WorldWideScience

Sample records for hg wet deposition

  1. Meteorological effects on Hg wet deposition in a forested site in the Adirondack region of New York during 2000-2015

    Science.gov (United States)

    Mao, Huiting; Ye, Zhuyun; Driscoll, Charles

    2017-11-01

    An analysis of weekly measurement data of mercury (Hg) wet deposition was conducted for Huntington Wildlife Forest (HWF), a forest ecosystem in Upstate New York and a biological Hg hotspot, during 2000-2015. Annual accumulated Hg wet deposition flux was found to decrease at a rate of -0.13 μg m-2 yr-1 (2% yr-1) (p = 0.09), and volume weighted mean (VWM) Hg precipitation concentrations at -0.14 ng L-1 yr-1 (2.5% yr-1) (p = 0.00). In examining data by season, no trends were identified for the two variables. It was found that the North Atlantic Oscillation (NAO) affected Hg wet deposition predominantly in spring, as did the position of the U.S. East Coast trough in summer, which suggests different dominant mechanisms driving Hg wet deposition in different seasons. The impacts of such large scale circulation processes were facilitated via variations in precipitation amounts. This was manifested in spring 2011 with the strongest positive phase of NAO, resulting in the wettest spring with the largest Hg wet deposition flux, and in summer 2007 with the U.S. East Coast trough positioned the farthest out over the Atlantic Ocean, causing the driest summer with the lowest Hg wet deposition flux of the study period. Extreme precipitation amounts in spring could singularly drive the overall long-term trend in Hg wet deposition whereas in summer other factors could just be as important. Similar mechanisms were thought to control the long term variations of Hg wet deposition and precipitation concentrations in all seasons but summer as indicated in their significant correlation in all but summer. Atmospheric concentrations of gaseous oxidized mercury (GOM) and particulate borne mercury (PBM) at HWF over 2009-2015 hardly exhibited correlations with Hg wet deposition or precipitation concentrations. Chemical transport model simulations strongly supported efficient scavenging of oxidized Hg by precipitation resulting in the lowest concentration of GOM in the warm season despite the

  2. High Mercury Wet Deposition at a "Clean Air" Site in Puerto Rico.

    Science.gov (United States)

    Shanley, James B; Engle, Mark A; Scholl, Martha; Krabbenhoft, David P; Brunette, Robert; Olson, Mark L; Conroy, Mary E

    2015-10-20

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m(-2) yr(-1) wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr(-1). The volume-weighted mean Hg concentration was 9.8 ng L(-1), and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m(-3)). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this "clean air" site suggests that other tropical areas may be hotspots for Hg deposition as well.

  3. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau

    International Nuclear Information System (INIS)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Sillanpää, Mika; Wang, Yongjie; Sun, Shiwei

    2015-01-01

    Accurate measurements of wet mercury (Hg) deposition are critically important for the assessment of ecological responses to pollutant loading. The Hg in wet deposition was measured over a 3-year period in the southeastern Tibetan Plateau. The volume-weighted mean (VWM) total Hg (Hg_T) concentration was somewhat lower than those reported in other regions of the Tibetan Plateau, but the VWM methyl-Hg concentration and deposition flux were among the highest globally reported values. The VWM Hg_T concentration was higher in non-monsoon season than in monsoon season, and wet Hg_T deposition was dominated by the precipitation amount rather than the scavenging of atmospheric Hg by precipitation. The dominant Hg species in precipitation was mainly in the form of dissolved Hg, which indicates the pivotal role of reactive gaseous Hg within-cloud scavenging to wet Hg deposition. Moreover, an increasing trend in precipitation Hg concentrations was synchronous with the recent economic development in South Asia. - Highlights: • The lowest Hg_T concentration in precipitation was found at Southeast Tibet Station. • MeHg concentration and wet deposition flux were among the highest at our study site. • Hg_D dominated the concentration and flux of Hg_T in wet Hg deposition. • A long-term increasing trend in the Hg_T concentration was found at our study site. - An increasing trend in the precipitation Hg concentrations was synchronous with the recent economic development in South Asia.

  4. High mercury wet deposition at a “clean Air” site in Puerto Rico

    Science.gov (United States)

    Shanley, James B.; Engle, Mark A.; Scholl, Martha A.; Krabbenhoft, David P.; Brunette, Robert; Olson, Mark L.; Conroy, Mary E.

    2015-01-01

    Atmospheric mercury deposition measurements are rare in tropical latitudes. Here we report on seven years (April 2005 to April 2012, with gaps) of wet Hg deposition measurements at a tropical wet forest in the Luquillo Mountains, northeastern Puerto Rico, U.S. Despite receiving unpolluted air off the Atlantic Ocean from northeasterly trade winds, during two complete years the site averaged 27.9 μg m–2 yr–1 wet Hg deposition, or about 30% more than Florida and the Gulf Coast, the highest deposition areas within the U.S. These high Hg deposition rates are driven in part by high rainfall, which averaged 2855 mm yr–1. The volume-weighted mean Hg concentration was 9.8 ng L–1, and was highest during summer and lowest during the winter dry season. Rainout of Hg (decreasing concentration with increasing rainfall depth) was minimal. The high Hg deposition was not supported by gaseous oxidized mercury (GOM) at ground level, which remained near global background concentrations (<10 pg m–3). Rather, a strong positive correlation between Hg concentrations and the maximum height of rain detected within clouds (echo tops) suggests that droplets in high convective cloud tops scavenge GOM from above the mixing layer. The high wet Hg deposition at this “clean air” site suggests that other tropical areas may be hotspots for Hg deposition as well.

  5. Characterizations of wet mercury deposition on a remote high-elevation site in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Huang, Jie; Kang, Shichang; Zhang, Qianggong; Guo, Junming; Sillanpää, Mika; Wang, Yongjie; Sun, Shiwei; Sun, Xuejun; Tripathee, Lekhendra

    2015-11-01

    Accurate measurements of wet mercury (Hg) deposition are critically important for the assessment of ecological responses to pollutant loading. The Hg in wet deposition was measured over a 3-year period in the southeastern Tibetan Plateau. The volume-weighted mean (VWM) total Hg (HgT) concentration was somewhat lower than those reported in other regions of the Tibetan Plateau, but the VWM methyl-Hg concentration and deposition flux were among the highest globally reported values. The VWM HgT concentration was higher in non-monsoon season than in monsoon season, and wet HgT deposition was dominated by the precipitation amount rather than the scavenging of atmospheric Hg by precipitation. The dominant Hg species in precipitation was mainly in the form of dissolved Hg, which indicates the pivotal role of reactive gaseous Hg within-cloud scavenging to wet Hg deposition. Moreover, an increasing trend in precipitation Hg concentrations was synchronous with the recent economic development in South Asia. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Controlling Factors of Mercury Wet Deposition and Precipitation Concentrations in Upstate New York

    Science.gov (United States)

    Ye, Z.; Mao, H.; Driscoll, C. T.

    2017-12-01

    Observations from the Mercury Deposition Network (MDN) at Huntington Wildlife Forest (HWF) suggested that a significant decline in Hg concentrations in precipitation was linked to Hg emission decreases in the United States, especially in the Northeast and Midwest, and yet Hg wet deposition has remained fairly constant over the past two decades. The present study was aimed to investigate how climatic, terrestrial, and anthropogenic factors had influenced the Hg wet deposition flux in upstate New York (NY). To achieve this, an improved Community Multiscale Air Quality (CMAQ) model was employed, which included state-of-the-art Hg and halogen chemistry mechanisms. A base simulation and five sensitivity simulations were conducted. The base simulation used 2010 meteorology, U.S. EPA NEI 2011, and GEOS-Chem output as initial and boundary conditions (ICs and BCs). The five sensitivity runs each changed one condition at the time as follows: 1-3) 2004, 2005, and 2007 meteorology instead of 2010, 4) NEI 2005 Hg anthropogenic emission out of NYS instead of NEI 2011, and 5) no in-state Hg anthropogenic emission. The study period of all the simulations was March - November 2010, and the domain covered the northeastern United States at 12 km resolution. As a result, compared with rural areas in NYS, Hg wet deposition and ambient Hg concentrations in urban areas were affected more significantly by in-state anthropogenic Hg emission. The in-state anthropogenic Hg emissions contributed up to 20% of Hg wet deposition at urban sites and cloud height, precipitation, wind speed and direction, and relative humidity, among which precipitation had the largest effects in most areas. Diluting effects were found in non-convective precipitation, which contributed 31-48% to changes in Hg concentration in precipitation.

  7. Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres

    Science.gov (United States)

    Sprovieri, Francesca; Pirrone, Nicola; Bencardino, Mariantonia; D'Amore, Francesco; Angot, Helene; Barbante, Carlo; Brunke, Ernst-Günther; Arcega-Cabrera, Flor; Cairns, Warren; Comero, Sara; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Fu, Xuewu; Garcia, Patricia Elizabeth; Gawlik, Bernd Manfred; Hageström, Ulla; Hansson, Katarina; Horvat, Milena; Kotnik, Jože; Labuschagne, Casper; Magand, Olivier; Martin, Lynwill; Mashyanov, Nikolay; Mkololo, Thumeka; Munthe, John; Obolkin, Vladimir; Ramirez Islas, Martha; Sena, Fabrizio; Somerset, Vernon; Spandow, Pia; Vardè, Massimiliano; Walters, Chavon; Wängberg, Ingvar; Weigelt, Andreas; Yang, Xu; Zhang, Hui

    2017-02-01

    The atmospheric deposition of mercury (Hg) occurs via several mechanisms, including dry and wet scavenging by precipitation events. In an effort to understand the atmospheric cycling and seasonal depositional characteristics of Hg, wet deposition samples were collected for approximately 5 years at 17 selected GMOS monitoring sites located in the Northern and Southern hemispheres in the framework of the Global Mercury Observation System (GMOS) project. Total mercury (THg) exhibited annual and seasonal patterns in Hg wet deposition samples. Interannual differences in total wet deposition are mostly linked with precipitation volume, with the greatest deposition flux occurring in the wettest years. This data set provides a new insight into baseline concentrations of THg concentrations in precipitation worldwide, particularly in regions such as the Southern Hemisphere and tropical areas where wet deposition as well as atmospheric Hg species were not investigated before, opening the way for future and additional simultaneous measurements across the GMOS network as well as new findings in future modeling studies.

  8. Characterizations of wet mercury deposition to a remote islet (Pengjiayu) in the subtropical Northwest Pacific Ocean

    Science.gov (United States)

    Sheu, Guey-Rong; Lin, Neng-Huei

    2013-10-01

    Thirty-four weekly rainwater samples were collected in 2009 at Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is the first study concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 2.25 to 22.33 ng L-1, with a volume-weighted mean (VWM) concentration of 8.85 ng L-1. The annual wet Hg deposition flux was 10.18 μg m-2, about 2.5 times the fluxes measured at sites on the Pacific coast of the USA, supporting the hypothesis that deposition is higher in the western than in the eastern Pacific. Seasonal VWM concentrations were 7.23, 11.58, 7.82, and 9.84 ng L-1, whereas seasonal wet deposition fluxes were 2.14, 3.45, 2.38, and 2.21 μg m-2, for spring, summer, fall and winter, respectively. Higher summer wet Hg deposition was a function of both higher rainwater Hg concentration and greater rainfall. The seasonal pattern of rainwater Hg concentrations was the opposite of the general seasonal pattern of the East Asian air pollutant export. Since there is no significant anthropogenic Hg emission source on the islet of Pengjiayu, the observed high summertime rainwater Hg concentration hints at the importance of Hg0 oxidation and/or scavenging of upper-altitude reactive gaseous Hg (RGM) by deep convection. Direct anthropogenic RGM emissions from the East Asian continent may not contribute significantly to the rainwater Hg concentrations, but anthropogenic Hg0 emissions could be transported to the upper troposphere or marine boundary layer (MBL) where they can be oxidized to produce RGM, which will then be effectively scavenged by cloud water and rainwater.

  9. Trends in mercury wet deposition and mercury air concentrations across the U.S. and Canada

    Science.gov (United States)

    Weiss-Penzias, Peter S.; Gay, David A.; Brigham, Mark E.; Parsons, Matthew T.; Gustin, Mae S.; ter Shure, Arnout

    2016-01-01

    This study examined the spatial and temporal trends of mercury (Hg) in wet deposition and air concentrations in the United States (U.S.) and Canada between 1997 and 2013. Data were obtained from the National Atmospheric Deposition Program (NADP) and Environment Canada monitoring networks, and other sources. Of the 19 sites with data records from 1997–2013, 53% had significant negative trends in Hg concentration in wet deposition, while no sites had significant positive trends, which is in general agreement with earlier studies that considered NADP data up until about 2010. However, for the time period 2007–2013 (71 sites), 17% and 13% of the sites had significant positive and negative trends, respectively, and for the time period 2008–2013 (81 sites) 30% and 6% of the sites had significant positive and negative trends, respectively. Non-significant positive tendencies were also widespread. Regional trend analyses revealed significant positive trends in Hg concentration in the Rocky Mountains, Plains, and Upper Midwest regions for the recent time periods in addition to significant positive trends in Hg deposition for the continent as a whole. Sulfate concentration trends in wet deposition were negative in all regions, suggesting a lower importance of local Hg sources. The trend in gaseous elemental Hg from short-term datasets merged as one continuous record was broadly consistent with trends in Hg concentration in wet deposition, with the early time period (1998–2007) producing a significantly negative trend (− 1.5 ± 0.2% year− 1) and the recent time period (2008–2013) displaying a flat slope (− 0.3 ± 0.1% year− 1, not significant). The observed shift to more positive or less negative trends in Hg wet deposition primarily seen in the Central-Western regions is consistent with the effects of rising Hg emissions from regions outside the U.S. and Canada and the influence of long-range transport in the free troposphere.

  10. Wet deposition of mercury in Qingdao, a coastal urban city in China: Concentrations, fluxes, and influencing factors

    Science.gov (United States)

    Chen, Lufeng; Li, Yanbin; Liu, Chang; Guo, Lina; Wang, Xiulin

    2018-02-01

    Mercury (Hg) is a global pollutant of public concern because of its high toxicity and capability for worldwide distribution via long-range atmospheric transportation. Wet atmospheric deposition is an important source of Hg in both terrestrial and aquatic environments. Concentrations of various Hg species in precipitation were monitored from March 2016 to February 2017 in a coastal urban area of Qingdao, and their wet deposition fluxes were estimated. The results showed that the volume-weighted mean (VWM) concentrations of total mercury (THg), reactive mercury (RHg), dissolved THg (DTHg), particulate THg (PTHg), total methylmercury (TMeHg), and dissolved and particulate MeHg (DMeHg and PMeHg) in Qingdao's precipitation were 13.6, 1.5, 5.4, 8.2, 0.38, 0.15, and 0.22 ng L-1, respectively, and their annual deposition fluxes were estimated to be 5703.0 (THg), 666.6 (RHg), 2304.0 (DTHg), 3470.4 (PTHg), 161.6 (TMeHg), 64.0 (DMeHg), and 95.7 (PMeHg) ng m-2 y-1, respectively. A relatively high proportion of MeHg in THg was observed in precipitation (3.0 ± 2.6%) possibly due to higher methylation and contributions from an oceanic source to MeHg in the precipitation. Obvious seasonal variations in Hg concentrations and deposition fluxes were observed in the precipitation in Qingdao. Correlation analyses and multiple regression analyses showed that SO2, pH, and NO3- were the controlling factors for THg in precipitation, whereas the MeHg concentration was primarily controlled by the SO2, WS, Cl-, and THg concentrations. PM2.5 and Cl- were the major controlling factors for PMeHg/TMeHg, whereas the TMeHg/THg ratio was mainly influenced by Cl-. The THg and MeHg fluxes were primarily controlled by precipitation, whereas Cl- was also an important factor for the MeHg wet deposition flux. The results of a 72-h backward trajectory analysis in the study region with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model indicated that Hg deposition in Qingdao mainly

  11. Spatial patterns and temporal trends in mercury concentrations, precipitation depths, and mercury wet deposition in the North American Great Lakes region, 2002–2008

    International Nuclear Information System (INIS)

    Risch, Martin R.; Gay, David A.; Fowler, Kathleen K.; Keeler, Gerard J.; Backus, Sean M.; Blanchard, Pierrette; Barres, James A.; Dvonch, J. Timothy

    2012-01-01

    Annual and weekly mercury (Hg) concentrations, precipitation depths, and Hg wet deposition in the Great Lakes region were analyzed by using data from 5 monitoring networks in the USA and Canada for a 2002–2008 study period. High-resolution maps of calculated annual data, 7-year mean data, and net interannual change for the study period were prepared to assess spatial patterns. Areas with 7-year mean annual Hg concentrations higher than the 12 ng per liter water-quality criterion were mapped in 4 states. Temporal trends in measured weekly data were determined statistically. Monitoring sites with significant 7-year trends in weekly Hg wet deposition were spatially separated and were not sites with trends in weekly Hg concentration. During 2002–2008, Hg wet deposition was found to be unchanged in the Great Lakes region and its subregions. Any small decreases in Hg concentration apparently were offset by increases in precipitation. - Highlights: ► Data from 5 Hg and precipitation networks in the USA and Canada were combined for the first time. ► High-resolution maps and statistical trends tests were used for spatial and temporal data analysis. ► Some 7-year mean annual Hg concentrations exceeded a 12 ng per liter water-quality criterion. ► Small, localized decreases in Hg concentration were offset by increases in precipitation. ► Hg wet deposition was unchanged in the Great Lakes region and its subregions during 2002–2008. - Analysis of monitoring data from 5 networks in the USA and Canada determined that mercury wet deposition was unchanged in the North American Great Lakes region during 2002–2008.

  12. Just passing through --- high Hg deposition to Puerto Rico forest moves quickly off the landscape

    Science.gov (United States)

    Shanley, J. B.; Willenbring, J. K.; Kaste, J. M.; Occhi, M.; McDowell, W. H.

    2012-12-01

    Atmospheric mercury (Hg) in wet deposition at the Luquillo Experimental Forest in northeastern Puerto Rico, averages 28 μg m-2 yr-1, higher than any site in the USA Mercury Deposition Network. Despite the high deposition, Hg content of soils, vegetation, and biota are below global averages. The low Hg content of watershed surfaces, coupled with exceptionally high stream total Hg flux, suggest that most of the Hg passes through the watershed with minimal retention. We assessed Hg dynamics in two adjacent watersheds, Rio Icacos underlain by quartz diorite, and Rio Mameyes underlain by volcaniclastic rocks. At both sites, high-flow Hg concentrations approached 100 ng L-1, dominated by particulate Hg. In order to assess the apparent pass-through nature of Hg in this tropical forest, we measured 7Be and 10Be isotopes from natural, cosmogenic fallout adsorbed on stream suspended particles to constrain the Hg age /residence time and source (atmospheric vs. geogenic or legacy Hg from 19th century gold mining). Ubiquitous 7Be (half-life 53 days) and relatively high 7Be/10Be ratios on suspended particles suggest that stream Hg was dominated by erosion from exposed surfaces, supporting a short residence time. The low watershed retention of the high Hg throughput limits adverse biological effects in this tropical ecosystem.

  13. Litterfall mercury dry deposition in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Krabbenhoft, David P.; Kolka, Randall K.; Zhang, Leiming

    2012-01-01

    Mercury (Hg) in autumn litterfall from predominately deciduous forests was measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry deposition was significantly higher (median 12.3 micrograms per square meter (μg/m 2 ), range 3.5–23.4 μg/m 2 ) than annual Hg wet deposition (median 9.6 μg/m 2 , range 4.4–19.7 μg/m 2 ). The mean ratio of dry to wet Hg deposition was 1.3–1. The sum of dry and wet Hg deposition averaged 21 μg/m 2 per year and 55% was litterfall dry deposition. Methylmercury was a median 0.8% of Hg in litterfall and ranged from 0.6 to 1.5%. Annual litterfall Hg and wet Hg deposition rates differed significantly and were weakly correlated. Litterfall Hg dry deposition differed among forest-cover types. This study demonstrated how annual litterfall Hg dry deposition rates approximate the lower bound of annual Hg dry fluxes. - Highlights: ► Annual litterfall mercury dry deposition was significantly higher than wet deposition. ► The mean ratio of dry to wet mercury deposition was 1.3–1. ► The sum of dry and wet mercury deposition averaged 55% litterfall dry deposition. ► Litterfall mercury deposition was highest in the oak-hickory forest-cover type. ► Methylmercury was a median 0.8% of mercury in litterfall and ranged to 1.5%. - A multi-year study of Mercury Deposition Network sites found that annual mercury dry deposition from litterfall in predominately deciduous forests exceeded annual mercury wet deposition in the eastern USA.

  14. Modeled Wet Nitrate Deposition

    Data.gov (United States)

    U.S. Environmental Protection Agency — Modeled data on nitrate wet deposition was obtained from Dr. Jeff Grimm at Penn State Univ. Nitrate wet depostion causes acidification and eutrophication of surface...

  15. European wet deposition maps based on measurements

    NARCIS (Netherlands)

    Leeuwen EP van; Erisman JW; Draaijers GPJ; Potma CJM; Pul WAJ van; LLO

    1995-01-01

    To date, wet deposition maps on a European scale have been based on long-range transport model results. For most components wet deposition maps based on measurements are only available on national scales. Wet deposition maps of acidifying components and base cations based on measurements are needed

  16. Oil sands development and its impact on atmospheric wet deposition of air pollutants to the Athabasca Oil Sands Region, Alberta, Canada

    International Nuclear Information System (INIS)

    Lynam, Mary M.; Dvonch, J. Timothy; Barres, James A.; Morishita, Masako; Legge, Allan; Percy, Kevin

    2015-01-01

    Characterization of air pollutant deposition resulting from Athabasca oil sands development is necessary to assess risk to humans and the environment. To investigate this we collected event-based wet deposition during a pilot study in 2010–2012 at the AMS 6 site 30 km from the nearest upgrading facility in Fort McMurray, AB, Canada. Sulfate, nitrate and ammonium deposition was (kg/ha) 1.96, 1.60 and 1.03, respectively. Trace element pollutant deposition ranged from 2 × 10"−"5 - 0.79 and exhibited the trend Hg < Se < As < Cd < Pb < Cu < Zn < S. Crustal element deposition ranged from 1.4 × 10"−"4 – 0.46 and had the trend: La < Ce < Sr < Mn < Al < Fe < Mg. S, Se and Hg demonstrated highest median enrichment factors (130–2020) suggesting emissions from oil sands development, urban activities and forest fires were deposited. High deposition of the elements Sr, Mn, Fe and Mg which are tracers for soil and crustal dust implies land-clearing, mining and hauling emissions greatly impacted surrounding human settlements and ecosystems. - Highlights: • Atmospheric event wet deposition was collected during a 21 month pilot study. • Major ion, anthropogenic and crustal element wet deposition was characterized. • Low precipitation depths attenuated major ion and anthropogenic element deposition. • Oil sands development, urban activities and forest fires contributed to deposition. - In the vicinity of oil sands, monitoring revealed that wet deposition of major ions (SO_4"2"−, NO_3"-, NH_4"+) was highest followed by S and Mg, the latter is a tracer for soil/crustal dust.

  17. Mercury Wet Scavenging and Deposition Differences by Precipitation Type.

    Science.gov (United States)

    Kaulfus, Aaron S; Nair, Udaysankar; Holmes, Christopher D; Landing, William M

    2017-03-07

    We analyze the effect of precipitation type on mercury wet deposition using a new database of individual rain events spanning the contiguous United States. Measurements from the Mercury Deposition Network (MDN) containing single rainfall events were identified and classified into six precipitation types. Mercury concentrations in surface precipitation follow a power law of precipitation depth that is modulated by precipitation system morphology. After controlling for precipitation depth, the highest mercury deposition occurs in supercell thunderstorms, with decreasing deposition in disorganized thunderstorms, quasi-linear convective systems (QLCS), extratropical cyclones, light rain, and land-falling tropical cyclones. Convective morphologies (supercells, disorganized, and QLCS) enhance wet deposition by a factor of at least 1.6 relative to nonconvective morphologies. Mercury wet deposition also varies by geographic region and season. After controlling for other factors, we find that mercury wet deposition is greater over high-elevation sites, seasonally during summer, and in convective precipitation.

  18. A method to eliminate wetting during the homogenization of HgCdTe

    Science.gov (United States)

    Su, Ching-Hua; Lehoczky, S. L.; Szofran, F. R.

    1986-01-01

    Adhesion of HgCdTe samples to fused silica ampoule walls, or 'wetting', during the homogenization process was eliminated by adopting a slower heating rate. The idea is to decrease Cd activity in the sample so as to reduce the rate of reaction between Cd and the silica wall.

  19. Enhanced Hg{sup 2+} removal and Hg{sup 0} re-emission control from wet fuel gas desulfurization liquors with additives

    Energy Technology Data Exchange (ETDEWEB)

    Tingmei Tang; Jiang Xu; Rongjie Lu; Jingjing Wo; Xinhua Xu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2010-12-15

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg{sup 2+} to Hg{sup 0}. The present study employed three agents: Na{sub 2}S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg{sup 2+} in simulated desulfurization solutions. The effects of the precipitator's dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl{sup -} and other metal ions (e.g. Cu{sup 2+} and Pb{sup 2+}) on Hg{sup 2+} removal were studied. A linear relationship was observed between Hg{sup 2+} removal efficiency and the increasing precipitator's doses along with initial pH. The addition of chloride and metal ions impaired the Hg{sup 2+} removal from solutions due to the complexation of Cl{sup -} and Hg{sup 2+} as well as the chelating competition between Hg{sup 2+} and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg{sup 2+} reduction as well as Hg{sup 0} re-emission from FGD liquors. More than 90% Hg{sup 2+} was captured by precipitating agents while Hg{sup 2+} reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg{sup 0} pollution from FGD liquors. 21 refs., 6 figs.

  20. Atmospheric Mercury Deposition to a Remote Islet in the Subtropical Northwest Pacific Ocean

    Science.gov (United States)

    Sheu, G.; Lin, N.

    2013-12-01

    Thirty-four weekly rainwater samples were collected in 2009 at Pengjiayu, a remote islet in the subtropical Northwest (NW) Pacific Ocean with an area of 1.14 km^2, to study the distribution of rainwater mercury (Hg) concentrations and associated wet deposition fluxes. This is the first study concerning wet Hg deposition to the subtropical NW Pacific Ocean downwind of the East Asian continent, which is the major source region for Hg emissions worldwide. Sample Hg concentrations ranged from 2.25 to 22.33 ng L^-1, with a volume-weighted mean (VWM) concentration of 8.85 ng L^-1. The annual wet Hg deposition flux was 10.18 μg m^-2, about 2.5 times the fluxes measured at sites on the Pacific coast of the USA, supporting the hypothesis that deposition is higher in the western than in the eastern Pacific. Seasonal VWM concentrations were 7.23, 11.58, 7.82, and 9.84 ng L^-1, whereas seasonal wet deposition fluxes were 2.14, 3.45, 2.38, and 2.21 μg m^-2, for spring, summer, fall and winter, respectively. Higher summer wet Hg deposition was a function of both higher rainwater Hg concentration and greater rainfall. The seasonal pattern of rainwater Hg concentrations was the opposite of the general seasonal pattern of the East Asian air pollutant export. Since there is no significant anthropogenic Hg emission source on the islet of Pengjiayu, the observed high summertime rainwater Hg concentration hints at the importance of Hg(0) oxidation and/or scavenging of upper-altitude reactive gaseous Hg (RGM) by deep convection. Direct anthropogenic RGM emissions from the East Asian continent may not contribute significantly to the rainwater Hg concentrations, but anthropogenic Hg(0) emissions could be transported to the upper troposphere or marine boundary layer where they can be oxidized to produce RGM, which will then be effectively scavenged by cloud water and rainwater.

  1. Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida

    Directory of Open Access Journals (Sweden)

    W. M. Landing

    2010-05-01

    Full Text Available In an effort to understand and quantify the impact of local, regional, and far-distant atmospheric mercury sources to rainfall mercury deposition in the Pensacola, Florida watershed, a program of event-based rainfall sampling was started in late 2004. Modified Aerochem-Metrics wet/dry rainfall samplers were deployed at three sites in the region around the Crist coal-fired power plant and event-based samples were collected continuously for three years. Samples were analyzed for total Hg and a suite of trace elements including Al, As, Ba, Bi, Cd, Ce, Co, Cr, Cs, Cu, Fe, Ga, La, Li, Mg, Mn, Na, Nb, Ni, P, Pb, Sb, Se, Si, Sn, Sr, Th, U, V, and Zn. Nutrients (ammonia and nitrate and major anions (chloride and sulfate were also measured on each sample. Multivariate statistical methods were used to sort these tracers into factors that represent potential source categories contributing to the rainfall chemistry. As, Hg, Sb, Se, Sn, and non sea-salt sulfate were all significantly correlated (R>0.6 with one factor which we interpret as an anthropogenic source term reflecting input from coal combustion throughout the southeastern US. Using ratios of total Hg to volatile elements, we estimate that 22–33% of the rainfall Hg results from coal combustion in the southeastern US with the majority coming from the global background.

