WorldWideScience

Sample records for hgcdte detector array

  1. Proton irradiation results for long-wave HgCdTe infrared detector arrays for NEOCam

    CERN Document Server

    Dorn, M; McMurtry, C; Hartman, S; Mainzer, A; McKelvey, M; McMurray, R; Chevara, D; Rosser, J

    2016-01-01

    HgCdTe detector arrays with a cutoff wavelength of ~10 ${\\mu}$m intended for the NEOCam space mission were subjected to proton beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested - one with 800 $\\mu$m substrate intact, one with 30 $\\mu$m substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes elevated signal in non-hit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in non-hit pixels during proton testing for both the substrate-removed detector array and the array with 30 ${\\mu}$m substrate. The detector array with full 800 ${\\mu}$m substrate exhibited substantial photocurrent for a flux of 103 protons/cm$^2$-s at a beam energy of 18.1 MeV (~ 750 e$^-$/s) and 34.4 MeV ($\\sim$ 6...

  2. HgCdTe Infrared Avalanche Photodiode Single Photon Detector Arrays for the LIST and Other Decadal Missions Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a HgCdTe avalanche photodiode (APD)  SWIR/IR linear mode photon counting (LMPC) array detector system in support of the LIST lidar. Provide a new type...

  3. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    Science.gov (United States)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  4. Development of megapixel HgCdTe detector arrays with 15 micron cutoff

    Science.gov (United States)

    Forrest, William J.; McMurtry, Craig W.; Dorn, Meghan; Pipher, Judith; Cabrera, Mario S.

    2016-10-01

    I. HistoryHgCdTe is a versatile II-VI semiconductor with a direct-bandgap tunable via the Hg:Cd ratio. Hg:Cd ratio = 53:47 (2.5 micron cutoff) was used on the NICMOS instrument on HST and the 2MASS. Increasing Hg:Cd ratio to 70:30 leads to a 5.4 micron cutoff, utilized in NEOWISE and many JWST instruments. Bailey, Wu et al. (1998) motivated extending this technology to 10 microns and beyond. Bacon, McMurtry et al. (2003, 2004) indicated significant progress toward this longwave (LW) goal.Warm-Spitzer has pioneered passive cooling to below 30 K in space, enabling the JWST mission.II. CurrentNASA's proposed NEOcam mission selected HgCdTe with a 10.6 micron cutoff because it promises natural Zodiacal background limited sensitivity with modest cooling (40 K). Teledyne Imaging Systems (TIS) is producing megapixel arrays with excellent performance (McMurtry, Lee, Dorn et al. (2013)) for this mission.III. FutureModest cooling requirements (circa 30 K) coupled with megapixel arrays and LW sensitivity in the thermal IR make HgCdTe attractive for many infrared instruments. For instance, the spectral signature of a terrestrial planet orbiting in the habitable zone of a nearby star will be the deep and wide absorption by CO_2 centered at 15 microns (Seager and Deming, 2010). LW instruments can enhance Solar System missions, such as exploration of the Enceladus geysers (Spencer, Buratti et al. 2006). Passive cooling will be adequate for these missions. Modern ground-based observatories will benefit from infrared capability out to the N band (7.5-13.6 microns). The required detector temperatures (30-40 K) are easily achievable using commercially available mechanical cryo-coolers (refrigerators).IV. Progress to dateTIS is developing megapixel HgCdTe arrays sensitive out to 15 microns under the direction of the University of Rochester. As a first step, we have produced arrays with a 13 micron cutoff. The initial measurements indicate very promising performance. We will present the

  5. (55)Fe X-ray Response of HgCdTe NIR Detector Arrays

    Science.gov (United States)

    Fox, Ori; Rauscher, Bernard J.

    2008-01-01

    Conversion gain is a fundamental parameter in detector characteristics that is used to measure many identifying detector properties, including read noise, dark current, and quantum efficiency (QE). Charge coupling effects, such as inter-pixel capacitance, attenuate photon shot noise and result in an overestimation of of conversion gain when implementing the photon transfer technique. The (55)Fe X-ray technique is a direct and simple method by which to measure the conversion gain by comparing the observed instrumental counts (ADU) to the known charge (e-) liberated by a single X-ray photon. Here we present the calibrated pair production energy for 1.7 micron HgCdTe infrared detectors.

  6. DRIFT EFFECTS IN HGCDTE DETECTORS

    Directory of Open Access Journals (Sweden)

    B. PAVAN KUMAR

    2013-08-01

    Full Text Available The characteristics of temporal drift in spectral responsivity of HgCdTe photodetectors is investigated and found to have an origin different from what has been reported in literature. Traditionally, the literature attributes the cause of drift due to the deposition of thin film of ice water on the active area of the cold detector. The source of drift as proposed in this paper is more critical owing to the difficulties in acquisition of infrared temperature measurements. A model explaining the drift phenomenon in HgCdTe detectors is described by considering the deep trapping of charge carriers and generation of radiation induced deep trap centers which are meta-stable in nature. A theoretical model is fitted to the experimental data. A comparison of the model with the experimental data shows that the radiation induced deep trap centers and charge trapping effects are mainly responsible for the drift phenomenon observed in HgCdTe detectors.

  7. HgCdTe barrier infrared detectors

    Science.gov (United States)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  8. Determination of charge-carrier diffusion length in the photosensing layer of HgCdTe n-on-p photovoltaic infrared focal plane array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Vishnyakov, A. V.; Stuchinsky, V. A., E-mail: stuchin@isp.nsc.ru; Brunev, D. V.; Zverev, A. V.; Dvoretsky, S. A. [Institute of Semiconductor Physics, Russian Academy of Science, Siberian Division, 13, Acad. Lavrent' ev Avenue, Novosibirsk 630090 (Russian Federation)

    2014-03-03

    In the present paper, we propose a method for evaluating the bulk diffusion length of minority charge carriers in the photosensing layer of photovoltaic focal plane array (FPA) photodetectors. The method is based on scanning a strip-shaped illumination spot with one of the detector diodes at a low level of photocurrents j{sub ph} being registered; such scanning provides data for subsequent analysis of measured spot-scan profiles within a simple diffusion model. The asymptotic behavior of the effective (at j{sub ph} ≠ 0) charge-carrier diffusion length l{sub d} {sub eff} as a function of j{sub ph} for j{sub ph} → 0 inferred from our experimental data proved to be consistent with the behavior of l{sub d} {sub eff} vs j{sub ph} as predicted by the model, while the obtained values of the bulk diffusion length of minority carriers (electrons) in the p-HgCdTe film of investigated HgCdTe n-on-p FPA photodetectors were found to be in a good agreement with the previously reported carrier diffusion-length values for HgCdTe.

  9. Measuring extended red sensitivity in a 1.7μm-cutoff HgCdTe detector array

    Science.gov (United States)

    Terrien, Ryan C.; Monson, Andrew J.; Mahadevan, Suvrath; Bender, Chad; Halverson, Samuel P.; Ramsey, Larry

    2016-08-01

    Infrared detectors with cutoff wavelengths of 1.7 μm have much lower sensitivity to thermal background contamination than those with longer cutoff wavelengths. This low sensitivity offers the attractive possibility of reducing the need for fully cryogenic systems for YJH-band work, offering the potential for "warm-pupil" instrumentation that nonetheless reduces detected thermal background to the level of dark current. However, residual sensitivity beyond the cutoff wavelength is not well characterized, and may preclude the implementation of such warm-pupil instruments. We describe an experiment to evaluate the long-wavelength sensitivity tail of a 1.7 µm-cutoff HAWAII-2RG array using a thermal blocking filter. Our results suggest the possibility of measurable red sensitivity beyond 2 μm. Ongoing improvements will confirm and refine this measurement. The thermal blocking filter offers the prospect of warm-pupil NIR instrument operation, which is particularly valuable for cost-effective and efficient testing systems: it has facilitated NIR detector characterization and will enable crucial laboratory tests of laser frequency comb calibration systems and other NIR calibration sources.

  10. MBE HgCdTe heterostructure detectors

    Science.gov (United States)

    Schulman, Joel N.; Wu, Owen K.

    1990-01-01

    HgCdTe has been the mainstay for medium (3 to 5 micron) and long (10 to 14 micron) wavelength infrared detectors in recent years. Conventional growth and processing techniques are continuing to improve the material. However, the additional ability to tailor composition and placement of doped layers on the tens of angstroms scale using molecular beam epitaxy (MBE) provides the opportunity for new device physics and concepts to be utilized. MBE-based device structures to be discussed here can be grouped into two categories: tailored conventional structures and quantum structures. The tailored conventional structures are improvements on familiar devices, but make use of the ability to create layers of varying composition, and thus band gap, at will. The heterostructure junction can be positioned independently of doping p-n junctions. This allows the small band gap region in which the absorption occurs to be separated from a larger band gap region in which the electric field is large and where unwanted tunneling can occur. Data from hybrid MBE/liquid phase epitaxy (LPE)/bulk structures are given. Quantum structures include the HgTe-CdTe superlattice, in which the band gap and transport can be controlled by alternating thin layers (tens of angstroms thick) of HgTe and CdTe. The superlattice has been shown to exhibit behavior which is non-alloy like, including very high hole mobilities, two-dimensional structure in the absorption coefficient, resonant tunneling, and anisotropic transport.

  11. HgCdTe and silicon detectors and FPAs for remote sensing applications

    Science.gov (United States)

    D'Souza, Arvind I.; Stapelbroek, Maryn G.; Robinson, James E.

    2004-02-01

    Photon detectors and focal plane arrays (FPAs) are fabricated from HgCdTe and silicon in many varieties. With appropriate choices for bandgap in HgCdTe, detector architecture, dopants, and operating temperature, HgCdTe and silicon can cover the spectral range from ultraviolet to the very-long-wavelength infrared (VLWIR), exhibit high internal gain to allow photon counting over this broad spectral range, and can be made in large array formats for imaging. DRS makes HgCdTe and silicon detectors and FPAs with unique architectures for a variety of applications. Detector characteristics of High Density Vertically Integrated Photodiode (HDVIP) HdCdTe detectors as well as Focal Plane Arrays (FPAs) are presented in this paper. MWIR[λc(78 K) = 5 μm] HDVIP detectors RoA performance was measured to within a factor or two or three of theoretical. In addition, 256 x 256 detector arrays were fabricated. Initial measurements had seven out of ten FPAs having operabilities greater than 99.45% with the best 256 x 256 array having only two inoperable pixels. LWIR [λc(78K)~10 μm] 640 X 480 arrays and a variety of single color linear arrays have also been fabricated. In addition, two-color arrays have been fabricated. DRS has explored HgCdTe avalanche photo diodes (APDs) in the λc = 2.2 μm to 5 μm range. The λc = 5 μm APDs have greater than 200 DC gain values at 8 Volts bias. Large-format to 10242 Arsenic-doped (Si:As, λc ~ 28 μm), Blocked-Impurity-Band (BIB) detectors have been developed for a variety of pixel formats and have been optimized for low, moderate, and high infrared backgrounds. Antimony-doped silicon (Si:Sb) BIB arrays having response to wavelengths > 40 μm have also been demonstrated. Avalanche processes in Si:As at low temperatures (~ 8 K) have led to two unique solid-state photon-counting detectors adapted to infrared and visible wavelengths. The infrared device is the solid-state photomultiplier (SSPM). A related device optimized for the visible spectral

  12. Candidate 10 micron HgCdTe arrays for the NEOCam space mission

    Science.gov (United States)

    McMurtry, Craig W.; Dorn, Meghan; Cabrera, Mario S.; Pipher, Judith L.; Forrest, William J.; Mainzer, Amy K.; Wong, Andre

    2016-08-01

    The Near Earth Object Camera (NEOCam, Mainzer et al. 2015) is one of five NASA Discovery Class mission experiments selected for Phase A: down-select to one or two experiments will take place late in 2016. NEOCam will survey the sky in search of asteroids and comets, particularly those close to the Earth's orbit. The NEOCam infrared telescope will have two infrared (IR) channels; one covering 4 to 5 microns, and one covering 6-10 microns. Both IR cameras will use multiple 2Kx2K pixel format HAWAII-2RG arrays with different cutoff wavelength HgCdTe detectors from Teledyne Imaging Sensors. Past development work by the University of Rochester with Teledyne Imaging Sensors and JPL (McMurtry et al. 2013, Dorn et al. 2016) focused upon bringing the 10 micron HgCdTe detector technology up to NASA TRL 6+. This work extends that development program to push the format from 1Kx1K to the larger 2Kx2K pixel array. We present results on the first 2Kx2K candidate 10 micron cutoff HgCdTe arrays, where we measured the dark current, read noise, and total noise.

  13. HgCdTe detector technology at Kunming Institute of Physics

    Science.gov (United States)

    Su, Junhong; Zeng, Gehong

    1996-09-01

    HgCdTe detector and thermal image system laboratories at Kunming Institute of Physics have been carrying the research and development of HgCdTe detectors and thermal imaging systems for a wide range applications for over 20 years. During this period, significant progress has been made in many areas such as HgCdTe material, detector, miniature dewar and cooler to meet the requirements of civil and military operations. This paper describes these activities and present status of HgCdTe technology at Kunming Institute of Physics, and some of the problems we faced and how they were solved.

  14. Thermal cycling reliability of indirect hybrid HgCdTe infrared detectors

    Science.gov (United States)

    Chen, Xing; He, Kai; Wang, Jian-xin; Zhang, Qin-yao

    2013-09-01

    Thermal cycling reliability is one of the most important issues whether the HgCdTe infrared focal plane array detectors can be applied to both military and civil fields. In this paper, a 3D finite element model for indirect hybrid HgCdTe infrared detectors is established. The thermal stress distribution and thermally induced warpage of the detector assembly as a function of the distance between the detector chip and Si-ROIC, the thickness and the materials properties of electrical lead board in cryogenic temperature are analyzed. The results show that all these parameters have influences on the thermal stress distribution and warpage of the detector assembly, especially the coefficient of thermal expansion(CTE) of electrical lead board. The thermal stress and warpage in the assembly can be avoided or minimized by choosing the appropriate electrical lead board. Additionally, the warpage of some indirect hybrid detectors assembly samples is measured in experiment. The experimental results are in good agreement with the simulation results, which verifies that the results are calculated by finite element method are reasonable.

  15. Developments in MOVPE HgCdTe arrays for passive and active infrared imaging

    Science.gov (United States)

    Baker, Ian; Maxey, Chris; Hipwood, Les; Weller, Harald; Thorne, Peter

    2012-09-01

    SELEX Galileo Infrared Ltd has developed a range of 3rd Generation infrared detectors based on HgCdTe grown by Metal Organic Vapour Phase Epitaxy (MOVPE) on low cost GaAs substrates. There have been four key development aims: reducing the cost especially for large arrays, extending the wavelength range, improving the operating temperature for lower power, size and weight cameras and increasing the functionality. Despite a 14% lattice mismatch between GaAs and HgCdTe MOVPE arrays show few symptoms of misfit dislocations even in longwave detectors. The key factors in the growth and device technology are described in this paper to explain at a scientific level the radiometric quality of MOVPE arrays. A feature of the past few years has been the increasingly sophisticated products that are emerging thanks to custom designed silicon readout devices. Three devices are described as examples: a multifunctional device that can operate as an active or passive imager with built-in range finder, a 3-side buttable megapixel array and an ultra-low noise device designed for scientific applications.

  16. Progress in MOCVD growth of HgCdTe epilayers for HOT infrared detectors

    Science.gov (United States)

    Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.

    2016-05-01

    In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength infrared photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier detectors. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe detectors is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".

  17. Can graphene make better HgCdTe infrared detectors?

    Directory of Open Access Journals (Sweden)

    Shi Yanli

    2011-01-01

    Full Text Available Abstract We develop a simple and low-cost technique based on chemical vapor deposition from which large-size graphene films with 5-10 graphene layers can be produced reliably and the graphene films can be transferred easily onto HgCdTe (MCT thin wafers at room temperature. The proposed technique does not cause any thermal and mechanical damages to the MCT wafers. It is found that the averaged light transmittance of the graphene film on MCT thin wafer is about 80% in the mid-infrared bandwidth at room temperature and 77 K. Moreover, we find that the electrical conductance of the graphene film on the MCT substrate is about 25 times larger than that of the MCT substrate at room temperature and 77 K. These experimental findings suggest that, from a physics point of view, graphene can be utilized as transparent electrodes as a replacement for metal electrodes while producing better and cheaper MCT infrared detectors.

  18. Theoretical Study of Midwave Infrared HgCdTe nBn Detectors Operating at Elevated Temperatures

    Science.gov (United States)

    Akhavan, Nima Dehdashti; Jolley, Gregory; Umana-Membreno, Gilberto A.; Antoszewski, Jarek; Faraone, Lorenzo

    2015-09-01

    We report a theoretical study of mercury cadmium telluride (HgCdTe) unipolar n-type/barrier/ n-type (nBn) detectors for midwave infrared (MWIR) applications at elevated temperatures. The results obtained indicate that the composition, doping, and thickness of the barrier layer in MWIR HgCdTe nBn detectors can be optimized to yield performance levels comparable with those of ideal HgCdTe p- n photodiodes. It is also shown that introduction of an additional barrier at the back contact layer of the detector structure (nBnn+) leads to substantial suppression of the Auger generation-recombination (GR) mechanism; this results in an order-of-magnitude reduction in the dark current level compared with conventional nBn or p- n junction-based detectors, thus enabling background-limited detector operation above 200 K.

  19. Single-Photon-Sensitive HgCdTe Avalanche Photodiode Detector

    Science.gov (United States)

    Huntington, Andrew

    2013-01-01

    The purpose of this program was to develop single-photon-sensitive short-wavelength infrared (SWIR) and mid-wavelength infrared (MWIR) avalanche photodiode (APD) receivers based on linear-mode HgCdTe APDs, for application by NASA in light detection and ranging (lidar) sensors. Linear-mode photon-counting APDs are desired for lidar because they have a shorter pixel dead time than Geiger APDs, and can detect sequential pulse returns from multiple objects that are closely spaced in range. Linear-mode APDs can also measure photon number, which Geiger APDs cannot, adding an extra dimension to lidar scene data for multi-photon returns. High-gain APDs with low multiplication noise are required for efficient linear-mode detection of single photons because of APD gain statistics -- a low-excess-noise APD will generate detectible current pulses from single photon input at a much higher rate of occurrence than will a noisy APD operated at the same average gain. MWIR and LWIR electron-avalanche HgCdTe APDs have been shown to operate in linear mode at high average avalanche gain (M > 1000) without excess multiplication noise (F = 1), and are therefore very good candidates for linear-mode photon counting. However, detectors fashioned from these narrow-bandgap alloys require aggressive cooling to control thermal dark current. Wider-bandgap SWIR HgCdTe APDs were investigated in this program as a strategy to reduce detector cooling requirements.

  20. Development of non-hybridised HgCdTe detectors for the next generation of astronomical instrumentation

    Science.gov (United States)

    Dalton, Gavin B.; Dennis, Peter N.; Lees, David J.; Hall, David J.; Cairns, John W.; Gordon, Neil T.; Hails, Janet E.; Giess, Jean

    2008-07-01

    The superb image quality that is predicted, and even demanded, for the next generation of Extremely Large Telescopes (ELT) presents a potential crisis in terms of the sheer number of detectors that may be required. Developments in infrared technology have progressed dramatically in recent years, but a substantial reduction in the cost per pixel of these IR arrays will be necessary to permit full exploitation of the capabilities of these telescopes. Here we present an outline and progress report of an initiative to develop a new generation of astronomical grade Cadmium Mercury Telluride (HgCdTe) array detectors using a novel technique which enables direct growth of the sensor diodes onto the Read Out Integrated Circuit (ROIC). This technique removes the need to hybridise the detector material to a separate Silicon readout circuit and provides a route to very large monolithic arrays. We present preliminary growth and design simulation results for devices based on this technique, and discuss the prospects for deployment of this technology in the era of extremely large telescopes.

  1. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements

    Science.gov (United States)

    Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J. P.; Boulade, O.; Moreau, V.; Fieque, B.

    2016-09-01

    HgCdTe (MCT) is a very versatile material system for infrared (IR) detection, suitable for high performance detection in a wide range of applications and spectral ranges. Indeed, the ability to tailor the cutoff frequency as close as possible to the needs makes it a perfect candidate for high performance detection. Moreover, the high quality material available today, grown either by molecular beam epitaxy or liquid phase epitaxy, allows for very low dark currents at low temperatures, suitable for low flux detection applications such as science imaging. MCT has also demonstrated robustness to the aggressive environment of space and faces, therefore, a large demand for space applications. A satellite may stare at the earth, in which case detection usually involves a lot of photons, called a high flux scenario. Alternatively, a satellite may stare at outer space for science purposes, in which case the detected photon number is very low, leading to low flux scenarios. This latter case induces very strong constraints onto the detector: low dark current, low noise, (very) large focal plane arrays. The classical structure used to fulfill those requirements are usually p/ n MCT photodiodes. This type of structure has been deeply investigated in our laboratory for different spectral bands, in collaboration with the CEA Astrophysics lab. However, another alternative may also be investigated with low excess noise: MCT n/ p avalanche photodiodes (APD). This paper reviews the latest achievements obtained on this matter at DEFIR (LETI and Sofradir common laboratory) from the short wave infrared (SWIR) band detection for classical astronomical needs, to long wave infrared (LWIR) band for exoplanet transit spectroscopy, up to very long wave infrared (VLWIR) bands. The different available diode architectures ( n/ p VHg or p/ n, or even APDs) are reviewed, including different available ROIC architectures for low flux detection.

  2. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    Science.gov (United States)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  3. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    Science.gov (United States)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  4. HgCdTe Avalanche Photodiode Detectors for Airborne and Spaceborne Lidar at Infrared Wavelengths

    Science.gov (United States)

    Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning

    2017-01-01

    We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at infrared wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The detectors provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.

  5. High-Performance MWIR HgCdTe on Si Substrate Focal Plane Array Development

    Science.gov (United States)

    Bommena, R.; Ketharanathan, S.; Wijewarnasuriya, P. S.; Dhar, N. K.; Kodama, R.; Zhao, J.; Buurma, C.; Bergeson, J. D.; Aqariden, F.; Velicu, S.

    2015-09-01

    The development of low noise-equivalent differential temperature (NEDT), high-operability midwave infrared (MWIR) focal plane arrays (FPAs) fabricated from molecular beam epitaxial (MBE)-grown HgCdTe on Si-based substrates is reported. High-quality n-type MWIR HgCdTe layers with a cutoff wavelength of 4.90 μm at 77 K and a carrier concentration of 1-2 × 1015 cm-3 were grown on CdTe/Si substrates by MBE. Highly uniform composition and thickness over 3-inch areas were demonstrated, and low surface defect densities (voids ~5 × 102 cm-2, micro-defects ~5 × 103 cm-2) and etch pit density (~3.5 × 106 cm-2) were measured. This material was used to fabricate 320 × 256, 30 μm pitch FPAs with planar device architecture; arsenic implantation was used to achieve p-type doping. Radiometric and noise characterization was also performed. A low NEDT of 13.8 m K at 85 K for a 1 ms integration time with f/#2 optics was measured. The NEDT operability was 99% at 120 K with a mean dark current noise of 8.14 × 10-13 A/pixel. High-quality thermal images were obtained from the FPA up to a temperature of 150 K.

  6. Active Pixel HgCdTe Detectors With Built-in Dark Current Reduction for Near-Room Temperature Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High sensitivity HgCdTe infrared arrays operating at 77K can now be tailored in a wide range of wavelengths from 1 to 14 microns. However, due to the cooling...

  7. Active Pixel HgCdTe Detectors With Built-in Dark Current Reduction for Near-Room Temperature Operation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High sensitivity HgCdTe infrared arrays operating at 77K can now be tailored in a wide range of wavelengths from 1 to14 um. However, the cooling requirements make...

  8. A 4K x 4K HgCdTe astronomical camera enabled by the JWST NIR detector development program

    Science.gov (United States)

    Hall, Donald N. B.; Luppino, Gerard; Hodapp, Klaus W.; Garnett, James D.; Loose, Markus; Zandian, Majid

    2004-09-01

    The ambitious science goals of the James Webb Space Telescope (JWST) have driven spectacular advances in λco ~ 5um detector technology over the past five years. This paper reviews both the UH/RSC team"s Phase A development and evaluation of 2Kx2K arrays exceeding the detector requirements for JWST"s near infrared instruments and also the hardware integration of these into a 4Kx4K (16Mpxl) close packed mosaic focal plane array housed in an Ultra Low Background test facility. Both individual first generation 2Kx2K SCA"s and 4Kx4K mosaic focal planes have been extensively characterized in the laboratory and, since September 2003, a NIR camera utilizing the 4Kx4K mosaic focal plane has been in use for nearly 100 nights at the UH 2.2 m telescope on Mauna Kea. Typical test results for the first generation 2Kx2K arrays and their integration into 4Kx4K mosaic focal planes are reported. Demonstration of the design concepts and both array and mosaic focal plane performance in actual hardware, as described here, has provided the foundation for design iterations leading to later generations of 2Kx2K arrays and 4Kx4K mosaic focal planes. Four major technology developments leading to first generation hardware demonstrations of both 2Kx2K SCA"s and a 4Kx4K mosaic FPA are reviewed. These are: 1) improvement in test equipment and procedures to characterize the detectors against JWST requirements and goals, primarily at 37K but with the capability to test from 30K to 100K; 2) optimization of λc ~ 5 um MBE HgCdTe material on a CZT substrate for low dark current (goal of 0.003 e-/sec at 37K) with high quantum efficiency, low cross-talk and greatly reduced image persistence; 3) development of the 2Kx2K HAWAII-2RG multiplexer designed specifically to take full advantage of these detector characteristics for a wide range of astronomical applications (and fully compatible with an ASIC controller developed under the JWST Instrument Technology Development initiative) and 4) development of

  9. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    Science.gov (United States)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2016-09-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on-p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  10. Performances of a HGCDTE APD Based Detector with Electric Cooling for 2-μm DIAL/IPDA Applications

    Science.gov (United States)

    Dumas, A.; Rothman, J.; Gibert, F.; Lasfargues, G.; Zanatta, J.-P.; Edouart, D.

    2016-06-01

    In this work we report on design and testing of an HgCdTe Avalanche Photodiode (APD) detector assembly for lidar applications in the Short Wavelength Infrared Region (SWIR : 1,5 - 2 μm). This detector consists in a set of diodes set in parallel -making a 200 μm large sensitive area- and connected to a custom high gain TransImpedance Amplifier (TIA). A commercial four stages Peltier cooler is used to reach an operating temperature of 185K. Crucial performances for lidar use are investigated : linearity, dynamic range, spatial homogeneity, noise and resistance to intense illumination.

  11. Evaluation of HgCdTe on GaAs Grown by Molecular Beam Epitaxy for High-Operating-Temperature Infrared Detector Applications

    Science.gov (United States)

    Wenisch, J.; Schirmacher, W.; Wollrab, R.; Eich, D.; Hanna, S.; Breiter, R.; Lutz, H.; Figgemeier, H.

    2015-09-01

    Molecular beam epitaxy (MBE) growth of HgCdTe (MCT) on alternative substrates enables production of both cheaper and more versatile (third-generation) infrared (IR) detectors. After rapid progress in the development of MBE-grown MCT on GaAs in recent years, the question of whether the considerable benefits of this material system are also applicable to high-operating-temperature (HOT) applications demands attention. In this paper, we present a mid-wavelength-IR 640 × 512 pixel, 15- μm-pitch focal-plane array with operability of 99.71% at operating temperature of 120 K and low dark current density. In the second part of the paper, MBE growth of short-wavelength IR material with Cd fraction of up to 0.8 is investigated as the basis for future evaluation of the material for low-light-level imaging HOT applications.

  12. Latest developments of 10μm pitch HgCdTe diode array from the legacy to the extrinsic technology

    Science.gov (United States)

    Péré-Laperne, Nicolas; Berthoz, Jocelyn; Taalat, Rachid; Rubaldo, Laurent; Kerlain, Alexandre; Carrère, Emmanuel; Dargent, Loïc.

    2016-05-01

    Sofradir recently presented Daphnis, its latest 10 μm pitch product family. Both Daphnis XGA and HD720 are 10μm pitch mid-wave infrared focal plane array. Development of small pixel pitch is opening the way to very compact products with a high spatial resolution. This new product is taking part in the HOT technology competition allowing reductions in size, weight and power of the overall package. This paper presents the recent developments achieved at Sofradir to make the 10μm pitch HgCdTe focal plane array based on the legacy technology. Electrical and electro-optical characterizations are presented to define the appropriate design of 10μm pitch diode array. The technological tradeoffs are explained to lower the dark current, to keep high quantum efficiency with a high operability above 110K, F/4. Also, Sofradir recently achieved outstanding Modulation Transfer Function (MTF) demonstration at this pixel pitch, which clearly demonstrates the benefit to users of adopting 10μm pixel pitch focal plane array based detectors. Furthermore, the HgCdTe technology has demonstrated an increase of the operating temperature, plus 40K, moving from the legacy to the P-on-n one at a 15μm pitch in mid-wave band. The first realizations using the extrinsic P-on-n technology and the characterizations of diodes with a 10μm pitch neighborhood will be presented in both mid-wave and long-wave bands.

  13. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  14. Visible to SWIR response of HgCdTe HDVIP detectors

    Science.gov (United States)

    D'Souza, A. I.; Robinson, E. W.; Stapelbroek, M. G.; Wong, W.; Skokan, M.; Shih, H.-D.

    2009-05-01

    Detectors that have broadband response from the visible (~ 400 nm) to near infrared (~ 2.5 μm) have remote sensing hyperspectral applications on a single chip. 2.2 and 2.5 μm cutoff detectors permit operation in the 200 K range. The DRS HDVIP detector technology is a front side illuminated detector technology. Consequently, there is no substrate to absorb the visible photons as in backside-illuminated detectors and these 2.2 and 2.5-μm-cutoff detectors should be well suited to respond to visible light. However, HDVIP detectors are passivated using CdTe that absorbs the visible light photons. CdTe with a direct bandgap ~ 1.6 eV strongly absorbs photons of wavelength shorter than about 800 nm. Detectors in 320 x 6 arrays with varying thickness of CdTe passivation layers were fabricated to investigate the visible response of the 2.5-μm-cutoff detectors. The SWIR HDVIP detectors have well known high quantum efficiency (QE) in the near infrared region. Focus here was in acquiring array level data in the visible region of the spectrum. 320 x 6 FPA QE and NEI data was acquired using a 642 nm narrow band filter with 50 % points at 612 nm and 698 nm. The array QE average is ~ 70 % for the array with CdTe passivation thickness = 44.5 nm. The NEI is ~ 5 x 1010 ph/cm2/s at a flux Φ = 5.36 x 1013 ph/cm2/s. QE for an array with CdTe passivation thickness = 44.5 nm is ~ 10 % higher than an array with CdTe passivation thickness = 79.3 nm. In addition, a model that takes into account the complex optical properties of every layer in the HDVIP photodiode architecture was developed to predict the QE of the detectors in the near infrared and visible wavelength regions as a function of CdTe thickness. Measured QE as a function of wavelength is not a good match to the model QE probably due to limitations in the measured QE and knowledge of optical constants that are input into the model.

  15. Two-color HgCdTe infrared staring focal plane arrays

    Science.gov (United States)

    Smith, Edward P.; Pham, Le T.; Venzor, Gregory M.; Norton, Elyse; Newton, Michael; Goetz, Paul; Randall, Valerie; Pierce, Gregory; Patten, Elizabeth A.; Coussa, Raymond A.; Kosai, Ken; Radford, William A.; Edwards, John; Johnson, Scott M.; Baur, Stefan T.; Roth, John A.; Nosho, Brett; Jensen, John E.; Longshore, Randolph E.

    2003-12-01

    Raytheon Vision Systems (RVS) in collaboration with HRL Laboratories is contributing to the maturation and manufacturing readiness of third-generation two-color HgCdTe infrared staring focal plane arrays (FPAs). This paper will highlight data from the routine growth and fabrication of 256x256 30μm unit-cell staring FPAs that provide dual-color detection in the mid-wavelength infrared (MWIR) and long-wavelength infrared (LWIR) spectral regions. FPAs configured for MWIR/MWIR, MWIR/LWIR and LWIR/LWIR detection are used for target identification, signature recognition and clutter rejection in a wide variety of space and ground-based applications. Optimized triple-layer-heterojunction (TLHJ) device designs and molecular beam epitaxy (MBE) growth using in-situ controls has contributed to individual bands in all two-color FPA configurations exhibiting high operability (>99%) and both performance and FPA functionality comparable to state-of-the-art single-color technology. The measured spectral cross talk from out-of-band radiation for either band is also typically less than 10%. An FPA architecture based on a single mesa, single indium bump, and sequential mode operation leverages current single-color processes in production while also providing compatibility with existing second-generation technologies.

  16. Technology for advanced focal plane arrays of HgCdTe and AIGaN

    CERN Document Server

    He, Li; Ni, Guoqiang

    2016-01-01

    This book introduces the basic framework of advanced focal plane technology based on the third-generation infrared focal plane concept. The essential concept, research advances, and future trends in advanced sensor arrays are comprehensively reviewed. Moreover, the book summarizes recent research advances in HgCdTe/AlGaN detectors for the infrared/ultraviolet waveband, with a particular focus on the numerical method of detector design, material epitaxial growth and processing, as well as Complementary Metal-Oxide-Semiconductor Transistor readout circuits. The book offers a unique resource for all graduate students and researchers interested in the technologies of focal plane arrays or electro-optical imaging sensors.

  17. Monolithic dual-band HgCdTe infrared detector structure

    CSIR Research Space (South Africa)

    Parish, G

    1997-07-01

    Full Text Available A monolithic HgCdTe photoconductive device structure is presented that is suitable for dual-band optically registered infrared photodetection in the two atmospheric transmission windows of 3-5 mu m and 8-12 mu m, which correspond to the mid...

  18. Spatial noise limited NETD performance of a HgCdTe hybrid focal plane array

    Science.gov (United States)

    Gopal, Vishnu

    1996-04-01

    This paper presents a model for theoretically estimating the residual spatial noise in a direct injection readout hybrid focal plane array (FPA) consisting of photovoltaic detectors. The procedure consists of computing the response of the pixels after taking into account the nonlinearity induced by the transfer function in the hybrid configuration and the estimated r.m.s. response nonuniformity from the known input parameters of the detector and readout arrays. A linear two point nonuniformity compensation algorithm is applied to the computed pixel responses to calculate the residual spatial noise. Signal-to-spatial noise ratio is then used to estimate the spatial noise limited NETD performance of MWIR and LWIR Hg 1- x Cd x Te hybrid FPAs.

  19. The Effect of Metal-Semiconductor Contact on the Transient Photovoltaic Characteristic of HgCdTe PV Detector

    Directory of Open Access Journals (Sweden)

    Haoyang Cui

    2013-01-01

    Full Text Available The transient photovoltaic (PV characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  20. The effect of metal-semiconductor contact on the transient photovoltaic characteristic of HgCdTe PV detector.

    Science.gov (United States)

    Cui, Haoyang; Xu, Yongpeng; Yang, Junjie; Tang, Naiyun; Tang, Zhong

    2013-01-01

    The transient photovoltaic (PV) characteristic of HgCdTe PV array is studied using an ultrafast laser. The photoresponse shows an apparent negative valley first, then it evolves into a positive peak. By employing a combined theoretical model of pn junction and Schottky potential, this photo-response polarity changing curves can be interpreted well. An obvious decreasing of ratio of negative valley to positive peak can be realized by limiting the illumination area of the array electrode. This shows that the photoelectric effect of Schottky barrier at metal-semiconductor (M/S) interface is suppressed, which will verify the correctness of the model. The characteristic parameters of transient photo-response induced from p-n junction and Schottky potential are extracted by fitting the response curve utilizing this model. It shows that the negative PV response induced by the Schottky barrier decreases the positive photovoltage generated by the pn junction.

  1. Fast, High-Precision Readout Circuit for Detector Arrays

    Science.gov (United States)

    Rider, David M.; Hancock, Bruce R.; Key, Richard W.; Cunningham, Thomas J.; Wrigley, Chris J.; Seshadri, Suresh; Sander, Stanley P.; Blavier, Jean-Francois L.

    2013-01-01

    The GEO-CAPE mission described in NASA's Earth Science and Applications Decadal Survey requires high spatial, temporal, and spectral resolution measurements to monitor and characterize the rapidly changing chemistry of the troposphere over North and South Americas. High-frame-rate focal plane arrays (FPAs) with many pixels are needed to enable such measurements. A high-throughput digital detector readout integrated circuit (ROIC) that meets the GEO-CAPE FPA needs has been developed, fabricated, and tested. The ROIC is based on an innovative charge integrating, fast, high-precision analog-to-digital circuit that is built into each pixel. The 128×128-pixel ROIC digitizes all 16,384 pixels simultaneously at frame rates up to 16 kHz to provide a completely digital output on a single integrated circuit at an unprecedented rate of 262 million pixels per second. The approach eliminates the need for off focal plane electronics, greatly reducing volume, mass, and power compared to conventional FPA implementations. A focal plane based on this ROIC will require less than 2 W of power on a 1×1-cm integrated circuit. The ROIC is fabricated of silicon using CMOS technology. It is designed to be indium bump bonded to a variety of detector materials including silicon PIN diodes, indium antimonide (InSb), indium gallium arsenide (In- GaAs), and mercury cadmium telluride (HgCdTe) detector arrays to provide coverage over a broad spectral range in the infrared, visible, and ultraviolet spectral ranges.

  2. A 1.5k x 1.5k class photon counting HgCdTe linear avalanche photo-diode array for low background space astronomy in the 1-5micron infrared

    Science.gov (United States)

    Hall, Donald

    Under a current award, NASA NNX 13AC13G "EXTENDING THE ASTRONOMICAL APPLICATION OF PHOTON COUNTING HgCdTe LINEAR AVALANCHE PHOTODIODE ARRAYS TO LOW BACKGROUND SPACE OBSERVATIONS" UH has used Selex SAPHIRA 320 x 256 MOVPE L-APD HgCdTe arrays developed for Adaptive Optics (AO) wavefront (WF) sensing to investigate the potential of this technology for low background space astronomy applications. After suppressing readout integrated circuit (ROIC) glow, we have placed upper limits on gain normalized dark current of 0.01 e-/sec at up to 8 volts avalanche bias, corresponding to avalanche gain of 5, and have operated with avalanche gains of up to several hundred at higher bias. We have also demonstrated detection of individual photon events. The proposed investigation would scale the format to 1536 x 1536 at 12um (the largest achievable in a standard reticule without requiring stitching) while incorporating reference pixels required at these low dark current levels. The primary objective is to develop, produce and characterize a 1.5k x 1.5k at 12um pitch MOVPE HgCdTe L-APD array, with nearly 30 times the pixel count of the 320 x 256 SAPHIRA, optimized for low background space astronomy. This will involve: 1) Selex design of a 1.5k x 1.5k at 12um pitch ROIC optimized for low background operation, silicon wafer fabrication at the German XFab foundry in 0.35 um 3V3 process and dicing/test at Selex, 2) provision by GL Scientific of a 3-side close-buttable carrier building from the heritage of the HAWAII xRG family, 3) Selex development and fabrication of 1.5k x 1.5k at 12 um pitch MOVPE HgCdTe L-APD detector arrays optimized for low background applications, 4) hybridization, packaging into a sensor chip assembly (SCA) with initial characterization by Selex and, 5) comprehensive characterization of low background performance, both in the laboratory and at ground based telescopes, by UH. The ultimate goal is to produce and eventually market a large format array, the L

  3. Instrumentation for multi-detector arrays

    Indian Academy of Sciences (India)

    R K Bhowmik

    2001-07-01

    The new generation of detector arrays require complex instrumentation and data acquisition system to ensure increased reliability of operation, high degree of integration, software control and faster data handling capability. The main features of some of the existing multi-detector arrays like MSU 4 array, Gammasphere and Eurogam are summarized. The instrumentation for the proposed INGA array in India is discussed.

  4. Experimental Determination of Effective Minority Carrier Lifetime in HgCdTe Photovoltaic Detectors Using Optical and Electrical Methods

    Directory of Open Access Journals (Sweden)

    Haoyang Cui

    2015-01-01

    Full Text Available This paper presents experiment measurements of minority carrier lifetime using three different methods including modified open-circuit voltage decay (PIOCVD method, small parallel resistance (SPR method, and pulse recovery technique (PRT on pn junction photodiode of the HgCdTe photodetector array. The measurements are done at the temperature of operation near 77 K. A saturation constant background light and a small resistance paralleled with the photodiode are used to minimize the influence of the effect of junction capacitance and resistance on the minority carrier lifetime extraction in the PIOCVD and SPR measurements, respectively. The minority carrier lifetime obtained using the two methods is distributed from 18 to 407 ns and from 0.7 to 110 ns for the different Cd compositions. The minority carrier lifetime extracted from the traditional PRT measurement is found in the range of 4 to 20 ns for x=0.231–0.4186. From the results, it can be concluded that the minority carrier lifetime becomes longer with the increase of Cd composition and the pixels dimensional area.

  5. Si:As BIB detector arrays

    Science.gov (United States)

    Bharat, R.; Petroff, M. D.; Speer, J. J.; Stapelbroek, M. G.

    1986-01-01

    Highlights of the results obtained on arsenic-doped silicon blocked impurity band (BIB) detectors and arrays since the invention of the BIB concept a few years ago are presented. After a brief introduction and a description of the BIB concept, data will be given on single detector performance. Then different arrays that were fabricated will be described and test data presented.

  6. High-resolution ionization detector and array of such detectors

    Energy Technology Data Exchange (ETDEWEB)

    McGregor, Douglas S. (Ypsilanti, MI); Rojeski, Ronald A. (Pleasanton, CA)

    2001-01-16

    A high-resolution ionization detector and an array of such detectors are described which utilize a reference pattern of conductive or semiconductive material to form interaction, pervious and measurement regions in an ionization substrate of, for example, CdZnTe material. The ionization detector is a room temperature semiconductor radiation detector. Various geometries of such a detector and an array of such detectors produce room temperature operated gamma ray spectrometers with relatively high resolution. For example, a 1 cm.sup.3 detector is capable of measuring .sup.137 Cs 662 keV gamma rays with room temperature energy resolution approaching 2% at FWHM. Two major types of such detectors include a parallel strip semiconductor Frisch grid detector and the geometrically weighted trapezoid prism semiconductor Frisch grid detector. The geometrically weighted detector records room temperature (24.degree. C.) energy resolutions of 2.68% FWHM for .sup.137 Cs 662 keV gamma rays and 2.45% FWHM for .sup.60 Co 1.332 MeV gamma rays. The detectors perform well without any electronic pulse rejection, correction or compensation techniques. The devices operate at room temperature with simple commercially available NIM bin electronics and do not require special preamplifiers or cooling stages for good spectroscopic results.

  7. Megapixel mercury cadmium telluride focal plane arrays for infrared imaging out to 12 microns Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose the fabrication of large format, long wave infrared (LWIR) mercury cadmium telluride (HgCdTe or MCT) detector arrays where the cutoff wavelength is...

  8. Characterization of HgCdTe and HgCdSe Materials for Third Generation Infrared Detectors

    Science.gov (United States)

    2011-12-01

    etched HgCdTe photodiode .................................. 13 1.6 (a) Hybrid IR FPA, (b) cross section of structure, (c) indium bumps on Si...to areas of approximately 30 cm2. At this size, the wafers used for growth are unable to accommodate more than two 1024 × 1024 FPAs.3 For more...clear advantages over the other substrates because of its low cost, large wafer size, and a thermal-expansion coefficient that perfectly matches

  9. Astronomical Image Processing with Array Detectors

    CERN Document Server

    Houde, Martin

    2007-01-01

    We address the question of astronomical image processing from data obtained with array detectors. We define and analyze the cases of evenly, regularly, and irregularly sampled maps for idealized (i.e., infinite) and realistic (i.e., finite) detectors. We concentrate on the effect of interpolation on the maps, and the choice of the kernel used to accomplish this task. We show how the normalization intrinsic to the interpolation process must be carefully accounted for when dealing with irregularly sampled grids. We also analyze the effect of missing or dead pixels in the array, and their consequences for the Nyquist sampling criterion.

  10. Standard guide for digital detector array radiology

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This standard is a user guide, which is intended to serve as a tutorial for selection and use of various digital detector array systems nominally composed of the detector array and an imaging system to perform digital radiography. This guide also serves as an in-detail reference for the following standards: Practices E2597, , and E2737. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  11. Encapsulated thermopile detector array for IR microspectrometer

    NARCIS (Netherlands)

    Wu, H.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2010-01-01

    The miniaturized IR spectrometer discussed in this paper is comprised of: slit, planar imaging diffraction grating and Thermo-Electric (TE) detector array, which is fabricated using CMOS compatible MEMS technology. The resolving power is maximized by spacing the TE elements at an as narrow as possib

  12. Dislocation reduction in HgCdTe grown on CdTe/Si

    Science.gov (United States)

    Wijewarnasuriya, Priyalal S.

    2016-05-01

    Bulk-grown CdZnTe (Zn = 3%) substrates are the natural choice for HgCdTe epitaxy since it is lattice matched to long wave LW-HgCdTe alloy. However, lack of large area CdZnTe substrates, high production costs, and more importantly, the difference in thermal expansion coefficients between CdZnTe and silicon Read out Integrated Circuits (ROIC) are some of the inherent drawbacks of CdZnTe substrates. Consequently, Hg1-xCdxTe detectors fabricated on silicon substrates are an attractive alternative. Recent developments in the molecular beam epitaxy (MBE) buffer layer growth technology on Si substrates has revolutionized the HgCdTe research and offered a new dimension to HgCdTe-based IR technology. Si substrates provide advantages in terms of relatively large area (3 to 6-inch diameter is easily obtained) compared to CZT substrate materials, durability during processing, and reliability to thermal cycling. Innovations in Si-based composite substrates made it possible to fabricate very large-format IR arrays that offer higher resolution, low-cost arrays and more dies per wafer. Between Si substrates and HgCdTe has large lattice mismatch of 19%. This leads to dislocation densities of low-107 cm-2 for optimal growth of HgCdTe on silicon-based substrates as compared to the mid-104 cm-2 dislocation density of HgCdTe grown on CdZnTe. This paper present dislocation reduction by two orders of magnitude using thermal cycle anneal under Hg environment on HgCdTe grown on Si substrates and as well as defect reduction in Cd(Se)Te buffer layers grown on Si Substrates.

  13. Spallation reactions studied with 4-detector arrays

    Indian Academy of Sciences (India)

    J Galin

    2001-07-01

    Recently there has been a renewed interest in the study of spallation reactions in basic nuclear physics as well as in potential applications. Spallation reactions induced by light projectiles (protons, antiprotons, pions, etc.) in the GeV range allow the formation of hot nuclei which do not suffer the collective excitations (compression, rotation, deformation) unavoidable when using massive projectiles. Such nuclei provide an ideal testbench for probing their decay as a function of excitation energy. In these investigations, 4-detector arrays for charged particles and neutrons play a major role in the event-by-event sorting according to the excitation energy of the nucleus. Spallation reactions induced on heavy nuclei allow the conversion of the incident GeV proton into several tens of evaporated neutrons. The neutron production in thick targets has been investigated in great detail thanks to the use of high efficiency neutron detector arrays. When scattered on samples of inert or biological materials, these neutrons can be used to study details of the material structure. They could also be utilized for the transmutation of long-lived nuclear wastes or for the feeding of sub-critical nuclear reactors. The role of different types of multi-detector arrays is highlighted in this paper. Several references are also given for different uses of high efficiency neutron detectors in other contexts.

  14. DUAL-BAND INFRARED DETECTORS

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    As the infrared technology continues to advance, there is a growing demand for multispectral detectors for advanced IR systems with better target discrimination and identification. Both HgCdTe detectors and quantum well GaAs/AlGaAs photodetectors offer wavelength flexibility from medium wavelength to very long wavelength and multicolor capability in these regions. The main challenges facing all multicolor devices are more complicated device structtures, thicker and multilayer material growth, and more difficult device fabrication, especially when the array size gets larger and pixel size gets smaller. In the paper recent progress in development of two-color HgCdTe photodiodes and quantum well infrared photodetectors is presented.More attention is devoted to HgCdTe detectors. The two-color detector arrays are based upon an n-P-N (the capital letters mean the materials with larger bandgap energy) HgCdTe triple layer heterojunction design. Vertically stacking the two p-n junctions permits incorporation of both detectros into a single pixel. Both sequential mode and simultaneous mode detectors are fabricated. The mode of detection is determined by the fabrication process of the multilayer materials.Also the performances of stacked multicolor QWIPs detectors are presented. For multicolor arrays, QWIP's narrow band spectrum is an advantage, resulting in low spectral crosstalk. The major challenge for QWIP is developing broadband or multicolor optical coupling structures that permit efficient absorption of all required spectral bands.

  15. Spiral biasing adaptor for use in Si drift detectors and Si drift detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng; Chen, Wei

    2016-07-05

    A drift detector array, preferably a silicon drift detector (SDD) array, that uses a low current biasing adaptor is disclosed. The biasing adaptor is customizable for any desired geometry of the drift detector single cell with minimum drift time of carriers. The biasing adaptor has spiral shaped ion-implants that generate the desired voltage profile. The biasing adaptor can be processed on the same wafer as the drift detector array and only one biasing adaptor chip/side is needed for one drift detector array to generate the voltage profiles on the front side and back side of the detector array.

  16. Low-energy CZT detector array for the ASIM mission

    DEFF Research Database (Denmark)

    Cenkeramaddi, Linga Reddy; Genov, Georgi; Kohfeldt, Anja

    2012-01-01

    In this article we introduce the low-energy CZT (CdZnTe) 16 384-pixel detector array on-board the Atmosphere Space Interaction Monitor (ASIM), funded by the European Space Agency. This detector is a part of the larger Modular X-and Gamma-ray sensor (MXGS). The CZT detector array is sensitive...

  17. Analysis of the auger recombination rate in P+N-n-N-N HgCdTe detectors for HOT applications

    Science.gov (United States)

    Schuster, J.; Tennant, W. E.; Bellotti, E.; Wijewarnasuriya, P. S.

    2016-05-01

    Infrared (IR) photon detectors must be cryogenically cooled to provide the highest possible performance, usually to temperatures at or below ~ 150K. Such low operating temperatures (Top) impose very stringent requirements on cryogenic coolers. As such, there is a constant push in the industry to engineer new detector architectures that operate at higher temperatures, so called higher operating temperature (HOT) detectors. The ultimate goal for HOT detectors is room temperature operation. While this is not currently possibly for photon detectors, significant increases in Top are nonetheless beneficial in terms of reduced size, weight, power and cost (SWAP-C). The most common HgCdTe IR detector architecture is the P+n heterostructure photodiode (where a capital letter indicates a wide band gap relative to the active layer or "AL"). A variant of this architecture, the P+N-n-N-N heterostructure photodiode, should have a near identical photo-response to the P+n heterostructure, but with significantly lower dark diffusion current. The P+N-n-N-N heterostructure utilizes a very low doped AL, surrounded on both sides by wide-gap layers. The low doping in the AL, allows the AL to be fully depleted, which drastically reduces the Auger recombination rate in that layer. Minimizing the Auger recombination rate reduces the intrinsic dark diffusion current, thereby increasing Top. Note when we use the term "recombination rate" for photodiodes, we are actually referring to the net generation and recombination of minority carriers (and corresponding dark currents) by the Auger process. For these benefits to be realized, these devices must be intrinsically limited and well passivated. The focus of this proceeding is on studying the fundamental physics of the intrinsic dark currents in ideal P+N-n-N-N heterostructures, namely Auger recombination. Due to the complexity of these devices, specifically the presence of multiple heterojunctions, numerical device modeling techniques must be

  18. Visible response of λc=2.5´m HgCdTe HDVIP detectors

    Science.gov (United States)

    Stapelbroek, Maryn G.; Guptill, Matthew; D'Souza, Arvind I.; Bryan, Elizabeth R.; Beck, J. D.; Kinch, M. A.; Robinson, James E.

    2004-08-01

    Cu-doped HDVIP detectors with different cut-off wavelengths are routinely manufactured. The DRS HDVIP detector technology is a front-side-illuminated detector technology. There is no substrate to absorb the visible photons as in backside-illuminated detectors and these detectors should be well suited to respond to visible light. However, HDVIP detectors are passivated using CdTe that absorbs the visible light photons. CdTe strongly absorbs photons of wavelength shorter than about 800 nm. Detectors with varying thickness of CdTe passivation layers were fabricated to investigate the visible response of the 2.5-μm-cutoff detectors. A model was developed to predict the quantum efficiency of the detectors in the near infrared and visible wavelength regions as a function of CdTe thickness. Individual photodiodes (λc = 2.5 μm) in test bars were examined. Measurements of the quantum efficiency as a function of wavelength region will be presented and compared to the model predictions.

  19. A Failure Mode in Dense Infrared Detector Arrays Resulting in Increased Dark Current

    Science.gov (United States)

    Pinkie, Benjamin; Bellotti, Enrico

    2016-09-01

    In this paper, we investigate a failure mode that arises in dense infrared focal plane detector arrays as a consequence of the interactions of neighboring pixels through the minority carrier profiles in the common absorber layer. We consider the situation in which one pixel in a hexagonal array becomes de-biased relative to its neighbors and show that the dark current in the six neighboring pixels increases exponentially as a function of the difference between the nominal and anomalous biases. Moreover, we show that the current increase in the six nearest-neighbor pixels is in total larger than that by which the current in the affected pixel decreases, causing a net increase in the dark current. The physical origins of this effect are explained as being due to increased lateral diffusion currents that arise as a consequence of breaking the symmetry of the minority carrier profiles. We then perform a parametric study to quantify the magnitude of this effect for a number of detector geometric parameters, operating temperatures, and spectral bands. Particularly, numerical simulations are carried out for short-, mid-, and long-wavelength HgCdTe infrared detectors operating between 77 K and 210 K. We show that this effect is most prevalent in architectures for which the lateral diffusion current is the largest component of the total dark current—high operating temperature devices with narrow epitaxial absorber thicknesses and pitches small compared to the diffusion length of minority carriers. These results could prove significant particularly for short- and mid-wave infrared detectors, which are typically designed to fit these conditions.

  20. Advanced ACTPol Cryogenic Detector Arrays and Readout

    Science.gov (United States)

    Henderson, S. W.; Allison, R.; Austermann, J.; Baildon, T.; Battaglia, N.; Beall, J. A.; Becker, D.; De Bernardis, F.; Bond, J. R.; Calabrese, E.; Choi, S. K.; Coughlin, K. P.; Crowley, K. T.; Datta, R.; Devlin, M. J.; Duff, S. M.; Dunkley, J.; Dünner, R.; van Engelen, A.; Gallardo, P. A.; Grace, E.; Hasselfield, M.; Hills, F.; Hilton, G. C.; Hincks, A. D.; Hloẑek, R.; Ho, S. P.; Hubmayr, J.; Huffenberger, K.; Hughes, J. P.; Irwin, K. D.; Koopman, B. J.; Kosowsky, A. B.; Li, D.; McMahon, J.; Munson, C.; Nati, F.; Newburgh, L.; Niemack, M. D.; Niraula, P.; Page, L. A.; Pappas, C. G.; Salatino, M.; Schillaci, A.; Schmitt, B. L.; Sehgal, N.; Sherwin, B. D.; Sievers, J. L.; Simon, S. M.; Spergel, D. N.; Staggs, S. T.; Stevens, J. R.; Thornton, R.; Van Lanen, J.; Vavagiakis, E. M.; Ward, J. T.; Wollack, E. J.

    2016-08-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies—imaged in intensity and polarization at few arcminute-scale resolution—will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the Advanced ACTPol cryogenic detector arrays.

  1. Fabrication of Pop-up Detector Arrays on Si Wafers

    Science.gov (United States)

    Li, Mary J.; Allen, Christine A.; Gordon, Scott A.; Kuhn, Jonathan L.; Mott, David B.; Stahle, Caroline K.; Wang, Liqin L.

    1999-01-01

    High sensitivity is a basic requirement for a new generation of thermal detectors. To meet the requirement, close-packed, two-dimensional silicon detector arrays have been developed in NASA Goddard Space Flight Center. The goal of the task is to fabricate detector arrays configured with thermal detectors such as infrared bolometers and x-ray calorimeters to use in space fliGht missions. This paper focuses on the fabrication and the mechanical testing of detector arrays in a 0.2 mm pixel size, the smallest pop-up detectors being developed so far. These array structures, nicknamed "PUDS" for "Pop-Up Detectors", are fabricated on I pm thick, single-crystal, silicon membranes. Their designs have been refined so we can utilize the flexibility of thin silicon films by actually folding the silicon membranes to 90 degrees in order to obtain close-packed two-dimensional arrays. The PUD elements consist of a detector platform and two legs for mechanical support while also serving as electrical and thermal paths. Torsion bars and cantilevers connecting the detector platform to the legs provide additional flexures for strain relief. Using micro-electromechanical structure (MEMS) fabrication techniques, including photolithography, anisotropic chemical etching, reactive-ion etching, and laser dicing, we have fabricated PLTD detector arrays of fourteen designs with a variation of four parameters including cantilever length, torsion bar length and width, and leg length. Folding tests were conducted to test mechanical stress distribution for the array structures. We obtained folding yields and selected optimum design parameters to reach minimal stress levels. Computer simulation was also employed to verify mechanical behaviors of PUDs in the folding process. In addition, scanning electron microscopy was utilized to examine the flatness of detectors and the alignment of detector pixels in arrays. The fabrication of thermistors and heaters on the pop-up detectors is under way

  2. Electronics design of a PET detector module with APD array

    CERN Document Server

    Wang Yong

    2002-01-01

    The author summarizes the advantages of APD-array for using in PET scanner. The front-end electronics for an experimental APD detector module was built and tested. According to the characteristics of APD-array and the demands of the signal readout in PET scanner, the full electronics system of an APD detector module was designed and presented in detail

  3. The Impact of Array Detectors on Raman Spectroscopy

    Science.gov (United States)

    Denson, Stephen C.; Pommier, Carolyn J. S.; Denton, M. Bonner

    2007-01-01

    The impact of array detectors in the field of Raman spectroscopy and all low-light-level spectroscopic techniques is examined. The high sensitivity of array detectors has allowed Raman spectroscopy to be used to detect compounds at part per million concentrations and to perform Raman analyses at advantageous wavelengths.

  4. A new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Xie Zhong Shen; Cao Jin Yun; Niu Shen Gli; Ouyang Xia Opin

    2002-01-01

    A new scintillating-fiber-array neutron detector has been developed. The detector consists of a bee-hive-shaped lead absorber, a scintillating fiber array, a light guide, a filter and a photomultiplier tube. The experimental results show that the new detector's neuron-to-gamma sensitivity ratio is improved about six times compared to traditional plastic scintillation detectors to 2.5 MeV neutrons and 1.25 MeV gamma rays. Hence, the detector should be very useful in the measurements of pulsed neutrons from fission reactions in a neutron-gamma mixed field.

  5. Detectors and cooling technology for direct spectroscopic biosignature characterization

    CERN Document Server

    Rauscher, Bernard J; Moseley, S H; Sadleir, John E; Stevenson, Thomas

    2016-01-01

    Direct spectroscopic biosignature characterization (hereafter "biosignature characterization") will be a major focus for future space observatories equipped with coronagraphs or starshades. Our aim in this article is to provide an introduction to potential detector and cooling technologies for biosignature characterization. We begin by reviewing the needs. These include nearly noiseless photon detection at flux levels as low as $<0.001~\\textrm{photons}~s^{-1}~\\textrm{pixel}^{-1}$ in the visible and near-IR. We then discuss potential areas for further testing and/or development to meet these needs using non-cryogenic detectors (EMCCD, HgCdTe array, HgCdTe APD array), and cryogenic single photon detectors (MKID arrays and TES microcalorimeter arrays). Non-cryogenic detectors are compatible with the passive cooling that is strongly preferred by coronagraphic missions, but would add non-negligible noise. Cryogenic detectors would require active cooling, but in return deliver nearly quantum limited performance....

  6. Results from the Puebla extensive air shower detector array

    Science.gov (United States)

    Salazar, H.; Martinez, O.; Moreno, E.; Cotzomi, J.; Villaseñor, L.; Saavedrac, O.

    2003-07-01

    We describe the design and operation of the first stage of the EAS-UAP extensive air shower array, as a detector of very high energy cosmic rays ( Eo > 10 14eV). The array is located at the Campus of Puebla University and consists of 18 liquid scintillator detectors, with an active surface of 1 m2 each and a detector spacing of 20 m in a square grid. In this report we discuss the stability and the calibration of the detector array, as derived from the 10 detectors in operation in the first stage. The main characteristics of the array allow us also to use it as an educational and training facility. First distributions of the arrival direction and the lateral shower srpead are also given.

  7. 1-D array of perforated diode neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Walter J. [Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States)], E-mail: wjm4444@ksu.edu; Bellinger, Steven L.; Unruh, Troy C.; Henderson, Chris M.; Ugorowski, Phil; Morris-Lee, Bryce [Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States); Taylor, Russell D. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McGregor, Douglas S. [Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States)], E-mail: mcgregor@ksu.edu

    2009-06-01

    Performance of a 4 cm long 64-pixel perforated diode neutron detector array is compared with an identical array of thin-film coated diodes. The perforated neutron detector design has been adapted to a 1-D pixel array capable of 120 {mu}m spatial resolution and counting efficiency greater than 12%. Deep vertical trenches filled with {sup 6}LiF provide outstanding improvement in efficiency over thin-film coated diode designs limited to only 4.5%. This work marks the final step towards the construction of a much larger array consisting of 1024 pixels spanning 10 cm. The larger detector array will be constructed with a sub-array of 64-pixel sensors, and will be used for small-angle neutron scattering experiments at the Spallation Neutron Source of Oak Ridge National Laboratory.

  8. Threading and misfit-dislocation motion in molecular-beam epitaxy-grown HgCdTe epilayers

    Science.gov (United States)

    Carmody, M.; Lee, D.; Zandian, M.; Phillips, J.; Arias, J.

    2003-07-01

    Lattice mismatch between the substrate and the absorber layer in single-color HgCdTe infrared (IR) detectors and between band 1 and band 2 in two-color detectors results in the formation of crosshatch lines on the surface and an array of misfit dislocations at the epi-interfaces. Threading dislocations originating in the substrate can also bend into the interface plane and result in misfit dislocations because of the lattice mismatch. The existence of dislocations threading through the junction region of HgCdTe IR-photovoltaic detectors can greatly affect device performance. High-quality CdZnTe substrates and controlled molecular-beam epitaxy (MBE) growth of HgCdTe can result in very low threading-dislocation densities as measured by the etch-pit density (EPD ˜ 104cm-2). However, dislocation gettering to regions of high stress (such as etched holes, voids, and implanted-junction regions) at elevated-processing temperatures can result in a high density of dislocations in the junction region that can greatly reduce detector performance. We have performed experiments to determine if the dislocations that getter to these regions of high stress are misfit dislocations at the substrate/absorber interface that have a threading component extending to the upper surface of the epilayer, or if the dislocations originate at the cap/absorber interface as misfit dislocations. The preceding mechanisms for dislocation motion are discussed in detail, and the possible diode-performance consequences are explored.

