire single photon detectors (SNSPDs) by sharing our experience with its use in a typical experiment carried out by physical chemists (laser-induced fluorescence) and comparing the SNSPD to a detector commonly used by physical chemists (InSb at LN Temperature). SNSPDs are fabricated from a thin film of superconducting metal, patterned into a meandering nanowire. The nanowire is cooled below its superconducting temperature, Tc, and held in a constant current circuit below the critical current necessary to destroy superconductivity, Ic. Upon absorption of a photon, the resulting heat is sufficient to destroy superconductivity across the entire width of the nanowire, an event that can be detected as a voltage pulse. In contrast to semiconductor-based detectors, which have a long wavelength cutoff determined by the band gap, the SNSPD exhibits single-photon sensitivity across the entire mid-IR spectrum. As these devices have not been used extensively outside the field of light detection technology research, one important goal of this Account is to provide practical details for the implementation of these devices in a physical chemistry laboratory. We provide extensive Supporting Information describing what is needed. This includes information on a liquid nitrogen cooled monochromator, the optical collection system including mid-infrared fibers, as well as a closed-cycle cryogenic cooler that reaches 0.3 K. We demonstrate the advantages of

  3. Characteristics of HgCdTe epilayer grown by LPE using horizontal slider

    Indian Academy of Sciences (India)

    J K Radhakrishnan; S Sitharaman; S C Gupta

    2002-11-01

    The characteristics of HgCdTe epilayers grown in a modified horizontal slider system, are reported here. The surface morphology of the grown layers, their IR transmission characteristics, depth and lateral compositional uniformity, structural and electrical characteristics are discussed.

  4. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Voxtel Inc. proposes to optimize the design of a large area, 1.55?m sensitive HgCdTe avalanche photodiode (APD) that achieves high gain with nearly no excess noise....

  5. 红外探测器工艺用器皿清洗方法研究%Research of utensils cleaning for infrared detector process

    Institute of Scientific and Technical Information of China (English)

    孙浩; 宁提; 龚志红; 白雪飞; 王文燕

    2016-01-01

    红外探测器材料一般为窄带系材料,在其制备工艺过程中,杂质离子更容易导致缺陷能级或表面快态复合中心,需选取较优的器皿清洗方法,对工艺用器皿所含金属离子进行评测控制。本文通过电感耦合等离子体质谱仪对比碲镉汞红外探测器工艺线上不同的器皿及清洗方法,对清洗后金属离子残留测试分析,获得较佳的器皿清洗方法,更好地保证红外探测器制备后性能。%Many utensils are often used in infrared detector process,but metallic ions in utensils have great effect on the performance of infrared detector,so the superior utensil cleaning methods are selected to remove metallic ions in utensils.The residual metallic ions in utensils with different cleaning methods were measured and analyzed by ICP -MS,and the optimal cleaning method was obtained.This cleaning method is suitable for the different preparation technologies of infrared detector.

  6. Development of an Astronomical Infrared PtSi Camera

    Science.gov (United States)

    Hong, S. S.; Ueno, M.; Koo, B. C.; Kim, K.-T.; Kim, C. Y.; Oh, K. S.; Lee, M. G.; Lee, H. M.; Kang, Y. W.; Park, W.-K.

    1996-12-01

    We have built a near-infrared imaging camera with a PtSi array detector manufactured the Mitsubishi Company. The PtSi detector is sensitive in the wavelength range 1 to 5micrometer. Quantum efficiency of PtSi is much lower than that of InSb and HgCdTe types. However, the PtSi array has advantages over the latter ones:(i)The read-out noise is very low;(ii)the characteristics of the array elements are uniform and stable; (iii)it is not difficult to make a large PtSi array; and (iv)consequently the price is affordably low. The array used consists of 512 x 512 pixels and its size is 10.2 mm x 13.3 mm. The filter wheel of the camera is equipped with J, H, K filters, and an aluminum plate for measuring the dark noise. The dewar is cooled with liquid nitrogen. We have adopted a method of installing the clock pattern and the observing softwares in the RAM, which can be easily used for other systems. We have developed a software with a pull-down menu for operating the camera and data acquisition. The camera has been tested by observing Orionis.

  7. Recent developments in materials and detectors for the infrared; Proceedings of the Meeting, Cannes, France, November 25, 26, 1985

    Science.gov (United States)

    Morten, F. D. (Editor); Seeley, John S. (Editor)

    1986-01-01

    The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.

  8. Development of NIR detectors and science driven requirements forSNAP

    Energy Technology Data Exchange (ETDEWEB)

    Brown, M.G.; Bebek, C.; Bernstein, G.; Bonissent, A.; Carithers,B.; Cole, D.; Figer, D.; Gerdes, D.; Gladney, L.; Lorenzon, W.; Kim, A.; Kushner, G.; Kuznetsova, N.; Linder, E.; McKee, S.; Miquel, R.; Mostek,N.; Mufson, S.; Schubnell, M.; Seshadri, S.; Shukla, H.; Smith, R.; Stebbins, A.; Stoughton, C.; Tarle, G.

    2006-05-23

    Precision near infrared (NIR) measurements are essential for the next generation of ground and space based instruments. The SuperNova Acceleration Probe (SNAP) will measure thousands of type Ia supernovae upto a redshift of 1.7. The highest redshift supernovae provide the most leverage for determining cosmological parameters, in particular the dark energy equation of state and its possible time evolution. Accurate NIR observations are needed to utilize the full potential of the highest redshift supernovae. Technological improvements in NIR detector fabrication have lead to high quantum efficiency, low noise detectors using a HgCdTe diode with a band-gap that is tuned to cutoff at 1:7 1m. The effects of detector quantum efficiency, read noise, and dark current on lightcurve signal to noise, lightcurve parameter errors, and distance modulus ?ts are simulated in the SNAP sim framework. Results show that improving quantum efficiency leads to the largest gains in photometric accuracy for type Ia supernovae. High quantum efficiency in the NIR reduces statistical errors and helps control systematic uncertainties at the levels necessary to achieve the primary SNAP science goals.

  9. Technology for advanced focal plane arrays of HgCdTe and AIGaN

    CERN Document Server

    He, Li; Ni, Guoqiang

    2016-01-01

    This book introduces the basic framework of advanced focal plane technology based on the third-generation infrared focal plane concept. The essential concept, research advances, and future trends in advanced sensor arrays are comprehensively reviewed. Moreover, the book summarizes recent research advances in HgCdTe/AlGaN detectors for the infrared/ultraviolet waveband, with a particular focus on the numerical method of detector design, material epitaxial growth and processing, as well as Complementary Metal-Oxide-Semiconductor Transistor readout circuits. The book offers a unique resource for all graduate students and researchers interested in the technologies of focal plane arrays or electro-optical imaging sensors.

  10. The Design of Outdoor Passive Infrared Detector Alarm%户外被动红外探测器的设计

    Institute of Scientific and Technical Information of China (English)

    谢白玉

    2013-01-01

    This paper introduced the structure theory and application circuit of a passive-type pyroelectric infrared de-tector. This circuit has certain practical application value. The core part of this type control circuit is pyroelectric infrared sensor,which mainly uses its infrared radiation and infrared detection characteristic. This circuit applicants the hidden nature of infrared to the warning systems. Thus,it realizes the function of burglar alarm and achieves the purpose of se-curity protection.%本文主要介绍了一种被动式红外探测器的结构原理及其应用电路,此电路具有一定的实际应用价值。该类型控制电路的核心器件为热释电红外传感器,并且主要利用了它的红外辐射和红外探测的特性。这种电路把红外线的隐蔽性很好地应用于报警系统之中,从而实现了防盗报警功能,达到了安全防护之目的。

  11. CANICA: The Cananea Near-Infrared Camera at the 2.1 m OAGH Telescope

    Science.gov (United States)

    Carrasco, L.; Hernández Utrera, O.; Vázquez, S.; Mayya, Y. D.; Carrasco, E.; Pedraza, J.; Castillo-Domínguez, E.; Escobedo, G.; Devaraj, R.; Luna, A.

    2017-10-01

    The Cananea near-infrared camera (CANICA) is an instrument commissioned at the 2.12 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. CANICA operates in the near-infrared at multiple bands including J(1.24 μm), H(1.63 μm) and K' (2.12 μm) broad-bands. CANICA in located at the Ritchey-Chrétien focal plane of the telescope, reimaging the f/12 beam into f/6 beam. The detector is a 1024 × 1024 HgCdTe HAWAII array of 18.5 μm pixel size, covering a field of view of 5.5 × 5.5 arcmin2, for a plate scale of 0.32 arcsec/pixel. The camera is enclosed in a cryostat, cooled with liquid nitrogen to 77 K. The cryostat contains the collimator, two 15-position filter wheels, single fixed reimaging optics and the detector.

  12. Design and development of wafer-level near-infrared micro-camera

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Dhar, Nibir K.; Lewis, Jay S.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2015-08-01

    SiGe offers a low-cost alternative to conventional infrared sensor material systems such as InGaAs, InSb, and HgCdTe for developing near-infrared (NIR) photodetector devices that do not require cooling and can offer high bandwidths and responsivities. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated SiGe based PIN detector devices on 300 mm diameter Si wafers in order to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ seed/buffer layer, followed by higher temperature deposition of a thicker Ge intrinsic layer. An n+-Ge layer formed by ion implantation of phosphorus, passivating oxide cap, and then top copper contacts complete the PIN photodetector design. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxial growth and fabricated detector devices. In addition, electrical characterization was performed to compare the I-V dark current vs. photocurrent response as well as the time and wavelength varying photoresponse properties of the fabricated devices, results of which are likewise presented.

  13. Infrared Detector Research

    Science.gov (United States)

    1976-08-01

    7n rtMT IC -)) .r i 11ON ,c- r < css ,- c.Cu7 At,! flut~C-. ,sp .’TICF SCOATT E IN3 ; "" IS tic srtr rT-’Cv TATION "r𔃾 ,- c I I7 ’ " ,,’-"it ! IY...larger the compositional variation within the solidified grain. The lattice constants for HgTe and CdTe are nearly the same allowing for large...composition slice is reached a pinkish core region begins to develop in the center of the slice. Its origin is not known although it may be CdTe rich

  14. MTF Issues in Small-Pixel-Pitch Planar Quantum IR Detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-08-01

    The current trend in quantum infrared (IR) detector development is the design of very small-pixel-pitch large arrays. From the previous 30 μm pitch, the standard pixel pitch today is 15 μm and is expected to decrease to 12 μm in the next few years. Furthermore, focal-plane arrays (FPAs) with pixel pitch as small as 10 μm have been demonstrated. Such ultrasmall-pixel pitches are very small compared with the typical length ruling the electrical characteristics of the absorbing materials, namely the minority-carrier diffusion length. As an example, for low-doped n-type HgCdTe or InSb material, this diffusion length is on the order of 30 μm to 50 μm, i.e., three to five times the targeted pixel pitches. This has strong consequences for the modulation transfer function (MTF) of planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain an optimal MTF. Therefore, this issue has to be addressed to take full advantage of the pixel pitch reduction in terms of image resolution. The aim of this work is to investigate the evolution of the MTF of HgCdTe and InSb FPAs when decreasing the pixel pitch below 15 μm. Both experimental measurements and finite-element simulations are used to discuss this issue. Different scenarios are compared, namely deep mesa etch between pixels, internal drift, surface recombination, and thin absorbing layers.

  15. Development of Blocked-Impurity-Band-Type Ge Detectors Fabricated with the Surface-Activated Wafer Bonding Method for Far-Infrared Astronomy

    Science.gov (United States)

    Hanaoka, M.; Kaneda, H.; Oyabu, S.; Yamagishi, M.; Hattori, Y.; Ukai, S.; Shichi, K.; Wada, T.; Suzuki, T.; Watanabe, K.; Nagase, K.; Baba, S.; Kochi, C.

    2016-07-01

    We report the current status of the development of our new detectors for far-infrared (FIR) astronomy. We develop Blocked-Impurity-Band (BIB)-type Ge detectors to realize large-format compact arrays covering a wide FIR wavelength range up to 200 \\upmu m. We fabricated Ge junction devices of different physical parameters with a BIB-type structure, using the room temperature, surface-activated wafer bonding (SAB) method. We measured the absolute responsivity and the spectral response curve of each device at low temperatures, using an internal blackbody source in a cryostat and a Fourier transform spectrometer, respectively. The results show that the SAB Ge junction devices have significantly higher absolute responsivities and longer cut-off wavelengths of the spectral response than the conventional bulk Ge:Ga device. Based upon the results, we discuss the optimum parameters of SAB Ge junction devices for FIR detectors. We conclude that SAB Ge junction devices possess a promising applicability to next-generation FIR detectors covering wavelengths up to ˜ 200 \\upmu m with high responsivity. As a next step, we plan to fabricate a BIB-type Ge array device in combination with a low-power cryogenic readout integrated circuit.

  16. Combination of temporal phase unwrapping and long-wave infrared digital holographic interferometry for metrology of mosaic detector under space simulated conditions

    Science.gov (United States)

    Vandenrijt, Jean-François; Thizy, Cédric; Beaumont, Florent; Garcia, José; Martin, Laurent; Fabron, Christophe; Prieto, Eric; Maciaszek, Thierry; Georges, Marc P.

    2015-08-01

    We present digital holographic interferometry (DHI) in the long-wave infrared for monitoring the deformation under cryogenic conditions of a segmented focal plane array to be used in a space mission. The long wavelength was chosen for its ability to allow measurement of displacements 20 times larger than DHI in the visible and which were foreseen with the test object under such temperature changes. The specimen consists of 4x4 mosaic of detectors assembled on a frame. It was required to assess the global deformation of the ensemble, the deformation of each detector, and piston movements of each of them with respect to their neighbors. For that reason we incorporated the temporal phase unwrapping by capturing a sufficiently high number of holograms between which the phase does not suffer strong variations. At last since the specimen exhibit specular reflectivity at that wavelength, it is illuminated through a reflective diffuser.

  17. Design of the Monocular Pyroelectric Infrared Detector%一种热释电红外探测器的单目设计

    Institute of Scientific and Technical Information of China (English)

    崔永俊; 贾磊; 王希鹏; 赵秀梅; 薛志勇; 杜文略

    2016-01-01

    To solve the problems of high false alarm rate, low sensitivity and unable to locate intrusion targets and other issues in ordinary pyroelectric infrared detection technology, the design based on compound eye structure is proposed for pyroelectric infrared detector. Combining the advantages of pyroelectric infrared detection, including good concealment, stable performance, environmental adaptability, large viewing angle of compound eye, small size and high sensitivity, the charge signal on pyroelectric material is converted into voltage signal, and output after filtering and amplifying. Experiments show that the monocular of the designed pyroelectric infrared detector can detect intrusion target within fifteen meters, and output pulse level as an alarm signal.%为解决普通热释电的红外探测技术误报率高、敏感度低且不能对入侵目标进行定位等问题,提出了一种基于热释电红外探测器的复眼结构的设计.结合热释电红外探测隐蔽性好、性能稳定、环境适应能力强、复眼视场角大、体积小且灵敏度高等优势,将热释材料上的电荷信号转换为电压信号,经滤波、放大后输出.通过实验表明,采用该热释电红外探测器的单目可以检测到15 m内的入侵目标,并输出脉冲电平作为报警信号.

  18. Simulation of near-infrared photodiode detectors based onβ-FeSi2/4H-SiC heterojunctions

    Institute of Scientific and Technical Information of China (English)

    Pu Hong-Bin; He Xin; Quan Ru-Dai; Cao Lin; Chen Zhi-Ming

    2013-01-01

    In this paper,we propose a near-infrared p-type β-FeSi2/n-type 4H-SiC heterojunction photodetector with semiconducting silicide (β-FeSi2) as the active region for the first time.The optoelectronic characteristics of the photodetector are simulated using a commercial simulator at room temperature.The results show that the photodetector has a good rectifying character and a good response to near-infrared light.Interface states should be minimized to obtain a lower reverse leakage current.The response spectrum of the β-FeSi2/4H-SiC detector,which consists of a p-type/β-FeSi2 absorption layer with a doping concentration of 1 x 1015 cm-3 and a thickness of 2.5 μm,has a peak of 755 mA/W at 1.42 μm.The illumination of the SiC side obtains a higher responsivity than that of the β-FeSi2 side.The results illustrate that the/β-FeSi2/4H-SiC heterojunction can be used as a near-infrared photodetector compatible with near-infrared optically-activated SiC-based power switching devices.

  19. Infrared imaging of cotton fiber bundles using a focal plane array detector and a single reflectance accessory

    Science.gov (United States)

    Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report the use of an infrared instrument equippe...

  20. Mercury cadmium telluride (HgCdTe) passivation by advanced thin conformal Al2O3 films

    Science.gov (United States)

    Fu, Richard; Pattison, James; Chen, Andrew; Nayfeh, Osama

    2012-06-01

    HgCdTe passivation process must be performed at low temperature in order to reduce Hg depletion. Low temperature plasma enhanced atomic layer deposition (PE-ALD) is an emerging deposition technology for thin highly conformal films to meet the demand. Room temperature PE-ALD Al2O3 film's passivation on HgCdTe has been studied. Conformal film was investigated through SEM images of the Al2O3 film deposited onto high aspect ratio features dry etched into HgCdTe. Minority carrier lifetime was measured and compared by photoconductive decay transients of HgCdTe before and after deposition. Room temperature ALD Al2O3 film increased the minority carrier lifetime of HgCdTe.

  1. Development activities on NIR large format MCT detectors for astrophysics and space science at CEA and SOFRADIR

    Science.gov (United States)

    Boulade, Olivier; Moreau, Vincent; Mulet, Patrick; Gravrand, Olivier; Cervera, Cyril; Zanatta, Jean-Paul; Castelein, Pierre; Guellec, Fabrice; Fièque, Bruno; Chorier, Philippe; Roumegoux, Julien

    2016-07-01

    CEA and SOFRADIR have been manufacturing and characterizing near infrared detectors in the frame of ESA's near infrared large format sensor array roadmap to develop a 2Kx2K large format low flux low noise device for space applications such as astrophysics. These detectors use HgCdTe as the absorbing material and p/n diode technology. The technological developments (photovoltaic technology, readout circuit, ...) are shared between CEA/LETI and SOFRADIR, both in Grenoble, while most of the performances are evaluated at CEA/IRFU in Saclay where a dedicated test facility has been developed, in particular to measure very low dark currents. The paper will present the current status of these developments at the end of ESA's NIRLFSA phase 2. The performances of the latest batch of devices meet or are very close to all the requirements (quantum efficiency, dark current, cross talk, readout noise, ...) even though a glow induced by the ROIC prevents the accurate measurement of the dark current. The current devices are fairly small, 640x512 15μm pixels, and the next phase of activity will target the development of a full size 2Kx2K detector. From the design and development, to the manufacturing and finally the testing, that type of detector requests a high level of mastering. An appropriate manufacturing and process chain compatible with such a size is needed at industrial level and results obtained with CEA technology coupled with Sofradir industrial experience and work on large dimension detector allow French actors to be confident to address this type of future missions.

  2. Infrared thermography

    CERN Document Server

    Meola, Carosena

    2012-01-01

    This e-book conveys information about basic IRT theory, infrared detectors, signal digitalization and applications of infrared thermography in many fields such as medicine, foodstuff conservation, fluid-dynamics, architecture, anthropology, condition monitoring, non destructive testing and evaluation of materials and structures.

  3. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    Science.gov (United States)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  4. Characterization of H2RG IR detectors for the Euclid NISP instrument

    Science.gov (United States)

    Secroun, Aurélia; Serra, Benoit; Clémens, Jean Claude; Legras, Romain; Lagier, Philippe; Niclas, Mathieu; Caillat, Laurence; Gillard, William; Tilquin, André; Ealet, Anne; Barbier, Rémi; Ferriol, Sylvain; Kubik, Bogna; Smadja, Gérard; Prieto, Eric; Maciaszek, Thierry; Norup Sorensen, Anton

    2016-07-01

    Euclid, a major ESA mission for the study of dark energy, will offer a large survey of tens of millions of galaxies thanks to its Near-Infrared Spectro-Photometer. For it to be successful, the 16 Teledyne's 2.3 μm cutoff 2048x2048 pixels IR HgCdTe detectors of the focal plane must show very high performances over more than 95% of pixels, in terms of median dark current, total noise, budget error on non-linearity after correction, residual dark due to latency effects and quantum efficiency. This will be verified through a thorough characterization of their performances, leading to the production of the pixel map calibration database for the Euclid mission. Characterization is challenging in many ways: each detector will have to be fully and accurately characterized in less than three weeks, with rather tight requirements: dark current at the 10-3 e-/s level with 10% accuracy, relative Pixel Response map better than 1%, obtained with an illumination flatness better than 1%, measurements alternating dark and high level illumination taking care of latency impacts. Due to statistics needs, very long runs (24h without interrupts) of scripted measurements would be executed. Systematics of the test bench should be at the end the limiting factor of the parameter measurement accuracy. Test plan, facilities with functionalities developed for those specific purposes and associated performances will be described.

  5. 热释电红外探测器PZT晶片粘接质量控制%Quality Control of the PZT Wafer Bonding in Pyroelectric Infrared Detector

    Institute of Scientific and Technical Information of China (English)

    黄江平; 冯江敏; 王羽; 苏玉辉; 信思树; 李玉英

    2013-01-01

    热释电红外探测器芯片研制中,晶片粘接是芯片研制中的关键工艺之一。本文详细论述了粘接胶的选择依据及晶片粘接质量控制。确定了适合器件研制的粘接胶和粘胶工艺流程。对粘接中出现的问题及解决办法进行了讨论。研制出了完全能满足器件工艺要求的热释电探测器PZT晶片。%The wafer bonding is one of the key technologies in pyroelectric infrared detector chip development. This paper discusses the selection basis of bonding glue and quality control of wafer bonding in details, also determines the adhesive glue and the technology suitable for detector development, and analyzes the problems and the resolution method in the course of wafer bonding. The PZT wafer that can fully meet the technology requirements of pyroelectric detector is provided.

  6. Development of silicon-germanium visible-near infrared arrays

    Science.gov (United States)

    Zeller, John W.; Rouse, Caitlin; Efstathiadis, Harry; Haldar, Pradeep; Lewis, Jay S.; Dhar, Nibir K.; Wijewarnasuriya, Priyalal; Puri, Yash R.; Sood, Ashok K.