  2. Urban wet deposition nitrate: a comparison to non-urban deposition

    International Nuclear Information System (INIS)

    Schultz, J.A.M.

    1994-01-01

    The concentration of nitrate in both wet and dry deposition has both increased historically and currently, and recently parallels emissions in NO x . Since NO x is produced in amounts comparable to SO 2 , it is an important contributor to acid deposition, and is produced in higher amounts in urban areas due to concentrated sources. Prior to to this study, national acid deposition monitoring networks in the United States have been and remain established in non-urban areas. This research study consisted of a comparison of precipitation sampling and analysis of wet deposition nitrate and pH for each deposition event in each of two urban sites over a 15 mo period. Also, a comparison of urban data and data generated at a nearby non-urban NADP site was made by examination of both monthly and seasonal data. This research suggests that national monitoring programs should consider inclusion of urban and non-urban monitoring sites in order to achieve a more representative regional assessment. 24 refs., 2 figs., 2 tabs

  3. Characteristics of Wet Deposition in Japan

    Science.gov (United States)

    Iwasaki, A.; Arakaki, T.

    2017-12-01

    Acid deposition survey in Japan has started since 1991 by Japan Environmental Laboratories Association (JELA). The JELA has about 60 monitoring sites for wet deposition including remote, rural and urban area. The measured constituents of wet deposition are; precipitation, pH, electric conductivity, major Anions, and major Cations. From those data, we analyze spatial and temporal variations of wet deposition components in Japan. Among the 60 monitoring sites, 39 sampling sites were selected in this study, which have kept sampling continuously between 2003JFY and 2014JFY. All samples were collected by wet-only samplers. To analyze area characteristics, all the areas were divided into 6 regions; Northern part of Japan (NJ), Facing the Japan Sea (JS), Eastern part of Japan (EJ), Central part of Japan (CJ), Western part of Japan (WJ) and Southern West Islands (SW). NO3- and non-sea-salt-SO42- (nss-SO42-) are major components of rain acidification. Especially, between December and February (winter) the air mass from west affected the temporal variations of those acid components and the concentrations were higher in JS and WJ regions than those in other regions. Japanese ministry of the Environment reported that mixing ratio of NO2 in Japan has been less than 0.04ppm since 1976, and that of SO2 has been less than 0.02ppm since 1978. Their concentrations in Japan have remained flat or slowly decreased recently. However the temporal variations of NO3-/nss-SO42- ratio in winter in JS region were significantly increased on average at 2.2% y-1 from 2003JFY to 2014JFY. The results suggest that long-range transboundary air pollutants increased NO3- concentrations and NO3-/nss-SO42- ratio.

  4. Organic micropollutants in wet and dry depositions in the Venice Lagoon.

    Science.gov (United States)

    Gambaro, Andrea; Radaelli, Marta; Piazza, Rossano; Stortini, Angela Maria; Contini, Daniele; Belosi, Franco; Zangrando, Roberta; Cescon, Paolo

    2009-08-01

    Atmospheric transport is an important route by which pollutants are conveyed from the continents to both coastal and open sea. The role of aerosol deposition in the transport of polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and polybromodiphenyls ethers (PBDEs) to water and soil systems has been evaluated by measuring their concentrations in wet and dry depositions to the Venice Lagoon. The organic micropollutant flux data indicate that they contribute to the total deposition flux in different ways through wet and dry deposition, showing that the prevalent contribution derives from wet deposition. The fluxes calculated for PBDEs, showed the prevalence of 47, 99, 100 and 183 congeners, both in dry and wet fluxes. With regard to PCBs, the flux of summation operatorPCB for wet deposition is in the same order of magnitude of the diffusive flux at the air-water interface. The PAH fluxes obtained in the present study are similar to those obtained in previous studies on the atmospheric bulk deposition to the Venice Lagoon. The ratios between Phe/Ant and Fl/Py indicate that the pollutants sources are pyrolytic, deriving from combustion fuels.

  5. Atmospheric wet deposition of mercury in North America

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, C.W.; Prestbo, E.; Brunette, B.

    1999-07-01

    Currently, 39 states in the US and 5 Canadian provinces have issued advisories about the dangers of eating mercury-contaminated fish taken from waters within their boundaries. The problem is most severe in the Great Lakes region, the Northeast US states, the Canadian maritime provinces, and in south Florida where many lakes and streams contain fish with concentrations of 1 ppm or higher. For many rural and remote locations, atmospheric deposition is the primary source of mercury. In 1995, the National Atmospheric Deposition Program (NADP) initiated a program to monitor total mercury and methylmercury (MMHg) in wet deposition (rain and snow) in North America. In this program, the Mercury Deposition Network (MDN), individual monitoring sites are funded and operated by a variety of local, state, and federal agencies. However, sampling and analysis are coordinated through a central laboratory so that all of the samples are collected and analyzed using the same protocols. Weekly wet-only precipitation samples are collected using an all-glass sampling train and special handling techniques. Analysis is by cold vapor atomic fluorescence spectrometry using USEPA Method 1631 for total mercury. Nearly 40 MDN sites are in operation in 1999. Most of the sites are in the eastern US and Canada. During 1996 and 1997, the volume-weighted mean concentration of total mercury in precipitation collected at 22 sites ranged from 6.0 to 18.9 ng/L. Annual deposition varied between 2.1 and 25.3 {micro} g/m{sup 2}. The average weekly wet deposition of total mercury is more than three times higher in the summer (June-August) than in the winter (December-February). This increase is due to both higher amounts of precipitation and higher concentrations of mercury in precipitation during the summer. The highest values for mercury concentration in precipitation and wet deposition of mercury were measured in the southeastern US.

  6. ROE Wet Sulfate Deposition 2009-2011

    Data.gov (United States)

    U.S. Environmental Protection Agency — The raster data represent the amount of wet sulfate deposition in kilograms per hectare from 2009 to 2011. Summary data in this indicator were provided by EPA’s...

  7. Wet deposition flux of trace elements to the Adirondack region

    International Nuclear Information System (INIS)

    Huang, X.; Keskin, S.S.; Gullu, G.; Olmez, I.

    2001-01-01

    Wet deposition samples from two locations in the Adirondack region of New York were analyzed for trace elemental composition by instrumental neutron activation analysis. Annual fluxes of the measured species were determined by precipitation-weighted and linear-regression methods. Despite several episodes of high deposition fluxes, the cumulative areal wet deposition of trace elements increased fairly linearly (r 2 > 0.9) over the two year sampling period at both sites. This implies that short duration sampling programs may be used to estimate long-term fluxes and cumulative wet deposition impacts. Based on the magnitude of their fluxes, the measured species have been divided into four groups: acidic anions, electroneutral balancing cations, and minor and trace elements of anthropogenic origin. (author)

  8. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    Science.gov (United States)

    Chen, H. S.; Wang, Z. F.; Li, J.; Tang, X.; Ge, B. Z.; Wu, X. L.; Wild, O.; Carmichael, G. R.

    2015-09-01

    Atmospheric mercury (Hg) is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg - Global Nested Air Quality Prediction Modeling System for Hg) has been developed. In GNAQPMS-Hg, the gas- and aqueous-phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0)), divalent mercury (Hg(II)), and primary particulate mercury (Hg(P)) are calculated. A detailed description of the model, including mercury emissions, gas- and aqueous-phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatiotemporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM) and wet deposition agree with observations within a factor of 2, and within a factor of 5 for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of surface Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE) of simulated Hg wet deposition over East Asia is reduced by 24 % in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62 % of surface mercury concentrations and deposition over China, respectively

  9. Removal of Atmospheric Ethanol by Wet Deposition: A Global Flux Estimate

    Science.gov (United States)

    Felix, J. D. D.; Willey, J. D.; Avery, B.; Thomas, R.; Mullaugh, K.; Kieber, R. J.; Mead, R. N.; Helms, J. R.; Campos, L.; Shimizu, M. S.; Guibbina, F.

    2017-12-01

    Global ethanol fuel consumption has increased exponentially over the last two decades and the US plans to double annual renewable fuel production in the next five years as required by the renewable fuel standard. Regardless of the technology or feedstock used to produce the renewable fuel, the primary end product will be ethanol. Increasing ethanol fuel consumption will have an impact on the oxidizing capacity of the atmosphere and increase atmospheric concentrations of the secondary pollutant peroxyacetyl nitrate as well a variety of VOCs with relatively high ozone reactivities (e.g. ethanol, formaldehyde, acetaldehyde). Despite these documented effects of ethanol emissions on atmospheric chemistry, current global atmospheric ethanol budget models have large uncertainties in the magnitude of ethanol sources and sinks. The presented work investigates the global wet deposition sink by providing the first estimate of the global wet deposition flux of ethanol (2.4 ± 1.6 Tg/yr) based on empirical wet deposition data (219 samples collected at 12 locations). This suggests the wet deposition sink removes between 6 and 17% of atmospheric ethanol annually. Concentrations of ethanol in marine wet deposition (25 ± 6 nM) were an order of magnitude less than in the majority of terrestrial deposition (345 ± 280 nM). Terrestrial deposition collected in locations impacted by high local sources of biofuel usage and locations downwind from ethanol distilleries were an order of magnitude higher in ethanol concentration (3090 ± 448 nM) compared to deposition collected in terrestrial locations not impacted by these sources. These results indicate that wet deposition of ethanol is heavily influenced by local sources and ethanol emission impacts on air quality may be more significant in highly populated areas. As established and developing countries continue to rapidly increase ethanol fuel consumption and subsequent emissions, understanding the magnitude of all ethanol sources and

  10. Chemical bath deposition of Hg doped CdSe thin films and their characterization

    International Nuclear Information System (INIS)

    Bhuse, V.M.

    2005-01-01

    The deliberate addition of Hg in CdSe thin film have been carried out using a simple, modified, chemical bath deposition technique with the objective to study the effect of Hg doping on properties of CdSe thin films. Synthesis was initiated at 278 K temperature using complexed cadmium sulphate, mercuric nitrate and sodium selenosulphate in an aqueous ammonical medium at pH 10. Films were characterized by XRD, SEM, optical absorption, electrical and thermoelectric techniques. The 'as deposited' films were uniform, well adherent, nearly stoichiometric and polycrystalline in a single cubic phase (zinc blende). Crystallite size determined from XRD and SEM was found to increase slightly with addition of Hg. The optical band gap of CdSe remains constant upto 0.05 mol% Hg doping, while it decreases monotonically with further increase in mercury content. Dark dc electrical resistivity and conduction activation energy of CdSe were found to decrease initially upto 0.05 mol% of Hg, thereafter increased for higher values of Hg but remains less than those of CdSe. All the films showed n-type of conductivity. A CdSe film containing 0.05 mol% of Hg showed higher absorption coefficient, and conductivity

  11. The Kongsberg silver deposits, Norway: Ag-Hg-Sb mineralization and constraints for the formation of the deposits

    Science.gov (United States)

    Kotková, Jana; Kullerud, Kåre; Šrein, Vladimír; Drábek, Milan; Škoda, Radek

    2018-04-01

    The Kongsberg silver district has been investigated by microscopy and electron microprobe analysis, focusing primarily on the Ag-Hg-Sb mineralization within the context of the updated mineral paragenesis. The earliest mineralization stage is represented by sulfides, including acanthite, and sulfosalts. Native silver formed initially through breakdown of early Ag-bearing phases and later through influx of additional Ag-bearing fluids and silver remobilization. The first two generations of native silver were separated in time by the formation of Ni-Co-Fe sulfarsenides and the monoarsenide niccolite along rims of silver crystals. The presence of As-free sulfosalts and the absence of di- and tri-arsenides suggest a lower arsenic/sulfur activity ratio for the Kongsberg deposits compared to other five-element deposits. Native silver shows binary Ag-Hg and Ag-Sb solid solutions, in contrast to the ternary Ag-Hg-Sb compositions typical for other deposits of similar type. Antimonial silver together with allargentum, dyscrasite, and pyrargyrite was documented exclusively from the northern area of the district. Elsewhere, the only Sb-bearing minerals are polybasite and tetrahedrite/freibergite. Hg-rich silver (up to 21 wt% Hg) has been documented only in the central-western area. Myrmekite of freibergite and chalcopyrite reflects exsolution from an original Ag-poor tetrahedrite upon cooling, while myrmekite of pyrite and silver, forming through breakdown of low-temperature phases (argentopyrite or lenaite) upon heating, characterizes the Kongsberg silver district. Based on the stabilities of minerals and mineral assemblages, the formation of the silver mineralization can be constrained to temperatures between 180 and 250 °C.

  12. Facts and fallacies in wet deposition modelling

    International Nuclear Information System (INIS)

    ApSimon, H.M.; Goddard, A.J.H.; Manning, P.M.; Simms, K.

    1987-01-01

    Following a reactor accident, relatively high contamination at ground level can occur, even at quite long distances from the source, if the pollutant cloud encounters intense precipitation. To estimate such contamination and its extent properly, it is necessary to take into account the spatial and temporal structure of rain patterns and their motion. Currently, models of wet deposition are rather crude. Source meteorology is usually used and is clearly inadequate. Furthermore, no allowance is made for the dynamic nature of rainfall, which occurs as a result of vertical air motions and convergence; nor for the different scavenging mechanism operating in and below cloud. Meteorological information available on these aspects of wet deposition is reviewed, and their importance and inclusion in modelling and prediction of resulting ground contamination is indicated. Some of the pitfalls of simple modelling procedures are illustrated. (author)

  13. Mass Dependent Fractionation of Hg Isotopes in Source Rocks, Mineral Deposits and Spring Waters of the California Coast Ranges, USA

    Science.gov (United States)

    Smith, C. N.; Kesler, S. E.; Blum, J. D.; Rytuba, J. J.

    2007-12-01

    We present here the first study of the isotopic composition of Hg in rocks, ore deposits, and active hydrothermal systems from the California Coast Ranges, one of Earth's largest Hg-depositing systems. The Franciscan Complex and Great Valley Sequence, which form the bedrock in the California Coast Ranges, are intruded and overlain by Tertiary volcanic rocks including the Clear Lake Volcanic Sequence. These rocks contain two types of Hg deposits, hot-spring deposits that form at shallow depths (<300 m) and silica-carbonate deposits that extend to greater depths (200 to 1000 m), as well as active springs and geothermal systems that release Hg to the present surface. The Franciscan Complex and Great Valley Sequence contain clastic sedimentary rocks with higher concentrations of Hg than volcanic rocks of the Clear Lake Volcanic Field. Mean Hg isotope compositions for all three rock units are similar, although the range of values in Franciscan Complex rocks is greater than in either Great Valley or Clear Lake rocks. Hot spring and silica-carbonate Hg deposits have similar average isotopic compositions that are indistinguishable from averages for the three rock units, although δ202Hg values for the Hg deposits have a greater variance than the country rocks. Precipitates from dilute spring and saline thermal waters in the area have similarly large variance and a mean δ202Hg value that is significantly lower than the ore deposits and rocks. These observations indicate there is little or no isotopic fractionation during release of Hg from its source rocks into hydrothermal solutions. Isotopic fractionation does appear to take place during transport and concentration of Hg in deposits, especially in their uppermost parts. Boiling of hydrothermal fluids is likely the most important process causing of the observed Hg isotope fractionation. This should result in the release of Hg with low δ202Hg values into the atmosphere from the top of these hydrothermal systems and a

  14. Speciation of Hg in lichens

    International Nuclear Information System (INIS)

    Jereb, Vesna; Horvat, Milena

    2002-01-01

    Lichens have long been regarded as a suitable tool for monitoring the relative levels of atmospheric pollutants. Lichens have neither roots, a waxy cuticle nor stomata: hence, for mineral nutrition they are largely dependent on wet and dry deposition from the atmosphere. Moreover, lichens are perennial and can accumulate elements over long periods of time. Therefore, concentrations of elements in lichens represent the average levels of elements in the atmosphere for a long period of time. The epiphytic lichen Hypogymnia physodes is a good bioindicator of air pollution with total mercury (THg). In addition, it contains small amounts of methylmercury (MeHg + ). The first aim of our work was to test analytical techniques for determination of MeHg in lichens taken from different locations in Idrija and reference locations

  15. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France

    International Nuclear Information System (INIS)

    Sauret, Nathalie; Wortham, Henri; Strekowski, Rafal; Herckes, Pierre; Nieto, Laura Ines

    2009-01-01

    This work summarizes the results of a study of atmospheric wet and dry deposition fluxes of Deisopropyl-atrazine (DEA), Desethyl-atrazine (DET), Atrazine, Terbuthylazine, Alachlor, Metolachlor, Diflufenican, Fenoxaprop-p-ethyl, Iprodione, Isoproturon and Cymoxanil pesticides conducted in Strasbourg, France, from August 2000 through August 2001. The primary objective of this work was to calculate the total atmospheric pesticide deposition fluxes induced by atmospheric particles. To do this, a modified one-dimensional cloud water deposition model was used. All precipitation and deposition samples were collected at an urban forested park environment setting away from any direct point pesticide sources. The obtained deposition fluxes induced by atmospheric particles over a forested area showed that the dry deposition flux strongly contributes to the total deposition flux. The dry particle deposition fluxes are shown to contribute from 4% (DET) to 60% (cymoxanil) to the total deposition flux (wet + dry). - A modified one-dimensional cloud water deposition model is used to estimate the deposition fluxes of pesticides in the particle phase and compare the relative importance of dry and wet depositions

  16. Comparison of annual dry and wet deposition fluxes of selected pesticides in Strasbourg, France

    Energy Technology Data Exchange (ETDEWEB)

    Sauret, Nathalie [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France); Wortham, Henri [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France)], E-mail: Henri.Wortham@univ-provence.fr; Strekowski, Rafal [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France); Herckes, Pierre [Arizona State University, Department of Chemistry and Biochemistry, Tempe, AZ 85287-1604 (United States); Nieto, Laura Ines [Marseilles University, Laboratoire Chimie Provence - UMR 6264, Campus Saint Charles, Case 29, 3 Place Victor Hugo, 13331 Marseilles Cedex 03 (France)

    2009-01-15

    This work summarizes the results of a study of atmospheric wet and dry deposition fluxes of Deisopropyl-atrazine (DEA), Desethyl-atrazine (DET), Atrazine, Terbuthylazine, Alachlor, Metolachlor, Diflufenican, Fenoxaprop-p-ethyl, Iprodione, Isoproturon and Cymoxanil pesticides conducted in Strasbourg, France, from August 2000 through August 2001. The primary objective of this work was to calculate the total atmospheric pesticide deposition fluxes induced by atmospheric particles. To do this, a modified one-dimensional cloud water deposition model was used. All precipitation and deposition samples were collected at an urban forested park environment setting away from any direct point pesticide sources. The obtained deposition fluxes induced by atmospheric particles over a forested area showed that the dry deposition flux strongly contributes to the total deposition flux. The dry particle deposition fluxes are shown to contribute from 4% (DET) to 60% (cymoxanil) to the total deposition flux (wet + dry). - A modified one-dimensional cloud water deposition model is used to estimate the deposition fluxes of pesticides in the particle phase and compare the relative importance of dry and wet depositions.

  17. Analysis of uncertainties in CRAC2 calculations: wet deposition and plume rise

    International Nuclear Information System (INIS)

    Ward, R.C.; Kocher, D.C.; Hicks, B.B.; Hosker, R.P. Jr.; Ku, J.Y.; Rao, K.S.

    1984-01-01

    We have studied the sensitivity of results from the CRAC2 computer code, which predicts health impacts from a reactor-accident scenario, to uncertainties in selected meteorological models and parameters. The sources of uncertainty examined include the models for plume rise and wet deposition and the meteorological bin-sampling procedure. An alternative plume-rise model usually had little effect on predicted health impacts. In an alternative wet-deposition model, the scavenging rate depends only on storm type, rather than on rainfall rate and atmospheric stability class as in the CRAC2 model. Use of the alternative wet-deposition model in meteorological bin-sampling runs decreased predicted mean early injuries by as much as a factor of 2 to 3 and, for large release heights and sensible heat rates, decreased mean early fatalities by nearly an order of magnitude. The bin-sampling procedure in CRAC2 was expanded by dividing each rain bin into four bins that depend on rainfall rate. Use of the modified bin structure in conjunction with the CRAC2 wet-deposition model changed all predicted health impacts by less than a factor of 2. 9 references

  18. Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition

    Science.gov (United States)

    Nelson, David M.; Tsunogai, Urumu; Ding, Dong; Ohyama, Takuya; Komatsu, Daisuke D.; Nakagawa, Fumiko; Noguchi, Izumi; Yamaguchi, Takashi

    2018-05-01

    Atmospheric nitrate deposition resulting from anthropogenic activities negatively affects human and environmental health. Identifying deposited nitrate that is produced locally vs. that originating from long-distance transport would help inform efforts to mitigate such impacts. However, distinguishing the relative transport distances of atmospheric nitrate in urban areas remains a major challenge since it may be produced locally and/or be transported from upwind regions. To address this uncertainty we assessed spatiotemporal variation in monthly weighted-average Δ17O and δ15N values of wet and dry nitrate deposition during one year at urban and rural sites along the western coast of the northern Japanese island of Hokkaido, downwind of the East Asian continent. Δ17O values of nitrate in wet deposition at the urban site mirrored those of wet and dry deposition at the rural site, ranging between ˜ +23 and +31 ‰ with higher values during winter and lower values in summer, which suggests the greater relative importance of oxidation of NO2 by O3 during winter and OH during summer. In contrast, Δ17O values of nitrate in dry deposition at the urban site were lower (+19 - +25 ‰) and displayed less distinct seasonal variation. Furthermore, the difference between δ15N values of nitrate in wet and dry nitrate deposition was, on average, 3 ‰ greater at the urban than rural site, and Δ17O and δ15N values were correlated for both forms of deposition at both sites with the exception of dry deposition at the urban site. These results suggest that, relative to nitrate in wet and dry deposition in rural environments and wet deposition in urban environments, nitrate in dry deposition in urban environments forms from relatively greater oxidation of NO by peroxy radicals and/or oxidation of NO2 by OH. Given greater concentrations of peroxy radicals and OH in cities, these results imply that dry nitrate deposition results from local NOx emissions more so than wet

  19. Net atmospheric mercury deposition to Svalbard: Estimates from lacustrine sediments

    Science.gov (United States)

    Drevnick, Paul E.; Yang, Handong; Lamborg, Carl H.; Rose, Neil L.

    2012-11-01

    In this study we used lake sediments, which faithfully record Hg inputs, to derive estimates of net atmospheric Hg deposition to Svalbard, Norwegian Arctic. With the exception of one site affected by local pollution, the study lakes show twofold to fivefold increases in sedimentary Hg accumulation since 1850, likely due to long-range atmospheric transport and deposition of anthropogenic Hg. Sedimentary Hg accumulation in these lakes is a linear function of the ratio of catchment area to lake area, and we used this relationship to model net atmospheric Hg flux: preindustrial and modern estimates are 2.5 ± 3.3 μg m-2 y-1 and 7.0 ± 3.0 μg m-2 y-1, respectively. The modern estimate, by comparison with data for Hg wet deposition, indicates that atmospheric mercury depletion events (AMDEs) or other dry deposition processes contribute approximately half (range 0-70%) of the net flux. Hg from AMDEs may be moving in significant quantities into aquatic ecosystems, where it is a concern because of contamination of aquatic food webs.

  20. Wet deposition of poly- and perfluorinated compounds in Northern Germany

    International Nuclear Information System (INIS)

    Dreyer, Annekatrin; Matthias, Volker; Weinberg, Ingo; Ebinghaus, Ralf

    2010-01-01

    Twenty precipitation samples were taken concurrently with air samples at a northern German monitoring site over a period of 7 months in 2007 and 2008. Thirty four poly- and perfluorinated compounds (PFC) were determined in rain water samples by solid phase extraction and HPLC-MS/MS analysis. Seventeen compounds were detected in rain water with ΣPFC concentrations ranging from 1.6 ng L -1 to 48.6 ng L -1 . Perfluorooctanoate (PFOA) and perfluorobutanate (PFBA) were the compounds that were usually observed in highest concentrations. Calculated ΣPFC deposition rates were between 2 and 91 ng m -2 d -1 . These findings indicate that particle phase PFC are deposited from the atmosphere by precipitation. A relationship between PFC wet deposition and air concentration may be established via precipitation amounts. Trajectory analysis revealed that PFC concentration and deposition estimates in precipitation can only be explained if a detailed air mass history is considered. - Information on air mass history, meteorological conditions, and distribution of PFC sources is necessary to understand and estimate PFC concentrations and wet deposition.

  1. Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China

    Science.gov (United States)

    Pan, Y. P.; Wang, Y. S.

    2015-01-01

    Atmospheric deposition is considered to be a major process that removes pollutants from the atmosphere and an important source of nutrients and contaminants for ecosystems. Trace elements (TEs), especially toxic metals deposited on plants and into soil or water, can cause substantial damage to the environment and human health due to their transfer and accumulation in food chains. Despite public concerns, quantitative knowledge of metal deposition from the atmosphere to ecosystems remains scarce. To advance our understanding of the spatiotemporal variations in the magnitudes, pathways, compositions and impacts of atmospherically deposited TEs, precipitation (rain and snow) and dry-deposited particles were collected simultaneously at 10 sites in Northern China from December 2007 to November 2010. The measurements showed that the wet and dry depositions of TEs in the target areas were orders of magnitude higher than previous observations within and outside China, generating great concern over the potential risks. The spatial distribution of the total (wet plus dry) deposition flux was consistent with that of the dry deposition, with a significant decrease from industrial and urban areas to suburban, agricultural and rural sites, while the wet deposition exhibited less spatial variation. In addition, the seasonal variation of wet deposition was also different from that of dry deposition, although they were both governed by the precipitation and emission patterns. For the majority of TEs that exist as coarse particles, dry deposition dominated the total flux at each site. This was not the case for potassium, nickel, arsenic, lead, zinc, cadmium, selenium, silver and thallium, for which the relative importance between wet and dry deposition fluxes varied by site. Whether wet deposition is the major atmospheric cleansing mechanism for the TEs depends on the size distribution of the particles. We found that atmospheric inputs of copper, lead, zinc, cadmium, arsenic and

  2. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Science.gov (United States)

    Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.

  3. Deposition of HgTe by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-04-01

    Full Text Available This paper describes the first instance of HgTe growth by electrochemical atomic layer epitaxy (EC-ALE). EC-ALE is the electrochemical analog of atomic layer epitaxy (ALE) and atomic layer deposition (ALD), all of which are based on the growth...

  4. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen's median trend estimate and Kendall's seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  5. 1988 Wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.; Bittner, E.A.

    1992-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1988 and spatial patterns for 1988. It is the third in a series of reports that investigate the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1988 annual, winter, and summer periods. Temporal pattern analyses use a subset of 35 sites over a 10-year (1979--1988) period and an expanded subset of 137 sites, with greater spatial coverage, over a 7-year (1982--1988) period. The 10-year period represents the longest period with wet deposition monitoring data available that has a sufficient number of sites with data of known quality to allow a descriptive summary of annual temporal patterns. Sen`s median trend estimate and Kendall`s seasonal tau (KST) test are calculated for each ion species concentration and deposition at each site in both subsets.

  6. Meteorological testing and analysis of sampling equipment for wet deposition

    International Nuclear Information System (INIS)

    Winkler, P.; Jobst, S.; Harder, C.

    1989-01-01

    11 rain collector types for wet deposition were subjected to a field test. Two of the nine types were identically constructed. The following measured values were analyzed: amount of rainfall, electrical conductivity, pH value, Cl - , NO 3 - , SO 4 = , NH 4 + , Na + , K + , Ca ++ , Mg ++ , Fe, Pb, Cu, Cd. The analysis was restricted to rainfall. In a basic study structural and statistical analyses of precipitations were made in order to find out from which extent of intensity resp. rain volume per rainfall the precipitations are important for wet deposition. Some sensors required intensities of nearly 1 mm/h in order to recognize all rainfalls. In order to reach a better standardization of the measuring technique the funnel geometry should be standardized. The current technique is not suited for correctly registering the deposition which is connected with light and very light rainfall. It was found out in rinsing tests with diluted HNO 3 that considerable amounts of trace metals accumulate at funnel walls and in headers, although the collecting device had been subjected to a thorough acid purification before. For the determination of the wet deposition of the trace metals problems arise if the samples are filtered and the filters are not analyzed. In that case particle-bound metals which are suspended in raindrops will not be registered. After comparing the equipment some of the devices were improved in order to eliminate known sources of contamination. (orig./KW) [de

  7. Episodic response project: Wet deposition at watersheds in three regions of the eastern United States

    International Nuclear Information System (INIS)

    Barchet, W.R.