  9. Recent upgrades and performance of the CACTUS detector array

    Energy Technology Data Exchange (ETDEWEB)

    Schiller, A.; Bergholt, L.; Guttormsen, M. [and others

    1998-03-01

    The SCANDITRONIX MC-35 cyclotron laboratory, including the Oslo Cyclotron, has been in operation since 1980. The main auxiliary equipment consists of the multi-detector system CACTUS. During the last years, new, high efficiency Ge(HP) detectors were purchased and integrated in the CACTUS detector array. In this connection, the electronical setup was revised and altered. Several drawbacks of the old setup could be pointed out and eliminated. A test of the performance of all detector array elements was made with high accuracy. 27 refs.

  10. Mercury Cadmium Telluride Photoconductive Long Wave Infrared Linear Array Detectors

    Directory of Open Access Journals (Sweden)

    Risal Singh

    2003-07-01

    Full Text Available Mercury cadmium telluride (Hg1-x, CdxTe (MCT photoconductive long wave infrared linear arrays are still in demand due to several advantages. The linear array technology is well established, easier, economical and is quite relevant to thermal imaging even today. The scan thermal imaging systems based on this technology offer wider field of view coverage and capacity for higher resolution in the scan direction relative to staring systems that use expensive and yet to mature focal plane array detector technology. A critical review on photoconductive n-Hg1-x CdxTe linear array detector technology for the long wave infrared range has been presented. The emphasis lies on detector design and processing technology. The critical issues of diffusion and drift effects, Hi-Lo and heterostructure blocking contacts, surface passivation, and other related aspects have been considered from the detector design angle. The device processing technology aspects are of vital importance

  11. Hybridization of detector array and integrated circuit for readout

    Science.gov (United States)

    Fossum, Eric R.; Grunthaner, Frank J.

    1992-04-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  12. PbS-PbSe IR detector arrays

    Science.gov (United States)

    Barrett, John R. (Inventor)

    1986-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chipping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  13. Data acquisition for experiments with multi-detector arrays

    Indian Academy of Sciences (India)

    A Chatterjee; Sushil Kamerkar; A K Jethra; S Padmini; M P Diwakar; S S Pande; M D Ghodgaonkar

    2001-07-01

    Experiments with multi-detector arrays have special requirements and place higher demands on computer data acquisition systems. In this contribution we discuss data acquisition systems with special emphasis on multi-detector arrays and in particular we describe a new data acquisition system, AMPS which we have developed recently which is in regular use in experiments at the Pelletron Laboratory, Mumbai. This includes the in-house development of a dedicated crate controller, PC interface card and software.

  14. Particle Identification in the NIMROD-ISiS Detector Array

    CERN Document Server

    Wuenschel, S; May, L W; Wada, R; Yennello, S J

    2009-01-01

    Interest in the influence of the neutron-to-proton (N/Z) ratio on multifragmenting nuclei has demanded an improvement in the capabilities of multi-detector arrays as well as the companion analysis methods. The particle identification method used in the NIMROD-ISiS 4 $\\pi$ array is described. Performance of the detectors and the analysis method are presented for the reaction of 86Kr+64Ni at 35MeV/u.

  15. The surface detector array of the Telescope Array experiment to explore the highest energy cosmic rays

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Miyauchi, H; Murano, Y; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamaoka, H; Yamazaki, K; Yang, J; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah,USA, is designed for observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  16. An integrated single photon detector array using porous anodic alumina

    NARCIS (Netherlands)

    Melai, J.; Salm, C.; Schmitz, J.; Smits, S.M.; Visschers, J.L.

    2006-01-01

    The aim of the work is fabrication of a photon detector array made using IC compatible wafer-scale post-processing stepts. Plans will be presented to outline these fabrication steps. The detector comprises an integrated Micro-Channel-Plate and an imaging chip like Medipix2. The aim of the work is fa

  17. New air fluorescence detectors employed in the Telescope Array experiment

    CERN Document Server

    Tokuno, H; Takeda, M; Kadota, K; Ikeda, D; Chikawa, M; Fujii, T; Fukushima, M; Honda, K; Inoue, N; Kakimoto, F; Kawana, S; Kido, E; Matthews, J N; Nonaka, T; Ogio, S; Okuda, T; Ozawa, S; Sagawa, H; Sakurai, N; Shibata, T; Taketa, A; Thomas, S B; Tomida, T; Tsunesada, Y; Udo, S; Abu-zayyad, T; Aida, R; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Cho, E J; Cho, W R; Fujii, H; Fukuda, T; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Iguchi, T; Ikuta, K; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Myers, I; Minamino, M; Miyata, K; Miyauchi, H; Murano, Y; Nakamura, T; Nam, S W; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Oshima, A; Park, I H; Pshirkov, M S; Rodriguez, D; Roh, S Y; Rubtsov, G; Ryu, D; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takita, M; Tanaka, H; Tanaka, K; Tanaka, M; Thomson, G B; Tinyakov, P; Tkachev, I; Troitsky, S; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamaoka, H; Yamazaki, K; Yang, J; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment involves a surface detector (SD) array and three fluorescence detector (FD) stations. FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tubes. To obtain the EAS parameters with high accuracies, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation ti...

  18. A Study of Lane Differentiation Using An Array of Detectors.

    Energy Technology Data Exchange (ETDEWEB)

    McKigney E. A. (Edward A.); Gholkar, R. V. (Rohun V.); Vega, D. A. (Daniel A.)

    2004-01-01

    The authors discuss a method for locating a radioactive source in the context of determining which lane a source is in on a roadway. This method is appropriate for use over a large range of source velocities, and could provide an advance alarm prior to a vehicle passing a portal monitor. This is a novel method which uses data from the entire array simultaneously to locate the source, rather than relying on only one or two sensors. A description of the underlying method will be given, along with results from five and six detector arrays. The five detector array was used mainly for static tests. The six detector array was used for dynamic tests, including slow movement of a source in a vehicle.

  19. Nanorod Array Solid State Neutron Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this Phase I SBIR project, Synkera proposes to develop and commercialize solid-state neutron detectors of a unique architecture that will enable sensor modules...

  20. Bolometeric detector arrays for CMB polarimetry

    Science.gov (United States)

    Kuo, C. L.; Bock, J. J.; Day, P.; Goldin, A.; Golwala, S.; Holmes, W.; Irwin, K.; Kenyon, M.; Lange, A. E.; LeDuc, H. G.; Rossinot, P.; Sterb, J.; Vayonakis, A.; Wang, G.; Yun, M.; Zmuidzinas, J.

    2005-01-01

    We describe the development of antenna coupled bolometers for CMB polarization experiments. The necessary components of a bolometric CMB polarimeter - a beam forming element, a band defining filter, and detectors - are all fabricated on a silicon chip with photolithography.

  1. Surface detector array for the Pierre Auger observatory

    Science.gov (United States)

    Salazar, H.; Garipov, G. K.; Khrenov, B. A.; Martínez, O.; Moreno, E.; Villaseñor, L.; Zepeda, A.

    2001-05-01

    The Pierre Auger international collaboration will install two observatories, one in the southern hemisphere and other in the northern hemisphere. Each observatory will consist of two different subsystem: a surface detector array of about 1600 water Cherenkov detectors (WCD) and a set of fluorescence eyes to measure the longitudinal development of air showers. The large area covered by the surface detectors requires efficient calibration and monitoring methods that can be implemented remotely. We present several complementary methods to calibrate and monitor the performance of the individual surface detector stations. We also present some results of the studies made with a full size prototype tank in Puebla, Mexico and in Malargue, Argentina. .

  2. Research of High Sensitivity Uncooled Infrared Detector Array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Pingchuan [Huazhong University of Science and Technology, Wuhan 430074 (China); Zhang, Bo, E-mail: redmoon123456@126.com, E-mail: lhzyzb@126.com [Luohe Vocational Technology College, Luohe 462002 (China)

    2011-02-01

    The infrared thermal imaging technology has been widely used in military and civilian fields and the field of the infrared detection and infrared thermal imaging technology has been of concern for a long time. On infrared thermal imaging, its core components for the infrared focal plane arrays, how to develop a high sensitivity of the multi-focal plane infrared detector is a key issue. Although the Common focal plane array of quantum has high sensitivity, but it requires low temperature cooling work environment and led to complexity and high cost, difficult to compact. Conventional uncooled infrared focal plane array is contrast to the quantum focal plane arrays. Therefore, this article preceded by the uncooled infrared detector array to improve the wide temperature sensitivity in examining the feasibility PMN composite film, materials composition, structure design and preparation process technology.

  3. Monte Carlo simulation of a single detector unit for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Jaworski, G. [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Palacz, M., E-mail: palacz@slcj.uw.edu.pl [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Angelis, G. de [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); France, G. de [GANIL, Caen (France); Di Nitto, A. [INFN Sezione di Napoli, Napoli (Italy); Egea, J. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); IFIC-CSIC, University of Valencia, Valencia (Spain); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University Istanbul (Turkey); Ertuerk, S. [Nigde Universitesi, Fen-Edebiyat Falkueltesi, Fizik Boeluemue, Nigde (Turkey); Farnea, E. [INFN Sezione di Padova, Padua (Italy); Gadea, A. [IFIC-CSIC, University of Valencia, Valencia (Spain); Gonzalez, V. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); Gottardo, A. [Padova University, Padua (Italy); Hueyuek, T. [IFIC-CSIC, University of Valencia, Valencia (Spain); Kownacki, J. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); Pipidis, A. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Roeder, B. [LPC-Caen, ENSICAEN, IN2P3/CNRS et Universite de Caen, Caen (France); Soederstroem, P.-A. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Sanchis, E. [Department of Electronic Engineering, University of Valencia, Burjassot (Valencia) (Spain); Tarnowski, R. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, PL 02-093 Warszawa (Poland); and others

    2012-05-01

    A study of the dimensions and performance of a single detector of the future neutron detector array NEDA was performed by means of Monte Carlo simulations, using GEANT4. Two different liquid scintillators were evaluated: the hydrogen based BC501A and the deuterated BC537. The efficiency and the probability that one neutron will trigger a signal in more than one detector were investigated as a function of the detector size. The simulations were validated comparing the results to experimental measurements performed with two existing neutron detectors, with different geometries, based on the liquid scintillator BC501.

  4. AIGO: a southern hemisphere detector for the worldwide array of ground-based interferometric gravitational wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Barriga, P; Blair, D G; Coward, D; Davidson, J; Dumas, J-C; Howell, E; Ju, L; Wen, L; Zhao, C [School of Physics, The University of Western Australia, Crawley, WA 6009 (Australia); McClelland, D E; Scott, S M; Slagmolen, B J J; Inta, R [Department of Physics, Faculty of Science, Australian National University, Canberra, ACT 0200 (Australia); Munch, J; Ottaway, D J; Veitch, P; Hosken, D [Department of Physics, University of Adelaide, Adelaide, SA 5005 (Australia); Melatos, A; Chung, C; Sammut, L, E-mail: pbarriga@cyllene.uwa.edu.a [School of Physics University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-04-21

    This paper describes the proposed AIGO detector for the worldwide array of interferometric gravitational wave detectors. The first part of the paper summarizes the benefits that AIGO provides to the worldwide array of detectors. The second part gives a technical description of the detector, which will follow closely the Advanced LIGO design. Possible technical variations in the design are discussed.

  5. The Detector Calibration System for the CUORE cryogenic bolometer array

    CERN Document Server

    Cushman, J S; Davis, C J; Ejzak, L; Lenz, D; Lim, K E; Heeger, K M; Maruyama, R H; Nucciotti, A; Sangiorgio, S; Wise, T

    2016-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10~mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning...

  6. Neutron detector array at IUAC: Design features and instrumentation developments

    Indian Academy of Sciences (India)

    P Sugathan; A Jhingan; K S Golda; T Varughese; S Venkataramanan; N Saneesh; V V Satyanarayana; S K Suman; J Antony; Ruby Shanti; K Singh; S K Saini; A Gupta; A Kothari; P Barua; Rajesh Kumar; J Zacharias; R P Singh; B R Behera; S K Mandal; I M Govil; R K Bhowmik

    2014-11-01

    The characteristics and performance of the newly commissioned neutron detector array at IUAC are described. The array consists of 100 BC501 liquid scintillators mounted in a semispherical geometry and are kept at a distance of 175 cm from the reaction point. Each detector is a 5″ × 5″ cylindrical cell coupled to 5″ diameter photomultiplier tube (PMT). Signal processing is realized using custom-designed home-made integrated electronic modules which perform neutron–gamma discrimination using zero cross timing and time-of-flight (TOF) technique. Compact custom-built high voltage power supply developed using DC–DC converters are used to bias the detector. The neutrons are recorded in coincidence with fission fragments which are detected using multi-wire proportional counters mounted inside a 1m diameter SS target chamber. The detectors and electronics have been tested off-line using radioactive sources and the results are presented.

  7. High-energy interactions in Kinetic Inductance Detectors arrays

    CERN Document Server

    D'Addabbo, A; Goupy, J; Benoit, A; Bourrion, O; Catalano, A; Macias-Perez, J F; Monfardini, A

    2015-01-01

    The impacts of Cosmic Rays on the detectors are a key problem for space-based missions. We are studying the effects of such interactions on arrays of Kinetic Inductance Detectors (KID), in order to adapt this technology for use on board of satellites. Before proposing a new technology such as the Kinetic Inductance Detectors for a space-based mission, the problem of the Cosmic Rays that hit the detectors during in-flight operation has to be studied in detail. We present here several tests carried out with KID exposed to radioactive sources, which we use to reproduce the physical interactions induced by primary Cosmic Rays, and we report the results obtained adopting different solutions in terms of substrate materials and array geometries. We conclude by outlining the main guidelines to follow for fabricating KID for space-based applications.

  8. Integrated Miniature Arrays of Optical Biomolecule Detectors

    Science.gov (United States)

    Iltchenko, Vladimir; Maleki, Lute; Lin, Ying; Le, Thanh

    2009-01-01

    Integrated miniature planar arrays of optical sensors for detecting specific biochemicals in extremely small quantities have been proposed. An array of this type would have an area of about 1 cm2. Each element of the array would include an optical microresonator that would have a high value of the resonance quality factor (Q . 107). The surface of each microresonator would be derivatized to make it bind molecules of a species of interest, and such binding would introduce a measurable change in the optical properties of the microresonator. Because each microresonator could be derivatized for detection of a specific biochemical different from those of the other microresonators, it would be possible to detect multiple specific biochemicals by simultaneous or sequential interrogation of all the elements in the array. Moreover, the derivatization would make it unnecessary to prepare samples by chemical tagging. Such interrogation would be effected by means of a grid of row and column polymer-based optical waveguides that would be integral parts of a chip on which the array would be fabricated. The row and column polymer-based optical waveguides would intersect at the elements of the array (see figure). At each intersection, the row and column waveguides would be optically coupled to one of the microresonators. The polymer-based waveguides would be connected via optical fibers to external light sources and photodetectors. One set of waveguides and fibers (e.g., the row waveguides and fibers) would couple light from the sources to the resonators; the other set of waveguides and fibers (e.g., the column waveguides and fibers) would couple light from the microresonators to the photodetectors. Each microresonator could be addressed individually by row and column for measurement of its optical transmission. Optionally, the chip could be fabricated so that each microresonator would lie inside a microwell, into which a microscopic liquid sample could be dispensed.

  9. Conference on physics from large {gamma}-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    The conference on {open_quotes}Physics from Large {gamma}-ray Detector Arrays{close_quotes} is a continuation of the series of conferences that have been organized every two years by the North American Heavy-ion Laboratories. The aim of the conference this year was to encourage discussion of the physics that can be studied with such large arrays. This volume is the collected proceedings from this conference. It discusses properties of nuclear states which can be created in heavy-ion reactions, and which can be observed via such detector systems.

  10. Detectors based on silicon photomultiplier arrays for medical imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Llosa, G.; Barrio, J.; Cabello, J.; Lacasta, C.; Oliver, J. F. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Rafecas, M. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Departamento de Fisica Atomica, Molecular Y Nuclear, Universitat de Valencia, Valencia (Spain); Stankova, V.; Solaz, C. [Instituto de Fisica Corpuscular - IFIC-CSIC/UVEG, Valencia (Spain); Bisogni, M. G.; Del Guerra, A. [Universite di Pisa, INFN Pisa, Pisa (Italy)

    2011-07-01

    Silicon photomultipliers (SiPMs) have experienced a fast development and are now employed in different research fields. The availability of 2D arrays that provide information of the interaction position in the detector has had a high interest for medical imaging. Continuous crystals combined with segmented photodetectors can provide higher efficiency than pixellated crystals and very high spatial resolution. The IRIS group at IFIC is working on the development of detector heads based on continuous crystals coupled to SiPM arrays for different applications, including a small animal PET scanner in collaboration with the Univ. of Pisa and INFN Pisa, and a Compton telescope for dose monitoring in hadron therapy. (authors)

  11. FFTS readout for large arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    Yates, S J C; Baselmans, J J A; Klein, B; Güsten, R

    2009-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) have great potential for large very sensitive detector arrays for use in, for example, sub-mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing $\\sim$1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present here the concept and experimental demonstration of the use of Fast Fourier Transform Spectrometer (FFTS) readout, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios.

  12. Advanced ACTPol Cryogenic Detector Arrays and Readout

    CERN Document Server

    Henderson, S W; Austermann, J; Baildon, T; Battaglia, N; Beall, J A; Becker, D; De Bernardis, F; Bond, J R; Calabrese, E; Choi, S K; Coughlin, K P; Crowley, K T; Datta, R; Devlin, M J; Duff, S M; Dunner, R; Dunkley, J; van Engelen, A; Gallardo, P A; Grace, E; Hasselfield, M; Hills, F; Hilton, G C; Hincks, A D; Hlozek, R; Ho, S P; Hubmayr, J; Huffenberger, K; Hughes, J P; Irwin, K D; Koopman, B J; Kosowsky, A B; Li, D; McMahon, J; Munson, C; Nati, F; Newburgh, L; Niemack, M D; Niraula, P; Page, L A; Pappas, C G; Salatino, M; Schillaci, A; Schmitt, B L; Sehgal, N; Sherwin, B D; Sievers, J L; Simon, S M; Spergel, D N; Staggs, S T; Stevens, J R; Thornton, R; Van Lanen, J; Vavagiakis, E M; Ward, J T; Wollack, E J

    2015-01-01

    Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope (ACT), adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background (CMB) anisotropies -- imaged in intensity and polarization at few arcminute-scale resolution -- will enable precision cosmological constraints and also a wide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the Advanced ACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor (TES) polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new ...

  13. A readout for large arrays of microwave kinetic inductance detectors.

    Science.gov (United States)

    McHugh, Sean; Mazin, Benjamin A; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-04-01

    Microwave kinetic inductance detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as transition edge sensors, but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper, we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry. This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research. Designed principally for radio telescope backends, it is flexible enough to be used for a variety of signal processing applications.

  14. A readout for large arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    McHugh, Sean; Serfass, Bruno; Meeker, Seth; O'Brien, Kieran; Duan, Ran; Raffanti, Rick; Werthimer, Dan

    2012-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are superconducting detectors capable of counting single photons and measuring their energy in the UV, optical, and near-IR. MKIDs feature intrinsic frequency domain multiplexing (FDM) at microwave frequencies, allowing the construction and readout of large arrays. Due to the microwave FDM, MKIDs do not require the complex cryogenic multiplexing electronics used for similar detectors, such as Transition Edge Sensors (TESs), but instead transfer this complexity to room temperature electronics where they present a formidable signal processing challenge. In this paper we describe the first successful effort to build a readout for a photon counting optical/near-IR astronomical instrument, the ARray Camera for Optical to Near-infrared Spectrophotometry (ARCONS). This readout is based on open source hardware developed by the Collaboration for Astronomy Signal Processing and Electronics Research (CASPER). Designed principally for radio telescope backends, it is flexible...

  15. Installation and Operation of the SNO Neutral Current Detector Array

    Science.gov (United States)

    SNO Collaboration; McGee, S.; Rielage, K.

    2005-06-01

    An array of low background detectors designed to capture neutrons liberated by interactions with solar neutrinos was recently installed in the heavy water region of the SNO experiment. The neutral current detector (NCD) array consists of 36 proportional counters filled with 3He-CF4 gas and 4 proportional counters filled with 4He-CF4. Special hardware conforming to the high radiopurity requirements in SNO was used to assemble and deploy these counters. Neutron events detected by the NCD array are distinguished from various types of backgrounds on an event-by-event basis using the NCD data acquisition system (NCDDAQ), which employs a mixture of commercial and custom-built electronics equipment. The NCDDAQ is controlled by a custom-built Object-oriented Realtime Control and Acquisition (ORCA) software program, and is fully integrated into the SNO PMT data acquisition system to provide shared trigger information and a combined data stream.

  16. Installation and Operation of the SNO Neutral Current Detector Array

    Energy Technology Data Exchange (ETDEWEB)

    Heise, J. [Physics Division, Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States); McGee, S. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA, 98195 (United States); Rielage, K. [Center for Experimental Nuclear Physics and Astrophysics, and Department of Physics, University of Washington, Seattle, WA, 98195 (United States)

    2005-06-15

    An array of low background detectors designed to capture neutrons liberated by interactions with solar neutrinos was recently installed in the heavy water region of the SNO experiment. The neutral current detector (NCD) array consists of 36 proportional counters filled with {sup 3}He-CF{sub 4} gas and 4 proportional counters filled with {sup 4}He-CF{sub 4}. Special hardware conforming to the high radiopurity requirements in SNO was used to assemble and deploy these counters. Neutron events detected by the NCD array are distinguished from various types of backgrounds on an event-by-event basis using the NCD data acquisition system (NCDDAQ), which employs a mixture of commercial and custom-built electronics equipment. The NCDDAQ is controlled by a custom-built Object-oriented Realtime Control and Acquisition (ORCA) software program, and is fully integrated into the SNO PMT data acquisition system to provide shared trigger information and a combined data stream.

  17. Prototype imaging Cd-Zn-Te array detector

    Energy Technology Data Exchange (ETDEWEB)

    Bloser, P.F.; Narita, T.; Grindlay, J.E. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Shah, K. [Radiation Monitoring Devices, Inc., Watertown, MA (United States)

    1998-12-31

    The authors describe initial results of their program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Their primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range {approximately}10--600 keV. The coded aperture imaging configuration requires only relatively large area pixels (1--3 mm), whereas the desired high energy response requires detector thicknesses of at least 3--5 mm. They have developed a prototype detector employing a 10 x 10 x 5 mm CZT substrate and 4 x 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. The authors have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including {approximately}4% (FWHM) energy resolution at 60 keV. A prototype design for a full imaging detector array is discussed.

  18. New air fluorescence detectors employed in the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H., E-mail: htokuno@cr.phys.titech.ac.jp [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Tameda, Y.; Takeda, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Kadota, K. [Tokyo City University, Setagaya-ku, Tokyo (Japan); Ikeda, D. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Honda, K. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Inoue, N. [Saitama University, Saitama, Saitama (Japan); Kakimoto, F. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Kawana, S. [Saitama University, Saitama, Saitama (Japan); Kido, E. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Matthews, J.N. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Nonaka, T. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Ogio, S.; Okuda, S. [Osaka City University, Osaka, Osaka (Japan); Ozawa, S. [Waseda University, Advanced Research Institute for Science and Engineering, Shinjuku-ku, Tokyo (Japan); Sagawa, H. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); Sakurai, N. [Osaka City University, Osaka, Osaka (Japan); and others

    2012-06-01

    Since 2007, the Telescope Array (TA) experiment, based in Utah, USA, has been observing ultra high energy cosmic rays to understand their origins. The experiment includes a surface detector (SD) array and three fluorescence detector (FD) stations. The FD stations, installed surrounding the SD array, measure the air fluorescence light emitted from extensive air showers (EASs) for precise determination of their energies and species. The detectors employed at one of the three FD stations were relocated from the High Resolution Fly's Eye (HiRes) experiment. At the other two stations, newly designed detectors were constructed for the TA experiment. An FD consists of a primary mirror and a camera equipped with photomultiplier tube pixels. To obtain the EAS parameters with high accuracy, understanding the FD optical characteristics is important. In this paper, we report the characteristics and installation of the new FDs and the performances of the FD components. The results of the monitored mirror reflectance during the observation time are also described in this report.

  19. Receiver Performance of CO2 and CH4 Lidar with Low Noise HgCdTe Avalanche Photodiodes

    Science.gov (United States)

    Sun, X.; Abshire, J. B.

    2012-12-01

    NASA Goddard Space Flight Center (GSFC) is currently developing CO2 lidars at 1.57 μm wavelength for the Active Sensing of CO2 Emission over Days, Nights, and Seasons (ASCENDS) mission. One of the major technical challenges is the photodetectors that have to operate in short wave infrared (SWIR) wavelength region and sensitive to received laser pulses of only a few photons. We have been using InGaAs photocathode photomultiplier tubes (PMT) in our airborne simulator of the CO2 lidar that can detect single photon with up to 10% quantum efficiency at photodetector for our CO2 lidars. The new HgCdTe APDs have typically a >50% quantum efficiency, including the effect of fill-factor, from 0.9 to 4.5 μm wavelength. DRS RSTA will integrate a low noise read-out integrated circuit (ROIC) with the HgCdTe APD array into a low noise analog SWIR detector with near single photon sensitivity. The new HgCdTe APD SWIR detector assembly is expected to improve the receiver sensitivity of our CO2 lidar by at least a factor of two and provide a sufficient wide signal dynamic range. The new SWIR detector systems can also be used in the CH4 lidars at 1.65 μm wavelength currently being developed at GSFC. The near infrared PMTs have diminishing quantum efficiency as the wavelength exceeds 1.6 μm. InGaAs APDs have a high quantum efficiency but too high an excess noise factor to achieve near quantum limited performance. The new HgCdTe APDs is expected to give a much superior performance than the PMTs and the InGaAs APDs. In this paper, we will give a brief description of the new HgCdTe APD assembly and present a receiver performance analysis of our CO2 lidar and a CH4 lidar with the new detector system in comparison to the near infrared PMTs and InGaAs APDs.

  20. Saturated virtual fluorescence emission difference microscopy based on detector array

    Science.gov (United States)

    Liu, Shaocong; Sun, Shiyi; Kuang, Cuifang; Ge, Baoliang; Wang, Wensheng; Liu, Xu

    2017-07-01

    Virtual fluorescence emission difference microscopy (vFED) has been proposed recently to enhance the lateral resolution of confocal microscopy with a detector array, implemented by scanning a doughnut-shaped pattern. Theoretically, the resolution can be enhanced by around 1.3-fold compared with that in confocal microscopy. For further improvement of the resolving ability of vFED, a novel method is presented utilizing fluorescence saturation for super-resolution imaging, which we called saturated virtual fluorescence emission difference microscopy (svFED). With a point detector array, matched solid and hollow point spread functions (PSF) can be obtained by photon reassignment, and the difference results between them can be used to boost the transverse resolution. Results show that the diffraction barrier can be surpassed by at least 34% compared with that in vFED and the resolution is around 2-fold higher than that in confocal microscopy.

  1. ROIC for HgCdTe e-APD FPA

    Science.gov (United States)

    Chen, Guoqiang; Zhang, Junling; Wang, Pan; Zhou, Jie; Gao, Lei; Ding, Ruijun

    2013-08-01

    Ultra-low light imaging and passive/active dual mode imaging require very low noise optical receivers to achieve detection of fast and weak optical signal. HgCdTe electrons initiated avalanche photodiodes (e-APDs) in linear multiplication mode is the detector of choice thanks to its high quantum efficiency, high gain at low bias, high bandwidth and low noise factor. In my work, a passive/active dual mode readout integrated circuit (ROIC) of e-APD focal plane array (FPA) is designed. Unit cell circuit architecture of ROIC includes a capacitance feedback transimpedance amplifier (CTIA) as preamplifier of ROIC, a high voltage protection module, a comparator, a Sample-Hold circuit module, and output driver stage. There is a protection module in every unit cell circuit which can avoid ROIC to be damaged from avalanche breakdown of some diodes of detector. Conventional 5V CMOS process is applied to implement the high voltage protection with the small area rather than Laterally Diffused Metal Oxide Semiconductor (LDMOS) in high voltage BCD process in the limited 100um×100um pitch area. In CTIA module, three integration capacitances are included in the CTIA module, two of them are switchable to provide different well capacity and noise. Constraints such as pixel area, stability and power lead us design toward a simple one-stage cascade operational transconductance amplifier (OTA) as pre-amplifier. High voltage protection module can protect ROIC to be damaged because of breakdown of some avalanche diodes.

  2. The Telescope Array Middle Drum fluorescence detector simulation on GPUs

    Science.gov (United States)

    Abu-Zayyad, Tareq; Telescope-Array Collaboration

    2014-06-01

    In recent years, the Graphics Processing Unit (GPU) has been recognized and widely used as an accelerator for many scientific calculations. In general, problems amenable to parallelization are ones that benefit most from the use of GPUs. The Monte Carlo simulation of fluorescence detector response to air showers presents many opportunities for parallelization. In this paper we report on a Monte Carlo program used for the simulation of the Telescope Array Fluorescence Detector located at the Middle Drum site which uses GPU acceleration. All of the physics simulation from shower development, light production and atmospheric attenuation, as well as, the realistic detector optics and electronics simulations are done on the GPU. A detailed description of the code implementation is given, and results on the accuracy and performance of the simulation are presented as well. Improvements in computational throughput in excess of 50× are reported and the accuracy of the results is on par with the CPU implementation of the simulation.

  3. Imaging MAMA detector systems. [Multi-Anode Microchannel Array

    Science.gov (United States)

    Slater, David C.; Timothy, J. G.; Morgan, Jeffrey S.; Kasle, David B.

    1990-01-01

    Imaging multianode microchannel array (MAMA) detector systems with 1024 x 1024 pixel formats have been produced for visible and UV wavelengths; the UV types employ 'solar blind' photocathodes whose detective quantum efficiencies are significantly higher than those of currently available CCDs operating at far-UV and EUV wavelengths. Attention is presently given to the configurations and performance capabilities of state-of-the-art MAMA detectors, with a view to the development requirements of the hybrid electronic circuits needed for forthcoming spacecraft-sensor applications. Gain, dark noise, uniformity, and dynamic range performance data are presented for the curved-channel 'chevron', 'Z-plate', and helical-channel high gain microchannel plate configurations that are currently under evaluation with MAMA detector systems.

  4. READOUT SYSTEM FOR ARRAYS OF FRISCH-RING CDZNTE DETECTORS.

    Energy Technology Data Exchange (ETDEWEB)

    CUI, Y.; BOLOTNIKOV, A.E.; CAMARDA, G.S.; DE GERONIMO, G.; O' CONNOR, P.; JAMES, R.B.; KARGAR, A.; HARRISON, M.J.; MCGREGOR, D.S.

    2006-10-29

    Frisch-ring CdZnTe detectors have demonstrated good energy resolution for identifying isotopes, <1% FWHM at 662 keV, and good efficiency for detecting gamma rays. We will fabricate and test at Brookhaven National Laboratory an integrated module of a 64-element array of 6 x 6 x 12 mm{sup 3} Frisch-ring detectors, coupled with a readout electronics system. It supports 64 readout channels, and includes front-end electronics, signal processing circuit, USB interface and high-voltage power supply. The data-acquisition software is used to process the data stream, which includes amplitude and timing information for each detected event. This paper describes the design and assembly of the detector modules, readout electronics, and a conceptual prototype system. Some test results are also reported.

  5. The detector calibration system for the CUORE cryogenic bolometer array

    Science.gov (United States)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  6. Development and Production of Array Barrier Detectors at SCD

    Science.gov (United States)

    Klipstein, P. C.; Avnon, E.; Benny, Y.; Berkowicz, E.; Cohen, Y.; Dobromislin, R.; Fraenkel, R.; Gershon, G.; Glozman, A.; Hojman, E.; Ilan, E.; Karni, Y.; Klin, O.; Kodriano, Y.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nevo, I.; Nitzani, M.; Pivnik, I.; Rappaport, N.; Rosenberg, O.; Shtrichman, I.; Shkedy, L.; Snapi, N.; Talmor, R.; Tessler, R.; Weiss, E.; Tuito, A.

    2017-09-01

    XB n or XB p barrier detectors exhibit diffusion-limited dark currents comparable with mercury cadmium telluride Rule-07 and high quantum efficiencies. In 2011, SemiConductor Devices (SCD) introduced "HOT Pelican D", a 640 × 512/15- μm pitch InAsSb/AlSbAs XB n mid-wave infrared (MWIR) detector with a 4.2- μm cut-off and an operating temperature of ˜150 K. Its low power (˜3 W), high pixel operability (>99.5%) and long mean time to failure make HOT Pelican D a highly reliable integrated detector-cooler product with a low size, weight and power. More recently, "HOT Hercules" was launched with a 1280 × 1024/15- μm format and similar advantages. A 3-megapixel, 10- μm pitch version ("HOT Blackbird") is currently completing development. For long-wave infrared applications, SCD's 640 × 512/15- μm pitch "Pelican-D LW" XB p type II superlattice (T2SL) detector has a ˜9.3- μm cut-off wavelength. The detector contains InAs/GaSb and InAs/AlSb T2SLs, and is fabricated into focal plane array (FPA) detectors using standard production processes including hybridization to a digital silicon read-out integrated circuit (ROIC), glue underfill and substrate thinning. The ROIC has been designed so that the complete detector closely follows the interfaces of SCD's MWIR Pelican-D detector family. The Pelican-D LW FPA has a quantum efficiency of ˜50%, and operates at 77 K with a pixel operability of >99% and noise equivalent temperature difference of 13 mK at 30 Hz and F/2.7.

  7. Muon-hadron detector of the carpet-2 array

    Science.gov (United States)

    Dzhappuev, D. D.; Kudzhaev, A. U.; Klimenko, N. F.

    2016-05-01

    The 1-GeV muon-hadron detector of the Carpet-2 multipurpose shower array at the Baksan Neutrino Observatory, Institute for Nuclear Research, Russian Academy of Sciences (INR, Moscow, Russia) is able to record simultaneously muons and hadrons. The procedure developed for this device makes it possible to separate the muon and hadron components to a high degree of precision. The spatial and energy features of the muon and hadron extensive-air-shower components are presented. Experimental data from the Carpet-2 array are contrasted against data from the EAS-TOP and KASCADE arrays and against the results of the calculations based on the CORSIKA (GHEISHA + QGSJET01) code package and performed for primary protons and iron nuclei.

  8. Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    CERN Document Server

    Ward, Jonathan T; Beall, James A; Choi, Steve K; Crowley, Kevin T; Devlin, Mark J; Duff, Shannon M; Gallardo, Patricio M; Henderson, Shawn W; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D; Page, Lyman A; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L; Simon, Sara M; Staggs, Suzanne T; Thornton, Robert; Ullom, Joel N; Vavagiakis, Eve M; Wollack, Edward J

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at t...

  9. A new detector array for charged particle spectroscopy

    CERN Document Server

    Cowin, R L; Chappell, S P G; Clarke, N M; Freer, M; Fulton, B R; Cunningham, R A; Curtis, N; Dillon, G; Lilley, J; Jones, C D; Lee, P; Rae, W D M

    1999-01-01

    A compact and highly segmented detector array consisting of 44 gas-silicon-caesium iodide, position sensitive, particle identification detector telescopes and up to 10 position-sensitive, silicon strip detectors has been constructed for the study of light-ion-heavy-ion reactions including cluster break-up in the energy range 5-15 MeV/nucleon. The detectors are housed in a purpose built vacuum chamber. The telescopes are placed in fixed positions, covering the forward hemisphere from 3 to 30 deg. in the laboratory with the target placed at 535 mm from the front of the telescopes or 6-52 deg. with the target placed at 215 mm. The strip detectors are placed in any of 30 fixed positions in the forward hemisphere. For 85 MeV sup 1 sup 2 C ions the telescope energy resolution (gas plus silicon) is 345 keV with an angular resolution of 0.03 deg. . Using the gas-silicon section ions with Z up to 21 can be identified. For ions that pass through the silicon isotopic identification is achieved using the silicon-CsI comb...

  10. Prototype Imaging Cd-Zn-Te Array Detector

    CERN Document Server

    Bloser, P F; Grindlay, J E; Shah, K

    1998-01-01

    We describe initial results of our program to develop and test Cd-Zn-Te (CZT) detectors with a pixellated array readout. Our primary interest is in the development of relatively thick CZT detectors for use in astrophysical coded aperture telescopes with response extending over the energy range $\\sim 10-600$ keV. The coded aperture imaging configuration requires only relatively large area pixels (1-3 mm), whereas the desired high energy response requires detector thicknesses of at least 3-5 mm. We have developed a prototype detector employing a 10 x 10 x 5 mm CZT substrate and 4 x 4 pixel (1.5 mm each) readout with gold metal contacts for the pixels and continuous gold contact for the bias on the opposite detector face. This MSM contact configuration was fabricated by RMD and tested at Harvard for uniformity, efficiency and spatial as well as spectral resolution. We have developed an ASIC readout (IDE-VA-1) and analysis system and report results, including $\\sim 4$% (FWHM) energy resolution at 60 keV. A protot...

  11. Topological detector: measuring continuous dosimetric quantities with few-element detector array.

    Science.gov (United States)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-21

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  12. Topological detector: measuring continuous dosimetric quantities with few-element detector array

    Science.gov (United States)

    Han, Zhaohui; Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2016-08-01

    A prototype topological detector was fabricated and investigated for quality assurance of radiation producing medical devices. Unlike a typical array or flat panel detector, a topological detector, while capable of achieving a very high spatial resolution, consists of only a few elements and therefore is much simpler in construction and more cost effective. The key feature allowing this advancement is a geometry-driven design that is customized for a specific dosimetric application. In the current work, a topological detector of two elements was examined for the positioning verification of the radiation collimating devices (jaws, MLCs, and blades etc). The detector was diagonally segmented from a rectangular thin film strip (2.5 cm  ×  15 cm), giving two contiguous but independent detector elements. The segmented area was the central portion of the strip measuring 5 cm in length. Under irradiation, signals from each detector element were separately digitized using a commercial multichannel data acquisition system. The center and size of an x-ray field, which were uniquely determined by the collimator positions, were shown mathematically to relate to the difference and sum of the two signals. As a proof of concept, experiments were carried out using slit x-ray fields ranging from 2 mm to 20 mm in size. It was demonstrated that, the collimator positions can be accurately measured with sub-millimeter precisions.

  13. Standard practice for radiological examination using digital detector arrays

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice establishes the minimum requirements for radiological examination for metallic and nonmetallic material using a digital detector array (DDA) system. 1.2 The requirements in this practice are intended to control the quality of radiologic images and are not intended to establish acceptance criteria for parts or materials. 1.3 This practice covers the radiologic examination with DDAs including DDAs described in Practice E2597 such as a device that contains a photoconductor attached to a Thin Film Transistor (TFT) read out structure, a device that has a phosphor coupled directly to an amorphous silicon read-out structure, and devices where a phosphor is coupled to a CMOS (Complementary metal–oxide–semiconductor) array, a Linear Detector Array (LDA) or a CCD (charge coupled device) crystalline silicon read-out structure. 1.4 The DDA shall be selected for an NDT application based on knowledge of the technology described in Guide , and of the selected DDA properties provided by the manufactu...

  14. Dry etched SiO2 Mask for HgCdTe Etching Process

    Science.gov (United States)

    Chen, Y. Y.; Ye, Z. H.; Sun, C. H.; Deng, L. G.; Zhang, S.; Xing, W.; Hu, X. N.; Ding, R. J.; He, L.

    2016-09-01

    A highly anisotropic etching process with low etch-induced damage is indispensable for advanced HgCdTe (MCT) infrared focal plane array (IRFPA) detectors. The inductively coupled plasma (ICP) enhanced reactive ion etching technique has been widely adopted in manufacturing HgCdTe IRFPA devices. An accurately patterned mask with sharp edges is decisive to accomplish pattern duplication. It has been reported by our group that the SiO2 mask functions well in etching HgCdTe with high selectivity. However, the wet process in defining the SiO2 mask is limited by ambiguous edges and nonuniform patterns. In this report, we patterned SiO2 with a mature ICP etching technique, prior to which a thin ZnS film was deposited by thermal evaporation. The SiO2 film etching can be terminated at the auto-stopping point of the ZnS layer thanks to the high selectivity of SiO2/ZnS in SF6 based etchant. Consequently, MCT etching was directly performed without any other treatment. This mask showed acceptable profile due to the maturity of the SiO2 etching process. The well-defined SiO2 pattern and the etched smooth surfaces were investigated with scanning electron microscopy and atomic force microscope. This new mask process could transfer the patterns exactly with very small etch-bias. A cavity with aspect-ratio (AR) of 1.2 and root mean square roughness of 1.77 nm was achieved first, slightly higher AR of 1.67 was also get with better mask profile. This masking process ensures good uniformity and surely benefits the delineation of shrinking pixels with its high resolution.

  15. Characterization of NIR InGaAs imager arrays for the JDEM SNAPmission concept

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, S.; Cole, M.D.; Hancock, B.; Ringold, P.; Wrigley, C.; Bonati, M.; Brown, M.G.; Schubnell, M.; Rahmer, G.; Guzman, D.; Figer,D.; Tarle, G.; Smith, R.M.; Bebek, C.

    2006-05-23

    We present the results of a study of the performance of InGaAs detectors conducted for the SuperNova Acceleration Probe (SNAP) dark energy mission concept. Low temperature data from a nominal 1.7um cut-off wavelength 1kx1k InGaAs photodiode array, hybridized to a Rockwell H1RG multiplexer suggest that InGaAs detector performance is comparable to those of existing 1.7um cut-off HgCdTe arrays. Advances in 1.7um HgCdTe dark current and noise initiated by the SNAP detector research and development program makes it the baseline detector technology for SNAP. However, the results presented herein suggest that existing InGaAs technology is a suitable alternative for other future astronomy applications.

  16. Recent progress in MBE grown HgCdTe materials and devices at UWA

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Madni, I.; Umana-Menbreno, G.; Faraone, L.

    2016-05-01

    HgCdTe has dominated the high performance end of the IR detector market for decades. At present, the fabrication costs of HgCdTe based advanced infrared devices is relatively high, due to the low yield associated with lattice matched CdZnTe substrates and a complicated cooling system. One approach to ease this problem is to use a cost effective alternative substrate, such as Si or GaAs. Recently, GaSb has emerged as a new alternative with better lattice matching. In addition, implementation of MBE-grown unipolar n-type/barrier/n-type detector structures in the HgCdTe material system has been recently proposed and studied intensively to enhance the detector operating temperature. The unipolar nBn photodetector structure can be used to substantially reduce dark current and noise without impeding photocurrent flow. In this paper, recent progress in MBE growth of HgCdTe infrared material at the University of Western Australia (UWA) is reported, including MBE growth of HgCdTe on GaSb alternative substrates and growth of HgCdTe nBn structures.

  17. Improved CO [lidar detector

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P.L.; Busch, G.E.; Thompson, D.C.; Remelius, D.K.; Wells, F.D.

    1999-07-18

    A high sensitivity, CO{sub 2} lidar detector, based on recent advances in ultra-low noise, readout integrated circuits (ROIC), is being developed. This detector will combine a high speed, low noise focal plane array (FPA) with a dispersive grating spectrometer. The spectrometer will filter the large background flux, thereby reducing the limiting background photon shot noise. In order to achieve the desired low noise levels, the HgCdTe FPA will be cooled to {approximately}50K. High speed, short pulse operation of the lidar system should enable the detector to operate with the order of a few noise electrons in the combined detector/ ROIC output. Current receiver design concepts will be presented, along with their expected noise performance.

  18. High-Speed, Low Power 256 Channel Gamma Radiation Array Detector ASIC Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Building on prior success in detector electronics, we propose to design and fabricate a 256 channel readout ASIC for solid state gamma radiation array detectors...

  19. Recent progress for HGCDTE quantum detection in France

    Science.gov (United States)

    Gravrand, O.; Destefanis, G.

    2013-07-01

    Due to its tuneable narrow band gap, HgCdTe (MCT) is a material of choice for high complexity IR focal plane arrays (FPAs). Being a strategic defence technology, MCT detector developments is totally mastered at every stage of fabrication at LETI and Sofradir, from the lattice matched CZT substrate growth, the active layer MCT growth, to PV technology, silicon ROIC design and flip chip hybridization. Within the last few years, MCT devices have considerably evolved in terms of device complexity, performances, and field of action. n/p standard technology has been developed in all spectral ranges, from VLWIR (20 μm) down SWIR (1.7 μm). MCT photodiode sensibility goes even lower, down to visible and even UV with a constant quantum efficiency. Moreover, MCT material provides us with high and noiseless avalanche gains inside the photodiode itself, which we are now fully able to use for the optimization of FPA performances. Besides, p/n diode structure is a new emerging process which improves detector performances by several orders of magnitude in terms of dark current, by comparison with the n/p historical structure. This technology has been successfully demonstrated from VLWIR (15 μm cut off) down to the SWIR range (2 μm cut off) where ultra low dark currents are recorded at low temperatures (0.4 e/s). In the same time, first dual band FPAs are delivered, which are expected to be the 3rd generation of IR detectors. At last, considerable efforts are made in order to increase the operational temperature, going from 100 K to 150 K for MWIR FPAs at constant performances, optimizing all technological steps, especially growth issues. Going at even higher operating temperatures (HOTs) is also under active study.

  20. MUST: A silicon strip detector array for radioactive beam experiments

    CERN Document Server

    Blumenfeld, Y; Sauvestre, J E; Maréchal, F; Ottini, S; Alamanos, N; Barbier, A; Beaumel, D; Bonnereau, B; Charlet, D; Clavelin, J F; Courtat, P; Delbourgo-Salvador, P; Douet, R; Engrand, M; Ethvignot, T; Gillibert, A; Khan, E; Lapoux, V; Lagoyannis, A; Lavergne, L; Lebon, S; Lelong, P; Lesage, A; Le Ven, V; Lhenry, I; Martin, J M; Musumarra, A; Pita, S; Petizon, L; Pollacco, E; Pouthas, J; Richard, A; Rougier, D; Santonocito, D; Scarpaci, J A; Sida, J L; Soulet, C; Stutzmann, J S; Suomijärvi, T; Szmigiel, M; Volkov, P; Voltolini, G

    1999-01-01

    A new and innovative array, MUST, based on silicon strip technology and dedicated to the study of reactions induced by radioactive beams on light particles is described. The detector consists of 8 silicon strip - Si(Li) telescopes used to identify recoiling light charged particles through time of flight, energy loss and energy measurements and to determine precisely their scattering angle through X, Y position measurements. Each 60x60 mm sup 2 double sided silicon strip detector with 60 vertical and 60 horizontal strips yields an X-Y position resolution of 1 mm, an energy resolution of 50 keV, a time resolution of around 1 ns and a 500 keV energy threshold for protons. The backing Si(Li) detectors stop protons up to 25 MeV with a resolution of approximately 50 keV. CsI crystals read out by photo-diodes which stop protons up to 70 MeV are added to the telescopes for applications where higher energy particles need to be detected. The dedicated electronics in VXIbus standard allow us to house the 968 logic and a...

  1. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  2. In-line X-slot element focal plane array of kinetic inductance detectors

    NARCIS (Netherlands)

    Iacono, A.; Freni, A.; Neto, A.; Gerini, G.

    2011-01-01

    Kinetic Inductance Detectors are very promising THz imaging devices to be used in Focal Plane Array configuration. In this work a new antenna feed element has been studied and optimized. Preliminary results on array configuration are also shown.

  3. Capillary Array Waveguide Amplified Fluorescence Detector for mHealth.

    Science.gov (United States)

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-09-01

    array can potentially be used for sensitive analysis of multiple fluorescent detection assays simultaneously. The simple phone based capillary array approach presented in this paper is capable of amplifying weak fluorescent signals thereby improving the sensitivity of optical detectors based on mobile phones. This may allow sensitive biological assays to be measured with low sensitivity detectors and may make mHealth practical for many diagnostics applications, especially in resource-poor and global health settings.

  4. Antenna coupled detectors for 2D staring focal plane arrays

    Science.gov (United States)

    Gritz, Michael A.; Kolasa, Borys; Lail, Brian; Burkholder, Robert; Chen, Leonard

    2013-06-01

    Millimeter-wave (mmW)/sub-mmW/THz region of the electro-magnetic spectrum enables imaging thru clothing and other obscurants such as fog, clouds, smoke, sand, and dust. Therefore considerable interest exists in developing low cost millimeter-wave imaging (MMWI) systems. Previous MMWI systems have evolved from crude mechanically scanned, single element receiver systems into very complex multiple receiver camera systems. Initial systems required many expensive mmW integrated-circuit low-noise amplifiers. In order to reduce the cost and complexity of the existing systems, attempts have been made to develop new mmW imaging sensors employing direct detection arrays. In this paper, we report on Raytheon's recent development of a unique focal plane array technology, which operates broadly from the mmW through the sub-mmW/THz region. Raytheon's innovative nano-antenna based detector enables low cost production of 2D staring mmW focal plane arrays (mmW FPA), which not only have equivalent sensitivity and performance to existing MMWI systems, but require no mechanical scanning.

  5. Engineering steps for optimizing high temperature LWIR HgCdTe photodiodes

    Science.gov (United States)

    Madejczyk, Pawel; Gawron, Waldemar; Martyniuk, Piotr; Keblowski, Artur; Pusz, Wioletta; Pawluczyk, Jaroslaw; Kopytko, Malgorzata; Rutkowski, Jaroslaw; Rogalski, Antoni; Piotrowski, Jozef

    2017-03-01

    The authors report on energy gap engineering solutions to improve the high-temperature performance of long-wave infrared (LWIR) HgCdTe photodiodes. Metalorganic chemical vapour deposition (MOCVD) technology with a wide range of composition and donor/acceptor doping and without ex-situ post grown annealing seems to be an excellent tool for HgCdTe heterostructure epitaxial growth. The heterojunction HgCdTe photovoltaic device based on epitaxial graded gap structures integrated with Auger-suppression is a magnificent solution for high operating temperature (HOT) infrared detectors. The thickness, composition and doping of HgCdTe heterostructure were optimized with respect to photoelectrical parameters like dark current, the responsivity and the response time. In this paper we focus on graded interface abruptness in the progressive optimization.

  6. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    Science.gov (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  7. Low-Roughness Plasma Etching of HgCdTe Masked with Patterned Silicon Dioxide

    Science.gov (United States)

    Ye, Z. H.; Hu, W. D.; Yin, W. T.; Huang, J.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2011-08-01

    A novel mask technique utilizing patterned silicon dioxide films has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal-plane arrays (IRFPAs). High-density silicon dioxide films were deposited at temperature of 80°C, and a procedure for patterning and etching of HgCdTe was developed by standard photolithography and wet chemical etching. Scanning electron microscopy (SEM) showed that the surfaces of inductively coupled plasma (ICP) etched samples were quite clean and smooth. Root-mean-square (RMS) roughness characterized by atomic force microscopy (AFM) was less than 1.5 nm. The etching selectivity between a silicon dioxide film and HgCdTe in the samples masked with patterned silicon dioxide films was greater than 30:1. These results show that the new masking technique is readily available and promising for HgCdTe mesa etching.

  8. Matrix-addressed x-ray detector arrays

    Science.gov (United States)

    Street, Robert A.; Apte, Raj B.; Boyce, James B.; Ho, Jackson; Lau, Rachel; Lemmi, Francesco; Lu, Jeng-Ping; Mulato, Marcelo; Ready, Steve E.; Van Schuylenbergh, Koenraad

    2000-11-01

    Amorphous silicon (a-Si:H) technology has created a successful manufacturing business for large area active matrix arrays, of which liquid crystal displays (AMLCD) are the best known, and image sensors are an emerging technology for medical x-ray imaging. The large area, flat plate, format is the key feature of the technology that sets it apart from other digital imaging approaches. The principal requirements for medical imaging are sensitivity and high dynamic range. A-Si:H detectors have already proved to perform at least as well as x-ray film for radiographic applications and comparable to image intensifiers for fluoroscopy. There are several approaches to improving the performance of the image sensors is order to achieve higher sensitivity and higher spatial resolution. This paper describes some of these approaches.

  9. Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode infrared detectors.

    Science.gov (United States)

    Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia

    2015-12-01

    Near-infrared wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low detector noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes detectors for astronomical applications and criteria to specify the cosmetic qualities of future arrays.

  10. Organic/IR-Semiconductor heterojunctions for low-cost, high temperature IR arrays

    Science.gov (United States)

    Jones, Colin E.

    1992-08-01

    This program evaluated a new technology for producing infrared photo-diodes in HgCdTe and InSb using evaporated organic heterojunctions. High quantum-efficiency IR detectors were demonstrated with the organic process comparable to commercial IR detectors. The organic photodiodes at room temperature were better than commercial detectors. They had lower leakage currents and higher resistance-area products (RoAs). Detector arrays made with the organics can operate at higher temperatures than the current detectors. Initial data at low temperatures were poorer than commercial detectors with lower RoAs and slightly higher 1/f noise. This comparison at low temperature may change with further optimization of the organic process. The organic diode process is very simple, low cost and non-damaging to the HgCdTe or InSb. It involves thermal evaporation of the organic onto the HgCdTe or InSb followed by evaporation of metal contacts through a shadow mask. Phase 1 demonstrated organic/HaCdTe IR detectors with quantum efficiencies similar to commercial devices operating at higher temperatures. The technology is ready for a Phase 2 to further optimize the processing for IR arrays and to increase yields.

  11. Gamma Ray Array Detector Trigger Sub-System

    CERN Document Server

    Zhong-Wei, Du; Yi, Qian; KongJie,

    2012-01-01

    Gamma Ray Array Detector (GRAD) is one of External Target Facility (ETF) subsystems at the Heavy Ion Research Facility at Lanzhou. The trigger subsystem of the GRAD has been developed based on Field Programmable Gate Array (FPGAs) and PXI interface. The GRAD trigger subsystem makes prompt L1 trigger decisions to select valid events. These decisions are made by processing the hit signals from 1024 CsI scintillators of the GRAD. According to the physical requirements, the GRAD trigger subsystem generates 12-bit trigger signals that are passed to the ETF global trigger system. In addition, the GRAD trigger subsystem generates trigger data that are packed and transmitted to the host computer via PXI bus for off-line analysis. The trigger processing is implemented in the front-end electronics and one FPGA of the trigger module. The logic of PXI transmission and reconfiguration is implemented in the other FPGA of the trigger module. The reliable and efficient performance in the Gamma-ray experiments demonstrates th...

  12. Demonstration of a passive, low-noise, millimeter-wave detector array for imaging

    Science.gov (United States)

    Wikner, David; Grossman, Erich

    2009-05-01

    The design of a millimeter-wave (MMW) camera is presented. The camera is meant to serve as a demonstration platform for a new 32-channel MMW detector array that requires no pre-amplification prior to detection. The Army Research Laboratory (ARL) and National Institute of Standards and Technology (NIST) have worked with the Defense Advanced Research Projects Agency and several contractors for four years to develop an affordable MMW detector array technology suitable for use in a large staring array. The camera described uses one particular embodiment of detector array that resulted from the program. This paper reviews the design of the MMW optics that will be used to form imagery with the linear array and the tradeoffs made in that design. Also presented are the results of laboratory tests of the detector array that were made at both ARL and NIST.

  13. The ^{55}Fe X-ray Energy Response of Mercury Cadmium Telluride Near-Infrared Detector Arrays

    CERN Document Server

    Fox, Ori D; Wen, Yiting; Foltz, Roger D; Hill, Robert J; Kimble, Randy A; Malumuth, Eliot; Rauscher, Bernard J

    2009-01-01

    A technique involving ^{55}Fe X-rays provides a straightforward method to measure the response of a detector. The detector's response can lead directly to a calculation of the conversion gain (e^- ADU^{-1}), as well as aid detector design and performance studies. We calibrate the ^{55}Fe X-ray energy response and pair production energy of HgCdTe using 8 HST WFC3 1.7 \\micron flight grade detectors. The results show that each K$\\alpha$ X-ray generates 2273 \\pm 137 electrons, which corresponds to a pair-production energy of 2.61 \\pm 0.16 eV. The uncertainties are dominated by our knowledge of the conversion gain. In future studies, we plan to eliminate this uncertainty by directly measuring conversion gain at very low light levels.

  14. MBE Growth and Transfer of HgCdTe Epitaxial Films from InSb Substrates

    Science.gov (United States)

    de Lyon, T. J.; Rajavel, R. D.; Nosho, B. Z.; Terterian, S.; Beliciu, M. L.; Patterson, P. R.; Chang, D. T.; Boag-O'Brien, M. F.; Holden, B. T.; Jacobs, R. N.; Benson, J. D.

    2010-07-01

    An investigation of the heteroepitaxial growth of HgCdTe films onto InSb(211)B substrates is reported. High-quality HgCdTe(211)B single-crystal films have been successfully deposited onto InSb(211)B substrates and have been characterized with x-ray diffraction rocking curve analysis, etch pit density analysis, and surface void defect mapping. X-ray rocking curve (422) reflection full-width at half-maximum of 60 arcsec has been obtained for 7- μm-thick x = 0.22 HgCdTe epitaxial films, and etch pit densities of 3 × 106 cm-2 to 3 × 107 cm-2 have been observed. A significant reduction in HgCdTe void defect densities to 100 cm-2 to 200 cm-2 has been observed on InSb, including a complete absence of large “void cluster” defects that are often observed for growth on CdZnTe. Wafer bow induced by the growth of HgCdTe on InSb is less than 1 μm for 2-inch-diameter substrates. Significant diffusion of In into HgCdTe is observed for HgCdTe/InSb wafers that are subjected to Hg anneals at 250°C to 300°C. A preliminary investigation of the transfer of HgCdTe films from InSb onto Si substrates has also been undertaken, using an adhesive wafer bonding approach evaluated with scanning acoustic microscopy. The infrared transmission characteristics of the bonding adhesive have been investigated with respect to postgrowth annealing procedures to establish the compatibility of the bonding approach with HgCdTe device processing and detector operation.

  15. Signal dependence of inter-pixel capacitance in hybridized HgCdTe H2RG arrays for use in James Webb space telescope's NIRcam

    Science.gov (United States)

    Donlon, Kevan; Ninkov, Zoran; Baum, Stefi

    2016-08-01

    Interpixel capacitance (IPC) is a deterministic electronic coupling by which signal generated in one pixel is measured in neighboring pixels. Examination of dark frames from test NIRcam arrays corroborates earlier results and simulations illustrating a signal dependent coupling. When the signal on an individual pixel is larger, the fractional coupling to nearest neighbors is lesser than when the signal is lower. Frames from test arrays indicate a drop in average coupling from approximately 1.0% at low signals down to approximately 0.65% at high signals depending on the particular array in question. The photometric ramifications for this non-uniformity are not fully understood. This non-uniformity intro-duces a non-linearity in the current mathematical model for IPC coupling. IPC coupling has been mathematically formalized as convolution by a blur kernel. Signal dependence requires that the blur kernel be locally defined as a function of signal intensity. Through application of a signal dependent coupling kernel, the IPC coupling can be modeled computationally. This method allows for simultaneous knowledge of the intrinsic parameters of the image scene, the result of applying a constant IPC, and the result of a signal dependent IPC. In the age of sub-pixel precision in astronomy these effects must be properly understood and accounted for in order for the data to accurately represent the object of observation. Implementation of this method is done through python scripted processing of images. The introduction of IPC into simulated frames is accomplished through convolution of the image with a blur kernel whose parameters are themselves locally defined functions of the image. These techniques can be used to enhance the data processing pipeline for NIRcam.

  16. 640 X 480 Pace HgCdTe FPA

    Science.gov (United States)

    Kozlowski, Lester J.; Bailey, Robert B.; Cabelli, Scott A.; Cooper, Donald E.; McComas, Gail D.; Vural, Kadri; Tennant, William E.

    1992-12-01

    A hybrid HgCdTe 640 X 480 infrared (IR) focal plane array (FPA) that meets the sensitivity, resolution, and field-of-view requirements of high-performance medium wavelength infrared (MWIR) imaging systems has been developed. The key technology making this large, high sensitivity device producible is the epitaxial growth of HgCdTe on a CdTe-buffered, sapphire substrate (referred to as PACE, for Producible Alternative to CdTe for Epitaxy; PACE-I refers to sapphire). The device offers TV resolution with excellent sensitivity at temperatures below 120 K. Mean NE(Delta) T as low as 13 mK has been achieved at operating temperatures nonuniformity compensation.

  17. Multiplexed readout of MMC detector arrays using non-hysteretic rf-SQUIDs

    OpenAIRE

    Kempf, S.; Wegner, M; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2013-01-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to x-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQU...

  18. Multi-color IRFPAs made from HgCdTe grown by MOVPE

    Science.gov (United States)

    Jones, C. L.; Hipwood, L. G.; Price, J.; Shaw, C. J.; Abbott, P.; Maxey, C. D.; Lau, H. W.; Catchpole, R. A.; Ordish, M.; Knowles, P.; Gordon, N. T.

    2007-04-01

    The drive towards improved target recognition has led to an increasing interest in detection in more than one infrared band. This paper describes the design, fabrication and performance of two-colour and three-colour infrared detectors made from HgCdTe grown by Metal Organic Vapour Phase Epitaxy (MOVPE). The detectors are staring, focal plane arrays consisting of HgCdTe mesa-diode arrays bump bonded to silicon read-out integrated circuits (ROICs). Each mesa diode has one connection to the ROIC and the colours are selected by varying the applied bias. Results will be presented for both two-colour and three-colour devices. In a two-colour n-p-n design the cut-off wavelengths are defined by the compositions of the two n-type absorbers and the doping and composition of the p-type layer are chosen to prevent transistor action. The bias polarity is used to switch the output between colours. This design has been used to make MW/LW detectors with a MW band covering 3 to 5 μm and a LW band covering 5 to 10 μm. In a three-colour n-p-n design the cut-off wavelengths are defined by the compositions of the two n-type absorbers and the p-type absorber, which has an intermediate cut-off wavelength. The absorbers are separated from each other by electronic barriers consisting of wide band-gap material. At low applied bias these barriers prevent photo-electrons generated in the p-type absorber from escaping and the device then gives an output from one of the n-type absorbers. At high applied bias the electronic barrier is pulled down and the device gives an output from both the p-type absorber and one of the n-type absorbers. Thus by varying the polarity and magnitude of the bias it is possible to obtain three-colours from a two-terminal device. This design has been used to make a SW/MW/MW detector with cut-off wavelengths of approximately 3, 4 and 6 μm.