    2016-05-01

    Photodetectors based on germanium which do not require cooling and can provide good near-infrared (NIR) detection performance offer a low-cost alternative to conventional infrared sensors based on material systems such as InGaAs, InSb, and HgCdTe. As a result of the significant difference in thermal expansion coefficients between germanium and silicon, tensile strain incorporated into Ge epitaxial layers deposited on Si utilizing specialized growth processes can extend the operational range of detection to 1600 nm and longer wavelengths. We have fabricated Ge based PIN photodetectors on 300 mm diameter Si wafers to take advantage of high throughput, large-area complementary metal-oxide semiconductor (CMOS) technology. This device fabrication process involves low temperature epitaxial deposition of Ge to form a thin p+ (boron) Ge seed/buffer layer, and subsequent higher temperature deposition of a thicker Ge intrinsic layer. This is followed by selective ion implantation of phosphorus of various concentrations to form n+ Ge regions, deposition of a passivating oxide cap, and then top copper contacts to complete the PIN detector devices. Various techniques including transmission electron microscopy (TEM) and secondary ion mass spectrometry (SIMS) have been employed to characterize the material and structural properties of the epitaxially grown layers and fabricated detector devices, and these results are presented. The I-V response of the photodetector devices with and without illumination was also measured, for which the Ge based photodetectors consistently exhibited low dark currents of around ~1 nA at -1 V bias.

  7. High-efficiency WSi superconducting nanowire single-photon detectors for quantum state engineering in the near infrared

    CERN Document Server

    Jeannic, H Le; Cavaillès, A; Marsili, F; Shaw, M D; Huang, K; Morin, O; Nam, S W; Laurat, J

    2016-01-01

    We report on high-efficiency superconducting nanowire single-photon detectors based on amorphous WSi and optimized at 1064 nm. At an operating temperature of 1.8 K, we demonstrated a 93% system detection efficiency at this wavelength with a dark noise of a few counts per second. Combined with cavity-enhanced spontaneous parametric down-conversion, this fiber-coupled detector enabled us to generate narrowband single photons with a heralding efficiency greater than 90% and a high spectral brightness of $0.6\\times10^4$ photons/(s$\\cdot$mW$\\cdot$MHz). Beyond single-photon generation at large rate, such high-efficiency detectors open the path to efficient multiple-photon heralding and complex quantum state engineering.

  8. THIS: a tuneable heterodyne infrared spectrometer for SOFIA

    Science.gov (United States)

    Schieder, R.; Sonnabend, G.; Sornig, M.; Kroetz, P.; Stupar, D.

    2007-09-01

    The THIS instrument (Tuneable Heterodyne Infrared Spectrometer) is a versatile heterodyne receiver with a sensitivity close to theoretical prediction. It uses a Quantum Cascade Laser (QCL) as local oscillator and a HgCdTe photo-voltaic detector as mixer. The IF-spectrum is analyzed by means of a new broadband Acousto-Optical Spectrometer (AOS) with 3 GHz bandwidth and 1 MHz resolution. A dual sideband (DSB) system noise temperature has been measured with 2300 K at 10 μm wavelength, which is only 60% above the quantum limit. The stability of the system has been determined at an Allan variance minimum time of 50 seconds. Below this integration time the performance is purely radiometric. Also, the frequency stability has been measured with 1 MHz rms error within several hours. The quality of the instrument has been demonstrated by a few observing campaigns at the McMath-Pierce observatory on Kitt Peak. Measurements of Winds on Mars and Venus have been carried out and molecular line signals in sunspots have been detected. We propose to develop THIS as a second generation instrument for future astronomical observations on SOFIA.

  9. Modeling of normal incidence absorption in p-type GaAs/AlGaAs quantum well infrared detectors

    Science.gov (United States)

    Brown, Gail J.; Szmulowicz, Frank

    1995-04-01

    The absorption of infrared radiation at normal incidence in p-type GaAs/AlGaAs quantum wells, unlike in n-type, is fundamentally allowed. We have measured and theoretically modeled the bound-to-continuum absorption in these p-type materials. The infrared absorption coefficient was calculated are based on the electronic structure, wave functions and optical matrix elements obtained from an 8 X 8 envelope-function approximation (EFA) calculation. The 8 X 8 EFA Hamiltonian incorporates the coupling between the heavy, light, spin-orbit, and conduction bands. In calculating the continuum states for bound-to- continuum intersubband absorption, we do not enclose the well in an artificial box with infinite walls. A comparison of the theoretical absorption and measured photoresponse results verified the accuracy of our model and provided a basis for optimizing the design of p-type quantum wells for infrared detection.

  10. Detector comparison for sulfur and chlorine detection with laser induced breakdown spectroscopy in the near-infrared-region

    Science.gov (United States)

    Weritz, F.; Schaurich, D.; Wilsch, G.

    2007-12-01

    Laser-induced breakdown spectroscopy has been employed for the investigation of the sulfur and chlorine content of building materials. Both, chloride and sulfate ions are major damaging species affecting the stability and lifetime of a structure. Chlorine and sulfur are mostly detected in the VUV and the NIR. In case of building materials the main elements like calcium or iron have many strong spectral lines over the whole spectral range, so that trace elements can only be detected in spectral windows unaffected from these lines. With regard to a preferably simply, robust against dust and vibrations and portable setup only the NIR spectral features are used for civil engineering applications. Most detectors, mainly CCD cameras have rapidly decreasing quantum efficiency in the NIR. Also the quantum efficiency of the photocathode of CCD-Detectors with image intensifier is decreasing in the NIR. Different CCD-detectors were tested with respect to high quantum efficiency and high dynamic range, which is necessary for simultaneous detection of weak spectral lines from trace elements and intense spectral lines from main elements. The measurements are made on reference samples consisting of cement, hydrated cement, cement mortar and concrete with well-defined amounts of the trace elements. Experimental conditions are chosen for an optimum intensity of the trace element spectral lines. The detector systems are compared by limit of detections and the signal to noise ratio.

  11. High-sensitivity and cost-effective system for infrared imaging of concealed objects in dynamic mode

    Science.gov (United States)

    Gordiyenko, E.; Yefremenko, V.; Pearson, J.; Bader, S. D.; Novosad, V.

    2005-05-01

    Novel, cost-efficient, and highly-sensitive IR imaging systems play an important role in homeland security functions. Technical limitations in the areas of sensitivity, contrast ratio, bandwidth and cost continue to constrain imaging capabilities. We have designed and prototyped a compact computer-piloted high sensitivity infrared imaging system. The device consists of infrared optics, cryostat, low-noise pre-amplifier, Analog-to-Digital hardware, feedback electronics, and unique image processing software. Important advantages of the developed system are: (i) Eight electronic channels are available for simultaneous registration of IR and visible images in multiple spectral ranges, (ii) Capability of real-time analysis such as comparing the "sensed" image with "reference" images from a database, (iii) High accuracy temperature measurement of multiple points on the image by referencing the radiation intensity from the object to a black body model, (iv) Image generation by real-time integration of images from multiple sensors operating from the visible to the terahertz range. The device was tested with a liquid-nitrogen-cooled, single-pixel HgCdTe detector for imaging in 8-12 microns range. The demonstrated examples of infrared imaging of concealed objects in static and dynamic modes include a hammer (metal head and wooden handle), plastic imitator of handguns hidden under clothes, powder in an envelope, and revealing complex wall structures under decorative plaster.

  12. Infrared technology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Lettington, A.H. (Royal Signals and Radar Establishment, Malvern (United Kingdom))

    1990-01-01

    This book is covered by the following topics: innovations in industrial infrared spectroscopy, detectors, advances in applied thermography, optical manufacturing techniques, optical design and testing.

  13. Real Time Monitor and Control of MBE Growth of HgCdTe by Spectroscopic Ellipsometry.

    Science.gov (United States)

    2007-11-02

    The primary goal of this contract develop a real-time monitoring capability for HgCdTe composition during MBE growth . This goal was realized by...methodology for acquiring and analyzing insitu SE data in the MBE growth environment. These improvements and developments are part of an extensive

  14. Thermal Cycle Annealing and its Application to Arsenic-Ion Implanted HgCdTe

    Science.gov (United States)

    2014-06-26

    doping profile, as shown in Figure 3. The TCA treatment on the unimplanted epilayers showed an exponential defect reduction proportional to the...Chamonal, P. Castelein, J. Zanatta, M. Tchagaspanian, A. Papon, J. Barnes, F. Henry, S. Gout , G. Bourgeois, C. Pautet and P. Fougeres, "HgCdTe FPAs

  15. Arsenic complexes optical signatures in As-doped HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Gemain, F.; Robin, I. C.; Brochen, S.; Ballet, P.; Gravrand, O.; Feuillet, G. [CEA-LETI Minatec Campus, 17 rue des Martyrs, 38000 Grenoble (France)

    2013-04-08

    In this paper, the optical signatures of arsenic complexes in As-doped HgCdTe samples grown by molecular beam epitaxy are clearly identified using comparison between photoluminescence spectra, Extended X-Ray Absorption Fine Structure, and Hall measurements. The ionization energies of the different complexes are measured both by photoluminescence and Hall measurements.

  16. Influence of photoresist feature geometry on ECR plasma-etched HgCdTe trenches

    Science.gov (United States)

    Benson, J. David; Stoltz, Andrew J., Jr.; Kaleczyc, Andrew W.; Martinka, Mike; Almeida, Leo A.; Boyd, Phillip R.; Dinan, John H.

    2002-12-01

    Factors that affect width and aspect ratio in electron cyclotron resonance (ECR) etched HgCdTe trenches are investigated. The ECR etch bias and anisotropy are determined by photoresist feature erosion rate. The physical characteristics of the trenches are attributed to ECR plasma etch chemistry.

  17. Quaternary Narrow-Band Semiconductors (HgTe)x(InSb)1-X for Far-Infrared Detectors.

    Science.gov (United States)

    1986-08-31

    Vapor Growth and Epitaxy. Coronado, California, 1981, p. 331. rn21. M. Rodot. Les Materiaux Semiconducteurs. Dunod, Paris, 1965. 22. E. M. Barrall ...Thermochim. Acta, 5, 377 (1973). 23. M. F. Kimmitt, G. C. Lopez , J. C. Giles, M. Takai, H. P. Roser, B. T. McGuckin and A. Black. Infrared Phys., 25, 767

  18. Fourier transform infrared spectroscopy with a sample deposition interface as a quantitative detector in size-exclusion chromatography

    NARCIS (Netherlands)

    Kok, S.J.; Arentsen, N.C.; Cools, P.J.C.H.; Hankemeier, Th.; Schoenmakers, P.J.

    2002-01-01

    The use of a state-of-the-art commercial solvent-elimination interface for liquid chromatography-infrared spectroscopy is discussed from the perspective of quantitative analysis. The effect of eluent flow-rate is investigated with respect to the homogeneity of the deposit and the trace width along t

  19. Theoretical investigation of InAs/GaSb type-II pin superlattice infrared detector in the mid wavelength infrared range

    Science.gov (United States)

    Kaya, U.; Hostut, M.; Kilic, A.; Sakiroglu, S.; Sokmen, I.; Ergun, Y.; Aydinli, A.

    2013-02-01

    In this study, we present the theoretical investigation of type-II InAs/GaSb superlattice p-i-n detector. Kronig-Penney and envelope function approximation is used to calculate band gap energy and superlattice minibands. Variational method is also used to calculate exciton binding energies. Our results show that carriers overlap increases at GaSb/InAs interface on the higher energy side while it decreases at InAs/GaSb interface on the lower energy side with increasing reverse bias due to shifting the hole wavefunction toward to the GaSb/InAs interface decisively. Binding energies increase with increasing electric field due to overall overlap of electron and hole wave functions at the both interfaces in contrast with type I superlattices. This predicts that optical absorption is enhanced with increasing electric field.

  20. Fabrication of an Absorber-Coupled MKID Detector and Readout for Sub-Millimeter and Far-Infrared Astronomy

    Science.gov (United States)

    Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.

    2010-01-01

    We have fabricated absorber-coupled microwave kinetic inductance detector (MKID) arrays for sub-millimeter and farinfrared astronomy. Each detector array is comprised of lambda/2 stepped impedance resonators, a 1.5µm thick silicon membrane, and 380µm thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.

  1. Structural and electrical properties of InAs/GaSb superlattices grown by metalorganic vapor phase epitaxy for midwavelength infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Arikata, Suguru; Kyono, Takashi [Semiconductor Technologies Laboratory, Sumitomo Electric Industries, LTD., Hyogo (Japan); Miura, Kouhei; Balasekaran, Sundararajan; Inada, Hiroshi; Iguchi, Yasuhiro [Transmission Devices Laboratory, Sumitomo Electric Industries, LTD., Yokohama (Japan); Sakai, Michito [Sensor System Research Group, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Katayama, Haruyoshi [Space Technology Directorate I, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Ibaraki (Japan); Kimata, Masafumi [College of Science and Engineering, Ritsumeikan University, Shiga (Japan); Akita, Katsushi [Sumiden Semiconductor Materials, LTD., Hyogo (Japan)

    2017-03-15

    InAs/GaSb superlattice (SL) structures were fabricated on GaSb substrates by metalorganic vapor phase epitaxy (MOVPE) toward midwavelength infrared (MWIR) photodiodes. Almost defect-free 200-period SLs with a strain-compensation interfacial layer were successfully fabricated and demonstrate an intense photoluminescence peak centered at 6.1 μm at 4 K and an external quantum efficiency of 31% at 3.5 μm at 20 K. These results indicate that the high-performance MWIR detectors can be fabricated in application with the InAs/GaSb SLs grown by MOVPE as an attractive method for production. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Theoretical prediction of the source-detector separation distance suited to the application of the spatially resolved spectroscopy from the near-infrared attenuation data cube of tissues

    CERN Document Server

    Ri, Yong-Wu; Im, Song-Jin

    2014-01-01

    The modified Beer-Lambert law (MBL) and the spatially resolved spectroscopy are used to measure the tissue oxidation in muscles and brains by the continuous wave near-infrared spectroscopy. The spatially resolved spectroscopy predicts the change in the concentration of the absorber by measuring the slope of attenuation data according to the separation and calculating the absorption coefficients of tissue on the basis of the slop in attenuation at the separation distance satisfying the linearity of this slop. This study analyzed the appropriate source-detector separation distance by using the diffuse approximation resolution for photon migration when predicting the absorption coefficient by the spatially resolved spectroscopy on the basis of the reflective image of the tissue. We imagine the 3 dimensional attenuation image with the absorption coefficient, reduced scattering coefficient and separation distance as its axes and obtained the attenuation data cube by calculating the attenuation on a certain interva...

  3. Toward absolute chemical composition distribution measurement of polyolefins by high-temperature liquid chromatography hyphenated with infrared absorbance and light scattering detectors.

    Science.gov (United States)

    Lee, Dean; Shan, Colin Li Pi; Meunier, David M; Lyons, John W; Cong, Rongjuan; deGroot, A Willem

    2014-09-02

    Chemical composition distribution (CCD) is a fundamental metric for representing molecular structures of copolymers in addition to molecular weight distribution (MWD). Solvent gradient interaction chromatography (SGIC) is commonly used to separate copolymers by chemical composition in order to obtain CCD. The separation of polymer in SGIC is, however, not only affected by chemical composition but also by molecular weight and architecture. The ability to measure composition and MW simultaneously after separation would be beneficial for understanding the impact of different factors and deriving true CCD. In this study, comprehensive two-dimensional chromatography (2D) was coupled with infrared absorbance (IR5) and light scattering (LS) detectors for characterization of ethylene-propylene copolymers. Polymers were first separated by SGIC as the first dimension chromatography (D1). The separated fractions were then characterized by the second dimension (D2) size exclusion chromatography (SEC) with IR5 and LS detectors. The concentrations and compositions of the separated fractions were measured online using the IR5 detector. The MWs of the fractions were measured by the ratio of LS to IR5 signals. A metric was derived from online concentration and composition data to represent CCD breadth. The metric was shown to be independent of separation gradients for an "absolute" measurement of CCD breadth. By combining online composition and MW data, the relationship of MW as a function of chemical composition was obtained. This relationship was qualitatively consistent with the results by SEC coupled to IR5, which measures chemical composition as a function of logMW. The simultaneous measurements of composition and MW give the opportunity to study the SGIC separation mechanism and derive chain architectural characteristics of polymer chains.

  4. 红外线阵探测器盲元定位与补偿%Blind pixel detection and compensation for infrared linear detector

    Institute of Scientific and Technical Information of China (English)

    徐世伟; 魏东; 王大鹏; 刘万成

    2014-01-01

    为减少红外线列探测器的条纹噪声与非均匀性噪声受环境温度和探测器工作时间的影响,提出了一种处理盲元的综合算法。首先依据探测器最终数据输出来检测盲元通道;然后依据通道位置与数量调整偏移量值,并根据探测器的阵列结构特点,对480×6个像元完成精确的盲元定位;最后完成对含有盲元通道的非均匀校正。以FPGA处理模块为核心,完成了红外探测器实时采集与处理。图像校正效果良好,具有良好的实时性和可移植性。%An integrated algorithm dealing with blind pixel was proposed to reduce the stripe noise and non﹣uniformity noise of the infrared linear detector which affected by ambient temperature and its operation time. First, the bad pixel channel was detected based on the final output data of the detector, and then the offset value was adjusted based on the position and number of the bad pixel channel, and an accurate bad pixel positioning to 480×6 pixel was finished according to the structure characteristics of the detector array. Non﹣uniformity correction of the bad pixel channel was completed in the end. In this paper, FPGA processing module was taken as the core of the whole algorithm to complete the real﹣time acquisition and processing of infrared images. The test results show that the qualities of correction images are all very well, and the algorithm proposed in this paper has a good real﹣time performance and portability.

  5. Mid-infrared High Energy Laser Beam Detector Array%中红外激光光斑探测阵列

    Institute of Scientific and Technical Information of China (English)

    杨鹏翎; 冯国斌; 王振宝; 邵碧波; 张磊; 冯刚; 闫燕; 武俊杰; 王群书

    2011-01-01

    The energy and power density distributions at target are important parameters for high energy system performance evaluation. A high energy laser beam detector array is developed using photoelectric and calorimetric compound method to accurately measure large area and long pulse mid-infrared laser. The detector array consists of graphite calorimeter and PbSe photoelectric detector array, temperature and voltage amplifier, analog to digital converter and signal processor. The effective sensitive area of the system is 22 cmX22 cm, the spatial resolution is 2.2 cm, and the temporal resolution is 20 ms, with the total energy measurement uncertainty of less than 10% and the power density distribution measurement uncertainty of less than 15%. The system is very suitable for high energy and large area mid-infrared laser beam measurement.%到靶能量和光斑分布参数是评价高能激光系统性能指标的重要参数,为准确测量中红外高能激光系统远场能量和功率密度的时空分布,采用热吸收和光电探测相结合的测量方法,研制了可用于大面积、长脉冲中红外高能激光测量的复合式光斑探测阵列.探测阵列由石墨热吸收单元和PbSe光电探测器阵列、信号调理放大电路、数据采集单元和信号处理单元等几部分组成,有效测量面积为22 cm×22 cm,光斑测量空间分辨率为2.2 cm,时间分辨率为20 ms,能量测量不确定度小于10%,功率密度测量不确定度小于15%.采用该系统,可实现高能量、大面积中红外高能激光光斑参数的综合测量.

  6. Design of Low Power CMOS Read-Out with TDI Function for Infrared Linear Photodiode Array Detectors

    Science.gov (United States)

    Vizcaino, Paul; Ramirez-Angulo, Jaime; Patel, Umesh D.

    2007-01-01

    A new low voltage CMOS infrared readout circuit using the buffer-direct injection method is presented. It uses a single supply voltage of 1.8 volts and a bias current of 1uA. The time-delay integration technique is used to increase the signal to noise ratio. A current memory circuit with faulty diode detection is used to remove dark current for background compensation and to disable a photodiode in a cell if detected as faulty. Simulations are shown that verify the circuit that is currently in fabrication in 0.5ym CMOS technology.

  7. Advanced Microstructural Characterization for Development of Improved HgCdTe Detectors and Devices

    Science.gov (United States)

    2014-09-21

    2701-1 J. Chai, O. C. Noriega , A. Dedigama, J. J. Kim, A. A. Savage, K. Doyle, C. Smith, N. Chau, J. Pena, J. H. Dinan, D. J. Smith, T. H. Myers...Chai, O.C. Noriega , J.H. Dinan, J.J. Kim, D.J. Smith, and T.H. Myers, presented at 2012 U.S. Workshop on Physics and Chemistry of II-VI Materials...were also examined for comparison purposes. 6 J. Chai, O.C. Noriega , A. Dedigama, J.J. Kim, A.A. Savage, K. Doyle, C. Smith, N. Chau, J.H. Dinan

  8. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A linear mode HgCdT electron-initiated avalanche photodiode (EAPD) capable of 1570nm photon detection efficiency (PDE) at >10 MHz will be developed. The Phase I...

  9. Single Photon Sensitive HgCdTe Avalanche Photodiode Detector (APD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Leveraging Phase I SBIR successes, in Phase II, a single photon sensitive LIDAR receiver will be fabricated and delivered to NASA. In Phase I, high-gain,...

  10. Design and development of SiGe based near-infrared photodetectors

    Science.gov (United States)

    Zeller, John W.; Puri, Yash R.; Sood, Ashok K.; McMahon, Shane; Efsthadiatis, Harry; Haldar, Pradeep; Dhar, Nibir K.

    2014-10-01

    Near-infrared (NIR) sensors operating at room temperatures are critical for a variety of commercial and military applications including detecting mortar fire and muzzle flashes. SiGe technology offers a low-cost alternative to conventional IR sensor technologies such as InGaAs, InSb, and HgCdTe for developing NIR micro-sensors that will not require any cooling and can operate with high bandwidths and comparatively low dark currents. Since Ge has a larger thermal expansion coefficient than Si, tensile strain may be incorporated into detector devices during the growth process, enabling an extended operating wavelength range above 1600 nm. SiGe based pin photodetectors have advantages of high stability, low noise, and high responsivity compared to metal-semiconductor-metal (MSM) devices. We have developed a process flow and are fabricating SiGe detector devices on 12" (300 mm) silicon wafers in order to take advantage of high throughput, large-area leading-edge silicon based CMOS technology that provides small feature sizes with associated device cost/density scaling advantages. The fabrication of the detector devices is facilitated by a two-step growth process incorporating initial low temperature growth of Ge/SiGe to form a thin strain-relaxed layer, followed by high temperature growth to deposit a thicker absorbing film, and subsequent high temperature anneal. This growth process is designed to effectively reduce dark current and enhance detector performance by reducing the number of defects and threading dislocations which form recombination centers during the growth process. Various characterization techniques have been employed to determine the properties of the epitaxially deposited Ge/SiGe layers, and the corresponding results are discussed.

  11. Numerical method to optimize the Polar-Azimuthal Orientation of Infrared Superconducting Nanowire Single-Photon Detectors

    CERN Document Server

    Csete, Mária; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K

    2011-01-01

    A novel finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the RF module of the COMSOL software package. This method is capable of numerically determining the optical response and near-field distribution of sub-wavelength periodic structures as a function of illumination orientations specified by polar angle, fi, and azimuthal angle, gamma. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogensilsesquioxane-filled nano-optical cavities and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. T...