    1991-11-01

    During the period from August 1988 to June 1990, wet-only sampling of precipitation was carried out at three Episodic Response Project sites and at one supplemental site. The three watershed sites are Moss Lake, Biscuit Brook, and Linn Run. The supplemental site was the MAP3S site at Pennsylvania State University that characterizes the central group of northern Appalachian streams. The site operators adhered by varying degrees to the sample collection protocol based on the daily sampling protocol of the MAP3S Precipitation Chemistry Network. Sulfate and nitrate ion together accounted for more than 80% of total anions (in μEq/L) in the precipitation at all sites. Wet deposition of sulfate at Moss Lake, Biscuit Brook, Penn State, and Linn Run averaged 223, 230, 253, and 402 mg/m 2 /month, respectively, whereas nitrate wet deposition averaged 197, 195, 160, and 233 mg/m 2 /month, respectively. Sulfate deposition was a factor of 2 to 4 higher in summer than in winter. The seasonal pattern for nitrate deposition was weak; the seasonal contrast was less than a factor of 2.5 at all sites. The association between the wet deposition and precipitation chemistry at the MAP3S monitoring site and the average for the study watersheds was dependent on the distance between the site and watershed and the intervening terrain. Precipitation chemistry at the monitoring site is representative of that at the ERP study watersheds in the Adirondack and Catskill regions and in the south-western group of watersheds in the Appalachian region. High spatial variability in precipitation amounts makes this assumption weaker for wet deposition. Chemical input to watersheds from dry deposition has not been determined at any site but could range from a factor of 0.3 to 1.0 of the wet deposition. 7 refs., 38 figs., 12 tabs

  8. Comparison of wet-only and bulk deposition at Chiang Mai (Thailand) based on rainwater chemical composition

    Science.gov (United States)

    Chantara, Somporn; Chunsuk, Nawarut

    The chemical composition of 122 rainwater samples collected daily from bulk and wet-only collectors in a sub-urban area of Chiang Mai (Thailand) during August 2005-July 2006 has been analyzed and compared to assess usability of a cheaper and less complex bulk collector over a sophisticated wet-only collector. Statistical analysis was performed on log-transformed daily rain amount and depositions of major ions for each collector type. The analysis of variance (ANOVA) test revealed that the amount of rainfall collected from a rain gauge, bulk collector and wet-only collector showed no significant difference ( ∝=0.05). The volume weight mean electro-conductivity (EC) values of bulk and wet-only samples were 0.69 and 0.65 mS/m, respectively. The average pH of the samples from both types of collectors was 5.5. Scatter plots between log-transformed depositions of specific ions obtained from bulk and wet-only samples showed high correlation ( r>0.91). Means of log-transformed bulk deposition were 14% (Na + and K +), 13% (Mg 2+), 7% (Ca 2+), 4% (NO 3-), 3% (SO 42- and Cl -) and 2% (NH 4+) higher than that of wet-only deposition. However, multivariate analysis of variance (MANOVA) revealed that ion depositions obtained from bulk and wet-only collectors were not significantly different ( ∝=0.05). Therefore, it was concluded that a bulk collector can be used instead of a wet-only collector in a sub-urban area.

  9. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  10. Dry deposition fluxes and deposition velocities of trace metals in the Tokyo metropolitan area measured with a water surface sampler.

    Science.gov (United States)

    Sakata, Masahiro; Marumoto, Kohji

    2004-04-01

    Dry deposition fluxes and deposition velocities (=deposition flux/atmospheric concentration) for trace metals including Hg, Cd, Cu, Mn, Pb, and Zn in the Tokyo metropolitan area were measured using an improved water surface sampler. Mercury is deposited on the water surface in both gaseous (reactive gaseous mercury, RGM) and particulate (particulate mercury, Hg(p)) forms. The results based on 1 yr observations found that dry deposition plays a significant if not dominant role in trace metal deposition in this urban area, contributing fluxes ranging from 0.46 (Cd) to 3.0 (Zn) times those of concurrent wet deposition fluxes. The deposition velocities were found to be dependent on the deposition of coarse particles larger than approximately 5 microm in diameter on the basis of model calculations. Our analysis suggests that the 84.13% diameter is a more appropriate index for each deposited metal than the 50% diameter in the assumed undersize log-normal distribution, because larger particles are responsible for the flux. The deposition velocities for trace metals other than mercury increased exponentially with an increase in their 84.13% diameters. Using this regression equation, the deposition velocities for Hg(p) were estimated from its 84.13% diameter. The deposition fluxes for Hg(p) calculated from the estimated velocities tended to be close to the mercury fluxes measured with the water surface sampler during the study periods except during summer.

  11. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  12. Photochemical reactions between mercury (Hg) and dissolved organic matter decrease Hg bioavailability and methylation.

    Science.gov (United States)

    Luo, Hong-Wei; Yin, Xiangping; Jubb, Aaron M; Chen, Hongmei; Lu, Xia; Zhang, Weihua; Lin, Hui; Yu, Han-Qing; Liang, Liyuan; Sheng, Guo-Ping; Gu, Baohua

    2017-01-01

    Atmospheric deposition of mercury (Hg) to surface water is one of the dominant sources of Hg in aquatic environments and ultimately drives methylmercury (MeHg) toxin accumulation in fish. It is known that freshly deposited Hg is more readily methylated by microorganisms than aged or preexisting Hg; however the underlying mechanism of this process is unclear. We report that Hg bioavailability is decreased by photochemical reactions between Hg and dissolved organic matter (DOM) in water. Photo-irradiation of Hg-DOM complexes results in loss of Sn(II)-reducible (i.e. reactive) Hg and up to an 80% decrease in MeHg production by the methylating bacterium Geobacter sulfurreducens PCA. Loss of reactive Hg proceeded at a faster rate with a decrease in the Hg to DOM ratio and is attributed to the possible formation of mercury sulfide (HgS). These results suggest a new pathway of abiotic photochemical formation of HgS in surface water and provide a mechanism whereby freshly deposited Hg is readily methylated but, over time, progressively becomes less available for microbial uptake and methylation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Litter mercury deposition in the Amazonian rainforest

    International Nuclear Information System (INIS)

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-01-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha"−"1 y"−"1. Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g"−"1 was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m"−"2 yr"−"1. This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. - Highlights: • Based on published data we estimated the litterfall in the Amazonian rainforest. • All the published data on Hg concentration in leaves and litter from the region and some unpublished data are presented. • We calculated the litter mercury deposition. • We estimated the contribution of dry, wet and litter Hg deposition in the Amazonian rainforest. • We also discussed the impact of Amazon deforestation on the Hg biogeochemical cycle. - The Amazonian rainforest is responsible for removing at least 268 Mg Hg y"−"1, 8% of the total atmospheric mercury deposition to land.

  14. Sulfate-rich eolian and wet interdune deposits, erebus crater, meridiani Planum, Mars

    Science.gov (United States)

    Metz, J.M.; Grotzinger, J.P.; Rubin, D.M.; Lewis, K.W.; Squyres, S. W.; Bell, J.F.

    2009-01-01

    This study investigates three bedrock exposures at Erebus crater, an ?? 300 m diameter crater approximately 4 km south of Endurance crater on Mars. These outcrops, called Olympia, Payson, and Yavapai, provide additional evidence in support of the dune-interdune model proposed for the formation of the deposits at the Opportunity landing site in Meridiani Planum. There is evidence for greater involvement of liquid water in the Olympia outcrop exposures than was observed in Eagle or Endurance craters. The Olympia outcrop likely formed in a wet interdune and sand sheet environment. The facies observed within the Payson outcrop, which is likely stratigraphically above the Olympia outcrop, indicate that it was deposited in a damp-wet interdune, sand sheet, and eolian dune environment. The Yavapai outcrop, which likely stratigraphically overlies the Payson outcrop, indicates that it was deposited in primarily a sand sheet environment and also potentially in an eolian dune environment. These three outcrop exposures may indicate an overall drying-upward trend spanning the stratigraphic section from its base at the Olympia outcrop to its top at the Yavapai outcrop. This contrasts with the wetting-upward trend seen in Endurance and Eagle craters. Thus, the series of outcrops seen at Meridiani by Opportunity may constitute a full climatic cycle, evolving from dry to wet to dry conditions. ?? 2009, SEPM (Society for Sedimentary Geology).

  15. Comparison of mercury mass loading in streams to atmospheric deposition in watersheds of Western North America: Evidence for non-atmospheric mercury sources

    Science.gov (United States)

    Domagalski, Joseph L.; Majewski, Michael S.; Alpers, Charles N.; Eckley, Chris S.; Eagles-Smith, Collin A.; Schenk, Liam N.; Wherry, Susan

    2016-01-01

    Annual stream loads of mercury (Hg) and inputs of wet and dry atmospheric Hg deposition to the landscape were investigated in watersheds of the Western United States and the Canadian-Alaskan Arctic. Mercury concentration and discharge data from flow gauging stations were used to compute annual mass loads with regression models. Measured wet and modeled dry deposition were compared to annual stream loads to compute ratios of Hg stream load to total Hg atmospheric deposition. Watershed land uses or cover included mining, undeveloped, urbanized, and mixed. Of 27 watersheds that were investigated, 15 had some degree of mining, either of Hg or precious metals (gold or silver), where Hg was used in the amalgamation process. Stream loads in excess of annual Hg atmospheric deposition (ratio > 1) were observed in watersheds containing Hg mines and in relatively small and medium-sized watersheds with gold or silver mines, however, larger watersheds containing gold or silver mines, some of which also contain large dams that trap sediment, were sometimes associated with lower load ratios (< 0.2). In the non-Arctic regions, watersheds with natural vegetation tended to have low ratios of stream load to Hg deposition (< 0.1), whereas urbanized areas had higher ratios (0.34–1.0) because of impervious surfaces. This indicated that, in ecosystems with natural vegetation, Hg is retained in the soil and may be transported subsequently to streams as a result of erosion or in association with dissolved organic carbon. Arctic watersheds (Mackenzie and Yukon Rivers) had a relatively elevated ratio of stream load to atmospheric deposition (0.27 and 0.74), possibly because of melting glaciers or permafrost releasing previously stored Hg to the streams. Overall, our research highlights the important role of watershed characteristics in determining whether a landscape is a net source of Hg or a net sink of atmospheric Hg.

  16. Summary of Mercury and Trace Element Results in Precipitation from the Culpeper, Virginia, Mercury Deposition Network Site (VA-08), 2002-2006

    Science.gov (United States)

    Engle, Mark A.; Kolker, Allan; Mose, Douglas E.; East, Joseph A.; McCord, Jamey D.

    2008-01-01

    The VA-08 Mercury Deposition Network (MDN) site, southwest of Culpeper, Virginia, was established in autumn of 2002. This site, along with nearby VA-28 (~31 km west) at Big Meadows in Shenandoah National Park, fills a spatial gap in the Mid-Atlantic region of the MDN network and provides Hg deposition data immediately west of the Washington, D.C., metropolitan area. Results for the Culpeper site from autumn of 2002 to the end of 2006 suggest that the highest mercury (Hg) deposition (up to 5.0 ug/m2 per quarter of the 6.5-12.6 ug/m2 annual Hg deposition) is measured during the second and third quarters of the year (April-September). This is a result of both elevated Hg precipitation concentrations (up to 27 ng/L) and greater precipitation during these months. The data also exhibit a general statistically significant (peffect during larger precipitation events, especially during winter and spring. Comparison of results between the Culpeper and Big Meadows sites indicates that although quarterly Hg deposition was not significantly different (panalysis of the Hg and trace metal data identified 3 primary source categories, each with large loadings of characteristic elements: 1) Ca, Al, Mg, Sr, La, and Ce (crustal sources); 2) V, Na, and Ni (local wintertime heating oil); and 3) Zn, Cd, Mn, and Hg (regional anthropogenic emission sources). HYSPLIT air mass trajectory modeling and enrichment factor calculations are consistent with this interpretation. A preliminary source attribution model suggests that ~51% of the Hg in wet deposition is due to regional anthropogenic sources, while crustal sources and local oil combustion account for 9.5% and <1%, respectively. This calculation implies that the global Hg burden accounts for ~40% of the Hg in wet deposition.

  17. Wet and Dry Atmospheric Depositions of Inorganic Nitrogen during Plant Growing Season in the Coastal Zone of Yellow River Delta

    Directory of Open Access Journals (Sweden)

    Junbao Yu

    2014-01-01

    Full Text Available The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD using automatic sampling equipment. The results showed that SO42- and Na+ were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m−2, in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3-–N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4+–N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3-–N and NH4+–N was ~31.38% and ~20.50% for the contents of NO3-–N and NH4+–N in 0–10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  18. Wet and dry atmospheric depositions of inorganic nitrogen during plant growing season in the coastal zone of Yellow River Delta.

    Science.gov (United States)

    Yu, Junbao; Ning, Kai; Li, Yunzhao; Du, Siyao; Han, Guangxuan; Xing, Qinghui; Wu, Huifeng; Wang, Guangmei; Gao, Yongjun

    2014-01-01

    The ecological problems caused by dry and wet deposition of atmospheric nitrogen have been widespread concern in the world. In this study, wet and dry atmospheric depositions were monitored in plant growing season in the coastal zone of the Yellow River Delta (YRD) using automatic sampling equipment. The results showed that SO4 (2-) and Na(+) were the predominant anion and cation, respectively, in both wet and dry atmospheric depositions. The total atmospheric nitrogen deposition was ~2264.24 mg m(-2), in which dry atmospheric nitrogen deposition was about 32.02%. The highest values of dry and wet atmospheric nitrogen deposition appeared in May and August, respectively. In the studied area, NO3 (-)-N was the main nitrogen form in dry deposition, while the predominant nitrogen in wet atmospheric deposition was NH4 (+)-N with ~56.51% of total wet atmospheric nitrogen deposition. The average monthly attribution rate of atmospheric deposition of NO3 (-)-N and NH4 (+)-N was ~31.38% and ~20.50% for the contents of NO3 (-)-N and NH4 (+)-N in 0-10 cm soil layer, respectively, suggested that the atmospheric nitrogen was one of main sources for soil nitrogen in coastal zone of the YRD.

  19. Atmospheric mercury deposition and its contribution of the regional atmospheric transport to mercury pollution at a national forest nature reserve, southwest China.

    Science.gov (United States)

    Ma, Ming; Wang, Dingyong; Du, Hongxia; Sun, Tao; Zhao, Zheng; Wei, Shiqing

    2015-12-01

    Atmospheric mercury deposition by wet and dry processes contributes to the transformation of mercury from atmosphere to terrestrial and aquatic systems. Factors influencing the amount of mercury deposited to subtropical forests were identified in this study. Throughfall and open field precipitation samples were collected in 2012 and 2013 using precipitation collectors from forest sites located across Mt. Jinyun in southwest China. Samples were collected approximately every 2 weeks and analyzed for total (THg) and methyl mercury (MeHg). Forest canopy was the primary factor on THg and MeHg deposition. Simultaneously, continuous measurements of atmospheric gaseous elemental mercury (GEM) were carried out from March 2012 to February 2013 at the summit of Mt. Jinyun. Atmospheric GEM concentrations averaged 3.8 ± 1.5 ng m(-3), which was elevated compared with global background values. Sources identification indicated that both regional industrial emissions and long-range transport of Hg from central, northeast, and southwest China were corresponded to the elevated GEM levels. Precipitation deposition fluxes of THg and MeHg in Mt. Jinyun were slightly higher than those reported in Europe and North America, whereas total fluxes of MeHg and THg under forest canopy on Mt. Jiuyun were 3 and 2.9 times of the fluxes of THg in wet deposition in the open. Highly elevated litterfall deposition fluxes suggest that even in remote forest areas of China, deposition of atmospheric Hg(0) via uptake by vegetation leaf may be a major pathway for the deposition of atmospheric Hg. The result illustrates that areas with greater atmospheric pollution can be expected to have greater fluxes of Hg to soils via throughfall and litterfall.

  20. Air pollution: Tropospheric ozone, and wet deposition of sulfate and inorganic nitrogen

    Science.gov (United States)

    John W. Coulston

    2009-01-01

    The influence of air pollutants on ecosystems in the United States is an important environmental issue. The term “air pollution” encompasses a wide range of topics, but acid deposition and ozone are primary concerns in the context of forest health. Acid deposition partially results from emissions of sulfur dioxide, nitrogen oxides, and ammonia that are deposited in wet...

  1. Trace organic compounds in wet atmospheric deposition: an overview

    Science.gov (United States)

    Steinheimer, T.R.; Johnson, S.M.

    1987-01-01

    An overview of the occurrence of organic compounds in wet atmospheric deposition is given. Multiplicity of sources and problems associated with source identification are discussed. Available literature is reviewed by using citations from Chemical Abstracts and Water Resources Abstracts through June 1985 and includes reports published through December 1984 that summarize current knowledge. Approaches to the chemical determination of organic compounds in precipitation are examined in addition to aspects of sampling protocols. Best methods for sample collection and preparation for instrumental analysis continue to be discussed among various investigators. Automatic wet-deposition-only devices for collection and extraction are preferred. Classes of organic compounds that have been identified in precipitation include a spectrum of compounds with differing properties of acidity or basicity, polarity, and water solubility. Those compounds that have been reported in rainfall, snowfall, and ice include hydrocarbons (both aromatic and nonaromatic), chlorinated derivatives of these hydrocarbons, carbonyl compounds (both acidic and nonacidic), and carboxylic acids and esters. Formic and acetic are the most abundant organic acids present. Cloudwater, fogwater, and mist also have been collected and analyzed for organic composition.

  2. Rapid Deceleration-Driven Wetting Transition during Pendant Drop Deposition on Superhydrophobic Surfaces

    Science.gov (United States)

    Kwon, Hyuk-Min; Paxson, Adam T.; Varanasi, Kripa K.; Patankar, Neelesh A.

    2011-01-01

    A hitherto unknown mechanism for wetting transition is reported. When a pendant drop settles upon deposition, there is a virtual “collision” where its center of gravity undergoes rapid deceleration. This induces a high water hammer-type pressure that causes wetting transition. A new phase diagram shows that both large and small droplets can transition to wetted states due to the new deceleration driven and the previously known Laplace mechanisms, respectively. It is explained how the attainment of a nonwetted Cassie-Baxter state is more restrictive than previously known.

  3. Thermal stability of atomic layer deposition Al2O3 film on HgCdTe

    Science.gov (United States)

    Zhang, P.; Sun, C. H.; Zhang, Y.; Chen, X.; He, K.; Chen, Y. Y.; Ye, Z. H.

    2015-06-01

    Thermal stability of Atomic Layer Deposition Al2O3 film on HgCdTe was investigated by Al2O3 film post-deposition annealing treatment and Metal-Insulator-Semiconductor device low-temperature baking treatment. The effectiveness of Al2O3 film was evaluated by measuring the minority carrier lifetime and capacitance versus voltage characteristics. After annealing treatment, the minority carrier lifetime of the HgCdTe sample presented a slight decrease. Furthermore, the fixed charge density and the slow charge density decreased significantly in the annealed MIS device. After baking treatment, the fixed charge density and the slow charge density of the unannealed and annealed MIS devices decreased and increased, respectively.

  4. Wet nitrogen deposition across the urban-intensive agricultural-rural transect of a small urban area in southwest China.

    Science.gov (United States)

    Deng, Ouping; Zhang, Shirong; Deng, Liangji; Zhang, Chunlong; Fei, Jianbo

    2018-03-01

    Understanding of the spatial and temporal variation of the flux of atmospheric nitrogen (N) deposition is essential for assessment of its impact on ecosystems. However, little attention has been paid to the variability of N deposition across urban-intensive agricultural-rural transects. A continuous 2-year observational study (from January 2015 to December 2016) was conducted to determine wet N deposition across the urban-intensive agricultural-rural transect of a small urban area in southwest China. Significantly spatial and temporal variations were found in the research area. Along the urban-intensive agricultural-rural transect, the TN and NH 4 + -N deposition first increased and then decreased, and the NO 3 - -N and dissolved organic N (DON) deposition decreased continuously. Wet N deposition was mainly affected by the districts of agro-facilities, roads and build up lands. Wet NH 4 + -N deposition had non-seasonal emission sources including industrial emissions and urban excretory wastes in urban districts and seasonal emission sources such as fertilizer and manure volatilization in the other districts. However, wet NO 3 - -N deposition had seasonal emission sources such as industrial emissions and fireworks in urban district and non-seasonal emission sources such as transportation in the other districts. Deposition of DON was likely to have had similar sources to NO 3 - -N deposition in rural district, and high-temperature-dependent sources in urban and intensive agricultural districts. Considering the annual wet TN deposition in the intensive agricultural district was about 11.1% of the annual N fertilizer input, N fertilizer rates of crops should be reduced in this region to avoid the excessive application, and the risk of N emissions to the environment.

  5. Seasonal and annual variations and regional characteristics of wet and dry deposition amounts in East Asian region

    Science.gov (United States)

    Sato, K.; Tsuyoshi, O.; Endo, T.; Yagoh, H.; Matsuda, K.

    2011-12-01

    Emission of sulfur and nitrogen compounds in Asian region has been remarkably increased with recent rapid economical growth (Ohara et al., 2007). To appropriately assess the influence of air pollutants on the ecosystem, it is important to quantitatively determine the atmospheric deposition of air pollutants. Here, Seasonal and annual variations and regional characteristics of estimated wet and dry deposition amounts at 27 monitoring sites of Acid Deposition Monitoring Network in East Asia (EANET) from 2003 to 2009 are discussed. Wet deposition sample was collected every 24 hours or 1 week by a wet only sampler. Wet deposition amounts were calculated by the product of the volume-weighted concentrations of ionic species (SO42-, NO3-, and NH4+) in the precipitation and precipitation amount measured by a standard rain gauge at each site. Dry deposition amount was estimated by the inferential method which was originated the model developed by Wesely and Hicks (1977) and modified by Matsuda (2008). The components examined for dry deposition were sulfur compounds (gaseous SO2 and particulate SO42-) and nitrogen compounds (gaseous HNO3 and NH3, particulate NO3- and NH4+). Dry deposition was calculated by the product of the deposition velocity estimated by the inferential method for forest and grass surfaces and the monitored air concentration of each compound. The mean annual dry deposition amounts for sulfur and nitrogen compounds in Japanese sites were in the range of 5-37 and 7-50 mmol m-2 year-1, respectively. The regional characteristics of dry deposition amounts in Japan were similar between sulfur and nitrogen compounds, which showed higher deposition in the Sea of Japan side and the western Japan. The mean annual total (wet + dry) deposition amounts for sulfur and nitrogen compounds in Japanese sites were in the range of 28-77 and 22-130 mmol m-2 year-1, respectively. The contributions of dry deposition to the total deposition amounts were 10-55% and 13-56% for

  6. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    Science.gov (United States)

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (water varied from 1.2 to 320 ng/L, all of which were below the 1,000 ng/L Italian drinking water Hg guideline and the 770 ng/L U.S. Environmental Protection Agency (USEPA) guideline recommended to protect against chronic effects to aquatic wildlife. Methyl-Hg concentrations in stream water varied from water samples contained concentrations of As (drinking water guidelines to protect human health (10 μg/L for As and 20 μg/L for Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.

  7. Trends in bromide wet deposition concentrations in the contiguous United States, 2001-2016.

    Science.gov (United States)

    Wetherbee, Gregory A; Lehmann, Christopher M B; Kerschner, Brian M; Ludtke, Amy S; Green, Lee A; Rhodes, Mark F

    2018-02-01

    Bromide (Br - ) and other solute concentration data from wet deposition samples collected and analyzed by the National Atmospheric Deposition Program (NADP) from 2001 to 2016, were statistically analyzed for trends both geographically and temporally by precipitation type. Analysis was limited to NADP sites in the contiguous 48 United States. The Br - concentrations for this time period had a high number of values censored at the detection limits with greater than 86 percent of sample concentrations below analytical detection. Bromide was more frequently detected at NADP sites in coastal regions. Analysis using specialized statistical techniques for censored data revealed that Br - concentrations varied by precipitation type with higher concentrations usually observed in liquid versus precipitation containing snow. Negative temporal trends in Br - wet deposition concentrations were observed at a majority of NADP sites; approximately 25 percent of these trend values were statistically significant at less than 0.05 to 0.10 significance levels. Potential causes for the negative trends were explored, including annual and seasonal changes in precipitation depth, reduced emissions of methyl bromide (CH 3 Br) from coastal wetlands, and declining industrial use of bromine compounds. The results indicate that Br - in non-coastal wet-deposition comes mainly from long-range transport, not local sources. Correlations between Br - , chloride, and nitrate concentrations also were evaluated. Published by Elsevier Ltd.

  8. Apportioning global and non-global components of mercury deposition through (210)Pb indexing.

    Science.gov (United States)

    Lamborg, Carl H; Engstrom, Daniel R; Fitzgerald, William F; Balcom, Prentiss H

    2013-03-15

    Our previous work has documented a correlation between Hg concentrations and (210)Pb activity measured in wet deposition that might be used to help apportion sources of Hg in precipitation. Here we present the results of a 27-month precipitation collection effort using co-located samplers for Hg and (210)Pb designed to assess this hypothesis. Study sites were located on the east and west coasts of North America, in the continental interior, and on the Florida Peninsula. Relatively high variability in Hg/(210)Pb ratios was found at all sites regionally and seasonally (e.g., overall: 0.99-9.13ngdpm(-1)). The ratio of average volume-weighted Hg concentrations and (210)Pb activities showed consistent trends (higher in impacted area), with Glacier Bay in southeast Alaska, exhibiting the lowest value. Assuming that Glacier Bay represents a benchmark for a site with no regional contribution, we estimate less than 50% of the Hg input was "global" at the Seattle and Florida sites. Differences in Hg/(210)Pb in wet deposition could be due to either a regional/local source contribution of Hg, or a regional/local enhancement in the removal of Hg from the atmosphere (i.e., oxidants), however, this approach is not capable of discerning between these two possibilities. Thus, this method of source apportionment represents an estimate of the maximal amount of Hg contributed by regional sources and may be limited in regions of deep convective mixing. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Characterization of Wet and Dry Deposition in the Downwind of Industrial Sources in a Dry Tropical Area

    Directory of Open Access Journals (Sweden)

    Raj K. Singh

    2001-01-01

    Full Text Available An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP, Renusagar Thermal Power Plant (RTPP, and Anpara Thermal Power Plant (ATPP, at Singrauli region, Uttar Pradesh (UP, India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2 were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3�, ammonium (NH4+, and sulphate (SO42� contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m�2 day�1, respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 �g m�3 at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 �g m�3, observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3�, and SO42� ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall the concentrations of NH4+, NO3�, and SO42� varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l�1, respectively, during winter. In wet deposition (clearfall, the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0

  10. Characterization of wet and dry deposition in the downwind of industrial sources in a dry tropical area.

    Science.gov (United States)

    Singh, R K; Agrawal, M

    2001-12-19

    An atmospheric deposition study was conducted in the downwind of Shaktinagar Thermal Power Plant (STPP), Renusagar Thermal Power Plant (RTPP), and Anpara Thermal Power Plant (ATPP), at Singrauli region, Uttar Pradesh (UP), India to characterize dry and wet deposition in relation to different pollution loading. During the study period, dry and wet depositions and levels of gaseous pollutants (SO2 and NO2) were estimated across the sites. Dry deposition was collected on a monthly basis and wet deposition on an event basis. Depositions were analyzed for pH, nitrate (NO3-), ammonium (NH4+), and sulphate (SO4(2-)) contents. Dry deposition rate both collected as clearfall and throughfall varied between 0.15 to 2.28 and 0.33 to 3.48 g m(-2) day(-1), respectively, at control and maximally polluted sites. The pH of dry deposition varied from 5.81 to 6.89 during winter and 6.09 to 7.02 during summer across the sites. During the rainy season, the mean pH of clear wet deposition varied from 6.56 to 7.04 and throughfall varied from 6.81 to 7.22. The concentrations of NO2 and SO2 pollutants were highest during the winter season. Mean SO2 concentrations varied from 18 to 75 g m(-3) at control and differently polluted sites during the winter season. The variation in NO2 concentrations did not show a pattern similar to that of SO2. The highest NO2 concentration during the winter season was 50 g m(-3), observed near RTPP. NO2 concentration did not show much variation among different sites, suggesting that the sources of NO2 emission are evenly distributed along the sites. The concentrations of NH4+, NO3-, and SO4(2-) ions in dry deposition were found to be higher in summer as compared to the winter season. In dry deposition (clearfall) the concentrations of NH4+, NO3-, and SO4(2-) varied from 0.13 to 1.0, 0.81 to 1.95, and 0.82 to 3.27 mg l(-1), respectively, during winter. In wet deposition (clearfall), the above varied from 0.14 to 0.74, 0.81 to 1.82, and 0.67 to 2.70 mg l(-1

  11. Spatial patterns and temporal changes in atmospheric-mercury deposition for the midwestern USA, 2001–2016

    Science.gov (United States)

    Risch, Martin R.; Kenski, Donna M.