  19. Monte Carlo simulation of the standardization of {sup 22}Na using scintillation detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Y., E-mail: yss.sato@aist.go.j [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Murayama, H. [National Institute of Radiological Sciences, 4-9-1, Anagawa, Inage, Chiba 263-8555 (Japan); Yamada, T. [Japan Radioisotope Association, 2-28-45, Hon-komagome, Bunkyo, Tokyo 113-8941 (Japan); National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan); Tohoku University, 6-6, Aoba, Aramaki, Aoba, Sendai 980-8579 (Japan); Hasegawa, T. [Kitasato University, 1-15-1, Kitasato, Sagamihara, Kanagawa 228-8555 (Japan); Oda, K. [Tokyo Metropolitan Institute of Gerontology, 1-1 Nakacho, Itabashi-ku, Tokyo 173-0022 (Japan); Unno, Y.; Yunoki, A. [National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Quantum Radiation Division, Radioactivity and Neutron Section, Tsukuba Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 (Japan)

    2010-07-15

    In order to calibrate PET devices by a sealed point source, we contrived an absolute activity measurement method for the sealed point source using scintillation detector arrays. This new method was verified by EGS5 Monte Carlo simulation.

  20. Superconducting Thin-Film Interconnects for Cryogenic Photon Detector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced imaging spectrometers for x-ray astronomy will require significant improvements in the high density interconnects between the detector arrays and the first...

  1. Method for producing a hybridization of detector array and integrated circuit for readout

    Science.gov (United States)

    Fossum, Eric R.; Grunthaner, Frank J.

    1993-08-01

    A process is explained for fabricating a detector array in a layer of semiconductor material on one substrate and an integrated readout circuit in a layer of semiconductor material on a separate substrate in order to select semiconductor material for optimum performance of each structure, such as GaAs for the detector array and Si for the integrated readout circuit. The detector array layer is lifted off its substrate, laminated on the metallized surface on the integrated surface, etched with reticulating channels to the surface of the integrated circuit, and provided with interconnections between the detector array pixels and the integrated readout circuit through the channels. The adhesive material for the lamination is selected to be chemically stable to provide electrical and thermal insulation and to provide stress release between the two structures fabricated in semiconductor materials that may have different coefficients of thermal expansion.

  2. Method of fabricating a PbS-PbSe IR detector array

    Science.gov (United States)

    Barrett, John R. (Inventor)

    1987-01-01

    A silicon wafer is provided which does not employ individually bonded leads between the IR sensitive elements and the input stages of multiplexers. The wafer is first coated with lead selenide in a first detector array area and is thereafter coated with lead sulfide within a second detector array area. The described steps result in the direct chemical deposition of lead selenide and lead sulfide upon the silicon wafer to eliminate individual wire bonding, bumping, flip chiping, planar interconnecting methods of connecting detector array elements to silicon chip circuitry, e.g., multiplexers, to enable easy fabrication of very long arrays. The electrode structure employed, produces an increase in the electrical field gradient between the electrodes for a given volume of detector material, relative to conventional electrode configurations.

  3. Characteristics of stereo images from detectors in focal plane array.

    Science.gov (United States)

    Son, Jung-Young; Yeom, Seokwon; Chun, Joo-Hwan; Guschin, Vladmir P; Lee, Dong-Su

    2011-07-01

    The equivalent ray geometry of two horizontally aligned detectors at the focal plane of the main antenna in a millimeter wave imaging system is analyzed to reveal the reason why the images from the detectors are fused as an image with a depth sense. Scanning the main antenna in both horizontal and vertical directions makes each detector perform as a camera, and the two detectors can work like a stereo camera in the millimeter wave range. However, the stereo camera geometry is different from that of the stereo camera used in the visual spectral range because the detectors' viewing directions are diverging to each other and they are a certain distance apart. The depth sense is mainly induced by the distance between detectors. The images obtained from the detectors in the millimeter imaging system are perceived with a good depth sense. The disparities responsible for the depth sense are identified in the images.

  4. On site calibration for new fluorescence detectors of the telescope array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan)], E-mail: htokuno@icrr.u-tokyo.ac.jp; Murano, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Kawana, S. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Tameda, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Taketa, A.; Ikeda, D.; Udo, S. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Ogio, S. [Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585 (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Azuma, R.; Fukuda, M. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Inoue, N. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Kadota, K. [Faculty of Knowledge Engineering, Musashi Institute of Technology, Setagaya, Tokyo 158-8557 (Japan); Kakimoto, F. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Sagawa, H.; Sakurai, N.; Shibata, T.; Takeda, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tsunesada, Y. [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)

    2009-04-01

    The Telescope Array experiment is searching for the origin of ultra-high energy cosmic rays using a ground array of particle detectors and three fluorescence telescope stations. The precise calibration of the fluorescence detectors is important for small systematic errors in shower reconstruction. This paper details the process of calibrating cameras for two of the fluorescence telescope stations. This paper provides the operational results of these camera calibrations.

  5. Enhancement of concentration range of chromatographically detectable components with array detector mass spectrometry

    Science.gov (United States)

    Enke, Christie

    2013-02-19

    Methods and instruments for high dynamic range analysis of sample components are described. A sample is subjected to time-dependent separation, ionized, and the ions dispersed with a constant integration time across an array of detectors according to the ions m/z values. Each of the detectors in the array has a dynamically adjustable gain or a logarithmic response function, producing an instrument capable of detecting a ratio of responses or 4 or more orders of magnitude.

  6. Multiplexed readout of MMC detector arrays using non-hysteretic rf-SQUIDs

    CERN Document Server

    Kempf, S; Gastaldo, L; Fleischmann, A; Enss, C

    2013-01-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to x-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQUID multiplexer that operates in the frequency domain and that employs non-hysteretic rf-SQUIDs to transduce the detector signals into a frequency shift of high $Q$ resonators which can be monitored by using standard microwave measurement techniques. In this paper we discuss the design and the expected performance of a recently developed and fabricated 64 pixel detector array with integrated microwave SQUID multiplexer. First experimental data were obtained characterizing dc-SQUIDs with virtually identical washer design.

  7. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  8. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Castro, M. L. Diaz; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santo, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single det

  9. Fast Fourier transform spectrometer readout for large arrays of microwave kinetic inductance detectors

    NARCIS (Netherlands)

    Yates, S. J. C.; Baryshev, A. M.; Baselmans, J. J. A.; Klein, B.; Guesten, R.

    2009-01-01

    Microwave kinetic inductance detectors have great potential for large, very sensitive detector arrays for use in, for example, submillimeter imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing similar to 1000 s of devi

  10. Brief Introduction to the γ-DETECTOR Array at Institute of Modern Physics in Lanzhou

    Science.gov (United States)

    Hua, W.; Zhang, N. T.; Liu, M. L.; Zheng, Y.; Fang, Y. D.; Zhou, X. H.; Zhang, Y. H.; Lei, X. G.; Guo, Y. X.

    2013-11-01

    A new γ-detector array at Institute of modern physics in Lanzhou is now in construction. The spherical frame is designed using Solidworks, and is assembled by 4 kinds of irregular polygons. 32 detectors could be placed on this frame in maximum, which are arranged with 4-4-4-8-4-4-4 configuration.

  11. MCNP6 and DRiFT modeling efforts for the NEUANCE/DANCE detector array

    Energy Technology Data Exchange (ETDEWEB)

    Pinilla, Maria Isabel [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-30

    This report seeks to study and benchmark code predictions against experimental data; determine parameters to match MCNP-simulated detector response functions to experimental stilbene measurements; add stilbene processing capabilities to DRiFT; and improve NEUANCE detector array modeling and analysis using new MCNP6 and DRiFT features.

  12. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Castro, M. L. Diaz; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santo, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single det

  13. National Array of Neutron Detectors (NAND): A versatile tool for nuclear reaction studies

    Energy Technology Data Exchange (ETDEWEB)

    Golda, K.S., E-mail: goldaks@gmail.com [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Jhingan, A.; Sugathan, P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Singh, Hardev [Department of Physics, Kurukshetra University, Kurukshetra 136119 (India); Singh, R.P. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Behera, B.R. [Department of Physics, Panjab University, Chandigarh 160014 (India); Mandal, S. [Department of Physics and Astrophysics, Delhi University, New Delhi 110007 (India); Kothari, A.; Gupta, Arti; Zacharias, J.; Archunan, M.; Barua, P.; Venkataramanan, S.; Bhowmik, R.K. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India); Govil, I.M. [Department of Physics, Panjab University, Chandigarh 160014 (India); Datta, S.K.; Chatterjee, M.B. [Inter University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067 (India)

    2014-11-01

    The first phase of the National Array of Neutron Detectors (NAND) consisting of 26 neutron detectors has been commissioned at the Inter University Accelerator Centre (IUAC), New Delhi. The motivation behind setting up of such a detector system is the need for more accurate and efficient study of reaction mechanisms in the projectile energy range of 5–8 MeV/n using heavy ion beams from a 15 UD Pelletron and an upgraded LINAC booster facility at IUAC. The above detector array can be used for inclusive as well as exclusive measurements of reaction products of which at least one product is a neutron. While inclusive measurements can be made using only the neutron detectors along with the time of flight technique and a pulsed beam, exclusive measurements can be performed by detecting neutrons in coincidence with charged particles and/or fission fragments detected with ancillary detectors. The array can also be used for neutron tagged gamma-ray spectroscopy in (HI, xn) reactions by detecting gamma-rays in coincidence with the neutrons in a compact geometrical configuration. The various features and the performance of the different aspects of the array are described in the present paper. -- Highlights: •We report the design, fabrication and installation of a 26 element modular neutron detection system (NAND). •The array has been designed for the fusion–fission studies at near and above the barrier energies. •The relevant characteristics of the array are studied exhaustively and reported. •The efficiency of the detectors are measured and compared with the monte carlo simulations. •The second phase of the array will be augmented with 80 more neutron detectors which will enable the system to measure the neutron multiplicity distribution.

  14. Kinetic Inductance Detectors Based Receiver Array Architectures for Imaging at THz Frequency

    NARCIS (Netherlands)

    Iacono, A.; Neto, A.; Gerini, G.; Baselmans, J.; Yates, S.; Baryshev, A.; Hoevers, H.

    2009-01-01

    A novel strategy for broad band focal plane array design, resulting from the two years long cooperation between TNO and SRON (Space Research Organization Netherlands), is proposed. Its purpose is to couple the radiation from a Large F/D reflector system to an array of Kinetic Inductance detectors th

  15. A near-infrared 64-pixel superconducting nanowire single photon detector array with integrated multiplexed readout

    Energy Technology Data Exchange (ETDEWEB)

    Allman, M. S., E-mail: shane.allman@boulder.nist.gov; Verma, V. B.; Stevens, M.; Gerrits, T.; Horansky, R. D.; Lita, A. E.; Mirin, R.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305-3328 (United States); Marsili, F.; Beyer, A.; Shaw, M. D. [Jet Propulsion Laboratory, 4800 Oak Grove Dr., Pasadena, California 91109 (United States); Kumor, D. [Purdue University, 610 Purdue Mall, West Lafayette, Indiana 47907 (United States)

    2015-05-11

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array as well as characterization measurements are discussed.

  16. A Near-Infrared 64-pixel Superconducting Nanowire Single Photon Detector Array with Integrated Multiplexed Readout

    CERN Document Server

    Allman, M S; Stevens, M; Gerrits, T; Horansky, R D; Lita, A E; Marsili, F; Beyer, A; Shaw, M D; Kumor, D; Mirin, R; Nam, S W

    2015-01-01

    We demonstrate a 64-pixel free-space-coupled array of superconducting nanowire single photon detectors optimized for high detection efficiency in the near-infrared range. An integrated, readily scalable, multiplexed readout scheme is employed to reduce the number of readout lines to 16. The cryogenic, optical, and electronic packaging to read out the array, as well as characterization measurements are discussed.

  17. A linear monolithic 4-6 on silicon IR detector array

    Science.gov (United States)

    Vandamme, J.; Vermeiren, J.; Zogg, H.; Masek, J.; Fabbricotti, M.

    1992-12-01

    A linear array of monolithically grown PbTe and PbSnSe detectors on (111)-Si for MWIR and TIR imaging applications was designed and processed. The array consists of a staggered row of 2 by 128 detectors on a 100 micrometers pitch. The readout circuitry, integrated on the Si substrate consists of a COS multiplexer with a direct injection input stage, a charge reduction stage and charge to voltage conversion stage for each individual detector. This XDI (MultipeXed Direct Injection) circuit also allows for on-chip nonuniformity compensation with a switched capacitor network.

  18. Study on data acquisition circuit used in SSPA linear array detector X-ray detection

    CERN Document Server

    Wei Biao; Che Zhen Ping

    2002-01-01

    After SSPA used as X-ray array detector is developed, the authors take a research on the data acquisition circuit applied to the detector. The experiment designed has verified the feasibility of application of this array detector and its data acquisition circuit to X-ray computed tomography (X-CT). The preliminary test results indicate that the method of the X-ray detection is feasible for industry X-CT nondestructive testing, which brings about advantage for detecting and measuring with high resolution, good efficiency and low cost

  19. Nuclear structure at high spin using multidetector gamma array and ancillary detectors

    Indian Academy of Sciences (India)

    S Muralithar

    2014-04-01

    A multidetector gamma array (GDA), for studying nuclear structure was built with ancillary devices namely gamma multiplicity filter and charged particle detector array. This facility was designed for in-beam gamma spectroscopy measurements in fusion evaporation reactions at Inter-University Accelerator Centre, New Delhi. Description of the facility and in-beam performance with two experimental studies done are presented. This array was used in a number of nuclear spectroscopic and reaction investigations.

  20. High-Operating Temperature HgCdTe: A Vision for the Near Future

    Science.gov (United States)

    Lee, D.; Carmody, M.; Piquette, E.; Dreiske, P.; Chen, A.; Yulius, A.; Edwall, D.; Bhargava, S.; Zandian, M.; Tennant, W. E.

    2016-09-01

    We review recent advances in the HgCdTe material quality and detector performance achieved at Teledyne using molecular beam epitaxy growth and the double-layer planar hetero-junction (DLPH) detector architecture. By using an un-doped, fully depleted absorber, Teledyne's DLPH architecture can be extended for use in high operating temperatures and other applications. We assess the potential achievable performance for long wavelength infrared (LWIR) hetero-junction p-lightly-doped n or p-intrinsic- n (p-i-n) detectors based on recently reported results for 10.7 μm cutoff 1 K × 1 K focal plane arrays (FPAs) tested at temperatures down to 30 K. Variable temperature dark current measurements show that any Shockley-Read-Hall currents in the depletion region of these devices have lifetimes that are reproducibly greater than 100 ms. Under the assumption of comparable lifetimes at higher temperatures, it is predicted that fully-depleted background radiation-limited performance can be expected for 10- μm cutoff detectors from room temperature to well below liquid nitrogen temperatures, with room-temperature dark current nearly 400 times lower than predicted by Rule 07. The hetero-junction p-i-n diode is shown to have numerous other significant potential advantages including minimal or no passivation requirements for pBn-like processing, low 1/ f noise, compatibility with small pixel pitch while maintaining high modulation transfer function, low crosstalk and good quantum efficiency. By appropriate design of the FPA dewar shielding, analysis shows that dark current can theoretically be further reduced below the thermal equilibrium radiative limit. Modeling shows that background radiation-limited LWIR HgCdTe operating with f/1 optics has the potential to operate within √2 of background-limited performance at 215 K. By reducing the background radiation by 2/3 using novel shielding methods, operation with a single-stage thermo-electric-cooler may be possible. If the

  1. Multi-anode microchannel arrays - New detectors for imaging and spectroscopy in space

    Science.gov (United States)

    Timothy, J. G.; Bybee, R. L.

    1983-01-01

    Consideration is given to the construction and operation of multi-anode microchannel array detector systems having formats as large as 256 x 1024 pixels. Such arrays are being developed for imaging and spectroscopy at soft X-ray, ultraviolet and visible wavelengths from balloons, sounding rockets and space probes. Both discrete-anode and coincidence-anode arrays are described. Two types of photocathode structures are evaluated: an opaque photocathode deposited directly on the curved-channel MCP and an activated cathode deposited on a proximity-focused mesh. Future work will include sensitivity optimization in the different wavelength regions and the development of detector tubes with semitransparent proximity-focused photocathodes.

  2. Trigger and Aperture of the Surface Detector Array of the Pierre Auger Observatory

    CERN Document Server

    Abraham, J; Aglietta, M; Aguirre, C; Ahn, E J; Allard, D; Allekotte, I; Allen, J; Alvarez-Muñiz, J; Ambrosio, M; Anchordoqui, L; Andringa, S; Anzalone, A; Aramo, C; Arganda, E; Argirò, S; Arisaka, K; Arneodo, F; Arqueros, F; Asch, T; Asorey, H; Assis, P; Aublin, J; Ave, M; Avila, G; Bäcker, T; Badagnani, D; Barber, K B; Barbosa, A F; Barroso, S L C; Baughman, B; Bauleo, P; Beatty, J J; Beau, T; Becker, B R; Becker, K H; Bellétoile, A; Bellido, J A; BenZvi, S; Berat, C; Bernardini, P; Bertou, X; Biermann, P L; Billoir, P; Blanch-Bigas, O; Blanco, F; Bleve, C; Blümer, H; Boháčová, M; Boncioli, D; Bonifazi, C; Bonino, R; Borodai, N; Brack, J; Brogueira, P; Brown, W C; Bruijn, R; Buchholz, P; Bueno, A; Burton, R E; Busca, N G; Caballero-Mora, K S; Caramete, L; Caruso, R; Carvalho, W; Castellina, A; Catalano, O; Cazon, L; Cester, R; Chauvin, J; Chiavassa, A; Chinellato, J A; Chou, A; Chudoba, J; Chye, J; Clay, R W; Colombo, E; Conceição, R; Connolly, B; Contreras, F; Coppens, J; Cordier, A; Cotti, U; Coutu, S; Covault, C E; Creusot, A; Criss, A; Cronin, J; Curutiu, A; Dagoret-Campagne, S; Dallier, R; Daumiller, K; Dawson, B R; de Almeida, R M; De Domenico, M; De Donato, C; de Jong, S J; De La Vega, G; Junior, W J M de Mello; Neto, J R T de Mello; De Mitri, I; de Souza, V; de Vries, K D; Decerprit, G; del Peral, L; Deligny, O; Della Selva, A; Fratte, C Delle; Dembinski, H; Di Giulio, C; Diaz, J C; Diep, P N; Dobrigkeit, C; D'Olivo, J C; Dong, P N; Dorofeev, A; Anjos, J C dos; Dova, M T; D'Urso, D; Dutan, I; DuVernois, M A; Engel, R; Erdmann, M; Escobar, C O; Etchegoyen, A; Luis, P Facal San; Falcke, H; Farrar, G; Fauth, A C; Fazzini, N; Ferrer, F; Ferrero, A; Fick, B; Filevich, A; Filipčič, A; Fleck, I; Fliescher, S; Fracchiolla, C E; Fraenkel, E D; Fulgione, W; Gamarra, R F; Gambetta, S; García, B; Gámez, D García; Garcia-Pinto, D; Garrido, X; Gelmini, G; Gemmeke, H; Ghia, P L; Giaccari, U; Giller, M; Glass, H; Goggin, L M; Gold, M S; Golup, G; Albarracin, F Gomez; Berisso, M Gómez; Gonçalves, P; Amaral, M Gonçalves do; Gonzalez, D; Gonzalez, J G; Góra, D; Gorgi, A; Gouffon, P; Gozzini, S R; Grashorn, E; Grebe, S; Grigat, M; Grillo, A F; Guardincerri, Y; Guarino, F; Guedes, G P; Gutiérrez, J; Hague, J D; Halenka, V; Hansen, P; Harari, D; Harmsma, S; Harton, J L; Haungs, A; Healy, M D; Hebbeker, T; Hebrero, G; Heck, D; Hojvat, C; Holmes, V C; Homola, P; Hörandel, J R; Horneffer, A; Hrabovský, M; Huege, T; Hussain, M; Iarlori, M; Insolia, A; Ionita, F; Italiano, A; Jiraskova, S; Kaducak, M; Kampert, K H; Karova, T; Kasper, P; Kégl, B; Keilhauer, B; Kemp, E; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Knapik, R; Knapp, J; Koang, D -H; Krieger, A; Krömer, O; Kruppke-Hansen, D; Kuehn, F; Kuempel, D; Kulbartz, K; Kunka, N; Kusenko, A; La Rosa, G; Lachaud, C; Lago, B L; Lautridou, P; Leão, M S A B; Lebrun, D; Lebrun, P; Lee, J; de Oliveira, M A Leigui; Lemiere, A; Letessier-Selvon, A; Leuthold, M; Lhenry-Yvon, I; López, R; Agüera, A Lopez; Louedec, K; Bahilo, J Lozano; Lucero, A; Lyberis, H; Maccarone, M C; Macolino, C; Maldera, S; Mandat, D; Mantsch, P; Mariazzi, A G; Maris, I C; Falcon, H R Marquez; Martello, D; Bravo, O Martínez; Mathes, H J; Matthews, J; Matthews, J A J; Matthiae, G; Maurizio, D; Mazur, P O; McEwen, M; McNeil, R R; Medina-Tanco, G; Melissas, M; Melo, D; Menichetti, E; Menshikov, A; Meyhandan, R; Micheletti, M I; Miele, G; Miller, W; Miramonti, L; Mollerach, S; Monasor, M; Ragaigne, D Monnier; Montanet, F; Morales, B; Morello, C; Moreno, J C; Morris, C; Mostafá, M; Moura, C A; Mueller, S; Muller, M A; Mussa, R; Navarra, G; Navarro, J L; Navas, S; Necesal, P; Nellen, L; Newman-Holmes, C; Newton, D; Nhung, P T; Nierstenhoefer, N; Nitz, D; Nosek, D; Nožka, L; Nyklicek, M; Oehlschläger, J; Olinto, A; Oliva, P; Olmos-Gilbaja, V M; Ortiz, M; Pacheco, N; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Parente, G; Parizot, E; Parlati, S; Pastor, S; Patel, M; Paul, T; Pavlidou, V; Payet, K; Pech, M; Pȩkala, J; Pepe, I M; Perrone, L; Pesce, R; Petermann, E; Petrera, S; Petrinca, P; Petrolini, A; Petrov, Y; Petrovic, J; Pfendner, C; Piegaia, R; Pierog, T; Pimenta, M; Pinto, T; Pirronello, V; Pisanti, O; Platino, M; Pochon, J; Ponce, V H; Pontz, M; Privitera, P; Prouza, M; Quel, E J; Rautenberg, J; Ravel, O; Ravignani, D; Redondo, A; Revenu, B; Rezende, F A S; Ridky, J; Riggi, S; Risse, M; Rivière, C; Rizi, V; Robledo, C; Rodriguez, G; Martino, J Rodriguez; Rojo, J Rodriguez; Rodriguez-Cabo, I; Rodríguez-Frías, M D; Ros, G; Rosado, J; Rossler, T; Roth, M; Rouillé-d'Orfeuil, B; Roulet, E; Rovero, A C; Salamida, F; Salazar, H; Salina, G; Sánchez, F; Santander, M; Santo, C E; Santos, E M; Sarazin, F; Sarkar, S; Sato, R; Scharf, N; Scherini, V; Schieler, H; Schiffer, P; Schmidt, A; Schmidt, F; Schmidt, T; Scholten, O; Schoorlemmer, H; Schovancova, J; Schovánek, P; Schroeder, F; Schulte, S; Schüssler, F; Schuster, D; Sciutto, S J; Scuderi, M; Segreto, A; Semikoz, D; Settimo, M; Shellard, R C; Sidelnik, I; Siffert, B B; Sigl, G; Śmiałkowski, A; Šmída, R; Smith, B E; Snow, G R; Sommers, P; Sorokin, J; Spinka, H; Squartini, R; Strazzeri, E; Stutz, A; Suarez, F; Suomijärvi, T; Supanitsky, A D; Sutherland, M S; Swain, J; Szadkowski, Z; Tamashiro, A; Tamburro, A; Tarutina, T; Taşcău, O; Tcaciuc, R; Tcherniakhovski, D; Tegolo, D; Thao, N T; Thomas, D; Ticona, R; Tiffenberg, J; Timmermans, C; Tkaczyk, W; Peixoto, C J Todero; Tomé, B; Tonachini, A; Torres, I; Travnicek, P; Tridapalli, D B; Tristram, G; Trovato, E; Tueros, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; Berg, A M van den; Vázquez, J R; Vázquez, R A; Veberič, D; Velarde, A; Venters, T; Verzi, V; Videla, M; Villaseñor, L; Vorobiov, S; Voyvodic, L; Wahlberg, H; Wahrlich, P; Wainberg, O; Warner, D; Watson, A A; Westerhoff, S; Whelan, B J; Wieczorek, G; Wiencke, L; Wilczyńska, B; Wilczyński, H; Wileman, C; Winnick, M G; Wu, H; Wundheiler, B; Yamamoto, T; Younk, P; Yuan, G; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zaw, I; Zepeda, A; Ziolkowski, M

    2011-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above $3\\times 10^{18}$ eV, for all zenith angles between 0$^\\circ$ and 60$^\\circ$, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.

  3. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J. [National Technological University, Faculty Mendoza (CONICET/CNEA), Mendoza (Argentina); Abreu, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aglietta, M. [Istituto di Fisica dello Spazio Interplanetario (INAF), Universita di Torino and Sezione INFN, Torino (Italy); Ahn, E.J. [Fermilab, Batavia, IL (United States); Allard, D. [Laboratoire AstroParticule et Cosmologie (APC), Universite Paris 7, CNRS-IN2P3, Paris (France); Allekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Allen, J. [New York University, New York, NY (United States); Alvarez-Muniz, J. [Universidad de Santiago de Compostela (Spain); Ambrosio, M. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Anchordoqui, L. [University of Wisconsin, Milwaukee, WI (United States); Andringa, S. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Anticic, T. [Rudjer Boskovic Institute, 10000 Zagreb (Croatia); Anzalone, A. [Istituto di Astrofisica Spaziale e Fisica Cosmica di Palermo (INAF), Palermo (Italy); Aramo, C. [Universita di Napoli ' Federico II' and Sezione INFN, Napoli (Italy); Arganda, E. [Universidad Complutense de Madrid, Madrid (Spain); Arisaka, K. [University of California, Los Angeles, CA (United States); Arqueros, F. [Universidad Complutense de Madrid, Madrid (Spain); Asorey, H. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), San Carlos de Bariloche (Argentina); Assis, P. [LIP and Instituto Superior Tecnico, Lisboa (Portugal); Aublin, J. [Laboratoire de Physique Nucleaire et de Hautes Energies (LPNHE), Universites Paris 6 et Paris 7, CNRS-IN2P3, Paris (France)

    2010-01-21

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3x10{sup 18}eV, for all zenith angles between 0 deg. and 60 deg., independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.

  4. High-efficiency microstructured semiconductor neutron detectors that are arrayed, dual-integrated, and stacked

    Energy Technology Data Exchange (ETDEWEB)

    Bellinger, Steven L., E-mail: slb3888@ksu.edu [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Fronk, Ryan G. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States); Sobering, Timothy J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McGregor, Douglas S. [Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506 (United States)

    2012-07-15

    Silicon diodes with large aspect ratio 3D microstructures backfilled with {sup 6}LiF show a significant increase in neutron detection efficiency beyond that of conventional thin-film coated planar devices. Described in this work are advancements in the technology using detector stacking methods and summed-detector 6 Multiplication-Sign 6-element arraying methods to dramatically increase the sensitivity to thermal neutrons. The intrinsic detection efficiency of the 6 Multiplication-Sign 6 array for normal-incident 0.0253 eV neutrons was found 6.8% compared against a calibrated {sup 3}He proportional counter. - Highlights: Black-Right-Pointing-Pointer Solid-state semiconductor neutron detectors utilizing {sup 6}LiF. Black-Right-Pointing-Pointer Large aspect ratio 3D microstructured silicon diodes. Black-Right-Pointing-Pointer Arrayed solid-state semiconductor neutron detectors.

  5. The array of scintillation detectors with natural boron for EAS neutrons investigations

    Science.gov (United States)

    Gromushkin, D. M.; Bogdanov, F. A.; Khokhlov, S. S.; Kokoulin, R. P.; Kompaniets, K. G.; Petrukhin, A. A.; Shulzhenko, I. A.; Stenkin, Yu. V.; Yashin, I. I.; Yurin, K. O.

    2017-07-01

    The new URAN array has been constructed in the National Research Nuclear University MEPhI (Moscow, Russia). It is aimed at studying of primary cosmic rays in the "knee" region of energy spectrum and detects neutrons produced in interactions of EAS particles with nuclei of atmosphere or matter. The array consists of 72 detectors based on the scintillator with natural boron. Scintillator represents a silicon plate with the granules of ZnS(Ag) and B2O3 mixture. The area of the detector is 0.36 sq. m. Detectors are located on two roofs of the MEPhI laboratory buildings and are combined into clusters of 12 detectors. The structure and the main elements of the URAN array are described.

  6. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    Science.gov (United States)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Bäcker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; Benzvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Domenico, M.; de Donato, C.; de Jong, S. J.; de La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; de Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; Del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; di Giulio, C.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Duvernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipčič, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fröhlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; García, B.; García Gámez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gonçalves, P.; Gonzalez, D.; Gonzalez, J. G.; Góra, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horneffer, A.; Hrabovský, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D.-H.; Krieger, A.; Krömer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martínez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Mičanović, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafá, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Nyklicek, M.; Oehlschläger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; PeĶala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivière, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-D'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sánchez, F.; Santander, M.; Santo, C. E.; Santo, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schroeder, F.; Schulte, S.; Schüssler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Taşcău, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van den Berg, A. M.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Venters, T.; Verzi, V.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3×1018eV, for all zenith angles between 0∘ and 60∘, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance.

  7. Electronics for the Extensive Air Shower Detector Array at the University of Puebla

    Science.gov (United States)

    Pérez, E.; Conde, R.; Martínez, O.; Murrieta, T.; Salazar, H.; Villaseñor, L.

    2006-09-01

    In this paper we describe in detail the electronics cards that were designed to be the basis of the data acquisition system (DAS) of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this observatory is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m2 cross section and five smaller ones of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described here uses analog to digital converters of 10 bits working at a sampling speed of 40 MS/s and field-programmable gate array (FPGA).

  8. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    Science.gov (United States)

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-05

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

  9. Real-Time Monitoring and Control of HgCdTe MBE Using an Integrated Multi-Sensor System

    Science.gov (United States)

    1998-08-01

    layer composition, and effusion cell flux during MBE growth of HgCdTe epilayers for advanced IR detectors. Substrate temperature is measured and...HgCdTe MBE growth of high performance IR detector structures over a wide range of compositions, layer thickness and substrate temperature.

  10. Results from the Antarctic Muon and Neutrino Detector Array

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Bai, X.; Barwick, S.W.; Becka, T.; Becker, K.-H.; Bernaxdini, E.; Bertrand, D.; Binon, F.; Birone, A.; Boeser, S.; Botnerg, O.; Bouhali, O.; Burgess, T.; Carius, S.; Castermans, T.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Cowen, D.F.; Davour, A.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Ekstroem, P.; Feser, T.; Gaisser, T.K.; Gaug, M.; Gerhardt, L.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Herquet, P.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Koci, B.; Koepke, L.; Kuehn, K.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Minaeva, Y.; Miocinovic, P.; Morse, R.; Nahnhauer, R.; Neunhoeffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Resconi, E.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Steele, D.; Steffen, P.; Stokstad, R.G.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Tilav, S.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedemann, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Yodh, G.; Young, S

    2003-04-01

    We show new results from both the older and newer incarnations of AMANDA (AMANDA-1310 and AMANDA-II, respectively). These results demonstrate that AMANDA is a functioning, multipurpose detector with significant physics and astrophysics reach. They include a new higher-statistics measurement of the atmospheric muon neutrino flux and preliminary results from searches for a variety of sources of ultrahigh energy neutrinos: generic point sources, gamma-ray bursters and diffuse sources producing muons in the detector, and diffuse sources producing electromagnetic or hadronic showers in or near the detector.

  11. Automated response matching for organic scintillation detector arrays

    Science.gov (United States)

    Aspinall, M. D.; Joyce, M. J.; Cave, F. D.; Plenteda, R.; Tomanin, A.

    2017-07-01

    This paper identifies a digitizer technology with unique features that facilitates feedback control for the realization of a software-based technique for automatically calibrating detector responses. Three such auto-calibration techniques have been developed and are described along with an explanation of the main configuration settings and potential pitfalls. Automating this process increases repeatability, simplifies user operation, enables remote and periodic system calibration where consistency across detectors' responses are critical.

  12. Growth, properties and applications of HgCdTe

    Science.gov (United States)

    Schmit, J. L.

    1983-12-01

    This paper provides primarily a review of the methods used to grow HgCdTe with a summary of some of its basic properties and applications. Methods of crystal growth fall generally into three classes: growth from the melt, from solution and from the vapor phase. All three methods have been and are being used to grow HgCdTe. The high vapor pressure of HgCdTe at the melting point, combined with a large segregation coefficient, have effectively limited the use of Czochralski or zone melting techniques, but two melt growth techniques have survived: (1) a variation of Bridgman growth called quench-anneal wherein a dendritic crystal is formed by quenching the melt and is homogenized by solid state recrystallization below the melting point, (2) a variation of freezing from a large volume called slush-growth wherein a melt is held in a temperature gradient for several weeks while a crystal grows. Growth from solution has taken the form of liquid phase epitaxy (LPE) on CdTe with the LPE systems including growth from Hg-rich, HgTe-rich and Te-rich solutions and using tipping, vertical dipping, vertical sliding and horizontal sliding. Vapor phase growth is very promising but is not yet in production. Techniques include growth by isothermal close spaced epitaxy in which HgTe is transported isothermally by chemical potential onto CdTe, molecular beam epitaxy (MBE) in which elements are evaporated in a high vacuum, and metal organic chemical vapor deposition (MOCVD) in which some of the metal atoms are carried to the substrate bound to organic radicals before being freed by pyrolysis. In all these methods, control of Hg pressure is a major concern. The fundamental properties discussed briefly are those of prime interest to detector manufacturers: energy gap ( Eg), intrinsic carrier concentration ( ni), and electrical activity of dopants. A reasonable fit to the Eg data from ˜ 20 papers is given by Eg = -0.302+1.93x+5.35×10 -4T(1-2x)-0.810x 2+0.832x 3. This gap, combined with k

  13. Non-volatile resistive photo-switches for flexible image detector arrays

    Science.gov (United States)

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J. W.

    2015-09-01

    The increasing quest to find lightweight, conformable or flexible image detectors for machine vision or medical imaging brings organic electronics into the spotlight for these fields of application. Here were we introduce a unique imaging device concept and its utilization in an organic, flexible detector array with simple passive matrix wiring. We present a flexible organic image detector array built up from non-volatile resistive multi-bit photo-switchable elements. This unique realization is based on an organic photodiode combined with an organic resistive memory device wired in a simple crossbar configuration. The presented concept exhibits significant advantages compared to present organic and inorganic detector array technologies, facilitating the detection and simultaneous storage of the image information in one detector pixel, yet also allowing for simple read-out of the information from a simple passive-matrix crossbar wiring. This concept is demonstrated for single photo-switchable pixels as well as for arrays with sizes up to 32 by 32 pixels (1024 bit). The presented results pave the way for a versatile flexible and easy-to-fabricate sensor array technology. In a final step, the concept was expanded to detection of x-rays.

  14. Measurements and analysis of optical crosstalk in a microwave kinetic inductance detector array

    CERN Document Server

    Bisigello, L; Ferrari, L; Baselmans, J J A; Baryshev, A M

    2016-01-01

    The main advantage of Microwave Kinetic Inductance Detector arrays (MKID) is their multiplexing capability, which allows for building cameras with a large number of pixels and good sensitivity, particularly suitable to perform large blank galaxy surveys. However, to have as many pixels as possible it is necessary to arrange detectors close in readout frequency. Consequently KIDs overlap in frequency and are coupled to each other producing crosstalk. Because crosstalk can be only minimised by improving the array design, in this work we aim to correct for this effect a posteriori. We analysed a MKID array consisting of 880 KIDs with readout frequencies at 4-8 GHz. We measured the beam patterns for every detector in the array and described the response of each detector by using a two-dimensional Gaussian fit. Then, we identified detectors affected by crosstalk above -30 dB level from the maximum and removed the signal of the crosstalking detectors. Moreover, we modelled the crosstalk level for each KID as a func...

  15. Dosimetric characterization of a commercial two-dimensional array detector; Caracterizacao dosimetrica de um detector matricial bidimensional comercial

    Energy Technology Data Exchange (ETDEWEB)

    Gialluisi, Bruno L.; Santos, Gabriela R. dos; Sales, Camila P. de; Resende, Guilherme R.A.; Habitzreuter, Angela B.; Rodrigues, Laura N., E-mail: brunogialluisi@gmail.com [Universidade de Sao Paulo (HCFMRP/USP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia

    2013-04-15

    This paper investigates the dosimetric characteristics and performance of an array detector commercially available. The device is the I'mRT MatriXX® which is a two-dimensional detector array used in the verification of complex radiotherapy plans. It consists of 1,020 parallel plate ion chamber arranged in a 32x32 grid. Dose linearity was studied and its response was linear within the range of 5 to 1000 MU (R{sup 2} = 1). Dose rate dependence showed a maximum deviation of 0,62% comparatively with readings to 320 cGy/min. The detector stability was verified through repeated irradiations. Output factors matched well with measurements made with a Farmer chamber with an average deviation of 1,54%. The detector's effective point of measurement was determined and the inverse square law was also verified with a percentage deviation smaller than 3%. The results show that this detector can be used for quality control in IMRT thus reducing the time spent in the dosimetric verification of radiation fields. (author)

  16. Surface Micromachined Arrays of Transition-Edge Detectors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative surface micromachining technique is described for the fabrication of closely-packed arrays of transition edge sensor (TES) x-ray microcalorimeters....

  17. The DUV Stability of Superlattice-Doped CMOS Detector Arrays

    Science.gov (United States)

    Hoenk, M. E.; Carver, A. G.; Jones, T.; Dickie, M.; Cheng, P.; Greer, H. F.; Nikzad, S.; Sgro, J.; Tsur, S.

    2013-01-01

    JPL and Alacron have recently developed a high performance, DUV camera with a superlattice doped CMOS imaging detector. Supperlattice doped detectors achieve nearly 100% internal quantum efficiency in the deep and far ultraviolet, and a single layer, Al2O3 antireflection coating enables 64% external quantum efficiency at 263nm. In lifetime tests performed at Applied Materials using 263 nm pulsed, solid state and 193 nm pulsed excimer laser, the quantum efficiency and dark current of the JPL/Alacron camera remained stable to better than 1% precision during long-term exposure to several billion laser pulses, with no measurable degradation, no blooming and no image memory at 1000 fps.

  18. Mass Composition Sensitivity of an Array of Water Cherenkov and Scintillation Detectors

    CERN Document Server

    Gonzalez, Javier G; Roth, Markus

    2011-01-01

    We consider a hybrid array composed of scintillation and water Cherenkov detectors designed to measure the cosmic ray primary mass composition at energies of about 1 EeV. We have developed a simulation and reconstruction chain to study the theoretical performance of such an array. In this work we investigate the sensitivity of mass composition observables in relation to the geometry of the array. The detectors are arranged in a triangular grid with fixed 750 m spacing and the configuration of the scintillator detectors is optimized for mass composition sensitivity. We show that the performance for composition determination can be compared favorably to that of Xmax measurements after the difference in duty cycles is considered.

  19. IR Imaging Using Arrays of SiO2 Micromechanical Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Grbovic, Dragoslav [ORNL; Lavrik, Nickolay V [ORNL; Rajic, Slobodan [ORNL; Datskos, Panos G [ORNL; Hunter, Scott Robert [ORNL

    2012-01-01

    In this letter, we describe the fabrication of an array of bimaterial detectors for infrared (IR) imaging that utilize SiO2 as a structural material. All the substrate material underneath the active area of each detector element was removed. Each detector element incorporates an optical resonant cavity layer in the IR absorbing region of the sensing element. The simplified microfabrication process requires only four photolithographic steps with no wet etching or sacrificial layers. The thermomechanical deflection sensitivity was 7.9 10-3 rad/K which corresponds to a noise equivalent temperature difference (NETD) of 2.9 mK. In the present work the array was used to capture IR images while operating at room temperature and atmospheric pressure and no need for vacuum packaging. The average measured NETD of our IR detector system was approximately 200 mK but some sensing elements exhibited an NETD of 50 mK.

  20. Image quality evaluation of linear plastic scintillating fiber array detector for X-ray imaging

    Institute of Scientific and Technical Information of China (English)

    Mohammad Mehdi NASSERI; MA Qing-Li; YIN Ze-Jie

    2004-01-01

    It is important to assess image quality, in order to ensure that the imaging system is performing optimally and also identify the weak points in an imaging system. Three parameters mostly leading to image degradation are contrast, spatial resolution and noise. There is always a trade-off between spatial resolution and signal to noise ratio,but in scintillating fiber array detectors spatial resolution is not as important as signal to noise ratio, so we paid more attention to contrast and SNR of the system. By using GEANT4 Monte Carlo detector simulation toolkit, some effective parameters of the linear plastic scintillating fiber (PSF) array as an imaging detector were investigated. Finally we show that it is possible to use this kind of detector to take CT and DR (Digital Radiography) image under certain conditions.

  1. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Energy Technology Data Exchange (ETDEWEB)

    Flores, J.L. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain); Martel, I. [Dpto de Física Aplicada, Universidad de Huelva (Spain); CERN, ISOLDE, CH 1211 Geneva, 23 (Switzerland); Jiménez, R. [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Galán, J., E-mail: jgalan@diesia.uhu.es [Dpto de Ingeniería Electrónica, Sist. Informáticos y Automática, Universidad de Huelva (Spain); Salmerón, P. [Dpto de Ingeniería Eléctrica y Térmica, Universidad de Huelva (Spain)

    2016-09-11

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from {sup 12}C up to {sup 84}Kr, yielding higher discrimination rates than any other previously reported.

  2. Analysis of upper and lower bounds of the frame noise in linear detector arrays

    Science.gov (United States)

    Jaggi, S.

    1991-01-01

    This paper estimates the upper and lower bounds of the frame noise of a linear detector array that uses a one-dimensional scan pattern. Using chi-square distribution, it is analytically shown why it is necessary to use the average of the variances and not the average of the standard deviations to estimate these bounds. Also, a criteria for determining whether any excessively noisy lines exist among the detectors is derived from these bounds. Using a Gaussian standard random variable generator, these bounds are demonstrated to be accurate within the specified confidence interval. A silicon detector array is then used for actual dark current measurements. The criterion developed for determination of noisy detectors is checked on the experimentally obtained data.

  3. Application of neural networks to digital pulse shape analysis for an array of silicon strip detectors

    Science.gov (United States)

    Flores, J. L.; Martel, I.; Jiménez, R.; Galán, J.; Salmerón, P.

    2016-09-01

    The new generation of nuclear physics detectors that used to study nuclear reactions is considering the use of digital pulse shape analysis techniques (DPSA) to obtain the (A,Z) values of the reaction products impinging in solid state detectors. This technique can be an important tool for selecting the relevant reaction channels at the HYDE (HYbrid DEtector ball array) silicon array foreseen for the Low Energy Branch of the FAIR facility (Darmstadt, Germany). In this work we study the feasibility of using artificial neural networks (ANNs) for particle identification with silicon detectors. Multilayer Perceptron networks were trained and tested with recent experimental data, showing excellent identification capabilities with signals of several isotopes ranging from 12C up to 84Kr, yielding higher discrimination rates than any other previously reported.

  4. A tiled CCD detector with 2x2 array and tapered fibre optics for electron microscopy

    CERN Document Server

    Faruqi, A R; Cattermole, D M; Stubbings, S

    2002-01-01

    Charge coupled devices (CCD)-based detectors have made a major impact on data collection in electron microscopy over the past few years. There have been a number of successful applications of CCDs in electron crystallography of two-dimensional protein crystal arrays but high-resolution imaging has been hampered by the relatively poor spatial resolution (and fewer independent pixels) compared to film. A partial solution to this problem, presented in this paper, are to design detectors with larger effective pixel sizes and with more pixels. A CCD detector with a much greater number of 'independent' pixels, achieved by tiling a 2x2 array of CCDs, each of which has 1242x1152 pixels is described here. The sensitive area of the detector, using fibre optics with a demagnification of 2.5 : 1, is 140x130 mm sup 2; the pixel size is 56 mu m square and there is a total of approx 2500x2300 pixels.

  5. Calibration and quality control of a multi leaf collimator using linear array of detectors; Calibracion y control de calidad de un colimador multilaminas mediante array lineal de detectores

    Energy Technology Data Exchange (ETDEWEB)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-07-01

    The protocol for calibration and quality control established by Siemens for the multi leaf collimator (MLC) of Primus electron linear accelerators, using the light field coincidence with the beam of radiation to determine the position of the blades. In this paper, we illustrate the use of a calibration method for determining the positions of MLC plates radiologically with the help of a linear array of detectors, based on the proposal Lopes et al (2007).

  6. Investigation of Substrate Effects on Interface Strain and Defect Generation in MBE-Grown HgCdTe

    Science.gov (United States)

    Gu, R.; Lei, W.; Antoszewski, J.; Faraone, L.

    2016-09-01

    Si, Ge, and GaAs have been extensively investigated as alternative substrates for molecular-beam epitaxy (MBE) growth of HgCdTe and, at present, are widely used for HgCdTe-based infrared focal-plane arrays. However, the problem of high dislocation density in HgCdTe layers grown on these lattice-mismatched substrates has yet to be resolved. In this work, we investigated another alternative substrate, GaSb, which has a significantly smaller lattice mismatch with HgCdTe in comparison with Si, Ge, and GaAs, and is readily available as large-area, epiready wafers at much lower cost in comparison with lattice-matched CdZnTe substrates. The resultant stress due to lattice and thermal mismatch between the HgCdTe epilayer and various substrates has been calculated in this work using the elasticity matrix, and the corresponding stress distribution simulated using ANSYS. The simulated structures were matched by experimental samples involving MBE growth of HgCdTe on GaAs, GaSb, and CdZnTe substrates, and were characterized via reflection high-energy electron diffraction and x-ray diffraction analysis, followed by etch pit density (EPD) analysis. In comparison with other alternative substrates, GaSb is shown to have lower interface stress and lower EPD, rendering it an interesting and promising alternative substrate material for HgCdTe epitaxy.

  7. Measuring 235U(n,xnγ) Cross Sections with HPGe Detector Array

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhao-hui; WANG; Qi; SU; Xiao-bin; LI; Xia; HOU; Long; ZHANG; Kai; CHEN; Hong-tao; ZHAO; Fang

    2015-01-01

    We had built the array of HPGe detectors,which is used to measure theγrays from(n,xn)reaction.The detection system,acquisition system and analysis method have been improved to meet the requirement of prompt gamma ray measurement.According to the research of angular distribution of secondary gamma ray,we adjust the location and angle of detectors(Fig.1).Due to the absence of suitable sample,

  8. Energy spectrum of UHECRs measured by newly constructed fluorescence detectors in Telescope Array experiment

    Directory of Open Access Journals (Sweden)

    Fujii Toshihiro

    2013-06-01

    Full Text Available Telescope Array (TA experiment is the largest hybrid detector to observe ultra-high energy cosmic rays (UHECRs in the northern hemisphere. In the TA experiment, we newly designed and constructed 24 fluorescence detectors (FDs located at two stations. We report the energy spectrum of UHECRs with energies above 1017.5 eV from analyzing data collected by the new FDs during the first 3.7 years in monocular mode.

  9. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    Science.gov (United States)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Pérez, E.; Salazar, H.; Villaseñor, L.

    2005-11-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla ( 19∘N, 90∘W, 800 g/cm2) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1 PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86 m2 cross-section and 12 liquid scintillator detectors of 1 m2 distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays.

  10. Hybrid Extensive Air Shower Detector Array at the University of Puebla to Study Cosmic Rays

    Science.gov (United States)

    Martínez, O.; Pérez, E.; Salazar, H.; Villaseñor, L.

    We describe the design of an extensive air shower detector array built in the Campus of the University of Puebla (located at 19°N, 90°W, 800 gcm -2) to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 18 liquid scintillator detectors (12 in the first stage) and 6 water Cherenkov detectors (one of 10 m 2 cross section and five smaller ones of 1.86 m 2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m 2. In this paper we discuss the calibration and stability of the array, and discuss the capability of hybrid arrays, such as this one consisting of water Cherenkov and liquid scintillator detectors, to allow a separation of the electromagnetic and muon components of extensive air showers. This separation plays an important role in the determination of the mass and identity of the primary cosmic ray. This facility is also used to train students interested in the field of cosmic rays.

  11. A sub-millimeter resolution PET detector module using a multi-pixel photon counter array.

    Science.gov (United States)

    Song, Tae Yong; Wu, Heyu; Komarov, Sergey; Siegel, Stefan B; Tai, Yuan-Chuan

    2010-05-07

    A PET block detector module using an array of sub-millimeter lutetium oxyorthosilicate (LSO) crystals read out by an array of surface-mount, semiconductor photosensors has been developed. The detector consists of a LSO array, a custom acrylic light guide, a 3 x 3 multi-pixel photon counter (MPPC) array (S10362-11-050P, Hamamatsu Photonics, Japan) and a readout board with a charge division resistor network. The LSO array consists of 100 crystals, each measuring 0.8 x 0.8 x 3 mm(3) and arranged in 0.86 mm pitches. A Monte Carlo simulation was used to aid the design and fabrication of a custom light guide to control distribution of scintillation light over the surface of the MPPC array. The output signals of the nine MPPC are multiplexed by a charge division resistor network to generate four position-encoded analog outputs. Flood image, energy resolution and timing resolution measurements were performed using standard NIM electronics. The linearity of the detector response was investigated using gamma-ray sources of different energies. The 10 x 10 array of 0.8 mm LSO crystals was clearly resolved in the flood image. The average energy resolution and standard deviation were 20.0% full-width at half-maximum (FWHM) and +/-5.0%, respectively, at 511 keV. The timing resolution of a single MPPC coupled to a LSO crystal was found to be 857 ps FWHM, and the value for the central region of detector module was 1182 ps FWHM when +/-10% energy window was applied. The nonlinear response of a single MPPC when used to read out a single LSO was observed among the corner crystals of the proposed detector module. However, the central region of the detector module exhibits significantly less nonlinearity (6.5% for 511 keV). These results demonstrate that (1) a charge-sharing resistor network can effectively multiplex MPPC signals and reduce the number of output signals without significantly degrading the performance of a PET detector and (2) a custom light guide to permit light sharing

  12. Extensive Air Shower Detector Array at the Universidad Autonoma de Puebla

    Science.gov (United States)

    Cotzomi, J.; Moreno, E.; Aguilar, S.; Palma, B.; Martinez, O.; Salazar, H.; Villasenor, L.

    2002-07-01

    We describe the operation of an Extensive Air Shower Array located at the campus of the FCFM-BUAP. The array consists of 8 liquid scintillation detectors with a surface of 1 m2 each and a detector spacing of 20 m in a square grid. The array was designed to measure the energy and arrival direction of primary particles that generate extensive air showers (EAS) in the region of 1013 eV - 1016 eV. The angular distribution measured with this array, Cos8(Theta) xSin(Theta), agrees very well with the literature. We also present the measured energies of a number of vertical showers in the range of 5 x1012 eV to 5 x1013 eV.

  13. Implementation of digital multiplexing for high resolution X-ray detector arrays.

    Science.gov (United States)

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We describe and demonstrate for the first time the use of the novel Multiple Module Multiplexer (MMMIC) for a 2×2 array of new electron multiplying charge coupled device (EMCCD) based x-ray detectors. It is highly desirable for x-ray imaging systems to have larger fields of view (FOV) extensible in two directions yet to still be capable of doing high resolution imaging over regions-of-interest (ROI). The MMMIC achieves these goals by acquiring and multiplexing data from an array of imaging modules thereby enabling a larger FOV, and at the same time allowing high resolution ROI imaging through selection of a subset of modules in the array. MMMIC also supports different binning modes. This paper describes how a specific two stage configuration connecting three identical MMMICs is used to acquire and multiplex data from a 2×2 array of EMCCD based detectors. The first stage contains two MMMICs wherein each MMMIC is getting data from two EMCCD detectors. The multiplexed data from these MMMICs is then forwarded to the second stage MMMIC in the similar fashion. The second stage that has only one MMMIC gives the final 12 bit multiplexed data from four modules. This data is then sent over a high speed Camera Link interface to the image processing computer. X-ray images taken through the 2×2 array of EMCCD based detectors using this two stage configuration of MMMICs are shown successfully demonstrating the concept.

  14. Measurement of the Proton-Air Cross Section with Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode

    CERN Document Server

    Abbasi, R U; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda1, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan1, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, K; Myers, I; Nagasawa, K; Nagataki1, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2015-01-01

    In this work we are reporting on the measurement of the proton-air inelastic cross section $\\sigma^{\\rm inel}_{\\rm p-air}$ using the Telescope Array (TA) detector. Based on the measurement of the $\\sigma^{\\rm inel}_{\\rm p-air}$ the proton-proton cross section $\\sigma_{\\rm p-p}$ value is also determined at $\\sqrt{s} = 95$ TeV. Detecting cosmic ray events at ultra high energies with Telescope Array enables us to study this fundamental parameter that we are otherwise unable to access with particle accelerators. The data used in this report is collected over five years using hybrid events observed by the Middle Drum fluorescence detector together with the surface array detector. The value of the $\\sigma^{\\rm inel}_{\\rm p-air}$ is found to be equal to $ 567.0 \\pm 70.5 [{\\rm Stat.}] ^{+25}_{-29} [{\\rm Sys.}]$ mb. The total proton-proton cross section is subsequently inferred from Glauber Formalism and Block, Halzen and Stanev QCD inspired fit and is found to be equal to $170_{-44}^{+48} [{\\rm Stat.}] \\pm _{-19}^{+1...

  15. MUDAL: a 4 pi multi-detector array in Lanzhou for charged particle detection at HIRFL

    CERN Document Server

    Li Song Lin; Jin Ge; Xu Hu Shan; Yin Xu; Wang Xiao Qiu; Li Zu Yu; Lu Jun

    2002-01-01

    A 4 pi multidetector array of measuring charged particle is described. It consists of 276 detector units, each unit composed of fast and slow plastic scintillator phoswiches, fast plastic scintillator and CsI(Tl) phoswiches and silicon detector telescopes. It covers geometrically 86% of the 4 pi solid angle and has very low detection thresholds. The detectors, operated under vacuum, is axially symmetric. sup 1 sup , sup 2 sup , sup 3 H, sup 3 sup , sup 4 He and the elements from Li to Ar can be identified and their energies measured over a large dynamic range

  16. Detector block based on arrays of 144 SiPMs and monolithic scintillators: A performance study

    Energy Technology Data Exchange (ETDEWEB)

    González, A.J.; Conde, P.; Iborra, A. [Institute for Instrumentation in Molecular Imaging (I3M), Universidad Politécnica de Valencia – CSIC – CIEMAT (Spain); Aguilar, A. [Communications and Digital Systems Design Group (DSDC), Universidad de Valencia (Spain); Bellido, P. [Institute for Instrumentation in Molecular Imaging (I3M), Universidad Politécnica de Valencia – CSIC – CIEMAT (Spain); García-Olcina, R. [Communications and Digital Systems Design Group (DSDC), Universidad de Valencia (Spain); Hernández, L.; Moliner, L.; Rigla, J.P.; Rodríguez-Álvarez, M.J.; Sánchez, F.; Seimetz, M.; Soriano, A. [Institute for Instrumentation in Molecular Imaging (I3M), Universidad Politécnica de Valencia – CSIC – CIEMAT (Spain); Torres, J. [Communications and Digital Systems Design Group (DSDC), Universidad de Valencia (Spain); Vidal, L.F.; Benlloch, J.M. [Institute for Instrumentation in Molecular Imaging (I3M), Universidad Politécnica de Valencia – CSIC – CIEMAT (Spain)

    2015-07-01

    We have developed a detector block composed by a monolithic LYSO scintillator coupled to a custom made 12×12 SiPMs array. The design is mainly focused to applications such as Positron Emission Tomography. The readout electronics is based on 3 identical and scalable Application Specific Integrated Circuits (ASIC). We have determined the main performance of the detector block namely spatial, energy, and time resolution but also the system capability to determine the photon depth of interaction, for different crystal surface treatments. Intrinsic detector spatial resolution values as good as 1.7 mm FWHM and energies of 15% for black painted crystals were measured.

  17. JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward

    Science.gov (United States)

    Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente; Engelbracht, Chad; Hall, Don; Hoffman, Alan; Jeffers, Basil; Jhabvala, Christine; Kimble, Randy; Kopp, Robert; Lee, Don; Leidecker, Henning; Lindler, Don; McMurray, Bob; Mott, D. Brent; Ohl, Ray; Polis, Don; Pontius, Jim

    2012-01-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  18. Digital Radiography and Computed Tomography Project -- Fully Integrated Linear Detector ArrayStatus Report

    Energy Technology Data Exchange (ETDEWEB)

    Tim Roney; Robert Seifert; Bob Pink; Mike Smith

    2011-09-01

    The field-portable Digital Radiography and Computed Tomography (DRCT) x-ray inspection systems developed for the Project Manager for NonStockpile Chemical Materiel (PMNSCM) over the past 13 years have used linear diode detector arrays from two manufacturers; Thomson and Thales. These two manufacturers no longer produce this type of detector. In the interest of insuring the long term viability of the portable DRCT single munitions inspection systems and to improve the imaging capabilities, this project has been investigating improved, commercially available detectors. During FY-10, detectors were evaluated and one in particular, manufactured by Detection Technologies (DT), Inc, was acquired for possible integration into the DRCT systems. The remainder of this report describes the work performed in FY-11 to complete evaluations and fully integrate the detector onto a representative DRCT platform.

  19. Versatile, reprogrammable area pixel array detector for time-resolved synchrotron x-ray applications

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, Sol [Cornell Univ., Ithaca, NY (United States)

    2010-05-01

    The final technical report for DOE grant DE-SC0004079 is presented. The goal of the grant was to perform research, development and application of novel imaging x-ray detectors so as to effectively utilize the high intensity and brightness of the national synchrotron radiation facilities to enable previously unfeasible time-resolved x-ray research. The report summarizes the development of the resultant imaging x-ray detectors. Two types of detector platforms were developed: The first is a detector platform (called a Mixed-Mode Pixel Array Detector, or MM-PAD) that can image continuously at over a thousand images per second while maintaining high efficiency for wide dynamic range signals ranging from 1 to hundreds of millions of x-rays per pixel per image. Research on an even higher dynamic range variant is also described. The second detector platform (called the Keck Pixel Array Detector) is capable of acquiring a burst of x-ray images at a rate of millions of images per second.

  20. THz Direct Detector and Heterodyne Receiver Arrays in Silicon Nanoscale Technologies

    Science.gov (United States)

    Grzyb, Janusz; Pfeiffer, Ullrich

    2015-10-01

    The main scope of this paper is to address various implementation aspects of THz detector arrays in the nanoscale silicon technologies operating at room temperatures. This includes the operation of single detectors, detectors operated in parallel (arrays), and arrays of detectors operated in a video-camera mode with an internal reset to support continuous-wave illumination without the need to synchronize the source with the camera (no lock-in receiver required). A systematic overview of the main advantages and limitations in using silicon technologies for THz applications is given. The on-chip antenna design challenges and co-design aspects with the active circuitry are thoroughly analyzed for broadband detector/receiver operation. A summary of the state-of-the-art arrays of broadband THz direct detectors based on two different operation principles is presented. The first is based on the non-quasistatic resistive mixing process in a MOSFET channel, whereas the other relies on the THz signal rectification by nonlinearity of the base-emitter junction in a high-speed SiGe heterojunction bipolar transistor (HBT). For the MOSFET detector arrays implemented in a 65 nm bulk CMOS technology, a state-of-the-art optical noise equivalent power (NEP) of 14 pW/ at 720 GHz was measured, whereas for the HBT detector arrays in a 0.25 μm SiGe process technology, an optical NEP of 47 pW/ at 700 GHz was found. Based on the implemented 1k-pixel CMOS camera with an average power consumption of 2.5 μW/pixel, various design aspects specific to video-mode operation are outlined and co-integration issues with the readout circuitry are analyzed. Furthermore, a single-chip 2 × 2 array of heterodyne receivers for multi-color active imaging in a 160-1000 GHz band is presented with a well-balanced NEP across the operation bandwidth ranging from 0.1 to 0.24 fW/Hz (44.1-47.8 dB single-sideband NF) and an instantaneous IF bandwidth of 10 GHz. In its present implementation, the receiver RF

  1. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  2. Dual source and dual detector arrays tetrahedron beam computed tomography for image guided radiotherapy.

    Science.gov (United States)

    Kim, Joshua; Lu, Weiguo; Zhang, Tiezhi

    2014-02-01

    Cone-beam computed tomography (CBCT) is an important online imaging modality for image guided radiotherapy. But suboptimal image quality and the lack of a real-time stereoscopic imaging function limit its implementation in advanced treatment techniques, such as online adaptive and 4D radiotherapy. Tetrahedron beam computed tomography (TBCT) is a novel online imaging modality designed to improve on the image quality provided by CBCT. TBCT geometry is flexible, and multiple detector and source arrays can be used for different applications. In this paper, we describe a novel dual source-dual detector TBCT system that is specially designed for LINAC radiation treatment machines. The imaging system is positioned in-line with the MV beam and is composed of two linear array x-ray sources mounted aside the electrical portal imaging device and two linear arrays of x-ray detectors mounted below the machine head. The detector and x-ray source arrays are orthogonal to each other, and each pair of source and detector arrays forms a tetrahedral volume. Four planer images can be obtained from different view angles at each gantry position at a frame rate as high as 20 frames per second. The overlapped regions provide a stereoscopic field of view of approximately 10-15 cm. With a half gantry rotation, a volumetric CT image can be reconstructed having a 45 cm field of view. Due to the scatter rejecting design of the TBCT geometry, the system can potentially produce high quality 2D and 3D images with less radiation exposure. The design of the dual source-dual detector system is described, and preliminary results of studies performed on numerical phantoms and simulated patient data are presented.