  12. On-board data processing for the near infrared spectrograph and photometer instrument (NISP) of the EUCLID mission

    Science.gov (United States)

    Bonoli, Carlotta; Balestra, Andrea; Bortoletto, Favio; D'Alessandro, Maurizio; Farinelli, Ruben; Medinaceli, Eduardo; Stephen, John; Borsato, Enrico; Dusini, Stefano; Laudisio, Fulvio; Sirignano, Chiara; Ventura, Sandro; Auricchio, Natalia; Corcione, Leonardo; Franceschi, Enrico; Ligori, Sebastiano; Morgante, Gianluca; Patrizii, Laura; Sirri, Gabriele; Trifoglio, Massimo; Valenziano, Luca

    2016-07-01

    The Near Infrared Spectrograph and Photometer (NISP) is one of the two instruments on board the EUCLID mission now under implementation phase; VIS, the Visible Imager is the second instrument working on the same shared optical beam. The NISP focal plane is based on a detector mosaic deploying 16x, 2048x2048 pixels^2 HAWAII-II HgCdTe detectors, now in advanced delivery phase from Teledyne Imaging Scientific (TIS), and will provide NIR imaging in three bands (Y, J, H) plus slit-less spectroscopy in the range 0.9÷2.0 micron. All the NISP observational modes will be supported by different parametrization of the classic multi-accumulation IR detector readout mode covering the specific needs for spectroscopic, photometric and calibration exposures. Due to the large number of deployed detectors and to the limited satellite telemetry available to ground, a consistent part of the data processing, conventionally performed off-line, will be accomplished on board, in parallel with the flow of data acquisitions. This has led to the development of a specific on-board, HW/SW, data processing pipeline, and to the design of computationally performing control electronics, suited to cope with the time constraints of the NISP acquisition sequences during the sky survey. In this paper we present the architecture of the NISP on-board processing system, directly interfaced to the SIDECAR ASICs system managing the detector focal plane, and the implementation of the on-board pipe-line allowing all the basic operations of input frame averaging, final frame interpolation and data-volume compression before ground down-link.

  13. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    Science.gov (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  14. 红外甲烷气体浓度检测仪设计%Design of Infrared Methane Gas Concentration Detector

    Institute of Scientific and Technical Information of China (English)

    郭晓满; 戴景民

    2016-01-01

    Methane is the main components of the coal gas, the proportion of the gas explosion accident in the total of coal mine safety accidents has increasingly in recent years of our country. The methane gas detection under the mine becomes a faced important issue. This paper gives a brief interview of the frequently-used gas detection methods and uses infrared absorption detection theory combined modern detection equipment and data processing method, based on the STC12C5A60S2 processing system a portable methane gas concentration detector with audible and visual alarm function is designed. The detector has the advantage of small volume, fast response and stable performance, etc.%甲烷气体是煤矿瓦斯气体的主要成分,近年来我国因瓦斯爆炸而导致的事故占总煤矿安全事故的比重越来越大,这使得矿下甲烷气体的监测成为我们面临的重要问题。本文对于目前常用的气体浓度检测方法做了简要概述,利用红外吸收检测原理,结合现代检测设备和数据处理方法基于S T C12C5A60S2单片机处理系统,设计了一款便携式、有声光报警功能的甲烷气体浓度检测仪。该检测仪具有体积小、响应速度快、性能稳定等优点。

  15. The cosmic infrared background experiment-2 (CIBER-2) for studying the near-infrared extragalactic background light

    Science.gov (United States)

    Shirahata, Mai; Arai, Toshiaki; Battle, John; Bock, James; Cooray, Asantha; Enokuchi, Akito; Hristov, Viktor; Kanai, Yoshikazu; Kim, Min Gyu; Korngut, Phillip; Lanz, Alicia; Lee, Dae-Hee; Mason, Peter; Matsumoto, Toshio; Matsuura, Shuji; Morford, Tracy; Ohnishi, Yosuke; Park, Won-Kee; Sano, Kei; Takeyama, Norihide; Tsumura, Kohji; Wada, Takehiko; Wang, Shiang-Yu; Zemcov, Michael

    2016-07-01

    We present the current status of the Cosmic Infrared Background ExpeRiment-2 (CIBER-2) project, whose goal is to make a rocket-borne measurement of the near-infrared Extragalactic Background Light (EBL), under a collaboration with U.S.A., Japan, South Korea, and Taiwan. The EBL is the integrated light of all extragalactic sources of emission back to the early Universe. At near-infrared wavelengths, measurement of the EBL is a promising way to detect the diffuse light from the first collapsed structures at redshift z˜10, which are impossible to detect as individual sources. However, recently, the intra-halo light (IHL) model is advocated as the main contribution to the EBL, and our new result of the EBL fluctuation from CIBER-1 experiment is also supporting this model. In this model, EBL is contributed by accumulated light from stars in the dark halo regions of low- redshift (zCIBER- 1 experiment, we are now developing a new instrument CIBER-2, which is comprised of a 28.5-cm aluminum telescope and three broad-band, wide-field imaging cameras. The three wide-field (2.3×2.3 degrees) imaging cameras use the 2K×2K HgCdTe HAWAII-2RG arrays, and cover the optical and near-infrared wavelength range of 0.5-0.9 μm, 1.0-1.4 μm and 1.5-2.0 μm, respectively. Combining a large area telescope with the high sensitivity detectors, CIBER-2 will be able to measure the spatial fluctuations in the EBL at much fainter levels than those detected in previous CIBER-1 experiment. Additionally, we will use a linear variable filter installed just above the detectors so that a measurement of the absolute spectrum of the EBL is also possible. In this paper, the scientific motivation and the expected performance for CIBER-2 will be presented. The detailed designs of the telescope and imaging cameras will also be discussed, including the designs of the mechanical, cryogenic, and electrical systems.

  16. Recent progress in the doping of MBE HgCdTe

    Science.gov (United States)

    Sivananthan, Sivalingam; Wijewarnasuriya, P. S.; Faurie, Jean-Pierre

    1995-09-01

    We present a review of the recent progress in the doping of HgCdTe grown by molecular beam epitaxy. A detailed analysis of the unintentional/intrinsic, n-type, and p-type doping is presented. Our results show that CdZnTe substrates should be carefully screened to reduce the out-diffusion of impurities from the substrate. N-type HgCdTe layers exhibit excellent Hall characteristics down to indium levels of 2 X 10(superscript 15) cm(superscript -3). Electron mobilities in the range of (2 - 3) X 10(superscript 5) cm(superscript 2)/vs at 23 K were obtained. Measured lifetime data fits very well with the intrinsic band-to-band recombination. However, below 2 X 10(superscript 15) cm(superscript -3) doping levels, minority carrier lifetime is limited by Schockley-Reed recombination. We have implemented planar doping with arsenic as p-type dopant during MBE growth. Our results clearly indicate that arsenic incorporates as an acceptor dopant during the growth of MBE HgCdTe.

  17. Continuous-wave near-photon counting spectral imaging detector in the mid-infrared by upconversion

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2013-01-01

    Low noise upconversion of IR images by three-wave mixing, can be performed with high efficiency when mixing the object radiation with a powerful laser field inside a highly non-linear crystal such as periodically poled Lithium Niobate. Since IR cameras are expensive and have high levels of intrin......Low noise upconversion of IR images by three-wave mixing, can be performed with high efficiency when mixing the object radiation with a powerful laser field inside a highly non-linear crystal such as periodically poled Lithium Niobate. Since IR cameras are expensive and have high levels...... high-end IR cameras have read noise of hundreds of electrons. The dark noise for infrared cameras based on semiconductor materials is also substantially higher than for silicon cameras, typical values being millions of electrons per pixel per second for cryogenically cooled cameras whereas peltier...... cooled CCD cameras have dark noise measured in fractions of electrons per pixel per second. An ideal solution thus suggest the combination of an efficient low noise image wavelength conversion system combined with low noise silicon based cameras for low noise imaging in the IR region. We discuss image...

  18. Coherent infrared imaging camera (CIRIC)

    Energy Technology Data Exchange (ETDEWEB)

    Hutchinson, D.P.; Simpson, M.L.; Bennett, C.A.; Richards, R.K.; Emery, M.S.; Crutcher, R.I.; Sitter, D.N. Jr.; Wachter, E.A.; Huston, M.A.

    1995-07-01

    New developments in 2-D, wide-bandwidth HgCdTe (MCT) and GaAs quantum-well infrared photodetectors (QWIP) coupled with Monolithic Microwave Integrated Circuit (MMIC) technology are now making focal plane array coherent infrared (IR) cameras viable. Unlike conventional IR cameras which provide only thermal data about a scene or target, a coherent camera based on optical heterodyne interferometry will also provide spectral and range information. Each pixel of the camera, consisting of a single photo-sensitive heterodyne mixer followed by an intermediate frequency amplifier and illuminated by a separate local oscillator beam, constitutes a complete optical heterodyne receiver. Applications of coherent IR cameras are numerous and include target surveillance, range detection, chemical plume evolution, monitoring stack plume emissions, and wind shear detection.

  19. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  20. 大电流宽频带热释电红外探测器优化设计%Optimization Design of Large current broadband pyroelectric infrared detector

    Institute of Scientific and Technical Information of China (English)

    王芳; 杨桂勇; 宋艳; 颜延志; 马春旺

    2011-01-01

    本文提出了一种大电流宽频带的热释电红外探测器的优化设计方法.在分析热释电输出电压响应的基础上,结合热辐射探测的特点,提出了新的仿真模型,实际电路与仿真数据基本吻合.通过采用双极型结型场效应管(BJFET)和改变热释电时间常数等方法解决了热释电前置放大器输出信号弱和通频带窄的关键问题.%This paper presents a large current broadband pyroelectric infrared detector optimal design method. The analysis of the pyroelectric response of the output voltage based on the combination of the characteristics of thermal radiation detection, put forword a new simulation model, and the actual circuit is basically consistent with simulation data. Through using bipolar JFET (BJFET) and changing the time constant and so on, we will improve the low - output and narrow bands which were the key issues of pyroelectric preamplifier.

  1. Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.

    Science.gov (United States)

    Zhang, Qingfang; Liu, Yan; Yan, Jing; Zhang, Chunfu; Hao, Yue; Han, Genquan

    2015-03-23

    We theoretically investigate a tensile strained GeSn waveguide integrated with Si₃N₄ liner stressor for the applications in mid-infrared (MIR) detector and modulator. A substantial tensile strain is induced in a 1 × 1 μm² GeSn waveguide by the expansion of 500 nm Si₃N₄ liner stressor and the contour plots of strain are simulated by the finite element simulation. Under the tensile strain, the direct bandgap E(G,Γ) of GeSn is significantly reduced by lowering the Γ conduction valley in energy and lifting of degeneracy of valence bands. Absorption coefficients of tensile strained GeSn waveguides with different Sn compositions are calculated. As the Si₃N₄ liner stressor expands by 1%, the cut-off wavelengths of tensile strained Ge(0.97)Sn(0.03), Ge(0.95)Sn(0.05), and Ge(0.90)Sn(0.10) waveguide photodetectors are extended to 2.32, 2.69, and 4.06 μm, respectively. Tensile strained Ge(0.90)Sn(0.10) waveguide electro-absorption modulator based on Franz-Keldysh (FK) effect is demonstrated in theory. External electric field dependence of cut-off wavelength and propagation loss of tensile strained Ge(0.90)Sn(0.10) waveguide is observed, due to the FK effect.

  2. 红外单光子探测器定标方法研究%CALIBRATION METHOD STUDY FOR INFRARED SINGLE-PHOTON DETECTORS

    Institute of Scientific and Technical Information of China (English)

    马伊平; 宫铖; 丁漪; 冯瑜

    2015-01-01

    紫外激光器输出的355 nm激光泵浦BBO晶体,采用晶体的I类相位匹配,利用晶体的角度调谐特性得到的红外波段光源应用于单光子探测器定标,提出了利用参量下转换产生的纠缠光子对定标SPCM单光子探测器量子效率的方法,介绍了实验原理和定标装置。%355 nm UV laser output laser pumping BBO crystal, using I phase matching crystal, infrared light source utilizing crystal angle tuning characteristics are applied to the single-photon detector calibration. We propose the use of parametric down conversion produce entangled photons calibrate SPCM quantum efficiency of the method. We also introduce the principle and experiment of calibration device.

  3. TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Doyon, R; Nadeau, D; Racine, R; Riopel, M; Vallee, P; Lafreniere, D

    2005-04-08

    A near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6-m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024 x 1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 {micro}m, enabling, in theory, an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronoagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL526, {nu}-And and {chi}-And. TRIDENT can detect (6{sigma}) a methanated companion with {Delta}H = 9.5 at 0.5'' separation from the star in one hour of observing time. Non-common path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference star subtraction improve the detection limit by a factor of 2 and 4 respectively. A PSF noise attenuation model is presented to estimate the non-common path wavefront difference effect on PSF subtraction performance.

  4. TRIDENT: an Infrared Differential Imaging Camera Optimized for the Detection of Methanated Substellar Companions

    Energy Technology Data Exchange (ETDEWEB)

    Marois, C; Doyon, R; Nadeau, D; Racine, R; Riopel, M; Vallee, P; Lafreniere, D

    2005-04-08

    A near-infrared camera in use at the Canada-France-Hawaii Telescope (CFHT) and at the 1.6-m telescope of the Observatoire du Mont-Megantic is described. The camera is based on a Hawaii-1 1024 x 1024 HgCdTe array detector. Its main feature is to acquire three simultaneous images at three wavelengths across the methane absorption bandhead at 1.6 {micro}m, enabling, in theory, an accurate subtraction of the stellar point spread function (PSF) and the detection of faint close methanated companions. The instrument has no coronoagraph and features fast data acquisition, yielding high observing efficiency on bright stars. The performance of the instrument is described, and it is illustrated by laboratory tests and CFHT observations of the nearby stars GL526, {nu}-And and {chi}-And. TRIDENT can detect (6{sigma}) a methanated companion with {Delta}H = 9.5 at 0.5'' separation from the star in one hour of observing time. Non-common path aberrations and amplitude modulation differences between the three optical paths are likely to be the limiting factors preventing further PSF attenuation. Instrument rotation and reference star subtraction improve the detection limit by a factor of 2 and 4 respectively. A PSF noise attenuation model is presented to estimate the non-common path wavefront difference effect on PSF subtraction performance.

  5. La détection infrarouge avec les plans focaux non refroidis : état de l'artUncooled focal plane infrared detectors: the state of the art

    Science.gov (United States)

    Tissot, Jean-Luc

    2003-12-01

    The emergence of uncooled detectors has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing infrared detector manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability infrared detector with a precise determination of the amount of absorbed infrared flux. Hence, infrared detector with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J

  6. Low background infrared (LBIR) facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Low background infrared (LBIR) facility was originally designed to calibrate user supplied blackbody sources and to characterize low-background IR detectors and...

  7. Numerical modeling of HgCdTe solidification: effects of phase diagram double-diffusion convection and microgravity level

    Science.gov (United States)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1997-07-01

    A numerical model of HgCdTe solidification was implemented using finite the element code FIDAP. Model verification was done using both experimental data and numerical test problems. The model was used to eluate possible effects of double- diffusion convection in molten material, and microgravity level on concentration distribution in the solidified HgCdTe. Particular attention was paid to incorporation of HgCdTe phase diagram. It was found, that below a critical microgravity amplitude, the maximum convective velocity in the melt appears virtually independent on the microgravity vector orientation. Good agreement between predicted interface shape and an interface obtained experimentally by quenching was achieved. The results of numerical modeling are presented in the form of video film.

  8. Progress in cooled IR detectors and new developments

    Science.gov (United States)

    Tribolet, Philippe; Vuillermet, Michel

    2008-03-01

    Cooled IR detectors are produced at mass production level at Sofradir for years based on its mature and proven HgCdTe technology. However, following the market needs, a lot of progress have been made and allow Sofradir to offer new product designs mainly dealing with the simplification of the detector use as well as reliability improvements. In addition to the conventional technologies used at mass production level, the Molecular Beam Epitaxy (MBE) approach has been under investigation for several years to prepare both the very large array fabrication and the new (3rd) generation developments. CEA-Leti, in cooperation with Sofradir, obtained very good results on 4-inches wafer size which confirms the mastering of this growth process. Very high qualities FPAs (1280×1024), with pitches as small as 15μm, were demonstrated as well as bicolor and dual band FPAs which use more complex multi hetero-junctions architectures. A very new development at CEA-Leti concerns avalanche photodiodes (APD) made with HgCdTe which presents a unique feature among all the over semiconductors: extremely high avalanche gains can be obtained on n on p photodiodes without absolutely any noise excess. These results open new interesting fields of investigation for low flux applications and fast detectors. The cooled IR detector field is progressing very rapidly and new developments will offer a lot of system simplification and enhancements.

  9. SW-MW infrared spectrometer for lunar mission

    Science.gov (United States)

    Banerjee, Arup; Biswas, Amiya; Joshi, Shaunak; Kumar, Ankush; Rehman, Sami; Sharma, Satish; Somani, Sandip; Bhati, Sunil; Karelia, Jitendra; Saxena, Anish; Chowdhury, Arup R.

    2016-04-01

    SW-MW Imaging Infrared Spectrometer, the Hyperspectral optical imaging instrument is envisaged to map geomorphology and mineralogy of lunar surface. The instrument is designed to image the electro-magnetic energy emanating from moon's surface with high spectral and spatial resolution for the mission duration from an altitude of 100 km. It is designed to cover 0.8 to 5 μm in 250 spectral bands with GSD 80m and swath 20km. Primarily, there are three basic optical segments in the spectrometer. They are fore optics, dispersing element and focusing elements. The payload is designed around a custom developed multi-blaze convex grating optimized for system throughput. The considerations for optimization are lunar radiation, instrument background, optical throughput, and detector sensitivity. HgCdTe (cooled using a rotary stirling cooler) based detector array (500x256 elements, 30μm) is being custom developed for the spectrometer. Stray light background flux is minimized using a multi-band filter cooled to cryogenic temperature. Mechanical system realization is being performed considering requirements such as structural, opto-mechanical, thermal, and alignment. The entire EOM is planned to be maintained at 240K to reduce and control instrument background. Al based mirror, grating, and EOM housing is being developed to maintain structural requirements along with opto- mechanical and thermal. Multi-tier radiative isolation and multi-stage radiative cooling approach is selected for maintaining the EOM temperature. EOM along with precision electronics packages are planned to be placed on the outer and inner side of Anti-sun side (ASS) deck. Power and Cooler drive electronics packages are planned to be placed on bottom side of ASS panel. Cooler drive electronics is being custom developed to maintain the detector temperature within 100mK during the imaging phase. Low noise detector electronics development is critical for maintaining the NETD requirements at different target

  10. 阻挡杂质带红外探测器中的界面势垒效应∗%Interfacial barrier effects in blo cked impurity band infrared detectors

    Institute of Scientific and Technical Information of China (English)

    廖开升; 李志锋; 李梁; 王超; 周孝好; 戴宁; 李宁

    2015-01-01

    Blocked impurity band (BIB) detectors, developed from extrinsic detectors, have long been employed for ground-based and airborne astronomical imaging and photon detections. They are the state-of-the-art choice for highly sensitive detection from mid-infrared to far-infrared radiation. In this work, we demonstrate the existence of an interfacial barrier in blocked impurity band structures by evidence of temperature-dependent dark currents, bias-dependent photocurrent spectra and corresponding theoretical calculations. The origin of the build-in field is studied. The temperature-dependent characteristics of space charge effects are also investigated in detail. It is found that at higher temperature (T >14 K), the space charge influence is negligible, and the interfacial barrier is mainly caused by bandgap narrowing effects. Based on interfacial barrier effects, a dual-excitation model is proposed to clarify the band structure of BIB detectors. The photocurrent spectra related to the two excitation processes, i.e., the direct excitation over the interfacial barrier and excitation to the band edge with subquent tunneling into blocking layer, are successfully extracted and agree reasonably well with the calculated band structure results. The effects of interfacial barrier on the photocurrent spectrum, peak responsivity and internal quantum efficiency of the devices are investigated. With the consideration of interfacial barrier effects, the calculated peak responsivity shows good agreement with the experimental result. It is suggested that interfacial barrier effects should be considered for successfully designing the BIB detectors. Additionally, the build-in field is found to equivalently lower the critical field for impact ionization. This study provides a better understanding of the working mechanism in BIB detectors and also a better device optimization.

  11. Barrier Infrared Detector (BIRD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — JPL will design, fabricate, and fully characterize a 640x512 format HOT-BIRD FPA with increased quantum efficiency and extended spectral coverage. Unlike the small...

  12. Infrared detector device inspection system

    Science.gov (United States)

    Soehnel, Grant; Bender, Daniel A.

    2016-08-09

    Methods and apparatuses for identifying carrier lifetimes are disclosed herein. In a general embodiment, a beam of light is sent to a group of locations on a material for an optical device. Photons emitted from the material are detected at each of the group of locations. A carrier lifetime is identified for each of the group of locations based on the photons detected from each of the group of locations.

  13. [A trace methane gas sensor using mid-infrared quantum cascaded laser at 7.5 microm].

    Science.gov (United States)

    Chen, Chen; Dang, Jing-Min; Huang, Jian-Qiang; Yang, Yue; Wang, Yi-Ding

    2012-11-01

    Presented is a compact instrument developed for in situ high-stable and sensitive continuous measurement of trace gases in air, with results shown for ambient methane (CH4) concentration accurate, real-time and in-situ. This instrument takes advantage of recent technology in thermoelectrically cooling (TEC) pulsed Fabry-Perot (FP) quantum cascaded laser (QCL) driving in a pulse mode operating at 7.5 microm ambient temperature to cover a fundamental spectral absorption band near v4 of CH4. A high quality Liquid Nitrogen (LN) cooled Mercury Cadmium Telluride (HgCdTe) mid-infrared (MIR) detector is used along with a total reflection coated gold ellipsoid mirror offering 20 cm single pass optical absorption in an open-path cell to achieve stability of 5.2 x 10(-3) under experimental condition of 200 micromol x mol(-1) measured ambient CH4. The instrument integrated software via time discriminating electronics technology to control QCL provides continuous quantitative trace gas measurements without calibration. The results show that the instrument can be applied to field measurements of gases of environmental concern. Additional, operator could substitute a QCL operating at a different wavelength to measure other gases.

  14. Analysis of carrier concentration, lifetime, and electron mobility on p-type HgCdTe

    Science.gov (United States)

    Yoo, Sang Dong; Kwack, Kae Dal

    1998-03-01

    Minority carrier transport characteristics of vacancy-doped p-type HgCdTe such as carrier concentration, lifetime, and mobility are investigated. In the calculation of the carrier concentration two acceptor levels—a donor level and a trap level—were taken into account. The acceptor levels have been described by two models—two independent singly ionized levels and a divalent level with two ionization energies. When each model was examined by calculating electron mobility as a function of temperature, the latter was found to be more accurate. Electron mobility as a function of majority carrier concentration was also presented for both n-type and p-type HgCdTe with 0.225 Cd mole fraction. Steady state electron lifetime was computed assuming the acceptor levels and the trap level would act as Schokley-Read-Hall type recombination centers. The calculated results using the divalent acceptor model were in good agreement with the experimental data.