    2018-01-01

    Spatial patterns and temporal changes in atmospheric-mercury (Hg) deposition were examined in a five-state study area in the Midwestern USA where 32% of the stationary sources of anthropogenic Hg emissions in the continental USA were located. An extensive monitoring record for wet and dry Hg deposition was compiled for 2001–2016, including 4666 weekly precipitation samples at 13 sites and 27 annual litterfall-Hg samples at 7 sites. This study is the first to examine these Hg data for the Midwestern USA. The median annual precipitation-Hg deposition at the study sites was 10.4 micrograms per square meter per year (ug/m2/year) and ranged from 5.8 ug/m2/year to 15.0 ug/m2/year. The median annual Hg concentration was 9.4 ng/L. Annual litterfall-Hg deposition had a median of 16.1 ug/m2/year and ranged from 9.7 to 23.4 ug/m2/year. Isopleth maps of annual precipitation-Hg deposition indicated a recurring spatial pattern similar to one revealed by statistical analysis of weekly precipitation-Hg deposition. In that pattern, high Hg deposition in southeastern Indiana was present each year, frequently extending to southern Illinois. Most of central Indiana and central Illinois had similar Hg deposition. Areas with comparatively lower annual Hg deposition were observed in Michigan and Ohio for many years and frequently included part of northern Indiana. The area in southern Indiana where high Hg deposition predominated had the highest number of extreme episodes of weekly Hg deposition delivering up to 15% of the annual Hg load from precipitation in a single week. Modeled 48-h back trajectories indicated air masses for these episodes often arrived from the south and southwest, crossing numerous stationary sources of Hg emissions releasing from 23 to more than 300 kg Hg per year. This analysis suggests that local and regional, rather than exclusively continental or global Hg emissions were likely contributing to the extreme episodes and at least in part, to the spatial

  12. Removal of Zn(II) and Hg(II) from aqueous solution on a carbonaceous sorbent chemically prepared from rice husk

    International Nuclear Information System (INIS)

    El-Shafey, E.I.

    2010-01-01

    A carbonaceous sorbent was prepared from rice husk via sulfuric acid treatment. Sorption of Zn(II) and Hg(II) from aqueous solution was studied varying time, pH, metal concentration, temperature and sorbent status (wet and dry). Zn(II) sorption was found fast reaching equilibrium within ∼2 h while Hg(II) sorption was slow reaching equilibrium within ∼120 h with better performance for the wet sorbent than for the dry. Kinetics data for both metals were found to follow pseudo-second order model. Sorption rate of both metals was enhanced with temperature rise. Activation energy, E a , for Zn(II) sorption, was ∼13.0 kJ/mol indicating a diffusion-controlled process ion exchange process, however, for Hg(II) sorption, E a was ∼54 kJ/mol indicating a chemically controlled process. Sorption of both metals was low at low pH and increased with pH increase. Sorption was much higher for Hg(II) than for Zn(II) with higher uptake for both metals by rising the temperature. Hg(II) was reduced to Hg(I) on the sorbent surface. This was confirmed from the identification of Hg 2 Cl 2 deposits on the sorbent surface by scanning electron microscopy and X-ray diffraction. However, no redox processes were observed in Zn(II) sorption. Sorption mechanism is discussed.

  13. Atmospheric deposition of mercury in central Poland: Sources and seasonal trends

    Science.gov (United States)

    Siudek, Patrycja; Kurzyca, Iwona; Siepak, Jerzy

    2016-03-01

    Atmospheric deposition of total mercury was studied at two sites in central Poland, between April 2013 and October 2014. Hg in rainwater (bulk deposition) was analyzed in relation to meteorological parameters and major ions (H+, NO3-, Cl-, SO42 -) in order to investigate seasonal variation, identify sources and determine factors affecting atmospheric Hg chemistry and deposition. Total mercury concentrations varied between 1.24 and 22.1 ng L- 1 at the urban sampling site (Poznań) and between 0.57 and 18.3 ng L- 1 in the woodland protected area (Jeziory), with quite similar mean values of 6.96 and 6.37 ng L- 1, respectively. Mercury in precipitation exhibited lower spatial variability within the study domain (urban/forest transect) than the concentrations determined during other similar observations, reflecting the predominant influence of the same local sources. In our study, a significant seasonal pattern of Hg deposition was observed at both sampling sites, with higher and more variable concentrations of Hg reported for the urban area. In particular, deposition values of Hg were higher in the samples attributed to relatively large precipitation amounts in the summer and in those collected during the winter season (the result of higher contributions from combustion sources, i.e. intensive combustion of fossil fuels in residential and commercial boilers, individual power/heat-generating plants). In addition, a significant relationship between Hg concentration and precipitation amount was found while considering different types of wintertime samples (i.e. rain, snow and mixed precipitation). The analysis of backward trajectories showed that air masses arriving from polluted regions of western Europe and southern Poland largely affected the amount of Hg in rainwater. A seasonal variation in Hg deposition fluxes was also observed, with the maximum value of Hg in spring and minimum in winter. Our results indicated that rainwater Hg and, consequently, the wet deposition

  14. Deceleration-driven wetting transition of "gently" deposited drops on textured hydrophobic surfaces

    Science.gov (United States)

    Varanasi, Kripa; Kwon, Hyukmin; Paxson, Adam; Patankar, Neelesh

    2010-11-01

    Many applications of rough superhydrophobic surfaces rely on the presence of droplets in a Cassie state on the substrates. A well established understanding is that if sessile droplets are smaller than a critical size, then the large Laplace pressure induces wetting transition from a Cassie to a Wenzel state, i.e., the liquid impales the roughness grooves. Thus, larger droplets are expected to remain in the Cassie state. In this work we report a surprising wetting transition where even a "gentle" deposition of droplets on rough substrates lead to the transition of larger droplets to the Wenzel state. A hitherto unknown mechanism based on rapid deceleration is identified. It is found that modest amount of energy, during the deposition process, is channeled through rapid deceleration into high water hammer pressure which induces wetting transition. A new "phase" diagram is reported which shows that both large and small droplets can transition to Wenzel states due to the deceleration and Laplace mechanisms, respectively. This novel insight reveals for the first time that the attainment of a Cassie state is more restrictive than previous criteria based on the Laplace pressure transition mechanism.

  15. Sensitivity of the modelled deposition of Caesium-137 from the Fukushima Dai-ichi nuclear power plant to the wet deposition parameterisation in NAME

    International Nuclear Information System (INIS)

    Leadbetter, Susan J.; Hort, Matthew C.; Jones, Andrew R.; Webster, Helen N.; Draxler, Roland R.

    2015-01-01

    This paper describes an investigation into the impact of different meteorological data sets and different wet scavenging coefficients on the model predictions of radionuclide deposits following the accident at the Fukushima Dai-ichi nuclear power plant in March 2011. Three separate operational meteorological data sets, the UK Met Office global meteorology, the ECMWF global meteorology and the Japan Meteorological Agency (JMA) mesoscale meteorology as well as radar rainfall analyses from JMA were all used as inputs to the UK Met Office's dispersion model NAME (the Numerical Atmospheric-dispersion Modelling Environment). The model predictions of Caesium-137 deposits based on these meteorological models all showed good agreement with observations of deposits made in eastern Japan with correlation coefficients ranging from 0.44 to 0.80. Unexpectedly the NAME run using radar rainfall data had a lower correlation coefficient (R = 0.66), when compared to observations, than the run using the JMA mesoscale model rainfall (R = 0.76) or the run using ECMWF met data (R = 0.80). Additionally the impact of modifying the wet scavenging coefficients used in the parameterisation of wet deposition was investigated. The results showed that modifying the scavenging parameters had a similar impact to modifying the driving meteorology on the rank calculated from comparing the modelled and observed deposition

  16. Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry

    Science.gov (United States)

    Clow, David W.; Williams, Mark W.; Schuster, Paul F.

    2016-01-01

    Mountain snowpacks are a vital natural resource for ∼1.5 billion people in the northern Hemisphere, helping to meet human and ecological demand for water in excess of that provided by summer rain. Springtime warming and aeolian dust deposition accelerate snowmelt, increasing the risk of water shortages during late summer, when demand is greatest. While climate networks provide data that can be used to evaluate the effect of warming on snowpack resources, there are no established regional networks for monitoring aeolian dust deposition to snow. In this study, we test the hypothesis that chemistry of snow, wet deposition, and aerosols can be used as a surrogate for dust deposition to snow. We then analyze spatial patterns and temporal trends in inferred springtime dust deposition to snow across the Rocky Mountains, USA, for 1993–2014. Geochemical evidence, including strong correlations (r2 ≥ 0.94) between Ca2+, alkalinity, and dust concentrations in snow deposited during dust events, indicate that carbonate minerals in dust impart a strong chemical signature that can be used to track dust deposition to snow. Spatial patterns in chemistry of snow, wet deposition, and aerosols indicate that dust deposition increases from north to south in the Rocky Mountains, and temporal trends indicate that winter/spring dust deposition increased by 81% in the southern Rockies during 1993–2014. Using a multivariate modeling approach, we determined that increases in dust deposition and decreases in springtime snowfall combined to accelerate snowmelt timing in the southern Rockies by approximately 7–18 days between 1993 and 2014. Previous studies have shown that aeolian dust emissions may have doubled globally during the 20th century, possibly due to drought and land-use change. Climate projections for increased aridity in the southwestern U.S., northern Africa, and other mid-latitude regions of the northern Hemisphere suggest that aeolian dust emissions may continue to

  17. 1987 wet deposition temporal and spatial patterns in North America

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, J.C.; Olsen, A.R.

    1990-03-01

    The focus of this report is on North American wet deposition temporal patterns from 1979 to 1987 and spatial patterns for 1987. The report investigates the patterns of annual precipitation-weighted average concentration and annual deposition for nine ion species: hydrogen, sulfate, nitrate, ammonium, calcium, chloride, sodium, potassium, and magnesium. Data are from the Acid Deposition System (ADS) for the statistical reporting of North American deposition data which includes the National Atmospheric Deposition Program/National Trends Network (NADP/NTN), the MAP3S precipitation chemistry network, the Utility Acid Precipitation Study Program (UAPSP), the Canadian Precipitation Monitoring Network (CAPMoN), and the daily and 4-weekly Acidic Precipitation in Ontario Study (APIOS-D and APIOS-C). Mosaic maps, based on surface estimation using kriging, display concentration and deposition spatial patterns of pH, hydrogen, sulfate, nitrate, ammonium, and calcium ion species for 1987 annual, winter, and summer periods. The temporal pattern analyses use a subset of 39 sites over a 9-year (1979--1987) period and an expanded subset of 140 sites with greater spatial coverage over a 6-year (1982--1987) period. 68 refs., 15 figs., 15 tabs.

  18. A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ model v4.7 wet deposition estimates for 2002–2006

    Directory of Open Access Journals (Sweden)

    K. W. Appel

    2011-05-01

    Full Text Available This paper examines the operational performance of the Community Multiscale Air Quality (CMAQ model simulations for 2002–2006 using both 36-km and 12-km horizontal grid spacing, with a primary focus on the performance of the CMAQ model in predicting wet deposition of sulfate (SO4=, ammonium (NH4+ and nitrate (NO3. Performance of the wet deposition estimates from the model is determined by comparing CMAQ predicted concentrations to concentrations measured by the National Acid Deposition Program (NADP, specifically the National Trends Network (NTN. For SO4= wet deposition, the CMAQ model estimates were generally comparable between the 36-km and 12-km simulations for the eastern US, with the 12-km simulation giving slightly higher estimates of SO4= wet deposition than the 36-km simulation on average. The result is a slightly larger normalized mean bias (NMB for the 12-km simulation; however both simulations had annual biases that were less than ±15 % for each of the five years. The model estimated SO4= wet deposition values improved when they were adjusted to account for biases in the model estimated precipitation. The CMAQ model underestimates NH4+ wet deposition over the eastern US, with a slightly larger underestimation in the 36-km simulation. The largest underestimations occur in the winter and spring periods, while the summer and fall have slightly smaller underestimations of NH4+ wet deposition. The underestimation in NH4+ wet deposition is likely due in part to the poor temporal and spatial representation of ammonia (NH3 emissions, particularly those emissions associated with fertilizer applications and NH3 bi-directional exchange. The model performance for estimates of NO3 wet deposition are

  19. Impact of climate change on mercury concentrations and deposition in the eastern United States.

    Science.gov (United States)

    Megaritis, Athanasios G; Murphy, Benjamin N; Racherla, Pavan N; Adams, Peter J; Pandis, Spyros N

    2014-07-15

    The global-regional climate-air pollution modeling system (GRE-CAPS) was applied over the eastern United States to study the impact of climate change on the concentration and deposition of atmospheric mercury. Summer and winter periods (300 days for each) were simulated, and the present-day model predictions (2000s) were compared to the future ones (2050s) assuming constant emissions. Climate change affects Hg(2+) concentrations in both periods. On average, atmospheric Hg(2+) levels are predicted to increase in the future by 3% in summer and 5% in winter respectively due to enhanced oxidation of Hg(0) under higher temperatures. The predicted concentration change of Hg(2+) was found to vary significantly in space due to regional-scale changes in precipitation, ranging from -30% to 30% during summer and -20% to 40% during winter. Particulate mercury, Hg(p) has a similar spatial response to climate change as Hg(2+), while Hg(0) levels are not predicted to change significantly. In both periods, the response of mercury deposition to climate change varies spatially with an average predicted increase of 6% during summer and 4% during winter. During summer, deposition increases are predicted mostly in the western parts of the domain while mercury deposition is predicted to decrease in the Northeast and also in many areas in the Midwest and Southeast. During winter mercury deposition is predicted to change from -30% to 50% mainly due to the changes in rainfall and the corresponding changes in wet deposition. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Photocatalytic oxidation removal of Hg"0 using ternary Ag/AgI-Ag_2CO_3 hybrids in wet scrubbing process under fluorescent light

    International Nuclear Information System (INIS)

    Zhang, Anchao; Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao; Xiang, Jun

    2017-01-01

    Highlights: • Ag/AgI-Ag_2CO_3 hybrids were employed for Hg"0 removal under fluorescent light. • Superoxide radical (·O_2"−) played a key role in Hg"0 removal. • NO exhibited a significant effect on Hg"0 removal in comparison to SO_2. • The mechanism for enhanced Hg"0 removal over Ag/AgI-Ag_2CO_3 was proposed. - Abstract: A series of ternary Ag/AgI-Ag_2CO_3 photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg"0 removal in a wet scrubbing reactor. The hybrids were characterized by N_2 adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg"0 removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg"0 removal. NO exhibited significant effect on Hg"0 removal in comparison to SO_2. Among these ternary Ag/AgI-Ag_2CO_3 hybrids, Ag/AgI(0.1)-Ag_2CO_3 showed the highest Hg"0 removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag_2CO_3 and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag"0 NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O_2"−) may play a key role in Hg"0 removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg"0 removal over Ag/AgI(0.1)-Ag_2CO_3 hybrid under fluorescent light was proposed.

  1. Comparison of snowpack and winter wet-deposition chemistry in the Rocky Mountains, USA: implications for winter dry deposition

    Science.gov (United States)

    Clow, David W.; Ingersoll, George P.; Mast, M. Alisa; Turk, John T.; Campbell, Donald H.

    Depth-integrated snowpack chemistry was measured just prior to maximum snowpack depth during the winters of 1992-1999 at 12 sites co-located with National Atmospheric Deposition Program/National Trend Network (NADP/NTN) sites in the central and southern Rocky Mountains, USA. Winter volume-weighted mean wet-deposition concentrations were calculated for the NADP/NTN sites, and the data were compared to snowpack concentrations using the paired t-test and the Wilcoxon signed-rank test. No statistically significant differences were indicated in concentrations of SO 42- or NO 3- ( p>0.1). Small, but statistically significant differences ( p⩽0.03) were indicated for all other solutes analyzed. Differences were largest for Ca 2+ concentrations, which on average were 2.3 μeq l -1 (43%) higher in the snowpack than in winter NADP/NTN samples. Eolian carbonate dust appeared to influence snowpack chemistry through both wet and dry deposition, and the effect increased from north to south. Dry deposition of eolian carbonates was estimated to have neutralized an average of 6.9 μeq l -1 and a maximum of 12 μeq l -1 of snowpack acidity at the southernmost sites. The good agreement between snowpack and winter NADP/NTN SO 42- and NO 3- concentrations indicates that for those solutes the two data sets can be combined to increase data density in high-elevation areas, where few NADP/NTN sites exist. This combination of data sets will allow for better estimates of atmospheric deposition of SO 42- and NO 3- across the Rocky Mountain region.

  2. Observations of atmospheric Hg species and depositions in remote areas of China

    Directory of Open Access Journals (Sweden)

    Feng X.

    2013-04-01

    Full Text Available From September 2007, we conducted continuous measurements of speciated atmospheric mercury (Hg and atmospheric mercury depositions at five remote sites in China. Four of these sites were involved in the Global Mercury Observation System (GMOS as ground-based stations. These stations were located in the northwest, southwest, northeast, and east part of China, respectively, which represent the regional atmospheric Hg budgets in different areas of China. The preliminary results showed that mean TGM concentrations were in the range of 1.60 – 2.88 ng m-3, with relatively higher levels observed at sites in Eastern China and Southwestern China and lower levels at sites in Northeastern and Northwestern China. TGM concentrations at remote sites of China were also higher than those reported from background sites in North America and Europe, and this is corresponding very well with the Chinese great anthropogenic Hg emissions. Gaseous oxidized mercury (GOM and particulate bounded mercury (PBM were in the ranges of 3.2 – 7.4 pg m−3 and 19.4 – 43.5 pg m-3, respectively. The preliminary result on precipitation showed mean precipitation THg concentrations were in the range of 2.7 – 18.0 ng L-1.

  3. Influence of radioactive contamination to agricultural products due to dry and wet deposition processes during a nuclear emergency

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Han, Moon Hee; Choi, Yong Ho; Lee, Chang Woo

    2002-01-01

    Combined with deposition model onto the ground of radionuclides, the influence of radioactive contamination to agricultural products was analyzed due to wet deposition as well as dry deposition from radioactive air concentration during a nuclear emergency. The previous dynamic food chain model, in which initial input parameter is only radionuclide concentrations on the ground, was improved for the evaluating of radioactive contamination to agricultural products from either radionuclide concentrations in air or radionuclide concentrations on the ground. As the results, in case of deposition onto the ground, wet deposition was more dominant process than dry deposition. While the contamination levels of agricultural products were dependent on the a variety of factors such as radionuclides and rainfall rate. It means that the contamination levels of agricultural products are determined from which is more dominant process between deposition on the ground and interception onto agricultural plants

  4. Wet and Dry Atmospheric Mercury Deposition Accumulates in Watersheds of the Northeastern United States

    Science.gov (United States)

    Boyer, E. W.; Grant, C.; Grimm, J.; Drohan, P. J.; Bennett, J.; Lawler, D.

    2013-12-01

    Mercury emissions to the atmosphere from coal-fired power plants and other sources such as waste incineration can be deposited to landscapes in precipitation and in dry fallout. Some mercury reaches watersheds and streams, where it can accumulate in sediments and biota. Human exposure to mercury occurs primarily through fish consumption, and currently mercury fish eating advisories are in place for many of the streams and lakes in the state. Here, we explored mercury in air, soils, water, and biota. To quantify atmospheric mercury deposition, we measured both wet and dry mercury deposition at over 10 locations in Pennsylvania, from which we present variation in mercury deposition and initial assessments of factors affecting the patterns. Further, we simulated mercury deposition at unmonitored locations in Pennsylvania and the northeastern United States over space and time with a high-resolution modeling technique that reflects storm tracks and air flow patterns. To consider mercury accumulation in watersheds, we collected data on soil mercury concentrations in a set of soil samples, and collected baseline data on mercury in streams draining 35 forested watersheds across Pennsylvania, spanning gradients of atmospheric deposition, climate and geology. Mercury concentrations were measured in stream water under base-flow conditions, in streambed sediments, aquatic mosses, and in fish tissues from brook trout. Results indicate that wet and dry atmospheric deposition is a primary source of mercury that is accumulating in watersheds of Pennsylvania and the northeastern United States.

  5. Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China

    International Nuclear Information System (INIS)

    Fu Xuewu; Feng Xinbin; Zhu Wanze; Rothenberg, S.; Yao Heng; Zhang Hui

    2010-01-01

    Mt. Gongga area in southwest China was impacted by Hg emissions from industrial activities and coal combustion, and annual means of atmospheric TGM and PHg concentrations at a regional background station were 3.98 ng m -3 and 30.7 pg m -3 , respectively. This work presents a mass balance study of Hg in an upland forest in this area. Atmospheric deposition was highly elevated in the study area, with the annual mean THg deposition flux of 92.5 μg m -2 yr -1 . Total deposition was dominated by dry deposition (71.8%), and wet deposition accounted for the remaining 28.2%. Forest was a large pool of atmospheric Hg, and nearly 76% of the atmospheric input was stored in forest soil. Volatilization and stream outflow were identified as the two major pathways for THg losses from the forest, which yielded mean output fluxes of 14.0 and 8.6 μg m -2 yr -1 , respectively. - Upland forest ecosystem is a great sink of atmospheric mercury in southwest China.

  6. Solid state de-wetting observed for vapor deposited copper films on carbon substrates

    International Nuclear Information System (INIS)

    Schrank, C.; Eisenmenger-Sittner, C.; Neubauer, E.; Bangert, H.; Bergauer, A.

    2004-01-01

    Copper-Carbon composites are a good example for novel materials consisting of components with extremely different physical and chemical properties. They have a high potential for an application as heat sinks for electronic components, but the joining of the two materials is a difficult task. To obtain reasonable mechanical and thermal contact between copper and carbon the following route was chosen. First glassy-carbon substrates were subjected to an RF-Nitrogen plasma treatment. Then 300 nm thick copper coatings were sputter-deposited on the plasma treated surface within the same vacuum chamber. Finally, the samples were removed from the deposition chamber and either investigated immediately or thermally annealed at 850 deg. C under high vacuum conditions (10 -4 Pa). While non-annealed copper-coatings were continuous and showed excellent adhesion values of approximately 700 N/cm 2 , the heat treated samples lose their continuity by a de-wetting process. At the beginning holes are formed, then a labyrinth-like morphology develops and finally the coating consists of isolated droplets. All these processes occur well below the melting temperature of copper and were observed by AFM and SEM. The mechanism of this solid-state de-wetting process is investigated in relation to the recent literature on de-wetting and its consequences on the manufacturing of copper-carbon composites are discussed

  7. Wet and dry deposition and resuspension of AFCT/TFCT fuel processing radionuclides. Final report

    International Nuclear Information System (INIS)

    Slinn, W.G.N.; Katen, P.C.; Wolf, M.A.; Loveland, W.D.; Radke, L.F.; Miller, E.L.; Ghannam, L.J.; Reynolds, B.W.; Vickers, D.

    1979-09-01

    After short summary and introductory chapters, Chapter IV contains a critical analysis of available parameterizations for resuspension and for wet and dry removal processes and recommends interim parameterizations for use in radiation dose calculations. Chapter V describes methods and experimental results from field studies of in-cloud vs below-cloud scavenging, precipitation efficiency, and modifications of aerosols by clouds. In Chapter VI are contained descriptions of methods and results from four different approaches to the problem of measuring the dry deposition velocities of submicron aerosol particles depositing on vegetation. Chapter VII describes experimental results from a study of resuspension and weathering of tracer aerosol particles deposited on soil, grass and gravel; typical resuspension rates were found to be of the order of 10 -8 s -1 and it is recommended that the concept of weathering be reassessed. In Chapter VIII, National Weather Service data are used to obtain Lagrangian statistics for use in a regional-scale study of wet and dry removal. Chapter IX develops new concepts in reservoir models for application at regional to global scales. In the final chapter are some comments about the results found in this study and recommendations for future research

  8. Does seasonal snowpacks enhance or decrease mercury contamination of high elevation ecosystems?

    Science.gov (United States)

    Pierce, A.; Fain, X.; Obrist, D.; Helmig, D.; Barth, C.; Jacques, H.; Chowanski, K.; Boyle, D.; William, M.

    2009-12-01

    Mercury (Hg) is an extremely toxic pollutant globally dispersed in the environment. Natural and anthropogenic sources emit Hg to the atmosphere, either as gaseous elemental mercury (GEM; Hg0) or as divalent mercury species. Due to the long lifetime of GEM mercury contamination is not limited to industrialized sites, but also a concern in remote areas such as high elevation mountain environments. During winter and spring 2009, we investigated the fate of atmospheric mercury deposited to mountain ecosystems in the Sierra Nevada (Sagehen station, California, USA) and the Rocky Mountains (Niwot Ridge station, Colorado, USA). At Sagehen, we monitored mercury in snow (surface snow sampling and snow pits), wet deposition, and stream water during the snow-dominated season. Comparison of Hg stream discharge to snow Hg wet deposition showed that only a small fraction of Hg wet deposition reached stream in the melt water. Furthermore, Hg concentration in soil transects (25 different locations) showed no correlations to wet deposition Hg loads due to pronounced altitudinal precipitation gradient suggesting that Hg deposited to the snowpack was not transferred to ecosystems. At Niwot Ridge, further characterization of the chemical transformation involving mercury species within snowpacks was achieved by 3-months of continuous monitoring of GEM and ozone concentrations in the snow air at eight depths from the soil-snow interface to the top of the up to 2 meter deep snowpack. Divalent mercury concentrations were monitored as well (surface snow sampling and snow pits). GEM levels in snow air exhibited strong diurnal pattern indicative of both oxidation and reduction processes. Low levels of divalent mercury concentrations in snow pack suggest that large fractions of Hg originally deposited as wet deposition was reemitted back to the atmosphere after reduction. Hence, these results suggest that the presence of a seasonal snowpack may decrease effective wet deposition of mercury and

  9. 3D Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2010-01-01

    concrete channel with width of 0.8m and a water depth of approximately 0.8m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With a fairly good agreement with measurements, modelling of hydrodynamics, transport of dissolved...... pollutants and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  10. Year-round atmospheric wet and dry deposition of nitrogen and phosphorus on water and land surfaces in Nanjing, China.

    Science.gov (United States)

    Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin

    2013-06-01

    The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.

  11. Standard test method for determining atmospheric chloride deposition rate by wet candle method

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This test method covers a wet candle device and its use in measuring atmospheric chloride deposition (amount of chloride salts deposited from the atmosphere on a given area per unit time). 1.2 Data on atmospheric chloride deposition can be useful in classifying the corrosivity of a specific area, such as an atmospheric test site. Caution must be exercised, however, to take into consideration the season because airborne chlorides vary widely between seasons. 1.3 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. Sensitivity study of the wet deposition schemes in the modelling of the Fukushima accident.

    Science.gov (United States)

    Quérel, Arnaud; Quélo, Denis; Roustan, Yelva; Mathieu, Anne; Kajino, Mizuo; Sekiyama, Thomas; Adachi, Kouji; Didier, Damien; Igarashi, Yasuhito

    2016-04-01

    The Fukushima-Daiichi release of radioactivity is a relevant event to study the atmospheric dispersion modelling of radionuclides. Actually, the atmospheric deposition onto the ground may be studied through the map of measured Cs-137 established consecutively to the accident. The limits of detection were low enough to make the measurements possible as far as 250km from the nuclear power plant. This large scale deposition has been modelled with the Eulerian model ldX. However, several weeks of emissions in multiple weather conditions make it a real challenge. Besides, these measurements are accumulated deposition of Cs-137 over the whole period and do not inform of deposition mechanisms involved: in-cloud, below-cloud, dry deposition. A comprehensive sensitivity analysis is performed in order to understand wet deposition mechanisms. It has been shown in a previous study (Quérel et al, 2016) that the choice of the wet deposition scheme has a strong impact on the assessment of the deposition patterns. Nevertheless, a "best" scheme could not be highlighted as it depends on the selected criteria: the ranking differs according to the statistical indicators considered (correlation, figure of merit in space and factor 2). A possibility to explain the difficulty to discriminate between several schemes was the uncertainties in the modelling, resulting from the meteorological data for instance. Since the move of the plume is not properly modelled, the deposition processes are applied with an inaccurate activity in the air. In the framework of the SAKURA project, an MRI-IRSN collaboration, new meteorological fields at higher resolution (Sekiyama et al., 2013) were provided and allows to reconsider the previous study. An updated study including these new meteorology data is presented. In addition, a focus on several releases causing deposition in located areas during known period was done. This helps to better understand the mechanisms of deposition involved following the

  13. Continuous wet-only and dry-only deposition measurements of 137Cs and 7Be: an indicator of their origin

    International Nuclear Information System (INIS)

    Rosner, G.; Hoetzl, H.; Winkler, R.

    1996-01-01

    Series of monthly values of 137 Cs and 7 Be wet and dry deposition were measured with a wet-only and a dry-only collector each having an area of 2.25 m 2 . The results are presented for the period from November 1991 to May 1995. The behaviour of resuspended, Chernobyl-derived radiocesium is shown to be significantly different from that of cosmogenic 7 Be and from that of global fallout 137 Cs from nuclear weapons testing. The dry-to-total ratio of 0.65, the dry deposition velocity of 1.5 cm s -1 , the close correlation to the total amount of solids collected and the absence of a correlation between activity deposition and amount of rainfall point to a strong similarity in the deposition behaviour of present radiocesium and that of stable elements of terrestrial origin. (author)

  14. Mercury (Hg) speciation in coral reef systems of remote Oceania: Implications for the artisanal fisheries of Tutuila, Samoa Islands.