  3. Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    Energy Technology Data Exchange (ETDEWEB)

    Hueyuek, Tayfun; Gadea, Andres; Domingo-Pardo, Cesar [Universidad de Valencia, Instituto de Fisica Corpuscular, CSIC, Paterna (Valencia) (Spain); Di Nitto, Antonio [Istituto Nazionale di Fisica Nucleare, Napoli (Italy); Johannes Gutenberg-Universitaet Mainz, Mainz (Germany); Jaworski, Grzegorz; Javier Valiente-Dobon, Jose; De Angelis, Giacomo; Modamio, Victor; Triossi, Andrea [Laboratori Nazionali di Legnaro, Istituto Nazionale di Fisica Nucleare, Legnaro (Italy); Nyberg, Johan [Uppsala University, Department of Physics and Astronomy, Uppsala (Sweden); Palacz, Marcin [University of Warsaw, Heavy Ion Laboratory, Warsaw (Poland); Soederstroem, Paer-Anders [RIKEN Nishina Center, Saitama (Japan); Aliaga-Varea, Ramon Jose [Universidad de Valencia, Instituto de Fisica Corpuscular, CSIC, Paterna (Valencia) (Spain); Universidad Politecnica de Valencia, I3M, Valencia (Spain); Atac, Ayse [Ankara University, Department of Physics, Faculty of Sciences, Ankara (Turkey); The Royal Institute of Technology, Stockholm (Sweden); Collado, Javier; Egea, Francisco Javier; Gonzalez, Vicente; Sanchis, Enrique [University of Valencia, Department of Electronic Engineering, Burjassot (Valencia) (Spain); Erduran, Nizamettin [Istanbul Sabahattin Zaim University, Faculty of Engineering and Natural Sciences, Istanbul (Turkey); Ertuerk, Sefa [University of Nigde, Department of Physics, Faculty of Science and Arts, Nigde (Turkey); France, Gilles de [CNRS/IN2P3, GANIL, CEA/DSAM, Caen (France); Gadea, Rafael; Herrero-Bosch, Vicente [Universidad Politecnica de Valencia, I3M, Valencia (Spain); Kaskas, Ayse [Ankara University, Department of Physics, Faculty of Sciences, Ankara (Turkey); Moszynski, Marek [National Centre for Nuclear Research, Otwock-Swierk (Poland); Wadsworth, Robert [University of York, Department of Physics, York (United Kingdom)

    2016-03-15

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ -ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the {sup 58}Ni + {sup 56}Fe reaction measured with the Neutron Wall detector array. (orig.)

  4. Characterization of thermal cross-talk in a MEMS-based thermopile detector array

    NARCIS (Netherlands)

    Wu, H.; Grabarnik, S.; Emadi, A.; De Graaf, G.; Wolffenbuttel, R.F.

    2009-01-01

    The spectral resolution of a MEMS-based IR microspectrometer critically depends on the thermal cross-talk between adjacent TE elements in the detector array. Thermal isolation between elements is realized by using bulk micromachining directly following CMOS processing. This paper reports on the char

  5. First Data with the Hybrid Array of Gamma-Ray Detectors (HAGRiD)

    Science.gov (United States)

    Smith, Karl; Burcher, S.; Carter, A. B.; Gryzwacz, R.; Jones, K. L.; Munoz, S.; Paulauskas, S. V.; Schmitt, K.; Thornsberry, C.; Chipps, K. A.; Febbraro, M.; Pain, S. D.; Baugher, T.; Cizewski, J. A.; Ratkiewicz, A.; Toomey, B.

    2016-09-01

    The structure of nuclei provides insight into astrophysical reaction rates that are difficult to measure directly. These studies are often performed with transfer reaction and beta-decay measurements. These experiments benefit from particle-gamma coincident measurements providing information beyond that of particle detection alone. The Hybrid Array of Gamma Ray Detectors (HAGRiD) of LaBr3(Ce) scintillators has been designed with this purpose in mind. The design of the array permits it to be coupled with particle detector systems, such as the Oak Ridge Rutgers University Barrel Array (ORRUBA) of silicon detectors and the Versatile Array of Neutron Detectors at Low Energy (VANDLE). It is also designed to operate with the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) advanced target system. HAGRiD's design avoids compromising the charged-particle angular resolution due to compact geometries often used to increase the gamma efficiency in other systems. First experimental data with HAGRiD coupled to VANDLE as well as ORRUBA and JENSA will be presented. This work is supported in part by the U.S. Department of Energy, Office of Science Nuclear Physics and the National Science Foundation.

  6. Conceptual design of the early implementation of the NEutron Detector Array (NEDA) with AGATA

    Science.gov (United States)

    Hüyük, Tayfun; Di Nitto, Antonio; Jaworski, Grzegorz; Gadea, Andrés; Javier Valiente-Dobón, José; Nyberg, Johan; Palacz, Marcin; Söderström, Pär-Anders; Jose Aliaga-Varea, Ramon; de Angelis, Giacomo; Ataç, Ayşe; Collado, Javier; Domingo-Pardo, Cesar; Egea, Francisco Javier; Erduran, Nizamettin; Ertürk, Sefa; de France, Gilles; Gadea, Rafael; González, Vicente; Herrero-Bosch, Vicente; Kaşkaş, Ayşe; Modamio, Victor; Moszynski, Marek; Sanchis, Enrique; Triossi, Andrea; Wadsworth, Robert

    2016-03-01

    The NEutron Detector Array (NEDA) project aims at the construction of a new high-efficiency compact neutron detector array to be coupled with large γ-ray arrays such as AGATA. The application of NEDA ranges from its use as selective neutron multiplicity filter for fusion-evaporation reaction to a large solid angle neutron tagging device. In the present work, possible configurations for the NEDA coupled with the Neutron Wall for the early implementation with AGATA has been simulated, using Monte Carlo techniques, in order to evaluate their performance figures. The goal of this early NEDA implementation is to improve, with respect to previous instruments, efficiency and capability to select multiplicity for fusion-evaporation reaction channels in which 1, 2 or 3 neutrons are emitted. Each NEDA detector unit has the shape of a regular hexagonal prism with a volume of about 3.23l and it is filled with the EJ301 liquid scintillator, that presents good neutron- γ discrimination properties. The simulations have been performed using a fusion-evaporation event generator that has been validated with a set of experimental data obtained in the 58Ni + 56Fe reaction measured with the Neutron Wall detector array.

  7. Novel Photon-Counting Detectors for Free-Space Communication

    Science.gov (United States)

    Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Lu, Wei; Merritt, Scott; Beck, Jeff

    2016-01-01

    We present performance data for novel photon counting detectors for free space optical communication. NASA GSFC is testing the performance of three novel photon counting detectors 1) a 2x8 mercury cadmium telluride avalanche array made by DRS Inc. 2) a commercial 2880 silicon avalanche photodiode array and 3) a prototype resonant cavity silicon avalanche photodiode array. We will present and compare dark count, photon detection efficiency, wavelength response and communication performance data for these detectors. We discuss system wavelength trades and architectures for optimizing overall communication link sensitivity, data rate and cost performance. The HgCdTe APD array has photon detection efficiencies of greater than 50 were routinely demonstrated across 5 arrays, with one array reaching a maximum PDE of 70. High resolution pixel-surface spot scans were performed and the junction diameters of the diodes were measured. The junction diameter was decreased from 31 m to 25 m resulting in a 2x increase in e-APD gain from 470 on the 2010 array to 1100 on the array delivered to NASA GSFC. Mean single photon SNRs of over 12 were demonstrated at excess noise factors of 1.2-1.3.The commercial silicon APD array has a fast output with rise times of 300ps and pulse widths of 600ps. Received and filtered signals from the entire array are multiplexed onto this single fast output. The prototype resonant cavity silicon APD array is being developed for use at 1 micron wavelength.

  8. Development of Yangbajing Air shower Core detector array for a new EAS hybrid Experiment

    CERN Document Server

    Liu, Jinsheng; Chen, Ding; Zhang, Ying; Zhai, Liuming; Chen, Xu; Hu, Xiaobin; Lin, Yuhui; Zhang, Xueyao; Feng, Cunfeng; Jia, Huanyu; Zhou, Xunxiu; DanZengLuoBu,; Chen, Tianlu; Li, Haijin; Liu, Maoyuan; Yuan, Aifang

    2015-01-01

    Aiming at the observation of cosmic-ray chemical composition at the "knee" energy region, we have been developinga new type air-shower core detector (YAC, Yangbajing Air shower Core detector array) to be set up at Yangbajing (90.522$^\\circ$ E, 30.102$^\\circ$ N, 4300 m above sea level, atmospheric depth: 606 g/m$^2$) in Tibet, China. YAC works together with the Tibet air-shower array (Tibet-III) and an underground water cherenkov muon detector array (MD) as a hybrid experiment. Each YAC detector unit consists of lead plates of 3.5 cm thick and a scintillation counter which detects the burst size induced by high energy particles in the air-shower cores. The burst size can be measured from 1 MIP (Minimum Ionization Particle) to $10^{6}$ MIPs. The first phase of this experiment, named "YAC-I", consists of 16 YAC detectors each having the size 40 cm $\\times$ 50 cm and distributing in a grid with an effective area of 10 m$^{2}$. YAC-I is used to check hadronic interaction models. The second phase of the experiment,...

  9. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.

    Science.gov (United States)

    Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2016-02-01

    We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.

  10. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT

    Science.gov (United States)

    Marriage, T. A.; Chervenak, J. A.; Doriese, W. B.

    2006-04-01

    The Millimeter Bolometer Array Camera (MBAC) for the Atacama Cosmology Telescope consists of three Transition Edge Sensor (TES) arrays to make simultaneous observations of the Cosmic Microwave Background in three frequency bands. MBAC TESs are NASA Goddard Pop-Up Detectors (PUD) which are read-out by NIST time-domain multiplexers. MBAC is constructed by stacking 1×32 TES columns to form the 32×32 element arrays. The arrays are modular (connectorized) at the 1×32 column level such that array assembly is reversible and camera repair possible. Prior to assembly, each column is tested in a quick (2h) cycling 4He/3He adsorption refrigerator. Tests include measurements of TES current voltage curves and TES complex impedance.

  11. Performance Measurements On A 32X32 InSb-CID Detector Array For Astronomical Observations

    Science.gov (United States)

    Tiphene, D.; Lacombe, F.; Rouan, D.

    1989-01-01

    The use at liquid helium temperature of a InSb-CID detector array differs significantly from opera-tion at conditions usually adopted by the manufacturer (77K). In particular, the dark current behaviour hugely changes between the two temperatures. Only the tunnel current, independant of temperature conditions, is still active at 4.2K while the thermal-family currents vanish. We have studied the tunnel current of one InSb-MIS detector to determine its suitability to the low background conditions that will be met in the space experiment ISO. The search for the maximum integration time and the best quantum efficiency, the constraint about the photonic response linearity (especially at low photon flux), and the reduction of the readout noise constitute the main points of this study. Moreover, laboratory measurements showed secondary effects due to the detector (lag) or to the wiring (crosstalk). The CID array reactions to high energy radiations (Gamma rays) are finally discussed.

  12. Multiple detector focal plane array ultraviolet spectrometer for the AMPS laboratory

    Science.gov (United States)

    Feldman, P. D.

    1975-01-01

    The possibility of meeting the requirements of the amps spectroscopic instrumentation by using a multi-element focal plane detector array in a conventional spectrograph mount was examined. The requirements of the detector array were determined from the optical design of the spectrometer which in turn depends on the desired level of resolution and sensitivity required. The choice of available detectors and their associated electronics and controls was surveyed, bearing in mind that the data collection rate from this system is so great that on-board processing and reduction of data are absolutely essential. Finally, parallel developments in instrumentation for imaging in astronomy were examined, both in the ultraviolet (for the Large Space Telescope as well as other rocket and satellite programs) and in the visible, to determine what progress in that area can have direct bearing on atmospheric spectroscopy.

  13. ZnMgO Nanowire Based Detectors and Detector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this STTR program, Structured Materials Industries (SMI) and partners propose to develop an electrically contacted zinc magnesium oxide (ZnMgO) nanowire array for...

  14. Multiplexed Readout of MMC Detector Arrays Using Non-hysteretic rf-SQUIDs

    Science.gov (United States)

    Kempf, S.; Wegner, M.; Gastaldo, L.; Fleischmann, A.; Enss, C.

    2014-08-01

    Metallic magnetic calorimeters (MMCs) are widely used for various experiments in fields ranging from atomic and nuclear physics to X-ray spectroscopy, laboratory astrophysics or material science. Whereas in previous experiments single pixel detectors or small arrays have been used, for future applications large arrays are needed. Therefore, suitable multiplexing techniques for MMC arrays are currently under development. A promising approach for the readout of large arrays is the microwave SQUID multiplexer that employs non-hysteretic rf-SQUIDs to create a frequency shift of high resonators that is in accordance with the detector signal and that can be monitored by using standard microwave measurement techniques. In this paper we discuss the design of a recently developed and fabricated 64 pixel detector array with integrated microwave SQUID multiplexer that was produced to test the suitability of this readout technique. The characterization of dc-SQUIDs with virtually identical washer design compared to the rf-SQUIDs of the SQUID multiplexer revealed that the crucial SQUID parameters such as the critical current of the Josephson junctions or the washer inductance are close to the design values and anticipates a successful operation of the SQUID multiplexer.

  15. InGaAs Schottky barrier diode array detectors integrated with broadband antenna (Conference Presentation)

    Science.gov (United States)

    Park, Dong Woo; Lee, Eui Su; Park, Jeong-Woo; Kim, Hyun-Soo; Lee, Il-Min; Park, Kyung Hyun

    2017-02-01

    Terahertz (THz) waves have been actively studied for the applications of astronomy, communications, analytical science and bio-technologies due to their low energy and high frequency. For example, THz systems can carry more information with faster rates than GHz systems. Besides, THz waves can be applied to imaging, sensing, and spectroscopy. Furthermore, THz waves can be used for non-destructive and non-harmful tomography of living objects. In this reasons, Schottky barrier diodes (SBD) have been widely used as a THz detector for their ultrafast carrier transport, high responsivity, high sensitivity, and excellent noise equivalent power. Furthermore, SBD detectors envisage developing THz applications at low cost, excellent capability, and high yield. Since the major concerns in the THz detectors for THz imaging systems are the realizations of the real-time image acquisitions via a reduced acquisition time, rather than the conventional raster scans that obtains an image by pixel-by-pixel acquisitions, a line-scan based systems utilizes an array detector with an 1 × n SBD array is preferable. In this study, we fabricated the InGaAs based SBD array detectors with broadband antennas of log-spiral and square-spiral patterns. To optimize leakage current and ideality factor, the dependence to the doping levels of ohmic and Schottky layers have been investigated. In addition, the dependence to the capacitance and resistance to anode size are also examined as well. As a consequence, the real-time THz imaging with our InGaAs SBD array detector have been successfully obtained.

  16. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500.

    Science.gov (United States)

    Stelljes, T S; Harmeyer, A; Reuter, J; Looe, H K; Chofor, N; Harder, D; Poppe, B

    2015-04-01

    The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm(2) measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array's readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor kNR for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array's central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1% over the range from 5 to 1000 MU. The

  17. New detector array - the HRIBF Modular Total Absorption Spectrometer

    Science.gov (United States)

    Wolinska-Cichocka, Marzena; Rykaczewski, Krzysztof; Karny, Marek; Kuzniak, Aleksandra; Grzywacz, Robert; Rasco, Charlie; Miller, David; Gross, Carl J.; Johnson, Jim

    2011-10-01

    The construction of a new Modular Total Absorption Spectrometer (MTAS) at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory will be presented. The total absorption gamma spectra measured with MTAS will be used to derive a true beta-feeding pattern and resulting beta strength function for fission products. In particular, the measurements of decay heat released by radioactive nuclei produced in nuclear fuels at power reactors will be performed. MTAS is made up of 19 large NaI(Tl) crystals each encapsulated with a 0.8-mm-thick carbon fiber. There are also two 1-mm- thick Silicon Strip Detectors surrounding a moving tape collector that count beta-energy loss signals. The structure is shielded by more than 1-inch of lead around MTAS which reduces background radiation significantly. MTAS efficiency for full energy deposition of gamma ray approaches nearly 90% for 300 keV gammas and over 75% for a 5 MeV gamma transition. Research supported by the DOE Office of Nuclear Physics.

  18. MEGHNAD – A multi element detector array for heavy ion collision studies

    Indian Academy of Sciences (India)

    Satyajit Saha

    2001-07-01

    In the coming decade, the expanding field of experimental nuclear physics in our country is going to see a quantum leap in research and developmental activities with new accelerator facilities like the variable energy cyclotron with ECR heavy ion source, the upcoming K-500 superconducting cyclotron, both at VECC, Calcutta, and the superconducting linac boosters at both the Pelletron Accelerator Facilities at TIFR, Mumbai and NSC, New Delhi. When heavy ion beam available from such machines fall on a target and undergo collision, very rich and often pristine fields of research open up. In order to carry on such activities, we have taken up a project to build a multi element gamma, heavy ion and neutron array of detectors (MEGHNAD) to detect and study the properties of a wide variety of particles like neutrons, protons, light mass clusters, massive ejected fragments, and gamma rays with good solid angle coverage and efficiency. Design of the detector array, performance of the prototype detector and brief outline of the research programme to be undertaken with the detector array will be discussed.

  19. High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy

    CERN Document Server

    Tate, Mark W; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert M; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M

    2015-01-01

    We describe a hybrid pixel array detector (EMPAD - electron microscope pixel array detector) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128 x 128 pixel detector consists of a 500 um thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit (ASIC). The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as loc...

  20. Multiplexed Readout for 1000-pixel Arrays of Microwave Kinetic Inductance Detectors

    CERN Document Server

    van Rantwijk, Joris; van Loon, Dennis; Yates, Stephen; Baryshev, Andrey; Baselmans, Jochem

    2015-01-01

    Microwave Kinetic Inductance Detectors (MKIDs) are the most attractive radiation detectors for far-infrared and sub-mm astronomy: They combine ultimate sensitivity with the possibility to create very large detector arrays, in excess of 10 000 pixels. This is possible by reading-out the arrays using RF frequency division multiplexing, which allows multiplexing ratios in excess of 1000 pixels per readout line. We describe a novel readout system for large arrays of MKIDs, operating in a 2 GHz band in the 4-8 GHz range. The readout, which is a combination of a digital front- and back-end and an analog up- and down-converter system, can read out up to 4000 detectors simultaneously with 1 kHz datarate. The system achieves a readout noise power spectral density of -98 dBc/Hz while reading 1000 carriers simultaneously, which scales linear with the number of carriers. We demonstrate that 4000 state-of-the-art Aluminium-NbTiN MKIDs can be read out without deteriorating their intrinsic performance.

  1. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  2. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Science.gov (United States)

    Giewekemeyer, Klaus; Philipp, Hugh T.; Wilke, Robin N.; Aquila, Andrew; Osterhoff, Markus; Tate, Mark W.; Shanks, Katherine S.; Zozulya, Alexey V.; Salditt, Tim; Gruner, Sol M.; Mancuso, Adrian P.

    2014-01-01

    Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 108 8-keV photons pixel−1 s−1, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 1010 photons µm−2 s−1 within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described. PMID:25178008

  3. Multiplexed readout demonstration of a TES-based detector array in a resistance locked loop

    CERN Document Server

    van der Kuur, Jan; Kiviranta, Mikko; Akamatsu, Hiroki; Khosropanah, Pourya; Hartog, Roland den; Suzuki, Toyoaki; Jackson, Brian

    2015-01-01

    TES-based bolometer and microcalorimeter arrays with thousands of pixels are under development for several space-based and ground-based applications. A linear detector response and low levels of cross talk facilitate the calibration of the instruments. In an effort to improve the properties of TES-based detectors, fixing the TES resistance in a resistance-locked loop (RLL) under optical loading has recently been proposed. Earlier theoretical work on this mode of operation has shown that the detector speed, linearity and dynamic range should improve with respect to voltage biased operation. This paper presents an experimental demonstration of multiplexed readout in this mode of operation in a TES-based detector array with noise equivalent power values (NEP) of $3.5\\cdot 10^{-19} $W/$\\sqrt{\\mathrm{Hz}}$. The measured noise and dynamic properties of the detector in the RLL will be compared with the earlier modelling work. Furthermore, the practical implementation routes for future FDM systems for the readout of ...

  4. Photoacoustic projection imaging using a 64-channel fiber optic detector array

    Science.gov (United States)

    Bauer-Marschallinger, Johannes; Felbermayer, Karoline; Bouchal, Klaus-Dieter; Veres, Istvan A.; Grün, Hubert; Burgholzer, Peter; Berer, Thomas

    2015-03-01

    In this work we present photoacoustic projection imaging with a 64-channel integrating line detector array, which average the pressure over cylindrical surfaces. For imaging, the line detectors are arranged parallel to each other on a cylindrical surface surrounding a specimen. Thereby, the three-dimensional imaging problem is reduced to a twodimensional problem, facilitating projection imaging. After acquisition of a dataset of pressure signals, a twodimensional photoacoustic projection image is reconstructed. The 64 channel line detector array is realized using optical fibers being part of interferometers. The parts of the interferometers used to detect the ultrasonic pressure waves consist of graded-index polymer-optical fibers (POFs), which exhibit better sensitivity than standard glass-optical fibers. Ultrasonic waves impinging on the POFs change the phase of light in the fiber-core due to the strain-optic effect. This phase shifts, representing the pressure signals, are demodulated using high-bandwidth balanced photo-detectors. The 64 detectors are optically multiplexed to 16 detection channels, thereby allowing fast imaging. Results are shown on a Rhodamine B dyed microsphere.

  5. A novel, SiPM-array-based, monolithic scintillator detector for PET.

    Science.gov (United States)

    Schaart, Dennis R; van Dam, Herman T; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Löhner, Herbert; Beekman, Freek J

    2009-06-07

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce(3+) crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an approximately 0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45 degrees , demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF(2) detector, equals 960 ps FWHM.

  6. Assessment of array scintillation detector for follicle thyroid 2-D image acquisition using Monte Carlo simulation

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Carlos Borges da; Santanna, Claudio Reis de [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)]. E-mails: borges@ien.gov.br; santanna@ien.gov.br; Braz, Delson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@lin.ufrj.br; Carvalho, Denise Pires de [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Fisiologia Endocrina]. E-mail: dencarv@ufrj.br

    2007-07-01

    This work presents an innovative study to find out the adequate scintillation inorganic detector array to be used coupled to a specific light photo sensor, a charge coupled device (CCD), through a fiber optic plate. The goal is to choose the type of detector that fits a 2-dimensional imaging acquisition of a cell thyroid tissue application with high resolution and detection efficiency in order to map a follicle image using gamma radiation emission. A point or volumetric source - detector simulation by using a MCNP4B general code, considering different source energies, detector materials and geometry including pixel sizes and reflector types was performed. In this study, simulations were performed for 7 x 7 and 127 x 127 arrays using CsI(Tl) and BGO scintillation crystals with pixel size ranging from 1 x 1 cm{sup 2} to 10 x 10 {mu}m{sup 2} and radiation thickness ranging from 1 mm to 10 mm. The effect of all these parameters was investigated to find the best source-detector system that result in an image with the best contrast details. The results showed that it is possible to design a specific imaging system that allows searching for in-vitro studies, specifically in radiobiology applied to endocrine physiology. (author)

  7. A novel, SiPM-array-based, monolithic scintillator detector for PET

    Energy Technology Data Exchange (ETDEWEB)

    Schaart, Dennis R; Dam, Herman T van; Seifert, Stefan; Beekman, Freek J [Delft University of Technology, Radiation Detection and Medical Imaging, Mekelweg 15, 2629 JB Delft (Netherlands); Vinke, Ruud; Dendooven, Peter; Loehner, Herbert [Kernfysisch Versneller Instituut, University of Groningen, Zernikelaan 25, 9747 AA, Groningen (Netherlands)], E-mail: d.r.schaart@tudelft.nl

    2009-06-07

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche photodiodes. Here we present a novel detector design with DOI correction, in which a position-sensitive SiPM array is used to read out a monolithic scintillator. Initial characterization of a prototype detector consisting of a 4 x 4 SiPM array coupled to either the front or back surface of a 13.2 mm x 13.2 mm x 10 mm LYSO:Ce{sup 3+} crystal shows that front-side readout results in significantly better performance than conventional back-side readout. Spatial resolutions <1.6 mm full-width-at-half-maximum (FWHM) were measured at the detector centre in response to an {approx}0.54 mm FWHM diameter test beam. Hardly any resolution losses were observed at angles of incidence up to 45 deg., demonstrating excellent DOI correction. About 14% FWHM energy resolution was obtained. The timing resolution, measured in coincidence with a BaF{sub 2} detector, equals 960 ps FWHM.

  8. X-ray Characterization of a Multichannel Smart-Pixel Array Detector

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Steve; Haji-Sheikh, Michael; Huntington, Andrew; Kline, David; Lee, Adam; Li, Yuelin; Rhee, Jehyuk; Tarpley, Mary; Walko, Donald A.; Westberg, Gregg; Williams, George; Zou, Haifeng; Landahl, Eric

    2016-01-01

    The Voxtel VX-798 is a prototype X-ray pixel array detector (PAD) featuring a silicon sensor photodiode array of 48 x 48 pixels, each 130 mu m x 130 mu m x 520 mu m thick, coupled to a CMOS readout application specific integrated circuit (ASIC). The first synchrotron X-ray characterization of this detector is presented, and its ability to selectively count individual X-rays within two independent arrival time windows, a programmable energy range, and localized to a single pixel is demonstrated. During our first trial run at Argonne National Laboratory's Advance Photon Source, the detector achieved a 60 ns gating time and 700 eV full width at half-maximum energy resolution in agreement with design parameters. Each pixel of the PAD holds two independent digital counters, and the discriminator for X-ray energy features both an upper and lower threshold to window the energy of interest discarding unwanted background. This smart-pixel technology allows energy and time resolution to be set and optimized in software. It is found that the detector linearity follows an isolated dead-time model, implying that megahertz count rates should be possible in each pixel. Measurement of the line and point spread functions showed negligible spatial blurring. When combined with the timing structure of the synchrotron storage ring, it is demonstrated that the area detector can perform both picosecond time-resolved X-ray diffraction and fluorescence spectroscopy measurements.

  9. Study on simulation and experiment of array micro Faraday cup ion detector for FAIMS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An array micro Faraday cup ion detector for FAIMS (High-field Asymmetric Waveform Ion Mobility Spectrometry) was introduced, with which the size of the FAIMS system was reduced. With simple structure, good stability, low noise, large measurements range, this detector can work under the condition of atmospheric pressure. The array micro Faraday cup was composed of gate electrode, sensitive electrode and shielding electrode. The sensitive electrode was made of tens of crossing silicon columns with diameter of 200 μm. It was fabricated through typical MEMS technology, which was compatible completely with plane FAIMS. It was shown from FLUENT simulation result that the resistance to gas motion was low and the flow field distribution was helpful for full absorption of the ion in this array design. Through electricity simulation, the method to reduce interference on the detection signal of the micro Faraday cup was given out. Connecting with KEITHLEY 237 ampere meter, the noise level of the array micro Faraday cup was lower than 0.5 pA. The output signal of the acetone sample measured by experiment was about 210 pA. Through contrast experiment, the design parameter of the micro Faraday cup was obtained primarily. This array micro Faraday cup can meet the requirements of the FAIMS system.

  10. Neutron-induced reaction cross-section measurements using a small multi-detector array and description of a large array

    Indian Academy of Sciences (India)

    J-P Meulders; I Slypen; S Benck; E Raeymackers; J Cabrera; Ch Dufauquez; T Keutgen; V Roberfroid; I Tilquin; Y El Masri; V Corcalciuc; N Nice

    2001-07-01

    The experimental setup of Louvain-la-Neuve (UCL-Belgium) used to perform lightcharged particle production experiment in fast neutron-induced reactions is presented. A short description of the neutron modular detector DEMON is also given. DEMON is a detector array for neutrons emitted in heavy ion induced reactions at low to intermediate energies.

  11. Dosimetric characteristics of the novel 2D ionization chamber array OCTAVIUS Detector 1500

    Energy Technology Data Exchange (ETDEWEB)

    Stelljes, T. S., E-mail: tenzin.s.stelljes@uni-oldenburg.de; Looe, H. K.; Chofor, N.; Poppe, B. [Clinic for Radiation Therapy, Pius-Hospital, Oldenburg 26121, Germany and WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129 (Germany); Harmeyer, A.; Reuter, J. [WG Medical Radiation Physics, Carl von Ossietzky University, Oldenburg 26129 (Germany); Harder, D. [Prof. em., Medical Physics and Biophysics, Georg August University, Göttingen 37073 (Germany)

    2015-04-15

    Purpose: The dosimetric properties of the OCTAVIUS Detector 1500 (OD1500) ionization chamber array (PTW-Freiburg, Freiburg, Germany) have been investigated. A comparative study was carried out with the OCTAVIUS Detector 729 and OCTAVIUS Detector 1000 SRS arrays. Methods: The OD1500 array is an air vented ionization chamber array with 1405 detectors in a 27 × 27 cm{sup 2} measurement area arranged in a checkerboard pattern with a chamber-to-chamber distance of 10 mm in each row. A sampling step width of 5 mm can be achieved by merging two measurements shifted by 5 mm, thus fulfilling the Nyquist theorem for intensity modulated dose distributions. The stability, linearity, and dose per pulse dependence were investigated using a Semiflex 31013 chamber (PTW-Freiburg, Freiburg, Germany) as a reference detector. The effective depth of measurement was determined by measuring TPR curves with the array and a Roos chamber type 31004 (PTW-Freiburg, Freiburg, Germany). Comparative output factor measurements were performed with the array, the Semiflex 31010 ionization chamber and the Diode 60012 (both PTW-Freiburg, Freiburg, Germany). The energy dependence of the OD1500 was measured by comparing the array’s readings to those of a Semiflex 31010 ionization chamber for varying mean photon energies at the depth of measurement, applying to the Semiflex chamber readings the correction factor k{sub NR} for nonreference conditions. The Gaussian lateral dose response function of a single array detector was determined by searching the convolution kernel suitable to convert the slit beam profiles measured with a Diode 60012 into those measured with the array’s central chamber. An intensity modulated dose distribution measured with the array was verified by comparing a OD1500 measurement to TPS calculations and film measurements. Results: The stability and interchamber sensitivity variation of the OD1500 array were within ±0.2% and ±0.58%, respectively. Dose linearity was within 1

  12. Materials preparation and fabrication of pyroelectric polymer/silicon MOSFET detector arrays. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, P. [Drexel Univ., Philadelphia, PA (United States). Dept. of Materials Engineering

    1992-03-27

    The authors have delivered several 64-element linear arrays of pyroelectric elements fully integrated on silicon wafers with MOS readout devices. They have delivered detailed drawings of the linear arrays to LANL. They have processed a series of two inch wafers per submitted design. Each two inch wafer contains two 64 element arrays. After spin-coating copolymer onto the arrays, vacuum depositing the top electrodes, and polarizing the copolymer films so as to make them pyroelectrically active, each wafer was split in half. The authors developed a thicker oxide coating separating the extended gate electrode (beneath the polymer detector) from the silicon. This should reduce its parasitic capacitance and hence improve the S/N. They provided LANL three processed 64 element sensor arrays. Each array was affixed to a connector panel and selected solder pads of the common ground, the common source voltage supply connections, the 64 individual drain connections, and the 64 drain connections (for direct pyroelectric sensing response rather than the MOSFET action) were wire bonded to the connector panel solder pads. This entails (64 + 64 + 1 + 1) = 130 possible bond connections per 64 element array. This report now details the processing steps and the progress of the individual wafers as they were carried through from beginning to end.

  13. Investigation of Very Fast Light Detectors: Silicon Photomultiplier and Micro PMT for a Cosmic Ray Array

    Science.gov (United States)

    Cervantes, Omar; Reyes, Liliana; Hooks, Tyler; Perez, Luis; Ritt, Stefan

    2016-03-01

    To construct a cosmic detector array using 4 scintillation detectors, we investigated 2 recent light sensor technologies from Hamamatsu, as possible readout detectors. First, we investigated several homemade versions of the multipixel photon counter (MPPC) light sensors. These detectors were either biased with internal or external high voltage power supplies. We made extensive measurements to confirm for the coincidence of the MPPC devices. Each sensor is coupled to a wavelength shifting fiber (WSF) that is embedded along a plastic scintillator sheet (30cmx60cmx1/4''). Using energetic cosmic rays, we evaluated several of these homemade detector modules placed above one another in a light proof enclosure. Next, we assembled 2 miniaturized micro photomultiplier (micro PMT), a device recently marketed by Hamamatsu. These sensors showed very fast response times. With 3 WSF embedded in scintillator sheets, we performed coincidence experiments. The detector waveforms were captured using the 5GS/sec domino ring sampler, the DRS4 and our workflow using the CERN PAW package and data analysis results would be presented. Title V Grant.

  14. Quantum efficiency performances of the NIR European Large Format Array detectors tested at ESTEC

    Science.gov (United States)

    Crouzet, P.-E.; Duvet, L.; de Wit, F.; Beaufort, T.; Blommaert, S.; Butler, B.; Van Duinkerken, G.; ter Haar, J.; Heijnen, J.; van der Luijt, K.; Smit, H.

    2015-10-01

    Publisher's Note: This paper, originally published on 10/12/2015, was replaced with a corrected/revised version on 10/23/2015. If you downloaded the original PDF but are unable to access the revision, please contact SPIE Digital Library Customer Service for assistance. The Payload Technology Validation Section (SRE-FV) at ESTEC has the goal to validate new technology for future or on-going mission. In this framework, a test set up to characterize the quantum efficiency of near-infrared (NIR) detectors has been created. In the context of the NIR European Large Format Array ("LFA"), 3 deliverables detectors coming from SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side were characterized. The quantum efficiency of an HAWAII-2RG detector from Teledyne was as well measured. The capability to compare on the same setup detectors from different manufacturers is a unique asset for the future mission preparation office. This publication will present the quantum efficiency results of a HAWAII-2RG detector from Teledyne with a 2.5um cut off compared to the LFA European detectors prototypes developed independently by SELEX-UK/ATC (UK) on one side, and CEA/LETI- CEA/IRFU-SOFRADIR (FR) on the other side.

  15. Underground Water Cherenkov Muon Detector Array with the Tibet Air Shower Array for Gamma-Ray Astronomy in the 100 TeV Region

    CERN Document Server

    Amenomori, M; Bi, X J; Chen, D; Cui, S W; Feng Zhao Yang; Danzengluobu; Ding, L K; Feng Cun Feng; Feng, Z; Feng, Z Y; Gao, X Y; Geng, Q X; Guo, H W; He, H H; He, M; Hibino, K; Hotta, N; Haibing, H; Hu, H B; Huang, J; Jia, H Y; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren; Le, G M; Li, A F; Li, J Y; Lü, H; Lu, S L; Meng, X R; Mizutani, K; Mu, J; Munakata, K; Nagai, A; Nanj, H; Nishizawa, M; Ohnishi, M; Ohta, I; Onuma, H; Ouchi, T; Ozawa, S; Ren, J R; Saitô, T; Saito, T Y; Sakata, M; Sako, T K; Sasaki, T; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Tori, S; Wang, B; Tsuchiya, H; Udo, S; Wang, X; Wang, Y G; Wu, H R; Xue Liang; Yamamoto, Y; Yan, C T; Yang, X C; Yasue, S; Ye, Z H; Yu, G C; Yuan, A F; Yuda, T; Zhang, H M; Zhamg, N J; Zhamg, X, Y; Zhamg, Y; Zhamg, Yi; Zha Xisang Zhu; Zhou, X X; al, et

    2006-01-01

    We propose to build a large water-Cherenkov-type muon-detector array (Tibet MD array) around the 37,000 m$^{2}$ Tibet air shower array (Tibet AS array) already constructed at 4,300 m above sea level in Tibet, China. Each muon detector is a waterproof concrete pool, 6 m wide $\\times$ 6 m long $\\times$ 1.5 m deep in size, equipped with a 20 inch-in-diameter PMT. The Tibet MD array consists of 240 muon detectors set up 2.5 m underground. Its total effective area will be 8,640 m$^{2}$ for muon detection. The Tibet MD array will significantly improve gamma-ray sensitivity of the Tibet AS array in the 100 TeV region (10-1000 TeV) by means of gamma/hadron separation based on counting the number of muons accompanying an air shower. The Tibet AS+MD array will have the sensitivity to gamma rays in the 100 TeV region by an order of magnitude better than any other previous existing detectors in the world.

  16. Feasibility Study for a Dual Field of View-Single Detector Array Infrared System.

    Science.gov (United States)

    1974-06-01

    the background is shown in Figure 2-8. In this system the field stop is scare I with a vertical slit and essentially all the energy falling on the...cylindrical mirror will be o focused as a vertical iine on the detector array. Several of the previous problems have been solved in this system. The...patterns Limillid only by DAC, AD,,.J Access y u, limited by speed. anid Display Mtsaitor strict possible formats. xalbe Modification of timing salto

  17. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz detector array of bolometric polarimeters

    CERN Document Server

    Appel, John W; Amiri, Mandana; Araujo, Derek; Bennett, Charles L; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Hilton, Gene; Hinshaw, Gary F; Huang, Caroline; Irwin, Kent; Jones, Glenn; Karakla, John; Kogut, Alan J; Larson, David; Limon, Michele; Lowry, Lindsay; Marriage, Tobias; Mehrle, Nicholas; Miller, Amber D; Miller, Nathan; Moseleyb, Samuel H; Novakh, Giles; Reintsemad, Carl; Rostemab, Karwan; Stevensonb, Thomas; Towner, Deborah; U-Yen, Kongpop; Wagner, Emily; Watts, Duncan; Wollack, Edward; Xu, Zhilei; Zeng, Lingzhen

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  18. The Cosmology Large Angular Scale Surveyor (CLASS): 38 GHz Detector Array of Bolometric Polarimeters

    Science.gov (United States)

    Appel, John W.; Ali, Aamir; Amiri, Mandana; Araujo, Derek; Bennett, Charles L.; Boone, Fletcher; Chan, Manwei; Cho, Hsiao-Mei; Chuss, David T.; Colazo, Felipe; Crowe, Erik; Denis, Kevin; Dunner, Rolando; Eimer, Joseph; Essinger-Hileman, Thomas; Gothe, Dominik; Halpern, Mark; Harrington, Kathleen; Kogut, Alan J..; Miller, Nathan; Moseley, Samuel H.; Stevenson, Thomas; Towner, Deborah; U-Yen, Kongpop; Wollack, Edward

    2014-01-01

    The Cosmology Large Angular Scale Surveyor (CLASS) experiment aims to map the polarization of the Cosmic Microwave Background (CMB) at angular scales larger than a few degrees. Operating from Cerro Toco in the Atacama Desert of Chile, it will observe over 65% of the sky at 38, 93, 148, and 217 GHz. In this paper we discuss the design, construction, and characterization of the CLASS 38 GHz detector focal plane, the first ever Q-band bolometric polarimeter array.

  19. Lung counting: comparison of detector performance with a four detector array that has either metal or carbon fibre end caps, and the effect on mda calculation.

    Science.gov (United States)

    Ahmed, Asm Sabbir; Hauck, Barry; Kramer, Gary H

    2012-08-01

    This study described the performance of an array of high-purity Germanium detectors, designed with two different end cap materials-steel and carbon fibre. The advantages and disadvantages of using this detector type in the estimation of the minimum detectable activity (MDA) for different energy peaks of isotope (152)Eu were illustrated. A Monte Carlo model was developed to study the detection efficiency for the detector array. A voxelised Lawrence Livermore torso phantom, equipped with lung, chest plates and overlay plates, was used to mimic a typical lung counting protocol with the array of detectors. The lung of the phantom simulated the volumetric source organ. A significantly low MDA was estimated for energy peaks at 40 keV and at a chest wall thickness of 6.64 cm.

  20. Performance of the Versatile Array of Neutron Detectors at Low Energy (VANDLE)

    Science.gov (United States)

    Peters, W. A.; Ilyushkin, S.; Madurga, M.; Matei, C.; Paulauskas, S. V.; Grzywacz, R. K.; Bardayan, D. W.; Brune, C. R.; Allen, J.; Allen, J. M.; Bergstrom, Z.; Blackmon, J.; Brewer, N. T.; Cizewski, J. A.; Copp, P.; Howard, M. E.; Ikeyama, R.; Kozub, R. L.; Manning, B.; Massey, T. N.; Matos, M.; Merino, E.; O'Malley, P. D.; Raiola, F.; Reingold, C. S.; Sarazin, F.; Spassova, I.; Taylor, S.; Walter, D.

    2016-11-01

    The Versatile Array of Neutron Detectors at Low Energy (VANDLE) is a new, highly efficient plastic-scintillator array constructed for decay and transfer reaction experimental setups that require neutron detection. The versatile and modular design allows for customizable experimental setups including beta-delayed neutron spectroscopy and (d,n) transfer reactions in normal and inverse kinematics. The neutron energy and prompt-photon discrimination is determined through the time of flight technique. Fully digital data acquisition electronics and integrated triggering logic enables some VANDLE modules to achieve an intrinsic efficiency over 70% for 300-keV neutrons, measured through two different methods. A custom GEANT4 simulation models aspects of the detector array and the experimental setups to determine efficiency and detector response. A low detection threshold, due to the trigger logic and digitizing data acquisition, allowed us to measure the light-yield response curve from elastically scattered carbon nuclei inside the scintillating plastic from incident neutrons with kinetic energies below 2 MeV.

  1. A Noble Gas Detector with Electroluminescence Readout based on an Array of APDs

    CERN Document Server

    Bourguille, B; Gil-Botella, I; Lux, T; Palomares, C; Sanchez, F; Santorelli, R

    2015-01-01

    We present the results of the operation of an array of avalanche photodiodes (APDs) for the readout of an electroluminescence detector. The detector contains 24 APDs with a pitch of 15 mm between them allowing energy and position measurements simultaneously. Measurements were performed in xenon (3.8 bar) and argon (4.8 bar) showing a good energy resolution of 5.3% FWHM at 60 keV in xenon and 9.4% in argon respectively. In X-ray energies of 13 could be clearly separated from the pedestals indicating that this kind of technology might be also interesting for dark matter detectors. Following Monte Carlo studies the performance could be improved significantly by reducing the pitch between the sensors.

  2. InAs/GaSb type-II superlattice infrared detectors: Future prospect

    Science.gov (United States)

    Rogalski, A.; Martyniuk, P.; Kopytko, M.

    2017-09-01

    Investigations of antimonide-based materials began at about the same time as HgCdTe ternary alloys—in the 1950s, and the apparent rapid success of their technology, especially low-dimensional solids, depends on the previous five decades of III-V materials and device research. However, the sophisticated physics associated with the antimonide-based bandgap engineering concept started at the beginning of 1990s gave a new impact and interest in development of infrared detector structures within academic and national laboratories. The development of InAs/GaSb type-II superlattices (T2SLs) results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe focal plane arrays (FPAs) at reasonable cost and the theoretical predictions of lower Auger recombination for type T2SL detectors compared with HgCdTe. Second motivation—lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall (SRH) lifetime are equal. InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cut-off wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in SRH lifetimes. It is predicted that since the future infrared (IR) systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long SRH lifetime will be required. Since T2SLs are very much resisted in attempts to improve its SRH lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability

  3. Development of arrays of Silicon Drift Detectors and readout ASIC for the SIDDHARTA experiment

    Science.gov (United States)

    Quaglia, R.; Schembari, F.; Bellotti, G.; Butt, A. D.; Fiorini, C.; Bombelli, L.; Giacomini, G.; Ficorella, F.; Piemonte, C.; Zorzi, N.

    2016-07-01

    This work deals with the development of new Silicon Drift Detectors (SDDs) and readout electronics for the upgrade of the SIDDHARTA experiment. The detector is based on a SDDs array organized in a 4×2 format with each SDD square shaped with 64 mm2 (8×8) active area. The total active area of the array is therefore 32×16 mm2 while the total area of the detector (including 1 mm border dead area) is 34 × 18mm2. The SIDDHARTA apparatus requires 48 of these modules that are designed and manufactured by Fondazione Bruno Kessler (FBK). The readout electronics is composed by CMOS preamplifiers (CUBEs) and by the new SFERA (SDDs Front-End Readout ASIC) circuit. SFERA is a 16-channels readout ASIC designed in a 0.35 μm CMOS technology, which features in each single readout channel a high order shaping amplifier (9th order Semi-Gaussian complex-conjugate poles) and a high efficiency pile-up rejection logic. The outputs of the channels are connected to an analog multiplexer for the external analog to digital conversion. An on-chip 12-bit SAR ADC is also included. Preliminary measurements of the detectors in the single SDD format are reported. Also measurements of low X-ray energies are reported in order to prove the possible extension to the soft X-ray range.

  4. High-dynamic-range coherent diffractive imaging: ptychography using the mixed-mode pixel array detector

    Energy Technology Data Exchange (ETDEWEB)

    Giewekemeyer, Klaus, E-mail: klaus.giewekemeyer@xfel.eu [European XFEL GmbH, Hamburg (Germany); Philipp, Hugh T. [Cornell University, Ithaca, NY (United States); Wilke, Robin N. [Georg-August-Universität Göttingen, Göttingen (Germany); Aquila, Andrew [European XFEL GmbH, Hamburg (Germany); Osterhoff, Markus [Georg-August-Universität Göttingen, Göttingen (Germany); Tate, Mark W.; Shanks, Katherine S. [Cornell University, Ithaca, NY (United States); Zozulya, Alexey V. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Salditt, Tim [Georg-August-Universität Göttingen, Göttingen (Germany); Gruner, Sol M. [Cornell University, Ithaca, NY (United States); Cornell University, Ithaca, NY (United States); Kavli Institute of Cornell for Nanoscience, Ithaca, NY (United States); Mancuso, Adrian P. [European XFEL GmbH, Hamburg (Germany)

    2014-08-07

    The advantages of a novel wide dynamic range hard X-ray detector are demonstrated for (ptychographic) coherent X-ray diffractive imaging. Coherent (X-ray) diffractive imaging (CDI) is an increasingly popular form of X-ray microscopy, mainly due to its potential to produce high-resolution images and the lack of an objective lens between the sample and its corresponding imaging detector. One challenge, however, is that very high dynamic range diffraction data must be collected to produce both quantitative and high-resolution images. In this work, hard X-ray ptychographic coherent diffractive imaging has been performed at the P10 beamline of the PETRA III synchrotron to demonstrate the potential of a very wide dynamic range imaging X-ray detector (the Mixed-Mode Pixel Array Detector, or MM-PAD). The detector is capable of single photon detection, detecting fluxes exceeding 1 × 10{sup 8} 8-keV photons pixel{sup −1} s{sup −1}, and framing at 1 kHz. A ptychographic reconstruction was performed using a peak focal intensity on the order of 1 × 10{sup 10} photons µm{sup −2} s{sup −1} within an area of approximately 325 nm × 603 nm. This was done without need of a beam stop and with a very modest attenuation, while ‘still’ images of the empty beam far-field intensity were recorded without any attenuation. The treatment of the detector frames and CDI methodology for reconstruction of non-sensitive detector regions, partially also extending the active detector area, are described.

  5. High-speed X-ray imaging pixel array detector for synchrotron bunch isolation

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, Hugh T., E-mail: htp2@cornell.edu; Tate, Mark W.; Purohit, Prafull; Shanks, Katherine S.; Weiss, Joel T. [Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M. [Cornell University, Ithaca, NY 14853 (United States); Cornell University, Ithaca, NY 14853 (United States)

    2016-01-28

    A high-speed pixel array detector for time-resolved X-ray imaging at synchrotrons has been developed. The ability to isolate single synchrotron bunches makes it ideal for time-resolved dynamical studies. A wide-dynamic-range imaging X-ray detector designed for recording successive frames at rates up to 10 MHz is described. X-ray imaging with frame rates of up to 6.5 MHz have been experimentally verified. The pixel design allows for up to 8–12 frames to be stored internally at high speed before readout, which occurs at a 1 kHz frame rate. An additional mode of operation allows the integration capacitors to be re-addressed repeatedly before readout which can enhance the signal-to-noise ratio of cyclical processes. This detector, along with modern storage ring sources which provide short (10–100 ps) and intense X-ray pulses at megahertz rates, opens new avenues for the study of rapid structural changes in materials. The detector consists of hybridized modules, each of which is comprised of a 500 µm-thick silicon X-ray sensor solder bump-bonded, pixel by pixel, to an application-specific integrated circuit. The format of each module is 128 × 128 pixels with a pixel pitch of 150 µm. In the prototype detector described here, the three-side buttable modules are tiled in a 3 × 2 array with a full format of 256 × 384 pixels. The characteristics, operation, testing and application of the detector are detailed.

  6. HgCdTe technology in Germany: the past, the present, and the future

    Science.gov (United States)

    Cabanski, W.; Ziegler, J.

    2009-05-01

    The first HgCdTe (MCT) activities at AEG-Telefunken in Germany were started in 1976. As part of the closing of AEG, the Heilbronn based IR-technology division was established as a spin-off company in 1995, under the brand name of AIM Infrarot-Module GmbH. A rapidly growing team of scientists focused on the detector-dewar-cooler technology and the development of linear photoconductive MCT arrays by applying the solid-state-recrystallization (SSR) technique for MCT growth, depositing and thinning MCT on sapphire substrates and oxide passivation. In 1979, after successful development of an own MCT-technology base, AEG-Telefunken entered into a license agreement with Texas Instruments for US Common Module (CM) technology in order to speed up the entry into full scale production with a transfer of MCT-material, dewar and cooler processes. CMs are still manufactured in small numbers. At the same time, a proprietary pc-MCT technology, independent of the CM production line, was developed and continuously matured and is today successfully applied in various custom designs like detectors for smart ammunition, for commercial and space applications. In 1982 started the development of 2nd Gen. photovoltaic MCT detectors, based on liquid-phase-epitaxy (LPE) in tilting and dipping technique and on planar array technology with Hg-Diffusion and ion implantation for pn-junction formation and CdTe/ZnS passivation. Linear MCT arrays in the 8-10,5 μm wavelength range with state of the art electro-optical performance have rapidly been demonstrated. Within the frame of the European anti-tank program TRIGAT, a two-way know-how-transfer between AEGTelefunken and SOFRADIR was established for linear LW MCT array processing, flip-chip-technology and dewar technology. Today, AIM's 2nd Gen. portfolio is based on MCT-LPE in dipping technique on CdZnTe substrates, characterized by a very low defect and dislocation density for 0,9 μm to 15μm wavelength application. Array processing is performed

  7. Mercuric iodide room-temperature array detectors for gamma-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Patt, B. [Xsirius, Inc, Camarillo, CA (United States)

    1994-11-15

    Significant progress has been made recently in the development of mercuric iodide detector arrays for gamma-ray imaging, making real the possibility of constructing high-performance small, light-weight, portable gamma-ray imaging systems. New techniques have been applied in detector fabrication and then low noise electronics which have produced pixel arrays with high-energy resolution, high spatial resolution, high gamma stopping efficiency. Measurements of the energy resolution capability have been made on a 19-element protypical array. Pixel energy resolutions of 2.98% fwhm and 3.88% fwhm were obtained at 59 keV (241-Am) and 140-keV (99m-Tc), respectively. The pixel spectra for a 14-element section of the data is shown together with the composition of the overlapped individual pixel spectra. These techniques are now being applied to fabricate much larger arrays with thousands of pixels. Extension of these principles to imaging scenarios involving gamma-ray energies up to several hundred keV is also possible. This would enable imaging of the 208 keV and 375-414 keV 239-Pu and 240-Pu structures, as well as the 186 keV line of 235-U.

  8. Uniform non-stoichiometric titanium nitride thin films for improved kinetic inductance detector array

    CERN Document Server

    Coiffard, G; Driessen, E F C; Pignard, S; Calvo, M; Catalano, A; Goupy, J; Monfardini, A

    2015-01-01

    We describe the fabrication of homogeneous sub-stoichiometric titanium nitride films for microwave kinetic inductance detector (mKID) arrays. Using a 6 inch sputtering target and a homogeneous nitrogen inlet, the variation of the critical temperature over a 2 inch wafer was reduced to <25 %. Measurements of a 132-pixel mKID array from these films reveal a sensitivity of 16 kHz/pW in the 100 GHz band, comparable to the best aluminium mKIDs. We measured a noise equivalent power of NEP = 3.6e-15 Hz/Hz^(1/2). Finally, we describe possible routes to further improve the performance of these TiN mKID arrays.

  9. Microelectrode arrays with overlapped diffusion layers as electroanalytical detectors: theory and basic applications.

    Science.gov (United States)

    Tomčík, Peter

    2013-10-11

    This contribution contains a survey of basic literature dealing with arrays of microelectrodes with overlapping diffusion layers as prospective tools in contemporary electrochemistry. Photolithographic thin layer technology allows the fabrication of sensors of micrometric dimensions separated with a very small gap. This fact allows the diffusion layers of single microelectrodes to overlap as members of the array. Various basic types of microelectrode arrays with interacting diffusion layers are described and their analytical abilities are accented. Theoretical approaches to diffusion layer overlapping and the consequences of close constitution effects such as collection efficiency and redox cycling are discussed. Examples of basis applications in electroanalytical chemistry such as amperometric detectors in HPLC and substitutional stripping voltammetry are also given.

  10. Microelectrode Arrays with Overlapped Diffusion Layers as Electroanalytical Detectors: Theory and Basic Applications

    Directory of Open Access Journals (Sweden)

    Peter Tomčík

    2013-10-01

    Full Text Available This contribution contains a survey of basic literature dealing with arrays of microelectrodes with overlapping diffusion layers as prospective tools in contemporary electrochemistry. Photolithographic thin layer technology allows the fabrication of sensors of micrometric dimensions separated with a very small gap. This fact allows the diffusion layers of single microelectrodes to overlap as members of the array. Various basic types of microelectrode arrays with interacting diffusion layers are described and their analytical abilities are accented. Theoretical approaches to diffusion layer overlapping and the consequences of close constitution effects such as collection efficiency and redox cycling are discussed. Examples of basis applications in electroanalytical chemistry such as amperometric detectors in HPLC and substitutional stripping voltammetry are also given.

  11. Progress in cooled IR detectors and new developments

    Science.gov (United States)

    Tribolet, Philippe; Vuillermet, Michel

    2008-03-01

    Cooled IR detectors are produced at mass production level at Sofradir for years based on its mature and proven HgCdTe technology. However, following the market needs, a lot of progress have been made and allow Sofradir to offer new product designs mainly dealing with the simplification of the detector use as well as reliability improvements. In addition to the conventional technologies used at mass production level, the Molecular Beam Epitaxy (MBE) approach has been under investigation for several years to prepare both the very large array fabrication and the new (3rd) generation developments. CEA-Leti, in cooperation with Sofradir, obtained very good results on 4-inches wafer size which confirms the mastering of this growth process. Very high qualities FPAs (1280×1024), with pitches as small as 15μm, were demonstrated as well as bicolor and dual band FPAs which use more complex multi hetero-junctions architectures. A very new development at CEA-Leti concerns avalanche photodiodes (APD) made with HgCdTe which presents a unique feature among all the over semiconductors: extremely high avalanche gains can be obtained on n on p photodiodes without absolutely any noise excess. These results open new interesting fields of investigation for low flux applications and fast detectors. The cooled IR detector field is progressing very rapidly and new developments will offer a lot of system simplification and enhancements.

  12. NORSAR Final Scientific Report Adaptive Waveform Correlation Detectors for Arrays: Algorithms for Autonomous Calibration

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, S J; Ringdal, F; Harris, D B

    2009-04-16

    Correlation detection is a relatively new approach in seismology that offers significant advantages in increased sensitivity and event screening over standard energy detection algorithms. The basic concept is that a representative event waveform is used as a template (i.e. matched filter) that is correlated against a continuous, possibly multichannel, data stream to detect new occurrences of that same signal. These algorithms are therefore effective at detecting repeating events, such as explosions and aftershocks at a specific location. This final report summarizes the results of a three-year cooperative project undertaken by NORSAR and Lawrence Livermore National Laboratory. The overall objective has been to develop and test a new advanced, automatic approach to seismic detection using waveform correlation. The principal goal is to develop an adaptive processing algorithm. By this we mean that the detector is initiated using a basic set of reference ('master') events to be used in the correlation process, and then an automatic algorithm is applied successively to provide improved performance by extending the set of master events selectively and strategically. These additional master events are generated by an independent, conventional detection system. A periodic analyst review will then be applied to verify the performance and, if necessary, adjust and consolidate the master event set. A primary focus of this project has been the application of waveform correlation techniques to seismic arrays. The basic procedure is to perform correlation on the individual channels, and then stack the correlation traces using zero-delay beam forming. Array methods such as frequency-wavenumber analysis can be applied to this set of correlation traces to help guarantee the validity of detections and lower the detection threshold. In principle, the deployment of correlation detectors against seismically active regions could involve very large numbers of very specific

  13. A two dimensional silicon detectors array for quality assurance in stereotactic radiotherapy: MagicPlate-512

    Energy Technology Data Exchange (ETDEWEB)

    Aldosari, A. H.; Petasecca, M., E-mail: marcop@uow.edu.au; Espinoza, A.; Newall, M.; Fuduli, I.; Porumb, C.; Alshaikh, S.; Alrowaili, Z. A.; Weaver, M.; Metcalfe, P.; Lerch, M. L. F.; Rosenfeld, A. B. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500 (Australia); Carolan, M. [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2500, Australia and Illawarra Cancer Care Centre, Wollongong Hospital, Wollongong, NSW 2500 (Australia); Perevertaylo, V. [SPA-BIT, KIEV 02232 (Ukraine)

    2014-09-15

    Purpose: Silicon diode arrays are commonly implemented in radiation therapy quality assurance applications as they have a number of advantages including: real time operation (compared to the film) and high spatial resolution, large dynamic range and small size (compared to ionizing chambers). Most diode arrays have detector pitch that is too coarse for routine use in small field applications. The goal of this work is to characterize the two-dimensional monolithic silicon diode array named “MagicPlate-512” (MP512) designed for QA in stereotactic body radiation therapy (SBRT) and stereotactic radio surgery (SRS). Methods: MP512 is a silicon monolithic detector manufactured on ap-type substrate. An array contains of 512 pixels with size 0.5 × 0.5 mm{sup 2} and pitch 2 mm with an overall dimension of 52 × 52 mm{sup 2}. The MP512 monolithic detector is wire bonded on a printed circuit board 0.5 mm thick and covered by a thin layer of raisin to preserve the silicon detector from moisture and chemical contamination and to protect the bonding wires. Characterization of the silicon monolithic diode array response was performed, and included pixels response uniformity, dose linearity, percent depth dose, output factor, and beam profiling for beam sizes relevant to SBRT and SRS and depth dose response in comparison with ionization chamber. Results: MP512 shows a good dose linearity (R{sup 2} = 0.998) and repeatability within 0.2%. The measured depth dose response for field size of 10 × 10 cm{sup 2} agreed to within 1.3%, when compared to a CC13 ionization chamber for depths in PMMA up to 30 cm. The output factor of a 6 MV Varian 2100EX medical linac beam measured by MP512 at the isocenter agrees to within 2% when compared to PTW diamond, Scanditronix point EDD-2 diode and MOSkin detectors for field sizes down to 1 × 1 cm{sup 2}. An over response of 4% was observed for square beam size smaller than 1 cm when compared to EBT3 films, while the beam profiles (FWHM) of MP

  14. A high resolution germanium detector array for hypernuclear studies at PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Bleser, Sebastian; Sanchez Lorente, Alicia; Steinen, Marcell [Helmholtz-Institut Mainz (Germany); Gerl, Juergen; Kojouharova, Jasmina; Kojouharov, Ivan [GSI Darmstadt (Germany); Iazzi, Felice [Politecnico, Torino (Italy); INFN, Torino (Italy); Pochodzalla, Josef; Rittgen, Kai; Sahin, Cihan [Institute for Nuclear Physics, JGU Mainz (Germany)

    2014-07-01

    The PANDA experiment, planned at the FAIR facility in Darmstadt, aims at the high resolution γ-spectroscopy of double Λ hypernuclei. For this purpose a devoted detector setup is required, consisting of a primary nuclear target, an active secondary target and a germanium detector array for the γ-spectroscopy. Due to the limited space within the PANDA detector a compact design is required. In particular the conventional LN{sub 2} cooling system must be replaced by an electro mechanical device and a new arrangement of the crystals is needed. This presentation shows the progress in the development of the germanium detectors. First results of in-beam measurements at COSY with a new electro mechanically cooled single crystal prototype are presented. Digital pulse shape analysis is used to disentangle pile up events due to the high event rate. This analysis technique also allows to recover the high original energy resolution in case of neutron damage. Finally the status of the new triple crystal detector prototype is given.

  15. High density processing electronics for superconducting tunnel junction x-ray detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, W.K., E-mail: bill@xia.com [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Harris, J.T. [XIA LLC, 31057 Genstar Road, Hayward, CA 94544 (United States); Friedrich, S. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

    2015-06-01

    Superconducting tunnel junctions (STJs) are excellent soft x-ray (100–2000 eV) detectors, particularly for synchrotron applications, because of their ability to obtain energy resolutions below 10 eV at count rates approaching 10 kcps. In order to achieve useful solid detection angles with these very small detectors, they are typically deployed in large arrays – currently with 100+ elements, but with 1000 elements being contemplated. In this paper we review a 5-year effort to develop compact, computer controlled low-noise processing electronics for STJ detector arrays, focusing on the major issues encountered and our solutions to them. Of particular interest are our preamplifier design, which can set the STJ operating points under computer control and achieve 2.7 eV energy resolution; our low noise power supply, which produces only 2 nV/√Hz noise at the preamplifier's critical cascode node; our digital processing card that digitizes and digitally processes 32 channels; and an STJ I–V curve scanning algorithm that computes noise as a function of offset voltage, allowing an optimum operating point to be easily selected. With 32 preamplifiers laid out on a custom 3U EuroCard, and the 32 channel digital card in a 3U PXI card format, electronics for a 128 channel array occupy only two small chassis, each the size of a National Instruments 5-slot PXI crate, and allow full array control with simple extensions of existing beam line data collection packages.

  16. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors.

    Science.gov (United States)

    Sharma, P; Vasan, S N Swetadri; Cartwright, A N; Titus, A H; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed from the discrete component level a high resolution dynamic x- ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 × 1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm(2) (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of- interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  17. Two dimensional extensible array configuration for EMCCD-based solid state x-ray detectors

    Science.gov (United States)

    Sharma, P.; Swetadri Vasan, S. N.; Cartwright, A. N.; Titus, A. H.; Bednarek, D. R.; Rudin, S.