  15. RF magnetron sputtering deposition of CdTe passivation on HgCdTe

    Science.gov (United States)

    Rutkowski, Jaroslaw; Adamiec, Krzysztof; Rogalski, Antoni

    1998-04-01

    In this study, we report the RF magnetron sputtering growth and characterization of CdTe passivant on bulk n-type HgCdTe. Our investigations include the HgCdTe surface preparation and in-situ pretreatment, deposition-induced surface damage, interface charge, CdTe film stoichiometry, and thermal stability. The metal-insulator-semiconductor test structures are processed and their electrical properties are measured by capacitance-voltage characteristics. The heterostructures are also characterized by reflectance measurement. In order to investigate the passivation properties of CdTe/HgCdTe heterostructures, we have modeled the band diagram of abrupt CdTe/HgCdTe heterojunction. The effect of sputtering growth condition parameters is also reported. The sputtering CdTe layers, exhibit excellent dielectric, insulating and mechano- chemical properties, as well as interface properties. The interfaces are characterized by slight accumulation and a small hysteresis. A carefully controlled growth process and surface pretreatment tailored to the specific material are required in order to obtain near flat band conditions on n- type materials. Additional informations on surface limitations are obtained from analyzing the I-V characteristics of photodiodes with metal gates covering the p-n junction surface location.

  16. Diffusion Mechanism for Arsenic in Intrinsic and Extrinsic Conditions in HgCdTe

    Science.gov (United States)

    Grenouilloux, T.; Ferron, A.; Péré-Laperne, N.; Mathiot, D.

    2017-09-01

    Due to its low diffusivity and high activation rate, arsenic has become the dopant of choice in p/n HgCdTe high operating temperature technology. Its diffusion mechanism, however, remains imprecise. In this work, arsenic diffusion was studied in molecular beam epitaxy HgCdTe structures consisting of alternatively As-doped and intrinsic layers grown on a CdZnTe substrate. The diffusion coefficient of As was extracted from secondary ion mass spectroscopy concentration profiles. Annealings were performed for different temperatures, mercury partial pressures ( P Hg), annealing times and cadmium atomic fractions. Fermi-level effect on diffusion was observed, indicating extrinsic conditions for diffusion at high As concentration. Based on the variation of As diffusivity with P Hg and As concentration, we propose that As diffusion occurs on both II and VI sublattices. Our results are consistent with the fact that AsVI diffusion is assisted by the Te interstitial, introducing donor levels in the bandgap, while AsII diffusion is assisted by the cation vacancy.

  17. Infrared Emitters and Photodetectors with InAsSb Bulk Active Region

    Science.gov (United States)

    2013-04-29

    pyrometer previously calibrated using references such as the III to V enriched surface reconstruction transition, oxide desorption and melting point of InS...electroluminescence. The optical power was measured using calibrated lnSb and HgCdTe photodetectors and an integrating sphere. The electroluminescence spectra...transport and recombination properties for MWIR and LWIR pbotodetectors", Infrared l!’recbn·oi.OJIY and Applications, XXXVIII, ed. by B. J. Andresen, G. F

  18. Feedback Direct Injection Current Readout For Infrared Charge-Coupled Devices

    Science.gov (United States)

    Kubo, Kazuya; Wakayama, Hiroyuki; Kajihara, Nobuyuki; Awamoto, Kenji; Miyamoto, Yoshihiro

    1990-01-01

    We are proposing current readout for infrared charge coupled devices (IRCCDs) which can operate at higher temperatures. Feedback direct injection (FDI) consists of a simple amplifier of gain, AFDI was used in a medium-wavelength IRCCD operating at a high temperature. We made a 64-element HgCdTe linear IRCCD using FDI. The device operates at 195 K with an NETD of 0.5 K.

  19. Molecular beam epitaxy of CdTe and HgCdTe on large-area Si(100)

    Science.gov (United States)

    Sporken, R.; Lange, M. D.; Faurie, Jean-Pierre

    1991-09-01

    The current status of molecular beam epitaxy (MBE) of CdTe and HgCdTe on Si(100) is reviewed. CdTe and HgCdTe grow in the (111)B orientation on Si(100); monocrystalline films with two domains are obtained on most nominal Si(100) substrates, single domain films are grown on misoriented substrates and on nominal Si(100) preheated to 900-950 degree(s)C. Double-crystal x-ray rocking curves (DCRCs) with full-width at half-maximum (FWHM) as low as 110 arcsec are reported for HgCdTe on silicon; these layers are n-type, and electron mobilities higher than 5 X 104 cm2V-2s-1 are measured at 23 K for x equals 0.26. Excellent thickness and composition uniformity is obtained: standard deviation of the CdTe thickness 0.4% of the average thickness on 2-in. and 2.3% on 5-in., standard deviation of the Cd concentration in the HgCdTe layers 0.6% of the average concentration on 3-in. and 2.4% on 5-in. First results regarding growth of CdTe on patterned Si substrates are also reported.

  20. Infrared Imaging

    Science.gov (United States)

    Danchi, W.; Lawson, P.; Absil, O.; Akeson, R.; Bally, J.; Barry, R.; Beichman, C.; Belu, A.; Boyce, M.; Breckinridge, J.; Burrows, A.; Chen, C.; Cole, D.; Crisp, D.; Danner, R.; Deroo, P.; Coudé du Foresto, V.; Defrère, D.; Ebbets, D.; Falkowski, P.; Gappinger, R.; Haugabook, I.; Hanot, C.; Henning, T.; Hinz, P.; Hollis, J.; Hunyadi, S.; Hyland, D.; Johnston, K.; Kaltenegger, L.; Kasting, J.; Kenworthy, M.; Ksendzov, A.; Lane, B.; Laughlin, G.; Lay, O.; Liseau, R.; Lopez, B.; Millan-Gabet, R.; Martin, S.; Mawet, D.; Mennesson, B.; Monnier, J.; Murakami, N.; Noecker, C.; Nishikawa, J.; Pesesen, M.; Peters, R.; Quillen, A.; Ragland, S.; Rinehart, S.; Rottgering, H.; Scharf, D.; Serabyn, G.; Tamura, M.; Tehrani, M.; Traub, W.; Unwin, S.; Wilner, D.; Woilliez, J.; Woolf, N.; Zhao, M.

    2009-03-01

    A mid-infrared mission would enable the detection of biosignatures of Earth-like exoplanets around more than 150 nearby stars. The mid-infrared spectral region is attractive for characterizing exoplanets because contrast with the parent star brightness is more favorable than in the visible (10 million vs. 10 billion), and because mid-infrared light probes deep into a planet's troposphere. Furthermore, the mid-infrared offers access to several strong molecular features that are key signs of life, and also provides a measure of the effective temperature and size of a planet. Taken together, an infrared mission plus a visible one would provide a nearly full picture of a planet, including signs of life; with a measure of mass from an astrometric mission, we would have a virtually complete picture. A small infrared mission would have several telescopes that are rigidly connected, with a science return from the detection and characterization of super-Earth sized to larger planets near the HZ, plus a direct measure of the exozodi brightness in the HZ. In a large infrared mission, with formation-flying telescopes, planets from an Earth-twin and upwards in mass could be detected and characterized, as well as the exozodi. If proceeded by an astrometric mission, the detection phase could be skipped and the mission devoted to characterization, as in the visible case; lacking an astrometric mission, an infrared one could proceed alone, as was discussed for a visible coronograph, and with similar caveats. The technology needed for a large formation-flying mission is similar to that for a small connected-element one (e.g., cryogenics and detectors), with the addition of formationflying technology. The technology is now in hand to implement a probe-scale mission; starlight suppression has even been demonstrated to meet the requirements of a flagship mission. However, additional development of formation-flying technology is needed, particularly in-space testing of sensors and

  1. Infrared Astronomy with Arrays: The Next Generation; Sunset Village, Los Angeles, CA, Oct. 1993

    Science.gov (United States)

    Mclean, Ian S.

    1994-01-01

    Conference papers on infrared array techniques and methods for infrared astronomy are presented. Topics covered include the following: infrared telescopes; infrared spectrometers; spaceborne astronomy; astronomical observatories; infrared cameras; imaging techniques; sky surveys; infrared photography; infrared photometry; infrared spectroscopy; equipment specifications; data processing and analysis; control systems; cryogenic equipment; adaptive optics; image resolution; infrared detector materials; and focal plane arrays.

  2. A Design of Signal Acquisition Module for 288 × 4 Long-wavelength Infrared Detectors%288×4长波红外探测器数据采集模块的设计

    Institute of Scientific and Technical Information of China (English)

    陈晓东

    2011-01-01

    针对288×4长波焦平面红外探测器组件的特点,设计了一个数据采集模块,以FPGA为核心,为探测器提供时序与控制信号,同时对探测器输出的四路红外模拟图像信号进行高精度的模数转换,然后将红外数字图像信号向后端传送.实验结果表明,采集到的红外图像具有噪声低、稳定性好等特点.当探测器在293 K黑体的照射下,并且积分时间为19μs时,整个红外图像采集系统的平均噪声等效温差(NETD)在30mK左右.%According to the characteristic of 288×4 LWIR CMOS Integrated Detector Dewar Cooler Assembly, a data acquisition module is designed based on FPGA to provide clock and control signals,translating four channels of infrared analog image signals to digital signals accurately, and then sending the infrared digital image signals to the back end.Experimental results show that the collected infrared images have the characteristic of low noise and high stability.The average NETD of the whole infrared image collecting system is about 30 mK, when the detector is radiated by the 293 K blackbody and the integral time is set to 19 μs.

  3. GRAVITY detector systems

    Science.gov (United States)

    Mehrgan, Leander H.; Finger, Gert; Eisenhauer, Frank; Panduro, Johana

    2016-08-01

    GRAVITY is a second generation instrument for the VLT Interferometer, designed for high-precision narrow-angle astrometry and phase-referenced interferometric imaging in the K-band. It will combine the AO corrected beams of the four VLT telescopes. In total, the GRAVITY instrument uses five eAPD detectors four for the infrared wavefront sensors of each telescope and one for the fringe tracker. In addition two Hawaii2RG arrays are installed, one for the acquisition camera and one for the spectrometer. The SAPHIRA eAPD array is a newly developed near-infrared detector with sub-electron noise performance at frame rates > 1Kfps. For all seven detectors the ESO common controller, NGC, is used. This paper presents an overview and comparison of GRAVITY detector systems and their final performances at the telescope

  4. Infrared Solar Physics

    Directory of Open Access Journals (Sweden)

    Matthew J. Penn

    2014-05-01

    Full Text Available The infrared solar spectrum contains a wealth of physical data about our Sun, and is explored using modern detectors and technology with new ground-based solar telescopes. The scientific motivation behind exploring these wavelengths is presented, along with a brief look at the rich history of observations here. Several avenues of solar physics research exploiting and benefiting from observations at infrared wavelengths from roughly 1000 nm to 12 400 nm are discussed, and the instrument and detector technology driving this research is briefly summarized. Finally, goals for future work at infrared wavelengths are presented in conjunction with ground and space-based observations.

  5. Infrared light emission from semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Barton, D.L.; Tangyunyong, P.; Soden, J.M.; Liang, A.Y. [Sandia National Labs., Albuquerque, NM (United States); Low, F.J.; Zaplatin, A.N. [Infrared Labs., Inc., Tucson, AZ (United States); Shivanandan, K. [Singapore Univ. (Singapore). Inst. of Microelectronics; Donohoe, G. [New Mexico Univ., Albuquerque, NM (United States)

    1996-10-01

    We present results using near-infrared (NIR) cameras to study emission of common defect classes for integrated circuits. The cameras are based on a liquid nitrogen cooled HgCdTe imaging array with high quantum efficiency and very low read noise. The array was developed for infrared astronomy and has high quantum efficiency in the wavelength range from 0.8 to 2.5 {mu}m. For comparison, the same set of samples used to characterize the performance of the NIR camera were studied using a non-intensified, liquid-nitrogen-cooled, slow scan CCD camera (with a spectral range 400-1100 nm). Results show that the NIR camera images all of the defect classes studied here with much shorter integration times than the cooled CCD, suggesting that photon emission beyond 1 {mu}m is significantly stronger than at shorter wavelengths.

  6. 应用于红外成像导引头的非制冷焦平面探测器%Uncooled Focal Plane Arrays Detector Applied for Infrared Imaging Seeker

    Institute of Scientific and Technical Information of China (English)

    李煜; 白丕绩; 陶禹; 袁名松

    2016-01-01

    With great progress in fabrication technology, medium(large)scale, high temperature response and small pixel pitch UFPAs(Uncooled Focal Plane Arrays)detectors are produced. For its high cost-effectiveness, compactness and easy maintenance etc, seeker using UFPAs detector has become an important member in the infrared imaging seeker family. Some kinds of domestic and foreign representative weapons such as anti-tank missile, precision attack missile, precision guided bomb, anti-ship missile etc. and specifications of UFPAs used in infrared imaging guidance systems are introduced in detail. Finally, the characteristics and development trend of UFPAs for uncooled infrared imaging guidance systems are summarized.%随着非制冷探测器技术的迅猛发展,中大规模、高灵敏度的非制冷焦平面器件实现工程化应用.使用非制冷焦平面器件的红外成像导引头具有效费比高、结构紧凑、易维护等优点,已成为红外成像导引头的重要成员之一.介绍了国内外几款采用非制冷红外成像导引头的反坦克导弹、精确攻击导弹、精确炸弹、反舰导弹,以及所使用的非制冷焦平面器件的性能参数,总结了用于红外成像制导系统的非制冷焦平面器件的特点及发展趋势.

  7. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    Energy Technology Data Exchange (ETDEWEB)

    Mitchel, W. C., E-mail: William.Mitchel.1@us.af.mil; Haugan, H. J.; Mou, Shin; Brown, G. J. [Air Force Research Laboratory, Materials & Manufacturing Directorate, Wright-Patterson Air Force Base, Ohio 45433 (United States); Elhamri, S.; Berney, R. [University of Dayton, Department of Physics, Dayton, Ohio 45469 (United States)

    2015-09-15

    Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  8. Electrical properties of n-type GaSb substrates and p-type GaSb buffer layers for InAs/InGaSb superlattice infrared detectors

    Directory of Open Access Journals (Sweden)

    W. C. Mitchel

    2015-09-01

    Full Text Available Lightly doped n-type GaSb substrates with p-type GaSb buffer layers are the preferred templates for growth of InAs/InGaSb superlattices used in infrared detector applications because of relatively high infrared transmission and a close lattice match to the superlattices. We report here temperature dependent resistivity and Hall effect measurements of bare substrates and substrate-p-type buffer layer structures grown by molecular beam epitaxy. Multicarrier analysis of the resistivity and Hall coefficient data demonstrate that high temperature transport in the substrates is due to conduction in both the high mobility zone center Γ band and the low mobility off-center L band. High overall mobility values indicate the absence of close compensation and that improved infrared and transport properties were achieved by a reduction in intrinsic acceptor concentration. Standard transport measurements of the undoped buffer layers show p-type conduction up to 300 K indicating electrical isolation of the buffer layer from the lightly n-type GaSb substrate. However, the highest temperature data indicate the early stages of the expected p to n type conversion which leads to apparent anomalously high carrier concentrations and lower than expected mobilities. Data at 77 K indicate very high quality buffer layers.

  9. Electrical and Optical Studies of Defect Structure of HgCdTe Films Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Świątek, Z.; Ozga, P.; Izhnin, I. I.; Fitsych, E. I.; Voitsekhovskii, A. V.; Korotaev, A. G.; Mynbaev, K. D.; Varavin, V. S.; Dvoretsky, S. A.; Mikhailov, N. N.; Yakushev, M. V.; Bonchyk, A. Yu.; Savytsky, H. V.

    2016-07-01

    Electrical and optical studies of defect structure of HgCdTe films grown by molecular beam epitaxy (MBE) are performed. It is shown that the peculiarity of these films is the presence of neutral defects formed at the growth stage and inherent to the material grown by MBE. It is assumed that these neutral defects are the Te nanocomplexes. Under ion milling, they are activated by mercury interstitials and form the donor centers with the concentration of 1017 cm-3, which makes it possible to detect such defects by measurements of electrical parameters of the material. Under doping of HgCdTe with arsenic using high temperature cracking, the As2 dimers are present in the arsenic flow and block the neutral Te nanocomplexes to form donor As2Te3 complexes. The results of electrical studies are compared with the results of studies carried out by micro-Raman spectroscopy.

  10. Comparing and Contrasting Detectors: JWST NIR vs HST WFC3

    Science.gov (United States)

    Rauscher, Bernard J.

    2015-01-01

    In many ways, WFC3s IR channel is a good indicator for what to expect with JWST. There are some differences, most of which should be beneficial in JWST- JWSTs lower operating temperature will freeze out charge traps that would affect WFC3. Benefits should include lower dark current, lower persistence, and better reciprocity- JWSTs more recent HgCdTe process has lower defect density. The benefits are as described above- JWST uses better indium barriers. The benefits should include fewer RC type pixels. One area where more study might be beneficial is stability. The detector electronics play a significant role in determining how stable a detector system is(v.s. bias drifts and photometry). JWSTs SIDECARs are completely WFC3s Ball electronics- Studies comparing the bias and photometric stability of WFC3 and JWST might be useful to informing data acquisition and calibration strategies for JWST.

  11. Study on vacuum packaging of an uncooled infrared detector%一种非致冷红外探测器真空封装的研究

    Institute of Scientific and Technical Information of China (English)

    闫浩; 朱魁章; 仰叶

    2012-01-01

    A kind of packaging design of uncooled IR detector Dewar component was introduced in this paper. The key processes of packaging the detector at the condition of vacuum were analysed in detail. The factors which effects the vacuum life and the reliability of the component were described and resoved.%介绍了一种非致冷红外探测器杜瓦组件的封装设计;对探测器件在真空封装过程中的关键工艺技术进行了比较深入的分析;阐述了影响组件真空寿命及可靠性的因素以及解决措施.

  12. PtSi红外探测器截止波长延长研究%Study on Extension of Cut-off Wavelength of PtSi Infrared Detectors

    Institute of Scientific and Technical Information of China (English)

    刘爽; 杨家德; 刘飒; 宁永功; 陈艾

    2001-01-01

    The basic theory of the extension of cut-off wavelength of PtSi infrared detectors is discussed.Three methods are introduced including Tl+ and Ir+ doping, MBE growth of P+layer and B+, In+ low-energy ion-implantation.%讨论了将PtSi红外探测器截止波长延长的理论基础,并介绍了采用在衬底掺入Tl+和Ir+,MBE生长P+层以及低能离子注入B+,In+来延长PtSi红外探测器截止波长的三种方法。

  13. An Analysis about the Factors Affecting Working Life of Infrared Detector%红外探测器工作寿命的影响因素分析

    Institute of Scientific and Technical Information of China (English)

    崔军生; 贾卫民

    2011-01-01

    某系统上使用了几年的探测器在随系统返修测试的过程中,发现其斯特林制冷机在连续工作一段时间后突然停机,重新启动制冷器后降温速率变慢且探测器内部温度只能降到90K左右。本文针对杜瓦漏热和制冷功率因素与探测器工作寿命的影响关系进行了分析,得出了一些对提高探测器寿命具有帮助意义的结论。%In the repair testing process of the system after working many years, it is found that the Stirling cryocooler stops working suddenly after continuous running for a period of time. The cooling speed rate becomes slow and the minimum internal temperature of the detector only reaches about 90 K after restarting the Stirling cryocooler. The influence of Dewar thermal leakage and cooling power on the working life of detector is discussed. The conclusions are useful for improving the working life of detector.

  14. Very high-gain and low-excess noise near-infrared single-photon avalanche detector: an NIR solid state photomultiplier

    Science.gov (United States)

    Linga, Krishna; Yevtukhov, Yuriy; Liang, Bing

    2009-05-01

    A new family of photodetectors with a Discrete Amplification (DA) mechanism allows the realization of very high gain and low excess noise factor in the visible and near infrared spectral regions and offers an alternative to conventional photomultiplier tubes and Geiger mode avalanche photodetectors. These photodetectors can operate in linear detection mode with gain-bandwidth product in excess of 4X1014 and in photon counting mode with count rates up to 108 counts/sec. Potential benefits of this technology over conventional avalanche photodetectors include ultra low excess noise factor, very high gain, and lower reset time (photodetectors in the near infrared wavelength range. The measured devices have the following performance characteristics: gain > 2X105, excess noise factor Lidar, quantum cryptography, night vision and other military, defence and aerospace applications.

  15. Modelling of current-voltage characteristics of infrared photo-detectors based on type – II InAs/GaSb super-lattice diodes with unipolar blocking layers

    Directory of Open Access Journals (Sweden)

    Vishnu Gopal

    2015-09-01

    Full Text Available It is shown that current-voltage characteristics of infrared photo-detectors based on type-II InAs/GaSb super-lattices with uni-polar blocking layers can be modelled similar to a junction diode with a finite series resistance on account of blocking barriers. As an example this paper presents the results of a study of current-voltage characteristics of a type II InAs/GaSb super-lattice diode with PbIbN architecture using a recently proposed [J. Appl. Phys. 116, 084502 (2014] method for modelling of illuminated photovoltaic detectors. The thermal diffusion, generation – recombination (g-r, and ohmic currents are found as principal components besides a component of photocurrent due to background illumination. The experimentally observed reverse bias diode current in excess of thermal current (diffusion + g-r, photo-current and ohmic shunt current is reported to be best described by an exponential function of the type, Iexcess = Ir0 + K1exp(K2 V, where Ir0, K1 and K2 are fitting parameters and V is the applied bias voltage. The present investigations suggest that the exponential growth of excess current with the applied bias voltage may be taking place along the localized regions in the diode. These localized regions are the shunt resistance paths on account of the surface leakage currents and/or defects and dislocations in the base of the diode.

  16. MSM-Metal Semiconductor Metal Photo-detector Using Black Silicon Germanium (SiGe) for Extended Wavelength Near Infrared Detection

    Science.gov (United States)

    2012-09-01

    they produced that microstructure using only halogenated etching gas (sulfur hexafluoride [ SF6 ]), the spectral absorbance of light was extended well...infrared imaging. In 2003, Mazur and colleagues reported that using femtosecond laser processing coupled with halogenated etching gas could produce...metal-masked, wet-chemical etching approach versus a femtosecond gas -phase etching process, and (2) we used in-situ boron doping p≈5x10 19 /cm 3

  17. Characterization of HgCdTe Films Grown on Large-Area CdZnTe Substrates by Molecular Beam Epitaxy

    Science.gov (United States)

    Arkun, F. Erdem; Edwall, Dennis D.; Ellsworth, Jon; Douglas, Sheri; Zandian, Majid; Carmody, Michael

    2017-09-01

    Recent advances in growth of Hg1- x Cd x Te films on large-area (7 cm × 7.5 cm) CdZnTe (CZT) substrates is presented. Growth of Hg1- x Cd x Te with good uniformity on large-area wafers is achieved using a Riber 412 molecular beam epitaxy (MBE) tool designed for growth of Hg1- x Cd x Te compounds. The reactor is equipped with conventional CdTe, Te, and Hg sources for achieving uniform exposure of the wafer during growth. The composition of the Hg1- x Cd x Te compound is controlled in situ by employing a closed-loop spectral ellipsometry technique to achieve a cutoff wavelength ( λ co) of 14 μm at 78 K. We present data on the thickness and composition uniformity of films grown for large-format focal-plane array applications. The composition and thickness nonuniformity are determined to be maps show the spatial distribution of defects generated during the epitaxial growth of the Hg1- x Cd x Te films. Microdefect densities are in the low 103 cm-2 range, and void defects are below 500 cm-2. Dislocation densities less than 5 × 105 cm-2 are routinely achieved for Hg1- x Cd x Te films grown on CZT substrates. HgCdTe 4k × 4k focal-plane arrays with 15 μm pitch for astronomical wide-area infrared imagers have been produced using the recently developed MBE growth process at Teledyne Imaging Sensors.