    Science.gov (United States)

    Morrison, R John; Peshut, Peter J; West, Ronald J; Lasorsa, Brenda K

    2015-07-15

    We investigated Hg in muscle tissue of fish species from three trophic levels on fringing reefs of Tutuila (14°S, 171°W), plus water, sediment and turf alga. Accumulation of total Hg in the herbivore Acanthurus lineatus (Acanthuridae, lined surgeonfish, (n=40)) was negligible at 1.05 (±0.04) ng g(-1) wet-weight, (∼65% occurring as methyl Hg). The mid-level carnivore Parupeneus spp. (Mullidae, goatfishes (n=10)) had total Hg 29.8 (±4.5) ng g(-1) wet-weight (∼99% as methyl Hg). Neither A. lineatus or Parupeneus spp. showed a propensity to accumulate Hg based on body size. Both groups were assigned a status of "un-restricted" for monthly consumption limits for non-carcinogenic health endpoints for methyl Hg. The top-level carnivore Sphyraena qenie (Sphyraenidae, blackfin barracuda, n=3) had muscle tissue residues of 105, 650 and 741 ng g(-1) wet-weight (100% methyl Hg, with increasing concentration with body mass, suggesting that S. qenie >15 kg would have a recommendation of "no consumption". Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Chemical Bath Deposition of PbS:Hg2+ Nanocrystalline Thin Films

    Directory of Open Access Journals (Sweden)

    R. Palomino-Merino

    2013-01-01

    Full Text Available Nanocrystalline PbS thin films were prepared by Chemical Bath Deposition (CBD at 40 ± 2°C onto glass substrates and their structural and optical properties modified by in-situ doping with Hg. The morphological changes of the layers were analyzed using SEM and the X-rays spectra showing growth on the zinc blende (ZB face. The grain size determined by using X-rays spectra for undoped samples was found to be ~36 nm, whereas with the doped sample was 32–20 nm. Optical absorption spectra were used to calculate the Eg, showing a shift in the range 1.4–2.4 eV. Raman spectroscopy exhibited an absorption band ~135 cm−1 displaying only a PbS ZB structure.

  16. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  17. 3D Numerical Modelling of Transport, Deposition and Resuspension of Highway Deposited Sediments in Wet Detention Ponds

    DEFF Research Database (Denmark)

    Bentzen, Thomas Ruby

    2009-01-01

    concrete channel with width of 0.8 m and a water depth of approximately 0.8 m and in circular flume experiments in order to reproduce near-bed specific processes such as resuspension and consolidation. With good agreement with measurements, modelling of hydrodynamics, transport of dissolved pollutants...... and particles in wet detention ponds is possible with application of a three dimensional RANS model and the advection/dispersion equation taken physical phenomena like wind, waves, deposition, erosion and consolidation of the bottom sediment into account....

  18. Atmospheric dry and wet deposition of sulphur and nitrogen species and assessment of critical loads of acidic deposition exceedance in South Africa

    Directory of Open Access Journals (Sweden)

    Stuart J. Piketh

    2011-03-01

    Full Text Available We tested the hypothesis that acidic atmospheric pollution deposition, originating from the South African central industrial area, poses an environmental threat across a larger region within the dispersal footprint. A network of 37 passive monitoring sites to measure SO2 and NO2 was operated from August 2005 to September 2007. The area extended over the entire northern and eastern interior of South Africa. Monitoring locations were chosen to avoid direct impacts from local sources such as towns, mines and highways. Dry deposition rates of SO2 and NO2 were calculated from the measured concentrations. Concentrations of sulphur and nitrogen species in wet deposition from a previous study were used in conjunction with measured rainfall for the years 2006 and 2007 to estimate the wet deposition over the region. The calculated total (non-organic acidic deposition formed the basis for an assessment of exceedance of critical loads based on sensitivity of the regional soils. Regional soil sensitivity was determined by combining two major soil attributes available in the World Inventory of Soil Emission Potentials (International Soil Reference and Information Centre. Results indicate that certain parts of the central pollution source area on the South African Highveld have the potential for critical load exceedance, while limited areas downwind show lower levels of exceedance. Areas upwind and remote areas up and downwind, including forested areas of the Drakensberg escarpment, do not show any exceedance of the critical loads.

  19. Photocatalytic oxidation removal of Hg{sup 0} using ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids in wet scrubbing process under fluorescent light

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Anchao, E-mail: aczhang@qq.com [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Zhang, Lixiang; Chen, Xiaozhuan; Zhu, Qifeng; Liu, Zhichao [School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Xiang, Jun, E-mail: xiangjun@mail.hust.edu.cn [State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074 (China)

    2017-01-15

    Highlights: • Ag/AgI-Ag{sub 2}CO{sub 3} hybrids were employed for Hg{sup 0} removal under fluorescent light. • Superoxide radical (·O{sub 2}{sup −}) played a key role in Hg{sup 0} removal. • NO exhibited a significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. • The mechanism for enhanced Hg{sup 0} removal over Ag/AgI-Ag{sub 2}CO{sub 3} was proposed. - Abstract: A series of ternary Ag/AgI-Ag{sub 2}CO{sub 3} photocatalysts synthesized using a facile coprecipitation method were employed to investigate their performances of Hg{sup 0} removal in a wet scrubbing reactor. The hybrids were characterized by N{sub 2} adsorption-desorption, XRD, SEM-EDS, HRTEM, XPS, DRS and ESR. The photocatalytic activities of Hg{sup 0} removal were evaluated under fluorescent light. The results showed that AgI content, fluorescent light irradiation, reaction temperature all showed significant influences on Hg{sup 0} removal. NO exhibited significant effect on Hg{sup 0} removal in comparison to SO{sub 2}. Among these ternary Ag/AgI-Ag{sub 2}CO{sub 3} hybrids, Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} showed the highest Hg{sup 0} removal efficiency, which could be ascribed to the effective separation of photogenerated electron-hole pairs between AgI and Ag{sub 2}CO{sub 3} and the surface plasmon resonance (SPR) effect in the visible region by metallic silver nanoparticles (Ag{sup 0} NPs). The trapping studies of reactive radicals showed that the superoxide radicals (·O{sub 2}{sup −}) may play a key role in Hg{sup 0} removal under fluorescent light. According to the experimental and characterization results, a possible photocatalytic oxidation mechanism for enhanced Hg{sup 0} removal over Ag/AgI(0.1)-Ag{sub 2}CO{sub 3} hybrid under fluorescent light was proposed.

  20. Local emission of primary air pollutants and its contribution to wet deposition and concentrations of aerosols and gases in ambient air in Japan

    Science.gov (United States)

    Aikawa, Masahide; Hiraki, Takatoshi; Tomoyose, Nobutaka; Ohizumi, Tsuyoshi; Noguchi, Izumi; Murano, Kentaro; Mukai, Hitoshi

    2013-11-01

    We studied wet deposition by precipitation and the concentrations of aerosols and gases in ambient air in relation to the primary air pollutants discharged from domestic areas. The concentrations of aerosols and gases were influenced by nearby emissions except for non-sea-salt SO, which is transported long distances. The area facing the Sea of Japan showed much larger wet deposition than other areas, although the domestic emissions of the primary air pollutants there were small and showed a peak in wet deposition from October to March, as distinct from April to September in other areas. We performed the correlation analyses between wet deposition of each component and the product of the concentrations of corresponding aerosols and gases in ambient air and the two-thirds power of the precipitation. From the results, following scavenging processes were suggested. • Sulfate and ammonium were scavenged in precipitation as particulate matter such as (NH4)2SO4 and NH4HSO4. • Nitrate was scavenged mainly in precipitation through gaseous HNO3. • Ammonium was complementarily scavenged in precipitation through aerosols such as (NH4)2SO4 and NH4HSO4 and through gaseous NH3.

  1. Long-term atmospheric wet deposition of dissolved organic nitrogen in a typical red-soil agro-ecosystem, Southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Peng, Ying; He, Yuan Q; Yang, Hao; Xu, Liang J; Chan, Andy

    2014-05-01

    Dissolved organic nitrogen (DON) from atmospheric deposition has been a growing concern in the world and atmospheric nitrogen (N) deposition is increasing quickly in China especially Southeastern China. In our study, DON wet deposition was estimated by collecting and analyzing rainwater samples continuously over eight years (2005-2012) in a typical red-soil farmland ecosystem, Southeast China. Results showed that the volume-weighted-average DON concentration varied from 0.2 to 3.3 mg N L(-1) with an average of 1.2 mg N L(-1). DON flux ranged from 5.7 to 71.6 kg N ha(-1) year(-1) and averaged 19.7 kg N ha(-1) year(-1) which accounted for 34.6% of the total dissolved nitrogen (TDN) in wet deposition during the eight-year period. Analysis of DON concentration and flux, contribution of DON to TDN, rainfall, rain frequency, air temperature and wind frequency and the application of pig manure revealed possible pollution sources. Significant positive linear relation of annual DON flux and usage of pig manure (Pcycle in the red-soil agro-ecosystem in the future.

  2. The effect of dry and wet deposition of condensable vapors on secondary organic aerosols concentrations over the continental US

    Directory of Open Access Journals (Sweden)

    C. Knote

    2015-01-01

    Full Text Available The effect of dry and wet deposition of semi-volatile organic compounds (SVOCs in the gas phase on the concentrations of secondary organic aerosol (SOA is reassessed using recently derived water solubility information. The water solubility of SVOCs was implemented as a function of their volatility distribution within the WRF-Chem regional chemistry transport model, and simulations were carried out over the continental United States for the year 2010. Results show that including dry and wet removal of gas-phase SVOCs reduces annual average surface concentrations of anthropogenic and biogenic SOA by 48 and 63% respectively over the continental US. Dry deposition of gas-phase SVOCs is found to be more effective than wet deposition in reducing SOA concentrations (−40 vs. −8% for anthropogenics, and −52 vs. −11% for biogenics. Reductions for biogenic SOA are found to be higher due to the higher water solubility of biogenic SVOCs. The majority of the total mass of SVOC + SOA is actually deposited via the gas phase (61% for anthropogenics and 76% for biogenics. Results are sensitive to assumptions made in the dry deposition scheme, but gas-phase deposition of SVOCs remains crucial even under conservative estimates. Considering reactivity of gas-phase SVOCs in the dry deposition scheme was found to be negligible. Further sensitivity studies where we reduce the volatility of organic matter show that consideration of gas-phase SVOC removal still reduces average SOA concentrations by 31% on average. We consider this a lower bound for the effect of gas-phase SVOC removal on SOA concentrations. A saturation effect is observed for Henry's law constants above 108 M atm−1, suggesting an upper bound of reductions in surface level SOA concentrations by 60% through removal of gas-phase SVOCs. Other models that do not consider dry and wet removal of gas-phase SVOCs would hence overestimate SOA concentrations by roughly 50%. Assumptions about the water

  3. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part I. Base case model results.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Hu, Jianlin; Zhang, Shuai; Li, Jingyi; Kota, Sri Harsha; Wu, Li; Gao, Huilin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. The model performance is evaluated in this paper and the source contribution analyses are presented in a companion paper. The results show that WRF is capable of reproducing the observed precipitation rates with a Mean Normalized Gross Error (MNGE) of 8.1%. Predicted wet deposition fluxes of SO4(2-) and NO3(-) at the Long Lake (LL) site (3100 m a.s.l.) during the three-month episode are 2.75 and 0.34 kg S(N) ha(-1), which agree well with the observed wet deposition fluxes of 2.42 and 0.39 kg S(N) ha(-1), respectively. Temporal variations in the weekly deposition fluxes at LL are also well predicted. Wet deposition flux of NH4(+) at LL is over-predicted by approximately a factor of 3 (1.60 kg N ha(-1)vs. 0.56 kg N ha(-1)), likely due to missing alkaline earth cations such as Ca(2+) in the current CMAQ simulations. Predicted wet deposition fluxes are also in general agreement with observations at four Acid Deposition Monitoring Network in East Asia (EANET) sites in western China. Predicted dry deposition fluxes of SO4(2-) (including gas deposition of SO2) and NO3(-) (including gas deposition of HNO3) are 0.12 and 0.12 kg S(N) h a(-1) at LL and 0.07 and 0.08 kg S(N) ha(-1) at Jiuzhaigou Bureau (JB) in JNNR, respectively, which are much lower than the corresponding wet deposition fluxes. Dry deposition flux of NH4(+) (including gas deposition of NH3) is 0.21 kg N ha(-1) at LL, and is also much lower than the predicted wet deposition flux. For both dry and wet deposition fluxes, predictions

  4. Continental-scale assessment of long-term trends in wet deposition trajectories: Role of anthropogenic and hydro-climatic drivers

    Science.gov (United States)

    Park, J.; Gall, H. E.; Niyogi, D.; Rao, S.

    2012-12-01

    The global trend of increased urbanization, and associated increased intensity of energy and material consumption and waste emissions, has contributed to shifts in the trajectories of aquatic, terrestrial, and atmospheric environments. Here, we focus on continental-scale spatiotemporal patterns in two atmospheric constituents (nitrate and sulfate), whose global biogeochemical cycles have been dramatically altered by emissions from mobile and fixed sources in urbanized and industrialized regions. The observed patterns in wet deposition fluxes of nitrate and sulfate are controlled by (1) natural hydro-climatic forcing, and (2) anthropogenic forcing (emissions and regulatory control), both of which are characterized by stochasticity and non-stationarity. We examine long-term wet deposition records in the U.S., Europe, and East Asia to evaluate how anthropogenic and natural forcing factors jointly contributed to the shifting temporal patterns of wet deposition fluxes at continental scales. These data offer clear evidence for successful implementation of regulatory controls and widespread adoption of technologies contributed to improving water quality and mitigation of adverse ecological impacts. We developed a stochastic model to project the future trajectories of wet deposition fluxes in emerging countries with fast growing urban areas. The model generates ellipses within which projected wet deposition flux trajectories are inscribed, similar to the trends in observational data. The shape of the ellipses provides information regarding the relative dominance of anthropogenic (e.g., industrial and urban emissions) versus hydro-climatic drivers (e.g., rainfall patterns, aridity index). Our analysis facilitates projections of the trajectory shift as a result of urbanization and other land-use changes, climate change, and regulatory enforcement. We use these observed data and the model to project likely trajectories for rapidly developing countries (BRIC), with a

  5. Determination of MeHg sources to fish in the St. Louis River, MN, USA, using Hg stable isotopes

    Science.gov (United States)

    Mercury contamination in the Great Lakes region has become a prevalent concern due to elevated methylmercury (MeHg) levels in fish. While atmospheric deposition of Hg is ubiquitous, releases from legacy point-sources give rise to numerous Areas of Concern (AOCs) across the Great ...

  6. Mercury removal in utility wet scrubber using a chelating agent

    Science.gov (United States)

    Amrhein, Gerald T.

    2001-01-01

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  7. Identification of atmospheric mercury sources and transport pathways on local and regional sales

    Science.gov (United States)

    Gratz, Lynne E.

    Mercury (Hg) is a hazardous air pollutant and bioaccumulative neurotoxin whose intricate atmospheric chemistry complicates our ability to define Hg source-receptor relationships on all scales. Our detailed measurements of Hg in its different forms together with atmospheric tracers have improved our understanding of Hg chemistry and transport. Daily-event precipitation samples collected from 1995 to 2006 in Underhill, VT were examined to identify Hg wet deposition trends and source influences. Analysis revealed that annual Hg deposition at this fairly remote location did not vary significantly over the 12-year period. While a decreasing trend in volume-weighted mean Hg concentration was observed, Hg wet deposition did not decline as transport of emissions from the Midwest and along the Atlantic Coast consistently contributed to the largest observed Hg wet deposition events. Receptor modeling of Hg and trace elements in precipitation indicated that ---60% of Hg wet deposition at Underhill could be attributed to emissions from coal-fired utility boilers (CFUBs), and their contribution to Hg wet deposition did not change significantly over time. Hybrid-receptor modeling further defined these CFUBs to be located predominantly in the Midwestern U.S. Atmospheric Hg chemistry and transport from the Chicago urban/industrial area was the focus of speciated Hg measurements performed in the southern Lake Michigan basin during summer 2007. Transport from Chicago, IL to Holland, MI occurred during 27% of the study period, resulting in a five-fold increase in divalent reactive gaseous Hg (RGM) at the downwind Holland site. Dispersion modeling of case study periods demonstrated that under southwesterly flow approximately half of the RGM in Holland could be attributed to primary RGM emissions from Chicago after transport and dispersion, with the remainder due to Hg0 oxidation in the atmosphere en route. Precipitation and ambient vapor phase samples were also collected in Chicago

  8. Passivation Effect of Atomic Layer Deposition of Al2O3 Film on HgCdTe Infrared Detectors

    Science.gov (United States)

    Zhang, Peng; Ye, Zhen-Hua; Sun, Chang-Hong; Chen, Yi-Yu; Zhang, Tian-Ning; Chen, Xin; Lin, Chun; Ding, Ring-Jun; He, Li

    2016-09-01

    The passivation effect of atomic layer deposition of (ALD) Al2O3 film on a HgCdTe infrared detector was investigated in this work. The passivation effect of Al2O3 film was evaluated by measuring the minority carrier lifetime, capacitance versus voltage ( C- V) characteristics of metal-insulator-semiconductor devices, and resistance versus voltage ( R- V) characteristics of variable-area photodiodes. The minority carrier lifetime, C- V characteristics, and R- V characteristics of HgCdTe devices passivated by ALD Al2O3 film was comparable to those of HgCdTe devices passivated by e-beam evaporation of ZnS/CdTe film. However, the baking stability of devices passivated by Al2O3 film is inferior to that of devices passivated by ZnS/CdTe film. In future work, by optimizing the ALD Al2O3 film growing process and annealing conditions, it may be feasible to achieve both excellent electrical properties and good baking stability.

  9. Mobilization and distribution of lead originating from roof dust and wet deposition in a roof runoff system.

    Science.gov (United States)

    Yu, Jianghua; Yu, Haixia; Huang, Xiaogu

    2015-12-01

    In this research, the mobilization and distribution of lead originating in roof dust and wet deposition were investigated within a roof dust-rooftop-runoff system. The results indicated that lead from roof dust and wet deposition showed different transport dynamics in runoff system and that this process was significantly influenced by the rainfall intensity. Lead present in the roof dust could be easily washed off into the runoff, and nearly 60 % of the total lead content was present in particulate form. Most of the lead from the roof dust was transported during the late period of rainfall; however, the lead concentration was higher for several minutes at the rainfall beginning. Even though some of the lead from wet deposition, simulated with a standard isotope substance, was adsorbed onto adhered roof dust and/or retained on rooftop in runoff system, most of it (50-82 %) remained as dissolved lead in the runoff for rainfall events of varying intensity. Regarding the distribution of lead in the runoff system, the results indicated that it could be carried in the runoff in dissolved and particulate form, be adsorbed to adhered roof dust, or remain on the rooftop because of adsorption to the roof material. Lead from the different sources showed different distribution patterns that were also related to the rainfall intensity. Higher rainfall intensity resulted in a higher proportion of lead in the runoff and a lower proportion of lead remaining on the rooftop.

  10. Wet and dry atmospheric deposition on TiO2 coated glass

    International Nuclear Information System (INIS)

    Chabas, Anne; Gentaz, Lucile; Lombardo, Tiziana; Sinegre, Romain; Falcone, Roberto; Verita, Marco; Cachier, Helene

    2010-01-01

    To prevent the soiling of glass window used in the built environment, the use TiO 2 coated products appears an important application matter. To test the cleaning efficiency and the sustainability of self-cleaning glass, a field experiment was conducted under real life condition, on a site representative of the background urban pollution. Samples of float glass, used as reference, and commercialized TiO 2 coated glasses were exposed to dry and wet atmospheric deposition during two years. The crossed optical, chemical and microscopic evaluations performed, after withdrawal, allowed highlighting a sensible difference between the reference and the self-cleaning substrate in terms of accumulation, nature, abundance and geometry of the deposit. This experiment conducted in real site emphasized on the efficacy of self-cleaning glass to reduce the maintenance cost. - This paper evaluates the self-cleaning glass efficiency highlighting its ability to prevent soiling and to be used as a mean of remediation.

  11. Assessment of Global Mercury Deposition through Litterfall.

    Science.gov (United States)

    Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin

    2016-08-16

    There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.

  12. Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg(II) ions

    Energy Technology Data Exchange (ETDEWEB)

    Rameshkumar, Perumal; Manivannan, Shanmugam; Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Madurai Kamaraj University, Centre for Photoelectrochemistry, School of Chemistry (India)

    2013-05-15

    A facile synthetic method to decorate amine-functionalized silica spheres (SiO{sub 2}) by silver nanoparticles (Ag NPs) is reported. The transmission electron microscopic (TEM) images showed that spherical Ag NPs with an average particle size of 14 nm were deposited on 250 nm-sized SiO{sub 2} spheres (SiO{sub 2}/Ag NPs). The spectral and colorimetric detection of Hg(II) ions were carried out using the synthesized SiO{sub 2}/Ag NPs with an experimental detection limit of 5 {mu}M. It was found that the addition of Hg(II) ions (150 {mu}M) into the solution of SiO{sub 2}/Ag NPs completely quenched the SPR band of the Ag NPs due to the formation of anisotropic Ag amalgam crystals (AgHg). The selective detection of Hg(II) ions by SiO{sub 2}/Ag NPs in the presence of other environmentally relevant metal ions was also demonstrated using spectral and colorimetric methods.Graphical abstractAmine-functionalized silica spheres are decorated by in situ formation of silver nanoparticles and their spectral and colorimetric detection of Hg(II) ions is reported.

  13. Modeling dry and wet deposition of sulfate, nitrate, and ammonium ions in Jiuzhaigou National Nature Reserve, China using a source-oriented CMAQ model: Part II. Emission sector and source region contributions.

    Science.gov (United States)

    Qiao, Xue; Tang, Ya; Kota, Sri Harsha; Li, Jingyi; Wu, Li; Hu, Jianlin; Zhang, Hongliang; Ying, Qi

    2015-11-01

    A source-oriented Community Multiscale Air Quality (CMAQ) model driven by the meteorological fields generated by the Weather Research and Forecasting (WRF) model was used to study the dry and wet deposition of nitrate (NO3(-)), sulfate (SO4(2-)), and ammonium (NH4(+)) ions in the Jiuzhaigou National Nature Reserve (JNNR), China from June to August 2010 and to identify the contributions of different emission sectors and source regions that were responsible for the deposition fluxes. Contributions from power plants, industry, transportation, domestic, biogenic, windblown dust, open burning, fertilizer, and manure management sources to deposition fluxes in JNNR watershed and four EANET sites are determined. In JNNR, 96%, 82%, and 87% of the SO4(2-), NO3(-) and NH4(+) deposition fluxes are in the form of wet deposition of the corresponding aerosol species. Industry and power plants are the two major sources of SO4(2-) deposition flux, accounting for 86% of the total wet deposition of SO4(2-), and industry has a higher contribution (56%) than that of power plants (30%). Power plants and industry are also the top sources that are responsible for NO3(-) wet deposition, and contributions from power plants (30%) are generally higher than those from industries (21%). The major sources of NH4(+) wet deposition flux in JNNR are fertilizer (48%) and manure management (39%). Source-region apportionment confirms that SO2 and NOx emissions from local and two nearest counties do not have a significant impact on predicted wet deposition fluxes in JNNR, with contributions less than 10%. While local NH3 emissions account for a higher fraction of the NH4(+) deposition, approximately 70% of NH4(+) wet deposition in JNNR originated from other source regions. This study demonstrates that S and N deposition in JNNR is mostly from long-range transport rather than from local emissions, and to protect JNNR, regional emission reduction controls are needed. Copyright © 2015 Elsevier B.V. All

  14. Continuous wet-only and dry-only deposition measurements of {sup 137}Cs and {sup 7}Be: an indicator of their origin

    Energy Technology Data Exchange (ETDEWEB)

    Rosner, G.; Hoetzl, H.; Winkler, R. [GSF - Forschungszentrum fuer Umwelt und Gesundheit Neuherberg GmbH, Oberschleissheim (Germany). Inst. fuer Strahlenschutz

    1996-09-01

    Series of monthly values of {sup 137}Cs and {sup 7}Be wet and dry deposition were measured with a wet-only and a dry-only collector each having an area of 2.25 m{sup 2}. The results are presented for the period from November 1991 to May 1995. The behaviour of resuspended, Chernobyl-derived radiocesium is shown to be significantly different from that of cosmogenic {sup 7}Be and from that of global fallout {sup 137}Cs from nuclear weapons testing. The dry-to-total ratio of 0.65, the dry deposition velocity of 1.5 cm s{sup -1}, the close correlation to the total amount of solids collected and the absence of a correlation between activity deposition and amount of rainfall point to a strong similarity in the deposition behaviour of present radiocesium and that of stable elements of terrestrial origin. (author).

  15. Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades

    International Nuclear Information System (INIS)

    Zhu, Yingjia; Gu, Binhe; Irick, Daniel L.; Ewe, Sharon; Li, Yuncong; Ross, Michael S.; Ma, Lena Q.

    2014-01-01

    Tree islands are habitat for wading birds and a characteristic landscape feature in the Everglades. A total of 93 surface soil and 3 soil core samples were collected from 7 degraded/ghost and 34 live tree islands. The mean Hg concentration in surface soils of ghost tree islands was low and similar to marsh soil. For live tree islands, Hg concentrations in the surface head region were considerably greater than those in mid and tail region, and marsh soils. Hg concentrations in bird guano (286 μg kg −1 ) were significantly higher than those in mammal droppings (105 μg kg −1 ) and plant leaves (53 μg kg −1 ). In addition, Hg concentrations and δ 15 N values displayed positive correlation in soils influenced by guano. During 1998–2010, estimated annual Hg deposition by guano was 148 μg m −2 yr −1 and ∼8 times the atmospheric deposition. Highlights: • Hg concentrations in the head region of tree islands were the highest. • Hg concentrations in bird guano (286 μg kg −1 ) were significantly higher than those in mammal droppings and plant leaves. • Hg concentrations and δ 15 N values showed positive correlation in soils influenced by guano. • Estimated annual Hg deposition by guano was 148 μg m −2 yr −1 , ∼8 times the atmospheric deposition. -- The annual Hg deposition by bird guano to tree island soils in the Everglades was ∼8 times the atmospheric deposition

  16. Dependence of wet etch rate on deposition, annealing conditions and etchants for PECVD silicon nitride film

    International Nuclear Information System (INIS)

    Tang Longjuan; Zhu Yinfang; Yang Jinling; Li Yan; Zhou Wei; Xie Jing; Liu Yunfei; Yang Fuhua

    2009-01-01

    The influence of deposition, annealing conditions, and etchants on the wet etch rate of plasma enhanced chemical vapor deposition (PECVD) silicon nitride thin film is studied. The deposition source gas flow rate and annealing temperature were varied to decrease the etch rate of SiN x :H by HF solution. A low etch rate was achieved by increasing the SiH 4 gas flow rate or annealing temperature, or decreasing the NH 3 and N2 gas flow rate. Concentrated, buffered, and dilute hydrofluoric acid were utilized as etchants for SiO 2 and SiN x :H. A high etching selectivity of SiO 2 over SiN x :H was obtained using highly concentrated buffered HF.

  17. Modeling the global atmospheric transport and deposition of mercury to the Great Lakes

    Directory of Open Access Journals (Sweden)

    Mark D. Cohen

    2016-07-01

    Full Text Available Abstract Mercury contamination in the Great Lakes continues to have important public health and wildlife ecotoxicology impacts, and atmospheric deposition is a significant ongoing loading pathway. The objective of this study was to estimate the amount and source-attribution for atmospheric mercury deposition to each lake, information needed to prioritize amelioration efforts. A new global, Eulerian version of the HYSPLIT-Hg model was used to simulate the 2005 global atmospheric transport and deposition of mercury to the Great Lakes. In addition to the base case, 10 alternative model configurations were used to examine sensitivity to uncertainties in atmospheric mercury chemistry and surface exchange. A novel atmospheric lifetime analysis was used to characterize fate and transport processes within the model. Model-estimated wet deposition and atmospheric concentrations of gaseous elemental mercury (Hg(0 were generally within ∼10% of measurements in the Great Lakes region. The model overestimated non-Hg(0 concentrations by a factor of 2–3, similar to other modeling studies. Potential reasons for this disagreement include model inaccuracies, differences in atmospheric Hg fractions being compared, and the measurements being biased low. Lake Erie, downwind of significant local/regional emissions sources, was estimated by the model to be the most impacted by direct anthropogenic emissions (58% of the base case total deposition, while Lake Superior, with the fewest upwind local/regional sources, was the least impacted (27%. The U.S. was the largest national contributor, followed by China, contributing 25% and 6%, respectively, on average, for the Great Lakes. The contribution of U.S. direct anthropogenic emissions to total mercury deposition varied between 46% for the base case (with a range of 24–51% over all model configurations for Lake Erie and 11% (range 6–13% for Lake Superior. These results illustrate the importance of atmospheric

  18. Atmospheric mercury deposition to forests in the eastern USA

    International Nuclear Information System (INIS)

    Risch, Martin R.; DeWild, John F.; Gay, David A.; Zhang, Leiming; Boyer, Elizabeth W.; Krabbenhoft, David P.