    2012-03-01

    We have designed and developed from the discrete component level a high resolution dynamic x-ray detector to be used for fluoroscopic and angiographic medical imaging. The heart of the detector is a 1024 ×1024 pixel electron multiplying charge coupled device (EMCCD) with a pixel size of 13 × 13 μm2 (Model CCD201-20, e2v Technologies, Inc.), bonded to a fiber optic plate (FOP), and optically coupled to a 350 μm thick micro-columnar CsI(TI) scintillator via a fiber optic taper (FOT). Our aim is to design an array of these detectors that could be extended to any arbitrary X × Y size in two dimensions to provide a larger field of view (FOV). A physical configuration for a 3×3 array is presented that includes two major sub-systems. First is an optical front end that includes (i) a phosphor to convert the x-ray photons into light photons, and (ii) a fused array of FOTs that focuses light photons from the phosphor onto an array of EMCCD's optically coupled using FOPs. Second is an electronic front end that includes (i) an FPGA board used for generating clocks and for data acquisition (ii) driver boards to drive and digitize the analog output from the EMCCDs, (iii) a power board, and (iv) headboards to hold the EMCCD's while they are connected to their respective driver board using flex cables. This configuration provides a larger FOV as well as region-of-interest (ROI) high-resolution imaging as required by modern neurovascular procedures.

  18. Photon Counting Energy Dispersive Detector Arrays for X-ray Imaging.

    Science.gov (United States)

    Iwanczyk, Jan S; Nygård, Einar; Meirav, Oded; Arenson, Jerry; Barber, William C; Hartsough, Neal E; Malakhov, Nail; Wessel, Jan C

    2009-01-01

    The development of an innovative detector technology for photon-counting in X-ray imaging is reported. This new generation of detectors, based on pixellated cadmium telluride (CdTe) and cadmium zinc telluride (CZT) detector arrays electrically connected to application specific integrated circuits (ASICs) for readout, will produce fast and highly efficient photon-counting and energy-dispersive X-ray imaging. There are a number of applications that can greatly benefit from these novel imagers including mammography, planar radiography, and computed tomography (CT). Systems based on this new detector technology can provide compositional analysis of tissue through spectroscopic X-ray imaging, significantly improve overall image quality, and may significantly reduce X-ray dose to the patient. A very high X-ray flux is utilized in many of these applications. For example, CT scanners can produce ~100 Mphotons/mm(2)/s in the unattenuated beam. High flux is required in order to collect sufficient photon statistics in the measurement of the transmitted flux (attenuated beam) during the very short time frame of a CT scan. This high count rate combined with a need for high detection efficiency requires the development of detector structures that can provide a response signal much faster than the transit time of carriers over the whole detector thickness. We have developed CdTe and CZT detector array structures which are 3 mm thick with 16×16 pixels and a 1 mm pixel pitch. These structures, in the two different implementations presented here, utilize either a small pixel effect or a drift phenomenon. An energy resolution of 4.75% at 122 keV has been obtained with a 30 ns peaking time using discrete electronics and a (57)Co source. An output rate of 6×10(6) counts per second per individual pixel has been obtained with our ASIC readout electronics and a clinical CT X-ray tube. Additionally, the first clinical CT images, taken with several of our prototype photon-counting and

  19. Current status of the new LaBr{sub 3}:Ce detector array GALATEA

    Energy Technology Data Exchange (ETDEWEB)

    Walz, Christopher; Neumann-Cosel, Peter von; Ries, Philipp; Pietralla, Norbert; Scheit, Heiko; Schnorrenberger, Linda [Technische Univ. Darmstadt (Germany). Inst. fuer Kernphysik; Lefol, Ronan [University of Saskatchewan (Canada)

    2013-07-01

    In contrast to common scintillation materials like NaI and BaF{sub 2} the recently developed LaBr{sub 3}:Ce detectors allow measurements with excellent time resolution and high efficiency while retaining a good energy resolution. To perform successful (e,e{sup '}γ) and (γ,γ{sup '}γ) coincidence experiments at the linear electron accelerator S-DALINAC all three features are of utmost importance. We present the current status of the new LaBr{sub 3}:Ce detector array GALATEA (GAmma LAnthanum bromide Top Efficiency Array) consisting of 18 large 3'' x 3'' LaBr{sub 3}:Ce detectors. One focus is on the completely digital DAQ based on flash ADCs and newly developed pulse shape analysis methods for timing and particle identification. The performance of GALATEA is discussed regarding energy resolution, time resolution, linearity and efficiency. The results are compared to GEANT4 simulations.

  20. Leaky Lens Based UWB Focal Plane Arrays for Sub-mm Wave Imaging Based on Kinetic Inductance Detectors

    NARCIS (Netherlands)

    Neto, A.

    2008-01-01

    A novel strategy for broad band focal plane array design is proposed. Its purpose is to couple the radiation from a Large FID reflector system to an array of Kinetic Inductance detectors that are being investigated and realized at SRON. To maximize the benefits from using their BW properties the ide

  1. Digital data acquisition for the Low Energy Neutron Detector Array (LENDA)

    Energy Technology Data Exchange (ETDEWEB)

    Lipschutz, S., E-mail: lipschutz@nscl.msu.edu [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements, Michigan State University, East Lansing, MI (United States); Zegers, R.G.T.; Hill, J. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements, Michigan State University, East Lansing, MI (United States); Liddick, S.N. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI (United States); Noji, S., E-mail: noji@rcnp.osaka-u.ac.jp [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements, Michigan State University, East Lansing, MI (United States); Prokop, C.J. [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Department of Chemistry, Michigan State University, East Lansing, MI (United States); Scott, M. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI (United States); National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements, Michigan State University, East Lansing, MI (United States); Solt, M., E-mail: mrsolt@stanford.edu [National Superconducting Cyclotron Laboratory, East Lansing, MI (United States); Joint Institute for Nuclear Astrophysics Center for the Evolution of the Elements, Michigan State University, East Lansing, MI (United States); Department of Physics, Oakland University, Rochester, MI (United States); and others

    2016-04-11

    A digital data acquisition system (DDAS) has been implemented for the Low Energy Neutron Detector Array (LENDA). LENDA is an array of 24 BC-408 plastic-scintillator bars designed to measure low-energy neutrons with kinetic energies in the range of 100 keV–10 MeV from (p,n)-type charge-exchange reactions. Compared to the previous data acquisition (DAQ) system for LENDA, DDAS offers the possibility to lower the neutron detection threshold, increase the overall neutron-detection efficiency, decrease the dead time of the system, and allow for easy expansion of the array. The system utilized in this work was XIA's Digital Gamma Finder Pixie-16 250 MHz digitizers. A detector-limited timing resolution of 400 ps was achieved for a single LENDA bar. Using DDAS, the neutron detection threshold of the system was reduced compared to the previous analog system, now reaching below 100 keV. The new DAQ system was successfully used in a recent charge-exchange experiment using the {sup 16}C(p,n) reaction at the National Superconducting Cyclotron Laboratory (NSCL).

  2. Fast IR Array Detector for Transverse Beam Diagnostics at DA{\\Phi}NE

    CERN Document Server

    Bocci, A; Clozza, A; Drago, A; Grilli, A; Marcelli, A; Raco, A; Sorchetti, R; Gambicorti, L; De Sio, A; Pace, E; Piotrowski, J

    2010-01-01

    At the Laboratori Nazionali di Frascati of the National Institute of Nuclear Physics (INFN) an infrared (IR) array detector with fast response time has been built and assembled in order to collect the IR image of e-/e+ sources of the DA{\\Phi}NE collider. Such detector is made by 32 bilinear pixels with an individual size of 50x50 {\\mu}m2 and a response time of ~1 ns. In the framework of an experiment funded by the INFN Vth Committee dedicated to beam diagnostics, the device with its electronic board has been tested and installed on the DA{\\Phi}NE positron ring. A preliminary characterization of few pixels of the array and of the electronics has been carried out at the IR beamline SINBAD at DA{\\Phi}NE. In particular the detection of the IR source of the e- beam has been observed using four pixels of the array acquiring signals simultaneously with a four channels scope at 1 GHz and at 10 Gsamples/s. The acquisition of four pixels allowed monitoring in real time differences in the bunch signals in the vertical d...

  3. Digital Data Acquisition For the Low Energy Neutron Detector Array (LENDA)

    CERN Document Server

    Lipschutz, S; Hill, J; Liddick, S N; Noji, S; Prokop, C J; Scott, M; Solt, M; Sullivan, C; Tompkins, J

    2016-01-01

    A digital data acquisition system (DDAS) has been implemented for the Low Energy Neutron Detector Array (LENDA). LENDA is an array of 24 BC-408 plastic-scintillator bars designed to measure low-energy neutrons with kinetic energies in the range of 100 keV to 10 MeV from (p,n)-type charge-exchange reactions. Compared to the previous data acquisition (DAQ) system for LENDA, DDAS offers the possibility to lower the neutron detection threshold, increase the overall neutron-detection efficiency, decrease the dead time of the system, and allow for easy expansion of the array. The system utilized in this work was XIA's Digital Gamma Finder Pixie-16 250 MHz digitizers. A detector-limited timing resolution of 400 ps was achieved for a single LENDA bar. Using DDAS, the neutron detection threshold of the system was reduced compared to the previous analog system, now reaching below 100 keV. The new DAQ system was successfully used in a recent charge-exchange experiment using the $^{16}$C(p,n) reaction at the National Sup...

  4. Linear Mode HgCdTe Avalanche Photodiodes for Photon Counting Applications

    Science.gov (United States)

    Sullivan, William, III; Beck, Jeffrey; Scritchfield, Richard; Skokan, Mark; Mitra, Pradip; Sun, Xiaoli; Abshire, James; Carpenter, Darren; Lane, Barry

    2015-01-01

    An overview of recent improvements in the understanding and maturity of linear mode photon counting with HgCdTe electron-initiated avalanche photodiodes is presented. The first HgCdTe LMPC 2x8 format array fabricated in 2011 with 64 micron pitch was a remarkable success in terms of demonstrating a high single photon signal to noise ratio of 13.7 with an excess noise factor of 1.3-1.4, a 7 ns minimum time between events, and a broad spectral response extending from 0.4 micron to 4.2 micron. The main limitations were a greater than 10x higher false event rate than expected of greater than 1 MHz, a 5-7x lower than expected APD gain, and a photon detection efficiency of only 50% when greater than 60% was expected. This paper discusses the reasons behind these limitations and the implementation of their mitigations with new results.

  5. Infrared limb sounding of Titan with the Cassini Composite InfraRed Spectrometer: effects of the mid-IR detector spatial responses.

    Science.gov (United States)

    Nixon, Conor A; Teanby, Nicholas A; Calcutt, Simon B; Aslam, Shahid; Jennings, Donald E; Kunde, Virgil G; Flasar, F Michael; Irwin, Patrick G; Taylor, Fredric W; Glenar, David A; Smith, Michael D

    2009-04-01

    The composite infrared spectrometer (CIRS) instrument on board the Cassini Saturn orbiter employs two 1x10 HgCdTe detector arrays for mid-infrared remote sensing of Titan's and Saturn's atmospheres. In this paper we show that the real detector spatial response functions, as measured in ground testing before launch, differ significantly from idealized "boxcar" responses. We further show that neglecting this true spatial response function when modeling CIRS spectra can have a significant effect on interpretation of the data, especially in limb-sounding mode, which is frequently used for Titan science. This result has implications not just for CIRS data analysis but for other similar instrumental applications.

  6. Analysis of lichen substances including triterpenoids by high performance liquid chromatography with a differential refractive index detector and a photodiode array detector

    Institute of Scientific and Technical Information of China (English)

    Hikari SATO; Kojiro HARA; Masashi KOMINE; Yoshikazu YAMAMOTO

    2011-01-01

    A new method for analysis of lichen triterpenoids was established using high performance liquid chromatography with the combination of a differential refractive index detector (RID) and a photodiode array detector (PDA).It is proved that this method was convenient to detect and identify aromatic and aliphatic lichen substances; it enabled quantitative analysis of substances having no or less absorption of ultraviolet rays such as triterpenoids.In addition,they can be measured in high accuracy compared with the TLC method.

  7. Tiled Array of Pixelated CZT Imaging Detectors for ProtoEXIST2 and MIRAX-HXI

    CERN Document Server

    Hong, Jaesub; Grindlay, Jonathan; Rodrigues, Barbara; Ellis, Jon Robert; Baker, Robert; Barthelmy, Scott; Mao, Peter; Miyasaka, Hiromasa; Apple, Jeff

    2013-01-01

    We have assembled a tiled array (220 cm2) of fine pixel (0.6 mm) imaging CZT detectors for a balloon borne wide-field hard X-ray telescope, ProtoEXIST2. ProtoEXIST2 is a prototype experiment for a next generation hard X-ray imager MIRAX-HXI on board Lattes, a spacecraft from the Agencia Espacial Brasilieira. MIRAX will survey the 5 to 200 keV sky of Galactic bulge, adjoining southern Galactic plane and the extragalactic sky with 6' angular resolution. This survey will open a vast discovery space in timing studies of accretion neutron stars and black holes. The ProtoEXIST2 CZT detector plane consists of 64 of 5 mm thick 2 cm x 2 cm CZT crystals tiled with a minimal gap. MIRAX will consist of 4 such detector planes, each of which will be imaged with its own coded-aperture mask. We present the packaging architecture and assembly procedure of the ProtoEXIST2 detector. On 2012, Oct 10, we conducted a successful high altitude balloon experiment of the ProtoEXIST1 and 2 telescopes, which demonstrates their technolog...

  8. Trigger electronics of the new Fluorescence Detectors of the Telescope Array Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tameda, Yuichiro [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)], E-mail: tame@cr.phys.titech.ac.jp; Taketa, Akimichi [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Smith, Jeremy D. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Tanaka, Manobu [Institute of Particle and Nuclear Studies, KEK, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Fukushima, Masaki [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Jui, Charles C.H. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Kadota, Ken' ichi [Faculty of Knowledge Engineering, Musashi Institute of Technology, Setagaya, Tokyo 158-8557 (Japan); Kakimoto, Fumio [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan); Matsuda, Takeshi [Institute of Particle and Nuclear Studies, KEK, Oho, Tsukuba, Ibaraki 305-0801 (Japan); Matthews, John N. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Ogio, Shoichi [Graduate School of Science, Osaka City University, Sumiyoshi, Osaka 558-8585 (Japan); Sagawa, Hiroyuki; Sakurai, Nobuyuki; Shibata, Tatsunobu; Takeda, Masahiro [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Thomas, Stanton B. [Institute for High Energy Astrophysics and Department of Physics, University of Utah, Salt Lake City, UT 84112-0830 (United States); Tokuno, Hisao [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Tsunesada, Yoshiki [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8551 (Japan)] (and others)

    2009-10-11

    The Telescope Array Project is an experiment designed to observe Ultra High Energy Cosmic Rays via a 'hybrid' detection technique utilizing both fluorescence light detectors (FDs) and scintillator surface particle detectors (SDs). We have installed three FD stations and 507 SDs in the Utah desert, and initiated observations from March 2008. The northern FD station reuses 14 telescopes from the High Resolution Fly's Eye, HiRes-I station. Each of the two southern FD stations contains 12 new telescopes utilizing new FADC electronics. Each telescope is instrumented with a camera composed of 256 PMTs. Since the detectors are composed of many PMTs and each PMT detects fluorescence photons together with the vast amount of night sky background, a sophisticated triggering system is required. In this paper, we describe the trigger electronics of these new FD stations. We also discuss performance of the FDs with this triggering system, in terms of efficiencies and apertures for various detector configurations.

  9. Low noise CMOS readout for CdZnTe detector arrays

    CERN Document Server

    Jakobson, C G; Lev, S B; Nemirovsky, Y

    1999-01-01

    A low noise CMOS readout for CdTe and CdZnTe X- and gamma-ray detector arrays has been designed and implemented in the CMOS 2 mu m low noise analog process provided by the multi-chip program of Metal Oxide Semiconductor Implementation Service. The readout includes CMOS low noise charge sensitive preamplifier and a multiplexed semi-Gaussian pulse shaper. Thus, each detector has a dedicated charge sensitive preamplifier that integrates its signal, while a single shaping amplifier shapes the pulses after the multiplexer. Low noise and low-power operation are achieved by optimizing the input transistor of the charge sensitive preamplifier. Two optimization criteria are used to reduce noise. The first criterion is based on capacitance matching between the input transistor and the detector. The second criterion is based on bandwidth optimization, which is obtained by tailoring the shaper parameters to the particular noise mechanisms of the MOS transistor and the CdZnTe detector. Furthermore, the multiplexing functi...

  10. Low noise CMOS readout for CdZnTe detector arrays

    Energy Technology Data Exchange (ETDEWEB)

    Jakobson, C.G.; Asa, G.; Lev, S. Bar; Nemirovsky, Y. E-mail: nemirov@ee.technion.ac.il

    1999-06-01

    A low noise CMOS readout for CdTe and CdZnTe X- and gamma-ray detector arrays has been designed and implemented in the CMOS 2 {mu}m low noise analog process provided by the multi-chip program of Metal Oxide Semiconductor Implementation Service. The readout includes CMOS low noise charge sensitive preamplifier and a multiplexed semi-Gaussian pulse shaper. Thus, each detector has a dedicated charge sensitive preamplifier that integrates its signal, while a single shaping amplifier shapes the pulses after the multiplexer. Low noise and low-power operation are achieved by optimizing the input transistor of the charge sensitive preamplifier. Two optimization criteria are used to reduce noise. The first criterion is based on capacitance matching between the input transistor and the detector. The second criterion is based on bandwidth optimization, which is obtained by tailoring the shaper parameters to the particular noise mechanisms of the MOS transistor and the CdZnTe detector. Furthermore, the multiplexing function incorporated in the shaper provides low power and reduces chip area. The system is partitioned into a chip containing the charge amplifiers and a chip containing the semi-Gaussian pulse shaper and multiplexer. This architecture minimizes coupling from multiplexer switches as well as shaper output to the input of the charge sensitive preamplifiers.

  11. InGaAs Schottky barrier diode array detector for a real-time compact terahertz line scanner.

    Science.gov (United States)

    Han, Sang-Pil; Ko, Hyunsung; Park, Jeong-Woo; Kim, Namje; Yoon, Young-Jong; Shin, Jun-Hwan; Kim, Dae Yong; Lee, Dong Hun; Park, Kyung Hyun

    2013-11-04

    We present a terahertz (THz) broadband antenna-integrated 1 × 20 InGaAs Schottky barrier diode (SBD) array detector with an average responsivity of 98.5 V/W at a frequency of 250 GHz, which is measured without attaching external amplifiers and Si lenses, and an average noise equivalent power (NEP) of 106.6 pW/√Hz. The 3-dB bandwidth of the SBD detector is also investigated at approximately 180 GHz. For implementing an array-type SBD detector by a simple fabrication process to achieve a high yield, a structure comprising an SiN(x) layer instead of an air bridge between the anode and the cathode is designed. THz line beam imaging using a Gunn diode emitter with a center frequency of 250 GHz and a 1 × 20 SBD array detector is successfully demonstrated.

  12. The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R R; Zundel, Z

    2012-01-01

    The Telescope Array (TA) collaboration has measured the energy spectrum of ultra-high energy cosmic rays for energies above 1.6x10^(18) eV in its first three years of operation. The spectrum shows a dip at an energy of 5x10^(18) eV and a steepening at 5x10^(19) eV which is consistent with the expectation from the GZK cutoff. Here we use a new technique that involves generating a complete simulation of the TA surface detector. The procedure starts with shower simulations using the CORSIKA Monte Carlo program where we have solved the problems caused by use of the "thinning" approximation. This simulation method allows us to make an accurate calculation of the acceptance of the detector for the energies concerned.

  13. Design and operation of a 2-D thin-film semiconductor neutron detector array for use as a beamport monitor

    Energy Technology Data Exchange (ETDEWEB)

    Unruh, Troy C.; Bellinger, Steven L. [SMART Laboratory, Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States); Huddleston, David E. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McNeil, Walter J.; Patterson, Eric [SMART Laboratory, Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States); Sobering, Tim J. [Electronics Design Laboratory, Kansas State University, Manhattan, KS 66506 (United States); McGregor, Douglas S. [SMART Laboratory, Kansas State University, Mechanical and Nuclear Engineering Department, Manhattan, KS 66506 (United States)], E-mail: mcgregor@ksu.edu

    2009-06-01

    Silicon-based diodes coated with a thin film of neutron reactive materials have been shown to produce excellent low-efficiency neutron detectors. This work employs the same technology, but groups 25 equally sized and spaced diodes on a single 29 mm by 29 mm substrate. A 5x5 array was fabricated and coated with a thin film of {sup 6}LiF for use as a low-efficiency neutron beam monitor. The 5x5 neutron detector array is coupled to an array of amplifiers, allowing the response to be interpreted using a LabVIEW FPGA. The 5x5 array has been characterized in a diffracted neutron beam. This work is a part of on-going research to develop various designs of high- and low-efficiency semiconductor neutron detectors.

  14. Operation and performance of new NIR detectors from SELEX

    Science.gov (United States)

    Atkinson, D.; Bezawada, N.; Hipwood, L. G.; Shorrocks, N.; Milne, H.

    2012-07-01

    The European Space Agency (ESA) has funded SELEX Galileo, Southampton, UK to develop large format near infrared (NIR) detectors for its future space and ground based programmes. The UKATC has worked in collaboration with SELEX Galileo to test and characterise the new detectors produced during phase-1 of the development. In order to demonstrate the detector material performance, the HgCdTe (MCT) detector diodes (grown on GaAs substrate through MOVPE process in small 320×256, 24μm pixel format) are hybridised to the existing SELEX Galileo SWALLOW CMOS readout chip. The substrate removed and MCT thinned detector arrays were then tested and evaluated at the UKATC following screening tests at SELEX. This paper briefly describes the test setup, the operational aspects of the readout multiplexer and presents the performance parameters of the detector arrays including: conversion gain, detector dark current, read noise, linearity, quantum efficiency and persistence for various detector temperatures between 80K and 140K.

  15. Electrode thickness measurement of a Si(Li) detector for the SIXA array

    OpenAIRE

    Tikkanen, T. (Tiia); Hamalainen, K.; Huotari, S.

    1997-01-01

    Cathode electrodes of the Si(Li) detector elements of the SIXA X-ray spectrometer array are formed by gold-palladium alloy contact layers. The equivalent thickness of gold in one element was measured by observing the characteristic L-shell X-rays of gold excited by monochromatised synchrotron radiation with photon energies above the L3 absorption edge of gold. The results obtained at 4 different photon energies below the L2 edge yield an average value of 22.4(35) nm which is consistent with t...

  16. Observation of high energy atmospheric neutrinos with antarctic muon and neutrino detector array

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, J.; Andres, E.; Bai, X.; Barouch, G.; Barwick, S.W.; Bay, R.C.; Becka, T.; Becker, K.-H.; Bertrand, D.; Binon, F.; Biron, A.; Booth, J.; Botner, O.; Bouchta, A.; Bouhali, O.; Boyce, M.M.; Carius, S.; Chen, A.; Chirkin, D.; Conrad, J.; Cooley, J.; Costa, C.G.S.; Cowen, D.F.; Dalberg, E.; De Clercq, C.; DeYoung, T.; Desiati, P.; Dewulf, J.-P.; Doksus, P.; Edsjo, J.; Ekstrom, P.; Feser, T.; Frere, J.-M.; Gaisser, T.K.; Gaug, M.; Goldschmidt, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Hardtke, R.; Hauschildt, T.; Hellwig, M.; Heukenkamp, H.; Hill, G.C.; Hulth, P.O.; Hundertmark, S.; Jacobsen, J.; Karle, A.; Kim, J.; Koci, B.; Kopke, L.; Kowalski, M.; Lamoureux, J.I.; Leich, H.; Leuthold, M.; Lindahl, P.; Liubarsky, I.; Loaiza, P.; Lowder, D.M.; Madsen, J.; Marciniewski, P.; Matis, H.S.; McParland, C.P.; Miller, T.C.; Minaeva, Y.; Miocinovic, P.; Mock, P.C.; Morse, R.; Neunhoffer, T.; Niessen, P.; Nygren, D.R.; Ogelman, H.; Olbrechts, Ph.; Perez de los Heros, C.; Pohl, A.C.; Porrata, R.; Price, P.B.; Przybylski, G.T.; Rawlins, K.; Reed, C.; Rhode, W.; Ribordy, M.; Richter, S.; Rodriguez Martino, J.; Romenesko, P.; Ross, D.; Sander, H.-G.; Schmidt, T.; Schneider, D.; Schwarz, R.; Silvestri, A.; Solarz, M.; Spiczak, G.M.; Spiering, C.; Starinsky, N.; Steele, D.; Steffen, P.; Stokstad, R.G.; Streicher, O.; Sudhoff, P.; Sulanke, K.-H.; Taboada, I.; Thollander, L.; Thon, T.; Tilav, S.; Vander Donckt, M.; Walck, C.; Weinheimer, C.; Wiebusch, C.H.; Wiedeman, C.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Wu, W.; Yodh, G.; Young, S.

    2002-05-07

    The Antarctic Muon and Neutrino Detector Array (AMANDA) began collecting data with ten strings in 1997. Results from the first year of operation are presented. Neutrinos coming through the Earth from the Northern Hemisphere are identified by secondary muons moving upward through the array. Cosmic rays in the atmosphere generate a background of downward moving muons, which are about 10{sup 6} times more abundant than the upward moving muons. Over 130 days of exposure, we observed a total of about 300 neutrino events. In the same period, a background of 1.05 x 10{sup 9} cosmic ray muon events was recorded. The observed neutrino flux is consistent with atmospheric neutrino predictions. Monte Carlo simulations indicate that 90 percent of these events lie in the energy range 66 GeV to 3.4 TeV. The observation of atmospheric neutrinos consistent with expectations establishes AMANDA-B10 as a working neutrino telescope.

  17. Performance of a compact multi-crystal high-purity germanium detector array for measuring coincident gamma-ray emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris; Daigle, Stephen; Buckner, Matt [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Erikson, Luke E.; Runkle, Robert C. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Stave, Sean C., E-mail: Sean.Stave@pnnl.gov [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Champagne, Arthur E.; Cooper, Andrew; Downen, Lori [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States); Glasgow, Brian D. [Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Kelly, Keegan; Sallaska, Anne [University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States); Triangle Universities Nuclear Laboratory, Durham, NC 27708 (United States)

    2015-05-21

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the {sup 14}N(p,γ){sup 15}O{sup ⁎} reaction for several transition energies at an effective center-of-mass energy of 163 keV. Owing to the granular nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within their uncertainties with the past measurements. Details of the analysis and detector performance are presented.

  18. Performance of A Compact Multi-crystal High-purity Germanium Detector Array for Measuring Coincident Gamma-ray Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Howard, Chris [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Daigle, Stephen [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Buckner, Matt [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Erikson, Luke E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Runkle, Robert C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Stave, Sean C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Champagne, Art [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Cooper, Andrew [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Downen, Lori [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Glasgow, Brian D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Kelly, Keegan [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States); Sallaska, Anne [Univ. of North Carolina, Chapel Hill, NC (United States); Triangle Univ. Nuclear Lab., Durham, NC (United States)

    2015-02-18

    The Multi-sensor Airborne Radiation Survey (MARS) detector is a 14-crystal array of high-purity germanium (HPGe) detectors housed in a single cryostat. The array was used to measure the astrophysical S-factor for the 14N(p,γ)15O* reaction for several transition energies at an effective center of mass energy of 163 keV. Owing to the segmented nature of the MARS detector, the effect of gamma-ray summing was greatly reduced in comparison to past experiments which utilized large, single-crystal detectors. The new S-factor values agree within the uncertainties with the past measurements. Details of the analysis and detector performance will be presented.

  19. Graphical user interface for a dual-module EMCCD x-ray detector array

    Science.gov (United States)

    Wang, Weiyuan; Ionita, Ciprian; Kuhls-Gilcrist, Andrew; Huang, Ying; Qu, Bin; Gupta, Sandesh K.; Bednarek, Daniel R.; Rudin, Stephen

    2011-03-01

    A new Graphical User Interface (GUI) was developed using Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) for a high-resolution, high-sensitivity Solid State X-ray Image Intensifier (SSXII), which is a new x-ray detector for radiographic and fluoroscopic imaging, consisting of an array of Electron-Multiplying CCDs (EMCCDs) each having a variable on-chip electron-multiplication gain of up to 2000x to reduce the effect of readout noise. To enlarge the field-of-view (FOV), each EMCCD sensor is coupled to an x-ray phosphor through a fiberoptic taper. Two EMCCD camera modules are used in our prototype to form a computer-controlled array; however, larger arrays are under development. The new GUI provides patient registration, EMCCD module control, image acquisition, and patient image review. Images from the array are stitched into a 2kx1k pixel image that can be acquired and saved at a rate of 17 Hz (faster with pixel binning). When reviewing the patient's data, the operator can select images from the patient's directory tree listed by the GUI and cycle through the images using a slider bar. Commonly used camera parameters including exposure time, trigger mode, and individual EMCCD gain can be easily adjusted using the GUI. The GUI is designed to accommodate expansion of the EMCCD array to even larger FOVs with more modules. The high-resolution, high-sensitivity EMCCD modular-array SSXII imager with the new user-friendly GUI should enable angiographers and interventionalists to visualize smaller vessels and endovascular devices, helping them to make more accurate diagnoses and to perform more precise image-guided interventions.

  20. Preliminary validation results of an ASIC for the readout and control of near-infrared large array detectors

    Science.gov (United States)

    Pâhlsson, Philip; Meier, Dirk; Otnes Berge, Hans Kristian; Øya, Petter; Steenari, David; Olsen, Alf; Hasanbegovic, Amir; Altan, Mehmet A.; Najafiuchevler, Bahram; Talebi, Jahanzad; Azman, Suleyman; Gheorghe, Codin; Ackermann, Jörg; Mæhlum, Gunnar

    2015-06-01

    In this paper we present initial test results of the Near Infrared Readout and Controller ASIC (NIRCA), designed for large area image sensors under contract from the European Space Agency (ESA) and the Norwegian Space Center. The ASIC is designed to read out image sensors based on mercury cadmium telluride (HgCdTe, or MCT) operating down to 77 K. IDEAS has developed, designed and initiated testing of NIRCA with promising results, showing complete functionality of all ASIC sub-components. The ASIC generates programmable digital signals to clock out the contents of an image array and to amplify, digitize and transfer the resulting pixel charge. The digital signals can be programmed into the ASIC during run-time and allows for windowing and custom readout schemes. The clocked out voltages are amplified by programmable gain amplifiers and digitized by 12-bit, 3-Msps successive approximation register (SAR) analogue-to-digital converters (ADC). Digitized data is encoded using 8-bit to 10-bit encoding and transferred over LVDS to the readout system. The ASIC will give European researchers access to high spectral sensitivity, very low noise and radiation hardened readout electronics for astronomy and Earth observation missions operating at 77 K and room temperature. The versatility of the chip makes the architecture a possible candidate for other research areas, or defense or industrial applications that require analog and digital acquisition, voltage regulation, and digital signal generation.

  1. Design of a Dry Dilution Refrigerator for MMC Gamma Detector Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Stephan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Boyd, Stephen [Univ. of New Mexico, Albuquerque, NM (United States); Cantor, Robin

    2017-04-03

    The goal of this LCP is to develop an ultra-high resolution gamma detector based on magnetic microcalorimeters (MMCs) for accurate non-destructive analysis (NDA) of nuclear materials. For highest energy resolution, we will introduce erbium-doped silver (Ag:Er) as a novel sensor material to replace current Au:Er sensors. The detector sensitivity will be increased by developing arrays of 32 Ag:Er pixels read out by 16 SQUID preamplifiers. MMC detectors require operating temperatures of ~15 mK and thus the use of a dilution refrigerator, and the desire for user-friendly operation without cryogenic liquids requires that this refrigerator use pulse-tube pre-cooling to ~4 K. For long-term reliability, we intend to re-design the heat switch that is needed to apply the magnetizing current to the Ag:Er sensor and that used to fail in earlier designs after months of operation. A cryogenic Compton veto will be installed to reduce the spectral background of the MMC, especially at low energies where ultra-high energy resolution is most important. The goals for FY16 were 1) to purchase a liquid-cryogen-free dilution refrigerator and adapt it for MMC operation, and 2) to fabricate Ag:Er-based MMC γ-detectors with improved performance and optimize their response. This report discusses the design of the instruments, and progress in MMC detector fabrication. Details of the MMC fabrication have been discussed in an April 2016 report to DOE.

  2. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Science.gov (United States)

    Li, Zheng; Chen, Wei

    2014-11-01

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  3. Development of novel on-chip, customer-design spiral biasing adaptor on for Si drift detectors and detector arrays for X-ray and nuclear physics experiments

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng, E-mail: lizheng@xtu.edu.cn [School of Materials, Optoelectronics and Physics, Xiangtan University, Xiangtan, Hunan 411105 (China); Chen, Wei [Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2014-11-21

    A novel on-chip, customer-design spiral biasing adaptor (SBA) has been developed. A single SBA is used for biasing a Si drift detector (SDD) and SDD array. The use of an SBA reduces the biasing current. This paper shows the calculation of the geometry of an SBA and an SDD to get the best drift field in the SDD and SDD array. Prototype SBAs have been fabricated to verify the concept. Electrical measurements on these SBAs are in agreement with the expectations. The new SDD array with an SBA can be used for X-ray detection and in nuclear physics experiments.

  4. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    Science.gov (United States)

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  5. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    Directory of Open Access Journals (Sweden)

    Erwin Hack

    2016-02-01

    Full Text Available In terahertz (THz materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i vanadium oxide; (ii amorphous silicon; (iii a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  6. Faraday cup detector array with electronic multiplexing for multichannel mass spectrometry

    CERN Document Server

    Scheidemann, A A; Schumacher, F J; Isakharov, A

    2002-01-01

    A Faraday cup detector array (FCDA) and electronic multiplexing circuit have been developed for position sensitive ion beam detection. The entire FCDA always remains open to intercept the incident ion beam flux, and each cup is periodically and sequentially discharged through the electronic multiplexer. This produces true multichannel ion beam detection since none of the incident ion beam flux is lost, as is the case for scanning position sensitive detectors, and higher sensitivity detection is thus obtained. The FCDA consists of a one-dimensional or two-dimensional array of individual cups which are electrostatically isolated from each other by means of an intervening ground conductor, with resulting fill factors F of 58% to 85%. Each cup acts as a charge collector and integrator which is quickly discharged during the readout to create a time-multiplexed output signal that gives the position distribution of the ion beam. When N cups are sequentially scanned and read out, the ion collection efficiency is F(1-...

  7. Attenuation study for Tibet Water Cherenkov Muon Detector Array-A

    CERN Document Server

    Gou, Quanbu; Liu, Cheng; Feng, Zhaoyang; Qian, Xiangli; Hou, Zhengtao

    2011-01-01

    The attenuation study of the long cable used in Tibet Water Cherenkov Muon Detector Array-A, called Tibet MD-A (one of 12 Tibet MD detectors), under the 37000 m2 Tibet air shower array, is reported. The cable frequency response is measured by using the sinusoidal signals, with which the influence of the cable on the pulse rise time is obtained. For the reason that the commercial 20 inch PMT (R3600_06) has a waterproof connection with the signal cable, one end of the signal cable is permanently connected to the PMT. Terminal reflection method is tested and used for measuring the signal attenuation. During the measurement, a practical way to eliminate the uncertainty caused by the baseline of the signal is achieved. To check the terminal reflection method, comparison measurement between it and QDC data taking method are carried out by using open-ended cables. The confirmed terminal reflection method is a fast and convenient method being suitable to online measure the signal attenuation for Tibet MD-A. The measu...

  8. Performance analysis of MIMO FSO systems with radial array beams and finite sized detectors

    Science.gov (United States)

    Gökçe, Muhsin C.; Kamacıoǧlu, Canan; Uysal, Murat; Baykal, Yahya

    2014-10-01

    Multiple-input multiple-output (MIMO) systems are employed in free space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, we consider a MIMO FSO system with practical transmitter and receiver configurations that consists of a radial laser array with Gaussian beams and finite sized detectors. We formulate the average received intensity and the power scinitillation as a function of the receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens-Fresnel principle. Then, integrations over the finite sized multiple detectors are performed and the effect of the receiver aperture averaging is quantified. We further derive an outage probability expression of this MIMO system in the presence of turbulence-induced fading channels. Using the derived expressions, we demonstrate the effect of several practical system parameters such as the ring radius, the number of array beamlets, the source size, the link length, structure constant and the receiver aperture radius on the system performance.

  9. Performance assessment of a 2D array of plastic scintillation detectors for IMRT quality assurance

    Science.gov (United States)

    Guillot, Mathieu; Gingras, Luc; Archambault, Louis; Beddar, Sam; Beaulieu, Luc

    2013-07-01

    The purposes of this work are to assess the performance of a 2D plastic scintillation detectors array prototype for quality assurance in intensity-modulated radiation therapy (IMRT) and to determine its sensitivity and specificity to positioning errors of one multileaf collimator (MLC) leaf and one MLC leaf bank by applying the principles of signal detection theory. Ten treatment plans (step-and-shoot delivery) and one volumetric modulated arc therapy plan were measured and compared to calculations from two treatment-planning systems (TPSs) and to radiochromic films. The averages gamma passing rates per beam found for the step-and-shoot plans were 95.8% for the criteria (3%, 2 mm), 97.8% for the criteria (4%, 2 mm), and 98.1% for the criteria (3%, 3 mm) when measurements were compared to TPS calculations. The receiver operating characteristic curves for the one leaf errors and one leaf bank errors were determined from simulations (theoretical upper limits) and measurements. This work concludes that arrays of plastic scintillation detectors could be used for IMRT quality assurance in clinics. The use of signal detection theory could improve the quality of dosimetric verifications in radiation therapy by providing optimal discrimination criteria for the detection of different classes of errors.

  10. CMOS detector arrays in a virtual 10-kilopixel camera for coherent terahertz real-time imaging.

    Science.gov (United States)

    Boppel, Sebastian; Lisauskas, Alvydas; Max, Alexander; Krozer, Viktor; Roskos, Hartmut G

    2012-02-15

    We demonstrate the principle applicability of antenna-coupled complementary metal oxide semiconductor (CMOS) field-effect transistor arrays as cameras for real-time coherent imaging at 591.4 GHz. By scanning a few detectors across the image plane, we synthesize a focal-plane array of 100×100 pixels with an active area of 20×20 mm2, which is applied to imaging in transmission and reflection geometries. Individual detector pixels exhibit a voltage conversion loss of 24 dB and a noise figure of 41 dB for 16 μW of the local oscillator (LO) drive. For object illumination, we use a radio-frequency (RF) source with 432 μW at 590 GHz. Coherent detection is realized by quasioptical superposition of the image and the LO beam with 247 μW. At an effective frame rate of 17 Hz, we achieve a maximum dynamic range of 30 dB in the center of the image and more than 20 dB within a disk of 18 mm diameter. The system has been used for surface reconstruction resolving a height difference in the μm range.

  11. Far infrared thermal detectors for laser radiometry using a carbon nanotube array

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, John H.; Lee, Bob; Grossman, Erich N.

    2011-07-20

    We present a description of a 1.5 mm long, vertically aligned carbon nanotube array (VANTA) on a thermopile and separately on a pyroelectric detector. Three VANTA samples, having average lengths of 40 {mu}m, 150 {mu}m, and 1.5 mm were evaluated with respect to reflectance at a laser wavelength of 394 {mu}m(760 GHz), and we found that the reflectance decreases substantially with increasing tube length, ranging from 0.38 to 0.23 to 0.01, respectively. The responsivity of the thermopile by electrical heating (98.4 mA/W) was equal to that by optical heating (98.0 mA/W) within the uncertainty of the measurement. We analyzed the frequency response and temporal response and found a thermal decay period of 500 ms, which is consistent with the specific heat of comparable VANTAs in the literature. The extremely low (0.01) reflectance of the 1.5 mm VANTAs and the fact that the array is readily transferable to the detector's surface is, to our knowledge, unprecedented.

  12. Spectrum measurement with the Telescope Array Low Energy Extension (TALE) fluorescence detector

    Science.gov (United States)

    Zundel, Zachary James

    The Telescope Array (TA) experiment is the largest Ultra High Energy cosmic ray observatory in the northern hemisphere and is designed to be sensitive to cosmic ray air showers above 1018eV. Despite the substantial measurements made by TA and AUGER (the largest cosmic ray observatory in the southern hemisphere), there remains uncertainty about whether the highest energy cosmic rays are galactic or extragalactic in origin. Locating features in the cosmic ray energy spectrum below 1018eV that indicate a transition from galactic to extragalactic sources would clarify the interpretation of measurements made at the highest energies. The Telescope Array Low Energy Extension (TALE) is designed to extend the energy threshold of the TA observatory down to 1016.5eV in order to make such measurements. This dissertation details the construction, calibration, and operation of the TALE flu- orescence detector. A measurement of the flux of cosmic rays in the energy range of 1016.5 -- 1018.5eV is made using the monocular data set taken between September 2013 and January 2014. The TALE fluorescence detector observes evidence for a softening of the cosmic spectrum at 1017.25+/-0.5eV. The evidence of a change in the spectrum motivates continued study of 1016.5 -- 1018.5eV cosmic rays.

  13. RVS large format arrays for astronomy

    Science.gov (United States)

    Starr, Barry; Mears, Lynn; Fulk, Chad; Getty, Jonathan; Beuville, Eric; Boe, Raymond; Tracy, Christopher; Corrales, Elizabeth; Kilcoyne, Sean; Vampola, John; Drab, John; Peralta, Richard; Doyle, Christy

    2016-07-01

    Raytheon Vision Systems (RVS) has a long history of providing state of the art infrared sensor chip assemblies (SCAs) for the astronomical community. This paper will provide an update of RVS capabilities for the community not only for the infrared wavelengths but also in the visible wavelengths as well. Large format infrared detector arrays are now available that meet the demanding requirements of the low background scientific community across the wavelength spectrum. These detector arrays have formats from 1k x 1k to as large as 8k x 8k with pixel sizes ranging from 8 to 27 μm. Focal plane arrays have been demonstrated with a variety of detector materials: SiPiN, HgCdTe, InSb, and Si:As IBC. All of these detector materials have demonstrated low noise and dark current, high quantum efficiency, and excellent uniformity. All can meet the high performance requirements for low-background within the limits of their respective spectral and operating temperature ranges.

  14. Dosimetric performance and array assessment of plastic scintillation detectors for stereotactic radiosurgery quality assurance

    Energy Technology Data Exchange (ETDEWEB)

    Gagnon, Jean-Christophe; Theriault, Dany; Guillot, Mathieu; Archambault, Louis; Beddar, Sam; Gingras, Luc; Beaulieu, Luc [Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec G1R 2J6 (Canada); Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec G1R 2J6 (Canada); Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec G1R 2J6 (Canada); Department of Radiation Physics, Unit 94, University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030 (United States); Departement de Physique, de Genie Physique et d' Optique, Universite Laval, Quebec, Quebec G1K 7P4 (Canada) and Departement de Radio-Oncologie, Hotel-Dieu de Quebec, Centre Hospitalier Universitaire de Quebec, Quebec G1R 2J6 (Canada)

    2012-01-15

    Purpose: To compare the performance of plastic scintillation detectors (PSD) for quality assurance (QA) in stereotactic radiosurgery conditions to a microion-chamber (IC), Gafchromic EBT2 films, 60 008 shielded photon diode (SD) and unshielded diodes (UD), and assess a new 2D crosshair array prototype adapted to small field dosimetry. Methods: The PSD consists of a 1 mm diameter by 1 mm long scintillating fiber (BCF-60, Saint-Gobain, Inc.) coupled to a polymethyl-methacrylate optical fiber (Eska premier, Mitsubishi Rayon Co., Ltd., Tokyo, Japan). Output factors (S{sub c,p}) for apertures used in radiosurgery ranging from 4 to 40 mm in diameter have been measured. The PSD crosshair array (PSDCA) is a water equivalent device made up of 49 PSDs contained in a 1.63 cm radius area. Dose profiles measurements were taken for radiosurgery fields using the PSDCA and were compared to other dosimeters. Moreover, a typical stereotactic radiosurgery treatment using four noncoplanar arcs was delivered on a spherical phantom in which UD, IC, or PSD was placed. Using the Xknife planning system (Integra Radionics Burlington, MA), 15 Gy was prescribed at the isocenter, where each detector was positioned. Results: Output Factors measured by the PSD have a mean difference of 1.3% with Gafchromic EBT2 when normalized to a 10 x 10 cm{sup 2} field, and 1.0% when compared with UD measurements normalized to the 35 mm diameter cone. Dose profiles taken with the PSD crosshair array agreed with other single detectors dose profiles in spite of the presence of the 49 PSDs. Gamma values comparing 1D dose profiles obtained with PSD crosshair array with Gafchromic EBT2 and UD measured profiles shows 98.3% and 100.0%, respectively, of detector passing the gamma acceptance criteria of 0.3 mm and 2%. The dose measured by the PSD for a complete stereotactic radiosurgery treatment is comparable to the planned dose corrected for its SD-based S{sub c,p} within 1.4% and 0.7% for 5 and 35 mm diameter cone

  15. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    Science.gov (United States)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  16. A dynamic resistance nonuniformity compensation circuit for uncooled microbolometer detector arrays

    Science.gov (United States)

    Yildirim, Omer Ozgur; Akin, Tayfun

    2006-05-01

    This paper presents a new approach for compensating resistance nonuniformity of uncooled microbolometers by adjusting the bias currents of both detector and reference pixels. Contrary to conventional nonuniformity compensation circuits, this approach eliminates the need for digital-to-analog converters (DACs), which usually occupy a large area, dissipate high power, and require complicated external circuitry with high frequency data transfer to the microbolometer chip. The proposed circuit uses a feedback structure that dynamically changes the bias currents of the reference and detector pixels and does not need complicated external circuitry. A special feature of the circuit is that it provides continuous compensation for the detector and reference resistances due to temperature changes over time. The circuit is implemented in a 0.6μm 5V CMOS process and occupies an area of only 160μm × 630μm. Test results of the prototype circuit show that the circuit reduces the offset current due to resistance nonuniformity about 2.35% of its uncompensated value, i.e., an improvement of about 42.5 times is achieved, independent of the nonuniformity amount. The circuit achieves this compensation in 12μsec. Considering its simplicity and low cost, this approach is suitable for large array commercial infrared imaging systems.

  17. A Deuterated Neutron Detector Array For Nuclear (Astro)Physics Studies

    Science.gov (United States)

    Almaraz-Calderon, Sergio; Asher, B. W.; Barber, P.; Hanselman, K.; Perello, J. F.

    2016-09-01

    The properties of neutron-rich nuclei are at the forefront of research in nuclear structure, nuclear reactions and nuclear astrophysics. The advent of intense rare isotope beams (RIBs) has opened a new door for studies of systems with very short half-lives and possible fascinating properties. Neutron spectroscopic techniques become increasingly relevant when these neutron rich nuclei are used in a variety of experiments. At Florida State University, we are developing a neutron detector array that will allow us to perform high-resolution neutron spectroscopic studies with stable and radioactive beams. The neutron detection system consists of 16 deuterated organic liquid scintillation detectors with fast response and pulse-shape discrimination capabilities. In addition to these properties, there is the potential to use the structure in the pulse-height spectra to extract the energy of the neutrons and thus produce directly excitation spectra. This type of detector uses deuterated benzene (C6D6) as the liquid scintillation medium. The asymmetric nature of the scattering between a neutron and a deuterium in the center of mass produces a pulse-height spectrum from the deuterated scintillator which contains useful information on the initial energy of the neutron. Work supported in part by the State of Florida and NSF Grant No. 1401574.

  18. Non-local means-based nonuniformity correction for infrared focal-plane array detectors

    Science.gov (United States)

    Yu, Hui; Zhang, Zhi-jie; Chen, Fu-sheng; Wang, Chen-sheng

    2014-11-01

    The infrared imaging systems are normally based on the infrared focal-plane array (IRFPA) which can be considered as an array of independent detectors aligned at the focal plane of the imaging system. Unfortunately, every detector on the IRFPA may have a different response to the same input infrared signal which is known as the nonuniformity problem. Then we can observe the fixed pattern noise (FPN) from the resulting images. Standard nonuniformity correction (NUC) methods need to be recalibrated after a short period of time due the temporal drift of the FPN. Scene-based nonuniformity correction (NUC) techniques eliminate the need for calibration by correction coefficients based on the scene being viewed. However, in the scene-based NUC method the problem of ghosting artifacts widely seriously decreases the image quality, which can degrade the performance of many applications such as target detection and track. This paper proposed an improved scene-based method based on the retina-like neural network approach. The method incorporates the use of non-local means (NLM) method into the estimation of the gain and the offset of each detector. This method can not only estimates the accurate correction coefficient but also restrict the ghosting artifacts efficiently. The proposed method relies on the use of NLM method which is a very successful image denoising method. And then the NLM used here can preserve the image edges efficiently and obtain a reliable spatial estimation. We tested the proposed NUC method by applying it to an IR sequence of frames. The performance of the proposed method was compared the other well-established adaptive NUC techniques.

  19. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  20. Update on Linear Mode Photon Counting with the HgCdTe Linear Mode Avalanche Photodiode

    Science.gov (United States)

    Beck, Jeffrey D.; Kinch, Mike; Sun, Xiaoli

    2014-01-01

    The behavior of the gain-voltage characteristic of the mid-wavelength infrared cutoff HgCdTe linear mode avalanche photodiode (e-APD) is discussed both experimentally and theoretically as a function of the width of the multiplication region. Data are shown that demonstrate a strong dependence of the gain at a given bias voltage on the width of the n- gain region. Geometrical and fundamental theoretical models are examined to explain this behavior. The geometrical model takes into account the gain-dependent optical fill factor of the cylindrical APD. The theoretical model is based on the ballistic ionization model being developed for the HgCdTe APD. It is concluded that the fundamental theoretical explanation is the dominant effect. A model is developed that combines both the geometrical and fundamental effects. The model also takes into account the effect of the varying multiplication width in the low bias region of the gain-voltage curve. It is concluded that the lower than expected gain seen in the first 2 × 8 HgCdTe linear mode photon counting APD arrays, and higher excess noise factor, was very likely due to the larger than typical multiplication region length in the photon counting APD pixel design. The implications of these effects on device photon counting performance are discussed.

  1. 中波HgCdTe光导探测器组件的故障树和失效研究%Study on HgCdTe Detector Assemble Fault Tree and Failure Analysis

    Institute of Scientific and Technical Information of China (English)

    王韡; 许金通; 周青; 张立瑶; 李向阳

    2012-01-01

    Discussed are the reliability problems of HgCdTe(MCT) infrared photoconductive detectors working at near room temperature,including package failure,chip bonding failure and performance attenuation.Based on collecting the failure data of the detectors,fault tree analysis(FTA) was built by analyzing the failure mechanism of physics and chemistry,manufacturing process and parameters of the detectors.Minimal cut sets of FTA were obtained from qualitative analysis and the failure probability of top event was calculated.The failure modes in detectors,structures and process were analyzed.%讨论了近室温工作的HgCdTe中波光导探测器组件的可靠性问题,包括组件封装失效、引线键合失效和探测器的性能衰减等。通过收集探测器组件的失效信息,对其失效物理化学机制、制造工艺和探测器参数进行了分析,建立了组件的故障树(FTA),为探测器组件的失效分析提供了理论依据。由FTA定性分析得出探测器组件FTA的最小割集;计算了顶事件的失效几率。通过计算底事件概率重要度,得出组件封装失效是探测器组件失效的主要故障途径;同时实验发现,失效组件探测器的少子寿命值有较大的衰减,这可能起源于失效探测器的表面钝化层退化。

  2. A new DOI detector design using discrete crystal array with depth-dependent reflector patterns and single-ended readout

    Science.gov (United States)

    Lee, Seung-Jae; Lee, Chaeyeong; Kang, Jihoon; Chung, Yong Hyun

    2017-01-01

    We developed a depth of interaction (DOI) positron emission tomography (PET) detector using depth-dependent reflector patterns in a discrete crystal array. Due to the different reflector patterns at depth, light distribution was changed relative to depth. As a preliminary experiment, we measured DOI detector module crystal identification performance. The crystal consisted of a 9×9 array of 2 mmx2 mmx20 mm lutetium-yttrium oxyorthosilicate (LYSO) crystals. The crystal array was optically coupled to a 64-channel position-sensitive photomultiplier tube with a 2 mmx2 mm anode size and an 18.1 mmx18.1 mm effective area. We obtained the flood image with an Anger-type calculation. DOI layers and 9×9 pixels were well distinguished in the obtained images. Preclinical PET scanners based on this detector design offer the prospect of high and uniform spatial resolution.

  3. A 2×2 array of EMCCD-based solid state x-ray detectors.

    Science.gov (United States)

    Sharma, P; Swetadri Vasan, S N; Titus, A H; Cartwright, A N; Bednarek, D R; Rudin, S

    2012-01-01

    We have designed and developed a new solid-state x-ray imaging system that consists of a 2×2 array of electron multiplying charge coupled devices (EMCCDs). This system is intended for fluoroscopic and angiographic medical imaging. The key components are the four 1024 × 1024 pixel EMCCDs with a pixel size of 13 × 13 µm(2). Each EMCCD is bonded to a fiber optic plate (FOP), and optically coupled to a 350 µm thick micro-columnar CsI(TI) scintillator via a 3.22∶1 fiber optic taper (FOT). The detector provides x-ray images of 9 line pairs/mm resolution at 15 frames/sec and real-time live video at 30 frames/sec with binning at a lower resolution, independent of the electronic gain applied to the EMCCD. The total field of view (FOV) of the array is 8.45 cm × 8.45 cm. The system is designed to also provide the ability to do region-of- interest imaging (ROI) by selectively enabling individual modules of the array.

  4. LENDA, a Low Energy Neutron Detector Array for experiments with radioactive beams in inverse kinematics

    CERN Document Server

    Perdikakis, G; Austin, Sam M; Bazin, D; Caesar, C; Cannon, S; Deaven, J M; Doster, H J; Guess, C J; Hitt, G W; Marks, J; Meharchand, R; Nguyen, D T; Peterman, D; Prinke, A; Scott, M; Shimbara, Y; Thorne, K; Valdez, L; Zegers, R G T

    2011-01-01

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Lab- oratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p, n) charge-exchange reactions at intermediate energies (> 100 MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV - 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neut...

  5. High-performance SPAD array detectors for parallel photon timing applications

    Science.gov (United States)

    Rech, I.; Cuccato, A.; Antonioli, S.; Cammi, C.; Gulinatti, A.; Ghioni, M.

    2012-02-01

    Over the past few years there has been a growing interest in monolithic arrays of single photon avalanche diodes (SPAD) for spatially resolved detection of faint ultrafast optical signals. SPADs implemented in planar technologies offer the typical advantages of microelectronic devices (small size, ruggedness, low voltage, low power, etc.). Furthermore, they have inherently higher photon detection efficiency than PMTs and are able to provide, beside sensitivities down to single-photons, very high acquisition speeds. In order to make SPAD array more and more competitive in time-resolved application it is necessary to face problems like electrical crosstalk between adjacent pixel, moreover all the singlephoton timing electronics with picosecond resolution has to be developed. In this paper we present a new instrument suitable for single-photon imaging applications and made up of 32 timeresolved parallel channels. The 32x1 pixel array that includes SPAD detectors represents the system core, and an embedded data elaboration unit performs on-board data processing for single-photon counting applications. Photontiming information is exported through a custom parallel cable that can be connected to an external multichannel TCSPC system.

  6. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    CERN Document Server

    Huang, Ying Zhangm Jing; Zhai, Liu-Ming; Chen, Xu; Hu, Xiao-Bin; Lin, Yu-Hui; Zhang, Xue-Yao; Feng, Cun-Feng; Jia, Huan-Yu; Zhou, Xun-Xiu; Dan-Zen, Luo-bu; Chen, Tian-Lu; Laba, Ci-Ren; Mao-Yuan,; Gao, Qi; Zha-xi, Ci-ren

    2016-01-01

    A new hybrid experiment has been constructed to measure the chemical composition of cosmic rays around the "knee" in the wide energy range by the Tibet AS$\\gamma$ collaboration at Tibet, China, since 2014. They consist of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD). In order to obtain the primary proton, helium and iron spectra and their "knee" positions in the energy range lower than $10^{16}$ eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100 - $10^{6}$ photoelectrons (PEs) according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. This is the first comparison between R5912-PMT and CR365-PMT. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirem...

  7. LENDA: A low energy neutron detector array for experiments with radioactive beams in inverse kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Perdikakis, G., E-mail: perdikak@nscl.msu.edu [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Sasano, M.; Austin, Sam M. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Bazin, D. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Caesar, C. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Cannon, S. [Hastings College, Hastings, NE 68901 (United States); Deaven, J.M.; Doster, H.J.; Guess, C.J.; Hitt, G.W. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Marks, J. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Meharchand, R. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute of Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824 (United States); Nguyen, D.T. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824 (United States); Peterman, D. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); and others

    2012-09-11

    The Low Energy Neutron Detector Array (LENDA) is a neutron time-of-flight (TOF) spectrometer developed at the National Superconducting Cyclotron Laboratory (NSCL) for use in inverse kinematics experiments with rare isotope beams. Its design has been motivated by the need to study the spin-isospin response of unstable nuclei using (p,n) charge-exchange reactions at intermediate energies (>100MeV/u). It can be used, however, for any reaction study that involves emission of low energy neutrons (150 keV to 10 MeV). The array consists of 24 plastic scintillator bars and is capable of registering the recoiling neutron energy and angle with high detection efficiency. The neutron energy is determined by the time-of-flight technique, while the position of interaction is deduced using the timing and energy information from the two photomultipliers of each bar. A simple test setup utilizing radioactive sources has been used to characterize the array. Results of test measurements are compared with simulations. A neutron energy threshold of <150keV, an intrinsic time (position) resolution of {approx} 400 ps ({approx} 6 cm) and an efficiency >20% for neutrons below 4 MeV have been obtained.

  8. Simulation of Small-Pitch HgCdTe Photodetectors

    Science.gov (United States)

    Vallone, Marco; Goano, Michele; Bertazzi, Francesco; Ghione, Giovanni; Schirmacher, Wilhelm; Hanna, Stefan; Figgemeier, Heinrich

    2017-09-01

    Recent studies indicate as an important technological step the development of infrared HgCdTe-based focal plane arrays (FPAs) with sub-wavelength pixel pitch, with the advantage of smaller volume, lower weight, and potentially lower cost. In order to assess the limits of pixel pitch scaling, we present combined three-dimensional optical and electrical simulations of long-wavelength infrared HgCdTe FPAs, with 3 μm, 5 μm, and 10 μm pitch. Numerical simulations predict significant cavity effects, brought by the array periodicity. The optical and electrical contributions to spectral inter-pixel crosstalk are investigated as functions of pixel pitch, by illuminating the FPAs with Gaussian beams focused on the central pixel. Despite the FPAs being planar with 100% pixel duty cycle, our calculations suggest that the total crosstalk with nearest-neighbor pixels could be kept acceptably small also with pixels only 3 μ m wide and a diffraction-limited optical system.

  9. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System

    Directory of Open Access Journals (Sweden)

    Jong-Ryul Yang

    2016-03-01

    Full Text Available A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  10. Signal-Conditioning Block of a 1 × 200 CMOS Detector Array for a Terahertz Real-Time Imaging System.

    Science.gov (United States)

    Yang, Jong-Ryul; Lee, Woo-Jae; Han, Seong-Tae

    2016-03-02

    A signal conditioning block of a 1 × 200 Complementary Metal-Oxide-Semiconductor (CMOS) detector array is proposed to be employed with a real-time 0.2 THz imaging system for inspecting large areas. The plasmonic CMOS detector array whose pixel size including an integrated antenna is comparable to the wavelength of the THz wave for the imaging system, inevitably carries wide pixel-to-pixel variation. To make the variant outputs from the array uniform, the proposed signal conditioning block calibrates the responsivity of each pixel by controlling the gate bias of each detector and the voltage gain of the lock-in amplifiers in the block. The gate bias of each detector is modulated to 1 MHz to improve the signal-to-noise ratio of the imaging system via the electrical modulation by the conditioning block. In addition, direct current (DC) offsets of the detectors in the array are cancelled by initializing the output voltage level from the block. Real-time imaging using the proposed signal conditioning block is demonstrated by obtaining images at the rate of 19.2 frame-per-sec of an object moving on the conveyor belt with a scan width of 20 cm and a scan speed of 25 cm/s.

  11. Electronics and data acquisition system of the extensive air shower detector array at the University of Puebla

    Science.gov (United States)

    Perez, E.; Salazar, H.; Villasenor, L.; Martinez, O.; Conde, R.; Murrieta, T.

    Field programmable gate arrays (FPGAs) are playing an increasing role in DAQ systems in cosmic ray experiments due to their high speed and integration and their low cost and low power comsumption. In this paper we describe in detail the new electronics and data acquisition system based on FPGA boards of the extensive air shower detector array built in the Campus of the University of Puebla. The purpose of this detector array is to measure the energy and arrival direction of primary cosmic rays with energies around 1015 eV. The array consists of 10 liquid scintillator detectors and 6 water Cherenkov detectors (of 1.86 m2 cross section), distributed in a square grid with a detector spacing of 20 m over an area of 4000 m2. The electronics described also makes use of analog to digital converters with a resolution of 10 bits and sampling speeds of 100 MS/s to digitize the PMT signals. We also discuss the advantages of discriminating the PMT signals inside the FPGAs with respect to the conventional use of dedicated discrimination circuits.

  12. Silicon PIN diode hybrid arrays for charged particle detection: Building blocks for vertex detectors at the SSC

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, G.; Gaalema, S.; Shapiro, S.L.; Dunwoodie, W.M.; Arens, J.F.; Jernigan, J.G.

    1989-05-01

    Two-dimensional arrays of solid state detectors have long been used in visible and infrared systems. Hybrid arrays with separately optimized detector and readout substrates have been extensively developed for infrared sensors. The characteristics and use of these infrared readout chips with silicon PIN diode arrays produced by MICRON SEMICONDUCTOR for detecting high-energy particles are reported. Some of these arrays have been produced in formats as large as 512 /times/ 512 pixels; others have been radiation hardened to total dose levels beyond 1 Mrad. Data generation rates of 380 megasamples/second have been achieved. Analog and digital signal transmission and processing techniques have also been developed to accept and reduce these high data rates. 9 refs., 15 figs., 2 tabs.

  13. SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array

    Science.gov (United States)

    Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore

    2014-07-01

    The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.