  18. Infrared retina

    Science.gov (United States)

    Krishna, Sanjay; Hayat, Majeed M.; Tyo, J. Scott; Jang, Woo-Yong

    2011-12-06

    Exemplary embodiments provide an infrared (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the detector. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an infrared retina, similar to cones of human retina, and can be designed to work in the long-wave infrared portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.

  19. A Long Wave Infrared (LWIR) spectral imager (7.7 to 12.3 μ) based on cooled detector array and high resolution Circular Variable Filter (CVF)

    Science.gov (United States)

    Cabib, Dario; Lavi, Moshe; Gil, Amir; Ohel, Eran; Dolev, Jacob; Milman, Uri

    2013-10-01

    Spectral imagers in the Long Wave IR spectral range (8 to 12 microns) suffer from the problem of high production costs because the existing commercial cooled array detectors are expensive, and in fact they are prohibitively expensive for many applications. As a result, the drive to lower the cost of Long Wave IR spectral imagers is strong: this is the main motivation for CI to investigate a new design that allows these spectral imagers to be more affordable. One area of possible cost reduction without relinquishing the advantages of a cryogenically cooled detector is the method used to provide the spectral information. CI Systems has developed a long wave IR (7.7 to 12.3 micron) spectral imager concept using a Circular Variable Filter (CVF), (a proprietary component based on multiple layer interference filter technology) which has advantages over the interferometric Fourier Transform method commonly used in this spectral range. The CVF method has its own development challenges; however, once proven, this concept may be more suitable and affordable for applications in which a spectral resolution of 0.5% of the wavelength (or 50 nm at 10 μ) is required. The design of the optical system must minimize background signals without being cooled to cryogenic temperatures, so we called it VIrtually COld (or VICO). CI is in the final stages of prototype building and characterization. Present initial calibration results and measurement examples are given in this paper.

  20. Advanced methods for preparation and characterization of infrared detector materials. [crystallization and phase diagrams of Hg sub 1-x Cd sub x Te

    Science.gov (United States)

    Lehoczy, S. L.

    1979-01-01

    Crystal growth of Hg sub 1-x Cd sub x Te and density measurements of ingot slices are discussed. Radial compositional variations are evaluated from the results of infrared transmission edge mapping. The pseudo-binary HgTe-CdTe phase diagram is examined with reference to differential thermal analysis measurements. The phase equilibria calculations, based on the 'regular association solution' theory (R.A.S.) are explained and, using the obtained R.A.S. parameters, the activities of Hg, Cd, and Te vapors and their partial pressures over the pseudo-binary melt are calculated.

  1. Development of Strained-Layer Superlattice (SLS) IR Detector Camera Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Strained Layer Superlattice (SLS) detectors are a new class of detectors.   In our FY12 IRAD “Strained Layer Superlattice Infrared Detector Array...

  2. QUANTUM MECHANICAL MODEL AND SIMULATION OF GaAs/AlGaAs QUANTUM WELL INFRARED PHOTO-DETECTOR-Ⅰ OPTICAL ASPECTS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A complete quantum mechanical model for GaAs/AlGaAs quantum well infrared photodetectors(QWIPs) is presented here. The model consisted of four parts: (1) Starting with the description of the electromagnetic field of the infrared radiation in the QWIP, effective component of the vector potential 〈|Az|〉 along the QWIP growth direction (z-axis) due to the optical diffraction grating was calculated. (2) From the wave transmissions and the occupations of the electronic states, it was discussed that the dark current in the QWIP is determined by the drift-diffusion current of carriers thermally excited from the ground sublevel in the quantum well to extended states above the barrier. (3) The photocurrent was investigated by the optical transition (absorption coefficient between the ground state to excited states due to the nonzero-〈|Az|〉 ). (4) By studying the inter-diffusion of the Al atoms across the GaAs/AlGaAs heterointerfaces,the mobility of the drift-diffusion carriers in the excited states was calculated, so the measurement results of the dark current and photocurrent spectra can be explained theoretically. With the complete quantum mechanical descriptions of (1-4), QWIP device design and optimization are possible.

  3. Interface morphology studies of liquid phase epitaxy grown HgCdTe films by atomic force microscopy

    Science.gov (United States)

    Azoulay, M.; George, M. A.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-04-01

    In this paper we report an investigation of the morphology of the interfaces of liquid phase epitaxy (LPE) grown HgCdTe thin films on CdTe and CdZnTe substrates by atomic force microscopy (AFM) on freshly cleaved (110) crystallographic planes. An empirical observation which may be linked to lattice mismatch was indicated by an angle between the cleavage steps of the substrate to those of the film. The precipitates with size ranging from 5 nm to 20 nm were found to be most apparent near the interface.

  4. Interface Lattice Engineering of Si Composite Wafers for Large-Format HgCdTe Infrared Focal Plane Arrays

    Science.gov (United States)

    2012-08-07

    sessile dislocation. Examples of such sessile dislocation coalescence are the Lomer lock a 2 [011̄] + a 2 [101] → a 2 [110], (2.22) or a Lomer-Cottrell...Hg droplets condensing on to the layer. This will leave concentric circular marks where the Hg drop forms and evaporates away as seen in figure 5.2(d...sake, also assume that bα+ bβ = bsessile, where the result is a sessile dislocation. Finally, stipulate that when is near a side wall, α dislocations

  5. Detector Unit

    CERN Multimedia

    1960-01-01

    Original detector unit of the Instituut voor Kernfysisch Onderzoek (IKO) BOL project. This detector unit shows that silicon detectors for nuclear physics particle detection were already developed and in use in the 1960's in Amsterdam. Also the idea of putting 'strips' onto the silicon for high spatial resolution of a particle's impact on the detector were implemented in the BOL project which used 64 of these detector units. The IKO BOL project with its silicon particle detectors was designed, built and operated from 1965 to roughly 1977. Detector Unit of the BOL project: These detectors, notably the ‘checkerboard detector’, were developed during the years 1964-1968 in Amsterdam, The Netherlands, by the Natuurkundig Laboratorium of the N.V. Philips Gloeilampen Fabrieken. This was done in close collaboration with the Instituut voor Kernfysisch Onderzoek (IKO) where the read-out electronics for their use in the BOL Project was developed and produced.

  6. Minority carrier lifetime in iodine-doped molecular beam epitaxy-grown HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Madni, I.; Umana-Membreno, G. A.; Lei, W.; Gu, R.; Antoszewski, J.; Faraone, L. [School of Electrical, Electronic and Computer Engineering, The University of Western Australia, Crawley, Western Australia 6009 (Australia)

    2015-11-02

    The minority carrier lifetime in molecular beam epitaxy grown layers of iodine-doped Hg{sub 1−x}Cd{sub x}Te (x ∼ 0.3) on CdZnTe substrates has been studied. The samples demonstrated extrinsic donor behavior for carrier concentrations in the range from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3} without any post-growth annealing. At a temperature of 77 K, the electron mobility was found to vary from 10{sup 4} cm{sup 2}/V s to 7 × 10{sup 3} cm{sup 2}/V s and minority carrier lifetime from 1.6 μs to 790 ns, respectively, as the carrier concentration was increased from 2 × 10{sup 16} cm{sup −3} to 6 × 10{sup 17} cm{sup −3}. The diffusion of iodine is much lower than that of indium and hence a better alternative in heterostructures such as nBn devices. The influence of carrier concentration and temperature on the minority carrier lifetime was studied in order to characterize the carrier recombination mechanisms. Measured lifetimes were also analyzed and compared with the theoretical models of the various recombination processes occurring in these materials, indicating that Auger-1 recombination was predominant at higher doping levels. An increase in deep-level generation-recombination centers was observed with increasing doping level, which suggests that the increase in deep-level trap density is associated with the incorporation of higher concentrations of iodine into the HgCdTe.

  7. 基于弛豫铁电单晶的红外热释电探测器研究%Pyroelectric infrared detector with relax-based ferroelectric single crystals

    Institute of Scientific and Technical Information of China (English)

    马学亮; 邵秀梅; 于月华; 李言谨

    2012-01-01

    研究了新型热释电材料驰豫铁电单晶(1-x)Pb(Mg1/3Nbz/a)O3-xPbTiO3(PMNT)的低损伤减薄工艺、电极成型和耦合封装等关键技术,研制了基于PMNT的单元热释电探测器。对减薄后约30um晶片材料性能的测试分析表明,部分样品的热释电系数约为9.0×10^-4C/m^2K,无明显衰减。采用低噪声电路提取单元探测器的微弱热释电电流,对所研制的单元探测器性能进行了测试分析。%PMNT single crystal is a novel pyroelectric material with superior pyroelectric performance. The fabrication of pyroelectirc infrared detectors based on PMNT single crystal, including lapping and polishing of the crystal, metallization and assembly,is carried out. The pyroelectric coefficient of PMNT chip with thickness of 30 um is measured and the results indicate that the pyroelectric coefficients of some chips are 9.0 × 10^-4 C/m2K, similar to that of the PMNT single crystal with thickness of 500 um. Weak pyroelectric current is extracted by a low-noise circuit, and the performance of the fabricated detector is tested and analyzed.

  8. Fabrication and Properties of the Multi-layer Pyroelectric Thin Film Infrared Detectors%复合热释电薄膜红外探测器的制备和性能测试

    Institute of Scientific and Technical Information of China (English)

    王三红; 吴小清; 姚熹

    2001-01-01

    为解决热释电薄膜红外探测器中的热损失问题,引入了复合热释电薄膜的概念.它利用多孔二氧化硅具有的低热导率特点,有效地减少了热量从热释电层向衬底的热扩散.利用溶胶-凝胶和金属有机物热分解等工艺制备的复合热释电薄膜红外探测器,在温度为420K、频率为10Hz时,电压响应率约为1400V/W,探测器的星探测率D(420,10,2)为9.3×107cm.Hz1/2/W.%In order to reduce the thermal dissipation from the pyroelectric film to the substrate and meet the needs of integration with silicon, the multi-layer pyroelectric thin film (MPTF) was introduced. It is mainly composed of pyroelectric sensitive layer-lead titanate, thermal isolating layer-porous silicon dioxide film, and the buffer layer-dense silicon dioxide film. A pyroelectric measuring system was built to measure the infrared response of the detector. The voltage response and the specific detectivity of the detector were also given.

  9. Infrared landmine detection and thermal model analysis

    NARCIS (Netherlands)

    Schwering, P.B.W.; Kokonozi, A.; Carter, L.J.; Lensen, H.A.; Franken, E.M.

    2001-01-01

    Infrared imagers are capable of the detection of surface laid mines. Several sensor fused land mine detection systems make use of metal detectors, ground penetrating radar and infrared imagers. Infrared detection systems are sensitive to apparent temperature contrasts and their detection capabilitie

  10. Gaseous Detectors: Charged Particle Detectors - Particle Detectors and Detector Systems

    CERN Document Server

    Hilke, H J

    2011-01-01

    Gaseous Detectors in 'Charged Particle Detectors - Particle Detectors and Detector Systems', part of 'Landolt-Börnstein - Group I Elementary Particles, Nuclei and Atoms: Numerical Data and Functional Relationships in Science and Technology, Volume 21B1: Detectors for Particles and Radiation. Part 1: Principles and Methods'. This document is part of Part 1 'Principles and Methods' of Subvolume B 'Detectors for Particles and Radiation' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the Subsection '3.1.2 Gaseous Detectors' of Section '3.1 Charged Particle Detectors' of Chapter '3 Particle Detectors and Detector Systems' with the content: 3.1.2 Gaseous Detectors 3.1.2.1 Introduction 3.1.2.2 Basic Processes 3.1.2.2.1 Gas ionization by charged particles 3.1.2.2.1.1 Primary clusters 3.1.2.2.1.2 Cluster size distribution 3.1.2.2.1.3 Total number of ion pairs 3.1.2.2.1.4 Dependence of energy deposit on particle velocity 3.1.2.2.2 Transport of...

  11. Comparing FDTD and Ray-Tracing Models in Numerical Simulation of HgCdTe LWIR Photodetectors

    Science.gov (United States)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2016-09-01

    We present a simulation study of HgCdTe-based long-wavelength infrared detectors, focusing on methodological comparisons between the finite-difference time-domain (FDTD) and ray-tracing optical models. We performed three-dimensional simulations to determine the absorbed photon density distributions and the corresponding photocurrent and quantum efficiency spectra of isolated n-on- p uniform-composition pixels, systematically comparing the results obtained with FDTD and ray tracing. Since ray tracing is a classical optics approach, unable to describe interference effects, its applicability has been found to be strongly wavelength dependent, especially when reflections from metallic layers are relevant. Interesting cavity effects around the material cutoff wavelength are described, and the cases where ray tracing can be considered a viable approximation are discussed.

  12. Effect of atmospheric turbulence on the bit error probability of a space to ground near infrared laser communications link using binary pulse position modulation and an avalanche photodiode detector

    Science.gov (United States)

    Safren, H. G.

    1987-01-01

    The effect of atmospheric turbulence on the bit error rate of a space-to-ground near infrared laser communications link is investigated, for a link using binary pulse position modulation and an avalanche photodiode detector. Formulas are presented for the mean and variance of the bit error rate as a function of signal strength. Because these formulas require numerical integration, they are of limited practical use. Approximate formulas are derived which are easy to compute and sufficiently accurate for system feasibility studies, as shown by numerical comparison with the exact formulas. A very simple formula is derived for the bit error rate as a function of signal strength, which requires only the evaluation of an error function. It is shown by numerical calculations that, for realistic values of the system parameters, the increase in the bit error rate due to turbulence does not exceed about thirty percent for signal strengths of four hundred photons per bit or less. The increase in signal strength required to maintain an error rate of one in 10 million is about one or two tenths of a db.

  13. Mid-wavelength infrared InAs/GaSb type Ⅱ superlattice detectors%InAs/GaSb Ⅱ类超晶格中波红外探测器

    Institute of Scientific and Technical Information of China (English)

    徐庆庆; 陈建新; 周易; 李天兴; 金巨鹏; 林春; 何力

    2012-01-01

    Infrared (IR) photo detectors based on InAs/GaSb type II superlattice have developed quickly in recent years. Many groups show great interest in InAs/GaSb superlattice detector for its superiors as high quantum efficient, high working temperature, high uniformity and low dark current densities. The growth of mid-wavelength infrared InAs/GaSb superlattice on GaSb substrates by molecular beam epitaxy (MBE) was studied. The growth temperature and the interface structures to obtain high quality material were optimized. The InAs/GaSb superlattice layers were characterized by atomic force microscope(AFM) and high resolution X-ray diffraction (XRD). Finally, highly lattice matched mid-infrared InAs/GaSb superlattice material was achieved. The FWHM of the Oth satellite peak of X-ray scanning curve is 28.8 arcsec. The p-I-n single IR photodiode based on InAs/GaSb superlattice has current responsivity of 0.48 A/W and blackbody detectivity of 4.54xl010 cmHz1/2W, and peak detectivity of 1.75x1011 cmHz1/2W at 77 K.%InAs/GaSbⅡ类超晶格探测器是近年来国际上发展迅速的红外探测器,其优越性表现在高量子效率和高工作温度,以及良好的均匀性和较低的暗电流密度,因而受到广泛关注.报道了InAs/GaSb超晶格中波材料的分子束外延生长和器件性能.通过优化分子束外延生长工艺,包括生长温度和快门顺序等,获得了具原子级表面平整的中波InAs/GaSb超晶格材料,X射线衍射零级峰的双晶半峰宽为28.8″,晶格失配△a/a=1.5×10-4.研制的p-i-n单元探测器在77 K温度下电流响应率达到0.48 A/W,黑体探测率为4.54×1010 cmHz1/2W,峰值探测率达到1.75×1011cmHz1/2W.

  14. Doped carbon nanostructure field emitter arrays for infrared imaging

    Science.gov (United States)

    Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN

    2009-10-27

    An infrared imaging device and method for making infrared detector(s) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when infrared photons are adsorbed by the nanostructures the emitted field current is modulated. The detectors can be doped with cesium to lower the work function.

  15. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  16. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  17. Pixel Detectors

    OpenAIRE

    Wermes, Norbert

    2005-01-01

    Pixel detectors for precise particle tracking in high energy physics have been developed to a level of maturity during the past decade. Three of the LHC detectors will use vertex detectors close to the interaction point based on the hybrid pixel technology which can be considered the state of the art in this field of instrumentation. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as the very harsh...

  18. A discrete element model of laser beam induced current (LBIC) due to the lateral photovoltaic effect in open-circuit HgCdTe photodiodes

    Energy Technology Data Exchange (ETDEWEB)

    Fynn, K.A.; Faraone, L. [Univ. of Western Australia, Nedlands (Australia). Dept. of Electrical and Electronic Engineering; Bajaj, J. [Rockwell International Science Center, Thousand Oaks, CA (United States)

    1995-10-01

    The non-destructive optical characterization technique of Laser-Beam-Induced-Current (LBIC) imaging has proven useful in qualitatively assessing electrically active defects and localized non-uniformities in HgCdTe materials and devices used for infrared photovoltaic arrays. To further the development of a quantitative working model for LBIC, this paper focuses on the application of the technique to photovoltaic structures that are represented by a discrete element equivalent circuit. For this particular case the LBIC signal arises due to the lateral photovoltaic effect in non-uniformly illuminated open-circuit photodiodes. The outcomes of the model predict all of the experimentally observed geometrical features of the LBIC image and signal. Furthermore, the model indicates that the LBIC signal has an extremely weak dependence on the p-n junction reverse saturation current, and shows a linear dependence with laser power. This latter feature may be useful for non-contact measurement of the quantum efficiency of individual photodiodes within a large two-dimensional focal plane array. The decay of the LBIC signal outside the physical boundary of the p-n junction is of the same form as the roll-off in the short circuit photoresponse and, therefore, can be used to extract the diffusion length of minority carriers. Experimental data are obtained from an arsenic implanted p-on-n junction fabricated on MBE grown Hg{sub 1{minus}x}Cd{sub x}Te material with an x-value of 0.3. The p-on-n diode is shown to be uniform and of high quality with an R{sub o}A product of 1 {times} 10{sup 8} {Omega}{center_dot}cm{sup 2} at 77 K. The validity of the simple model developed in this paper, is confirmed by the excellent agreement with experimental results. Consequently, the LBIC technique is shown to be an appropriate diagnostic tool for non-contact quantitative analysis of semiconductor materials and devices.

  19. Metal Detectors.

    Science.gov (United States)

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  20. Optical Detectors

    Science.gov (United States)

    Tabbert, Bernd; Goushcha, Alexander

    Optical detectors are applied in all fields of human activities from basic research to commercial applications in communication, automotive, medical imaging, homeland security, and other fields. The processes of light interaction with matter described in other chapters of this handbook form the basis for understanding the optical detectors physics and device properties.

  1. Ultra-low Noise, High Bandwidth, 1550nm HgCdTe APD Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To meet the demands of future high-capacity free space optical communications links, a high bandwidth, near infrared (NIR), single photon sensitive optoelectronic...

  2. Ⅱ类超晶格双光谱红外探测器光谱串音的量化分析计算%Quantitative Analysis and Calculation of Spectral Crosstalk of Type Ⅱ Superlattice Bispectral Infrared Detectors

    Institute of Scientific and Technical Information of China (English)

    王忆锋; 余连杰; 田萦

    2011-01-01

    对于起降阶段的各类飞机来说,便携式导弹是主要威胁.以基于Ⅱ类超晶格双光谱红外探测器的机载导弹逼近告警(MAW)系统为应用背景,介绍了光谱串音的定义及计算方法.分别测出两个光谱通道的光谱响应曲线,容易利用MATLAB样条函数积分命令算出两条曲线交叉部分围成的面积,该面积的数值反映了器件光谱串音的大小.给出了所用MATLAB程序,该方法具有实现容易、使用快捷等特点.%The main threats for any type of aircraft are the man portable missiles during taking-off and landing.Under the application background of missile approach warning (MAW) based on type Ⅱ superlatice bispectral infrared detectors, the definition and calculation methods of spectral crosstalk were introduced.After measuring separately the spectral response curves of the two spectral channels, the area of the region bounded by the crossed sections of the two curves reflecting the amount of spectral crosstalk of the device, can be calculated easily with MATLAB spline function integration commands.The MATLAB program was listed in this paper.It is easier to implement and convenient to use.

  3. Study of Morphological Defects on Dual-Band HgCdTe on CdZnTe

    Science.gov (United States)

    Reddy, M.; Radford, W. A.; Lofgreen, D. D.; Olsson, K. R.; Peterson, J. M.; Johnson, S. M.

    2014-08-01

    HgCdTe dual-band epitaxial layers on lattice-matched CdZnTe substrates often have morphological defects. These defects, unlike normal void and microvoid defects, do not contain a polycrystalline core and, therefore, do not offer a good contrast for observation using optical and electron microscopes. This paper reports a way of identifying these defects by using a Nomarski optical microscopy image overlay on focused ion beam microscopy images for preparation of thin cross-sectional foils of these defects. Transmission electron microscopy was used to study the defect cross-sections to identify the origin and evolution of the morphological defects and their effect on the epitaxial layer. This paper reports cross-sectional analysis of four morphological defects of different shape and size.