    2017-01-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007–2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007–2009 than in 2012–2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  19. Precipitation chemistry and wet deposition in a remote wet savanna site in West Africa: Djougou (Benin)

    Science.gov (United States)

    Akpo, A. B.; Galy-Lacaux, C.; Laouali, D.; Delon, C.; Liousse, C.; Adon, M.; Gardrat, E.; Mariscal, A.; Darakpa, C.

    2015-08-01

    In the framework of the IDAF (IGAC/DEBITS/AFrica) international program, this study aims to study the chemical composition of precipitation and associated wet deposition at the rural site of Djougou in Benin, representative of a West and Central African wet savanna. Five hundred and thirty rainfall samples were collected at Djougou, Benin, from July 2005 to December 2009 to provide a unique database. The chemical composition of precipitation was analyzed for inorganic (Ca2+, Mg2+, Na+, NH4+, K+, NO3-, Cl-, SO42-) and organic (HCOO-, CH3COO-, C2H5COO-, C2O42-) ions, using ion chromatography. The 530 collected rain events represent a total of 5706.1 mm of rainfall compared to the measured pluviometry 6138.9 mm, indicating that the collection efficiency is about 93%. The order of total annual loading rates for soluble cations is NH4+ > Ca2+ > Mg2+ > K+. For soluble anions the order of loading is carbonates > HCOO- > NO3- > CH3COO- > SO42- > Cl- > C2O42- > C2H5COO-. In the wet savanna of Djougou, 86% of the measured pH values range between 4.7 and 5.7 with a median pH of 5.19, corresponding to a VWM (Volume Weighed Mean) H+ concentration of 6.46 μeq·L-1. This acidity results from a mixture of mineral and organic acids. The annual sea salt contribution was computed for K+, Mg2+, Ca2+ and SO42- and represents 4.2% of K+, 41% of Mg2+, 1.3% of Ca2+, and 7.4% of SO42-. These results show that K+, Ca2+, SO42-, and Mg2+ were mainly of non-marine origin. The marine contribution is estimated at 9%. The results of the chemical composition of rainwater of Djougou indicates that, except for the carbonates, ammonium has the highest VWM concentration (14.3 μeq·L-1) and nitrate concentration is 8.2 μeq·L-1. The distribution of monthly VWM concentration for all ions is computed and shows the highest values during the dry season, comparing to the wet season. Identified nitrogenous compound sources (NOx and NH3) are domestic animals, natural emissions from savanna soils, biomass

  20. Atmospheric mercury deposition to forests in the eastern USA.

    Science.gov (United States)

    Risch, Martin R; DeWild, John F; Gay, David A; Zhang, Leiming; Boyer, Elizabeth W; Krabbenhoft, David P

    2017-09-01

    Atmospheric mercury (Hg) deposition to forests is important because half of the land cover in the eastern USA is forest. Mercury was measured in autumn litterfall and weekly precipitation samples at a total of 27 National Atmospheric Deposition Program (NADP) monitoring sites in deciduous and mixed deciduous-coniferous forests in 16 states in the eastern USA during 2007-2014. These simultaneous, uniform, repeated, annual measurements of forest Hg include the broadest area and longest time frame to date. The autumn litterfall-Hg concentrations and litterfall mass at the study sites each year were combined with annual precipitation-Hg data. Rates of litterfall-Hg deposition were higher than or equal to precipitation-Hg deposition rates in 70% of the annual data, which indicates a substantial contribution from litterfall to total atmospheric-Hg deposition. Annual litterfall-Hg deposition in this study had a median of 11.7 μg per square meter per year (μg/m 2 /yr) and ranged from 2.2 to 23.4 μg/m 2 /yr. It closely matched modeled dry-Hg deposition, based on land cover at selected NADP Hg-monitoring sites. Mean annual atmospheric-Hg deposition at forest study sites exhibited a spatial pattern partly explained by statistical differences among five forest-cover types and related to the mapped density of Hg emissions. Forest canopies apparently recorded changes in atmospheric-Hg concentrations over time because litterfall-Hg concentrations decreased year to year and litterfall-Hg concentrations were significantly higher in 2007-2009 than in 2012-2014. These findings reinforce reported decreases in Hg emissions and atmospheric elemental-Hg concentrations during this same time period. Methylmercury (MeHg) was detected in all litterfall samples at all sites, compared with MeHg detections in less than half the precipitation samples at selected sites during the study. These results indicate MeHg in litterfall is a pathway into the terrestrial food web where it can

  1. A 320 Year Ice-Core Record of Atmospheric Hg Pollution in the Altai, Central Asia.

    Science.gov (United States)

    Eyrikh, Stella; Eichler, Anja; Tobler, Leonhard; Malygina, Natalia; Papina, Tatyana; Schwikowski, Margit

    2017-10-17

    Anthropogenic emissions of the toxic heavy metal mercury (Hg) have substantially increased atmospheric Hg levels during the 20th century compared to preindustrial times. However, on a regional scale, atmospheric Hg concentration or deposition trends vary to such an extent during the industrial period that the consequences of recent Asian emissions on atmospheric Hg levels are still unclear. Here we present a 320 year Hg deposition history for Central Asia, based on a continuous high-resolution ice-core Hg record from the Belukha glacier in the Siberian Altai, covering the time period 1680-2001. Hg concentrations and deposition fluxes start rising above background levels at the beginning of the 19th century due to emissions from gold/silver mining and Hg production. A steep increase occurs after the 1940s culminating during the 1970s, at the same time as the maximum Hg use in consumer products in Europe and North America. After a distinct decrease in the 1980s, Hg levels in the 1990s and beginning of the 2000s return to their maximum values, which we attribute to increased Hg emissions from Asia. Thus, rising Hg emissions from coal combustion and artisanal and small-scale gold mining (ASGM) in Asian countries determine recent atmospheric Hg levels in Central Asia, counteracting emission reductions due to control measures in Europe and North America.

  2. Hg concentrations from Late Triassic and Early Jurassic sedimentary rocks: first order similarities and second order depositional and diagenetic controls

    Science.gov (United States)

    Yager, J. A.; West, A. J.; Bergquist, B. A.; Thibodeau, A. M.; Corsetti, F. A.; Berelson, W.; Bottjer, D. J.; Rosas, S.

    2016-12-01

    Mercury concentrations in sediments have recently gained prominence as a potential tool for identifying large igneous province (LIP) volcanism in sedimentary records. LIP volcanism coincides with several mass extinctions during the Phanerozoic, but it is often difficult to directly tie LIP activity with the record of extinction in marine successions. Here, we build on mercury concentration data reported by Thibodeau et al. (Nature Communications, 7:11147, 2016) from the Late Triassic and Early Jurassic of New York Canyon, Nevada, USA. Increases in Hg concentrations in that record were attributed to Central Atlantic Magmatic Province (CAMP) activity in association with the end-Triassic mass extinction. We expand the measured section from New York Canyon and report new mercury concentrations from Levanto, Peru, where dated ash beds provide a discrete chronology, as well as St. Audrie's Bay, UK, a well-studied succession. We correlate these records using carbon isotopes and ammonites and find similarities in the onset of elevated Hg concentrations and Hg/TOC in association with changes in C isotopes. We also find second order patterns that differ between sections and may have depositional and diagenetic controls. We will discuss these changes within a sedimentological framework to further understand the controls on Hg concentrations in sedimentary records and their implications for past volcanism.

  3. Determination of heavy metal deposition in the county of Obrenovac (Serbia using mosses as bioindicators, III: Copper (Cu, Iron (Fe and Mercury (Hg

    Directory of Open Access Journals (Sweden)

    Sabovljević M.

    2007-01-01

    Full Text Available In this study, the deposition of three heavy metals (Cu, Fe and Hg in four moss taxa (Bryum argenteum, Bryum capillare, Brachythecium sp. and Hypnum cupressiforme in the county of Obrenovac (Serbia is presented. The distribution of average heavy metal content in all mosses in the county of Obrenovac is presented on maps, while long-term atmospheric deposition (in the mosses Bryum argenteum and B. capillare and short-term atmospheric deposition (in the mosses Brachythecium sp. and Hypnum cupressiforme are discussed and given in a table. Areas of the highest contaminations are highlighted.

  4. Tundra uptake of atmospheric elemental mercury drives Arctic mercury pollution.

    Science.gov (United States)

    Obrist, Daniel; Agnan, Yannick; Jiskra, Martin; Olson, Christine L; Colegrove, Dominique P; Hueber, Jacques; Moore, Christopher W; Sonke, Jeroen E; Helmig, Detlev

    2017-07-12

    Anthropogenic activities have led to large-scale mercury (Hg) pollution in the Arctic. It has been suggested that sea-salt-induced chemical cycling of Hg (through 'atmospheric mercury depletion events', or AMDEs) and wet deposition via precipitation are sources of Hg to the Arctic in its oxidized form (Hg(ii)). However, there is little evidence for the occurrence of AMDEs outside of coastal regions, and their importance to net Hg deposition has been questioned. Furthermore, wet-deposition measurements in the Arctic showed some of the lowest levels of Hg deposition via precipitation worldwide, raising questions as to the sources of high Arctic Hg loading. Here we present a comprehensive Hg-deposition mass-balance study, and show that most of the Hg (about 70%) in the interior Arctic tundra is derived from gaseous elemental Hg (Hg(0)) deposition, with only minor contributions from the deposition of Hg(ii) via precipitation or AMDEs. We find that deposition of Hg(0)-the form ubiquitously present in the global atmosphere-occurs throughout the year, and that it is enhanced in summer through the uptake of Hg(0) by vegetation. Tundra uptake of gaseous Hg(0) leads to high soil Hg concentrations, with Hg masses greatly exceeding the levels found in temperate soils. Our concurrent Hg stable isotope measurements in the atmosphere, snowpack, vegetation and soils support our finding that Hg(0) dominates as a source to the tundra. Hg concentration and stable isotope data from an inland-to-coastal transect show high soil Hg concentrations consistently derived from Hg(0), suggesting that the Arctic tundra might be a globally important Hg sink. We suggest that the high tundra soil Hg concentrations might also explain why Arctic rivers annually transport large amounts of Hg to the Arctic Ocean.

  5. Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001).

    Science.gov (United States)

    Bergamaschini, R; Brehm, M; Grydlik, M; Fromherz, T; Bauer, G; Montalenti, F

    2011-07-15

    The evolution of the wetting layer (WL) thickness during Ge deposition on Si(001) is analyzed with the help of a rate-equation approach. The combined role of thickness, island volume and shape-dependent chemical potentials is considered. Several experimental observations, such as WL thinning following the pyramid-to-dome transformation, are captured by the model, as directly demonstrated by a close comparison with photoluminescence measurements (PL) on samples grown at three different temperatures. The limitations of the model in describing late stages of growth are critically addressed.

  6. External quality-assurance project report for the National Atmospheric Deposition Program/National Trends Network and Mercury Deposition Network, 2009-2010

    Science.gov (United States)

    Wetherbee, Gregory A.; Martin, RoseAnn; Rhodes, Mark F.; Chesney, Tanya A.

    2014-01-01

    The U.S. Geological Survey operated six distinct programs to provide external quality-assurance monitoring for the National Atmospheric Deposition Program/National Trends Network (NTN) and Mercury Deposition Network (MDN) during 2009–2010. The field-audit program assessed the effects of onsite exposure, sample handling, and shipping on the chemistry of NTN samples; a system-blank program assessed the same effects for MDN. Two interlaboratory-comparison programs assessed the bias and variability of the chemical analysis data from the Central Analytical Laboratory (CAL) and Mercury (Hg) Analytical Laboratory (HAL). The blind-audit program was also implemented for the MDN to evaluate analytical bias in total Hg concentration data produced by the HAL. The co-located-sampler program was used to identify and quantify potential shifts in NADP data resulting from replacement of original network instrumentation with new electronic recording rain gages (E-gages) and precipitation collectors that use optical sensors. The results indicate that NADP data continue to be of sufficient quality for the analysis of spatial distributions and time trends of chemical constituents in wet deposition across the United States. Results also suggest that retrofit of the NADP networks with the new precipitation collectors could cause –8 to +14 percent shifts in NADP annual precipitation-weighted mean concentrations and total deposition values for ammonium, nitrate, sulfate, and hydrogen ion, and larger shifts (+13 to +74 percent) for calcium, magnesium, sodium, potassium, and chloride. The prototype N-CON Systems bucket collector is more efficient in the catch of precipitation in winter than Aerochem Metrics Model 301 collector, especially for light snowfall.

  7. A Comparison of Mathematical Models of Fish Mercury Concentration as a Function of Atmospheric Mercury Deposition Rate and Watershed Characteristics

    Science.gov (United States)

    Smith, R. A.; Moore, R. B.; Shanley, J. B.; Miller, E. K.; Kamman, N. C.; Nacci, D.

    2009-12-01

    Mercury (Hg) concentrations in fish and aquatic wildlife are complex functions of atmospheric Hg deposition rate, terrestrial and aquatic watershed characteristics that influence Hg methylation and export, and food chain characteristics determining Hg bioaccumulation. Because of the complexity and incomplete understanding of these processes, regional-scale models of fish tissue Hg concentration are necessarily empirical in nature, typically constructed through regression analysis of fish tissue Hg concentration data from many sampling locations on a set of potential explanatory variables. Unless the data sets are unusually long and show clear time trends, the empirical basis for model building must be based solely on spatial correlation. Predictive regional scale models are highly useful for improving understanding of the relevant biogeochemical processes, as well as for practical fish and wildlife management and human health protection. Mechanistically, the logical arrangement of explanatory variables is to multiply each of the individual Hg source terms (e.g. dry, wet, and gaseous deposition rates, and residual watershed Hg) for a given fish sampling location by source-specific terms pertaining to methylation, watershed transport, and biological uptake for that location (e.g. SO4 availability, hill slope, lake size). This mathematical form has the desirable property that predicted tissue concentration will approach zero as all individual source terms approach zero. One complication with this form, however, is that it is inconsistent with the standard linear multiple regression equation in which all terms (including those for sources and physical conditions) are additive. An important practical disadvantage of a model in which the Hg source terms are additive (rather than multiplicative) with their modifying factors is that predicted concentration is not zero when all sources are zero, making it unreliable for predicting the effects of large future reductions in

  8. Preparation of CdxHg1-xTe films by the method of vapour-phase epitaxy of HgTe on CdTe substrates with subsequent mutual diffusion

    International Nuclear Information System (INIS)

    Varavin, V.S.; Sidorov, Yu.G.; Remesnik, V.G.; Chikichev, S.I.; Nis, I.E.

    1994-01-01

    Mirror-like HgTe films have been grown on CdTe substrates of various orientations by vapor deposition of HgTe in temperature gradient. Deposition rates fell in the range of 5-12 μm/h. Subsequent annealing has permitted production of Hg 1-x Cd x Te layers about 15 μm in thickness. Canier density in annealed n-type specimens has been found to constitute (1-20)x10 15 cm -3 at carrier mobility of (2-5)x10 4 cm 2 xV -1 xs -1 and in p-type films - (1-5)x10 16 cm -3 and 200-350 cm 2 xV -1 xs -1 (77 K) respectively

  9. Oxidation Kinetics of Chemically Vapor-Deposited Silicon Carbide in Wet Oxygen

    Science.gov (United States)

    Opila, Elizabeth J.

    1994-01-01

    The oxidation kinetics of chemically vapor-deposited SiC in dry oxygen and wet oxygen (P(sub H2O) = 0.1 atm) at temperatures between 1200 C and 1400 C were monitored using thermogravimetric analysis. It was found that in a clean environment, 10% water vapor enhanced the oxidation kinetics of SiC only very slightly compared to rates found in dry oxygen. Oxidation kinetics were examined in terms of the Deal and Grove model for oxidation of silicon. It was found that in an environment containing even small amounts of impurities, such as high-purity Al2O3 reaction tubes containing 200 ppm Na, water vapor enhanced the transport of these impurities to the oxidation sample. Oxidation rates increased under these conditions presumably because of the formation of less protective sodium alumino-silicate scales.

  10. Control of Alq3 wetting layer thickness via substrate surface functionalization.

    Science.gov (United States)

    Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J

    2007-06-05

    The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.

  11. Evaluating the effectiveness of pollution control measures via the occurrence of DDTs and HCHs in wet deposition of an urban center, China.

    Science.gov (United States)

    Guo, Ling-Chuan; Bao, Lian-Jun; Li, Shao-Meng; Tao, Shu; Zeng, Eddy Y

    2017-04-01

    Wet deposition is not only a mechanism for removing atmospheric pollutants, but also a process which reflects loadings of atmospheric pollutants. Our previous study on wet deposition examined the effectiveness of short-term control measures on atmospheric particulate pollution, which were partly effective for organic pollutants of current input sources. In the present study, dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs), representative of legacy contaminants, were measured in the same samples collected throughout the entire year of 2010 in Guangzhou, a large urban center in South China. Concentrations of ∑DDT (sum of o,p' and p,p'-DDT, o,p' and p,p'-DDE, o,p' and p,p'-DDD, and p,p'-DDMU) and ∑HCH (sum of α-, β-, γ-, and δ-HCH) in wet deposition were in the ranges of nd-69 (average: 1.8 ng L -1 ) and nd-150 ng L -1 (average: 5.1 ng L -1 ), respectively. In addition, the results of source diagnostics and backward air mass trajectories appeared to suggest the transport of antifouling paint derived DDTs from the coastal region off South China to Guangzhou. The combined wet and dry deposition flux of ∑HCH in the first quarter (January to March) was greater than that in the fourth quarter (October to December), while those of ∑DDT were comparable in the first and fourth quarters. Similar trends were also observed for the concentrations of ∑HCH and ∑DDT in aerosol samples. These results suggested the short-term pollution control measures implemented during the 16th Asian Games and 10th Asian Para Games (held in November and December 2010, respectively) did not work well for DDTs. The reduced input of HCHs during the fourth quarter was probably associated with the strict ban on lindane for food safety, which also exposed the weakness of control measures focusing mainly on the removal of atmospheric particulate matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Hg Storage and Mobility in Tundra Soils of Northern Alaska

    Science.gov (United States)

    Olson, C.; Obrist, D.

    2017-12-01

    Atmospheric mercury (Hg) can be transported over long distances to remote regions such as the Arctic where it can then deposit and temporarily be stored in soils. This research aims to improve the understanding of terrestrial Hg storage and mobility in the arctic tundra, a large receptor area for atmospheric deposition and a major source of Hg to the Arctic Ocean. We aim to characterize spatial Hg pool sizes across various tundra sites and to quantify the mobility of Hg from thawing tundra soils using laboratory mobility experiments. Active layer and permafrost soil samples were collected in the summer of 2014 and 2015 at the Toolik Field Station in northern Alaska (68° 38' N) and along a 200 km transect extending from Toolik to the Arctic Ocean. Soil samples were analyzed for total Hg concentration, bulk density, and major and trace elements. Hg pool sizes were estimated by scaling up Hg soil concentrations using soil bulk density measurements. Mobility of Hg in tundra soils was quantified by shaking soil samples with ultrapure Milli-Q® water as an extracting solution for 24 and 72 hours. Additionally, meltwater samples were collected for analysis when present. The extracted supernatant was analyzed for total Hg, dissolved organic carbon, cations and anions, redox, and ph. Mobility of Hg from soil was calculated using Hg concentrations determined in solid soil samples and in supernatant of soil solution samples. Results of this study show Hg levels in tundra mineral soils that are 2-5 times higher than those observed at temperate sites closer to pollution sources. Most of the soil Hg was located in mineral horizons where Hg mass accounted for 72% of the total soil pool. Soil Hg pool sizes across the tundra sites were highly variable (166 - 1,365 g ha-1; avg. 419 g ha-1) due to the heterogeneity in soil type, bulk density, depth to frozen layer, and soil Hg concentration. Preliminary results from the laboratory experiment show higher mobility of Hg in mineral

  13. Parallel measurements of organic and elemental carbon dry (PM1, PM2.5) and wet (rain, snow, mixed) deposition into the Baltic Sea.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita; Falkowska, Lucyna M

    2016-03-15

    Parallel studies on organic and elemental carbon in PM1 and PM2.5 aerosols and in wet deposition in various forms of its occurrence were conducted in the urbanised coastal zone of the Baltic Sea. The carbon load introduced into the sea water was mainly affected by the form of precipitation. Dry deposition load of carbon was on average a few orders of magnitude smaller than wet deposition. The suspended organic carbon was more effectively removed from the air with rain than snow, while an inverse relationship was found for elemental carbon. However the highest flux of water insoluble organic carbon was recorded in precipitation of a mixed nature. The atmospheric cleaning of highly dissolved organic carbon was observed to be the most effective on the first day of precipitation, while the hydrophobic elemental carbon was removed more efficiently when the precipitation lasted longer than a day. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Characterisation of nutrients wet deposition under influence of Saharan dust at Puerto-Rico in Caribbean Sea

    Science.gov (United States)

    Desboeufs, Karine; Formenti, Paola; Triquet, Sylvain; Laurent, Benoit; Denjean, Cyrielle; Gutteriez-Moreno, Ian E.; Mayol-Bracero, Olga L.

    2015-04-01

    Large quantities of African dust are carried across the North Atlantic toward the Caribbean every summer by Trade Winds. Atmospheric deposition of dust aerosols, and in particular wet deposition, is widely acknowledged to be the major delivery pathway for nutrients to ocean ecosystems, as iron, phosphorus and various nitrogen species. The deposition of this dustis so known to have an important impact on biogeochemical processes in the Tropical and Western Atlantic Ocean and Caribbean including Puerto-Rico. However, very few data exists on the chemical composition in nutrients in dusty rain in this region. In the framework of the Dust-ATTAcK project, rainwater was collected at the natural reserve of Cape San Juan (CSJ) (18.38°N, 65.62°W) in Puerto-Ricobetween 20 June 2012 and 12 July 2012 during thedusty period. A total of 7 rainwater events were sampled during various dust plumes. Complementary chemical analyses on aerosols in suspension was also determined during the campaign. The results on dust composition showed that no mixing with anthropogenic material was observed, confirming dust aerosols were the major particles incorporated in rain samples. The partitioning between soluble and particulate nutrients in rain samples showed that phosphorous solubility ranged from 30 and 80%. The average Fe solubility was around 0.5%, in agreement with Fe solubility observed in rains collected in Niger during African monsoon. That means that the high solubility measurements previously observed in Caribbean was probably due to an anthropogenic influence. Atmospheric wet deposition fluxes of soluble and total nutrients (N, P, Si, Fe, Co, Cu, Mn, Ni, Zn) to Caribbean Sea were determined. Atmospheric P and N inputs were strongly depleted relative to the stoichiometry of phytoplankton Fe, N, P and Si requirements.The nitrogen speciation was also determined and showed the predominance of ammonium form. 3-D modeling was used to estimate the spatial extend of these fluxes over the

  15. Electrical properties of MIS devices on CdZnTe/HgCdTe

    Science.gov (United States)

    Lee, Tae-Seok; Jeoung, Y. T.; Kim, Hyun Kyu; Kim, Jae Mook; Song, Jinhan; Ann, S. Y.; Lee, Ji Y.; Kim, Young Hun; Kim, Sun-Ung; Park, Mann-Jang; Lee, S. D.; Suh, Sang-Hee

    1998-10-01

    In this paper, we report the capacitance-voltage (C-V) properties of metal-insulator-semiconductor (MIS) devices on CdTe/HgCdTe by the metalorganic chemical vapor deposition (MOCVD) and CdZnTe/HgCdTe by thermal evaporation. In MOCVD, CdTe layers are directly grown on HgCdTe using the metal organic sources of DMCd and DiPTe. HgCdTe layers are converted to n-type and the carrier concentration, ND is low 1015 cm-3 after Hg-vacancy annealing at 260 degrees Celsius. In thermal evaporation, CdZnTe passivation layers were deposited on HgCdTe surfaces after the surfaces were etched with 0.5 - 2.0% bromine in methanol solution. To investigate the electrical properties of the MIS devices, the C-V measurement is conducted at 80 K and 1 MHz. C-V curve of MIS devices on CdTe/HgCdTe by MOCVD has shown nearly flat band condition and large hysteresis, which is inferred to result from many defects in CdTe layer induced during Hg-vacancy annealing process. A negative flat band voltage (VFB approximately equals -2 V) and a small hysteresis have been observed for MIS devices on CdZnTe/HgCdTe by thermal evaporation. It is inferred that the negative flat band voltage results from residual Te4+ on the surface after etching with bromine in methanol solution.

  16. RF sputtered HgCdTe films for tandem cell applications

    International Nuclear Information System (INIS)

    Wang, S.L.; Lee, S.H.; Gupta, A.; Compaan, A.D.

    2004-01-01

    Polycrystalline Hg 1-x Cd x Te films were investigated for their potential as bottom cells of a CdTe-based tandem solar cell. The films were deposited by RF sputtering from a cold pressed target containing 30% HgTe+70% CdTe. The as-deposited films were highly resistive with (111) preferred orientation and a bandgap of ∝1.0 eV. Various thermal treatment schemes were investigated under different conditions of ambient and temperature to reduce the resistivity. The film properties were analyzed using infrared transmission spectra, energy dispersive X-ray spectra and X-ray diffraction. N doped p-HgCdTe films were also prepared by reactive sputtering in a N 2 /Ar ambient. P-n junction solar cells were fabricated with CdS films as the heterojunction partner. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Model analyses of atmospheric mercury: present air quality and effects of transpacific transport on the United States

    Science.gov (United States)

    Lei, H.; Liang, X.-Z.; Wuebbles, D. J.; Tao, Z.

    2013-11-01

    Atmospheric mercury is a toxic air and water pollutant that is of significant concern because of its effects on human health and ecosystems. A mechanistic representation of the atmospheric mercury cycle is developed for the state-of-the-art global climate-chemistry model, CAM-Chem (Community Atmospheric Model with Chemistry). The model simulates the emission, transport, transformation and deposition of atmospheric mercury (Hg) in three forms: elemental mercury (Hg(0)), reactive mercury (Hg(II)), and particulate mercury (PHg). Emissions of mercury include those from human, land, ocean, biomass burning and volcano related sources. Land emissions are calculated based on surface solar radiation flux and skin temperature. A simplified air-sea mercury exchange scheme is used to calculate emissions from the oceans. The chemistry mechanism includes the oxidation of Hg(0) in gaseous phase by ozone with temperature dependence, OH, H2O2 and chlorine. Aqueous chemistry includes both oxidation and reduction of Hg(0). Transport and deposition of mercury species are calculated through adapting the original formulations in CAM-Chem. The CAM-Chem model with mercury is driven by present meteorology to simulate the present mercury air quality during the 1999-2001 period. The resulting surface concentrations of total gaseous mercury (TGM) are then compared with the observations from worldwide sites. Simulated wet depositions of mercury over the continental United States are compared to the observations from 26 Mercury Deposition Network stations to test the wet deposition simulations. The evaluations of gaseous concentrations and wet deposition confirm a strong capability for the CAM-Chem mercury mechanism to simulate the atmospheric mercury cycle. The general reproduction of global TGM concentrations and the overestimation on South Africa indicate that model simulations of TGM are seriously affected by emissions. The comparison to wet deposition indicates that wet deposition patterns

  18. Dry and wet "deposition" studies of the degradation of cement mortars

    Directory of Open Access Journals (Sweden)

    Martínez-Ramírez, S.

    1998-06-01

    Full Text Available The reaction of portland cement mortars with SO2 gaseous pollutant and artificial 'acid rain' solution has been examined using laboratory exposure chambers, with realistic presentation rates of pollutants. The mortar were previously carbonated to produce superficial carbonation. Two mortars with different w/c ratio and hence specific surface were prepared and exposed into the chambers. For dry deposition of SO2 pollutant gas, the important roles of water and water plus oxidant in increasing chemical reaction are readily revealed. Further, accessible porosity also increases reaction through increased times of reaction of pollutant with the mortars. Interestingly, in the absence of deliberate surface wetting, the presence of oxidant, ozone, leads to a reduction in the already limited extent of reaction. Wet deposition studies using artificial 'acid rain' solution result in gypsum formation, which is more extensive for mortars of increased w/c ratios.

    Se han realizado ensayos de laboratorio de simulación de los procesos ambientales de "deposición" seca y húmeda sobre morteros de cemento portland, estudiándose las reacciones que se producen con el contaminante SO2 ("deposición" seca y la disolución de 'lluvia acida' ("deposición" húmeda. Los morteros de cemento se carbonataron para favorecer la carbonatación superficial de los mismos. Se prepararon morteros con dos relaciones a/c con el fin de estudiar la influencia que la variable superficie específica tenía en el proceso de deterioro de dichos materiales. En los estudios de deposición seca con SO2 como gas agresivo se ha visto la importancia que el agua y el agua junto a un oxidante tienen en la reacción del contaminante con los componentes del mortero. La superficie específica Juega un papel importante, ya que al aumentar, aumenta la reacción con el contaminante. La reacción en presencia de oxidante, (SO2+O3

  19. Direct uptake by vegetation of deposited materials

    International Nuclear Information System (INIS)

    Eriksson, Aa.