  14. Large arrays of dual-polarized multichroic TES detectors for CMB measurements with the SPT-3G receiver

    Science.gov (United States)

    Posada, Chrystian M.; Ade, Peter A. R.; Anderson, Adam J.; Avva, Jessica; Ahmed, Zeeshan; Arnold, Kam S.; Austermann, Jason; Bender, Amy N.; Benson, Bradford A.; Bleem, Lindsey; Byrum, Karen; Carlstrom, John E.; Carter, Faustin W.; Chang, Clarence; Cho, Hsiao-Mei; Cukierman, Ari; Czaplewski, David A.; Ding, Junjia; Divan, Ralu N. S.; de Haan, Tijmen; Dobbs, Matt; Dutcher, Daniel; Everett, Wenderline; Gannon, Renae N.; Guyser, Robert J.; Halverson, Nils W.; Harrington, Nicholas L.; Hattori, Kaori; Henning, Jason W.; Hilton, Gene C.; Holzapfel, William L.; Huang, Nicholas; Irwin, Kent D.; Jeong, Oliver; Khaire, Trupti; Korman, Milo; Kubik, Donna L.; Kuo, Chao-Lin; Lee, Adrian T.; Leitch, Erik M.; Lendinez Escudero, Sergi; Meyer, Stephan S.; Miller, Christina S.; Montgomery, Joshua; Nadolski, Andrew; Natoli, Tyler J.; Nguyen, Hogan; Novosad, Valentyn; Padin, Stephen; Pan, Zhaodi; Pearson, John E.; Rahlin, Alexandra; Reichardt, Christian L.; Ruhl, John E.; Saliwanchik, Benjamin; Shirley, Ian; Sayre, James T.; Shariff, Jamil A.; Shirokoff, Erik D.; Stan, Liliana; Stark, Antony A.; Sobrin, Joshua; Story, Kyle; Suzuki, Aritoki; Tang, Qing Yang; Thakur, Ritoban B.; Thompson, Keith L.; Tucker, Carole E.; Vanderlinde, Keith; Vieira, Joaquin D.; Wang, Gensheng; Whitehorn, Nathan; Yefremenko, Volodymyr; Yoon, Ki Won

    2016-07-01

    Detectors for cosmic microwave background (CMB) experiments are now essentially background limited, so a straightforward alternative to improve sensitivity is to increase the number of detectors. Large arrays of multichroic pixels constitute an economical approach to increasing the number of detectors within a given focal plane area. Here, we present the fabrication of large arrays of dual-polarized multichroic transition-edge-sensor (TES) bolometers for the South Pole Telescope third-generation CMB receiver (SPT-3G). The complete SPT-3G receiver will have 2690 pixels, each with six detectors, allowing for individual measurement of three spectral bands (centered at 95 GHz, 150 GHz and 220 GHz) in two orthogonal polarizations. In total, the SPT-3G focal plane will have 16140 detectors. Each pixel is comprised of a broad-band sinuous antenna coupled to a niobium microstrip transmission line. In-line filters are used to define the different band-passes before the millimeter-wavelength signal is fed to the respective Ti/Au TES sensors. Detectors are read out using a 64x frequency domain multiplexing (fMux) scheme. The microfabrication of the SPT-3G detector arrays involves a total of 18 processes, including 13 lithography steps. Together with the fabrication process, the effect of processing on the Ti/Au TES's Tc is discussed. In addition, detectors fabricated with Ti/Au TES films with Tc between 400 mK 560 mK are presented and their thermal characteristics are evaluated. Optical characterization of the arrays is presented as well, indicating that the response of the detectors is in good agreement with the design values for all three spectral bands (95 GHz, 150 GHz, and 220 GHz). The measured optical efficiency of the detectors is between 0.3 and 0.8. Results discussed here are extracted from a batch of research of development wafers used to develop the baseline process for the fabrication of the arrays of detectors to be deployed with the SPT-3G receiver. Results from

  15. On the estimation of target depth using the single transmit multiple receive metal detector array

    Science.gov (United States)

    Ho, K. C.; Gader, P. D.

    2012-06-01

    This paper investigates the use of the Single Transmit Multiple Receive (STMR) metal detector (MD) array to estimate the depth of metal targets, such as 155mm shells. The depth estimation problem using MD has been investigated by a number of researchers and the processing was performed along the down-track. The proposed method takes a different approach by exploring the MD responses in cross-track to achieve the depth estimation. It is found that the normalized energy spread of the MD output is narrower for shallow targets and wider for deeper targets. Based on this observation, a method is derived to estimate the depth of a target. Experimental results from the data collected at an U.S. Army test site validate the performance of the proposed depth estimator.

  16. Application of multiparameter coincidence spectrometry using a Ge detectors array to neutron activation analysis

    CERN Document Server

    Hatsukawa, Y; Hayakawa, T; Toh, Y; Shinohara, N

    2002-01-01

    The method of multiparameter coincidence spectrometry based on gamma-gamma coincidence is widely used for the nuclear structure studies, because of its high sensitivity to gamma-rays. In this study, feasibility of the method of multiparameter coincidence spectrometry for analytical chemistry was examined. Two reference igneous rock samples (JP-1, JB-1a) issued by the Geological Survey of Japan were irradiated at a research reactor, and the gamma-rays from the radioisotopes produced via neutron capture reactions were measured using an array of 12 Ge detectors with BGO Compton suppressors, GEMINI. Simultaneously 24 elements were analyzed without chemical separation. The observed smallest component was Eu contained in JP-1 with abundance of 4 ppb.

  17. Study and characterization of arrays of detectors for dosimetric verification of radiotherapy, analysis of business solutions; Estudio y caracterizacion de materiales de detectores para verificacion dosimetrica de radioterapia, analisis de las soluciones comerciales

    Energy Technology Data Exchange (ETDEWEB)

    Gago Arias, A.; Brualla Gonzalez, L.; Gomez Rodriguez, F.; Gonzalez Castano, D. M.; Pardo Montero, J.; Luna Vega, V.; Mosquera Sueiro, J.; Sanchez Garcia, M.

    2011-07-01

    This paper presents a comparative study of the detector arrays developed by different business houses to the demand for devices that speed up the verification process. Will analyze the effect of spatial response of individual detectors in the measurement of dose distributions, modeling the same and analyzing the ability of the arrays to detect variations in a treatment yield.

  18. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  19. Study on the energy response to neutrons for a new scintillating-fiber-array neutron detector

    CERN Document Server

    Zhang Qi; Wang Qun; Xie Zhong Shen

    2003-01-01

    The energy response of a new scintillating-fiber-array neutron detector to neutrons in the energy range 0.01 MeV<=E sub n<=14 MeV was modeled by combining a simplified Monte Carlo model and the MCNP 4b code. In order to test the model and get the absolute sensitivity of the detector to neutrons, one experiment was carried out for 2.5 and 14 MeV neutrons from T(p,n) sup 3 He and T(d,n) sup 4 He reactions at the Neutron Generator Laboratory at the Institute of Modern Physics, the Chinese Academy of Science. The absolute neutron fluence was obtained with a relative standard uncertainty 4.5% or 2.0% by monitoring the associated protons or sup 4 He particles, respectively. Another experiment was carried out for 0.5, 1.0, 1.5, 2.0, 2.5 MeV neutrons from T(p,n) sup 3 He reaction, and for 3.28, 3.50, 4.83, 5.74 MeV neutrons from D(d,n) sup 3 He reaction on the Model 5SDH-2 accelerator at China Institute of Atomic Energy. The absolute neutron fluence was obtained with a relative standard uncertainty 5.0% by usin...

  20. Digital pulse-timing technique for the neutron detector array NEDA

    Energy Technology Data Exchange (ETDEWEB)

    Modamio, V., E-mail: victor.modamio@lnl.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Valiente-Dobón, J.J. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, 02-093 Warszawa (Poland); Hüyük, T. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Triossi, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); Egea, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Department of Electronic Engineering, Universitat de València, E-46100 Burjassot (Spain); Di Nitto, A. [Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Söderström, P.-A. [RIKEN Nishina Center, 2-1 Hirosawa, Wako-shi, 351-0198 Saitama (Japan); Agramunt Ros, J. [Instituto de Física Corpuscular, CSIC-Universitat de València, E-46980 Valencia (Spain); Angelis, G. de [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, I-35020 Legnaro (Italy); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, F-14076 Caen (France); Erduran, M.N. [Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, 34303 Istanbul (Turkey); and others

    2015-03-01

    A new digital pulse-timing algorithm, to be used with the future neutron detector array NEDA, has been developed and tested. The time resolution of four 5 in. diameter photomultiplier tubes (XP4512, R4144, R11833-100, and ET9390-kb), coupled to a cylindrical 5 in. by 5 in. BC501A liquid scintillator detector was measured by employing digital sampling electronics and a constant fraction discriminator (CFD) algorithm. The zero crossing of the CFD algorithm was obtained with a cubic spline interpolation, which was continuous up to the second derivative. The performance of the algorithm was studied at sampling rates of 500 MS/s and 200 MS/s. The time resolution obtained with the digital electronics was compared to the values acquired with a standard analog CFD. The result of this comparison shows that the time resolution from the analog and the digital measurements at 500 MS/s and at 200 MS/s are within 15% for all the tested photomultiplier tubes.

  1. Commentary: JWST near-infrared detector degradation— finding the problem, fixing the problem, and moving forward

    Directory of Open Access Journals (Sweden)

    Bernard J. Rauscher

    2012-06-01

    Full Text Available The James Webb Space Telescope (JWST is the successor to the Hubble Space Telescope. JWST will be an infrared-optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST’s four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 μm cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a “Detector Degradation Failure Review Board” (DD-FRB to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article, we present the two public DD-FRB “Executive Summaries” that: (1 determined the root cause of the detector degradation and (2 defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, some recent measurements showing that the performance of the improved design meets JWST requirements, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  2. Effect of scattered electrons on the ‘Magic Plate’ transmission array detector response

    Science.gov (United States)

    Alrowaili, Z. A.; Lerch, M.; Petasecca, M.; Carolan, M.; Rosenfeld, A.

    2017-02-01

    Transmission type detectors can provide a measure of the energy fluence and if they are real-time systems that do not significantly attenuate the radiation beam have a distinct advantage over the current method as Quality Assurance (QA) could in principle be done during the actual patient treatment. The use of diode arrays in QA holds much promise due to real-time operation and feedback when compared to other methods e.g. films which are not real-time. The goal of this work is to describe the characterization of the radiation response of a silicon diode array called the Magic Plate (MP) when operated in transmission mode (MPTM). The response linearity of MPTM was excellent (R2=1). When the MP was placed in linac block tray position; the change in PDD at phantom surface (SSD 100 cm) for a 10 × 10 cm2 was -0.037 %, -0.178 % and -0.949 % for 6 MV, 10 MV and 18 MV beams. Therefore, MP does not provide a significant increase in skin dose to the patient and the percentage depth doses showed an excellent agreement with and without MPTM for 6 MV, 10 MV and 18 MV beams.

  3. An investigation for the HgCdTe cleaning process

    Science.gov (United States)

    Lan, Tian-Yi; Wang, Nili; Zhao, Shuiping; Liu, Shi-Jia; Li, Xiang-Yang

    2014-11-01

    A new cleaning process for HgCdTe was designed - which used the improved SC-1,SC-2 and Br2- C2H5OH solutions as the main cleaning fluid and applied mega sound waves in the cleaning process. By analyzing the test results carried out on the HgCdTe surface, it was found that the material of HgCdTe for the application of new cleaning process was better than the one for the application of conventional cleaning process in the minority carrier lifetime, residual organic contamination, responsivity and specific detectivity.

  4. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    Science.gov (United States)

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  5. Performance of new 8-inch photomultiplier tube used for the Tibet muon-detector array

    Science.gov (United States)

    Zhang, Y.; Huang, J.; Chen, D.; Zhai, L.-M.; Chen, X.; Hu, X.-B.; Lin, Y.-H.; Jin, H.-B.; Zhang, X.-Y.; Feng, C.-F.; Jia, H.-Y.; Zhou, X.-X.; Danzengluobu; Chen, T.-L.; Labaciren; Liu, M.-Y.; Gao, Q.; Zhaxiciren

    2016-06-01

    Since 2014, a new hybrid experiment consisting of a high-energy air-shower-core array (YAC-II), a high-density air-shower array (Tibet-III) and a large underground water-Cherenkov muon-detector array (MD) has been continued by the Tibet ASγ collaboration to measure the chemical composition of cosmic rays in the wide energy range including the ``knee''. In this experiment, YAC-II is used to select high energy core events induced by cosmic rays in the above energy region, while MD is used to estimate the type of nucleus of primary particles by measuring the number of muons contained in the air showers. However, the dynamic range of each MD cell is only 5 to 2000 photoelectrons (PEs) which is mainly designed for observation of high-energy celestial gamma rays. In order to obtain the primary proton, helium and iron spectra and their ``knee'' positions with energy up to 1016 eV, each of PMTs equipped to the MD cell is required to measure the number of photons capable of covering a wide dynamic range of 100-106 PEs according to Monte Carlo simulations. In this paper, we firstly compare the characteristic features between R5912-PMT made by Japan Hamamatsu and CR365-PMT made by Beijing Hamamatsu. If there exists no serious difference, we will then add two 8-inch-in-diameter PMTs to meet our requirements in each MD cell, which are responsible for the range of 100-10000 PEs and 2000-1000000 PEs, respectively. That is, MD cell is expected to be able to measure the number of muons over 6 orders of magnitudes.

  6. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    Energy Technology Data Exchange (ETDEWEB)

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald, E-mail: xrzhu@mdanderson.org [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 (United States)

    2015-07-30

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  7. Fast sub-electron detectors review for interferometry

    Science.gov (United States)

    Feautrier, Philippe; Gach, Jean-Luc; Bério, Philippe

    2016-08-01

    New disruptive technologies are now emerging for detectors dedicated to interferometry. The detectors needed for this kind of applications need antonymic characteristics: the detector noise must be very low, especially when the signal is dispersed but at the same time must also sample the fast temporal characteristics of the signal. This paper describes the new fast low noise technologies that have been recently developed for interferometry and adaptive optics. The first technology is the Avalanche PhotoDiode (APD) infrared arrays made of HgCdTe. In this paper are presented the two programs that have been developed in that field: the Selex Saphira 320x256 [1] and the 320x255 RAPID detectors developed by Sofradir/CEA LETI in France [2], [3], [4]. Status of these two programs and future developments are presented. Sub-electron noise can now be achieved in the infrared using this technology. The exceptional characteristics of HgCdTe APDs are due to a nearly exclusive impaction ionization of the electrons, and this is why these devices have been called "electrons avalanche photodiodes" or e-APDs. These characteristics have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in gated mode (2D) and/or with direct time of flight detection (3D imaging) and, more recently, passive imaging for infrared wave front correction and fringe tracking in astronomical observations. In addition, a commercial camera solution called C-RED, based on Selex Saphira and commercialized by First Light Imaging [5], is presented here. Some groups are also working with instruments in the visible. In that case, another disruptive technology is showing outstanding performances: the Electron Multiplying CCDs (EMCCD) developed mainly by e2v technologies in UK. The OCAM2 camera, commercialized by First Light Imaging [5], uses the 240x240 EMMCD from e2v and is successfully implemented on the VEGA instrument on the CHARA

  8. Design, fabrication and testing of 17um pitch 640x480 uncooled infrared focal plane array detector

    Science.gov (United States)

    Jiang, Lijun; Liu, Haitao; Chi, Jiguang; Qian, Liangshan; Pan, Feng; Liu, Xiang

    2015-10-01

    Uncooled infrared focal plane array (UIRFPA) detectors are widely used in industrial thermography cameras, night vision goggles, thermal weapon sights, as well as automotive night vision systems. To meet the market requirement for smaller pixel pitch and higher resolution, we have developed a 17um pitch 640x480 UIRFPA detector. The detector is based on amorphous silicon (a-Si) microbolometer technology, the readout integrated circuit (ROIC) is designed and manufactured with 0.35um standard CMOS technology on 8 inch wafer, the microbolometer is fabricated monolithically on the ROIC using an unique surface micromachining process developed inside the company, the fabricated detector is vacuum packaged with hermetic metal package and tested. In this paper we present the design, fabrication and testing of the 17um 640x480 detector. The design trade-off of the detector ROIC and pixel micro-bridge structure will be discussed, by comparison the calculation and simulation to the testing results. The novel surface micromachining process using silicon sacrificial layer will be presented, which is more compatible with the CMOS process than the traditional process with polyimide sacrificial layer, and resulted in good processing stability and high fabrication yield. The performance of the detector is tested, with temperature equivalent temperature difference (NETD) less than 60mK at F/1 aperture, operability better than 99.5%. The results demonstrate that the detector can meet the requirements of most thermography and night vision applications.

  9. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    Science.gov (United States)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  10. Performance evaluation of a PET detector consisting of an LYSO array coupled to a 4 x 4 array of large-size GAPD for MR compatible imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Key Jo; Choi, Yong; Kang, Jihoon; Hu, Wei; Jung, Jin Ho; Min, Byung Jun [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Chung, Yong Hyun [Department of Radiological Science, Yonsei University, College of Health Science, 234 Meaji, Heungup Wonju, Kangwon-Do, 220-710 (Korea, Republic of); Jackson, Carl, E-mail: ychoi@sogang.ac.kr [SensL, Blackrock, Cork (Ireland)

    2011-05-01

    We examined a PET detector consisting of an LYSO array coupled to a 4 x 4 array of large-size Geiger-mode avalanche photodiode (GAPD). The GAPD coupled to 3 mm x 3 mm x 20 mm LYSO pixel crystal has been investigated for possible use as an MR-compatible PET photosensor. Primary characteristics of a PET detector, such as energy resolution and coincidence timing resolution were measured. Gain variation, count uniformity, and count estimation error of 4 x 4 array of LYSO-GAPD were measured to evaluate the performance parameters relevant for PET imaging. The energy resolution and coincidence timing resolution with 511 keV gamma rays were 18.5 {+-} 0.7% and 1.6 ns, respectively. The gain variation, count uniformity for all 16 channels were 1.3:1 and 1.3:1, respectively. The count estimation error between adjacent channels measured with an LYSO connected to a GAPD pixel was negligible (0.24 {+-} 0.04%). Long-term stability results show that there was no significant change in the photopeak position, energy resolution and count rate for 20 days. Cable lengths up to 300 cm, used between the GAPD and preamplifier, did not affect photopeak position and energy resolution. The performance of the LYSO-GAPD detector inside the MRI exhibited no significant change compared to that measured outside the MRI. The MR images acquired with and without the operating LYSO-GAPD detector located on top of the RF coil showed no considerable degradation in image quality. These results demonstrate the feasibility of using the LYSO-GAPD detector as PET photosensors, which could be used for MR compatible PET development.

  11. The design, implementation, and performance of the Atro-H SXS calorimeter array and anti-coincidence detector

    Science.gov (United States)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chervenak, James A.; Chiao, Meng P.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Massimiliano; Grein, Christoph; Jhabvala, Christine A.; Kelley, Richard L.; Kelly, Daniel P.; Leutenegger, Maurice A.; McCammon, Dan; Porter, F. S.; Szymkowiak, Andrew E.; Watanabe, Tomomi; Zhao, Jun

    2016-07-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistorbearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  12. The Design, Implementation, and Performance of the Astro-H SXS Calorimeter Array and Anti-Coincidence Detector

    Science.gov (United States)

    Kilbourne, Caroline A.; Adams, Joseph S.; Brekosky, Regis P.; Chiao, Meng P.; Chervenak, James A.; Eckart, Megan E.; Figueroa-Feliciano, Enectali; Galeazzi, Masimilliano; Grein, Christoph; Jhabvala, Christine A.; hide

    2016-01-01

    The calorimeter array of the JAXA Astro-H (renamed Hitomi) Soft X-ray Spectrometer (SXS) was designed to provide unprecedented spectral resolution of spatially extended cosmic x-ray sources and of all cosmic x-ray sources in the Fe-K band around 6 keV, enabling essential plasma diagnostics. The SXS has a square array of 36 microcalorimeters at the focal plane. These calorimeters consist of ion-implanted silicon thermistors and HgTe thermalizing x-ray absorbers. These devices have demonstrated a resolution of better than 4.5 eV at 6 keV when operated at a heat-sink temperature of 50 mK. We will discuss the basic physical parameters of this array, including the array layout, thermal conductance of the link to the heat sink, resistance function, absorber details, and means of attaching the absorber to the thermistor-bearing element. We will also present the thermal characterization of the whole array, including thermal conductance and crosstalk measurements and the results of pulsing the frame temperature via alpha particles, heat pulses, and the environmental background. A silicon ionization detector is located behind the calorimeter array and serves to reject events due to cosmic rays. We will briefly describe this anti-coincidence detector and its performance.

  13. Fabrication and characterization of cubic SrI{sub 2}(Eu) scintillators for use in array detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shimazoe, K., E-mail: shimazoe@bioeng.t.u-tokyo.ac.jp [The University of Tokyo, Tokyo (Japan); Koyama, A.; Takahashi, H. [The University of Tokyo, Tokyo (Japan); Sakuragi, S. [Union Materials Inc., Tone-machi, Ibaraki (Japan); Yamasaki, Y. [Leading Edge Algorithm Co. Ltd., Hikaridai, Seikacho, Kyoto (Japan)

    2016-02-21

    Strontium iodide (SrI{sub 2}(Eu)) is a promising spectroscopic detector for use in both nuclear security and medical imaging owing to its excellent energy resolution and low internal background radiation. A cubic form is preferable when coupling with a silicon-based photosensor in order to build an array detector for use in applications such as Compton cameras. Here, cubic SrI{sub 2}(Eu) crystals with 10 mm sides were fabricated and evaluated. The cubic SrI{sub 2}(Eu) samples coupled to an avalanche photodiode exhibited an energy resolution of approximately 3.6% at 662 keV when using a shaping time of 3 µs. An increase in light output and an improvement of energy resolution were also observed at lower temperatures. The excellent energy resolution of these devices indicates that these crystals are promising potential detectors for use in Compton cameras and other imaging detectors.

  14. Optical theory of partially coherent thin-film energy-absorbing structures for power detectors and imaging arrays.

    Science.gov (United States)

    Withington, Stafford; Thomas, Christopher N

    2009-06-01

    Free-space power detectors often have energy absorbing structures comprising multilayer systems of patterned thin films. We show that for any system of interacting resistive films, the expectation value of the absorbed power is given by the contraction of two tensor fields: one describes the spatial state of coherence of the incoming radiation, the other the state of coherence to which the detector is sensitive. Equivalently, the natural modes of the optical field scatter power into the natural modes of the detector. We describe a procedure for determining the amplitude, phase, and polarization patterns of a detector's optical modes and their relative responsivities. The procedure gives the state of coherence of the currents flowing in the system and leads to important conceptual insights into the way the pixels of an imaging array interact and extract information from an optical field.

  15. A liquid core waveguide fluorescence detector for multicapillary electrophoresis applied to DNA sequencing in a 91-capillary array.

    Science.gov (United States)

    Hanning, A; Westberg, J; Roeraade, J

    2000-09-01

    A new laser-induced fluorescence (LIF) detector for multicapillary electrophoresis is presented. The detection principle is based on waveguiding of the emitted fluorescence from the point of illumination to the capillary ends by total internal reflection (TIR) and imaging of the capillary ends. The capillaries themselves thus act as liquid core waveguides (LCWs). At the illumination point, the capillaries are arranged in a planar array, which allows clean and efficient illumination with a line-focused laser beam. The capillary ends are rearranged into a small, densely packed two-dimensional array, which is imaged end-on with high light collection efficiency and excellent image quality. Wavelength dispersion is obtained with a single prism. Intercapillary optical crosstalk is less than 0.5%, and rejection of stray light is very efficient. The detector is applied to four-color DNA sequencing by gel electrophoresis in a 91-capillary array, with simple fluorescein and rhodamine dyes as fluorophores. Since the imaged two-dimensional array is so compact, the detector has a high potential for very large-scale multiplexing.

  16. Core-shell diode array for high performance particle detectors and imaging sensors: status of the development

    Science.gov (United States)

    Jia, G.; Hübner, U.; Dellith, J.; Dellith, A.; Stolz, R.; Plentz, J.; Andrä, G.

    2017-02-01

    We propose a novel high performance radiation detector and imaging sensor by a ground-breaking core-shell diode array design. This novel core-shell diode array are expected to have superior performance respect to ultrahigh radiation hardness, high sensitivity, low power consumption, fast signal response and high spatial resolution simultaneously. These properties are highly desired in fundamental research such as high energy physics (HEP) at CERN, astronomy and future x-ray based protein crystallography at x-ray free electron laser (XFEL) etc.. This kind of detectors will provide solutions for these fundamental research fields currently limited by instrumentations. In this work, we report our progress on the development of core-shell diode array for the applications as high performance imaging sensors and particle detectors. We mainly present our results in the preparation of high aspect ratio regular silicon rods by metal assisted wet chemical etching technique. Nearly 200 μm deep and 2 μm width channels with high aspect ratio have been etched into silicon. This result will open many applications not only for the core-shell diode array, but also for a high density integration of 3D microelectronics devices.

  17. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    Science.gov (United States)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  18. Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole

    OpenAIRE

    Allison, P; Auffenberg, J.; Bard, R; Beatty, J. J.; Besson, D.Z.; Boeser, S.; Chen, C.; Chen, P.; Connolly, A.; Davies, J; DuVernois, M.; Fox, B.; Gorham, P. W.; Grashorn, E. W.; Hanson, K.

    2011-01-01

    We report on studies of the viability and sensitivity of the Askaryan Radio Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at the South Pole. An initial prototype ARA detector system was installed in January 2011, and has been operating continuously since then. We report on studies of the background radio noise levels, the radio clarity of the ice, and the estimated sensitivity of the plan...

  19. Nuclear structure studies at Saha Institute of Nuclear Physics using gamma detector arrays

    Indian Academy of Sciences (India)

    P Banerjee

    2001-07-01

    In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions. The experiments included the study of two-fold -coincidence events for establishing decay schemes, directional correlation of oriented nuclei (DCO) for help in spin assignments and Doppler shift attenuation for lifetime information. The studies have led to the observation of rotational sequences of states in nuclei near closed shell in the mass = 110 region, vibrational spectra in nuclei with ∼ 60, interplay between single-particle and collective modes of excitation in the doubly-odd bromine isotopes, decoupled bands with large quadrupole deformation in 77Br, shape transition with rotational frequency within a band in 138Pm and octupole collectivity in 153Eu. Particle-rotor-model and cranked-shell-model calculations have been carried out to provide an understanding of the underlying nuclear structure

  20. Validated HPLC-Diode Array Detector Method for Simultaneous Evaluation of Six Quality Markers in Coffee.

    Science.gov (United States)

    Gant, Anastasia; Leyva, Vanessa E; Gonzalez, Ana E; Maruenda, Helena

    2015-01-01

    Nicotinic acid, N-methylpyridinium ion, and trigonelline are well studied nutritional biomarkers present in coffee, and they are indicators of thermal decomposition during roasting. However, no method is yet available for their simultaneous determination. This paper describes a rapid and validated HPLC-diode array detector method for the simultaneous quantitation of caffeine, trigonelline, nicotinic acid, N-methylpyridinium ion, 5-caffeoylquinic acid, and 5-hydroxymethyl furfural that is applicable to three coffee matrixes: green, roasted, and instant. Baseline separation among all compounds was achieved in 30 min using a phenyl-hexyl RP column (250×4.6 mm, 5 μm particle size), 0.3% aqueous formic buffer (pH 2.4)-methanol mobile phase at a flow rate of 1 mL/min, and a column temperature at 30°C. The method showed good linear correlation (r2>0.9985), precision (less than 3.9%), sensitivity (LOD=0.023-0.237 μg/mL; LOQ=0.069-0.711 μg/mL), and recovery (84-102%) for all compounds. This simplified method is amenable for a more complete routine evaluation of coffee in industry.

  1. JOINT SPACE-FREQUENCY MULTIUSER SYMBOL DETECTOR FOR MC-CDMA SYSTEM WITH UNIFORM LINEAR ARRAY

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The MultiCarrier COde Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence(DS-CDMA systems due to serious InterCip Interference(ICI) and MultiUser Interference(MUI)in high-data-rate wireless communication systems.In this paper the Uniform Linear Array(ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment.A joint space-frequency multiuser symblo sequence detector is developed for all active users within one macrocell without space-frequency channel estimation.Simultaneously,Directions-of -Arrivals (ODAs)of all active users can also be estimated.By dividing the ULA into two identical overlapping subarrays,a specific auxiliary matrix is constructed,which includes both symbol sequence and DOA information of all active users,Then,based on the subspace method,performing the eigen decomposition on such auxiliary matrix,the closed-form solution of symbol sequences and DOAs for all active users can be obtained.In comparison with schemes based on channel estimation,our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity,Extensive computer simulations demonstrate the overall performance of this novel scheme.

  2. JOINT SPACE-FREQUENCY MULTIUSER SYMBOL DETECTOR FOR MC-CDMA SYSTEM WITH UNIFORM LINEAR ARRAY

    Institute of Scientific and Technical Information of China (English)

    Wu Xiaojun; Yin Qinye; Feng Aigang; Zhao Zheng; Zhang Jianguo

    2002-01-01

    The MultiCarrier Code Division Multiple Access (MC-CDMA) scheme is promising for relieving capacity limit problems of Direct Sequence (DS-) CDMA systems due to serious InterChip Interference (ICI) and MultiUser Interference (MUI) in high-data-rate wireless communication systems. In this paper, the Uniform Linear Array (ULA) is applied to the base station of macrocellular MC-CDMA systems in a frequency-selective fading channel environment. A joint space-frequency multiuser symbol sequence detector is developed for all active users within one macrocell without space-frequency channel estimation. Simultaneously, Directions-Of-Arrivals (DOAs) of all active users can also be estimated. By dividing the ULA into two identical overlapping subarrays, a specific auxiliary matrix is constructed, which includes both symbol sequence and DOA information of all active users. Then, based on the subspace method, performing the eigen decomposition on such auxiliary matrix, the closed-form solution of symbol sequences and DOAs for all active users can be obtained. In comparison with schemes based on channel estimation, our algorithm need not explicitly estimate the space-frequency channel for each active user,so it has lower computation complexity. Extensive computer simulations demonstrate the overall performance of this novel scheme.

  3. Standard practice for digital detector array performance evaluation and long-term stability

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This practice describes the evaluation of DDA systems for industrial radiology. It is intended to ensure that the evaluation of image quality, as far as this is influenced by the DDA system, meets the needs of users, and their customers, and enables process control and long term stability of the DDA system. 1.2 This practice specifies the fundamental parameters of Digital Detector Array (DDA) systems to be measured to determine baseline performance, and to track the long term stability of the DDA system. 1.3 The DDA system performance tests specified in this practice shall be completed upon acceptance of the system from the manufacturer and at intervals specified in this practice to monitor long term stability of the system. The intent of these tests is to monitor the system performance for degradation and to identify when an action needs to be taken when the system degrades by a certain level. 1.4 The use of the gages provided in this standard is mandatory for each test. In the event these tests or ga...

  4. Digital Radiography Using Digital Detector Arrays Fulfills Critical Applications for Offshore Pipelines

    Directory of Open Access Journals (Sweden)

    Lopes RicardoTadeu

    2010-01-01

    Full Text Available Digital radiography in the inspection of welded pipes to be installed under deep water offshore gas and oil pipelines, like a presalt in Brazil, in the paper has been investigated. The aim is to use digital radiography for nondestructive testing of welds as it is already in use in the medical, aerospace, security, automotive, and petrochemical sectors. Among the current options, the DDA (Digital Detector Array is considered as one of the best solutions to replace industrial films, as well as to increase the sensitivity to reduce the inspection cycle time. This paper shows the results of this new technique, comparing it to radiography with industrial films systems. In this paper, 20 test specimens of longitudinal welded pipe joints, specially prepared with artificial defects like cracks, lack of fusion, lack of penetration, and porosities and slag inclusions with varying dimensions and in 06 different base metal wall thicknesses, were tested and a comparison of the techniques was made. These experiments verified the purposed rules for parameter definitions and selections to control the required digital radiographic image quality as described in the draft international standard ISO/DIS 10893-7. This draft is first standard establishing the parameters for digital radiography on weld seam of welded steel pipes for pressure purposes to be used on gas and oil pipelines.

  5. A Sub-pixel Image Processing Algorithm of a Detector Based on Staring Focal Plane Array

    Institute of Scientific and Technical Information of China (English)

    LI Ya-qiong; JIN Wei-qi; XU Chao; WANG Xia

    2008-01-01

    Optical micro-scanning technology can be used to increase spatial resolution of many optical imaging systems, especially thermal imaging system. One of its key issues is relevant image processing algorithm. A fast reconstruction algo-rithm is proposed for two dimensional 2×2 micro-scanning based on the sub-pixel imaging and reconstruction principle of two-dimensional stating focal plane arrays (FPA). Specifically, three initialization methods are presented and implemented with the simulated data, their performances are compared according to image quality index . Experiment results show that, by the first initialization approach, tirnely over-sampled image can be accurately recovered, although special field diaphragm is needed. In the second initialization, the extrapolation approximation in obtaining reconstruction results is better than either bilinear interpolation or over-sampling reconstruction, without requiting any special process on system. The proposed algorithm has simple structure, low computational cost and can be realized in real-time. A high-resolution image can be obtained by low-resolution detectors. So, the algorithm has potential applications in visible light and infrared imaging area.

  6. Design of Multi-unit Control System of High Voltage Power Supply for LASCAR Scintillator Detector Array

    Institute of Scientific and Technical Information of China (English)

    WuLijie; WangJinchuan; XiaoGuoqing; GuoZhongyan; ZhanWenlong; QiHuirong; XuZhiguo; ZhangLi; DingXianli; XuHushan; SunZhiyu; LiJiaxing; LiChen; WangMeng; ChenLixin; HuZhengguo; MaoRuishi; ZhaoTiecheng

    2003-01-01

    The power voltages of Photomultipliers (PMTs) at RIBLL LASCAR scintillator detector array are distributed between 900 V and 1 800 V irregularly. 392 CC123 modules are employed to supply high voltage for the PMT array. The CC123 module serves as PMT interface groupware package, and it can transform +12 V DC input voltage to ranges of 0~-2200 V for the PMT power supply corresponding to 0~+5 V output voltage from the control board crate. The relation of PMT power supply with the output voltage of the control crate is shown in Fig.1.

  7. Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays.

    Science.gov (United States)

    Luu, Jane X; Jiang, Leaf A

    2006-06-01

    We report, to the best of our knowledge, the first demonstration of heterodyne detection of a glint target using an InGaAs avalanche photodiode detector (APD) array in the Geiger mode. Due to the finite number of pixels, all such photon-counting arrays necessarily suffer from saturation effects. At large photon fluxes, saturation of the APD degrades the Doppler frequency resolution and the signal-to-noise ratio (SNR). We derive analytical expressions for the Doppler resolution and SNR, taking saturation effects into account. The optimal local oscillator power can be obtained numerically from the SNR expression.

  8. Soft x-ray intensity profile measurements of electron cyclotron heated plasmas using semiconductor detector arrays in GAMMA 10 tandem mirror.

    Science.gov (United States)

    Minami, R; Imai, T; Kariya, T; Numakura, T; Eguchi, T; Kawarasaki, R; Nakazawa, K; Kato, T; Sato, F; Nanzai, H; Uehara, M; Endo, Y; Ichimura, M

    2014-11-01

    Temporally and spatially resolved soft x-ray analyses of electron cyclotron heated plasmas are carried out by using semiconductor detector arrays in the GAMMA 10 tandem mirror. The detector array has 16-channel for the measurements of plasma x-ray profiles so as to make x-ray tomographic reconstructions. The characteristics of the detector array make it possible to obtain spatially resolved plasma electron temperatures down to a few tens eV and investigate various magnetohydrodynamic activities. High power electron cyclotron heating experiment for the central-cell region in GAMMA 10 has been started in order to reduce the electron drag by increasing the electron temperature.

  9. DALI2: A NaI(Tl) detector array for measurements of $\\gamma$ rays from fast nuclei

    CERN Document Server

    Takeuchi, S; Togano, Y; Matsushita, M; Aoi, N; Demichi, K; Hasegawa, H; Murakami, H

    2014-01-01

    A NaI(Tl) detector array called DALI2 (Detector Array for Low Intensity radiation 2) has been constructed for in-beam $\\gamma$-ray spectroscopy experiments with fast radioactive isotope (RI) beams. It consists typically of 186 NaI(Tl) scintillators covering polar angles from $\\sim$15$^{\\circ}$ to $\\sim$160$^{\\circ}$ with an average angular resolution of 6$^{\\circ}$ in full width at half maximum. Its high granularity (good angular resolution) enables Doppler-shift corrections that result in, for example, 10% energy resolution and 20% full-energy photopeak efficiency for 1-MeV $\\gamma$ rays emitted from fast-moving nuclei (velocities of $v/c \\simeq 0.6$). DALI2 has been employed successfully in numerous experiments using fast RI beams with velocities of $v/c = 0.3 - 0.6$ provided by the RIKEN RI Beam Factory.

  10. Simultaneous determination of 20 food additives by high performance liquid chromatography with photo-diode array detector

    Institute of Scientific and Technical Information of China (English)

    Kang Ma; Ya Nan Yang; Xiao Xiong Jiang; Min Zhao; Ye Qiang Cai

    2012-01-01

    An efficient and accurate analytical method was developed for the simultaneous determination of 20 synthetic food additives,including three sweeteners,seven food colorants,nine synthetic preservatives and caffeine,by high performance liquid chromatography (HPLC) with photodiode array detector (PDA).This method permits the detection of food additives at very low concentrations (0.005-0.150 μg/mL).The applicability was verified by the determination of food additives present in various foodstuffs.

  11. Development of high-resolution gamma detector using sub-mm GAGG crystals coupled to TSV-MPPC array

    Science.gov (United States)

    Lipovec, A.; Shimazoe, K.; Takahashi, H.

    2016-03-01

    In this study a high-resolution gamma detector based on an array of sub-millimeter Ce:GAGG (Cerium doped Gd3Al2Ga3O12) crystals read out by an array of surface-mount type of TSV-MPPC was developed. MPPC sensor from Hamamatsu which has a 26 by 26 mm2 detector area with 64 channels was used. One channel has a 3 by 3 mm2 photosensitive area with 50 μ m pitch micro cells. MPPC sensor provides 576 mm2 sensing area and was used to decode 48 by 48 array with 0.4 by 0.4 by 20 mm3 Ce:GAGG crystals of 500 μ m pitch. The base of the detector with the crystal module was mounted to a read out board which consists of charge division circuit, thus allowing for a read out of four channels to identify the position of the incident event on the board. The read out signals were amplified using charge sensitive amplifiers. The four amplified signals were digitized and analyzed to produce a position sensitive event. For the performance analysis a 137Cs source was used. The produced events were used for flood histogram and energy analysis. The effects of the glass thickness between the Ce:GAGG and MPPC were analyzed using the experimental flood diagrams and Geant4 simulations. The glass between the scintillator and the detector allows the spread of the light over different channels and is necessary if the channel's sensitive area is bigger than the scintillator's area. The initial results demonstrate that this detector module is promising and could be used for applications requiring compact and high-resolution detectors. Experimental results show that the detectors precision increases using glass guide thickness of 1.35 mm and 1.85 mm; however the precision using 2.5 mm are practically the same as if using 0.8 mm or 1.0 mm glass guide thicknesses. In addition, simulations using Geant4 indicate that the light becomes scarcer if thicker glass is used, thus reducing the ability to indicate which crystal was targeted. When 2.5 mm glass thickness is used, the scarce light effect becomes

  12. MEDEA: a multi element detector array for gamma ray and light charged particle detection at the LNS-Catania

    Science.gov (United States)

    Migneco, E.; Agodi, C.; Alba, R.; Bellia, G.; Coniglione, R.; Del Zoppo, A.; Finocchiaro, P.; Maiolino, C.; Piattelli, P.; Raia, G.; Sapienza, P.

    1992-04-01

    A 4 π highly granular Mutli Element DEtector Array (MEDEA) for γ-rays and light charged particles is described. Its basic configuration consists of 180 barium fluoride scintillator crystals, arranged in the shape of a ball, plus a forward angle wall of 120 phoswich detectors. The inner radius of the ball (22 cm) and the distance of the wall from the target (55 cm) allow the placement of other detectors.in the inner volume. The whole detection system operates under vacuum inside a large scattering chamber. Dedicated electronics has been designed and realized. It includes a powerful hardware second level trigger and preanalysis system, which allows on-line event selection, and a modular VME-bus based data acquisition system. In-beam performances of the system are also described.

  13. State of the art of AIM LWIR and VLWIR MCT 2D focal plane detector arrays for higher operating temperatures

    Science.gov (United States)

    Figgemeier, H.; Hanna, S.; Eich, D.; Mahlein, K.-M.; Fick, W.; Schirmacher, W.; Thöt, R.

    2016-05-01

    In this paper AIM presents its latest results on both n-on-p and p-on-n low dark current planar MCT photodiode technology LWIR and VLWIR two-dimensional focal plane detector arrays with a cut-off wavelength >11μm at 80K and a 640x512 pixel format at a 20μm pitch. Thermal dark currents significantly reduced as compared to `Tennant's Rule 07' at a yet good detection efficiency >60% as well as results from NETD and photo response performance characterization are presented. The demonstrated detector performance paces the way for a new generation of higher operating temperature LWIR MCT FPAs with a <30mK NETD up to a 110K detector operating temperature and with good operability.

  14. COMPARISON OF CHARACTERIZATION TECHNIQUES IN P-ON-N HgCdTe LWIR PHOTODIODES TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper standard techniques for characterization of HgCdTe liquid phase epitaxial layers (LPE) were presented. The performance of long wavelength p-on-n HgCdTe photodiodes fabricated by arsenic diffusion was described. The correlation between LPE HgCdTe material parameters and properties of the infrared photodiodes was demonstrated.

  15. Design of a linear detector array unit for high energy x-ray helical computed tomography and linear scanner

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Tae; Park, Jong Hwan; Kim, Gi Yoon [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon (Korea, Republic of); Kim, Dong Geun [Medical Imaging Department, ASTEL Inc., Seongnam (Korea, Republic of); Park, Shin Woong; Yi, Yun [Dept. of Electronics and Information Eng, Korea University, Seoul (Korea, Republic of); Kim, Hyun Duk [Research Center, Luvantix ADM Co., Ltd., Daejeon (Korea, Republic of)

    2016-11-15

    A linear detector array unit (LdAu) was proposed and designed for the high energy X-ray 2-d and 3-d imaging systems for industrial non-destructive test. Specially for 3-d imaging, a helical CT with a 15 MeV linear accelerator and a curved detector is proposed. the arc-shape detector can be formed by many LdAus all of which are arranged to face the focal spot when the source-to-detector distance is fixed depending on the application. An LdAu is composed of 10 modules and each module has 48 channels of CdWO{sub 4} (CWO) blocks and Si PIn photodiodes with 0.4 mm pitch. this modular design was made for easy manufacturing and maintenance. through the Monte carlo simulation, the CWO detector thickness of 17 mm was optimally determined. the silicon PIn photodiodes were designed as 48 channel arrays and fabricated with NTD (neutron transmutation doping) wafers of high resistivity and showed excellent leakage current properties below 1 nA at 10 V reverse bias. to minimize the low-voltage breakdown, the edges of the active layer and the guard ring were designed as a curved shape. the data acquisition system was also designed and fabricated as three independent functional boards; a sensor board, a capture board and a communication board to a Pc. this paper describes the design of the detectors (CWO blocks and Si PIn photodiodes) and the 3-board data acquisition system with their simulation results.

  16. Study of Ultra-High Energy Cosmic Ray Composition Using Telescope Array's Middle Drum Detector and Surface Array in Hybrid Mode

    CERN Document Server

    Abbasi, R U; Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Chae, M J; Cheon, B G; Chiba, J; Chikawa, M; Cho, W R; Fujii, T; Fukushima, M; Goto, T; Hanlon, W; Hayashi, Y; Hayashida, N; Hibino, K; Honda, K; Ikeda, D; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kawata, K; Kido, E; Kim, H B; Kim, J H; Kitamura, S; Kitamura, Y; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, K; Martens, K; Matsuda, T; Matsuyama, T; Matthews, J N; Minamino, M; Mukai, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nonaka, T; Nozato, A; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, H S; Smith, J D; Sokolsky, P; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzawa, T; Takamura, M; Takeda, M; Takeishi, R; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Uchihori, Y; Udo, S; Urban, F; Vasiloff, G; Wong, T; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yashiro, K; Yoneda, Y; Yoshida, S; Yoshiia, H; Zollinger, R; Zundel, Z

    2014-01-01

    Previous measurements of the composition of Ultra-High energy Cosmic Rays (UHECRs) made by the High Resolution Fly's Eye (HiRes) and Pierre Auger Observatory (PAO) are seemingly contradictory but utilize different detection methods, as HiRes was a stereo detector and PAO is a hybrid detector. The five year Telescope Array (TA) Middle Drum hybrid composition measurement is similar in methodology to PAO, and good agreement is evident between data and a light, largely protonic composition using simulations from a variety of hadronic models for the comparison of both elongation rate and shower fluctuations. This is in good agreement with the HiRes results. This analysis is presented using two methods: data cuts using simple geometrical variables and a new pattern recognition technique.

  17. The MINDView brain PET detector, feasibility study based on SiPM arrays

    Science.gov (United States)

    González, Antonio J.; Majewski, Stan; Sánchez, Filomeno; Aussenhofer, Sebastian; Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Vidal, Luis F.; Pani, Roberto; Bettiol, Marco; Fabbri, Andrea; Bert, Julien; Visvikis, Dimitris; Jackson, Carl; Murphy, John; O'Neill, Kevin; Benlloch, Jose M.

    2016-05-01

    The Multimodal Imaging of Neurological Disorders (MINDView) project aims to develop a dedicated brain Positron Emission Tomography (PET) scanner with sufficient resolution and sensitivity to visualize neurotransmitter pathways and their disruptions in mental disorders for diagnosis and follow-up treatment. The PET system should be compact and fully compatible with a Magnetic Resonance Imaging (MRI) device in order to allow its operation as a PET brain insert in a hybrid imaging setup with most MRI scanners. The proposed design will enable the currently-installed MRI base to be easily upgraded to PET/MRI systems. The current design for the PET insert consists of a 3-ring configuration with 20 modules per ring and an axial field of view of ~15 cm and a geometrical aperture of ~33 cm in diameter. When coupled to the new head Radio Frequency (RF) coil, the inner usable diameter of the complete PET-RF coil insert is reduced to 26 cm. Two scintillator configurations have been tested, namely a 3-layer staggered array of LYSO with 1.5 mm pixel size, with 35×35 elements (6 mm thickness each) and a black-painted monolithic LYSO block also covering about 50×50 mm2 active area with 20 mm thickness. Laboratory test results associated with the current MINDView PET module concept are presented in terms of key parameters' optimization, such as spatial and energy resolution, sensitivity and Depth of Interaction (DOI) capability. It was possible to resolve all pixel elements from the three scintillator layers with energy resolutions as good as 10%. The monolithic scintillator showed average detector resolutions varying from 3.5 mm in the entrance layer to better than 1.5 mm near the photosensor, with average energy resolutions of about 17%.

  18. The MINDView brain PET detector, feasibility study based on SiPM arrays

    Energy Technology Data Exchange (ETDEWEB)

    González, Antonio J., E-mail: agonzalez@i3m.upv.es [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Majewski, Stan [Radiology Research, Department of Radiology, University of Virginia, VA 22903 (United States); Sánchez, Filomeno [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Aussenhofer, Sebastian [NORAS MRI products GmbH, Hochberg (Germany); Aguilar, Albert; Conde, Pablo; Hernández, Liczandro; Vidal, Luis F. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain); Pani, Roberto; Bettiol, Marco; Fabbri, Andrea [Department of Molecular Medicine, Sapienza University of Rome (Italy); Bert, Julien; Visvikis, Dimitris [Université de Bretagne Occidentale, Brest (France); Jackson, Carl; Murphy, John; O’Neill, Kevin [SensL Technologies, Cork (Ireland); Benlloch, Jose M. [Institute for Instrumentation in Molecular Imaging (I3M), 46022 Valencia (Spain)

    2016-05-11

    The Multimodal Imaging of Neurological Disorders (MINDView) project aims to develop a dedicated brain Positron Emission Tomography (PET) scanner with sufficient resolution and sensitivity to visualize neurotransmitter pathways and their disruptions in mental disorders for diagnosis and follow-up treatment. The PET system should be compact and fully compatible with a Magnetic Resonance Imaging (MRI) device in order to allow its operation as a PET brain insert in a hybrid imaging setup with most MRI scanners. The proposed design will enable the currently-installed MRI base to be easily upgraded to PET/MRI systems. The current design for the PET insert consists of a 3-ring configuration with 20 modules per ring and an axial field of view of ~15 cm and a geometrical aperture of ~33 cm in diameter. When coupled to the new head Radio Frequency (RF) coil, the inner usable diameter of the complete PET-RF coil insert is reduced to 26 cm. Two scintillator configurations have been tested, namely a 3-layer staggered array of LYSO with 1.5 mm pixel size, with 35×35 elements (6 mm thickness each) and a black-painted monolithic LYSO block also covering about 50×50 mm{sup 2} active area with 20 mm thickness. Laboratory test results associated with the current MINDView PET module concept are presented in terms of key parameters' optimization, such as spatial and energy resolution, sensitivity and Depth of Interaction (DOI) capability. It was possible to resolve all pixel elements from the three scintillator layers with energy resolutions as good as 10%. The monolithic scintillator showed average detector resolutions varying from 3.5 mm in the entrance layer to better than 1.5 mm near the photosensor, with average energy resolutions of about 17%.

  19. Infrared microspectroscopic imaging using a large radius germanium internal reflection element and a focal plane array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J; Marcott, Curtis; Story, Gloria M

    2007-11-01

    Previously, we established the ability to collect infrared microspectroscopic images of large areas using a large radius hemisphere internal reflection element (IRE) with both a single point and a linear array detector. In this paper, preliminary work in applying this same method to a focal plane array (FPA) infrared imaging system is demonstrated. Mosaic tile imaging using a large radius germanium hemispherical IRE on a FPA Fourier transform infrared microscope imaging system can be used to image samples nearly 1.5 mm x 2 mm in size. A polymer film with a metal mask is imaged using this method for comparison to previous work. Images of hair and skin samples are presented, highlighting the complexity of this method. Comparisons are made between the linear array and FPA methods.

  20. Final Scientific/Technical Report: Electronics for Large Superconducting Tunnel Junction Detector Arrays for Synchrotron Soft X-ray Research

    Energy Technology Data Exchange (ETDEWEB)

    Warburton, William K

    2009-03-06

    Superconducting tunnel junction (STJ) detectors offer a an approach to detecting soft x-rays with energy resolutions 4-5 times better and at rates 10 faster than traditions semiconductor detectors. To make such detectors feasible, however, then need to be deployed in large arrays of order 1000 detectors, which in turn implies that their processing electronics must be compact, fully computer controlled, and low cost per channel while still delivering ultra-low noise performance so as to not degrade the STJ's performance. We report on our progress in designing a compact, low cost preamplifier intended for this application. In particular, we were able to produce a prototype preamplifier of 2 sq-cm area and a parts cost of less than $30 that matched the energy resolution of the best conventional system to date and demonstrated its ability to acquire an STJ I-V curve under computer control, the critical step for determining and setting the detectors' operating points under software control.

  1. A 65 nm CMOS broadband self-calibrated power detector for the square kilometre array radio telescope

    Directory of Open Access Journals (Sweden)

    Ge Wu

    2014-08-01

    Full Text Available In this study, a 65 nm complementary metal oxide semiconductor (CMOS broadband self-calibrated high-sensitivity power detector for use in the Square Kilometre Array (SKA, the next-generation high-sensitivity radio telescope, is presented. The power detector calibration is performed by adjusting voltages at the bulk terminals of the input transistors to compensate for mismatches in the output voltages because of process, voltage and temperature variations. Measurements show that the power detector, preceded by an input power-match circuit with 6 dB gain, has an input signal range from −48 to −11 dBm over which a 0.95 dB maximum error in the detected power is observed when the calibration rate is 20 kHz. The proposed broadband power detector has a 3 dB upper band edge of 1.8 GHz, which adequately covers the midband SKA frequency range from 0.7 to 1.4 GHz. The settling time and the calibration time are both <5 μs. The circuit consumes 1.2 mW from a 1.2 V power supply and the input-match circuit consumes another 5.8 mW. The presented power detector achieves the best combination of the detection range and sensitivity of previously published circuits.

  2. High Performance Dual Band Photodetector Arrays for MWIR/LWIR Imaging Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Hyperspectral imaging arrays offer far more data and the ability to discriminate objects being observed. Continued difficulties with applying HgCdTe materials,...

  3. Study of a new design of p-N semiconductor detector array for nuclear medicine imaging by monte carlo simulation codes.

    Science.gov (United States)

    Hajizadeh-Safar, M; Ghorbani, M; Khoshkharam, S; Ashrafi, Z

    2014-07-01

    Gamma camera is an important apparatus in nuclear medicine imaging. Its detection part is consists of a scintillation detector with a heavy collimator. Substitution of semiconductor detectors instead of scintillator in these cameras has been effectively studied. In this study, it is aimed to introduce a new design of P-N semiconductor detector array for nuclear medicine imaging. A P-N semiconductor detector composed of N-SnO2 :F, and P-NiO:Li, has been introduced through simulating with MCNPX monte carlo codes. Its sensitivity with different factors such as thickness, dimension, and direction of emission photons were investigated. It is then used to configure a new design of an array in one-dimension and study its spatial resolution for nuclear medicine imaging. One-dimension array with 39 detectors was simulated to measure a predefined linear distribution of Tc(99_m) activity and its spatial resolution. The activity distribution was calculated from detector responses through mathematical linear optimization using LINPROG code on MATLAB software. Three different configurations of one-dimension detector array, horizontal, vertical one sided, and vertical double-sided were simulated. In all of these configurations, the energy windows of the photopeak were ± 1%. The results show that the detector response increases with an increase of dimension and thickness of the detector with the highest sensitivity for emission photons 15-30° above the surface. Horizontal configuration array of detectors is not suitable for imaging of line activity sources. The measured activity distribution with vertical configuration array, double-side detectors, has no similarity with emission sources and hence is not suitable for imaging purposes. Measured activity distribution using vertical configuration array, single side detectors has a good similarity with sources. Therefore, it could be introduced as a suitable configuration for nuclear medicine imaging. It has been shown that using

  4. Studies on a novel mask technique with high selectivity and aspect-ratio patterns for HgCdTe trenches ICP etching

    Science.gov (United States)

    Ye, Z. H.; Hu, W. D.; Li, Y.; Huang, J.; Yin, W. T.; Lin, C.; Hu, X. N.; Ding, R. J.; Chen, X. S.; Lu, W.; He, L.

    2012-06-01

    A novel mask technique, combining high selectivity silicon dioxide patterns over high aspect-ratio photoresist (PR) patterns has been exploited to perform mesa etching for device delineation and electrical isolation of HgCdTe third-generation infrared focal plane arrays (IRFPAs). High-density silicon dioxide film covering high aspect-ratio PR patterns was deposited at the temperature of 80°C and silicon dioxide film patterns over high aspect-ratio PR patterns of HgCdTe etching samples was developed by standard photolithography and wet chemical etch. Scanning electron microscopy (SEM) shows that the surfaces of inductively coupled plasma (ICP) etched samples are quite clean and smooth. The etching selectivity between the novel mask and HgCdTe of the samples is increased to above 32: 1 while the side-wall impact of etching plasma is suppressed by the high aspect ratio patterns. These results show that the combined patterning of silicon dioxide film and thick PR film is a readily available and promising masking technique for HgCdTe mesa etching.

  5. Characterisation activities of new NIR to VLWIR detectors from Selex ES Ltd at the UK ATC

    Science.gov (United States)

    Bezawada, Naidu; Atkinson, David; Shorrocks, Nick; Hipwood, Les; Weller, Harald; Bryson, Ian; Jackson, Malcolm; Davis, Ray P.; Barnes, Keith; Baker, Ian

    2014-07-01

    The UKATC has undertaken to test and evaluate new infrared detectors being developed at Selex ES Ltd, Southampton in the UK for astronomy and space applications. Current programmes include: the evaluation of large format (1280×1024), near-infrared detectors for astronomy, the characterisation of shortwave infrared detectors (up to 2.5μm) for satellite-based earth observation, long wavelength (8 to 11μm) and very long wavelength (10 to 14.5μm cut-off) devices for cosmos applications. Future programmes include the evaluation of large format, avalanche photodiode arrays for photon-level sensing and high speed applications. Custom test facilities are being setup in order to drive and characterise the detectors at the ATC under conditions representative of the applications. In this paper the test facilities will be described along with the associated challenges to evaluate the performance of these detectors. The paper also includes an overview of the Selex ES detectors, including the ROICs and the MOVPE HgCdTe arrays, and will present the latest results from the characterisation program.

  6. [Simultaneous determination of five groups of components in qingkailing injection by high performance liquid chromatography with photo diode array detector and evaporative light scattering detector].

    Science.gov (United States)

    Yan, Shikai; Xin, Wenfeng; Luo, Guoan; Wang, Yiming; Cheng, Yiyu

    2005-09-01

    A method was established for the simultaneous quantification of nine components of five different structural types in Qingkailing injection. High performance liquid chromatography coupled with a photo diode array detector and an evaporative light scattering detector (HPLC-DAD-ELSD) was employed in the determination. Four monitoring wavelengths of 240, 254, 280 and 330 nm were set to determine nucleosides (uridine and adenosine), iridoid glucoside (geniposide), flavone glycoside (baicalin) and organic acids (chlorogenic acid and caffeic acid) respectively, and a combined evaporative light scattering detector was used to detect three steroid compounds (cholic acid, ursodesoxycholic acid and hyodeoxycholic acid). The proposed method permitted the simultaneous separation and determination of five groups of compounds in Qingkailing injection, and acceptable validation results of the precision, repeatability, stability and accuracy tests were achieved. The method was applied to the analysis of 19 Qingkailing injection samples from three different plants, and the results indicated that the method could be used as a convenient and reliable method in the multi-component determination and quality control of traditional Chinese medicines.

  7. Design and Initial Performance of the Askaryan Radio Array Prototype EeV Neutrino Detector at the South Pole

    CERN Document Server

    Allison, P; Bard, R; Beatty, J J; Besson, D Z; Boeser, S; Chen, C; Chen, P; Connolly, A; Davies, J; DuVernois, M; Fox, B; Gorham, P W; Grashorn, E W; Hanson, K; Haugen, J; Helbing, K; Hill, B; Hoffman, K D; Huang, M; Huang, M H A; Ishihara, A; Karle, A; Kennedy, D; Landsman, H; Laundrie, A; Liu, T -C; Macchiarulo, L; Mase, K; Meures, T; Meyhandan, R; Miki, C; Morse, R; Newcomb, M; Nichol, R J; Ratzlaff, K; Richman, M; Ritter, L; Rotter, B; Sandstrom, P; Seckel, D; Touart, J; Varner, G S; Wang, Y; Weaver, C; Wendorff, A; Yoshida, S; Young, R

    2011-01-01

    We report on studies of the viability and sensitivity of the Askaryan Radio Array (ARA), a new initiative to develop a Teraton-scale ultra-high energy neutrino detector in deep, radio-transparent ice near Amundsen-Scott station at the South Pole. An initial prototype ARA detector system was installed in January 2011, and has been operating continuously since then. We report on studies of the background radio noise levels, the radio clarity of the ice, and the estimated sensitivity of the planned ARA array given these results, based on the first five months of operation. Anthropogenic radio interference in the vicinity of the South Pole currently leads to a few-percent loss of data, but no overall effect on the background noise levels, which are dominated by the thermal noise floor of the cold polar ice, and galactic noise at lower frequencies. We have also successfully detected signals originating from a 2.5 km deep impulse generator at a distance of over 3 km from our prototype detector, confirming prior est...

  8. Correction of complex nonlinear signal response from a pixel array detector.

    Science.gov (United States)

    van Driel, Tim Brandt; Herrmann, Sven; Carini, Gabriella; Nielsen, Martin Meedom; Lemke, Henrik Till

    2015-05-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirements in order to distinguish small signal changes. In real detectors, signal distortions as a function of the intensity distribution on the entire detector can occur. Here a robust method to correct this nonlinear response in an area detector is presented for the case of exposures to similar signals. The method is tested for the case of diffuse scattering from liquids where relevant sub-1% signal changes appear on the same order as artifacts induced by the detector electronics.

  9. Neutron detection and multiplicity counting using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.C.

    1998-03-01

    Neutron detection and multiplicity counting has been investigated using a boron-loaded plastic scintillator/bismuth germanate phoswich detector array. Boron-loaded plastic combines neutron moderation (H) and detection ({sup 10}B) at the molecular level, thereby physically coupling increasing detection efficiency and decreasing die-away time with detector volume. Both of these characteristics address a fundamental limitation of thermal-neutron multiplicity counters, where {sup 3}He proportional counters are embedded in a polyethylene matrix. Separation of the phoswich response into its plastic scintillator and bismuth germanate components was accomplished on a pulse-by-pulse basis using custom integrator and timing circuits. In addition, a custom time-tag module was used to provide a time for each detector event. Analysis of the combined energy and time event stream was performed by calibrating each detector`s response and filtering based on the presence of a simultaneous energy deposition corresponding to the {sup 10}B(n,alpha) reaction products in the plastic scintillator (93 keV{sub ee}) and the accompanying neutron-capture gamma ray in the bismuth germanate (478 keV). Time-correlation analysis was subsequently performed on the filtered event stream to obtain shift-register-type singles and doubles count rates. Proof-of-principle measurements were conducted with a variety of gamma-ray and neutron sources including {sup 137}Cs, {sup 54}Mn, AmLi, and {sup 252}Cf. Results of this study indicate that a neutron-capture probability of {approximately}10% and a die-away time of {approximately}10 {micro}s are possible with a 4-detector array with a detector volume of 1600 cm{sup 3}. Simulations were performed that indicate neutron-capture probabilities on the order of 50% and die-away times of less than 4 {micro}s are realistically achievable. While further study will be required for practical application of such a detection system, the results obtained in this

  10. Wide field-of-view Cherenkov telescope for the detection of cosmic rays in coincidence with the surface detectors of the extensive air shower array

    CERN Document Server

    Ivanov, A A; Krasilnikov, A D; Petrov, Z E; Pravdin, M I; Sleptsov, I Ye; Timofeev, L V

    2014-01-01

    The Yakutsk array group is developing the wide FOV Cherenkov telescope to be operated in coincidence with the surface detectors of the extensive air shower array. Currently, the engineering prototype of the reflecting telescope with the front-end electronics is designed and assembled to demonstrate the feasibility of a conceived instrument. The status and specifications of the prototype telescope are presented, as well as the modernization program of the Cherenkov light detectors subset of the array measuring ultra-high energy cosmic rays.