  4. Photoelectric-calorimetric compound beam profile detector for near-infrared high energy laser%光电/量热复合式近红外高能激光光斑探测器

    Institute of Scientific and Technical Information of China (English)

    冯国斌; 杨鹏翎; 王振宝; 王群书

    2013-01-01

    To measure the beam profile and power density distribution of a far field target in high energy system performance evaluation,a high energy laser detection method is proposed by combining photoelectric and calorimetric methods.In the method,the total energy of incident laser is measured by an absorber and the spatial and temporal distribution of laser profile measured by a photoelectric detector.The detector is developed,which is consisted of a graphite calorimeter,an InGaAs photoelectric detector array,a temperature and voltage amplifier,an analog to digital converter and a signal processor.The system with an effective sensitive area of 22 cm× 22 cm can offer a spatial resolution of 1.1 cm,a temporal resolution of 20 ms,and a low energy measurement uncertainty less than 10%.With the higher temporal resolution and lower energy measurement uncertainty,the system is suitable for high energy and large area near-infrared laser beam measurement.It has been used in field experiments successfully.%为了准确测量高能激光系统远场到靶总能量和功率密度时空分布等参数,本文提出了量热吸收法和光电探测阵列法相结合的复合式测量方法.该方法由热吸收体测量入射激光的总能量,由光电探测阵列测量光斑的时空分布.研制了用于大面积、长脉冲近红外高能激光测量的复合式光斑时空分布探测器.探测器主要由石墨热吸收体、近红外探测器阵列、测温单元和信号处理单元等组成,有效测量光斑面积达到22 cm×22 cm,光斑测量空间分辨力为1.1 cm,时间分辨力为20 ms.该测量系统同时兼顾了光电探测阵列法的高时空分辨能力和量热吸收法的低测量不确定度等优点,适合于高能量、大面积近红外高能激光光斑参数的综合测量,并已成功应用于外场实验.

  5. Infrared absorption imaging of 2D supersonic jet expansions: Free expansion, cluster formation, and shock wave patterns.

    Science.gov (United States)

    Zischang, Julia; Suhm, Martin A

    2013-07-14

    N2O/He gas mixtures are expanded through a 10 × 0.5 mm(2) slit nozzle and imaged by direct absorption vibrational spectroscopy, employing a HgCdTe focal plane array detector after interferometric modulation. N2O cluster formation in the free supersonic expansion is visualized. The expansion structure behind the frontal shock is investigated as a function of background pressure. At high pressures, a sequence of stationary density peaks along a narrow directed flow channel is characterized. The potential of the technique for the elucidation of aggregation mechanisms is emphasized.

  6. Image Monitoring of Pharmaceutical Blending Processes and the Determination of an End Point by Using a Portable Near-Infrared Imaging Device Based on a Polychromator-Type Near-Infrared Spectrometer with a High-speed and High-Resolution Photo Diode Array Detector

    Directory of Open Access Journals (Sweden)

    Kodai Murayama

    2015-03-01

    Full Text Available In the present study we have developed a new version (ND-NIRs of a polychromator-type near-infrared (NIR spectrometer with a high-resolution photo diode array detector, which we built before (D-NIRs. The new version has four 5 W halogen lamps compared with the three lamps for the older version. The new version also has a condenser lens with a shorter focal point length. The increase in the number of the lamps and the shortening of the focal point of the condenser lens realize high signal-to-noise ratio and high-speed NIR imaging measurement. By using the ND-NIRs we carried out the in-line monitoring of pharmaceutical blending and determined an end point of the blending process. Moreover, to determinate a more accurate end point, a NIR image of the blending sample was acquired by means of a portable NIR imaging device based on ND-NIRs. The imaging result has demonstrated that the mixing time of 8 min is enough for homogeneous mixing. In this way the present study has demonstrated that ND-NIRs and the imaging system based on a ND-NIRs hold considerable promise for process analysis.

  7. DUMAND detector

    CERN Multimedia

    This object is one of the 256 other detectors of the DUMAND (Deep Underwater Muon And Neutrino Detection) experiment. The goal of the experiment was the construction of the first deep ocean high energy neutrino detector, to be placed at 4800 m depth in the Pacific Ocean off Keahole Point on the Big Island of Hawaii. A few years ago, a European conference with Cosmic experiments was organized at CERN as they were projects like DUMAND in Hawaii. Along with the conference, a temporary exhibition was organised as well. It was a collaboration of institutions from Germany, Japan, Switzerland and the U.S.A. CERN had borrowed equipment and objects from different institutes around the world, including this detector of the DUMAND experiment. Most of the equipment were sent back to the institutes, however this detector sphere was offered to a CERN member of the personnel.

  8. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    Science.gov (United States)

    2007-11-02

    CASE TOTAL DOSE ME TO SATURATE ELT .: 10 ACCMULATED OVER 10-300 OAYS EARTH’S VAN ALLEN BELTS VERSUS ALTITUDE AT 0o %. % \\ NATURAL VAN ALLEN BELTS Jos...0 t0 o 0 0AP=(rem)MSZ(f see) Hg,_C.e.Hg .3 1 CdyTe Superlattice HgSCdTe.Hg.Iz Cd.A Te SuperltaUce 17 ICT - 17 U L~,. 180j LP-AplP, 6 L3 A -S rmoplPa...tw a an$bttt a 01 C - noC 0 -MWO 4 HTemperaSdt8 ur elte (K)T mperad.,Tue (K)ratic 01 I HgTe-CdTe SUPERLATMlES Substitutional Doping: n-Type (Indium

  9. Single Crystal Alloy Film Infrared Detectors.

    Science.gov (United States)

    1981-10-01

    evaporation; this excess chalco - genide is necessary to produce p-type lead salt epitaxial films. The tube was placed on the base plate of the evaporator with...maintain films of icomposition close to that of the source material (i.e., PbS0 .5Se0.5 ). hi -.The present conclusion concerninq use of the auxiliary chalco

  10. Beam diagnostics at DAFNE with fast uncooled IR detectors

    CERN Document Server

    Bocci, A; Drago, A; Grilli, A; Marcelli, A; Piccinini, M; Raco, A; Sorchetti, R; Gambicorti, L; De Sio, A; Pace, E; Piotrowski, J

    2008-01-01

    Bunch-by-bunch longitudinal diagnostics is a key issue of modern accelerators. To face up this challenging demand, tests of mid-IR compact uncooled photoconductive HgCdTe detectors have been recently performed at DAFNE. Different devices were used to monitor the emission of e- bunches. The first experiments allowed recording of 2.7 ns long e- bunches with a FWHM of a single pulse of about 600 ps. These results address the possibility to improve diagnostics at DAFNE and to this purpose an exit port on a bending magnet of the positron ring has been set-up. An HV chamber, hosting a gold-coated plane mirror that collects and deflects the radiation through a ZnSe window, is the front-end of this port. After the window, a simple optical layout in air allows focusing IR radiation on different detectors. The instrumentation will allow comparison in the sub-ns time domain between the two rings and to identify and characterize bunch instabilities. Moreover, to improve performances tests of new photovoltaic detectors wi...

  11. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  12. Temperature Dependent Spectral Response and Detectivity of GeSn Photoconductors on Silicon for Short Wave Infrared Detection

    Science.gov (United States)

    2014-01-01

    wavelength infrared InGaAs and HgCdTe photodiodes," in 1998 U S Workshop on the Physics and Chemistry of II-VI Materials, J. Electron. Mater. 1998), 630...Engineering, University of Arkansas, Fayetteville, AR 72701, USA 2Department of Physics , University of Massachusetts Boston, Boston, MA 02125, USA 3ASM...Vandervorst, R. Loo, M. Caymax, K. Temst, and M. Heyns, "Crystalline Properties and Strain Relaxation Mechanism of CVD Grown GeSn," ECS J. of Solid State

  13. Effects of Gravity on the Double-Diffusive Convection during Directional Solidification of a Non-Dilute Alloy with Application to the HgCdTe

    Science.gov (United States)

    Bune, Andris; Gillies, Donald; Lehoczky, Sandor

    1999-01-01

    General 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Parametric research was undertaken to investigate effects of gravity level, gravity vector orientation and growth velocity on the pattern of melt convection, shape of crystal/melt interface and radial thermal gradient. Verification of the model was undertaken by comparison with previously published results. For low growth velocities plane front solidification occurs. The location and the shape of the interface was determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion with temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors dimensional rather then non-dimensional modeling was performed. For gravity levels higher then 10(exp -7) of terrestrial one it was found that the maximum convection velocity is extremely sensitive to gravity vector orientation and can be reduced at least by 50% by choosing proper orientation of the ampoule. The predicted interface shape is in agreement with one obtained experimentally by quenching.

  14. Effects of Gravity on the Double-Diffusive Convection During Directional Solidification of a Non-Dilute Alloy with Application to HgCdTe

    Science.gov (United States)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1999-01-01

    A general 2-D and 3-D finite element model of non-dilute alloy solidification was used to simulate growth of HgCdTe in terrestrial and microgravity conditions. Verification of the 3-D model was undertaken by comparison with previously published results on convection in an inclined cylinder. For low growth velocities, plane front solidification occurs. The location and the shape of the interface were determined using melting temperatures obtained from the HgCdTe liquidus curve. The low thermal conductivity of the solid HgCdTe causes a thermal short circuit through the ampoule walls, resulting in curved isotherms in the vicinity of the interface. Double-diffusive convection in the melt is caused by radial temperature gradients and by material density inversion due to the combined effects of composition and temperature. Cooling from below and the rejection at the solid-melt interface of the heavier HgTe-rich solute each tend to reduce convection. Because of these complicating factors, dimensional rather than non-dimensional modeling was performed. the predicted interface shape is in agreement with one obtained experimentally by quenching.

  15. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  16. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of atmospheric ammonia

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2009-12-01

    Full Text Available A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of ammonia has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically cooled Mercury Cadmium Telluride (HgCdTe infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of ammonia to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering ammonia-free background air and calibration gas standards. This instrument has been found to have a detection limit of 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of ammonia with sample tubing was investigated at mixing ratios ranging from 30–1000 ppb. Humidity was seen to worsen the ammonia time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE in the rural town of Egbert, ON between May–July 2008. Background tests and calibrations using two different permeation tube sources and an ammonia gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation with 1 min time resolution (R2=0.93 between the two instruments at the beginning of the study, when regular background

  17. Characterizing a Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of atmospheric ammonia

    Directory of Open Access Journals (Sweden)

    R. A. Ellis

    2010-03-01

    Full Text Available A compact, fast-response Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS for measurements of ammonia (NH3 has been evaluated under both laboratory and field conditions. Absorption of radiation from a pulsed, thermoelectrically cooled QC laser occurs at reduced pressure in a 0.5 L multiple pass absorption cell with an effective path length of 76 m. Detection is achieved using a thermoelectrically-cooled Mercury Cadmium Telluride (HgCdTe infrared detector. A novel sampling inlet was used, consisting of a short, heated, quartz tube with a hydrophobic coating to minimize the adsorption of NH3 to surfaces. The inlet contains a critical orifice that reduces the pressure, a virtual impactor for separation of particles, and additional ports for delivering NH3-free background air and calibration gas standards. The level of noise in this instrument has been found to be 0.23 ppb at 1 Hz. The sampling technique has been compared to the results of a conventional lead salt Tunable Diode Laser Absorption Spectrometer (TDLAS during a laboratory intercomparison. The effect of humidity and heat on the surface interaction of NH3 with sample tubing was investigated at mixing ratios ranging from 30–1000 ppb. Humidity was seen to worsen the NH3 time response and considerable improvement was observed when using a heated sampling line. A field intercomparison of the QC-TILDAS with a modified Thermo 42CTL chemiluminescence-based analyzer was also performed at Environment Canada's Centre for Atmospheric Research Experiments (CARE in the rural town of Egbert, ON between May–July 2008. Background tests and calibrations using two different permeation tube sources and an NH3 gas cylinder were regularly carried out throughout the study. Results indicate a very good correlation at 1 min time resolution (R2 = 0.93 between the two instruments at the

  18. Spatial noise limited NETD performance of a HgCdTe hybrid focal plane array

    Science.gov (United States)

    Gopal, Vishnu

    1996-04-01

    This paper presents a model for theoretically estimating the residual spatial noise in a direct injection readout hybrid focal plane array (FPA) consisting of photovoltaic detectors. The procedure consists of computing the response of the pixels after taking into account the nonlinearity induced by the transfer function in the hybrid configuration and the estimated r.m.s. response nonuniformity from the known input parameters of the detector and readout arrays. A linear two point nonuniformity compensation algorithm is applied to the computed pixel responses to calculate the residual spatial noise. Signal-to-spatial noise ratio is then used to estimate the spatial noise limited NETD performance of MWIR and LWIR Hg 1- x Cd x Te hybrid FPAs.

  19. Passive infrared bullet detection and tracking

    Energy Technology Data Exchange (ETDEWEB)

    Karr, T.J.

    1994-12-31

    An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive infrared detector. A passive infrared detector is focused onto a region in which a projectile is expected to be located. Successive images of infrared radiation in the region are recorded. Background infrared radiation present in the region is suppressed such that second successive images of infrared radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of infrared radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.

  20. Calorimeter detectors

    CERN Document Server

    de Barbaro, P; The ATLAS collaboration

    2013-01-01

    Although the instantaneous and integrated luminosity in HL-LHC will be far higher than the LHC detectors were originally designed for, the Barrel calorimeters of the four experiments are expected to continue to perform well  throughout the Phase II program. The conditions for the End-Cap calorimeters are far more challenging and whilst some detectors will require relatively modest changes, others require far more substantial upgrades. We present the results of longevity and performance studies for the calorimeter systems of the four main LHC experiments and outline the upgrade options under consideration. We include a discussion of the R&D required to make the final technology choices for the upgraded detectors.

  1. Pixel detectors

    CERN Document Server

    Passmore, M S

    2001-01-01

    positions on the detector. The loss of secondary electrons follows the profile of the detector and increases with higher energy ions. studies of the spatial resolution predict a value of 5.3 lp/mm. The image noise in photon counting systems is investigated theoretically and experimentally and is shown to be given by Poisson statistics. The rate capability of the LAD1 was measured to be 250 kHz per pixel. Theoretical and experimental studies of the difference in contrast for ideal charge integrating and photon counting imaging systems were carried out. It is shown that the contrast differs and that for the conventional definition (contrast = (background - signal)/background) the photon counting device will, in some cases, always give a better contrast than the integrating system. Simulations in MEDICI are combined with analytical calculations to investigate charge collection efficiencies (CCE) in semiconductor detectors. Different pixel sizes and biasing conditions are considered. The results show charge shari...

  2. Detectors with Improved Near-to-Mid IR Performance and Reduced Cooling Requirements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This program will develop an ultra-high performance infrared detector manufacturing technology with improved performance and cost effectiveness, and reduced cooling...

  3. 高帧频低噪声红外焦平面信息获取系统%Information Acquisition System for Thermal Infrared Focal Plane Array with High Frame-rate and Low-noise

    Institute of Scientific and Technical Information of China (English)

    程高超; 陈小文; 王湘波; 李春来; 王建宇

    2013-01-01

    A kind of high-rate and low-noise information acquisition system for French cooled 320×256 HgCdTe long wave infrared focal plane arrays MARS LW K508 was designed. The system consists of detector drive, signal processing, data acquisition and sequential control, image transmission and processing modules. Experimental results show that the frame frequency of the system can be up to 200 frame/s, the RMS is 0.7-0.8 mV (300 K) and images after nonuniformity correction are clear, which can be used in the high-end thermal infrared focal plane field such as surface thermal infrared spectral detection and high-speed infrared surveillance and imaging.%  设计了一种针对法国引进制冷型高性能320×256元HgCdTe长波红外焦平面探测器MARS LW K508的信息获取系统。该系统包括红外光学镜头、探测器驱动电路、信号处理电路、数据采集与控制电路、图像传输与处理软件等。经过测试,系统在全帧读出时可实现最高200 Hz的帧频,面对300 K黑体目标测试得到均值噪声为0.7~0.8 mV,综合灵敏度优于0.1 K。系统获取的图像经过校正后质量良好。该系统可用于地表热红外成像光谱探测、高速红外监视成像等高端热红外焦平面应用领域。

  4. XMASS detector

    CERN Document Server

    Abe, K; Hiraide, K; Hirano, S; Kishimoto, Y; Kobayashi, K; Moriyama, S; Nakagawa, K; Nakahata, M; Nishiie, H; Ogawa, H; Oka, N; Sekiya, H; Shinozaki, A; Suzuki, Y; Takeda, A; Takachio, O; Ueshima, K; Umemoto, D; Yamashita, M; Yang, B S; Tasaka, S; Liu, J; Martens, K; Hosokawa, K; Miuchi, K; Murata, A; Onishi, Y; Otsuka, Y; Takeuchi, Y; Kim, Y H; Lee, K B; Lee, M K; Lee, J S; Fukuda, Y; Itow, Y; Nishitani, Y; Masuda, K; Takiya, H; Uchida, H; Kim, N Y; Kim, Y D; Kusaba, F; Motoki, D; Nishijima, K; Fujii, K; Murayama, I; Nakamura, S

    2013-01-01

    The XMASS project aims to detect dark matter, pp and $^{7}$Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  5. XMASS detector

    Energy Technology Data Exchange (ETDEWEB)

    Abe, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hieda, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Hiraide, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Hirano, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kishimoto, Y.; Kobayashi, K.; Moriyama, S. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nakagawa, K. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Nakahata, M. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Nishiie, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Ogawa, H. [Kamioka Observatory, Institute for Cosmic Ray Research, The University of Tokyo, Higashi-Mozumi, Kamioka, Hida, Gifu 506-1205 (Japan); Kavli Institute for the Physics and Mathematics of the Universe, the University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); and others

    2013-07-11

    The XMASS project aims to detect dark matter, pp and {sup 7}Be solar neutrinos, and neutrinoless double beta decay using ultra pure liquid xenon. The first phase of the XMASS experiment searches for dark matter. In this paper, we describe the XMASS detector in detail, including its configuration, data acquisition equipment and calibration system.

  6. Semiconductor High-Energy Radiation Scintillation Detector

    CERN Document Server

    Kastalsky, A; Spivak, B

    2006-01-01

    We propose a new scintillation-type detector in which high-energy radiation produces electron-hole pairs in a direct-gap semiconductor material that subsequently recombine producing infrared light to be registered by a photo-detector. The key issue is how to make the semiconductor essentially transparent to its own infrared light, so that photons generated deep inside the semiconductor could reach its surface without tangible attenuation. We discuss two ways to accomplish this, one based on doping the semiconductor with shallow impurities of one polarity type, preferably donors, the other by heterostructure bandgap engineering. The proposed semiconductor scintillator combines the best properties of currently existing radiation detectors and can be used for both simple radiation monitoring, like a Geiger counter, and for high-resolution spectrography of the high-energy radiation. The most important advantage of the proposed detector is its fast response time, about 1 ns, essentially limited only by the recombi...

  7. Novel high-resolution VGA QWIP detector

    Science.gov (United States)

    Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.

    2017-02-01

    Continuing with its legacy of producing high performance infrared detectors, IRnova introduces its high resolution LWIR IDDCA (Integrated Detector Dewar Cooler assembly) based on QWIP (quantum well infrared photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. Detector stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing detectors. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.

  8. TEQUILA: NIR camera/spectrograph based on a Rockwell 1024x1024 HgCdTe FPA

    Science.gov (United States)

    Ruiz, Elfego; Sohn, Erika; Cruz-Gonzales, Irene; Salas, Luis; Parraga, Antonio; Perez, Manuel; Torres, Roberto; Cobos Duenas, Francisco J.; Gonzalez, Gaston; Langarica, Rosalia; Tejada, Carlos; Sanchez, Beatriz; Iriarte, Arturo; Valdez, J.; Gutierrez, Leonel; Lazo, Francisco; Angeles, Fernando

    1998-08-01

    We describe the configuration and operation modes of the IR camera/spectrograph: TEQUILA based on a 1024 X 1024 HgCdTe FPA. The optical system will allow three possible modes of operation: direct imaging, low and medium resolution spectroscopy and polarimetry. The basic system is being designed to consist of the following: 1) A LN(subscript 2) dewar that allocates the FPA together with the preamplifiers and a 24 filter position cylinder. 2) Control and readout electronics based on DSP modules linked to a workstation through fiber optics. 3) An opto-mechanical assembly cooled to -30 degrees that provides an efficient operation of the instrument in its various modes. 4) A control module for the moving parts of the instrument. The opto-mechanical assembly will have the necessary provision to install a scanning Fabry-Perot interferometer and an adaptive optics correction system. The final image acquisition and control of the whole instrument is carried out in a workstation to provide the observer with a friendly environment. The system will operate at the 2.1 m telescope at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), and is intended to be a first-light instrument for the new 7.8m Mexican IR-Optical Telescope.

  9. Semiconductor Detectors; Detectores de Semiconductores

    Energy Technology Data Exchange (ETDEWEB)

    Cortina, E.

    2007-07-01

    Particle detectors based on semiconductor materials are among the few devices used for particle detection that are available to the public at large. In fact we are surrounded by them in our daily lives: they are used in photoelectric cells for opening doors, in digital photographic and video camera, and in bar code readers at supermarket cash registers. (Author)

  10. Characterization of MODIS VIS/NIR Spectral Band Detector-to-Detector Difference

    Science.gov (United States)

    Xiong, X.; Sun, J.; Meister, G.; Kwiakowska, E.

    2008-01-01

    MODIS has 36 spectral bands with wavelengths in the visible (VIS), near-infrared (NIR), shortwave infrared (SWTR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). It makes observations at three nadir spatial resolutions: 0,25km for bands 1-2 with 40 detectors per band, 0.5km for bands 3-7 with 20 detectors per band, and 1km for bands 8-36 with 10 detectors per band. The VIS, NIR, and S\\VIR spectral bands are the reflective solar bands (RSB), which are calibrated on-orbit by a solar diffuser (SD). In addition, MODIS lunar observations are used to track the RSB calibration stability. In this study, we examine detector-to-detector calibration difference for the VIStNIR spectral bands using the SD and lunar observations. The results will be compared with an independent analysis with additional information, such as polarization correction, derived from standard ocean color data products. The current MODIS RSB calibration approach only carries a band-averaged RVS (response versus scan angle) correction. The results from this study suggest that a detector-based RVS correction should be used to improve the L1B data quality, especially for several VIS bands in Terra MODIS due to large changes of the scan mirror's optical properties in recent years.