    1977-01-01

    Interception and retention in pasture grass of nuclides in ionic form and of labelled particles (40-63, 63-100, 100-200 μ in size) were studied experimentally during 1968-70. The results obtained are compared with data from grazing experiments during 1970-72. The data showed that the relative amount of material intercepted by the vegetation decreased markedly in the following order: wet-deposited nuclides > wet-deposited particles > particles dry-deposited on grass wet rain > particles dry-deposited on grass superficially wet > particles dry-deposited on dry grass, and small particles > larger particles. At high relative humidity of the air much more of a deposition could be intercepted than at low relative humidity. The retention of intercepted material was influenced by type of material and by precipitation. Intense rains shortened the half residence time considerably. Dry-deposited materials intercepted in grass suffered marked losses by falloff during the first few days after deposition, which was followed by a phase with a longer half residence time. (author)

  20. Deposition and early hydrologic evolution of Westwater Canyon wet alluvial-fan system

    International Nuclear Information System (INIS)

    Galloway, W.E.

    1980-01-01

    The Westwater Canyon Member is one of several large, low-gradient alluvial fans that compose the Morrison Formation in the Four Corners area. Morrison fans were deposited by major laterally migrating streams entering a broad basin bounded by highlands to the west and south. The Westwater Canyon sand framework consists of a downfan succession of 1) proximal braided channel, 2) straight bed-load channel, 3) sinuous mixed-load channel, and 4) distributary mixed-load-channel sand bodies. Regional sand distribution and facies patterns are highly digitate and radiate from a point source located northwest of Gallup, New Mexico. Early ground-water flow evolution within the Westwater Canyon fan aquifer system can be inferred by analogy with Quaternary wet-fan deposits and by the interpreted paragenetic sequence of diagenetic features present. Syndepositional flow was controlled by the downfan hydrodynamic gradient and the high horizontal and vertical transmissivity of the sand-rich fan aquifer. Dissolution and transport of soluble humate would be likely in earliest ground water, which was abundant, fresh, and slightly alkaline. With increasing confinement of the aquifer below less permeable tuffaceous Brushy Basin deposits and release of soluble constituents from volcanic ash, flow patterns stabilized, and relatively more saline, uranium-rich ground water permeated the aquifer. Uranium mineralization occurred during this early postdepositional, semiconfined flow phase. Development of overlying Dakota swamps suggests a shallow water table indicative of regional dischare or stagnation. In either event, only limited downward flux of acidic water is recorded by local, bleached, kaolinized zones where the Westwater Canyon directly underlies the Dakota swamps. Subsequent ground-water flow phases have further obscured primary alteration patterns and caused local oxidation and redistribution of uranium

  1. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    Science.gov (United States)

    Amado Filho, G. M.; Andrade, L. R.; Farina, M.; Malm, O.

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702±318 μg Hg g -1 was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding.

  2. Mercury in precipitation at an urbanized coastal zone of the Baltic Sea (Poland).

    Science.gov (United States)

    Saniewska, Dominika; Bełdowska, Magdalena; Bełdowski, Jacek; Falkowska, Lucyna

    2014-11-01

    Wet deposition is an important source of metals to the sea. The temporal variability of Hg concentrations in precipitation, and the impact of air masses of different origins over the Polish coastal zone were assessed. Samples of precipitation were collected (August 2008-May 2009) at an urbanized coastal station in Poland. Hg analyses were conducted using CVAFS. These were the first measurements of Hg concentration in precipitation obtained in the Polish coastal zone. Since Poland was identified as the biggest emitter of Hg to the Baltic, these data are very important. In the heating and non-heating season, Hg concentrations in precipitation were similar. Hg wet deposition flux dominated in summer, when the production of biomass in the aquatic system was able to actively adsorb Hg. Input of metal to the sea was attributed to regional and distant sources. Maritime air masses, through transformation of Hg(0), were an essential vector of mercury in precipitation.

  3. Wet deposition at the base of Mt Everest: Seasonal evolution of the chemistry and isotopic composition

    Science.gov (United States)

    Balestrini, Raffaella; Delconte, Carlo A.; Sacchi, Elisa; Wilson, Alana M.; Williams, Mark W.; Cristofanelli, Paolo; Putero, Davide

    2016-12-01

    The chemistry of wet deposition was investigated during 2012-2014 at the Pyramid International Laboratory in the Upper Khumbu Valley, Nepal, at 5050 m a.s.l., within the Global Atmosphere Watch (GAW) programme. The main hydro-chemical species and stable isotopes of the water molecule were determined for monsoon rain (July-September) and snow samples (October-June). To evaluate the synoptic-scale variability of air masses reaching the measurement site, 5 day back-trajectories were computed for the sampling period. Ion concentrations in precipitation during the monsoon were low suggesting that they represent global regional background concentrations. The associations between ions suggested that the principal sources of chemical species were marine aerosols, rock and soil dust, and fossil fuel combustion. Most chemical species exhibited a pattern during the monsoon, with maxima at the beginning and at the end of the season, partially correlated with the precipitation amount. Snow samples exhibited significantly higher concentrations of chemical species, compared to the monsoon rainfall observations. Particularly during 2013, elevated concentrations of NO3-, SO42- and NH4+ were measured in the first winter snow event, and in May at the end of the pre-monsoon season. The analysis of large-scale circulation and wind regimes as well as atmospheric composition observations in the region indicates the transport of polluted air masses from the Himalayan foothills and Indian sub-continent up to the Himalaya region. During the summer monsoon onset period, the greater values of pollutants can be attributed to air-mass transport from the planetary boundary layer (PBL) of the Indo-Gangetic plains. Isotopic data confirm that during the monsoon period, precipitation occurred from water vapor that originated from the Indian Ocean and the Bay of Bengal; by contrast during the non-monsoon period, an isotopic signature of more continental origin appeared, indicating that the higher

  4. Controls on mercury and methylmercury deposition for two watersheds in Acadia National Park, Maine.

    Science.gov (United States)

    Johnson, K B; Haines, T A; Kahl, J S; Norton, S A; Amirbahman, Aria; Sheehan, K D

    2007-03-01

    Throughfall and bulk precipitation samples were collected for two watersheds at Acadia National Park, Maine, from 3 May to 16 November 2000, to determine which landscape factors affected mercury (Hg) deposition. One of these watersheds, Cadillac Brook, burned in 1947, providing a natural experimental design to study the effects of forest type on deposition to forested watersheds. Sites that face southwest received the highest Hg deposition, which may be due to the interception of cross-continental movement of contaminated air masses. Sites covered with softwood vegetation also received higher Hg deposition than other vegetation types because of the higher scavenging efficiency of the canopy structure. Methyl mercury (MeHg) deposition was not affected by these factors. Hg deposition, as bulk precipitation and throughfall was lower in Cadillac Brook watershed (burned) than in Hadlock Brook watershed (unburned) because of vegetation type and watershed aspect. Hg and MeHg inputs were weighted by season and vegetation type because these two factors had the most influence on deposition. Hg volatilization was not determined. The total Hg deposition via throughfall and bulk precipitation was 9.4 microg/m(2)/year in Cadillac Brook watershed and 10.2 microg/m(2)/year in Hadlock Brook watershed. The total MeHg deposition via throughfall and bulk precipitation was 0.05 microg/m(2)/year in Cadillac Brook watershed and 0.10 microg/m(2)/year in Hadlock Brook watershed.

  5. HgSe(Te)-HgHal2 systems

    International Nuclear Information System (INIS)

    Pan'ko, V.V.; Khudolij, V.A.; Voroshilov, Yu.V.

    1989-01-01

    Using the methods of differential thermal and X-ray phase analyses the character of chemical interaction in the systems HgTe(Se)-HgHal 2 , where Hal is Cl, Br, I, is investigated. Formation of compounds Hg 3 Se 2 Hal 2 , Hg 3 Te 2 Hal 2 , Hg 3 TeCl 4 and Hg 3 TeBr 4 in these systems is established. The phase diagrams of the studied systems are presented. The parameters of elementary cells of the compounds with the unknown structure, as well as their unknown physicochemical properties, are determined

  6. Carry-over of plant protection agents through wet deposition on the Kleine Feldberg/Taunus; Eintrag von Pflanzenschutzmitteln durch nasse Deposition auf dem Kleinen Feldberg/Taunus

    Energy Technology Data Exchange (ETDEWEB)

    Gath, B. [Zentrum fuer Umweltforschung der Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (Germany); Jaeschke, W. [Zentrum fuer Umweltforschung der Johann Wolfgang Goethe-Universitaet, Frankfurt am Main (Germany); Kubiak, R. [Landes-Lehr- und Forschungsanstalt fuer Landwirtschaft, Weinbau und Gartenbau, Neustadt an der Weinstrasse (Germany); Ricker, I. [Battelle Europe Battelle-Institut e.V., Frankfurt am Main (Germany); Schmider, F. [BASF AG, Landwirtschaftliche Versuchsstation, Limburgerhof (Germany); Zietz, E. [Battelle Europe Battelle-Institut e.V., Frankfurt am Main (Germany)

    1993-11-01

    On the Feldberg and at two more sites precipitation samples were taken and analysed for selected pesticides (Lindan, Isoproturon, Triadimenol, Pirimicarb, Parathion-ethyl and atrazine). Bulk samplers (acc. to Daemmgen) were used in 14-day intervals. At two stations wet-only samplers were used in addition to the bulk samplers. Parathion-ethyl, Pirimicarb and Triadimenol were only found in single cases only. Distinct annual curves could be established for atrazin and isoproturon, they are shown in desposition charts. Only Lindan was detectable all year round. Concentrations were between 3 and 300 ng l{sup {minus}1}. Annual curves show good correlation with application periods of the individual substances. In general the annual mean value of the concentrations are below 50 ng l{sup {minus}1}. The share of dry deposition depends on substance and weather and account roughly for 10-20% of total deposition. (orig./EW) [Deutsch] Auf dem Feldberg sowie an zwei weiteren Messstandorten wurden parallel Niederschlagsproben genommen und auf ausgewaehlte Pestizide (Lindan, Isoproturon, Triadimenol, Pirimicarb, Parathion-ethyl und Atrazin) untersucht. Die Probenahme erfolgte in bulk-Sammlern nach Daemmgen in 14-Tage Intervallen. An zwei Stationen wurden parallel zu den bulk-Sammlern auch wet-only Sammler betrieben. Parathion-ethyl, Pirimicarb und Triadimenol konnten nur vereinzelt nachgewiesen werden. Von Atrazin und Isoproturon wurden ausgepraegte Jahresgaenge ermittelt und in Depositionsgraphiken dargestellt. Lediglich Lindan war nahezu das ganze Jahr ueber nachweisbar. Die gemessenen Konzentrationen lagen zwischen 3 und 300 ng 1{sup -1}. Die dargestellten Jahresgaenge korrelieren gut mit den jeweiligen Anwendungszeitraeumen der einzelnen Substanzen. Insgesamt liegen die gemessenen Konzentrationen im Jahresmittel unter 50 ngl{sup -1}. Der Beitrag der trockenen Deposition ist substanz- und wetterabhaengig und macht etwa 10-20% der Gesamtdeposition aus. (orig.)

  7. Short-term seasonal variability in 7Be wet deposition in a semiarid ecosystem of central Argentina

    International Nuclear Information System (INIS)

    Juri Ayub, J.; Di Gregorio, D.E.; Velasco, H.; Huck, H.; Rizzotto, M.; Lohaiza, F.

    2009-01-01

    The 7 Be wet deposition has been intensively investigated in a semiarid region at San Luis Province, Argentina. From November 2006 to May 2008, the 7 Be content in rainwater was determined in 58 individual rain events, randomly comprising more than 50% of all individual precipitations at the sampling period. 7 Be activity concentration in rainwater ranged from 0.7 ± 0.3 Bq l -1 to 3.2 ± 0.7 Bq l -1 , with a mean value of 1.7 Bq l -1 (sd = 0.53 Bq l -1 ). No relationship was found between 7 Be content in rainwater and (a) rainfall amount, (b) precipitation intensity and (c) elapsed time between events. 7 Be ground deposition was found to be well correlated with rainfall amount (R = 0.92). For the precipitation events considered, the 7 Be depositional fluxes ranged from 1.1 to 120 Bq m -2 , with a mean value of 32.7 Bq m -2 (sd = 29.9 Bq m -2 ). The annual depositional flux was estimated at 1140 ± 120 Bq m -2 y -1 . Assuming the same monthly deposition pattern and that the 7 Be content in soil decreases only through radioactive decay, the seasonal variation of 7 Be areal activity density in soil was estimated. Results of this investigation may contribute to a valuable characterization of 7 Be input in the explored semiarid ecosystem and its potential use as tracer of environmental processes.

  8. Mercury from combustion sources: a review of the chemical species emitted and their transport in the atmosphere

    International Nuclear Information System (INIS)

    Carpi, A.

    1997-01-01

    Different species of mercury have different physical/chemical properties and thus behave quite differentially in air pollution control equipment and in the atmosphere. In general, emission of mercury from coal combustion sources are approximately 20-50% elemental mercury (Hg 0 ) and 50-80% divalent mercury (Hg(II)), which may be predominantly HgCl 2 . Emissions of mercury from waste incinerators are approximately 10-20% Hg 0 and 75-85% Hg(II). The partitioning of mercury in flue gas between the elemental and divalent forms may be dependent on the concentration of particulate carbon, HCl and other pollutants in the stack emissions. The emission of mercury from combustion facilities depends on the species in the exhaust stream and the type of air pollution control equipment used at the source. Air pollution control equipment for mercury removal at combustion facilities includes activated carbon injection, sodium sulfide injection and wet lime/limestone flue gas desulfurization. White Hg(II) is water-soluble and may be removed form the atmosphere by wet and dry deposition close to the combustion sources, the combination of a high vapor pressure and low water-solubility facilitate the long-range transport of Hg 0 in the atmosphere. Background mercury in the atmosphere is predominantly Hg 0 . Elemental mercury is eventually removed from the atmosphere by dry deposition onto surfaces and by wet deposition after oxidation to water-soluble, divalent mercury. 62 refs., 2 figs., 1 tab

  9. Assessing the natural recovery of a lake contaminated with Hg using estimated recovery rates determined by sediment chronologies

    International Nuclear Information System (INIS)

    Parsons, Matthew J.; Long, David T.; Yohn, Sharon S.

    2010-01-01

    increasing after 1997. The cause of the recent Hg concentrations may be related to influx of contaminated watershed soils or sediments. Estimating the time frame for recovery is challenging in this system because the process of natural recovery seems to have been arrested and deeper, uncontaminated sediments, were not recovered as a basis for reference. However, a recovery to background conditions is likely not achievable since rates of Hg loading to nearby lakes and the current rate of atmospheric deposition are greater than an estimate of background conditions for Deer Lake. Assuming recovery continued after 2000, estimates of the time required for recovery varied based on the system state used to define it (e.g., recent rates of wet Hg deposition or Hg surface concentrations/fluxes from similar systems), but were less than 12 a. However, the recent increasing values of recovery indicators (e.g., Hg concentrations) suggests that these estimates are conservative and will be longer if recovery remains arrested, which may in part be due to the legacy of Hg contamination on the landscape. This study shows that estimates of recovery of highly disturbed lake systems can be made in the absence of within lake reference conditions by using comparisons to reference systems and challenges of estimating ages from atypical 210 Pb activity profiles can be overcome in part using event-based dating techniques.

  10. Assessing the natural recovery of a lake contaminated with Hg using estimated recovery rates determined by sediment chronologies

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, Matthew J. [Michigan State University, Department of Geological Sciences, 206 Natural Science, East Lansing, MI 48824 (United States); Long, David T., E-mail: long@msu.edu [Michigan State University, Department of Geological Sciences, 206 Natural Science, East Lansing, MI 48824 (United States); Yohn, Sharon S. [Juniata College, Raystown Field Station, Brumbaugh Academic Center, Huntingdon, PA 16652 (United States)

    2010-11-15

    their peak, remain elevated, and were increasing after 1997. The cause of the recent Hg concentrations may be related to influx of contaminated watershed soils or sediments. Estimating the time frame for recovery is challenging in this system because the process of natural recovery seems to have been arrested and deeper, uncontaminated sediments, were not recovered as a basis for reference. However, a recovery to background conditions is likely not achievable since rates of Hg loading to nearby lakes and the current rate of atmospheric deposition are greater than an estimate of background conditions for Deer Lake. Assuming recovery continued after 2000, estimates of the time required for recovery varied based on the system state used to define it (e.g., recent rates of wet Hg deposition or Hg surface concentrations/fluxes from similar systems), but were less than 12 a. However, the recent increasing values of recovery indicators (e.g., Hg concentrations) suggests that these estimates are conservative and will be longer if recovery remains arrested, which may in part be due to the legacy of Hg contamination on the landscape. This study shows that estimates of recovery of highly disturbed lake systems can be made in the absence of within lake reference conditions by using comparisons to reference systems and challenges of estimating ages from atypical {sup 210}Pb activity profiles can be overcome in part using event-based dating techniques.

  11. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Filho, G.M.A. [Instituto de Pesquisas Jardim Botanico do Rio de Janeiro (Brazil). Programa Zona Costeira; Andrade, L.R.; Farina, M. [Cidade Universitaria, Rio de Janeiro (Brazil). Instituto de Ciencias Biomedicas, Departamento de Anatomia; Malm, O. [Cidade Universitaria, Rio de Janeiro (Brazil). Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Radioisotopos Eduardo Penna Franca

    2002-07-01

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702{+-}318{mu}g Hgg{sup -1} was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding. (author)

  12. Trade-Induced Atmospheric Mercury Deposition over China and Implications for Demand-Side Controls.

    Science.gov (United States)

    Chen, Long; Meng, Jing; Liang, Sai; Zhang, Haoran; Zhang, Wei; Liu, Maodian; Tong, Yindong; Wang, Huanhuan; Wang, Wei; Wang, Xuejun; Shu, Jiong

    2018-02-20

    Mercury (Hg) is of global concern because of its adverse effects on humans and the environment. In addition to long-range atmospheric transport, Hg emissions can be geographically relocated through economic trade. Here, we investigate the effect of China's interregional trade on atmospheric Hg deposition over China, using an atmospheric transport model and multiregional input-output analysis. In general, total atmospheric Hg deposition over China is 408.8 Mg yr -1 , and 32% of this is embodied in China's interregional trade, with the hotspots occurring over Gansu, Henan, Hebei, and Yunnan provinces. Interprovincial trade considerably redistributes atmospheric Hg deposition over China, with a range in deposition flux from -104% to +28%. Developed regions, such as the Yangtze River Delta (Shanghai, Jiangsu, and Zhejiang) and Guangdong, avoid Hg deposition over their geographical boundaries, instead causing additional Hg deposition over developing provinces. Bilateral interaction among provinces is strong over some regions, suggesting a need for joint mitigation, such as the Jing-Jin-Ji region (Beijing, Tianjin, and Hebei) and the Yangtze River Delta. Transferring advanced technology from developed regions to their developing trade partners would be an effective measure to mitigate China's Hg pollution. Our findings are relevant to interprovincial efforts to reduce trans-boundary Hg pollution in China.

  13. Determination of Hg concentration in gases by PIXE

    Science.gov (United States)

    Dutkiewicz, E.; van Kuijen, W. J. P.; Munnik, F.; Mutsaers, P. H. A.; Rokita, E.; de Voigt, M. J. A.

    1992-05-01

    A method for determination of the concentration of mercury in the gaseous phase is described. In the first step of the method a stable sulphur-mercury complex is formed. For this purpose sulphur is deposited on a filter and the investigated gas flows through the filter. Millipore filters and the deposition of sulphur from Na2S2O3 * 5H2O solution were found to be most suitable. The amount of Hg absorbed on the filter was determined by PIXE or by NAA in the second step of the method. An optimization of proton energy was performed in the PIXE analysis to obtain the maximal signal-to-background ratio. The detection limit of the method, expressed as the minimal amount of Hg which has to flow through the filter equals to 30 and 2 ng for PIXE and NAA techniques, respectively. Applications of the method are also described.

  14. Effect of wet depositions on losses of nutrients from soil on deforested areas in the Moravian-Silesian Beskids Mts. (the Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Fiala, Karel; Tůma, Ivan; Holub, P.

    2001-01-01

    Roč. 20, č. 4 (2001), s. 373-381 ISSN 1335-342X R&D Projects: GA ČR GA526/97/0170 Institutional research plan: CEZ:AV0Z6005908 Keywords : wet depositions * deforested area * Moravian-Silesian Beskids Mts. Subject RIV: EF - Botanics Impact factor: 0.192, year: 2001

  15. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems.

    Science.gov (United States)

    Gasperi, J; Gromaire, M C; Kafi, M; Moilleron, R; Chebbo, G

    2010-12-01

    An observatory of urban pollutants was created in Paris for the purpose of assessing the dynamics of wastewater and wet weather flow (WW and WWF) pollutant loads within combined sewers. This observatory is composed of six urban catchments, covering land areas ranging in size from 42 ha to 2581 ha. For a wide array of parameters including total suspended solids (TSS), chemical and biochemical oxygen demand (COD and BOD(5)), total organic carbon (TOC), total Kjeldahl nitrogen (TKN), heavy metals (Cu and Zn) and polycyclic aromatic hydrocarbons (PAHs), this article is intended to evaluate the contributions of wastewater, runoff and in-sewer processes to WWF pollutant loads through the use of an entry-exit mass balance approach. To achieve this objective, a total of 16 rain events were sampled on these sites between May 2003 and February 2006. This study has confirmed that at the considered catchment scale (i.e. from 42 ha to 2581 ha) the production and transfer processes associated with WWF pollutant loads do not vary with basin scale. Entry-exit chemical mass balances over all catchments and for a large number of rain events indicate that wastewater constitutes the main source of organic and nitrogenous pollution, while runoff is the predominant source of Zn. For Cu, PAHs and TSS, the calculation underscores the major role played by in-sewer processes, specifically by sediment erosion, as a source of WWF pollution. A significant loss of dissolved metals was also observed during their transfer within the sewer network, likely as a consequence of the adsorption of dissolved metals on TSS and/or on sewer deposits. Moreover, the nature of eroded particles was examined and compared to the various sewer deposits. This comparison has highlighted that such particles exhibit similar organic and PAH contents to those measured in the organic layer, thus suggesting that the deposit eroded during a wet weather period is organic and of a nature comparable to the organic layer

  16. Accumulation of Mercury (Hg) and Methyl Mercury (Me Hg) Concentrations In Selected Marine Biota From Manjung Coastal Area

    International Nuclear Information System (INIS)

    Anisa Abdullah; Zaini Hamzah; Ahmad Saat; Ahmad Saat; Abd Khalik Wood; Masitah Alias

    2015-01-01

    Level of mercury (Hg) and methyl mercury (Me Hg) in marine ecosystem has been intensively studied as these toxic substances could be accumulated in the marine biota. This study is focusing on the Hg and Me Hg content in marine biota in Manjung coastal area. This area has high potential being affected by rapid socio-economic development of Manjung area such as heavy industrial activities (coal fired power plant, iron foundries, port development and factories), agricultural runoff, waste and toxic discharge, quarries, housing constructions. It may has a potential risk when released into the atmosphere and dispersed on the surface of water and continue deposited at the bottom of the water and sediment and being absorbed by marine biota. The concentrations of Hg and Me Hg in marine ecosystem can be adversely affect human health when it enters the food chain. In this study, five species of marine biota including Johnius dussumieri (Ikan Gelama), Pseudorhombus malayanus (Ikan Sebelah), Arius maculatus (Ikan Duri), Portunus pelagicus (Ketam Renjong) and Charybdis natator (Ketam Salib) were collected during rainy and dry seasons. Measurements were carried out using inductively coupled plasma mass spectrometry (ICP-MS) technique. The Hg concentrations for dry and rainy season are in the range 65.13-102.12 μg/ kg and 75.75-106.10 μg/ kg respectively, while for MeHg concentrations for dry and rainy seasons are in the range 4.35-6.26 μg/ kg and 5.42-6.46 μg/ kg, respectively. These results are below the limit set by Malaysia Food Act (1983). Generally, marine biota from the Manjung coastal area is safe to consume due to low value of ingestion dose rate and health risk index (HRI) for human health. (author)

  17. Application of a rule-based model to estimate mercury exchange for three background biomes in the continental United States

    Science.gov (United States)

    Hartman, J.S.; Weisberg, P.J.; Pillai, R.; Ericksen, J.A.; Kuiken, T.; Lindberg, S.E.; Zhang, H.; Rytuba, J.J.; Gustin, M.S.

    2009-01-01

    Ecosystems that have low mercury (Hg) concentrations (i.e., not enriched or impactedbygeologic or anthropogenic processes) cover most of the terrestrial surface area of the earth yet their role as a net source or sink for atmospheric Hg is uncertain. Here we use empirical data to develop a rule-based model implemented within a geographic information system framework to estimate the spatial and temporal patterns of Hg flux for semiarid deserts, grasslands, and deciduous forests representing 45% of the continental United States. This exercise provides an indication of whether these ecosystems are a net source or sink for atmospheric Hg as well as a basis for recommendation of data to collect in future field sampling campaigns. Results indicated that soil alone was a small net source of atmospheric Hg and that emitted Hg could be accounted for based on Hg input by wet deposition. When foliar assimilation and wet deposition are added to the area estimate of soil Hg flux these biomes are a sink for atmospheric Hg. ?? 2009 American Chemical Society.

  18. Atmospheric Deposition: Sampling Procedures, Analytical Methods, and Main Recent Findings from the Scientific Literature

    Directory of Open Access Journals (Sweden)

    M. Amodio

    2014-01-01

    Full Text Available The atmosphere is a carrier on which some natural and anthropogenic organic and inorganic chemicals are transported, and the wet and dry deposition events are the most important processes that remove those chemicals, depositing it on soil and water. A wide variety of different collectors were tested to evaluate site-specificity, seasonality and daily variability of settleable particle concentrations. Deposition fluxes of POPs showed spatial and seasonal variations, diagnostic ratios of PAHs on deposited particles, allowed the discrimination between pyrolytic or petrogenic sources. Congener pattern analysis and bulk deposition fluxes in rural sites confirmed long-range atmospheric transport of PCDDs/Fs. More and more sophisticated and newly designed deposition samplers have being used for characterization of deposited mercury, demonstrating the importance of rain scavenging and the relatively higher magnitude of Hg deposition from Chinese anthropogenic sources. Recently biological monitors demonstrated that PAH concentrations in lichens were comparable with concentrations measured in a conventional active sampler in an outdoor environment. In this review the authors explore the methodological approaches used for the assessment of atmospheric deposition, from the analysis of the sampling methods, the analytical procedures for chemical characterization of pollutants and the main results from the scientific literature.

  19. Study of the odd mass transition nuclei: 185Hg, 187Hg, 189Hg and 183Ir

    International Nuclear Information System (INIS)

    Zerrouki, A.

    1979-01-01

    The radioactive decay of 185 Tl, 186 Tl, 187 Tl has been studied on the isotope separator Isocele II working on line with the Orsay synchrocyclotron from Au( 3 He,xn) reactions: the emitted α lines have been measured and the main γ lines belonging to the 187 Tl→ 187 Hg decay have been identified. The 185 Hg, 187 Hg, 189 Hg high spin states have been studied using the following (HI,xn) reactions obtained on the Strasbourg MP Tandem: 168 Er( 24 Mg,xn) 187 Hg, 188 Hg, 166 Er( 24 Mg,xn) 185 Hg, 186 Hg, 157 Gd( 32 S,xn) 184 Hg, 185 Hg, 158 Gd( 32 S,5n) 185 Hg and 175 Lu( 19 F,5n) 189 Hg. The excitation functions are indicated and a high spin level scheme of 189 Hg is proposed: it is compared to the 'quasiparticle + triaxial rotor' model predictions. A level scheme of 183 Ir is proposed from the data collected at Isolde II (CERN) by Dr. SCHUCK: it is analysed within the framework of the same theoretical model used above [fr

  20. Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia).

    Science.gov (United States)

    Gustaytis, M A; Myagkaya, I N; Chumbaev, A S

    2018-07-01

    Gold-bearing polymetallic Cu-Zn deposits of sulphur-pyrite ores were discovered in the Novo-Ursk region in the 1930s. The average content of mercury (Hg) was approximately 120 μg/g at the time. A comprehensive study of Hg distribution in waste of metal ore enrichment industry was carried out in the cold season on the tailing dump site and in adjacent areas. Mercury concentration in among snow particulate, dissolved and colloid fractions was determined. The maximal Hg content in particulate fraction from the waste tailing site ranged 230-573 μg/g. Such indices as the frequency of aerosol dust deposition events per units of time and area, enrichment factor and the total load allowed to establish that the territory of the tailing waste dump site had a snow cover highly contaminated with dust deposited at a rate of 247-480 mg/(m 2 ∙day). Adjacent areas could be considered as area with low Hg contamination rate with average deposition rate of 30 mg/(m 2 ∙day). The elemental composition of the aerosol dust depositions was determined as well, which allowed to reveal the extent of enrichment waste dispersion throughout adjacent areas. The amount of Hg entering environment with snowmelt water discharge was estimated. As a result of snowmelting, in 2014 the nearest to the dump site hydrographic network got Hg as 7.1 g with colloids and as 5880 g as particles. The results obtained allowed to assess the degree of Hg contamination of areas under the impact of metal enrichment industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. The impact of wet flue gas desulfurization scrubbing on mercury emissions from coal-fired power stations.