  11. Correction of dead-time and pile-up in a detector array for constant and rapidly varying counting rates

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, C. [Centro de Investigaciones Medioambientales, Energéticas y Tecnológicas (CIEMAT), Madrid (Spain); Departamento de Física Atómica, Molecular y Nuclear, Universidad de Sevilla (Spain); Cano-Ott, D.; Mendoza, E. [Centro de Investigaciones Medioambientales, Energéticas y Tecnológicas (CIEMAT), Madrid (Spain); Wright, T. [University of Manchester, Manchester (United Kingdom)

    2015-03-21

    The effect of dead-time and pile-up in counting experiments may become a significant source of uncertainty if not properly taken into account. Although analytical solutions to this problem have been proposed for simple set-ups with one or two detectors, these are limited when it comes to arrays where time correlation between the detector modules is used, and also in situations of variable counting rates. In this paper we describe the dead-time and pile-up corrections applied to the n-TOF Total Absorption Calorimeter (TAC), a 4π γ-ray detector made of 40 BaF{sub 2} modules operating at the CERN n-TOF facility. Our method is based on the simulation of the complete signal detection and event reconstruction processes and can be applied as well in the case of rapidly varying counting rates. The method is discussed in detail and then we present its successful application to the particular case of the measurement of {sup 238}U(n, γ) reactions with the TAC detector.

  12. GEM400: A front-end chip based on capacitor-switch array for pixel-based GEM detector

    Science.gov (United States)

    Li, H. S.; Jiang, X. S.; Liu, G.; Wang, N.; Sheng, H. Y.; Zhuang, B. A.; Zhao, J. W.

    2012-03-01

    The upgrade of Beijing Synchrotron Radiation Facility (BSRF) needs two-dimensional position-sensitive detection equipment to improve the experimental performance. Gas Electron Multiplier (GEM) detector, in particular, pixel-based GEM detector has good application prospects in the domain of synchrotron radiation. The read-out of larger scale pixel-based GEM detector is difficult for the high density of the pixels (PAD for collecting electrons). In order to reduce the number of cables, this paper presents a read-out scheme for pixel-based GEM detector, which is based on System-in-Package technology and ASIC technology. We proposed a circuit structure based on capacitor switch array circuit, and design a chip GEM400, which is a 400 channels ASIC. The proposed circuit can achieve good stability and low power dissipation. The chip is implemented in a 0.35μm CMOS process. The basic functional circuitry in ths chip includes analog switch, analog buffer, voltage amplifier, bandgap and control logic block, and the layout of this chip takes 5mm × 5mm area. The simulation results show that the chip can allow the maximum amount of input charge 70pC on the condition of 100pF external integrator capacitor. Besides, the chip has good channel uniformity (INL is better than 0.1%) and lower power dissipation.

  13. The Energy Spectrum of Ultra-High-Energy Cosmic Rays Measured by the Telescope Array FADC Fluorescence Detectors in Monocular Mode

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ito, H; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Lundquist, J P; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Myers, I; Minamino, M; Miyata, K; Murano, Y; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ogura, J; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Ono, M; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T A; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2013-01-01

    We present a measurement of the energy spectrum of ultra-high-energy cosmic rays performed by the Telescope Array experiment using monocular observations from its two new FADC-based fluorescence detectors. After a short description of the experiment, we describe the data analysis and event reconstruction procedures. Since the aperture of the experiment must be calculated by Monte Carlo simulation, we describe this calculation and the comparisons of simulated and real data used to verify the validity of the aperture calculation. Finally, we present the energy spectrum calculated from the merged monocular data sets of the two FADC-based detectors, and also the combination of this merged spectrum with an independent, previously published monocular spectrum measurement performed by Telescope Array's third fluorescence detector (Abu-Zayyad {\\it et al.}, {Astropart. Phys.} 39 (2012), 109). This combined spectrum corroborates the recently published Telescope Array surface detector spectrum (Abu-Zayyad {\\it et al.}, ...

  14. Array of virtual Frisch-grid CZT detectors with common cathode readout and pulse-height correction

    Energy Technology Data Exchange (ETDEWEB)

    Bolotnikov, A.E.; Camarda, G.S.; Cui, Y.; Egarievwe, E.U.; Fochuk, P.M.; Fuerstnau, M.; Gul, R.; Hossain, A.; Jones, F.; Kim, K.; Kopach, O.V.; Taggart, R.; Yang, G.; Ye, Z.; Xu, L.; and James, R.B.

    2010-08-01

    We present our new results from testing 15-mm-long virtual Frisch-grid CdZnTe detectors with a common-cathode readout for correcting pulse-height distortions. The array employs parallelepiped-shaped CdZnTe (CZT) detectors of a large geometrical aspect ratio, with two planar contacts on the top and bottom surfaces (anode and cathode) and an additional shielding electrode on the crystal's sides to create the virtual Frisch-grid effect. We optimized the geometry of the device and improved its spectral response. We found that reducing to 5 mm the length of the shielding electrode placed next to the anode had no adverse effects on the device's performance. At the same time, this allowed corrections for electron loss by reading the cathode signals to obtain depth information.

  15. The Mass Composition of Ultra-high Energy Cosmic Rays Measured by New Fluorescence Detectors in the Telescope Array Experiment

    Science.gov (United States)

    Fujii, Toshihiro

    The longitudinal development of an extensive air shower reaches its maximum at a depth, Xmax, that depends on the species of the primary cosmic ray. Using a technique based on Xmax, we measure the cosmic-ray mass composition from analyses of 3.7 years of monocular mode operations with the newly constructed fluorescence detectors of the Telescope Array experiment. The Xmax analysis shows our data to be consistent with a proton dominant composition at energies above 1018.0 eV.

  16. Short wave infrared InGaAs focal plane arrays detector: the performance optimization of photosensitive element

    Science.gov (United States)

    Gao, Xin-jiang; Tang, Zun-lie; Zhang, Xiu-chuan; Chen, Yang; Jiang, Li-qun; Cheng, Hong-bing

    2009-07-01

    Significant progress has been achieved in technology of the InGaAs focal plane arrays (FPA) detector operating in short wave infrared (SWIR) last two decades. The no cryogenic cooling, low manufacturing cost, low power, high sensitivity and maneuverability features inherent of InGaAs FPA make it as a mainstream SWIR FPA in a variety of critical military, national security, aerospace, telecommunications and industrial applications. These various types of passive image sensing or active illumination image detecting systems included range-gated imaging, 3-Dimensional Ladar, covert surveillance, pulsed laser beam profiling, machine vision, semiconductor inspection, free space optical communications beam tracker, hyperspectroscopy imaging and many others. In this paper the status and perspectives of hybrid InGaAs FPA which is composed of detector array (PDA) and CMOS readout integrate circuit (ROIC) are reviewed briefly. For various low light levels applications such as starlight or night sky illumination, we have made use of the interface circuit of capacitive feedback transimpedance amplifier (CTIA) in which the integration capacitor was adjustable, therefore implements of the physical and electrical characteristics matches between detector arrays and readout intergrate circuit was achieved excellently. Taking into account the influences of InGaAs detector arrays' optoelectronic characteristics on performance of the FPA, we discussed the key parameters of the photodiode in detailed, and the tradeoff between the responsivity, dark current, impedance at zero bias and junction capacitance of photosensitive element has been made to root out the impact factors. As a result of the educed approach of the photodiode's characteristics optimizing which involve with InGaAs PDA design and process, a high performance InGaAs FPA of 30um pixel pitch and 320×256 format has been developed of which the response spectrum range over 0.9um to 1.7um, the mean peak detectivity (λ=1.55

  17. The Energy Spectrum of Cosmic Rays above 10$^{17.2}$ eV Measured by the Fluorescence Detectors of the Telescope Array Experiment in Seven Years

    CERN Document Server

    ,

    2015-01-01

    The Telescope Array (TA) experiment is the largest detector to observe ultra-high-energy cosmic rays in the northern hemisphere. The fluorescence detectors at southern two stations of TA are newly constructed and have now completed seven years of steady operation. One advantage of monocular analysis of the fluorescence detectors is a lower energy threshold for cosmic rays than that of other techniques like stereoscopic observations or coincidences with the surface detector array, allowing the measurement of an energy spectrum covering three orders of magnitude in energy. Analyzing data collected during those seven years, we report the energy spectrum of cosmic rays covering a broad range of energies above 10$^{17.2}$ eV measured by the fluorescence detectors and a comparison with previously published results.

  18. Evaluation of a SiPM array detector coupled to a LFS-3 pixellated scintillator for PET/MR applications

    Energy Technology Data Exchange (ETDEWEB)

    David, Stratos; Fysikopoulos, Eleftherios [Technological Educational Institute of Athens (Greece); Georgiou, Maria [Technological Educational Institute of Athens (Greece); Department of Medical School, University of Thessaly, Larissa (Greece); Loudos, George [Technological Educational Institute of Athens (Greece)

    2015-05-18

    SiPM arrays are insensitive to magnetic fields and thus good candidates for hybrid PET/MR imaging systems. Moreover, due to their small size and flexibility can be used in dedicated small field of view small animal imaging detectors and especially in head PET/MR studies in mice. Co-doped LFS-3 scintillator crystals have higher light yield and slightly faster response than that of LSO:Ce mainly due to the co-doped activation of emission centers with varying materials such as Ce, Gd, Sc, Y, La, Tb, or Ca distributed at the molecular scale through the lutetium silicate crystal host. The purpose of this study is to investigate the behavior of the SensL ArraySL-4 (4x4 element array of 3x3 mm{sup 2} silicon photomultipliers) optical detector coupled to a 6x6 LFS-3 scintillator array, with 2x2x5 mm{sup 3} crystal size elements, for possible applications in small field of view PET/MR imaging detectors. We have designed a symmetric resistive charge division circuit to read out the signal outputs of 4x4 pixel SiPM array reducing the 16 pixel outputs of the photodetector to 4 position signals. The 4 position signals were digitized using free running Analog to Digital Converters. The ADCs sampling rate was 50 MHz. An FPGA (Spartan 6 LX150T) was used for triggering and digital signal processing of the pulses. Experimental evaluation was carried out with {sup 22}Na radioactive source and the parameters studied where energy resolution and peak to valley ratio. The first preliminary results of the evaluation shows a clear visualization of the discrete 2x2x5 mm{sup 3} LFS-3 scintillator elements. The mean peak to valley ratio of the horizontal profiles on the raw image was measured equal to 11 while the energy resolution was calculated equal to 30% at the central pixels.

  19. Development of an infrared detector: Quantum well infrared photodetector

    Institute of Scientific and Technical Information of China (English)

    LU Wei; LI Ling; ZHENG HongLou; XU WenLan; XIONG DaYuan

    2009-01-01

    The progress in the quantum well infrared photo-detector (QWIP) based on quantum confinement in semiconductor in recent 10 years has been reviewed. The differences between QWlP and the HgCdTe (HCT) infrared detector as well as their compensation are analyzed. The outlook for near-future trends in QWIP technologies is also presented.

  20. Development of an infrared detector: Quantum well infrared photodetector

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The progress in the quantum well infrared photo-detector (QWIP) based on quantum confinement in semiconductor in recent 10 years has been reviewed. The differences between QWIP and the HgCdTe (HCT) infrared detector as well as their compensation are analyzed. The outlook for near-future trends in QWIP technologies is also presented.

  1. Photon-counting hexagonal pixel array CdTe detector: Spatial resolution characteristics for image-guided interventional applications

    Energy Technology Data Exchange (ETDEWEB)

    Vedantham, Srinivasan; Shrestha, Suman; Karellas, Andrew, E-mail: andrew.karellas@umassmed.edu; Shi, Linxi; Gounis, Matthew J. [Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655 (United States); Bellazzini, Ronaldo; Spandre, Gloria; Brez, Alessandro; Minuti, Massimo [Istituto Nazionale di Fisica Nucleare (INFN), Pisa 56127, Italy and Pixirad Imaging Counters s.r.l., L. Pontecorvo 3, Pisa 56127 (Italy)

    2016-05-15

    Purpose: High-resolution, photon-counting, energy-resolved detector with fast-framing capability can facilitate simultaneous acquisition of precontrast and postcontrast images for subtraction angiography without pixel registration artifacts and can facilitate high-resolution real-time imaging during image-guided interventions. Hence, this study was conducted to determine the spatial resolution characteristics of a hexagonal pixel array photon-counting cadmium telluride (CdTe) detector. Methods: A 650 μm thick CdTe Schottky photon-counting detector capable of concurrently acquiring up to two energy-windowed images was operated in a single energy-window mode to include photons of 10 keV or higher. The detector had hexagonal pixels with apothem of 30 μm resulting in pixel pitch of 60 and 51.96 μm along the two orthogonal directions. The detector was characterized at IEC-RQA5 spectral conditions. Linear response of the detector was determined over the air kerma rate relevant to image-guided interventional procedures ranging from 1.3 nGy/frame to 91.4 μGy/frame. Presampled modulation transfer was determined using a tungsten edge test device. The edge-spread function and the finely sampled line spread function accounted for hexagonal sampling, from which the presampled modulation transfer function (MTF) was determined. Since detectors with hexagonal pixels require resampling to square pixels for distortion-free display, the optimal square pixel size was determined by minimizing the root-mean-squared-error of the aperture functions for the square and hexagonal pixels up to the Nyquist limit. Results: At Nyquist frequencies of 8.33 and 9.62 cycles/mm along the apothem and orthogonal to the apothem directions, the modulation factors were 0.397 and 0.228, respectively. For the corresponding axis, the limiting resolution defined as 10% MTF occurred at 13.3 and 12 cycles/mm, respectively. Evaluation of the aperture functions yielded an optimal square pixel size of 54

  2. Development of a fast pixel array detector for use in microsecond time-resolved x-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Barna, S.L.; Gruner, S.M.; Shepherd, J.A. [Princeton Univ., NJ (United States)] [and others

    1995-08-01

    A large-area pixel x-ray detector is being developed to collect eight successive frames of wide dynamic range two-dimensional images at 200kHz rates. Such a detector, in conjunction with a synchrotron radiation x-ray source, will enable time-resolved x-ray studies of proteins and other materials on time scales which have previously been inaccessible. The detector will consist of an array of fully-depleted 150 micron square diodes connected to a CMOS integrated electronics layer with solder bump-bonding. During each framing period, the current resulting from the x-rays stopped in the diodes is integrated in the electronics layer, and then stored in one of eight storage capacitors underneath the pixel. After the last frame, the capacitors are read out at standard data transmission rates. The detector has been designed for a well-depth of at least 10,000 x-rays (at 20keV), and a noise level of one x-ray. Ultimately, the authors intend to construct a detector with over one million pixels (1024 by 1024). They present the results of their development effort and various features of the design. The electronics design is discussed, with special attention to the performance requirements. The choice and design of the detective diodes, as they relate to x-ray stopping power and charge collection, are presented. An analysis of various methods of bump bonding is also presented. Finally, the authors discuss the possible need for a radiation-blocking layer, to be placed between the electronics and the detective layer, and various methods they have pursued in the construction of such a layer.

  3. Integration of Si-CMOS embedded photo detector array and mixed signal processing system with embedded optical waveguide input

    Science.gov (United States)

    Kim, Daeik D.; Thomas, Mikkel A.; Brooke, Martin A.; Jokerst, Nan M.

    2004-06-01

    Arrays of embedded bipolar junction transistor (BJT) photo detectors (PD) and a parallel mixed-signal processing system were fabricated as a silicon complementary metal oxide semiconductor (Si-CMOS) circuit for the integration optical sensors on the surface of the chip. The circuit was fabricated with AMI 1.5um n-well CMOS process and the embedded PNP BJT PD has a pixel size of 8um by 8um. BJT PD was chosen to take advantage of its higher gain amplification of photo current than that of PiN type detectors since the target application is a low-speed and high-sensitivity sensor. The photo current generated by BJT PD is manipulated by mixed-signal processing system, which consists of parallel first order low-pass delta-sigma oversampling analog-to-digital converters (ADC). There are 8 parallel ADCs on the chip and a group of 8 BJT PDs are selected with CMOS switches. An array of PD is composed of three or six groups of PDs depending on the number of rows.

  4. Radiation-Hardened, Substrate-Removed, Metamorphic InGaAs Detector Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — High-performance radiation-hardened metamorphic InGaAs imaging arrays sensitive from the ultraviolet (UV) through the short-wavelength infrared (SWIR) will be...

  5. Practical implications for the quality assurance of modulated radiation therapy techniques using point detector arrays.

    Science.gov (United States)

    Kantz, Steffi; Troeller McDermott, Almut; Söhn, Matthias; Reinhardt, Sabine; Belka, Claus; Parodi, Katia; Reiner, Michael

    2017-08-30

    Linac parameters potentially influencing the delivery quality of IMRT and VMAT plans are investigated with respect to threshold ranges, consequently to be considered in a linac based quality assurance procedure. Three commercially available 2D arrays are used to further investigate the influence of the measurement device. Using three commercially available 2D arrays (Mx: MatriXX(evolution) , Oc: Octavius(1500) , Mc: MapCHECK2), simple static measurements, measurements for MLC characterization and dynamic interplay of gantry movement, MLC movement and variable dose rate were performed. The results were evaluated with respect to each single array as well as among each other. Simple static measurements showed different array responses to dose, dose rate and profile homogeneity and revealed instabilities in dose delivery and profile shape during linac ramp up. Using the sweeping gap test, all arrays were able to detect small leaf misalignments down to ±0.1 mm, but this test also demonstrated up to 15% dose deviation due to profile instabilities and fast accelerating leaves during linac ramp up. Tests including gantry rotation showed different stability of gantry mounts for each array. Including gantry movement and dose rate variability, differences compared to static delivery were smaller compared to dose differences when simultaneously controling interplay of gantry movement, leaf movement and dose rate variability. Linac based QA is feasible with the tested commercially available 2D arrays. Limitations of each array and the linac ramp up characteristics should be carefully considered during individual plan generation and regularly checked in linac QA. Especially the dose and dose profile during linac ramp up should be checked regularly, as well as MLC positioning accuracy using a sweeping gap test. Additionally, dynamic interplay tests including various gantry rotation speeds and angles, various leaf speeds and various dose rates should be included. © 2017 The

  6. MT3250BA: a 320×256-50µm snapshot microbolometer ROIC for high-resistance detector arrays

    Science.gov (United States)

    Eminoglu, Selim; Akin, Tayfun

    2013-06-01

    This paper reports the development of a new microbolometer readout integrated circuit (MT3250BA) designed for high-resistance detector arrays. MT3250BA is the first microbolometer readout integrated circuit (ROIC) product from Mikro-Tasarim Ltd., which is a fabless IC design house specialized in the development of monolithic CMOS imaging sensors and ROICs for hybrid photonic imaging sensors and microbolometers. MT3250BA has a format of 320 × 256 and a pixel pitch of 50 µm, developed with a system-on-chip architecture in mind, where all the timing and biasing for this ROIC are generated on-chip without requiring any external inputs. MT3250BA is a highly configurable ROIC, where many of its features can be programmed through a 3-wire serial interface allowing on-the-fly configuration of many ROIC features. MT3250BA has 2 analog video outputs and 1 analog reference output for pseudo-differential operation, and the ROIC can be programmed to operate in the 1 or 2-output modes. A unique feature of MT3250BA is that it performs snapshot readout operation; therefore, the image quality will only be limited by the thermal time constant of the detector pixels, but not by the scanning speed of the ROIC, as commonly found in the conventional microbolometer ROICs performing line-by-line (rolling-line) readout operation. The signal integration is performed at the pixel level in parallel for the whole array, and signal integration time can be programmed from 0.1 µs up to 100 ms in steps of 0.1 µs. The ROIC is designed to work with high-resistance detector arrays with pixel resistance values higher than 250 kΩ. The detector bias voltage can be programmed on-chip over a 2 V range with a resolution of 1 mV. The ROIC has a measured input referred noise of 260 µV rms at 300 K. The ROIC can be used to build a microbolometer infrared sensor with an NETD value below 100 mK using a microbolometer detector array fabrication technology with a high detector resistance value (≥ 250 K

  7. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Braga, D. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom); Coleman-Smith, P. J. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Davinson, T. [Dept. of Physics and Astronomy, Univ. of Edinburgh, Edinburgh EH9 3JZ (United Kingdom); Lazarus, I. H. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Page, R. D. [Dept. of Physics, Univ. of Liverpool, Oliver Lodge Laboratory, Liverpool L69 7ZE (United Kingdom); Thomas, S. [STFC Rutherford Appleton Laboratory, Didcot, OX11 0QX (United Kingdom)

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  8. Characterization of a Prototype TES-Based Anti-coincidence Detector for Use with Future X-ray Calorimeter Arrays

    Science.gov (United States)

    Busch, S. E.; Yoon, W. S.; Adams, J. S.; Bailey, C. N.; Bandler, S. R.; Chervenak, J. A.; Eckart, M. E.; Ewin, A. J.; Finkbeiner, F. M.; Kelley, R. L.; Kilbourne, C. A.; Lee, S.-J.; Porst, J.-P.; Porter, F. S.; Sadleir, J. E.; Smith, S. J.; Sultana, M.

    2016-07-01

    For future X-ray observatories utilizing transition-edge sensor (TES) microcalorimeters, an anti-coincidence detector (anti-co) is required to discriminate X-ray (˜ 0.1-10 keV) signals from non-X-ray background events, such as ionizing particles. We have developed a prototype anti-co that utilizes TESs, which will be compatible with the TES focal-plane arrays planned for future X-ray observatories. This anti-co is based upon the cryogenic dark matter search II detector design. It is a silicon wafer covered with superconducting collection fins and TES microcalorimeters. Minimum ionizing particles deposit energy while passing through the silicon. The athermal phonons produced by these events are absorbed in the superconducting fins, breaking Cooper pairs. The resulting quasiparticles diffuse along the superconducting fin, producing a signal when they reach the TES. By determining a correlation between detections in the anti-co and the X-ray detector one can identify and flag these background events. We have fabricated and tested a single-channel prototype anti-co device on a 1.5 × 1.9 cm^2 chip. We have measured the signals in this device from photons of several energies between 1.5 and 60 keV, as well as laboratory background events, demonstrating a threshold ˜ 100 times lower than is needed to detect minimum ionizing particles.

  9. Test of digital neutron–gamma discrimination with four different photomultiplier tubes for the NEutron Detector Array (NEDA)

    Energy Technology Data Exchange (ETDEWEB)

    Luo, X.L., E-mail: luo.xiaoliang@physics.uu.se [Department of Instrument Science and Technology, College of Mechatronics and Automation, National University of Defense Technology, Changsha (China); Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Nyberg, J. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Valiente-Dobón, J.J. [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Nishada, Q. [Department of Physics and Astronomy, Uppsala University, SE-75120 Uppsala (Sweden); Angelis, G. de [INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Padova (Italy); Agramunt, J. [IFIC-CSIC, University of Valencia, Valencia (Spain); Egea, F.J. [IFIC-CSIC, University of Valencia, Valencia (Spain); Faculty of Engineering and Natural Sciences, Istanbul Sabahattin Zaim University, Istanbul (Turkey); Erduran, M.N.; Ertürk, S. [Nigde Universitesi, Fen-Edebiyat Falkültesi, Fizik Bölümü, Nigde (Turkey); France, G. de [GANIL, CEA/DSAM and CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen Cedex 05 (France); Gadea, A. [IFIC-CSIC, University of Valencia, Valencia (Spain); González, V. [Department of Electronic Engineering, University of Valencia, E-46071 Valencia (Spain); Hüyük, T. [IFIC-CSIC, University of Valencia, Valencia (Spain); Jaworski, G. [Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warszawa (Poland); Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa (Poland); Moszyński, M. [Heavy Ion Laboratory, University of Warsaw, ul. Pasteura 5A, 02-093 Warszawa (Poland); National Centre for Nuclear Research, A. Soltana 7, PL 05-400 Otwock-Swierk (Poland); and others

    2014-12-11

    A comparative study of the neutron–γ discrimination performance of a liquid scintillator detector BC501A coupled to four different 5 in. photomultiplier tubes (ET9390kb, R11833-100, XP4512 and R4144) was carried out. Both the Charge Comparison method and the Integrated Rise-Time method were implemented digitally to discriminate between neutrons and γ rays emitted by a {sup 252}Cf source. In both methods, the neutron–γ discrimination capabilities of the four photomultiplier tubes were quantitatively compared by evaluating their figure-of-merit values at different energy regions between 50 keVee and 1000 keVee. Additionally, the results were further verified qualitatively using time-of-flight to distinguish γ rays and neutrons. The results consistently show that photomultiplier tubes R11833-100 and ET9390kb generally perform best regarding neutron–γ discrimination with only slight differences in figure-of-merit values. This superiority can be explained by their relatively higher photoelectron yield, which indicates that a scintillator detector coupled to a photomultiplier tube with higher photoelectron yield tends to result in better neutron–γ discrimination performance. The results of this work will provide reference for the choice of photomultiplier tubes for future neutron detector arrays like NEDA.

  10. Efficiency calibration and coincidence summing correction for large arrays of NaI(Tl) detectors in soccer-ball and castle geometries

    Energy Technology Data Exchange (ETDEWEB)

    Anil Kumar, G., E-mail: anilg@tifr.res.i [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Mazumdar, I.; Gothe, D.A. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India)

    2009-11-21

    Efficiency calibration and coincidence summing correction have been performed for two large arrays of NaI(Tl) detectors in two different configurations. They are, a compact array of 32 conical detectors of pentagonal and hexagonal shapes in soccer-ball geometry and an array of 14 straight hexagonal NaI(Tl) detectors in castle geometry. Both of these arrays provide a large solid angle of detection, leading to considerable coincidence summing of gamma rays. The present work aims to understand the effect of coincidence summing of gamma rays while determining the energy dependence of efficiencies of these two arrays. We have carried out extensive GEANT4 simulations with radio-nuclides that decay with a two-step cascade, considering both arrays in their realistic geometries. The absolute efficiencies have been simulated for gamma energies from 700 to 2800 keV using four different double-photon emitters, namely, {sup 60}Co, {sup 46}Sc, {sup 94}Nb and {sup 24}Na. The efficiencies so obtained have been corrected for coincidence summing using the method proposed by Vidmar et al. . The simulations have also been carried out for the same energies assuming mono-energetic point sources, for comparison. Experimental measurements have also been carried out using calibrated point sources of {sup 137}Cs and {sup 60}Co. The simulated and the experimental results are found to be in good agreement. This demonstrates the reliability of the correction method for efficiency calibration of two large arrays in very different configurations.

  11. The Energy Spectrum of Telescope Array's Middle Drum Detector and the Direct Comparison to the High Resolution Fly's Eye Experiment

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lim, S I; Machida, S; Martens, K; Martineau, J; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Sonley, T J; Springer, R W; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zollinger, R; Zundel, Z

    2012-01-01

    The Telescope Array's Middle Drum fluorescence detector was instrumented with telescopes refurbished from the High Resolution Fly's Eye's HiRes-1 site. The data observed by Middle Drum in monocular mode was analyzed via the HiRes-1 profile-constrained geometry reconstruction technique and utilized the same calibration techniques enabling a direct comparison of the energy spectra and energy scales between the two experiments. The spectrum measured using the Middle Drum telescopes is based on a three-year exposure collected between December 16, 2007 and December 16, 2010. The calculated difference between the spectrum of the Middle Drum observations and the published spectrum obtained by the data collected by the HiRes-1 site allows the HiRes-1 energy scale to be transferred to Middle Drum. The HiRes energy scale is applied to the entire Telescope Array by making a comparison between Middle Drum monocular events and hybrid events that triggered both Middle Drum and the Telescope Array's scintillator Ground Arra...

  12. An Array of One-Dimensional Porous Silicon Photonic Crystal Reflector Islands for a Far-Infrared Image Detector

    Institute of Scientific and Technical Information of China (English)

    MIAO Feng-Juan; ZHANG Jie; XU Shao-Hui; WANG Lian-Wei; CHU Jun-Hao; CAO Zhi-Shen; ZHAN Peng; WANG Zhen-Lin

    2009-01-01

    @@ With the aid of photolithography, an array of one-dimensional porous silicon photonic crystal reflector islands for a far infrared image detector ranging from 10μm to 14μm is successfully fabricated. Silicon nitride formed by low pressure chemical vapor deposition (LPCVD) was used as the masking layer for the island array formation. After etching, the microstructures were examined by a scanning electron microscope and the optical properties were studied by Fourier transform infrared spectroscopy, the result indicates that the multilayer structure could be obtained in the perpendicular direction via periodically alternative etching current in each pre-patteru. At the same time, the island array has a well-proportioned lateral etching effect, which is very useful for the thermal isolation in lateral orientation of the application in devices. It is concluded that regardless of the absorption of the deposition layer on the substrate, the localized photonic crystalline islands have higher reflectivity. The designed islands structure not only prevents the cracking of the porous silicon layers but is also useful for the application in the cold part for the sensor devices and the interconnection of each pixel.

  13. Low dark current MCT-based focal plane detector arrays for the LWIR and VLWIR developed at AIM

    Science.gov (United States)

    Gassmann, Kai Uwe; Eich, Detlef; Fick, Wolfgang; Figgemeier, Heinrich; Hanna, Stefan; Thöt, Richard

    2015-10-01

    For nearly 40 years AIM develops, manufactures and delivers photo-voltaic and photo-conductive infrared sensors and associated cryogenic coolers which are mainly used for military applications like pilotage, weapon sights, UAVs or vehicle platforms. In 2005 AIM started to provide the competences also for space applications like IR detector units for the SLSTR instrument on board of the Sentinel 3 satellite, the hyperspectral SWIR Imager for EnMAP or pushbroom detectors for high resolution Earth observation satellites. Meanwhile AIM delivered more than 25 Flight Models for several customers. The first European pulse-tube cooler ever operating on-board of a satellite is made by AIM. AIM homes the required infrared core capabilities such as design and manufacturing of focal plane assemblies, detector housing technologies, development and manufacturing of cryocoolers and also data processing for thermal IR cameras under one roof which enables high flexibility to react to customer needs and assures economical solutions. Cryogenically cooled Hg(1-x)CdxTe (MCT) quantum detectors are unequalled for applications requiring high imaging as well as high radiometric performance in the infrared spectral range. Compared with other technologies, they provide several advantages, such as the highest quantum efficiency, lower power dissipation compared to photoconductive devices and fast response times, hence outperforming micro-bolometer arrays. However, achieving an excellent MCT detector performance at long (LWIR) and very long (VLWIR) infrared wavelengths is challenging due to the exponential increase in the thermally generated photodiode dark current with increasing cut-off wavelength and / or operating temperature. Dark current is a critical design driver, especially for LWIR / VLWIR multi-spectral imagers with moderate signal levels or hyper-spectral Fourier spectrometers operating deep into the VLWIR spectral region. Consequently, low dark current (LDC) technologies are the

  14. Correction of complex nonlinear signal response from a pixel array detector

    DEFF Research Database (Denmark)

    Brandt van Driel, Tim; Herrmann, Sven; Carini, Gabriella

    2015-01-01

    The pulsed free-electron laser light sources represent a new challenge to photon area detectors due to the intrinsic spontaneous X-ray photon generation process that makes single-pulse detection necessary. Intensity fluctuations up to 100% between individual pulses lead to high linearity requirem...

  15. A novel, SiPM-array-based, monolithic scintillator detector for PET

    NARCIS (Netherlands)

    Schaart, D.R.; Van Dam, H.T.; Seifert, S.; Vinke, R.; Dendooven, P.; Löhner, H.; Beekman, F.J.

    2009-01-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e.g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanche

  16. A novel, SiPM-array-based, monolithic scintillator detector for PET

    NARCIS (Netherlands)

    Schaart, Dennis R.; van Dam, Herman T.; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Beekman, Freek J.; Löhner, H.

    2009-01-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e. g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as

  17. A novel, SiPM-array-based, monolithic scintillator detector for PET

    NARCIS (Netherlands)

    Schaart, Dennis R.; van Dam, Herman T.; Seifert, Stefan; Vinke, Ruud; Dendooven, Peter; Beekman, Freek J.; Löhner, H.

    2009-01-01

    Silicon photomultipliers (SiPMs) are of great interest to positron emission tomography (PET), as they enable new detector geometries, for e. g., depth-of-interaction (DOI) determination, are MR compatible, and offer faster response and higher gain than other solid-state photosensors such as avalanch

  18. Organic non-volatile resistive photo-switches for flexible image detector arrays.

    Science.gov (United States)

    Nau, Sebastian; Wolf, Christoph; Sax, Stefan; List-Kratochvil, Emil J W

    2015-02-01

    A unique implementation of an organic image detector using resistive photo-switchable pixels is presented. This resistive photo-switch comprises the vertical integration of an organic photodiode and an organic resistive switching memory element. The photodiodes act as a photosensitive element while the resistive switching elements simultaneously store the detected light information.

  19. Performance evaluation of a sub-millimeter spatial resolution PET detector module using a digital silicon photomultiplier coupled LGSO array

    Science.gov (United States)

    Leem, Hyun Tae; Choi, Yong; Kim, Kyu Bom; Lee, Sangwon; Yamamoto, Seiichi; Yeom, Jung-Yeol

    2017-02-01

    In positron emission tomography (PET) for breast, brain and small animal imaging, the spatial resolution of a PET detector is crucial to obtain high quality PET images. In this study, a PET detector for sub-millimeter spatial resolution imaging purpose was assembled using 4×4 pixels of a digital silicon photomultiplier (dSiPM, DPC-3200-22-44, Philips) coupled with a 15×15 LGSO array with BaSO4 reflector, and a 1 mm thick acrylic light guide for light distribution between the dSiPM pixels. The active area of each dSiPM pixel was 3.2×3.9 mm2 and the size of each LGSO scintillator element was 0.7×0.7×6 mm3. In this paper, we experimentally demonstrated the performance of the PET detector by measuring the energy resolution, 2D flood map, peak to valley (P/V) ratio, and coincidence resolving time (CRT). All measurements were performed at a temperature of 10±1 ℃. The average energy resolution was 15.6% (without correcting for saturation effects) at 511 keV and the best CRT was 242±5 ps. The 2D flood map obtained with an energy window of 400-600 keV demonstrated clear identification of all pixels, and the average P/V ratio of the X- and Y-directions were 7.31 and 7.81, respectively. This study demonstrated that the PET detector could be suitable for application in high resolution PET while achieving good timing resolution.

  20. Operation of an array of field-change detectors to provide ground truth for FORTE data

    Energy Technology Data Exchange (ETDEWEB)

    Massey, R.S.; Eack, K.B.; Eberle, M.H.; Shao, X.M.; Smith, D.A. [Los Alamos National Lab., NM (United States). Space and Atmospheric Sciences Group; Wiens, K.C. [New Mexico Inst. of Tech., Socorro, NM (United States)

    1999-06-01

    The authors have deployed an array of fast electric-field-change sensors around the state of New Mexico to help identify the lightning processes responsible for the VHF RF signals detected by the FORTE satellite`s wide-band transient radio emission receivers. The array provides them with locations and electric-field waveforms for events within New Mexico and into surrounding states, and operates continuously. They are particularly interested in events for which there are coincident FORTE observations. For these events, they can correct both the array and FORTE waveforms for time of flight, and can plot the two waveforms on a common time axis. Most of the coincident events are from cloud-go-ground discharges, but the most powerful are from a little-studied class of events variously called narrow bipolar events and compact intra-cloud discharges. They have therefore focused their attention on these events whether or not FORTE was in position to observe them.

  1. Low SWaP MWIR detector based on XBn focal plane array

    Science.gov (United States)

    Klipstein, P. C.; Gross, Y.; Aronov, D.; ben Ezra, M.; Berkowicz, E.; Cohen, Y.; Fraenkel, R.; Glozman, A.; Grossman, S.; Klin, O.; Lukomsky, I.; Marlowitz, T.; Shkedy, L.; Shtrichman, I.; Snapi, N.; Tuito, A.; Yassen, M.; Weiss, E.

    2013-06-01

    Over the past few years, a new type of High Operating Temperature (HOT) photon detector has been developed at SCD, which operates in the blue part of the MWIR window of the atmosphere (3.4-4.2 μm). This window is generally more transparent than the red part of the MWIR window (4.4-4.9 μm), especially for mid and long range applications. The detector has an InAsSb active layer, and is based on the new "XBn" device concept. We have analyzed various electrooptical systems at different atmospheric temperatures, based on XBn-InAsSb operating at 150K and epi-InSb at 95K, respectively, and find that the typical recognition ranges of both detector technologies are similar. Therefore, for very many applications there is no disadvantage to using XBn-InAsSb instead of InSb. On the other hand XBn technology confers many advantages, particularly in low Size, Weight and Power (SWaP) and in the high reliability of the cooler and Integrated Detector Cooler Assembly (IDCA). In this work we present a new IDCA, designed for 150K operation. The 15 μm pitch 640×512 digital FPA is housed in a robust, light-weight, miniaturised Dewar, attached to Ricor's K562S Stirling cycle cooler. The complete IDCA has a diameter of 28 mm, length of 80 mm and weight of < 300 gm. The total IDCA power consumption is ~ 3W at a 60Hz frame rate, including an external miniature proximity card attached to the outside of the Dewar. We describe some of the key performance parameters of the new detector, including its NETD, RNU and operability, pixel cross-talk, and early stage yield results from our production line.

  2. Basic performance evaluation of a Si-PM array-based LGSO phoswich DOI block detector for a high-resolution small animal PET system.

    Science.gov (United States)

    Yamamoto, Seiichi

    2013-07-01

    The silicon photomultiplier (Si-PM) is a promising photodetector for PET. However, it remains unclear whether Si-PM can be used for a depth-of-interaction (DOI) detector based on the decay time differences of the scintillator where pulse shape analysis is used. For clarification, we tested the Hamamatsu 4 × 4 Si-PM array (S11065-025P) combined with scintillators that used different decay times to develop DOI block detectors using the pulse shape analysis. First, Ce-doped Gd(2)SiO(5) (GSO) scintillators of 0.5 mol% Ce were arranged in a 4 × 4 matrix and were optically coupled to the center of each pixel of the Si-PM array for measurement of the energy resolution as well as its gain variations according to the temperature. Then two types of Ce-doped Lu(1.9)Gd(0.1)Si0(5) (LGSO) scintillators, 0.025 mol% Ce (decay time: ~31 ns) and 0.75 mol% Ce (decay time: ~46 ns), were optically coupled in the DOI direction, arranged in a 11 × 7 matrix, and optically coupled to a Si-PM array for testing of the possibility of a high-resolution DOI detector. The energy resolution of the Si-PM array-based GSO block detector was 18 ± 4.4 % FWHM for a Cs-137 gamma source (662 keV). Less than 1 mm crystals were clearly resolved in the position map of the LGSO DOI block detector. The peak-to-valley ratio (P/V) derived from the pulse shape spectra of the LGSO DOI block detector was 2.2. These results confirmed that Si-PM array-based DOI block detectors are promising for high-resolution small animal PET systems.

  3. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays.

    Science.gov (United States)

    Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng

    2016-10-31

    A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm². By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R₀) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.

  4. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays

    Directory of Open Access Journals (Sweden)

    Li-Ko Yeh

    2016-10-01

    Full Text Available A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0 of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs.

  5. A Photoactivated Gas Detector for Toluene Sensing at Room Temperature Based on New Coral-Like ZnO Nanostructure Arrays

    Science.gov (United States)

    Yeh, Li-Ko; Luo, Jie-Chun; Chen, Min-Chun; Wu, Chih-Hung; Chen, Jian-Zhang; Cheng, I-Chun; Hsu, Cheng-Che; Tian, Wei-Cheng

    2016-01-01

    A photoactivated gas detector operated at room temperature was microfabricated using a simple hydrothermal method. We report that the photoactivated gas detector can detect toluene using a UV illumination of 2 μW/cm2. By ultraviolet (UV) illumination, gas detectors sense toluene at room temperature without heating. A significant enhancement of detector sensitivity is achieved because of the high surface-area-to-volume ratio of the morphology of the coral-like ZnO nanorods arrays (NRAs) and the increased number of photo-induced oxygen ions under UV illumination. The corresponding sensitivity (ΔR/R0) of the detector based on coral-like ZnO NRAs is enhanced by approximately 1022% compared to that of thin-film detectors. The proposed detector greatly extends the dynamic range of detection of metal-oxide-based detectors for gas sensing applications. We report the first-ever detection of toluene with a novel coral-like NRAs gas detector at room temperature. A sensing mechanism model is also proposed to explain the sensing responses of gas detectors based on coral-like ZnO NRAs. PMID:27809222

  6. Coupling a CLOVER detector array with the PRISMA magnetic spectrometer. Investigation of moderately neutron-rich nuclei populated by multinucleon transfer and deep inelastic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gadea, A.; Napoli, D.R.; Angelis, G. de; Stefanini, A.M.; Corradi, L.; Axiotis, M.; Berti, L.; Fioretto, E.; Kroell, T.; Latina, A.; Marginean, N.; Maron, G.; Martinez, T.; Rosso, D.; Rusu, C.; Toniolo, N.; Szilner, S.; Trotta, M. [Laboratori Nazionali di Legnaro Padova (Italy); Menegazzo, R.; Bazzacco, D. [Dipartimento di Fisica, Universita di Padova (Italy); INFN, Sezione di Padova (Italy); Beghini, S.; Bellato, M.; Brandolini, F.; Farnea, E.; Isocrate, R.; Lenzi, S.M.; Lunardi, S.; Montagnoli, G.; Pavan, P.; Rossi Alvarez, C.; Scarlassara, F.; Ur, C.; Blasi, N.; Bracco, A.; Camera, F.; Leoni, S.; Million, B.; Pignanelli, M.; Pollarolo, G.; DeRosa, A.; Inglima, G.; La Commara, M.; La Rana, G.; Pierroutsakou, D.; Romoli, M.; Sandoli, M.; Bizzeti, P.G.; Bizzeti-Sona, A.M.; Lo Bianco, G.; Petrache, C.M.; Zucchiatti, A.; Cocconi, P.; Quintana, B.; Beck, C.; Curien, D.; Duchene, G.; Haas, F.; Medina, P.; Papka, P.; Durell, J.; Freeman, S.J.; Smith, A.; Varley, B.; Fayz, K.; Pucknell, V.; Simpson, J.; Gelletly, W.; Regan, P.

    2004-04-01

    Following the commissioning of the PRISMA large-acceptance spectrometer, installed at the Laboratori Nazionali di Legnaro (LNL), an international nuclear-structure collaboration has started to develop a large {gamma}-ray setup to be installed in the target position of the spectrometer. The array is based on the EUROBALL composite CLOVER detectors. In this contribution the CLOVER detector array is described and its expected performance figures discussed. This new setup, by using the high-intensity heavy-ion beams provided by the LNL ALPI linac, will push the study of nuclear structure towards moderately neutron-rich nuclei by means of quasi-elastic and deep inelastic reactions. (orig.)

  7. MTF study of planar small pixel pitch quantum IR detectors

    Science.gov (United States)

    Gravrand, O.; Baier, N.; Ferron, A.; Rochette, F.; Berthoz, J.; Rubaldo, L.; Cluzel, R.

    2014-06-01

    The actual trend in quantum IR detector development is the design of very small pixel pitch large arrays. From previously 30μm pitch, the standard pixel pitch is today 15μm and is expected to decrease to 12μm in the next few years. Furthermore, focal plane arrays (FPA) with pixel pitch as small as small as 10μm has been demonstrated. Such ultra-small pixel pitches are very small compared to the typical length ruling the electrical characteristics of the absorbing materials, namely the minority carrier diffusion length. As an example for low doped N type HgCdTe or InSb material, this diffusion length is of the order of 30 to 50μm, i.e. 3 to 5 times the targeted pixel pitches. This has strong consequences on the modulation transfer function (MTF) for planar structures, where the lateral extension of the photodiode is limited by diffusion. For such aspect ratios, the self-confinement of neighboring diodes may not be efficient enough to maintain optimal MTF. Therefore, this issue has to be addressed in order to take full benefits of the pixel pitch reduction in terms of image resolution. This paper aims at investigating the MTF evolution of HgCdTe and InSb FPAs decreasing the pixel pitch below 15μm. Both experimental measurements and finite element simulations are used to discuss this issue. Different scenarii will be compared, namely deep mesa etch between pixels, internal drift, surface recombination, thin absorbing layers.

  8. Effects of growth substrates on the morphologies of TiO{sub 2} nanowire arrays and the performance of assembled UV detectors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Guohua; Zhang, Min [State Key Laboratory on Integrated Optoelectronics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Zhang, Dezhong [College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Gu, Xuehui [State Key Laboratory on Integrated Optoelectronics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Meng, Fanxu [College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Wen, Shanpeng, E-mail: sp_wen@jlu.edu.cn [State Key Laboratory on Integrated Optoelectronics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China); Chen, Yu, E-mail: chenyu_1099@163.com [Institute of Semiconductors, Chinese Academy of Sciences, No A35 QingHua East Road, Beijing 100083 (China); Ruan, Shengping, E-mail: rspjlu@163.com [State Key Laboratory on Integrated Optoelectronics, Jilin University, 2699 Qianjin Street, Changchun 130012 (China)

    2014-10-01

    Highlights: • TiO{sub 2} nanowire arrays with different morphologies were synthesized on ITO and FTO. • Growth mechanism of the TiO{sub 2} nanowire arrays (TNAs) was investigated. • Back-incident array UV detectors based on the two TNAs were assembled. • Effects of growth substrates on device performance were studied for the first time. • Detector based on the well-aligned TNAs on FTO exhibits more excellent performance. - Abstract: TiO{sub 2} nanowire arrays (TNAs) with different morphologies were synthesized on transparent conductive tin-doped indium oxide (ITO) and fluorine-doped tin oxide (FTO). Back-incident array TNA-based UV detectors were assembled. Effects of growth substrates on the morphologies of TNAs and the performance of UV detectors were investigated for the first time. The device based on the vertically aligned TNAs on FTO (TNFs) exhibited more excellent photoresponse properties than that based on the cluster-shaped TNAs on ITO (TNIs). This phenomenon can be ascribed to the easier and faster electron transport in the single crystallographic orientation TNFs. The outstanding performance also demonstrated the obvious superiority of TNFs in the application of UV detection.

  9. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  10. The International Pulsar Timing Array project: using pulsars as a gravitational wave detector

    NARCIS (Netherlands)

    Hobbs, G.; Archibald, A.; Arzoumanian, Z.; Backer, D.; Bailes, M.; Bhat, N.D.R.; Burgay, M.; Burke-Spolaor, S.; Champion, D.; Cognard, I.; Coles, W.; Cordes, J.; Demorest, P.; Desvignes, G.; Ferdman, R.D.; Finn, L.; Freire, P.; Gonzalez, M.; Hessels, J.; Hotan, A.; Janssen, G.; Jenet, F.; Jessner, A.; Jordan, C.; Kaspi, V.; Kramer, M.; Kondratiev, V.; Lazio, J.; Lazaridis, K.; Lee, K.J.; Levin, Y.; Lommen, A.; Lorimer, D.; Lynch, R.; Lyne, A.; Manchester, R.; McLaughlin, M.; Nice, D.; Oslowski, S.; Pilia, M.; Possenti, A.; Purver, M.; Ransom, S.; Reynolds, J.; Sanidas, S.; Sarkissian, J.; Sesana, A.; Shannon, R.; Siemens, X.; Stairs, I.; Stappers, B.; Stinebring, D.; Theureau, G.; van Haasteren, R.; van Straten, W.; Verbiest, J.P.W.; Yardley, D.R.B.; You, X.P.

    2010-01-01

    The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to sear

  11. Data representation and feature selection for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Larsen, Jan; Kostesha, Natalie

    2011-01-01

    Within the framework of the strategic research project Xsense at the Technical University of Denmark, we are developing a colorimetric sensor array which can be useful for detection of explosives like DNT, TNT, HMX, RDX and TATP and identification of volatile organic compounds in the presence...

  12. Feature extraction using distribution representation for colorimetric sensor arrays used as explosives detectors

    DEFF Research Database (Denmark)

    Alstrøm, Tommy Sonne; Raich, Raviv; Kostesha, Natalie

    2012-01-01

    We present a colorimetric sensor array which is able to detect explosives such as DNT, TNT, HMX, RDX and TATP and identifying volatile organic compounds in the presence of water vapor in air. To analyze colorimetric sensors with statistical methods, a suitable representation of sensory readings...

  13. Instrumentation: Photodiode Array Detectors in UV-VIS Spectroscopy. Part II.

    Science.gov (United States)

    Jones, Dianna G.

    1985-01-01

    A previous part (Analytical Chemistry; v57 n9 p1057A) discussed the theoretical aspects of diode ultraviolet-visual (UV-VIS) spectroscopy. This part describes the applications of diode arrays in analytical chemistry, also considering spectroelectrochemistry, high performance liquid chromatography (HPLC), HPLC data processing, stopped flow, and…

  14. Room temperature detector array technology for the terahertz to far-infrared.

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, Ryan; Shaw, Michael; Zhang, X.; Tao, Hu; Lentine, Anthony L.; Wright, Jeremy Benjamin; Shaner, Eric Arthur; Trotter, Douglas Chandler; Averitt, Richard D.; Kadlec, Emil G; Rakich, Peter T.

    2011-10-01

    Thermal detection has made extensive progress in the last 40 years, however, the speed and detectivity can still be improved. The advancement of silicon photonic microring resonators has made them intriguing for detection devices due to their small size and high quality factors. Implementing silicon photonic microring or microdisk resonators as a means of a thermal detector gives rise to higher speed and detectivity, as well as lower noise compared to conventional devices with electrical readouts. This LDRD effort explored the design and measurements of silicon photonic microdisk resonators used for thermal detection. The characteristic values, consisting of the thermal time constant ({tau} {approx} 2 ms) and noise equivalent power were measured and found to surpass the performance of the best microbolometers. Furthermore the detectivity was found to be D{sub {lambda}} = 2.47 x 10{sup 8} cm {center_dot} {radical}Hz/W at 10.6 {mu}m which is comparable to commercial detectors. Subsequent design modifications should increase the detectivity by another order of magnitude. Thermal detection in the terahertz (THz) remains underdeveloped, opening a door for new innovative technologies such as metamaterial enhanced detectors. This project also explored the use of metamaterials in conjunction with a cantilever design for detection in the THz region and demonstrated the use of metamaterials as custom thin film absorbers for thermal detection. While much work remains to integrate these technologies into a unified platform, the early stages of research show promising futures for use in thermal detection.

  15. A high-spatial-resolution three-dimensional detector array for 30-200 keV X-rays based on structured scintillators

    DEFF Research Database (Denmark)

    Olsen, Ulrik Lund; Schmidt, Søren; Poulsen, Henning Friis

    2008-01-01

    A three-dimensional X-ray detector for imaging 30-200 keV photons is described. It comprises a set of semi-transparent structured scintillators, where each scintillator is a regular array of waveguides in silicon, and with pores filled with CsI. The performance of the detector is described theore...... in efficiency by a factor of 5-15 is obtainable. The cross-talk between screens in the three-dimensional detector is shown to be negligible. The three-dimensional concept enables ray-tracing and super-resolution algorithms to be applied....

  16. 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection

    CERN Document Server

    Miki, Shigehito; Wang, Zhen; Terai, Hirotaka

    2014-01-01

    We present the characterization of two-dimensionally arranged 64-pixel NbTiN superconducting nanowire single-photon detector array for spatially resolved photon detection. NbTiN films deposited on thermally oxidized Si substrates enabled the high-yield production of high-quality SSPD pixels, and all 64 SSPD pixels showed uniform superconducting characteristics. Furthermore, all of the pixels showed single-photon sensitivity, and 60 of the 64 pixels showed a pulse generation probability higher than 90% after photon absorption. As a result of light irradiation from the single-mode optical fiber at different distances between the fiber tip and the active area, the variations of system detection efficiency in each pixel showed reasonable Gaussian distribution to represent the spatial distributions of photon flux intensity.

  17. Fingerprint analysis and simultaneous determination of phenolic compounds in extracts of Curculiginis Rhizoma by HPLC-diode array detector.

    Science.gov (United States)

    Bian, Qingya; Yang, Hui; Chan, Chi-On; Jin, Dengping; Mok, Daniel Kam-Wah; Chen, Sibao

    2013-01-01

    Curculiginis Rhizoma (Curculigo orchioides GAERTN.) is a well-known Chinese herbal medicine, as well as an important Rasayana drug in India. Current criteria of quality control on this herb are to quantitatively analyze single compound curculigoside, which fail to comprehensively evaluate quality of this herb. In this paper, a simple and reliable HPLC coupled with diode array detector (DAD) method was developed to evaluate the quality of Curculiginis Rhizoma through establishing chromatographic fingerprint and simultaneously quantitating four phenolic compounds, orcinol glucoside, orcinol, 2,6-dimethoxybenzoic acid and curculigoside. The fingerprint displayed eleven common peaks, and the similarity index of different samples was in a range of 0.890-0.977. Validation of the method was acceptable, with 96.03-102.82% accuracy in recovery test and inter and intra-day precisions were less than 2%. This developed method by having a combination of chromatographic fingerprint and quantitation analysis could be applied to the quality control of Curculiginis Rhizoma.

  18. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  19. Determination of synthetic acaricides residues in beeswax by high-performance liquid chromatography with photodiode array detector.

    Science.gov (United States)

    Adamczyk, Sabine; Lázaro, Regina; Pérez-Arquillué, Consuelo; Herrera, Antonio

    2007-01-02

    A multiresidue HPLC method for identification and quantification of the synthetic acaricides fluvalinate, coumaphos, bromopropylate and its metabolite 4,4'-dibromobenzophenone in beeswax has been developed. Different techniques were tested and modified. The method consists of a sample preparation with isooctane followed by solid phase extraction using Florisil columns. Determination of the synthetic acaricides is achieved by HPLC with a photodiode array detector. Analytical performance of the proposed method, including sensitivity, accuracy and precision was satisfactory. The LOD for the analytes varied between 0.1 and 0.2 microg g(-1) wax and the recoveries between 70 and 110%. Relative standard deviation of the repeatability of the method is <15% and reproducibility is <31%.

  20. Spectral Resolution for Five-Element, Filtered, X-Ray Detector (XRD) Arrays Using the Methods of Backus and Gilbert

    Energy Technology Data Exchange (ETDEWEB)

    FEHL,DAVID LEE; BIGGS,F.; CHANDLER,GORDON A.; STYGAR,WILLIAM A.

    2000-01-17

    The generalized method of Backus and Gilbert (BG) is described and applied to the inverse problem of obtaining spectra from a 5-channel, filtered array of x-ray detectors (XRD's). This diagnostic is routinely fielded on the Z facility at Sandia National Laboratories to study soft x-ray photons ({le}2300 eV), emitted by high density Z-pinch plasmas. The BG method defines spectral resolution limits on the system of response functions that are in good agreement with the unfold method currently in use. The resolution so defined is independent of the source spectrum. For noise-free, simulated data the BG approximating function is also in reasonable agreement with the source spectrum (150 eV black-body) and the unfold. This function may be used as an initial trial function for iterative methods or a regularization model.

  1. Gamma-ray observations of SN 1987A with an array of high-purity germanium detectors

    Science.gov (United States)

    Sandie, W. G.; Nakano, G. H.; Chase, L. F., Jr.; Fishman, G. J.; Meegan, C. A.; Wilson, R. B.; Paciesas, W.

    A balloonborne gamma-ray spectrometer comprising an array of high-purity n-type germanium detectors was flown from Alice Springs, Northern Territory, Australia, on May 29 - 30, 1987, 96 days after the observed neutrino pulse. SN 1987A was within the 22-deg field of view for about 3300 s during May 29.9 - 30.3 UT. No excess gamma rays were observed at energies appropriate to the Ni(56) - Co(56) decay chain or from other lines in the energy region from 0.1 to 3.0 MeV. The data imply that there was less than 2.5×10-4 solar masses of Co(56) exposed to the Earth at the time of the observation. Additional balloon-borne observations are planned.

  2. A CsI(Tl) detector array used in the experiment of the proton-rich nucleus 17Ne

    Institute of Scientific and Technical Information of China (English)

    MA Li-Ying; HUA Hui; LU Fei; CHEN Dong; JIANG Xi-Yao; YE Yan-Lin; JIANG Dong-Xing; Qureshi Faisal-Jamil

    2009-01-01

    To investigate the configurations of the valence protons in Borromean nucleus 17Ne, a CsI(Tl) detector array, which consists of 9 CsI crystals (26×26×20mm3) coupled with photodiodes, has been successfully used in the 17Ne experiment to measure the energy of protons. In order to find the optimal working conditions and get the best energy resolutions, several technologies (including various wrapping materials, wrapping and coupling methods) have been used. The testing results showed that the best energy resolution of the CsI(Tl) is about 3.3% using the 241 Am α-source. The primary testing results with the proton beam were also provided.

  3. Focal plane array detectors with micro-bolometer structure and its application in IR and THz imaging

    Science.gov (United States)

    Wang, Jun; Mou, Wenchao; Gou, Jun; Jiang, Yadong

    2016-10-01

    Focal Plane Array (FPA) detector has characteristics of low cost, operating at room temperature, compatibility with the silicon CMOS technology, and high detecting performance, therefore it becomes a hot spot in infrared (IR) or terahertz (THz) detect field recently. However, the tradition structure of micro-bolometer has the conflict of the pixel size and thermal performance. In order to improve the detecting performance of small pixel size bolometer, high fill factor and low thermal conductance design should be considered. In IR detecting, double layers structure is an efficient method to improve the absorption of micro-bolometer and reduce thermal conductance. The three-dimension model of small size micro-bolometer was built in this article. The thermal and mechanical characters of those models were simulated and optimized, and finally the double layer structure micro-bolometer was fabricated with multifarious semiconductor recipes on the readout integrated chip wafer. For THz detecting, to improve the detecting performance, different dimension THz detectors based on micro-bridge structure were designed and fabricated to get optimizing micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer to enhance the absorption of THz radiation. Continuous-wave THz detection and imaging are demonstrated with a 2.52 THz far infrared CO2 laser and fabricated 320×240 vanadium oxide micro-bolometer focal plane array with optimized cell structure. With this detecting system, THz imaging of metal concealed in wiping cloth and envelope is demonstrated.

  4. Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array

    CERN Document Server

    Unternährer, Manuel; Gasparini, Leonardo; Stoppa, David; Stefanov, André

    2016-01-01

    We demonstrate coincidence measurements of spatially entangled photons by means of a novel type of multi-pixel based detection array. The adopted sensor is a fully digital 8$\\times$16 silicon photomultiplier array allowing not only photon counting but also per-pixel time stamping of the arrived photons with a resolution of 65 ps. Together with a frame rate of 500 kfps, this property exceeds the capabilities of conventional charge-coupled device cameras which have become of growing interest for the detection of transversely correlated photon pairs. The sensor is used to measure a second-order correlation function for various non-collinear configurations of entangled photons generated by spontaneous parametric down-conversion. The experimental results are compared to theory.

  5. Array controller system with cryogenic pre-amplifiers for MIMIZUKU

    Science.gov (United States)

    Okada, K.; Sako, S.; Miyata, T.; Kamizuka, T.; Ohsawa, R.; Uchiyama, M. S.; Mori, K.; Yamaguchi, J.; Asano, K.; Uchiyama, M.

    2016-07-01

    MIMIZUKU is a mid-infrared imager and spectrograph being developed for the University of Tokyo Atacama Observatory (TAO) 6.5-m telescope (PI: Y. Yoshii). To fully utilize a high atmospheric transmission of the Chajnantor site, MIMIZUKU covers a wide wavelength range from 2 to 38 μm with three array detectors: a HAWAII-1RG HgCdTe 1024 × 1024 array with a 5 μm cutoff manufactured by Teledyne, an Aquarius Si:As IBC 1024 × 1024 array by Raytheon, and a MF-128 Si:Sb BIB 128 × 128 array by DRS. We have newly developed an array controller system to operate these multiple arrays. A sampling rate higher than 0.5 MHz is required to prevent from saturation of their wells in broad-band imaging observations with MIMIZUKU due to high thermal background flux. Such high speed signals are dulled when passing through lines from the arrays to readout circuits. To overcome this problem, we have developed high-speed cryogenic buffer pre-amplifier circuits with commercial GaAs MESFETs, instead of Si JFETs, which are generally used in buffer amplifiers at cryogenic temperatures. The cryogenic buffer circuits are installed on an outer wall of the optical bench of MIMIZUKU at 20 K. We have measured readout noises of the array controller system including the cryogenic buffers in a test cryostat and room temperature circuits and confirmed that input referred noises of the system are lower than the specification value of the readout noise of the Aquarius array.

  6. Development of a forward-angle gamma-ray detector array for MoNA-LISA

    Science.gov (United States)

    Votaw, Daniel; MoNA Collaboration Collaboration

    2017-01-01

    In recent years invariant mass spectroscopy has been successfully applied to measure neutron-unbound states. In this method neutrons are measured in coincidence with charged fragments following reactions with radioactive beams produced in projectile fragmentation reactions. When the final nucleus has bound excited states it is necessary to include gamma-ray detection in order to extract the excitation energy of the initial state. Because the MoNA-LISA setup at NSCL uses a large-gap Sweeper magnet to deflect the charged particles, conventional gamma-ray scintillation arrays cannot be used efficiently because of the large fringe field of the magnet. Thus we are developing a small cesium iodide (CsI) array using silicon photomultipliers (SiPMs) which are agnostic to the presence of a magnetic field. Using GEANT4 simulations the parameters of the array will be optimized to achieve the required efficiency and energy resolution of the Doppler-corrected energy spectra, necessary to extract the gamma-ray transitions in the final nucleus. NSF PHY-1002511, DOE-NNSA DE-NA0000979.

  7. Performance of the Imaging Fourier Transform Spectrometer with Photoconductive Detector Arrays: An Application for the AKARI Far-Infrared Instrument

    CERN Document Server

    Kawada, Mitsunobu; Murakami, Noriko; Matsuo, Hiroshi; Okada, Yoko; Yasuda, Akiko; Matsuura, Shuji; Shirahata, Mai; Doi, Yasuo; Kaneda, Hidehiro; Ootsubo, Takafumi; Nakagawa, Takao; Shibai, Hiroshi

    2008-01-01

    We have developed an imaging Fourier transform spectrometer (FTS) for space-based far-infrared astronomical observations. The FTS employs a newly developed photoconductive detector arrays with a capacitive trans-impedance amplifier, which makes the FTS a completely unique instrument. The FTS was installed as a function of the far-infrared instrument (FIS: Far-Infrared Surveyor) on the Japanese astronomical satellite, AKARI, which was launched on February 21, 2006 (UT) from the Uchinoura Space Center. The FIS-FTS had been operated for more than one year before liquid helium ran out on August 26, 2007. The FIS-FTS was operated nearly six hundreds times, which corresponds to more than one hundred hours of astronomical observations and almost the same amount of time for calibrations. As expected from laboratory measurements, the FIS-FTS performed well and has produced a large set of astronomical data for valuable objects. Meanwhile, it becomes clear that the detector transient effect is a considerable factor for ...