  11. Comparative NIR Detector Characterization for NGST

    Science.gov (United States)

    Greenhouse, Matthew (Technical Monitor); Figer, Donald

    2004-01-01

    List of publications for final perfomance report are: Detectors for the JWST Near-Infrared Spectrometer Rauscher, B.J., Strada, P., Regan, M.W., Figer, D.F., Jakobsen, P., Moseley, H.S., & Boeker, T. 2004, SPIE Detectors for the JWST Near-Infrared Spectrometer Rauscher, B.J., Strada, P., Regan, M.W., Figer, D.F., Jakobsen, P., Moseley, H.S., & Boeker, T. 2004, AAS, 203, 124.07 Independent Testing of JWST Detector Prototypes Figer, D.F., Rauscher, B. J., Regan, M. W., Morse, E., Balleza, J., Bergeron, L., & Stockman, H. S. 2003 , SPIE, 5 167 The Independent Detector Testing Laboratory and the NGST Detector Program Figer, D.F., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Rauscher, B. J., Reeves, T., Regan, M. W., Sharma, U., Stockman, H. S. 2003, SPIE, 4850,981 Intra-Pixel Sensitivity in NIR Detectors for NGST Sharma, U., Figer, D.F., Sivaramakrishnan, A., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Rauscher, B. J., Reeves, T., Regan, M. W., Stockman, H. S. 2003, SPIE, 4850,1001 NIRCAM Image Simulations for NGST Wavefiont SensinglPS A. Sivaramakrishnan, D. Figer, H. Bushouse, H. S. Stockman (STScI),C. Ohara , D. Redding (JPL), M. Im (IPAC), & J. Offenberg (Raytheon) 2003, SPIE, 4850,388 Ultra-Low Background Operation of Near-Infrared Detectors for NGS Rauscher, B. J., Figer, D. F., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Reeves, T., Regan, M. W., Sharma, U., Stockman, H. S. 2003, SPIE, 4850,962 The Independent Detector Testing Laboratory and the JWST Detector Program Figer, D.F. et a1.2003, AAS201, #131.05

  12. 长波碲镉汞材料 As 掺杂激活研究%Research on arsenic-doping activation in LW HgCdTe

    Institute of Scientific and Technical Information of China (English)

    张舟; 陈慧卿; 朱西安

    2015-01-01

    Arsenic-doped long-wavelength HgCdTe was realized by ion implantation.As doping medium,arsenic shows amphiprotic doping property.When Arsenic only occupies Te-site to be acceptor,P type HgdTe material can be formed.After the arsenic-doped HgCdTe is annealed in the mercury atmosphere,the change of electrical property which is caused by annealing is analyzed.And the effect of mercury pressure,temperature and time on arsenic activa-tion is studied.The activation effect is analyzed by Hall measurement and SIMS.In the end,when the arsenic-doped HgCdTe is annealed in the high temperature and high mercury atmosphere,arsenic activation is achieved.%利用离子注入工艺实现长波碲镉汞材料的 As 掺杂,As 作为掺杂介质表现出两性掺杂行为,而 As 只有占据 Te 位成为受主才能形成 P 型碲镉汞材料。通过对砷掺杂碲镉汞材料在汞气氛中进行退火,分析注入退火引起的样品电学性质的变化,对砷激活退火采用的汞压、温度及时间进行了研究,利用霍尔测试和二次离子质谱仪(SIMS)等手段分析激活效果,研究发现,高温富汞热退火可以实现碲镉汞 As 激活。

  13. Stratospheric ozone measurement with an infrared heterodyne spectrometer

    Science.gov (United States)

    Abbas, M. M.; Kostiuk, T.; Mumma, M. J.; Buhl, D.; Kunde, V. G.; Brown, L. W.

    1978-01-01

    Measurements of a stratospheric ozone concentration profile are made by detecting infrared absorption lines with a heterodyne spectrometer. The infrared spectrometer is based on a line-by-line tunable CO2 lasers, a liquid-nitrogen cooled HgCdTe photomixer, and a 64-channel spectral line receiver. The infrared radiation from the source is mixed with local-oscillator radiation. The difference frequency signal in a bandwidth above and below the local-oscillator frequency is detected. The intensity in each sideband is found by subtracting sideband contributions. It is found that absolute total column density is 0.32 plus or minus 0.02 cm-atm with a peak mixing ratio at about 24 km. The (7,1,6)-(7,1,7) O3 line center frequency is identified as 1043.1772/cm. Future work will involve a number of ozone absorption lines and measurements of diurnal variation. Completely resolved stratospheric lines may be inverted to yield concentration profiles of trace constituents and stratospheric gases.

  14. Ground-based Measurements of Vertical Profiles and Columns of Atmospheric Trace Gases Over Toronto Using a New High-Resolution Fourier Transform Infrared Spectrometer

    Science.gov (United States)

    Wiacek, A.; Yashcov, D.; Strong, K.; Boudreau, L.; Rochette, L.; Roy, C.

    2002-12-01

    The University of Toronto Atmospheric Observatory (TAO) has recently been established at Toronto, Canada. TAO includes several instruments, with a DA8 Fourier Transform Spectrometer (DA8 FTS, manufactured by ABB Bomem Inc., Québec, Canada) serving as the primary instrument at the facility. The geographic position of TAO (43.66°N, 79.40°W) makes it well suited for long-term measurements of mid-latitude stratospheric ozone and related species, while its urban setting enables measurements of tropospheric pollution. The DA8 FTS is based on a Michelson interferometer with a maximum optical path difference of 250 cm, providing a maximum unapodized resolution of 0.0026 cm-1. It is currently equipped with KBr and CaF2 beamsplitters, and InSb and HgCdTe detectors, for coverage of the spectral range from 700 to 4100 cm-1. A new heliostat (manufactured by Aim Controls Inc., California, USA) provides active solar tracking, collecting the incoming solar radiation and directing it into the FTS. The TAO DA8 FTS incorporates a new optical design recently developed by ABB Bomem Inc., which results in a fixed optical axis through the beamsplitter (and a fixed focal point on the detector) as well as a more stable modulation efficiency. The new instrument optics will be discussed. Next, the performance of the instrument will be examined in the context of standard NDSC (Network for the Detection of Stratospheric Change) trace gas column and vertical profile retrieval techniques, which use least squares fitting algorithms (SFIT, SFIT2). TAO has been operational (weather permitting) since October 2001. We have been retrieving columns and vertical profiles of HCl, HF, CH4, OCS, C2H6, CO, N2O and NO2 since May 2002. A detailed error analysis of retrieved columns and vertical profiles has been undertaken for the above species. Future plans for the TAO FTS include comparing our measurements with satellite measurements made by MOPITT, OSIRIS, and the upcoming ACE and MAESTRO instruments

  15. The GALATEA test-facility for High Purity Germanium Detectors

    CERN Document Server

    Abt, I; Doenmez, B; Garbini, L; Irlbeck, S; Majorovits, B; Palermo, M; Schulz, O; Seitz, H; Stelzer, F

    2014-01-01

    GALATEA is a test facility designed to investigate bulk and surface effects in high purity germanium detectors. A vacuum tank houses an infrared screened volume with a cooled detector inside. A system of three stages allows an almost complete scan of the detector. The main feature of GALATEA is that there is no material between source and detector. This allows the usage of alpha and beta sources as well as of a laser beam to study surface effects. A 19-fold segmented true-coaxial germanium detector was used for commissioning.

  16. An airborne infrared laser spectrometer for in-situ trace gas measurements: application to tropical convection case studies

    Directory of Open Access Journals (Sweden)

    V. Catoire

    2015-09-01

    Full Text Available A three-channel laser absorption spectrometer called SPIRIT (SPectromètre InfraRouge In situ Toute altitude has been developed for airborne measurements of trace gases in the troposphere and lower stratosphere. More than three different species can be measured simultaneously with high time resolution (each 1.6 s using three individual CW-DFB-QCLs (Continuous Wave Distributed FeedBack Quantum Cascade Lasers coupled to a single Robert multipass optical cell. The lasers are operated in a time-multiplexed mode. Absorption of the mid-infrared radiations occur in the cell (2.8 L with effective path lengths of 134 to 151 m at reduced pressure, with detection achieved using a HgCdTe detector cooled by Stirling cycle. The performances of the instrument are described, in particular precisions of 1, 1 and 3 %, and volume mixing ratio (vmr sensitivities of 0.4, 6 and 2.4 ppbv are determined at 1.6 s for CO, CH4 and N2O, respectively (at 1σ confidence level. Estimated accuracies without calibration are about 6 %. Dynamic measuring ranges of about four decades are established. The first deployment of SPIRIT was realized aboard the Falcon-20 research aircraft operated by DLR (Deutsches Zentrum für Luft- und Raumfahrt within the frame of the SHIVA (Stratospheric Ozone: Halogen Impacts in a Varying Atmosphere European project in November-December 2011 over Malaysia. The convective outflows from two large convective systems near Borneo Island (6.0° N–115.5° E and 5.5° N–118.5° E were sampled above 11 km in altitude on 19 November and 9 December, respectively. Correlated enhancements in CO and CH4 vmr were detected when the aircraft crossed the outflow anvil of both systems. These enhancements were interpreted as the fingerprint of transport from the boundary layer up through the convective system and then horizontal advection in the outflow. Using these observations, the fraction of boundary layer air contained in fresh convective outflow was

  17. Characterization of MODIS VIS/NIR spectral band detector-to-detector differences

    Science.gov (United States)

    Xiong, X.; Sun, J.; Meister, G.; Kwiatkowska, E.; Barnes, W. L.

    2008-08-01

    MODIS has 36 spectral bands with wavelengths in the visible (VIS), near-infrared (NIR), short-wave infrared (SWIR), mid-wave infrared (MWIR), and long-wave infrared (LWIR). It makes observations at three nadir spatial resolutions: 0.25km for bands 1-2 (40 detectors per band), 0.5km for bands 3-7 (20 detectors per band), and 1km for bands 8-36 (10 detectors per band). The VIS, NIR, and SWIR are the reflective solar bands (RSB), which are calibrated on-orbit by a solar diffuser (SD) and a solar diffuser stability monitor (SDSM). The bi-directional reflectance factor (BRF) of the SD provides a RSB calibration reference and its on-orbit changes are tracked by the SDSM. In addition, MODIS lunar observations are regularly scheduled and used to track the RSB calibration stability. On-orbit observations show that the changes in detector response are wavelength and scan angle dependent. In this study, we focus on detector-to-detector calibration differences in the MODIS VIS/NIR spectral bands, which are determined using SD and lunar observations, while the calibration performance is evaluated using the Earth view (EV) level 1B (L1B) data products. For Aqua MODIS, the detector calibration differences and their impact are also characterized using standard ocean color data products. The current calibration approach for MODIS RSB carries a band-averaged response versus scan angle (RVS) correction. The results from this study suggest that a detector-based RVS correction should, due to changes in the scan mirror's optical properties, be implemented in order to maintain and improve the current RSB L1B data product quality, particularly, for several VIS bands in Terra MODIS.

  18. Radiation detector

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P.

    2017-06-27

    Alpha particle detecting devices are disclosed that have a chamber that can hold a fluid in a tensioned metastable state. The chamber is tuned with a suitable fluid and tension such that alpha emitting materials such as radon and one or more of its decay products can be detected. The devices can be portable and can be placed in areas, such as rooms in dwellings or laboratories and used to measure radon in these areas, in situ and in real time. The disclosed detectors can detect radon at and below 4 pCi/L in air; also, at and below 4,000 pCi/L or 300 pCi/L in water.

  19. Design of Cigarette Hopper Vane Detector Base on Infrared Detection Technology%基于红外探测技术的烟支槽检测器设计

    Institute of Scientific and Technical Information of China (English)

    张涛; 张昆

    2015-01-01

    针对香烟包装生产过程中烟支槽中发生烟支流断流的问题,设计了一种烟支槽检测器,该检测器能够检测烟支槽内烟支流是否发生断流。本文给出了该检测器的主要组成部分,阐述了各部分硬件设计方法。该检测器能够将输出信号传送给包装机控制系统,实现系统对烟支槽内烟支流的在线检测,具有较好的市场应用和推广价值。%Aim at the problem of cigarette stream stoppage in cigarette hopper vane appearing in process of cigarette packaging, this is cigarette hopper vane detector which can detect if cigarette stream stops in cigarette hopper vane. In the paper, main parts of detector are introduced, the hardware design method of main parts are expatiated. This detector can transmit output signal to system to realize on line detection of cigarette stream in cigarette hopper vane, has market application and spread value.

  20. Quantum Well Infrared Photodetectors: Device Physics and Light Coupling

    Science.gov (United States)

    Bandara, S. V.; Gunapala, S. D.; Liu, J. K.; Mumolo, J.; Luong, E.; Hong, W.; Sengupta, D. K.

    1997-01-01

    It is customary to make infrared (IR) detectors in the long wavelength range by utilizing the interband transition which promotes an electron across the band gap (Eg) from the valence band to the conduction.

  1. CLIC Detector Power Requirements

    CERN Document Server

    Gaddi, A

    2013-01-01

    An estimate for the CLIC detector power requirements is outlined starting from the available data on power consumptions of the four LHC experiments and considering the differences between a typical LHC Detector (CMS) and the CLIC baseline detector concept. In particular the impact of the power pulsing scheme for the CLIC Detector electronics on the overall detector consumption is considered. The document will be updated with the requirements of the sub-detector electronics once they are more defined.

  2. Pixel Vertex Detectors

    OpenAIRE

    Wermes, Norbert

    2006-01-01

    Pixel vertex detectors are THE instrument of choice for the tracking of charged particles close to the interaction point at the LHC. Hybrid pixel detectors, in which sensor and read-out IC are separate entities, constitute the present state of the art in detector technology. Three of the LHC detectors use vertex detectors based on this technology. A development period of almost 10 years has resulted in pixel detector modules which can stand the extreme rate and timing requirements as well as ...

  3. Sputtered film thermistor IR detectors

    Science.gov (United States)

    Baliga, Shankar B.; Rost, Martin R.; Doctor, Alan P.

    1994-07-01

    The thermistor infrared detector or bolometer is the detector of choice in many classical remote sensing applications such as horizon sensing, noncontact thermometry, and industrial applications. In recent years, the authors have developed a thin film process where the thermistor material is deposited from a target directly onto the substrate. This is an advance over the labor intensive ceramic technology, where sintered flakes of the thermistor are bonded to the substrate. The thin film technique permits a variety of device constructions and configurations. Detectors fabricated on heat-sunk ceramic substrates can withstand high operating temperatures and large incident optical power, in both pulsed and CW laser measurements. For dc or low frequency measurements, the films can be deposited onto a thermally isolated membrane with applications in motion sensing, gas detection, and temperature measurement. Utilizing advances in micromachining a 2D array of thermally isolated microbolometer sensors, integrated onto a silicon wafer containing readout circuitry may be achieved. This paper describes the construction of the sputtered film thermistor detectors, their operation, and applications.

  4. ROIC with on-chip sigma-delta AD converter for HgCdTe e-APD FPA

    Science.gov (United States)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-10-01

    HgCdTe electron injection avalanche photodiodes (e-APDs) work at linear mode. A weak optical current signal is amplified orders of magnitude due to the internal avalanche mechanism and it has been demonstrated to be one of the most promising methods to focal-plane arrays (FPAs) for low-flux like hyper-spectral imaging and high-speed applications such as active imaging. This paper presents the design of a column-shared ADC for cooled e-APDs FPA. Designing a digital FPA requires fulfilling very stringent requirements in terms of power consumption, silicon area and speed. Among the various ADC architectures sigma-delta conversion is a promising solution for high-performance and medium size FPA such as 128×128. The performance of Sigma-delta ADC rather relies on the modulator structure which set over-sampling and noise shaping characteristics than on critical analog circuits. This makes them quite robust and flexible. A multistage noise shaping (MASH) 2-1 single bit architecture sigma-delta conversion with switched-capacitor circuits is designed for column-shared ADC, which is implanted in the GLOBALFOUNDRIES 0.35um CMOS process with 4-poly and 4-metal on the basis of a 100um pixel pitch. It operates under 3.3V supply and the output range of the quantizer is 2V. A quantization noise subtraction circuit in modulator is designed to subtract the quantization noise of first-stage modulator. The quantization noise of the modulator is shaped by a high-pass filter. The silicon area and power consumption are mainly determined by the decimation low pass filter. A cascaded integrator-comb (CIC) filter is designed as the digital decimator filter. CIC filter requires no multipliers and use limited storage thereby leading to more economical hardware implementation. The register word length of the filter in each stage is carefully dimensioned in order to minimize the required hardware. Furthermore, the digital filters operate with a reduced supply voltage to 1.5V. Simulation

  5. Upconversion based continuous-wave mid-infrared detection

    DEFF Research Database (Denmark)

    Tidemand-Lichtenberg, Peter; Dam, Jeppe Seidelin; Pedersen, Christian

    2013-01-01

    We present theoretical and experimental work on upconversion based mid-wavelength infrared detection using silicon detectors without the need for cryogenic cooling. We consider both multi-spectral imaging and point spectroscopy targeting several specific applications.......We present theoretical and experimental work on upconversion based mid-wavelength infrared detection using silicon detectors without the need for cryogenic cooling. We consider both multi-spectral imaging and point spectroscopy targeting several specific applications....

  6. MUON DETECTOR

    CERN Multimedia

    F. Gasparini

    DT As announced in the previous Bulletin MU DT completed the installation of the vertical chambers of barrel wheels 0, +1 and +2. 242 DT and RPC stations are now installed in the negative barrel wheels. The missing 8 (4 in YB-1 and 4 in YB-2) chambers can be installed only after the lowering of the two wheels into the UX cavern, which is planned for the last quarter of the year. Cabling on the surface of the negative wheels was finished in May after some difficulties with RPC cables. The next step was to begin the final commissioning of the wheels with the final trigger and readout electronics. Priority was giv¬en to YB0 in order to check everything before the chambers were covered by cables and services of the inner detectors. Commissioning is not easy since it requires both activity on the central and positive wheels underground, as well as on the negative wheels still on the surface. The DT community is requested to commission the negative wheels on surface to cope with a possible lack of time a...

  7. High-speed mid-infrared hyperspectral imaging using quantum cascade lasers

    Science.gov (United States)

    Kelley, David B.; Goyal, Anish K.; Zhu, Ninghui; Wood, Derek A.; Myers, Travis R.; Kotidis, Petros; Murphy, Cara; Georgan, Chelsea; Raz, Gil; Maulini, Richard; Müller, Antoine

    2017-05-01

    We report on a standoff chemical detection system using widely tunable external-cavity quantum cascade lasers (ECQCLs) to illuminate target surfaces in the mid infrared (λ = 7.4 - 10.5 μm). Hyperspectral images (hypercubes) are acquired by synchronously operating the EC-QCLs with a LN2-cooled HgCdTe camera. The use of rapidly tunable lasers and a high-frame-rate camera enables the capture of hypercubes with 128 x 128 pixels and >100 wavelengths in acetaminophen) on a variety of surfaces (e.g., aluminum, plastic, glass). Signature spectra are obtained for particulate loadings of RDX on glass of <1 μg/cm2.

  8. Bridging the Mid-Infrared-to-Telecom Gap with Silicon Nanophotonic Spectral Translation

    CERN Document Server

    Liu, Xiaoping; Roelkens, Gunther; Baets, Roel; Osgood, Richard M; Green, William M J

    2012-01-01

    Expanding far beyond traditional applications in optical interconnects at telecommunications wavelengths, the silicon nanophotonic integrated circuit platform has recently proven its merits for working with mid-infrared (mid-IR) optical signals in the 2-8 {\\mu}m range. Mid-IR integrated optical systems are capable of addressing applications including industrial process and environmental monitoring, threat detection, medical diagnostics, and free-space communication. Rapid progress has led to the demonstration of various silicon components designed for the on-chip processing of mid-IR signals, including waveguides, vertical grating couplers, microcavities, and electrooptic modulators. Even so, a notable obstacle to the continued advancement of chip-scale systems is imposed by the narrow-bandgap semiconductors, such as InSb and HgCdTe, traditionally used to convert mid-IR photons to electrical currents. The cryogenic or multi-stage thermo-electric cooling required to suppress dark current noise, exponentially d...

  9. Advanced Si IR detectors using molecular beam epitaxy

    Science.gov (United States)

    Lin, T. L.; Jones, E. W.; George, T.; Ksendzov, A.; Huberman, M. L.

    1991-01-01

    SiGe/Si heterojunction internal photoemission (HIP) long wavelength infrared (LWIR) detectors have been fabricated by MBE. The SiGe/Si HIP detector offers a tailorable spectral response in the long wavelength infrared regime by varying the SiGe/Si heterojunction barrier. Degenerately doped p(+) SiGe layers were grown using elemental boron, as the dopant source allows a low growth temperature. Good crystalline quality was achieved for boron-doped SiGe due to the reduced growth temperature. The dark current density of the boron-doped HIP detectors was found to be thermionic emission limited. HIP detectors with a 0.066 eV were fabricated and characterized using activation energy analysis, corresponding to a 18 micron cutoff wavelength. Photoresponse of the detectors at wavelengths ranging from 2 to 12 microns has been characterized with corresponding quantum efficiencies of 5 - 0.1 percent.

  10. Improved IR detectors to swap heavy systems for SWaP

    Science.gov (United States)

    Manissadjian, Alain; Rubaldo, Laurent; Rebeil, Yann; Kerlain, Alexandre; Brellier, Delphine; Mollard, Laurent

    2012-06-01

    Cooled IR technologies are challenged for answering new system needs like the compactness and the reduction of cryopower which is a key feature for the SWaP (Size, Weight and Power) requirements. Over the last years, SOFRADIR has improved its HgCdTe technology, with effect on dark current reduction, opening the way for High Operating Temperature (HOT) systems that can get rid of the 80K temperature constraint, and therefore releases the Stirling cooler engine power consumption. Performances of the 640×512 15μm pitch LW detector working above 100K will be presented. A compact 640×512 15μm pitch MW detector presenting high EO performance above 130K with cut-off wavelength above 5.0μm has been developed. Its different performances with respect to the market requirements for SWaP will be discussed. High performance compact systems will make no compromise on detector resolution. The pixel pitch reduction is the answer for resolution enhancement with size reduction. We will therefore also discuss the ongoing developments and market needs for SWaP systems.

  11. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    Science.gov (United States)

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  12. Influence of infrared radiation on the electrical characteristics of the surface-barrier nanostructures based on MBE HgCdTe

    Science.gov (United States)

    Pociask-Bialy, Malgorzata; Izhnin, Ihor; Voitsekhovskii, Alexander; Nesmelov, Sergey; Dzyadukh, Stanislav

    2016-12-01

    Impact of illumination on the admittance of the MIS structures based on MBE Hg1-xCdxTe with graded-gap layers and single quantum wells was investigated. It is shown that for HgCdTe-based nanostructures the illumination greatly affects the capacitance and conductance dependencies. The capacitance-voltage characteristics exhibit a low-frequency behavior, which is associated with a decrease in the differential resistance of the space charge region. Especially informative illumination exposure is in the study of deep traps in n-HgCdTe (x=0.21-0.23) without graded-gap layer. Illumination leads to the low-frequency behavior of capacitance-voltage characteristics of MIS structures based on p-HgCdTe with HgTe single quantum well in the active region, and maximums in the voltage dependences do not appear.

  13. Quasi-2D analysis of the effect of passivant on the performance of long-wavelength infrared HgCdTe photodiodes

    Science.gov (United States)

    Dhar, V.; Bhan, R. K.; Ashokan, R.; Kumar, V.

    1996-09-01

    The results of a quasi-two-dimensional model for calculating passivant-induced surface leakage currents due to band-to-band tunnelling in 0268-1242/11/9/010/img1 mercury cadmium telluride (MCT) 0268-1242/11/9/010/img2 photovoltaic (PV) diodes are presented. The object is to assess the effect of a fixed surface state charge density 0268-1242/11/9/010/img3 due to a passivant on the zero-bias resistance - area product 0268-1242/11/9/010/img4 for the technologically important case when surface state charges accumulate the MCT surface. Calculations are carried out to estimate the tolerable value of 0268-1242/11/9/010/img3 beyond which the 0268-1242/11/9/010/img4 of the MCT diode degrades. To the best of our knowledge, this is the first time that such a detailed calculation involving the acceptor concentration profile near the surface has been reported for long-wavelength IR (LWIR) MCT photodiodes. This calculation has been done numerically, and hence the depletion width (pinched near the surface), the electric field and the band-to-band tunnelling are calculated as a function of depth, layer by layer, from the passivant - semiconductor interface. The currents - diffusion, generation - recombination, band-to-band and trap-assisted tunnelling - have been calculated in each layer, and the zero-bias resistance - area product is determined for each mechanism. Hence, the resultant 0268-1242/11/9/010/img4 is calculated. The results are compared with the earlier step model of Bhan and Gopal (Semicond. Sci. Technol. 9 (1994) 289), which assumed a surface layer of constant concentration 0268-1242/11/9/010/img8. The present model indicates that for photodiodes with a cut-off wavelength of 0268-1242/11/9/010/img9 and an acceptor concentration 0268-1242/11/9/010/img10, operating at 77 K, a 0268-1242/11/9/010/img11 would degrade 0268-1242/11/9/010/img4 significantly. This value is insensitive to composition (in the LWIR). For an 0268-1242/11/9/010/img1 diode, the tolerable value of 0268-1242/11/9/010/img3 is found to depend on the concentration 0268-1242/11/9/010/img15 in the 0268-1242/11/9/010/img16 layer. Further, the tolerable value of 0268-1242/11/9/010/img3 for an 0268-1242/11/9/010/img18 diode is much higher than for an 0268-1242/11/9/010/img1 diode, for donor concentrations 0268-1242/11/9/010/img20.

  14. Reactive ion etching (RIE) induced p- to n-type conversion in extrinsically doped p-type HgCdTe

    Energy Technology Data Exchange (ETDEWEB)

    Musca, C.A.; Smith, E.P.G.; Siliquini, J.F.; Dell, J.M.; Antoszewski, J.; Faraone, L. [Univ. of Western Australia, Nedlands, Western Australia (Australia). Dept. of Electrical and Electronic Engineering; Piotrowski, J. [Vigo System Ltd., Warsaw (Poland)

    1998-12-31

    Mercury annealing of reactive ion etching (RIE) induced p- to n-type conversion in extrinsically doped p-type epitaxial layers of HgCdTe (x = 0.31) has been used to reconvert n-type conversion sustained during RIE processing. For the RIE processing conditions used (400 mT, CH{sub 4}/H{sub 2}, 90 W) p- to n-type conversion was observed using laser beam induced current (LBIC) measurements. After a sealed tube mercury anneal at 200 C for 17 hours, LBIC measurements clearly indicated no n-type converted region remained. Subsequent Hall measurements confirmed that the material consisted of a p-type layer, with electrical properties equivalent to that of the initial as-grown wafer (N{sub A}-N{sub D} = 2 {times} 10{sup 16} cm{sup {minus}3}, {mu} = 350 cm{sup 2}.V{sup {minus}1}.s{sup {minus}1}).

  15. Overview on low-flux detectors

    Energy Technology Data Exchange (ETDEWEB)

    Seggern, Jan Eike von

    2013-10-15

    Laboratory based searches for weakly-interacting slim particles (WISPs) of the light-shining-through-a-wall type (LSW) use visible or near-infrared (NIR) laser light. Low-noise and highly efficient detectors are necessary to improve over previous experiments. These requirements overlap with the requirements for single-photon detectors (SPDs) for quantum information (QI) experiments. In this contribution, the sensitivity of several QI SPDs is compared to photo-multiplier tubes (PMTs) and imaging charge-coupled devices (CCDs). It is found that only transition edge sensors (TESs) are viable alternatives to CCDs if the signal can be focussed to a few {mu}m.

  16. Overview on Low-flux Detectors

    CERN Document Server

    von Seggern, Jan Eike

    2013-01-01

    Laboratory based searches for weakly-interacting slim particles (WISPs) of the light-shining-through-a-wall type (LSW) use visible or near-infrared (NIR) laser light. Low-noise and highly efficient detectors are necessary to improve over previous experiments. These requirements overlap with the requirements for single-photon detectors (SPDs) for quantum information (QI) experiments. In this contribution, the sensitivity of several QI SPDs is compared to photo-multiplier tubes (PMTs) and imaging charge-coupled devices (CCDs). It is found that only transition edge sensors (TESs) are viable alternatives to CCDs if the signal can be focussed to a few micro meters.

  17. 红外波长上转换器件中载流子阻挡结构的研究∗%Studies on carrier-blo cking structures for up-conversion infrared photo detectors

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    Infrared (IR) photodetectors have been widely used in the fields of both civil and military applications such as environmental monitoring, medical diagnostics, satellite remote sensing and missile guidance, etc. In conventional large scale focal plane array (FPA) IR imaging, the thermal mismatch between IR photodetectors and silicon readout circuits will inevitably lead to the degradation of the device performance. An up-conversion IR photodetector, which converts IR photons to short-wavelength photons for Si-CCD-based imaging, can avoid thermal mismatch caused by hybridization with silicon readout circuits, resulting in a low-cost way for large array IR imaging. The operation principle of the semiconductor up-conversion IR photodetector is based on electron transitions and carrier transportation in different functional sections including absorption section, transportation section and emission section, hence the carrier distribution in the device structure has a crucial influence on the device performance. In order to achieve low dark current, carriers are expected to be non-uniformly distributed in the up-conversion device structure. Designing and optimizing the carrier-blocking structure are usually the key issues to acquire inhomogeneous carrier distribution. In this paper, up-conversion infrared photodetectors with various hole-blocking structures are investigated both the-oretically and experimentally. Firstly the carrier distributions are calculated by self-consistently solving the Schrödinger equation, Poisson equation, current continuity equation and carrier rate equation. Then the influence of the carrier-blocking structure on the device performance is analyzed by electroluminescence measurements on the corresponding epitaxial structures. According to the theoretical and experimental results, it is found that a 2-nm-thick AlAs barrier layer can block holes effectively without hampering the electron transportation, which is necessary for the up

  18. Application of quantum dot infrared photo detectors in space photo electric systems%量子点红外探测器在空间光电系统中的应用

    Institute of Scientific and Technical Information of China (English)

    周彦平; 黎发军; 车驰; 谭立英; 冉启文; 于思源; 马晶

    2014-01-01

    为了更好地开发和利用空间资源,各国竞相通过向空间发射卫星、空间站、航天飞机等航天器来建立探测站点和通信网络以占据具有最大优势的位置,其中空间光电系统在探索新资源方面起到关键的作用。点对点的距离远、空间辐射强、温差较大等空间环境因素严重影响着光电系统性能的发挥,也向空间光电系统的稳定性和可靠性提出了挑战。本文提出将具有较高的探测灵敏度、工作温度、抗辐射能力和响应带宽的新型量子点红外探测器应用于空间光电系统,阐述了量子点红外探测器的基本工作原理和优点,并讨论了量子点红外探测器在空间应用的技术要求,分析了其在空间的激光雷达、卫星光通信和成像或者非成像系统中的应用。%Space environment and space resources have become a new field of competition among countries, and this field is to be developed. To achieve these purposes, some countries have established the detection sites and communication network by launching satellites, space stations, space shuttles and other spacecrafts into the space. Photoelectric systems in space play a crucial role in developing new fields and exploring new resources. Presently, the space environment factors including point-to-point long distance, intense space radiation, large temperature difference challenge the high requirements of the stability and reliability for the optoelectronic system. A new type of technology with quantum dot infrared photodetector, which may be used in the space, is proposed, which potentially provides higher detectivity, operation temperature, radiation tolerance, responsive bandwidth, etc. The basic working principle and the advantages of the quantum dot infrared photodetectorare discussed. And the basic technical requirements for the quantum dot infrared photodetector in space application are pointed out. Finally, feasible applications of the

  19. Near Infrared Spectroscopy Systems for Tissue Oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl

    We present exible silicon device platforms, which combine polyimide with polydimethylsiloxane in order to add flexibility and biocompatibility to the silicon devices. The device platforms are intended as tissue oximeters, using near infrared spectroscopy, but could potentially also be used...... for other medical applications. The tissue oximeters are realised by incorporation of pn-diodes into the silicon in order to form arrays of infrared detectors. These arrays can then be used for spatially resolved spectroscopy measurements, with the targeted end user being prematurely born infant children...... of incidence. Thus, also minimising the drop in quantum efficiency for light incident at 38 from normal to only 5.2 % compared to a drop of 9.1 % for devices without the black silicon nanostructures. In conclusion both the flexible device platforms and infrared detectors were found to work....

  20. The MINOS Detectors

    CERN Document Server

    Grashorn, A H E W

    2005-01-01

    The Main Injector Neutrino Oscillation Search (MINOS) experiment's primary goal is the precision measurement of the neutrino oscillation parameters in the atmospheric neutrino sector. This long-baseline experiment uses Fermilab's NuMI beam, measured with a Near Detector at Fermilab, and again 735 km later using a Far Detector in the Soudan Mine Underground Lab in northern Minnesota. The detectors are magnetized iron/scintillator calorimeters. The Far Detector has been operational for cosmic ray and atmospheric neutrino data from July of 2003, the Near Detector from September 2004, and the NuMI beam started in early 2005. This poster presents details of the two detectors.

  1. GADRAS Detector Response Function.

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Dean J.; Harding, Lee; Thoreson, Gregory G; Horne, Steven M.

    2014-11-01

    The Gamma Detector Response and Analysis Software (GADRAS) applies a Detector Response Function (DRF) to compute the output of gamma-ray and neutron detectors when they are exposed to radiation sources. The DRF is fundamental to the ability to perform forward calculations (i.e., computation of the response of a detector to a known source), as well as the ability to analyze spectra to deduce the types and quantities of radioactive material to which the detectors are exposed. This document describes how gamma-ray spectra are computed and the significance of response function parameters that define characteristics of particular detectors.

  2. The TALE Tower Detector

    Science.gov (United States)

    Bergman, D. R.

    The TA Low Energy Extension will include a Tower FluorescenceDetector. Extensive air showers at the lowest usful energies for fluorescence detectors will in general be close to the detector. This requires viewing all elevation angles to be able to reconstruct showers. The TALE Tower Detector, operating in conjunction with other TALE detectors will view elevation angles up to above 70 degrees, with an azimuthal coverage of about 90 degrees. Results from a prototype mirror operated in conjunction with the HiRes detector will also be presented.

  3. Drift Chambers detectors; Detectores de deriva

    Energy Technology Data Exchange (ETDEWEB)

    Duran, I.; Martinez laso, L.

    1989-07-01

    We present here a review of High Energy Physics detectors based on drift chambers. The ionization, drift diffusion, multiplication and detection principles are described. Most common drift media are analysed, and a classification of the detectors according to its geometry is done. Finally the standard read-out methods are displayed and the limits of the spatial resolution are discussed. (Author) 115 refs.

  4. Thermal kinetic inductance detector

    Energy Technology Data Exchange (ETDEWEB)

    Cecil, Thomas; Gades, Lisa; Miceli, Antonio; Quaranta, Orlando

    2016-12-20

    A microcalorimeter for radiation detection that uses superconducting kinetic inductance resonators as the thermometers. The detector is frequency-multiplexed which enables detector systems with a large number of pixels.

  5. Forward tracking detectors

    Indian Academy of Sciences (India)

    Klaus Mönig

    2007-11-01

    Forward tracking is an essential part of a detector at the international linear collider (ILC). The requirements for forward tracking are explained and the proposed solutions in the detector concepts are shown.

  6. The OSMOND detector

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, J.E. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Dalgliesh, R. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Duxbury, D.M., E-mail: dom.duxbury@stfc.ac.uk [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Helsby, W.I. [Science and Technology Facilities Council, Daresbury Laboratory, Keckwick Lane, Daresbury, Warrington WA4 4AD (United Kingdom); Holt, S.A.; Kinane, C.J. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Marsh, A.S. [Diamond Light Source LTD, Harwell Science and Innovation Campus, Diamond House, Chilton, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Rhodes, N.J.; Schooneveld, E.M. [ISIS Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom); Spill, E.J.; Stephenson, R. [Technology Dept. Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford, Oxfordshire, OX11 0QX (United Kingdom)

    2013-01-11

    The development and testing of the Off Specular MicrOstrip Neutron Detector (OSMOND) is described. Based on a microstrip gas chamber the aim of the project was to produce a high counting rate detector capable of replacing the existing rate limited scintillator detectors currently in use on the CRISP reflectometer for off specular reflectometry experiments. The detector system is described together with results of neutron beam tests carried out at the ISIS spallation neutron source.

  7. Microtextured Silicon Surfaces for Detectors, Sensors & Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Carey, JE; Mazur, E

    2005-05-19

    With support from this award we studied a novel silicon microtexturing process and its application in silicon-based infrared photodetectors. By irradiating the surface of a silicon wafer with intense femtosecond laser pulses in the presence of certain gases or liquids, the originally shiny, flat surface is transformed into a dark array of microstructures. The resulting microtextured surface has near-unity absorption from near-ultraviolet to infrared wavelengths well below the band gap. The high, broad absorption of microtextured silicon could enable the production of silicon-based photodiodes for use as inexpensive, room-temperature multi-spectral photodetectors. Such detectors would find use in numerous applications including environmental sensors, solar energy, and infrared imaging. The goals of this study were to learn about microtextured surfaces and then develop and test prototype silicon detectors for the visible and infrared. We were extremely successful in achieving our goals. During the first two years of this award, we learned a great deal about how microtextured surfaces form and what leads to their remarkable optical properties. We used this knowledge to build prototype detectors with high sensitivity in both the visible and in the near-infrared. We obtained room-temperature responsivities as high as 100 A/W at 1064 nm, two orders of magnitude higher than standard silicon photodiodes. For wavelengths below the band gap, we obtained responsivities as high as 50 mA/W at 1330 nm and 35 mA/W at 1550 nm, close to the responsivity of InGaAs photodiodes and five orders of magnitude higher than silicon devices in this wavelength region.

  8. Ultrafast photon drag detector for intersubband spectroscopy

    Science.gov (United States)

    Sigg, Hans; Graf, Stephan; Kwakernaak, Martin H.; Margotte, Bernd; Erni, Daniel; Van Son, Peter; Köhler, Klaus

    1996-03-01

    The photon drag effect of a 2D electron gas is measured using the ps infrared pulses of the wavelength-tunable free electron laser source FELIX. The pulsed photon drag response is found to depend critically on the coupling characteristics of the electrical circuit. We therefore developed an impedance and velocity matched photon drag detector. It consists of a GaAs/AlGaAs multi quantum well sample which forms an integral part of a microstrip line. A Ge-prism enables incoupling at the critical total reflection angle. This novel transmission line integrated photon drag detector (TIP-detector) generates signal transients below 10 ps rise and fall times. Its continuous spectral response through the intersubband resonance is investigated at room temperature and at T=100 K. An analysis of the spectral lineshape of the photon drag current response yields information about the momentum relaxation times of the electrons in the ground and excited subbands.

  9. Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    Science.gov (United States)

    Krabach, Timothy N.; Huffman, James E.; Watson, Dan M.

    1989-01-01

    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered.

  10. The CAPRICE RICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Basini, G. [INFN, Laboratori Nazionali di Frascati, Rome (Italy); Codino, A.; Grimani, C. [Perugia Univ. (Italy)]|[INFN, Perugia (Italy); De Pascale, M.P. [Rome Univ. `Tor Vergata` (Italy). Dip. di Fisica]|[INFN, Sezione Univ. `Tor Vergata` Rome (Italy); Cafagna, F. [Bari Univ. (Italy)]|[INFN, Bari (Italy); Golden, R.L. [New Mexico State Univ., Las Cruces, NM (United States). Particle Astrophysics Lab.; Brancaccio, F.; Bocciolini, M. [Florence Univ. (Italy)]|[INFN, Florence (Italy); Barbiellini, G.; Boezio, M. [Trieste Univ. (Italy)]|[INFN, Trieste (Italy)

    1995-09-01

    A compact RICH detector has been developed and used for particle identification in a balloon borne spectrometer to measure the flux of antimatter in the cosmic radiation. This is the first RICH detector ever used in space experiments that is capable of detecting unit charged particles, such as antiprotons. The RICH and all other detectors performed well during the 27 hours long flight.

  11. Graphene vertical hot-electron terahertz detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Satou, A.; Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-09-21

    We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. Hence, these detectors are the hot-electron bolometric detectors. The electron heating is primarily associated with the intraband absorption (the Drude absorption). In the frame of the developed model, we calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GLDs with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A{sub 3}B{sub 5} materials, in particular, THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials). We also evaluate the characteristics of GLDs in the mid- and far-infrared ranges where the electron heating is due to the interband absorption in GLs.

  12. Type II superlattice technology for LWIR detectors

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Azulai, D.; Benny, Y.; Fraenkel, R.; Glozman, A.; Hojman, E.; Klin, O.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nitzani, M.; Shtrichman, I.; Rappaport, N.; Snapi, N.; Weiss, E.; Tuito, A.

    2016-05-01

    SCD has developed a range of advanced infrared detectors based on III-V semiconductor heterostructures grown on GaSb. The XBn/XBp family of barrier detectors enables diffusion limited dark currents, comparable with MCT Rule-07, and high quantum efficiencies. This work describes some of the technical challenges that were overcome, and the ultimate performance that was finally achieved, for SCD's new 15 μm pitch "Pelican-D LW" type II superlattice (T2SL) XBp array detector. This detector is the first of SCD's line of high performance two dimensional arrays working in the LWIR spectral range, and was designed with a ~9.3 micron cut-off wavelength and a format of 640 x 512 pixels. It contains InAs/GaSb and InAs/AlSb T2SLs, engineered using k • p modeling of the energy bands and photo-response. The wafers are grown by molecular beam epitaxy and are fabricated into Focal Plane Array (FPA) detectors using standard FPA processes, including wet and dry etching, indium bump hybridization, under-fill, and back-side polishing. The FPA has a quantum efficiency of nearly 50%, and operates at 77 K and F/2.7 with background limited performance. The pixel operability of the FPA is above 99% and it exhibits a stable residual non uniformity (RNU) of better than 0.04% of the dynamic range. The FPA uses a new digital read-out integrated circuit (ROIC), and the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector. The Pelican- D LW detector is now in the final stages of qualification and transfer to production, with first prototypes already integrated into new electro-optical systems.

  13. Novel infrared image enhancement technology based on the frequency compensation approach

    Science.gov (United States)

    Qi, Yuhua; He, Rulong; Lin, Haitao

    2016-05-01

    A novel infrared image enhancement method has been proposed in this paper. Our aim is to develop a detail enhancement method which is focused on the frequency feature of the image. The proposed method is following the most popular strategy of enhancing the infrared images nowadays, but concentrating on the frequency domain. Firstly, the original image is separated by a guided image filter into detail layer and the base layer. Quite unlike the traditional methods, we use the guided image filter to eliminate most of the noise and weak signal of the scenario. Then, by a designed iteration process, the higher frequency of the scenario will be calculated back and add to the detail layer. The noise will not be enhanced because the iteration is only focused on the leftover scenario frequency. We run many tests on the raw data captured by the 320 × 256 HgCdTe cooled thermal imager, and make a comparison between our approach with the previous method of bilateral filtering digital detail enhancement and guided image filtering digital detail enhancement. Figures and analytical data show that our method is better than the previous proposed researches. Our method could effectively process the infrared image with less noise and artifacts, which has potential applications in testing, manufacturing, chemical imaging, night vision, and surveillance security.

  14. Equalized near maximum likelihood detector

    OpenAIRE

    2012-01-01

    This paper presents new detector that is used to mitigate intersymbol interference introduced by bandlimited channels. This detector is named equalized near maximum likelihood detector which combines nonlinear equalizer and near maximum likelihood detector. Simulation results show that the performance of equalized near maximum likelihood detector is better than the performance of nonlinear equalizer but worse than near maximum likelihood detector.

  15. High-energy detector

    Science.gov (United States)

    Bolotnikov, Aleksey E [South Setauket, NY; Camarda, Giuseppe [Farmingville, NY; Cui, Yonggang [Upton, NY; James, Ralph B [Ridge, NY

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  16. Mid infrared upconversion spectroscopy using diffuse reflectance

    DEFF Research Database (Denmark)

    Sanders, Nicolai Højer; Kehlet, Louis M.; Dam, Jeppe Seidelin

    2014-01-01

    We present a novel approach for mid infrared (mid-IR) spectral analysis using upconversion technology applied in a diffuse reflectance setup. We demonstrate experimentally that mid-IR spectral features in the 2.6-4 μm range using different test samples (e.g. zeolites) can be obtained. The results...... are in good agreement with published data. We believe that the benefit of low noise upconversion methods combined with spectral analysis will provide an alternative approach to e.g. mid-IR Fourier Transform microscopy. We discuss in detail the experimental aspects of the proposed method. The upconversion unit...... located in the near infrared (NIR) wavelength region easily accessible for low noise Silicon CCD camera technology. Thus the room temperature upconversion unit and the Silicon CCD camera replaces noisy mid infrared detectors used in existing Fourier Transform Infrared Spectroscopy. We demonstrate...

  17. Investigation of a background suppression transimpedance amplifier for photovoltaic detectors

    Science.gov (United States)

    Metzger, Ferdinand J., Jr.

    1992-12-01

    The current generation of transimpedance amplifier based detector systems are limited by opamp saturation when operating at a high gain or in the presence of a large background signal. To eliminate saturation, an amplifier that is frequency dependent is developed. Additionally, the noise sources in the conventional transimpedance amplifier and photovoltaic detector are quantified for comparison to any modified circuit. Initial results indicate that the frequency dependent detector system is a viable system, however, further development is required. Further research of this technology is expected to support future infrared and long range detection applications.

  18. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  19. Negative Avalanche Feedback Detectors for Photon-Counting Optical Communications

    Science.gov (United States)

    Farr, William H.

    2009-01-01

    Negative Avalanche Feedback photon counting detectors with near-infrared spectral sensitivity offer an alternative to conventional Geiger mode avalanche photodiode or phototube detectors for free space communications links at 1 and 1.55 microns. These devices demonstrate linear mode photon counting without requiring any external reset circuitry and may even be operated at room temperature. We have now characterized the detection efficiency, dark count rate, after-pulsing, and single photon jitter for three variants of this new detector class, as well as operated these uniquely simple to use devices in actual photon starved free space optical communications links.

  20. Fabrication and Investigation of an Upconversion Quantum-Well Infrared Photodetector Integrated with a Light-Emitting Diode

    Institute of Scientific and Technical Information of China (English)

    ZHEN Hong-Lou; LI Ning; XIONG Da-Yuan; ZHOU Xu-Chang; LU Wei; LIU Hui-Chun

    2005-01-01

    @@ We report the fabrication of an upconversion infrared detector, i.e. a quantum well infrared photodetector integrated with a light-emitting diode (named as QWIP-LED). The infrared photo-response spectrum in the upconversion process is in good agreement with the normal photocurrent spectrum of the QWIP, which demonstrates that the long wavelength infrared band at 8μm has been transferred to the near infrared band at 0.8μmby the upconversion process.