  8. Measurements of magnetic field fluctuations using an array of Hall detectors on the TEXTOR tokamak

    Science.gov (United States)

    Ďuran, I.; Stöckel, J.; Mank, G.; Finken, K. H.; Fuchs, G.; Oost, G. Van

    2002-10-01

    Hall detectors have been used to measure the magnetic field together with its' fluctuations in the boundary of a tokamak. The results show, that the measurements which have been performed so far, mainly by use of coils together with subsequent integration, either on-line or later by computer, can be substituted by Hall probe measurements giving the desired value of B directly. Because the integration of the coil signal becomes more and more difficult with long pulses, Hall detectors may give advantages in future fusion devices. We implemented a stack of nine Hall detectors mounted on three planes on a rod in such a way, that the three components of the magnetic field can be measured. To avoid capacitive and charge pickup from the plasma, the probes are electrically shielded. The damping due to skin effect within this shield has been taken into account. The probes have been calibrated using a known magnetic field of a straight wire driven with a LC bank. This field has been precisely measured with a Rogowski coil. The dependence of the Hall coefficient on the frequency has been measured and the pickup in the feeds due to Ḃ has been withdrawn from the results. We demonstrate the method with measurements on the TEXTOR tokamak, where we could clearly detect the small stray fields associated with magnetohydrodynamic (MHD) fluctuations. On TEXTOR we have been able to detect the MHD activity preceding discharge disruptions as well as the precursors of the so called sawteeth. The results are compared to those of other diagnostics on TEXTOR as, e.g., magnetic loops and electron cyclotron emission, and they do well compare.

  9. Characterisation of Reticon and Hamamatsu photodiode array and the subsequent development of high performance VME-based detector systems optimised for energy dispersive EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Bogg, D.; Dent, A.J.; Derbyshire, G.E.; Farrow, R.C.; Ramsdale, C.A.; Salvini, G. [Daresbury Lab., Warrington (United Kingdom). CCLRC

    1997-06-21

    Energy dispersive EXAFS is an established and successful technique employed at Daresbury Laboratory for the study of dynamic experiments. At the heart of this technique is an in house developed high-performance VME-based detector system using a photodiode array. This system originally used a Reticon RL1024S array but extensive investigation of three other photodiode arrays namely the Reticon 512T, 512SB and the Hamamatsu S3904 has enabled their characterisation and the subsequent development of optimised drive and signal processing electronics. This has provided two further systems which exhibit improved signal to noise, excellent linearity and increased operational speed. (orig.).

  10. A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files

    Science.gov (United States)

    Santiago, Juan Agustin Calama; Utrilla, Miguel Angel Infante; Rodriguez, Maria Elisa Lavado

    2015-01-01

    This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC) positions and used as input to the treatment planning system (TPS) to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D) phantom gamma test (3% local dose - 3 mm) for all of the treatment verifications, but in some dose–volume histogram (DVH) comparisons, we note sensitive differences for the planning target volume (PTV) coverage and for the maximum doses in at-risk organs (up to 3.5%). In dose–distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data. PMID:26150681

  11. A method to improve fluence resolution derived from two-dimensional detector array measurements for patient-specific IMRT verification using the information collected in dynalog files

    Directory of Open Access Journals (Sweden)

    Juan Agustin Calama Santiago

    2015-01-01

    Full Text Available This paper proposes a method for improving the resolution of the fluence derived from detector array measurement using the information collected in dynalog files. From dynalog information, a file is generated with the actual multileaf collimator (MLC positions and used as input to the treatment planning system (TPS to obtain the dynalog-derived fluence and the theoretical response over the detector array. In contrast with the measured response, this theoretical response allows for correction of the dynalog-derived fluence and translation into the reconstructed fluence. This fluence is again introduced into the planning system to verify the treatment using clinical tools. Initially, more than 98% of the points passed the two-dimensional (2D phantom gamma test (3% local dose - 3 mm for all of the treatment verifications, but in some dose-volume histogram (DVH comparisons, we note sensitive differences for the planning target volume (PTV coverage and for the maximum doses in at-risk organs (up to 3.5%. In dose-distribution evaluations, we found differences of up to 5% in the PTV edges in certain cases due to detector array measurement errors. This work improves the resolution of the fluence derived from detector array measurements based on the treatment information, in contrast with the current commercial proposals based on planned data.

  12. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation using Superconducting Tunnel Junctions with Radio-Frequency Single-Electron Transistors

    Science.gov (United States)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Stahle, C. M.; Wollack, E. J.; Schoelkopf, R. J.; Krebs, Carolyn (Technical Monitor)

    2002-01-01

    The science drivers for the SPIRIT/SPECS missions demand sensitive, fast, compact, low-power, large-format detector arrays for high resolution imaging and spectroscopy in the far infrared and submillimeter. Detector arrays with 10,000 pixels and sensitivity less than 10(exp 20)-20 W/Hz(exp 20)0.5 are needed. Antenna-coupled superconducting tunnel junction detectors with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique when forming arrays. The device consists of an antenna structure to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure currents through tunnel junction contacts to the absorber volume. We will describe optimization of device parameters, and recent results on fabrication techniques for producing devices with high yield for detector arrays. We will also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  13. Spectral Light Measurements in Microbenthic Phototrophic Communities with a Fiberoptic Microprobe Coupled to a Sensitive Diode-Array Detector Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    A diode array detector system for microscale light measurements with fiber-optic microprobes was developed; it measures intensities of 400-900-nm light over >6 orders of magnitude with a spectral resolution of 2-5 nm. Fiber-optic microprobes to measure field radiance or scalar irradiance were...

  14. High-performance MCT and QWIP IR detectors at Sofradir

    Science.gov (United States)

    Reibel, Yann; Rubaldo, Laurent; Manissadjian, Alain; Billon-Lanfrey, David; Rothman, Johan; de Borniol, Eric; Destéfanis, Gérard; Costard, E.

    2012-11-01

    Cooled IR technologies are challenged for answering new system needs like compactness and reduction of cryo-power which is key feature for the SWaP (Size, Weight and Power) requirements. This paper describes the status of MCT IR technology in France at Leti and Sofradir. A focus will be made on hot detector technology for SWAP applications. Sofradir has improved its HgCdTe technology to open the way for High Operating Temperature systems that release the Stirling cooler engine power consumption. Solutions for high performance detectors such as dual bands, much smaller pixel pitch or megapixels will also be discussed. In the meantime, the development of avalanche photodiodes or TV format with digital interface is key to bringing customers cutting-edge functionalities. Since 1997, Sofradir has been working with Thales and Research Technologies (TRT) to develop and produce Quantum Well Infrared Photodetectors (QWIP) as a complementary offer with MCT, to provide large LW staring arrays. A dualband MW-LW QWIP detector (25μm pitch 384×288 IDDCA) is currently under development. We will present in this paper its latest results.

  15. Gamma-ray multiplicity measurement of the spontaneous fission decay of 252Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D L; Bernstein, L A; Burke, J T; Gibelin, J; Heffner, M D; Mintz, J; Norman, E B; Phair, L; Scielzo, N D; Sheets, S A; Snyderman, N J; Stoyer, M A; Wiedeking, M

    2008-04-23

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1 {micro}Ci {sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  16. Gamma-ray multiplicity measurement of the spontaneous fission of {sup 252}Cf in a segmented HPGe/BGO detector array

    Energy Technology Data Exchange (ETDEWEB)

    Bleuel, D.L., E-mail: bleuel1@llnl.go [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Bernstein, L.A.; Burke, J.T. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Gibelin, J. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Heffner, M.D. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Mintz, J. [Nuclear Engineering Department, University of California, Berkeley, CA 94720 (United States); Norman, E.B. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nuclear Engineering Department, University of California, Berkeley, CA 94720 (United States); Phair, L. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Scielzo, N.D.; Sheets, S.A.; Snyderman, N.J.; Stoyer, M.A. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Wiedeking, M. [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2010-12-21

    Coincident {gamma} rays from a {sup 252}Cf source were measured using an array of six segmented high-purity germanium (HPGe) Clover detectors each enclosed by 16 bismuth-germanate (BGO) detectors. The detectors were arranged in a cubic pattern around a 1{mu}Ci{sup 252}Cf source to cover a large solid angle for {gamma}-ray measurement with a reasonable reconstruction of the multiplicity. Neutron multiplicity was determined in certain cases by identifying the prompt {gamma} rays from individual fission fragment pairs. Multiplicity distributions from previous experiments and theoretical models were convolved with the response function of the array and compared to the present results. These results suggest a {gamma}-ray multiplicity spectrum broader than previous measurements and models, and provide no evidence of correlation with neutron multiplicity.

  17. Characterization of responses of 2d array seven29 detector and its combined use with octavius phantom for the patient-specific quality assurance in rapidarc treatment delivery

    Energy Technology Data Exchange (ETDEWEB)

    Syamkumar, S.A., E-mail: skppm@rediffmail.com [Department of Medical Physics, Cancer Institute (WIA), Chennai (India); Padmanabhan, Sriram; Sukumar, Prabakar; Nagarajan, Vivekanandan [Department of Medical Physics, Cancer Institute (WIA), Chennai (India)

    2012-04-01

    A commercial 2D array seven29 detector has been characterized and its performance has been evaluated. 2D array ionization chamber equipped with 729 ionization chambers uniformly arranged in a 27 Multiplication-Sign 27 matrix with an active area of 27 Multiplication-Sign 27 cm{sup 2} was used for the study. An octagon-shaped phantom (Octavius Phantom) with a central cavity is used to insert the 2D ion chamber array. All measurements were done with a linear accelerator. The detector dose linearity, reproducibility, output factors, dose rate, source to surface distance (SSD), and directional dependency has been studied. The performance of the 2D array, when measuring clinical dose maps, was also investigated. For pretreatment quality assurance, 10 different RapidArc plans conforming to the clinical standards were selected. The 2D array demonstrates an excellent short-term output reproducibility. The long-term reproducibility was found to be within {+-}1% over a period of 5 months. Output factor measurements for the central chamber of the array showed no considerable deviation from ion chamber measurements. We found that the 2D array exhibits directional dependency for static fields. Measurement of beam profiles and wedge-modulated fields with the 2D array matched very well with the ion chamber measurements in the water phantom. The study shows that 2D array seven29 is a reliable and accurate dosimeter and a useful tool for quality assurance. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments.

  18. Characterization of responses of 2d array seven29 detector and its combined use with octavius phantom for the patient-specific quality assurance in rapidarc treatment delivery.

    Science.gov (United States)

    Syamkumar, S A; Padmanabhan, Sriram; Sukumar, Prabakar; Nagarajan, Vivekanandan

    2012-01-01

    A commercial 2D array seven29 detector has been characterized and its performance has been evaluated. 2D array ionization chamber equipped with 729 ionization chambers uniformly arranged in a 27 × 27 matrix with an active area of 27 × 27 cm² was used for the study. An octagon-shaped phantom (Octavius Phantom) with a central cavity is used to insert the 2D ion chamber array. All measurements were done with a linear accelerator. The detector dose linearity, reproducibility, output factors, dose rate, source to surface distance (SSD), and directional dependency has been studied. The performance of the 2D array, when measuring clinical dose maps, was also investigated. For pretreatment quality assurance, 10 different RapidArc plans conforming to the clinical standards were selected. The 2D array demonstrates an excellent short-term output reproducibility. The long-term reproducibility was found to be within ±1% over a period of 5 months. Output factor measurements for the central chamber of the array showed no considerable deviation from ion chamber measurements. We found that the 2D array exhibits directional dependency for static fields. Measurement of beam profiles and wedge-modulated fields with the 2D array matched very well with the ion chamber measurements in the water phantom. The study shows that 2D array seven29 is a reliable and accurate dosimeter and a useful tool for quality assurance. The combination of the 2D array with the Octavius phantom proved to be a fast and reliable method for pretreatment verification of rotational treatments. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  19. A Monte Carlo study to measure the energy spectra of the primary cosmic-ray components at the knee using a new Tibet AS core detector array

    CERN Document Server

    :,; Bi, X J; Chen, D; Chen, W Y; Cui, S W; Danzengluobu,; Ding, L K; Ding, X H; Feng, C F; Feng, Zhaoyang; Feng, Z Y; Gou, Q B; Guo, H W; Guo, Y Q; He, H H; He, Z T; Hibino, K; Hotta, N; Hu, Haibing; Hu, H B; Huang, J; Li, W J; Jia, H Y; Jiang, L; Kajino, F; Kasahara, K; Katayose, Y; Kato, C; Kawata, K; Labaciren,; Le, G M; Li, A F; Liu, C; Liu, J S; Lu, H; Meng, X R; Mizutani, K; Munakata, K; Nanjo, H; Nishizawa, M; Ohnishi, M; Ohta, I; Ozawa, S; Qian, X L; Qu, X B; Saito, T; Saito, T Y; Sakata, M; Sako, T K; Shao, J; Shibata, M; Shiomi, A; Shirai, T; Sugimoto, H; Takita, M; Tan, Y H; Tateyama, N; Torii, S; Tsuchiya, H; Udo, S; Wang, H; Wu, H R; Xue, L; Yamamoto, Y; Yang, Z; Yasue, S; Yuan, A F; Yuda, T; Zhai, L M; Zhang, H M; Zhang, J L; Zhang, X Y; Zhang, Y; Zhang, Yi; Zhang, Ying; Zhaxisangzhu,; Zhou, X X

    2013-01-01

    A new hybrid experiment has been started by AS{\\gamma} experiment at Tibet, China, since August 2011, which consists of a low threshold burst-detector-grid (YAC-II, Yangbajing Air shower Core array), the Tibet air-shower array (Tibet-III) and a large underground water Cherenkov muon detector (MD). In this paper, the capability of the measurement of the chemical components (proton, helium and iron) with use of the (Tibet-III+YAC-II) is investigated by means of an extensive Monte Carlo simulation in which the secondary particles are propagated through the (Tibet-III+YAC-II) array and an artificial neural network (ANN) method is applied for the primary mass separation. Our simulation shows that the new installation is powerful to study the chemical compositions, in particular, to obtain the primary energy spectrum of the major component at the knee.

  20. Nondestructive Characterization of Residual Threading Dislocation Density in HgCdTe Layers Grown on CdZnTe by Liquid-Phase Epitaxy

    Science.gov (United States)

    Fourreau, Y.; Pantzas, K.; Patriarche, G.; Destefanis, V.

    2016-09-01

    The performance of mercury cadmium telluride (MCT)-based infrared (IR) focal-plane arrays is closely related to the crystalline perfection of the HgCdTe thin film. In this work, Te-rich, (111)B-oriented HgCdTe epilayers grown by liquid-phase epitaxy on CdZnTe substrates have been studied. Surface atomic steps are shown on as-grown MCT materials using atomic force microscopy (AFM) and white-light interferometry (WLI), suggesting step-flow growth. Locally, quasiperfect surface spirals are also evidenced. A demonstration is given that these spirals are related to the emergence of almost pure screw threading dislocations. A nondestructive and quantitative technique to measure the threading dislocation density is proposed. The technique consists of counting the surface spirals on the as-grown MCT surface from images obtained by either AFM or WLI measurements. The benefits and drawbacks of both destructive—chemical etching of HgCdTe dislocations—and nondestructive surface imaging techniques are compared. The nature of defects is also discussed. Finally, state-of-the-art threading dislocation densities in the low 104 cm-2 range are evidenced by both etch pit density (EPD) and surface imaging measurements.

  1. Development of detector for leakage magnetic flux using hall sensor array and lock-in-amplifier

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kyung Chul; Lee, Jin Yi [Chosun University, Gwangju (Korea, Republic of)

    2004-05-15

    It is important to estimate the distribution of intensity of a magnetic field for application of magnetic method to industrial nondestructive evaluation. Magnetic camera provides the distribution of a quantitative magnetic field with homogeneous lift-off and same spatial resolution. The method for arraying sensors is important on the magnetic camera because of obtaining a high spatial resolution. This work proposes an equation to evaluate the limitation of spatial resolution on the condition of decided size of magnetic sensor package. And the possibility of obtaining the high spatial resolution in spite of above mentioned limitation would be verified. Also a method for high ratio of signal-to-noise was attempted by use of Lock-In-Amplifier.

  2. Capabilities of Multiplicative Array Processors as Signal Detector and Bearing Estimator

    Science.gov (United States)

    1974-12-31

    M) u (o/n; cm). (4-47) Then, using (D-9) and recalling that e = 1MB sin a, we find a(y) = iarccos 1 48 ß2(4M2-l) \\/-T( J7t!-c) VMH W c...8217)2+(2M-l) tD £](B-CcosM3sina). (5-22) B-r Therefore, an estimate a(w; a) based on the two array sums has an error bound, Var(i) > (B2-C2)[|5E(a)] 2...If^L &$L exp[-4-4MH 2D2(2-cos2e)](SI)2. (5-50) ßV4M"-i I+4M* TD * 5.3 COMPUTED RESULTS Computations of the various bounds on estimator error

  3. Infrared detectors

    CERN Document Server

    Rogalski, Antonio

    2010-01-01

    This second edition is fully revised and reorganized, with new chapters concerning third generation and quantum dot detectors, THz detectors, cantilever and antenna coupled detectors, and information on radiometry and IR optics materials. Part IV concerning focal plane arrays is significantly expanded. This book, resembling an encyclopedia of IR detectors, is well illustrated and contains many original references … a really comprehensive book.-F. Sizov, Institute of Semiconductor Physics, National Academy of Sciences, Kiev, Ukraine

  4. Simulation study of PET detector configuration with thick light guide and GAPD array having large-area microcells for high effective quantum efficiency.

    Science.gov (United States)

    Kang, Jihoon; Choi, Yong

    2016-07-01

    Light sharing PET detector configuration coupled with thick light guide and Geiger-mode avalanche photodiode (GAPD) with large-area microcells was proposed to overcome the energy non-linearity problem and to obtain high light collection efficiency (LCE). A Monte-Carlo simulation was conducted for the three types of LSO block, 4 × 4 array of 3 × 3 × 20 mm(3) discrete crystals, 6 × 6 array of 2 × 2 × 20 mm(3) discrete crystals, and 12 × 12 array of 1 × 1 × 20 mm(3) discrete crystals, to investigate the scintillation light distribution after conversion of the γ-rays in LSO. The incident photons were read out by three types of 4 × 4 array photosensors, which were PSPMT of 25% quantum efficiency (QE), GAPD1 with 50 × 50 µm(2) microcells of 30% photon detection efficiency (PDE) and GAPD2 with 100 × 100 µm(2) of 45% PDE. The number of counted photons in each photosensor was analytically calculated. The LCE, linearity and flood histogram were examined for each PET detector module having 99 different configurations as a function of light guide thickness ranging from 0 to 10 mm. The performance of PET detector modules based on GAPDs was considerably improved by using the thick light guide. The LCE was increased from 24 to 30% and from 14 to 41%, and the linearity was also improved from 0.97 to 0.99 and from 0.75 to 0.99, for GAPD1 and GAPD2, respectively. As expected, the performance of PSPMT based detector did not change. The flood histogram of 12 × 12 array PET detector modules using 3 mm light guide coupled with GAPDs was obtained by simulation, and all crystals of 1 × 1 × 20 mm(3) size were clearly identified. PET detector module coupled with thick light guide and GAPD array with large-area microcells was proposed to obtain high QE and high spatial resolution, and its feasibility was verified. This study demonstrated that the overall PET performance of the proposed design was

  5. A Low-Power, Radiation-Resistant, Silicon-Drift-Detector Array for Extraterrestrial Element Mapping

    Energy Technology Data Exchange (ETDEWEB)

    Ramsey B. D.; De Geronimo G.; Gaskin, J.A.; Elsner, R.F.; Chen, W.; Carini, G.A.; Keister, J.; Li, S.; Li, Z.; Siddons, D.P.; Smith, G.

    2012-02-08

    We are developing a modular Silicon Drift Detector (SDD) X-Ray Spectrometer (XRS) for measuring the abundances of light surface elements (C to Fe) fluoresced by ambient radiation on remote airless bodies. The value of fluorescence spectrometry for surface element mapping is demonstrated by its inclusion on three recent lunar missions and by exciting new data that have recently been announced from the Messenger Mission to Mercury. The SDD-XRS instrument that we have been developing offers excellent energy resolution and an order of magnitude lower power requirement than conventional CCDs, making much higher sensitivities possible with modest spacecraft resources. In addition, it is significantly more radiation resistant than x-ray CCDs and therefore will not be subject to the degradation that befell recent lunar instruments. In fact, the intrinsic radiation resistance of the SDD makes it applicable even to the harsh environment of the Jovian system where it can be used to map the light surface elements of Europa. In this paper, we first discuss our element-mapping science-measurement goals. We then derive the necessary instrument requirements to meet these goals and discuss our current instrument development status with respect to these requirements.

  6. Calibration scheme for large Kinetic Inductance Detector Arrays based on Readout Frequency Response

    CERN Document Server

    Bisigello, L; Murugesan, V; Baselmans, J J A; Baryshev, A M

    2016-01-01

    Microwave kinetic inductance detector (MKID) provides a way to build large ground based sub-mm instruments such as NIKA and A-MKID. For such instruments, therefore, it is important to understand and characterize the response to ensure good linearity and calibration over wide dynamic range. We propose to use the MKID readout frequency response to determine the MKID responsivity to an input optical source power. A signal can be measured in a KID as a change in the phase of the readout signal with respect to the KID resonant circle. Fundamentally, this phase change is due to a shift in the KID resonance frequency, in turn due to a radiation induced change in the quasiparticle number in the superconducting resonator. We show that shift in resonant frequency can be determined from the phase shift by using KID phase versus frequency dependence using a previously measured resonant frequency. Working in this calculated resonant frequency, we gain near linearity and constant calibration to a constant optical signal ap...

  7. Evaluation Software for BaF2 Detector Array Electronics at CSNS-WNS

    Science.gov (United States)

    Zhang, Yaxi; Cao, Ping; Wang, Qi; Zhang, Deliang; He, Bing; Qi, Xincheng; An, Qi

    2017-06-01

    The “in programming barium fluoride (BaF2) detector array” is one of the experiment facilities at China Spallation Neutron Source-White Neutron Sources, which is designed for the measurement of neutron capture cross section with high accuracy. It consists of 92 crystal elements with completely 4π solid-angle coverage, which needs 92 analog channels and 92 digitization channels for data acquisition. Accordingly, the readout electronics is comprised with four distributed readout PXIe crates, containing 46 field digitization modules (FDMs). Each FDM supports two valid channels for signal digitizing. In this paper, evaluation software is designed for evaluating the performance of BaF2 readout electronics. It focuses on evaluating the performance of data transmission, waveform digitizing, and working status monitoring. Test results show that the evaluation software can correctly acquire and assemble data from the BaF2 readout system and evaluate the analog digital converter (ADC) performance under ADC test mode. FDMs in the readout system can also be monitored and controlled by this software in real time.

  8. Exploration of a 100 TeV gamma-ray northern sky using the Tibet air-shower array combined with an underground water-Cherenkov muon-detector array

    CERN Document Server

    Sako, T K; Ohnishi, M; Shiomi, A; Takita, M; Tsuchiya, H

    2009-01-01

    Aiming to observe cosmic gamma rays in the 10 - 1000 TeV energy region, we propose a 10000 m^2 underground water-Cherenkov muon-detector (MD) array that operates in conjunction with the Tibet air-shower (AS) array. Significant improvement is expected in the sensitivity of the Tibet AS array towards celestial gamma-ray signals above 10 TeV by utilizing the fact that gamma-ray-induced air showers contain far fewer muons compared with cosmic-ray-induced ones. We carried out detailed Monte Carlo simulations to assess the attainable sensitivity of the Tibet AS+MD array towards celestial TeV gamma-ray signals. Based on the simulation results, the Tibet AS+MD array will be able to reject 99.99% of background events at 100 TeV, with 83% of gamma-ray events remaining. The sensitivity of the Tibet AS+MD array will be ~20 times better than that of the present Tibet AS array around 20 - 100 TeV. The Tibet AS+MD array will measure the directions of the celestial TeV gamma-ray sources and the cutoffs of their energy spectr...

  9. Spectral light measurements in microbenthic phototrophic communities with a fiber-optic microprobe coupled to a sensitive diode array detector

    Energy Technology Data Exchange (ETDEWEB)

    Kuehl, M. (Univ. of Aarhus (Denmark)); Joergensen, B.B. (Max-Planck-Inst. for Marine Microbiology, Bremen (Germany))

    1992-12-01

    A diode array detector system for microscale light measurements with fiber-optic microprobes was developed; it measures intensities of 400-900-nm light over >6 orders of magnitude with a spectral resolution of 2-5 nm. Fiber-optic microprobes to measure field radiance or scalar irradiance were coupled to the detector system and used for spectral light measurements in hypersaline microbial mats and in laminated phototrophic communities of coastal sediments. The vertical distribution of major photopigments of microalgae, cyanobacteria, and anoxygenic phototrophic bacteria could be identified from extinction maxima in measured radiance spectra at 430-550 nm (Chl a and carotenoids), 620-625 nm (phycocyanin), 675 nm (Chl a), 745-750 nm (BChl c), 800-810 nm, and 860-880 nm (BChl a). Scalar irradiance spectra exhibited a different spectral composition and a higher light intensity at the sediment surface as compared to incident light. IR light thus reached 200% of incident at the sediment surface. Maximal light penetration was found for IR light, whereas visible light was strongly attenuated in the upper 0-2 mm of the sediment. Measurements of photon scalar irradiance (400-700 nm) were combined with microelectrode measurements of oxygenic photosynthesis in the coastal sediment. With an incident light intensity of 200 [mu]Einst m[sup [minus]2]s[sup [minus]1], photon scalar irradiance reached a maximum of 283 [mu]Einst m[sup [minus]2]s[sup [minus]1] at the sediment surface. The lower boundary of the euphotic zone was 2.2 mm below the surface at a light intensity of 12 [mu]Einst m[sup [minus]2]s[sup [minus]1]. 20 refs., 6 figs.

  10. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    Science.gov (United States)

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all detector optimization.

  11. In-beam measurements of sub-nanosecond nuclear lifetimes with a mixed array of HPGe and LaBr{sub 3}:Ce detectors

    Energy Technology Data Exchange (ETDEWEB)

    Marginean, N.; Bucurescu, D.; Cata-Danil, G.; Cata-Danil, I.; Deleanu, D.; Filipescu, D.; Ghita, D.; Glodariu, T.; Ivascu, M.; Mihai, C.; Marginean, R.; Negret, A.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N.V. [Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest (Romania); Balabanski, D.L.; Atanasova, L.; Detistov, P. [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (INRNE), Sofia (Bulgaria); Lalkovski, S.; Deyanova, G.; Gladnishki, K.A.; Kisyov, S.; Radulov, D. [St. Kliment Ohridski University, Sofia (Bulgaria); Daugas, J.M. [CEA, DAM, DIF, Arpajon (France); Georgiev, G.; Lozeva, R. [CSNSM, Orsay (France)

    2010-12-15

    A fast-timing method to determine lifetimes of nuclear states in the sub-nanosecond domain is presented. It is based on in-beam measurements of triple-gamma coincidences in heavy-ion fusion-evaporation reactions, performed with an array of HPGe and LaBr{sub 3}:Ce detectors. The high-energy resolution HPGe detectors are used to define de-exciting cascades, while the fast LaBr{sub 3}:Ce detectors are used to determine the decay time spectra of selected levels fed by these cascades. A special method to treat the time information of an array of fast detectors is employed in order to fully use the efficiency of the array. Two measurements are presented to illustrate the method: a re-determination of the known half-life T{sub 1/2}=0.7 ns of the E{sub x}=205 keV, J{sup {pi}}=7/2{sup +} level in {sup 107}Cd (test experiment), and the determination of a half-life T{sub 1/2}=47 ps for the E{sub x}=367 keV, J{sup {pi}}=3/2{sup +} state of {sup 199}Tl. (orig.)

  12. A Practical Solution for 77 K Fluorescence Measurements Based on LED Excitation and CCD Array Detector.

    Directory of Open Access Journals (Sweden)

    Jacob Lamb

    Full Text Available The fluorescence emission spectrum of photosynthetic microorganisms at liquid nitrogen temperature (77 K provides important insights into the organization of the photosynthetic machinery of bacteria and eukaryotes, which cannot be observed at room temperature. Conventionally, to obtain such spectra, a large and costly table-top fluorometer is required. Recently portable, reliable, and largely maintenance-free instruments have become available that can be utilized to accomplish a wide variety of spectroscopy-based measurements in photosynthesis research. In this report, we show how to build such an instrument in order to record 77K fluorescence spectra. This instrument consists of a low power monochromatic light-emitting diode (LED, and a portable CCD array based spectrometer. The optical components are coupled together using a fiber optic cable, and a custom made housing that also supports a dewar flask. We demonstrate that this instrument facilitates the reliable determination of chlorophyll fluorescence emission spectra for the cyanobacterium Synechocystis sp. PCC 6803, and the green alga Chlamydomonas reinhardtii.

  13. Cosmic ray energy spectrum measurement with the Antarctic Muon and Neutrino Detector Array (AMANDA)

    Science.gov (United States)

    Chirkin, Dmitry Aleksandrovich

    AMANDA-II is a neutrino telescope composed of 677 optical sensors organized along 19 strings buried deep in the Antarctic ice cap. It is designed to detect Cherenkov light produced by cosmic-ray- and neutrino-induced charged leptons. The majority of events recorded by AMANDA-II are caused by muons which are produced in the atmosphere by high-energy cosmic rays. The leading uncertainties in simulating such events come from the choice of the high-energy model used to describe the first interaction of the cosmic rays, uncertainties in our knowledge and implementation of the ice properties at the depth of the detector, and individual optical module sensitivities. Contributions from uncertainties in the atmospheric conditions and muon cross sections in ice are smaller. The downgoing muon simulation was substantially improved by using the extensive air shower generator CORSIKA to describe the shower development in the atmosphere, and by writing a new software package for the muon propagation (MMC), which reduced computational and algorithm errors below the level of uncertainties of the muon cross sections in ice. A method was developed that resulted in a flux measurement of cosmic rays with energies 1.5--200 TeV per nucleon (95% of primaries causing low-multiplicity events in AMANDA-II have energies in this range) independent of ice model and optical module sensitivities. Predictions of six commonly used high-energy interaction models (QGSJET, VENUS, NEXUS, DPMJET, HDPM, and SIBYLL) are compared to data. The best agreement with direct measurements is achieved with QGSJET, VENUS, and NEXUS. Assuming a power-law energy spectrum (phi0,i · E -gammai) for cosmic-ray components from hydrogen to iron (i = H,..., Fe) and their mass distribution according to Wiebel-South (Wiebel-South & Biermann, 1999), phi 0,i and gammai were corrected to achieve the best description of the data. For the hydrogen component, values of phi0,H = 0.106 +/- 0.007 m-2 sr-1s-1TeV-1 , gammaH = 2

  14. Final report on LDRD project : single-photon-sensitive imaging detector arrays at 1600 nm.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Kenton David; Serkland, Darwin Keith; Geib, Kent Martin; Hawkins, Samuel D.; Carroll, Malcolm S.; Klem, John Frederick; Sheng, Josephine Juin-Jye; Patel, Rupal K.; Bolles, Desta; Bauer, Tom M.; Koudelka, Robert

    2006-11-01

    The key need that this project has addressed is a short-wave infrared light detector for ranging (LIDAR) imaging at temperatures greater than 100K, as desired by nonproliferation and work for other customers. Several novel device structures to improve avalanche photodiodes (APDs) were fabricated to achieve the desired APD performance. A primary challenge to achieving high sensitivity APDs at 1550 nm is that the small band-gap materials (e.g., InGaAs or Ge) necessary to detect low-energy photons exhibit higher dark counts and higher multiplication noise compared to materials like silicon. To overcome these historical problems APDs were designed and fabricated using separate absorption and multiplication (SAM) regions. The absorption regions used (InGaAs or Ge) to leverage these materials 1550 nm sensitivity. Geiger mode detection was chosen to circumvent gain noise issues in the III-V and Ge multiplication regions, while a novel Ge/Si device was built to examine the utility of transferring photoelectrons in a silicon multiplication region. Silicon is known to have very good analog and GM multiplication properties. The proposed devices represented a high-risk for high-reward approach. Therefore one primary goal of this work was to experimentally resolve uncertainty about the novel APD structures. This work specifically examined three different designs. An InGaAs/InAlAs Geiger mode (GM) structure was proposed for the superior multiplication properties of the InAlAs. The hypothesis to be tested in this structure was whether InAlAs really presented an advantage in GM. A Ge/Si SAM was proposed representing the best possible multiplication material (i.e., silicon), however, significant uncertainty existed about both the Ge material quality and the ability to transfer photoelectrons across the Ge/Si interface. Finally a third pure germanium GM structure was proposed because bulk germanium has been reported to have better dark count properties. However, significant

  15. Linear terrestrial laser scanning using array avalanche photodiodes as detectors for rapid three-dimensional imaging.

    Science.gov (United States)

    Cai, Yinqiao; Tong, Xiaohua; Tong, Peng; Bu, Hongyi; Shu, Rong

    2010-12-01

    As an active remote sensor technology, the terrestrial laser scanner is widely used for direct generation of a three-dimensional (3D) image of an object in the fields of geodesy, surveying, and photogrammetry. In this article, a new laser scanner using array avalanche photodiodes, as designed by the Shanghai Institute of Technical Physics of the Chinese Academy of Sciences, is introduced for rapid collection of 3D data. The system structure of the new laser scanner is first presented, and a mathematical model is further derived to transform the original data to the 3D coordinates of the object in a user-defined coordinate system. The performance of the new laser scanner is tested through a comprehensive experiment. The result shows that the new laser scanner can scan a scene with a field view of 30° × 30° in 0.2 s and that, with respect to the point clouds obtained on the wall and ground floor surfaces, the root mean square errors for fitting the two planes are 0.21 and 0.01 cm, respectively. The primary advantages of the developed laser scanner include: (i) with a line scanning mode, the new scanner achieves simultaneously the 3D coordinates of 24 points per single laser pulse, which enables it to scan faster than traditional scanners with a point scanning mode and (ii) the new scanner makes use of two galvanometric mirrors to deflect the laser beam in both the horizontal and the vertical directions. This capability makes the instrument smaller and lighter, which is more acceptable for users.

  16. Measurement of effect of electron cyclotron heating in a tandem mirror plasma using a semiconductor detector array and an electrostatic energy analyzer

    Science.gov (United States)

    Minami, R.; Imai, T.; Kariya, T.; Numakura, T.; Uehara, M.; Tsumura, K.; Ebashi, Y.; Kajino, S.; Endo, Y.; Nakashima, Y.

    2016-11-01

    Temporally and spatially resolved soft x-ray and end-loss-electron analyses of the electron cyclotron heated plasmas are carried out by using a semiconductor detector array and an electrostatic energy analyzer in the GAMMA 10 tandem mirror. The flux and the energy spectrum of the end loss electrons are measured by a multi-grid energy analyzer. Recently, the electron cyclotron heating power modulation experiments have been started in order to generate and control the high heat flux and to make the edge localized mode-like intermittent heat load pattern for the divertor simulation studies by the use of these detectors for electron properties.

  17. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  18. High Throughput, High Yield Fabrication of High Quantum Efficiency Back-Illuminated Photon Counting, Far UV, UV, and Visible Detector Arrays

    Science.gov (United States)

    Nikzad, Shouleh; Hoenk, M. E.; Carver, A. G.; Jones, T. J.; Greer, F.; Hamden, E.; Goodsall, T.

    2013-01-01

    In this paper we discuss the high throughput end-to-end post fabrication processing of high performance delta-doped and superlattice-doped silicon imagers for UV, visible, and NIR applications. As an example, we present our results on far ultraviolet and ultraviolet quantum efficiency (QE) in a photon counting, detector array. We have improved the QE by nearly an order of magnitude over microchannel plates (MCPs) that are the state-of-the-art UV detectors for many NASA space missions as well as defense applications. These achievements are made possible by precision interface band engineering of Molecular Beam Epitaxy (MBE) and Atomic Layer Deposition (ALD).

  19. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time.

    Science.gov (United States)

    Zhang, Qingteng; Dufresne, Eric M; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W; Szczygiel, Robert; Sandy, Alec

    2016-05-01

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  20. Submillisecond X-ray photon correlation spectroscopy from a pixel array detector with fast dual gating and no readout dead-time

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qingteng; Dufresne, Eric M.; Grybos, Pawel; Kmon, Piotr; Maj, Piotr; Narayanan, Suresh; Deptuch, Grzegorz W.; Szczygiel, Robert; Sandy, Alec

    2016-04-19

    Small-angle scattering X-ray photon correlation spectroscopy (XPCS) studies were performed using a novel photon-counting pixel array detector with dual counters for each pixel. Each counter can be read out independently from the other to ensure there is no readout dead-time between the neighboring frames. A maximum frame rate of 11.8 kHz was achieved. Results on test samples show good agreement with simple diffusion. The potential of extending the time resolution of XPCS beyond the limit set by the detector frame rate using dual counters is also discussed.

  1. Doping and Diffusion in HgCdTe

    Science.gov (United States)

    1991-01-28

    In’i, -InT. Te - 1.8 ( - 3 .5 )h ( + 2.9 - 6/) TeT1’- Tej . 4 Hg rich HgCdTe Hg - 1.8 + 1.2 + 1.4 - 2p H - ’g, - H g j.. ’TI - tetrahedral position...A. Anderson, Appl. Phys. Lett. 53, 11.81 (1988). B. D. Patterson, Rev. Mod. Phys. 60, 69 (1988). 60 V. A. Singh , C. Weigel, J. W. Corbett, and L. M

  2. Crystal Growth of Solid Solution HgCdTe Alloys

    Science.gov (United States)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  3. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays

    Directory of Open Access Journals (Sweden)

    Nicolás Yunes

    2013-11-01

    Full Text Available This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein’s theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  4. Visualization of tumor-related blood vessels in human breast by photoacoustic imaging system with a hemispherical detector array

    Science.gov (United States)

    Toi, M.; Asao, Y.; Matsumoto, Y.; Sekiguchi, H.; Yoshikawa, A.; Takada, M.; Kataoka, M.; Endo, T.; Kawaguchi-Sakita, N.; Kawashima, M.; Fakhrejahani, E.; Kanao, S.; Yamaga, I.; Nakayama, Y.; Tokiwa, M.; Torii, M.; Yagi, T.; Sakurai, T.; Togashi, K.; Shiina, T.

    2017-01-01

    Noninvasive measurement of the distribution and oxygenation state of hemoglobin (Hb) inside the tissue is strongly required to analyze the tumor-associated vasculatures. We developed a photoacoustic imaging (PAI) system with a hemispherical-shaped detector array (HDA). Here, we show that PAI system with HDA revealed finer vasculature, more detailed blood-vessel branching structures, and more detailed morphological vessel characteristics compared with MRI by the use of breast shape deformation of MRI to PAI and their fused image. Morphologically abnormal peritumoral blood vessel features, including centripetal photoacoustic signals and disruption or narrowing of vessel signals, were observed and intratumoral signals were detected by PAI in breast cancer tissues as a result of the clinical study of 22 malignant cases. Interestingly, it was also possible to analyze anticancer treatment-driven changes in vascular morphological features and function, such as improvement of intratumoral blood perfusion and relevant changes in intravascular hemoglobin saturation of oxygen. This clinical study indicated that PAI appears to be a promising tool for noninvasive analysis of human blood vessels and may contribute to improve cancer diagnosis. PMID:28169313

  5. Improving performance of a CdZnTe imaging array by mapping the detector with gamma rays

    CERN Document Server

    Marks, D G; Barrett, H H; Tüller, J; Woolfenden, J M

    1999-01-01

    We can greatly reduce image artifacts in our pixellated CdZnTe arrays by mapping imperfect regions with a narrow collimated beam of gamma rays. Portions of our detectors produce signals that agree well with simulations of gamma-ray interactions, but there are many examples of structures in the material that respond unpredictably to gamma rays. We mapped some of these imperfect regions using 60 and 140 keV gamma-ray beams, recording a 7x7 set of pixel signals for each interaction. The pixel pitch was 380 mu m. We used the mapped data to estimate the probability density function (PDF) of the pixel signals for each interaction position. Images were taken on the mapped sections, storing each gamma ray as a list of pixel signals. Images could be formed by either estimating each gamma-ray interaction position individually or using the entire set of image data in a single iterative computation using the expectation-maximization (EM) algorithm. At 60 keV individual interaction positions were estimated by fitting the ...

  6. Quantification of maltol in Korean ginseng (Panax ginseng) products by high-performance liquid chromatography-diode array detector

    Science.gov (United States)

    Jeong, Hyun Cheol; Hong, Hee-Do; Kim, Young-Chan; Rhee, Young Kyoung; Choi, Sang Yoon; Kim, Kyung-Tack; Kim, Sung Soo; Lee, Young-Chul; Cho, Chang-Won

    2015-01-01

    Background: Maltol, as a type of phenolic compounds, is produced by the browning reaction during the high-temperature treatment of ginseng. Thus, maltol can be used as a marker for the quality control of various ginseng products manufactured by high-temperature treatment including red ginseng. For the quantification of maltol in Korean ginseng products, an effective high-performance liquid chromatography-diode array detector (HPLC-DAD) method was developed. Materials and Methods: The HPLC-DAD method for maltol quantification coupled with a liquid-liquid extraction (LLE) method was developed and validated in terms of linearity, precision, and accuracy. An HPLC separation was performed on a C18 column. Results: The LLE methods and HPLC running conditions for maltol quantification were optimized. The calibration curve of the maltol exhibited good linearity (R2 = 1.00). The limit of detection value of maltol was 0.26 μg/mL, and the limit of quantification value was 0.79 μg/mL. The relative standard deviations (RSDs) of the data of the intra- and inter-day experiments were ginseng products manufactured by different methods. Conclusion: The results of validation demonstrated that the proposed HPLC-DAD method was useful for the quantification of maltol in various ginseng products. PMID:26246746

  7. An ultrafast front-end ASIC for APD array detectors in X-ray time-resolved experiments

    Science.gov (United States)

    Zhou, Yang-Fan; Li, Qiu-Ju; Liu, Peng; Fan, Lei; Xu, Wei; Tao, Ye; Li, Zhen-Jie

    2017-06-01

    An ultrafast front-end ASIC chip has been developed for APD array detectors in X-ray time-resolved experiments. The chip has five channels: four complete channels and one test channel with an analog output. Each complete channel consists of a preamplifier, a voltage discriminator and an open-drain output driver. A prototype chip has been designed and fabricated using 0.13 μm CMOS technology with a chip size of 1.3 mm × 1.9 mm. The electrical characterizations of the circuit demonstrate a very good intrinsic time resolution (rms) on the output pulse leading edge, with the test result better than 30 ps for high input signal charges (> 75 fC) and better than 100 ps for low input signal charges (30-75 fC), while keeping a low power consumption of 5 mW per complete channel. Supported by the National Natural Science Foundation of China (11605227), High Energy Photon Source-Test Facility Project, and the State Key Laboratory of Particle Detection and Electronics. This research used resources of the BSRF.

  8. Modelling and 3D optimisation of CdTe pixels detector array geometry - Extension to small pixels

    CERN Document Server

    Zumbiehl, A; Fougeres, P; Koebel, J M; Regal, R; Rit, C; Ayoub, M; Siffert, P

    2001-01-01

    CdTe and CdZnTe pixel detectors offer great interest for many applications, especially for medical and industrial imaging. Up to now, the material, generally, used and investigated for pixel arrays was CZT (Hamel et al., IEEE Trans. Nucl. Sci. 43 (3) (1996) 1422; Barrett et al., Phys. Rev. Lett. 75 (1) (1995) 156; Bennett et al., Nucl. Instr. and Meth. A 392 (1997) 260; Eskin et al., J. Appl. Phys. 85 (2) (1999) 647; Brunett et al., J. Appl. Phys. 86 (7) (1999) 3926; Luke, Nucl. Instr. and Meth. A 380 (1996) 232), but cadmium telluride can also be an appropriate choice, as shown here. However, we clearly demonstrate here that the optimal pixel configuration is highly dependent on the electrical transport properties of the material. Depending on the field of primary interest, either energy resolution or counting rate efficiency in the photopeak, the geometry for each case has to be optimised. For that purpose, we have developed a calculation of the signal induced onto the pixel. Two distinct parts are used: af...

  9. Fingerprint Analysis of Desmodium Triquetrum L. Based on Ultra Performance Liquid Chromatography with Photodiode Array Detector Combined with Chemometrics Methods.

    Science.gov (United States)

    Zhang, Meiling; Zhao, Cui; Liang, Xianrui; Ying, Yin; Han, Bing; Yang, Bo; Jiang, Cheng

    2016-01-01

    A fingerprinting approach was developed by means of ultra high-performance liquid chromatography with photodiode array detector for the quality control of Desmodium triquetrum L., an herbal medicine widely used for clinical purposes. Ten batches of raw material samples of D. triquetrum were collected from different regions of China. All UPLC analyses were carried out on a Waters ACQUITY UPLC BEH shield RP18 column (2.1 × 50 mm, 1.7 µm particle size) at 60°C, with a gradient mobile phase composed of 0.1% aqueous formic acid and acetonitrile at a flow rate of 0.45 mL/min. The method validation results demonstrated the developed method possessing desirable reproducibility, efficiency, and allowing fingerprint analysis in one chromatographic run within 13 min. The quality assessment was achieved by using chemometrics methods including similarity analysis, hierarchical clustering analysis and principal component analysis. The developed method can be used for further quality control of D. triquetrum.

  10. Gravitational-Wave Tests of General Relativity with Ground-Based Detectors and Pulsar-Timing Arrays.

    Science.gov (United States)

    Yunes, Nicolás; Siemens, Xavier

    2013-01-01

    This review is focused on tests of Einstein's theory of general relativity with gravitational waves that are detectable by ground-based interferometers and pulsar-timing experiments. Einstein's theory has been greatly constrained in the quasi-linear, quasi-stationary regime, where gravity is weak and velocities are small. Gravitational waves will allow us to probe a complimentary, yet previously unexplored regime: the non-linear and dynamical strong-field regime. Such a regime is, for example, applicable to compact binaries coalescing, where characteristic velocities can reach fifty percent the speed of light and gravitational fields are large and dynamical. This review begins with the theoretical basis and the predicted gravitational-wave observables of modified gravity theories. The review continues with a brief description of the detectors, including both gravitational-wave interferometers and pulsar-timing arrays, leading to a discussion of the data analysis formalism that is applicable for such tests. The review ends with a discussion of gravitational-wave tests for compact binary systems.

  11. Chromatographic fingerprinting analysis of Zhizhu Wan preparation by high-performance liquid chromatography coupled with photodiode array detector

    Directory of Open Access Journals (Sweden)

    Hui Sun

    2014-01-01

    Full Text Available Background: Traditional Chinese medicine (TCM formula has been used for over 1000 years and most of them contain complicate chemical constituents. Chromatographic fingerprinting has been widely accepted as a crucial method for qualitative and quantitative analyses for TCM. Zhi Zhu Wan (ZZW, a classical Chinese medical formula, has been commonly used for the treatment of gastrointestinal disease, which pose a serious challenge to its quality control. Materials and Methods: In this work, a sensitive and reliable method of high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA was developed to control the quality of ZZW for chemical fingerprint analysis and quantitative analysis of four major bioactive constituents, including hesperidin, naringin, neohesperidin, and atractylenolide I. The chromatographic separation was performed on a Waters Symmetry C18 column (4.6 mm × 250 mm, 5 μm particle size, with an aqueous 0.095% phosphate acid and acetonitrile mobile phase gradient. Results: Optimization of other experimental conditions was validated with satisfactory accuracy, precision, repeatability, and recovery. In quantitative analysis, the four components showed good regression (R > 0.9994 within test ranges, and the recovery method ranged from 99.32% to 100.630%. HPLC fingerprints of the ZZW samples were compared by performing similarity analysis. Conclusion: The results indicated that the newly developed HPLC-PDA fingerprint method would be suitable for quality control of ZZW.

  12. Chromatographic fingerprinting analysis of Zhizhu Wan preparation by high-performance liquid chromatography coupled with photodiode array detector

    Science.gov (United States)

    Sun, Hui; Chen, Xi; Zhang, Aihua; Sakurai, Tetsuro; Jiang, Jinzhong; Wang, Xijun

    2014-01-01

    Background: Traditional Chinese medicine (TCM) formula has been used for over 1000 years and most of them contain complicate chemical constituents. Chromatographic fingerprinting has been widely accepted as a crucial method for qualitative and quantitative analyses for TCM. Zhi Zhu Wan (ZZW), a classical Chinese medical formula, has been commonly used for the treatment of gastrointestinal disease, which pose a serious challenge to its quality control. Materials and Methods: In this work, a sensitive and reliable method of high-performance liquid chromatography coupled with photodiode array detector (HPLC-PDA) was developed to control the quality of ZZW for chemical fingerprint analysis and quantitative analysis of four major bioactive constituents, including hesperidin, naringin, neohesperidin, and atractylenolide I. The chromatographic separation was performed on a Waters Symmetry C18 column (4.6 mm × 250 mm, 5 μm particle size), with an aqueous 0.095% phosphate acid and acetonitrile mobile phase gradient. Results: Optimization of other experimental conditions was validated with satisfactory accuracy, precision, repeatability, and recovery. In quantitative analysis, the four components showed good regression (R > 0.9994) within test ranges, and the recovery method ranged from 99.32% to 100.630%. HPLC fingerprints of the ZZW samples were compared by performing similarity analysis. Conclusion: The results indicated that the newly developed HPLC-PDA fingerprint method would be suitable for quality control of ZZW. PMID:25422548

  13. Particle gamma correlations in {sup 12}C measured with the CsI(Tl) based detector array CHIMERA

    Energy Technology Data Exchange (ETDEWEB)

    Cardella, G., E-mail: cardella@ct.infn.it [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Acosta, L. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Amorini, F. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Auditore, L. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Berceanu, I. [Institute for Physics and Nuclear Engineering, Bucharest (Romania); Castoldi, A. [INFN Sezione di Milano e Politecnico Milano (Italy); De Filippo, E. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Dell' Aquila, D. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Francalanza, L. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Gnoffo, B. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Guazzoni, C. [INFN Sezione di Milano e Politecnico Milano (Italy); Lanzalone, G. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Facoltà di Ingegneria e Architettura, Università Kore, Enna (Italy); Lombardo, I. [Dipartimento di scienze Fisiche, Università Federico II and INFN Sezione di Napoli (Italy); Minniti, T.; Morgana, E.; Norella, S. [INFN Gruppo collegato di Messina and Dip. di Fisica e Scienze della Terra, Università di Messina (Italy); Pagano, A. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); Pagano, E.V. [INFN - Laboratori Nazionali del Sud, Via S. Sofia, Catania (Italy); Dip. di Fisica e Astronomia, Università di Catania, Via S. Sofia, Catania (Italy); Papa, M.; Pirrone, S. [INFN - Sezione di Catania, Via S. Sofia, 95123 Catania (Italy); and others

    2015-11-01

    The gamma decay of the first excited 4.44 MeV 2+level of {sup 12}C, populated by inelastic scattering of proton and {sup 16}O beams at various energies was studied in order to test γ-ray detection efficiency and the quality of angular distribution information given by the CsI(Tl) detectors of the 4π CHIMERA array. The γ-decay was measured in coincidence with ejectile scattered particles in an approximately 4π geometry allowing to extract the angular distribution in the reference frame of recoiling {sup 12}C target. The typical sin{sup 2} (2θ) behavior of angular distribution was observed in the case of {sup 16}O beam. Besides that, for the proton beam, in order to explain the observed distribution, the addition of an incoherent flat contribution was required. This latter is the effect of proton spin flip events allowing the population of M=±1 magnetic substates, that is not possible in reactions induced by {sup 16}O beam. A comparison with previously collected data, obtained measuring only in and out of plane proton-γ-ray coincidences, confirms the good quality of the angular distribution information given by the apparatus. Possible applications with radioactive beams are outlined.

  14. Analytical Issues on the Determination of Carotenoids in Microalgae by Liquid Chromatography with Diode Array Detector; Aspectos Analiticos sobre la Determinacion de Compuestos Carotenoides en Microalgas mediante Cromatografia de Liquidos con Detector de Diodos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, S.; Perez, R. M.

    2012-04-11

    A preliminary study of literature review on the determination of carotenoids in microalgae samples by HPLC with diode array detector is presented. Main objective has been focused to compile data from literature and based on the main aspects of the analytical methodology used in the determination of these compounds. The work is structured as follows and affecting major analytical difficulties: Procurement and commercial availability of standard solutions. Stage of sample treatment. Chromatographic analysis. (Author) 19 refs.

  15. Progress Towards High-Sensitivity Arrays of Detectors of Sub-mm Radiation Using Superconducting Tunnel Junctions with Integrated Radio Frequency Single-Electron Transistors

    Science.gov (United States)

    Stevenson, T. R.; Hsieh, W.-T.; Li, M. J.; Prober, D. E.; Rhee, K. W.; Schoelkopf, R. J.; Stahle, C. M.; Teufel, J.; Wollack, E. J.

    2004-01-01

    For high resolution imaging and spectroscopy in the FIR and submillimeter, space observatories will demand sensitive, fast, compact, low-power detector arrays with 104 pixels and sensitivity less than 10(exp -20) W/Hz(sup 0.5). Antenna-coupled superconducting tunnel junctions with integrated rf single-electron transistor readout amplifiers have the potential for achieving this high level of sensitivity, and can take advantage of an rf multiplexing technique. The device consists of an antenna to couple radiation into a small superconducting volume and cause quasiparticle excitations, and a single-electron transistor to measure current through junctions contacting the absorber. We describe optimization of device parameters, and results on fabrication techniques for producing devices with high yield for detector arrays. We also present modeling of expected saturation power levels, antenna coupling, and rf multiplexing schemes.

  16. Development of TES-based detectors array for the X-ray Integral Field Unit (X-IFU) on the future x-ray observatory ATHENA

    CERN Document Server

    Gottardi, Luciano; Barret, Didier; Bruijn, Marcel P; Hartog, Roland H den; Herder, Jan-Willem den; Hoevers, Henk F C; Kiviranta, Mikko; van der Kuur, Jan; van der Linden, Anton J; Jackson, Brian D; Jambunathan, Madu; Ridder, Marcel L

    2016-01-01

    We are developing transition-edge sensor (TES)-based microcalorimeters for the X-ray Integral Field Unit (XIFU) of the future European X-Ray Observatory Athena. The microcalorimeters are based on TiAu TESs coupled to 250{\\mu}m squared, AuBi absorbers. We designed and fabricated devices with different contact geometries between the absorber and the TES to optimise the detector performance and with different wiring topology to mitigate the self-magnetic field. The design is tailored to optimise the performance under Frequency Domain Multiplexing. In this paper we review the main design feature of the pixels array and we report on the performance of the 18 channels, 2-5MHz frequency domain multiplexer that will be used to characterised the detector array.

  17. Performance of Sub-Array of ARIANNA Detector Stations during First Year of Operation

    Science.gov (United States)

    Tatar, Joulien Erdintch

    The ARIANNA high energy neutrino telescope is designed to search for ultrahigh energy neutrinos produced by the collision of cosmic rays with the cosmic microwave background. ARIANNA exploits the recent development of low noise, low power data acquisition technology to measure the brief radio pulses created by neutrino-induced charged particle showers in the Ross Ice Shelf of Antarctica. Three stations were installed and commissioned in early December 2012 as part of a pilot program to construct a hexagonal array of 7 radio stations. Each station required only 10 Watts of power and operated autonomously using both solar panels and wind generators. In addition, an environmental station was deployed at the ARIANNA site. Data is stored locally and reliably transmitted from Antarctica over high speed wireless internet and Iridium satellite modem during special transmission windows. The wireless internet ceased operation on March 15, corresponding to the fading light condition just before Austral winter. With the aid of wind generation, the stations operated until late May before winter hibernation. Communication was re-established after winter hibernation on September 11, 2013 for three of the four stations. Overall, the stations operated for 65% of the year. The station acquired three types of events: (1) forced, (2) thermal, and (3) signals from an external transmitter, which are called "heartbeat" events. The forced trigger captures the ambient RF conditions at a random snapshot in time. The thermal trigger configuration usually required any 2 of the 4 antenna channels to exceed a voltage level of ˜ 6 · Vrms, where Vrms is the root mean square of the random voltage fluctuations. Individual channel thresholds were adjusted to account for temperature dependences in the electronics. The vast majority of thermal triggers are consistent random gaussian noise expected from thermal processes in the ice and amplifier. Excess power, but no increase is trigger rates, is

  18. Upper limit on the flux of photons with energies above 10^19 eV using Telescope Array surface detector

    CERN Document Server

    Abu-Zayyad, T; Allen, M; Anderson, R; Azuma, R; Barcikowski, E; Belz, J W; Bergman, D R; Blake, S A; Cady, R; Cheon, B G; Chiba, J; Chikawa, M; Cho, E J; Cho, W R; Fujii, H; Fujii, T; Fukuda, T; Fukushima, M; Gorbunov, D; Hanlon, W; Hayashi, K; Hayashi, Y; Hayashida, N; Hibino, K; Hiyama, K; Honda, K; Iguchi, T; Ikeda, D; Ikuta, K; Inoue, N; Ishii, T; Ishimori, R; Ivanov, D; Iwamoto, S; Jui, C C H; Kadota, K; Kakimoto, F; Kalashev, O; Kanbe, T; Kasahara, K; Kawai, H; Kawakami, S; Kawana, S; Kido, E; Kim, H B; Kim, H K; Kim, J H; Kitamoto, K; Kitamura, S; Kitamura, Y; Kobayashi, K; Kobayashi, Y; Kondo, Y; Kuramoto, K; Kuzmin, V; Kwon, Y J; Lan, J; Lim, S I; Machida, S; Martens, K; Matsuda, T; Matsuura, T; Matsuyama, T; Matthews, J N; Minamino, M; Miyata, K; Murano, Y; Myers, I; Nagasawa, K; Nagataki, S; Nakamura, T; Nam, S W; Nonaka, T; Ogio, S; Ohnishi, M; Ohoka, H; Oki, K; Oku, D; Okuda, T; Oshima, A; Ozawa, S; Park, I H; Pshirkov, M S; Rodriguez, D C; Roh, S Y; Rubtsov, G I; Ryu, D; Sagawa, H; Sakurai, N; Sampson, A L; Scott, L M; Shah, P D; Shibata, F; Shibata, T; Shimodaira, H; Shin, B K; Shin, J I; Shirahama, T; Smith, J D; Sokolsky, P; Stokes, B T; Stratton, S R; Stroman, T; Suzuki, S; Takahashi, Y; Takeda, M; Taketa, A; Takita, M; Tameda, Y; Tanaka, H; Tanaka, K; Tanaka, M; Thomas, S B; Thomson, G B; Tinyakov, P; Tkachev, I; Tokuno, H; Tomida, T; Troitsky, S; Tsunesada, Y; Tsutsumi, K; Tsuyuguchi, Y; Uchihori, Y; Udo, S; Ukai, H; Vasiloff, G; Wada, Y; Wong, T; Wood, M; Yamakawa, Y; Yamane, R; Yamaoka, H; Yamazaki, K; Yang, J; Yoneda, Y; Yoshida, S; Yoshii, H; Zhou, X; Zollinger, R; Zundel, Z

    2013-01-01

    We search for ultra-high energy photons by analyzing geometrical properties of shower fronts of events registered by the Telescope Array surface detector. By making use of an event-by-event statistical method, we derive upper limits on the absolute flux of primary photons with energies above 10^19, 10^19.5 and 10^20 eV based on the first three years of data taken.

  19. Results from the characterisation of Advanced GAmma Tracking Array prototype detectors and their consequences for the next-generation nuclear physics spectrometer

    Science.gov (United States)

    Dimmock, M. R.; Boston, A. J.; Boston, H. C.; Cresswell, J. R.; Nelson, L.; Nolan, P.; Rigby, S.; Unsworth, C.; Lazarus, I.; Simpson, J.; Medina, P.; Parisel, C.; Santos, C.

    2007-09-01

    The Advanced GAmma Tracking Array (AGATA) is a European project that is aiming to construct a complete 4π High Purity Germanium (HPGe) gamma-ray spectrometer for nuclear structure studies at future Radioactive Ion Beam (RIB) Facilities. The proposed array will utilise digital electronics, Pulse Shape Analysis (PSA) and Gamma-Ray Tracking (GRT) algorithms, to overcome the limited efficiencies encountered by current Escape Suppressed Spectrometers (ESS), whilst maintaining the high Peak-to-Total ratio. Two AGATA symmetrical segmented Canberra Eurisys (CE) prototype HPGe detectors have been tested at the University of Liverpool. A highly collimated Cs-137 (662keV) beam was raster scanned across each detector and data were collected in both singles and coincidence modes. The charge sensitive preamplifier output pulse shapes from all 37 channels (one for each of the 36 segments and one for the centre contact) were digitised and stored for offline analysis. The shapes of the real charge and image charge pulses have been studied to give detailed information on the position dependent response of each detector. 1mm position sensitivity has been achieved with the parameterisation of average pulse shapes, calculated from data collected with each of the detectors. The coincidence data has also been utilised to validate the electric field simulation code Multi Geometry Simulation (MGS). The precisely determined 3D interaction positions allow the comparison of experimental pulse shapes from single site interactions with those generated by the simulation. It is intended that the validated software will be used to calculate a basis data set of pulse shapes for the array, from which any interaction site can be determined through a χ2 minimisation of the digitized pulse with linear combinations of basis pulseshapes. The results from this partial validation, along with those from the investigation into the position sensitivity of each detector are presented.

  20. Performance of LYSO and CeBr3 crystals readout by silicon photomultiplier arrays as compact detectors for space based applications

    Science.gov (United States)

    Kryemadhi, A.; Barner, L.; Grove, A.; Mohler, J.; Sisson, C.; Roth, A.

    2017-02-01

    Space based MeV range gamma rays have been largely unexplored due to the difficulty associated with the measurements; however they address a broad range of astrophysical questions, including indirect searches for dark matter. To address these challenges and yet have compact instruments, the next generation experiments would need detectors with high efficiency, high stopping power, excellent energy resolution, and excellent angular resolution. Fast and bright crystal scintillators coupled to compact photo-detectors are an ideal option. In this work we have investigated the LYSO and CeBr3 crystal scintillators because of their high light yield, fast decay time, and small radiation length. We have used the silicon photomultiplier arrays as photo-detectors because of their small size, simple readout, low voltage operation, and immunity to magnetic fields. We studied the gamma rays response for the 1.6 cm × 1.6 cm × 4.0 cm LYSO crystals and a 1.3 cm × 1.3 cm × 1.3 cm CeBr3 crystal readout by 4 × 4 SensL arrays (ArrayC30035). The crystal self-absorption and timing resolution have been examined along with linearity and energy resolution. The DRS4 evaluation board was used for acquisition of the events.