    Science.gov (United States)

    Niksa, Stephen; Fujiwara, Naoki

    2005-07-01

    This article introduces a predictive capability for Hg retention in any Ca-based wet flue gas desulfurization (FGD) scrubber, given mercury (Hg) speciation at the FGD inlet, the flue gas composition, and the sulphur dioxide (SO2) capture efficiency. A preliminary statistical analysis of data from 17 full-scale wet FGDs connects flue gas compositions, the extents of Hg oxidation at FGD inlets, and Hg retention efficiencies. These connections clearly signal that solution chemistry within the FGD determines Hg retention. A more thorough analysis based on thermochemical equilibrium yields highly accurate predictions for total Hg retention with no parameter adjustments. For the most reliable data, the predictions were within measurement uncertainties for both limestone and Mg/lime systems operating in both forced and natural oxidation mode. With the U.S. Environmental Protection Agency's (EPA) Information Collection Request (ICR) database, the quantitative performance was almost as good for the most modern FGDs, which probably conform to the very high SO2 absorption efficiencies assumed in the calculations. The large discrepancies for older FGDs are tentatively attributed to the unspecified SO2 capture efficiencies and operating temperatures and to the possible elimination of HCl in prescrubbers. The equilibrium calculations suggest that Hg retention is most sensitive to inlet HCl and O2 levels and the FGD temperature; weakly dependent on SO2 capture efficiency; and insensitive to HgCl2, NO, CA:S ratio, slurry dilution level in limestone FGDs, and MgSO3 levels in Mg/lime systems. Consequently, systems with prescrubbers to eliminate HCl probably retain less Hg than fully integrated FGDs. The analysis also predicts re-emission of Hg(O) but only for inlet O2 levels that are much lower than those in full-scale FGDs.

  2. Hydrogenated amorphous silicon photoresists for HgCdTe patterning

    Energy Technology Data Exchange (ETDEWEB)

    Hollingsworth, R.E.; DeHart, C.; Wang, L.; Dinan, J.H.; Johnson, J.N.

    1997-07-01

    A process to use a hydrogenated amorphous silicon (a-Si:H) film as a dry photoresist mask for plasma etching of HgCdTe has been demonstrated. The a-Si:H films were deposited using standard plasma enhanced chemical vapor deposition with pure silane as the source gas. X-ray photoelectron spectra show that virtually no oxide grows on the surface of an a-Si:H film after 3 hours in air, indicating that it is hydrogen passivated. Ultraviolet light frees hydrogen from the surface and enhances the oxide growth rate. A pattern of 60 micron square pixels was transferred from a contact mask to the surface of an a-Si:H film by ultraviolet enhanced oxidation in air. For the conditions used, the oxide thickness was 0.5--1.0 nm. Hydrogen plasmas were used to develop this pattern by removing the unexposed regions of the film. A hydrogen plasma etch selectivity between oxide and a-Si:H of greater than 500:1 allows patterns as thick as 700 nm to be generated with this very thin oxide. These patterns were transferred into HgCdTe by etching in an electron cyclotron resonance plasma. An etch selectivity between a-Si:H and HgCdTe of greater than 4:1 was observed after etching 2,500 nm into the HgCdTe. All of the steps are compatible with processing in vacuum.

  3. Thermally stimulated currents in α-HgI2 polycrystalline films

    International Nuclear Information System (INIS)

    Shiu, Y.-T.; Huang, T.-J.; Shih, C.-T.; Su, C.-F.; Lan, S.-M.; Chiu, K.-C.

    2007-01-01

    A study of thermally stimulated currents (TSC) is applied to α-HgI 2 polycrystalline films grown by physical vapour deposition with various thermal boundary conditions. Five TSC peaks are clearly observed and numerically fitted. The activation energy and the density of the trapping centre that corresponds to each TSC peak are then calculated. Finally, the effects of the deposition conditions on the TSC results are discussed

  4. Morphologies and wetting properties of copper film with 3D porous micro-nano hierarchical structure prepared by electrochemical deposition

    International Nuclear Information System (INIS)

    Wang, Hongbin; Wang, Ning; Hang, Tao; Li, Ming

    2016-01-01

    Highlights: • A 3D porous micro-nano hierarchical structure Cu films were prepared. • The evolution of morphology and wettability with deposition time was reported. • The effects of EDA on the microscopic morphology were revealed. • A high contact angle of 162.1° was measured when deposition time is 5 s. • The mechanism of super-hydrophobicity was illustrated by two classical models. - Abstract: Three-dimensional porous micro-nano hierarchical structure Cu films were prepared by electrochemical deposition with the Hydrogen bubble dynamic template. The morphologies of the deposited films characterized by Scanning Electronic Microscopy (SEM) exhibit a porous micro-nano hierarchical structure, which consists of three levels in different size scales, namely the honeycomb-like microstructure, the dendritic substructure and the nano particles. Besides, the factors which influenced the microscopic morphology were studied, including the deposition time and the additive Ethylene diamine. By measuring the water contact angle, the porous copper films were found to be super-hydrophobic. The maximum of the contact angles could reach as high as 162.1°. An empirical correlation between morphologies and wetting properties was revealed for the first time. The pore diameter increased simultaneously with the deposition time while the contact angle decreased. The mechanism was illustrated by two classical models. Such super-hydrophobic three-dimensional hierarchical micro-nano structure is expected to have practical application in industry.

  5. Dissolved organic nitrogen in wet deposition in a coastal city (Keelung) of the southern East China Sea: Origin, molecular composition and flux

    Science.gov (United States)

    Chen, You-Xin; Chen, Hung-Yu; Wang, Wei; Yeh, Jun-Xian; Chou, Wen-Chen; Gong, Gwo-Ching; Tsai, Fu-Jung; Huang, Shih-Jen; Lin, Cheng-Ting

    2015-07-01

    In this study, we collected and analyzed rainwater samples from Keelung, Taiwan, which is a coastal city located south of the East China Sea (ECS). From January 2012 until June 2013, 78 rainwater samples were collected over an 18-month period and were analyzed to examine the total dissolved nitrogen (TDN) and major ions in the rainwater. TDN can be divided into dissolved inorganic nitrogen (DIN) and dissolved organic nitrogen (DON). This study, which focused on the composition of DON, is the first study to employ ultrafiltration to separate DON in wet deposition into low molecular weight-DON (LMW-DON) and high molecular weight-DON (HMW-DON). The concentrations of dissolved nitrogen species observed in the research area between November 2012 and April 2013 were relatively high, whereas those observed between May 2013 and October 2012 were relatively low. The patterns of changes over time were similar to those of non-sea-salt (nss) ions. The concentration of nss-ions was high during months in which the total dissolved nitrogen concentration was also high, which occur frequently during the spring and winter. In addition, the concentration of nss-ions was low during months in which the TDN concentration was low, which primarily occurs during the summer. The amounts of DIN and DON accounted for 63 ± 5% and 37 ± 5% of the TDN, respectively, and the percentage of the DIN was higher during the spring and winter. The concentrations of LMW-DON and HMW-DON, which accounted for 84 ± 3% and 16 ± 3% of the DON, respectively, were both high in the winter and low in the summer. The percentage of LMW-DON increased in the summer, possibly because of the numerous oceanic air masses and typhoons. Furthermore, the percentage of HMW-DON increased in the spring, potentially due to biomass burning during agricultural activities. Regarding the wet deposition fluxes, the DIN (197 ± 10.27 mmol m-2 yr-1) and DON (129 ± 6.82 mmol m-2 yr-1) accounted for approximately 64% and 36% of the

  6. A 20-year simulated climatology of global dust aerosol deposition.

    Science.gov (United States)

    Zheng, Yu; Zhao, Tianliang; Che, Huizheng; Liu, Yu; Han, Yongxiang; Liu, Chong; Xiong, Jie; Liu, Jianhui; Zhou, Yike

    2016-07-01

    Based on a 20-year (1991-2010) simulation of dust aerosol deposition with the global climate model CAM5.1 (Community Atmosphere Model, version 5.1), the spatial and temporal variations of dust aerosol deposition were analyzed using climate statistical methods. The results indicated that the annual amount of global dust aerosol deposition was approximately 1161±31Mt, with a decreasing trend, and its interannual variation range of 2.70% over 1991-2010. The 20-year average ratio of global dust dry to wet depositions was 1.12, with interannual variation of 2.24%, showing the quantity of dry deposition of dust aerosol was greater than dust wet deposition. High dry deposition was centered over continental deserts and surrounding regions, while wet deposition was a dominant deposition process over the North Atlantic, North Pacific and northern Indian Ocean. Furthermore, both dry and wet deposition presented a zonal distribution. To examine the regional changes of dust aerosol deposition on land and sea areas, we chose the North Atlantic, Eurasia, northern Indian Ocean, North Pacific and Australia to analyze the interannual and seasonal variations of dust deposition and dry-to-wet deposition ratio. The deposition amounts of each region showed interannual fluctuations with the largest variation range at around 26.96% in the northern Indian Ocean area, followed by the North Pacific (16.47%), Australia (9.76%), North Atlantic (9.43%) and Eurasia (6.03%). The northern Indian Ocean also had the greatest amplitude of interannual variation in dry-to-wet deposition ratio, at 22.41%, followed by the North Atlantic (9.69%), Australia (6.82%), North Pacific (6.31%) and Eurasia (4.36%). Dust aerosol presented a seasonal cycle, with typically strong deposition in spring and summer and weak deposition in autumn and winter. The dust deposition over the northern Indian Ocean exhibited the greatest seasonal change range at about 118.00%, while the North Atlantic showed the lowest seasonal

  7. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    Science.gov (United States)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    measured during the first cruise ranges from about 110 to 1500 ng · m-2day-1. This range is 1-2 order of magnitude higher than most of marine environments (Pacific Ocean, Mediterranean Sea, Artic Ocean) and some important polluted marine areas, such as the Tokyo Bay (19-259 ng · m-2day-1)b and the Yellow Sea (156-722 ng · m-2day-1)c. Further estimates on Hg atmospheric deposition flux (wet and dry) and biomonitoring are required for finally assessing a mass balance of Hg in Augusta basin. aLindberg et al., 2007. A Journal of the Human Environment, 3, 19-33. bNarukawa et al., 2006. Journal of Oceanography, 62, 249-257. cCi et al., 2011. Atmosphere Chemistry and Physics, 11, 2881-2892.

  8. Organ-specific accumulation, transportation, and elimination of methylmercury and inorganic mercury in a low Hg accumulating fish.

    Science.gov (United States)

    Peng, Xiaoyan; Liu, Fengjie; Wang, Wen-Xiong

    2016-08-01

    Low mercury (Hg) concentrations down to several nanograms Hg per gram of wet tissue are documented in certain fish species such as herbivorous fish, and the underlying mechanisms remain speculative. In the present study, bioaccumulation and depuration patterns of inorganic Hg(II) and methylmercury (MeHg) in a herbivorous rabbitfish Siganus canaliculatus were investigated at organ and subcellular levels following waterborne or dietary exposures. The results showed that the efflux rate constants of Hg(II) and MeHg were 0.104 d(-1) and 0.024 d(-1) , respectively, and are probably the highest rate constants recorded in fish thus far. The dietary MeHg assimilation efficiency (68%) was much lower than those in other fish species (∼90%). The predominant distribution of MeHg in fish muscle was attributable to negligible elimination of MeHg from muscle (Hg(II) was much more slowly distributed into muscle but was efficiently eliminated by the intestine (0.13 d(-1) ). Subcellular distribution indicated that some specific membrane proteins in muscle were the primary binding pools for MeHg, and both metallothionein-like proteins and Hg-rich granules were the important components in eliminating both MeHg and Hg(II). Overall, the present study's results suggest that the low tissue Hg concentration in the rabbitfish was partly explained by its unique biokinetics. Environ Toxicol Chem 2016;35:2074-2083. © 2016 SETAC. © 2016 SETAC.

  9. The role of ENSO in determining the emission, the speciation and the resulting fate of Hg from Biomass Burning, a lesson from the recent past

    Science.gov (United States)

    De Simone, F.; Hedgecock, I. M.; Cinnirella, S.; Carbone, F.; Sprovieri, F.; Pirrone, N.

    2017-12-01

    The burning of vegetation is an environmental process that impacts the chemical composition of troposphere on a global scale, and has significant consequences on atmospheric pollution and climate. ENSO influences the alternating patterns of drier and wetter periods in almost all continents, therefore causing a rise in, and varying the timing of, fire activity in numerous regions and ecosystems (Le Page et al). A large amount of legacy Hg is currently buffered in different environmental compartments, including soil and vegetation, due to past and current anthropogenic processes and activities. Biomass Burning (BB) is a major source of atmospheric Hg, and a main driver in recycling this legacy Hg which is eventually re-deposited over land and oceans. Hg from BB is emitted mainly as Hg(0)(g), but a large fraction (up to 30% and more) is released as Hg bound to particulate matter, Hg(p), which is more likely to be deposited close to the fire activity (De Simone et al). Thus, speciation is one of the most important factors in determining the redistribution of Hg, and of the subsequent geographical distribution of its atmospheric deposition. Although the drivers controlling speciation remain uncertain, there is evidence that it depends on burn characteristics and fuel moisture content, which depends on the climatological characteristics of the regions where BB occurs (Obrist et al). The areas where atmospheric Hg is deposited depends ultimately on atmospheric transport, transformation and precipitation patterns, hence the fate of Hg emitted from BB is determined by a complex series of interacting processes and mechanisms, which begin with the release of Hg and continue until deposition. Many of these processes are influenced by ENSO. This modeling study analyses the deposition of Hg from BB using different satellite imagery based products, spanning a number of years, characterized by different ENSO regimes, to evaluate how it impacts BB, the speciation of emitted Hg, and

  10. Avoided critical behavior in dynamically forced wetting.

    Science.gov (United States)

    Snoeijer, Jacco H; Delon, Giles; Fermigier, Marc; Andreotti, Bruno

    2006-05-05

    A solid object can be coated by a nonwetting liquid since a receding contact line cannot exceed a critical speed. In this Letter we study the dynamical wetting transition at which a liquid film gets deposited by withdrawing a vertical plate out of a liquid reservoir. It has recently been predicted that this wetting transition is critical with diverging time scales and coincides with the disappearance of stationary menisci. We demonstrate experimentally and theoretically that the transition is due to the formation of a solitary wave, well below the critical point. As a consequence, relaxation times remain finite at threshold. The structure of the liquid deposited on the plate involves a capillary ridge that does not trivially match the Landau-Levich film.

  11. Mercury contamination in the Laurentian Great Lakes region: Introduction and overview

    International Nuclear Information System (INIS)

    Wiener, James G.; Evers, David C.; Gay, David A.; Morrison, Heather A.; Williams, Kathryn A.

    2012-01-01

    The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land–water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish. - Highlights: ► We describe a bi-national synthesis of Hg data from the Great Lakes region. ► Emission controls have reduced Hg inputs to inland lakes about 20% since the 1980s. ► Wet and dry deposition and evasion are regionally important atmospheric Hg fluxes. ► Land use affects Hg inputs to surface waters and bioaccumulation of methylmercury. ► In some waters, Hg levels in yellow perch pose risks to fish, wildlife, and humans. - A synthesis of Hg data from the Great Lakes region reveals the chronology of contamination; the importance of wet and dry deposition and evasion to Hg budgets; the influence of land–water linkages; bioaccumulation in aquatic foods webs; and risks associated with Hg in an important prey fish.

  12. Hg0 and HgCl2 Reference Gas Standards: ?NIST Traceability ...

    Science.gov (United States)

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the true concentrations of Hg0 and HgCl2 reference gases produced from high quality, NIST-traceable, commercial Hg0 and HgCl2 generators. This presentation will also discuss the availability of HCl and Hg0 compressed reference gas standards as a result of EPA's recently approved Alternative Methods 114 and 118. Gaseous elemental mercury (Hg0) and oxidized mercury (HgCl2) reference standards are integral to the use of mercury continuous emissions monitoring systems (Hg CEMS) for regulatory compliance emissions monitoring. However, a quantitative disparity of approximately 7-10% has been observed between commercial Hg0 and HgCl2 reference gases which currently limits the use of (HgCl2) reference gas standards. Resolving this disparity would enable the expanded use of (HgCl2) reference gas standards for regulatory compliance purposes.

  13. Radiocaesium activity in rape oil and in rape cake after a wet deposition event

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, Y.; Rappe-George, M.; Bengtsson, S. [Department of Soil and Environment (Sweden)

    2014-07-01

    After a release of radionuclides in agricultural areas there can be concerns on the levels of radionuclides in food products produced. The uptake of radionuclides via the above ground plant parts is a very important transport route into the food chain for humans as caesium is relatively mobile inside plants. In the production of rape oil the use of a processing factor (Pf) is used to estimate the activity concentration of radioactivity in the final oil product based on the activity concentration in rape seeds. The processing factor has been estimated to be 0.004 for caesium in rape oil by IAEA, and is based on a limited numbers of studies (1). In this project we analysed the activity concentration of radiocaesium ({sup 134}Cs) in rape oil and in rape cake from rape seeds contaminated after a wet deposition event with {sup 134}Cs. With the information of activity concentration of {sup 134}Cs in rape oil and in rape cake, we calculated the Pf-value and confirm or suggest new enhanced Pf-value. We analysed the activity concentration of {sup 134}Cs in rape oil and in rape cake from spring oilseed rape seeds (Brassica napus L.) that had been contaminated experimentally by wet deposited {sup 134}Cs in an earlier experiment by Bengtsson et al. (2013). The estimation of activity concentration of {sup 134}Cs in rape oil and in rape cake was achieved by performing extraction of the oil (and other extractable compounds) from the seeds based on the Randall extraction method (Randall, 1974) using petroleum ether as extraction chemical. The extracted oil and the rape cake samples were weighed and the activity concentration was measured with High-Purity Germanium (HPGe) detectors. Pf-values were calculated by dividing the measured activity concentration in rape oil after extraction by the activity concentration in oilseed rape seeds before extraction. Results from the present study will be presented at the international conference on radioecology and environmental radioactivity

  14. Methylation of Hg downstream from the Bonanza Hg mine, Oregon

    Science.gov (United States)

    Gray, John E.; Hines, Mark E.; Krabbenhoft, David P.; Thoms, Bryn

    2012-01-01

    Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62ng/g and were highly elevated compared to regional baseline concentrations (0.11-0.82ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2=0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270ng/L and were also elevated compared to baselines, but all were below the 770ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8ng/L, which were elevated compared to regional baseline sites upstream and downstream

  15. Effects of historical and modern mining on mercury deposition in southeastern Peru.

    Science.gov (United States)

    Beal, Samuel A; Jackson, Brian P; Kelly, Meredith A; Stroup, Justin S; Landis, Joshua D

    2013-11-19

    Both modern anthropogenic emissions of mercury (Hg), primarily from artisanal and small-scale gold mining (ASGM), and preindustrial anthropogenic emissions from mining are thought to have a large impact on present-day atmospheric Hg deposition. We study the spatial distribution of Hg and its depositional history over the past ∼400 years in sediment cores from lakes located regionally proximal (∼90-150 km) to the largest ASGM in Peru and distal (>400 km) to major preindustrial mining centers. Total Hg concentrations in surface sediments from fourteen lakes are typical of remote regions (10-115 ng g(-1)). Hg fluxes in cores from four lakes demonstrate preindustrial Hg deposition in southeastern Peru was spatially variable and at least an order of magnitude lower than previously reported fluxes in lakes located closer to mining centers. Average modern (A.D. 2000-2011) Hg fluxes in these cores are 3.4-6.9 μg m(-2) a(-1), compared to average preindustrial (A.D. 1800-1850) fluxes of 0.8-2.5 μg m(-2) a(-1). Modern Hg fluxes determined from the four lakes are on average 3.3 (±1.5) times greater than their preindustrial fluxes, similar to those determined in other remote lakes around the world. This agreement suggests that Hg emissions from ASGM are likely not significantly deposited in nearby down-wind regions.

  16. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Dvonch, J. Timothy [University of Michigan, Air Quality Laboratory, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gratz, Lynne E. [University of Washington-Bothell, 18115 Campus Way NE, Bothell, WA 98011 (United States); Landis, Matthew S. [U.S. EPA, Office of Research and Development, Research Triangle Park, NC 27709 (United States)

    2015-01-01

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ({sup 207}Pb/{sup 206}Pb = 0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ({sup 87}Sr/{sup 86}Sr = 0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ{sup 202}Hg = − 1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution. - Highlights: • We measured Pb, Sr, and Hg isotopes in precipitation from the Great Lakes region. • Pb isotopes suggest that deposition was impacted by coal combustion and metal production. • Sr isotope ratios vary regionally, likely due to soil dust and coal fly ash. • Hg isotopes vary due to fractionation occurring within facilities and the atmosphere. • Isotope results support conclusions of previous trace element receptor modeling.

  17. Influence of annealing temperature on the structural, mechanical and wetting property of TiO2 films deposited by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Pradhan, Swati S.; Sahoo, Sambita; Pradhan, S.K.

    2010-01-01

    TiO 2 films have been deposited on silicon substrates by radio frequency magnetron sputtering of a pure Ti target in Ar/O 2 plasma. The TiO 2 films deposited at room temperature were annealed for 1 h at different temperatures ranging from 400 o C to 800 o C. The structural, morphological, mechanical properties and the wetting behavior of the as deposited and annealed films were obtained using Raman spectroscopy, atomic force microscopy, transmission electron microscopy, nanoindentation and water contact angle (CA) measurements. The as deposited films were amorphous, and the Raman results showed that anatase phase crystallization was initiated at annealing temperature close to 400 o C. The film annealed at 400 o C showed higher hardness than the film annealed at 600 o C. In addition, the wettability of film surface was enhanced with an increase in annealing temperature from 400 o C to 800 o C, as revealed by a decrease in water CA from 87 o to 50 o . Moreover, the water CA of the films obtained before and after UV light irradiation revealed that the annealed films remained more hydrophilic than the as deposited film after irradiation.

  18. 196Hg and 202Hg isotopic ratios in chondrites: revisited

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.

    1976-01-01

    Additional evidence for an isotopically anomalous Hg fraction in unequilibrated meteorites has been obtained using neutron activation to produce 196 Hg and 202 Hg followed by stepwise heating to extract the Hg. In the latest experiments Allende matrix samples released the anomalous Hg but various high-temperature inclusions did not. Nucleogenetic processes are suggested as the probable cause of the anomaly. (Auth.)

  19. Mechanism of deposit formation on fuel-wetted metal surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Stavinoha, L.L.; Westbrook, S.R.; McInnis, L.A. [Southwest Research Institute, San Antonio, TX (United States)

    1995-05-01

    Experiments were performed in a Single-Tube Heat Exchanger (STHE) apparatus and a Hot Liquid Process Simulator (HLPS) configured and operated to meet Jet Fuel Thermal Oxidation Tester (JFTOT) ASTM D 3241 requirements. The HLPS-JFTOT heater tubes used were 1018 mild steel, 316 stainless steel (SS), 304 stainless steel (SS), and 304 SS tubes coated with aluminum, magnesium, gold, and copper. A low-sulfur Jet A fuel with a breakpoint temperature of 254{degrees}C was used to create deposits on the heater tubes at temperatures of 300{degrees}C, 340{degrees}C, and 380{degrees}C. Deposit thickness was measured by dielectric breakdown voltage and Auger ion milling. Pronounced differences between the deposit thickness measuring techniques suggested that both the Auger milling rate and the dielectric strength of the deposit may be affected by deposit morphology/composition (such as metal ions that may have become included in the bulk of the deposit). Carbon burnoff data were obtained as a means of judging the validity of DMD-derived deposit evaluations. ESCA data suggest that the thinnest deposit was on the magnesium-coated test tube. The Scanning Electron Microscope (SEM) photographs showed marked variations in the deposit morphology and the results suggested that surface composition has a significant effect on the mechanism of deposition. The most dramatic effect observed was that the bulk of deposits moved to tube locations of lower temperature as the maximum temperature of the tube was increased from 300{degrees} to 380{degrees}C, also verified in a single-tube heat exchanger. The results indicate that the deposition rate and quantity at elevated temperatures is not completely temperature dependent, but is limited by the concentration of dissolved oxygen and/or reactive components in the fuel over a temperature range.

  20. Large-Scale Mercury Control Technology Testing for Lignite-Fired Utilities - Oxidation Systems for Wet FGD

    Energy Technology Data Exchange (ETDEWEB)

    Steven A. Benson; Michael J. Holmes; Donald P. McCollor; Jill M. Mackenzie; Charlene R. Crocker; Lingbu Kong; Kevin C. Galbreath

    2007-03-31

    Mercury (Hg) control technologies were evaluated at Minnkota Power Cooperative's Milton R. Young (MRY) Station Unit 2, a 450-MW lignite-fired cyclone unit near Center, North Dakota, and TXU Energy's Monticello Steam Electric Station (MoSES) Unit 3, a 793-MW lignite--Powder River Basin (PRB) subbituminous coal-fired unit near Mt. Pleasant, Texas. A cold-side electrostatic precipitator (ESP) and wet flue gas desulfurization (FGD) scrubber are used at MRY and MoSES for controlling particulate and sulfur dioxide (SO{sub 2}) emissions, respectively. Several approaches for significantly and cost-effectively oxidizing elemental mercury (Hg{sup 0}) in lignite combustion flue gases, followed by capture in an ESP and/or FGD scrubber were evaluated. The project team involved in performing the technical aspects of the project included Babcock & Wilcox, the Energy & Environmental Research Center (EERC), the Electric Power Research Institute, and URS Corporation. Calcium bromide (CaBr{sub 2}), calcium chloride (CaCl{sub 2}), magnesium chloride (MgCl{sub 2}), and a proprietary sorbent enhancement additive (SEA), hereafter referred to as SEA2, were added to the lignite feeds to enhance Hg capture in the ESP and/or wet FGD. In addition, powdered activated carbon (PAC) was injected upstream of the ESP at MRY Unit 2. The work involved establishing Hg concentrations and removal rates across existing ESP and FGD units, determining costs associated with a given Hg removal efficiency, quantifying the balance-of-plant impacts of the control technologies, and facilitating technology commercialization. The primary project goal was to achieve ESP-FGD Hg removal efficiencies of {ge}55% at MRY and MoSES for about a month.

  1. Size distribution of atmospheric Pb and 210Pb in rural New Jersey: implications for wet and dry deposition

    International Nuclear Information System (INIS)

    Knuth, R.H.; Knutson, E.O.; Feely, H.W.; Volchok, H.L.

    1983-01-01

    High volume cascade impactor samples taken during spring, 1980, at the Chester sampling station in northern New Jersey showed a small but persistent difference in the size distributions of Pb and 210 Pb. On the average, 69% of Pb was below 0.58 μm and 12% was above 3.45 μm. For 210 Pb, the corresponding figures were 71% and 2.8%. These 210 Pb data indicate larger particles than found in Colorado, but smaller than those found over the Mediterranean Sea. The average air concentrations for the two species were 111 ng/m 3 (Pb) and 10.9 fCi/m 3 ( 210 Pb), in good agreement with other reported results for rural northeast areas. Experimental results imply a factor of three difference in dry deposition velocity between the two species, providing a qualitative explanation of a previously observed difference in wet/dry deposition of the two species. 19 references, 1 figure, 6 tables

  2. Seasonal and diurnal variations of Hg° over New England

    Directory of Open Access Journals (Sweden)

    J. D. Hegarty

    2008-03-01

    Full Text Available Factors influencing diurnal to interannual variability in Hg° over New England were investigated using multi-year measurements conducted by AIRMAP at the Thompson Farm (TF coastal site, an inland elevated site at Pac Monadnock (PM, and two month measurements on Appledore Island (AI in the Gulf of Maine. Mixing ratios of Hg° at TF showed distinct seasonality with maxima in March and minima in October. Hg° at AI tracked the trend at TF but with higher minima, while at PM the diurnal and annual cycles were dampened. In winter, Hg° was correlated most strongly with CO and NOy, indicative of anthropogenic emissions as their primary source. Our analysis indicates that Hg° had a regional background level of ~160 fmol/mol in winter, a dry deposition velocity of ~0.20 cm s−1 with a ~16 day lifetime in the coastal boundary layer in summer. The influence of oceanic emissions on ambient Hg° levels was identified using the Hg°-CHBr3 correlation at both TF and AI. Moreover, the lower Hg° levels and steeper decreasing warm season trend at TF (0.5–0.6 fmol/mol d−1 compared to PM (0.2–0.3 fmol/mol d−1 likely reflected the impact of marine halogen chemistry. Large interannual variability in warm season Hg° levels in 2004 versus 2005/2006 may be due to the role of precipitation patterns in influencing surface evasion of Hg°. In contrast, changes in wintertime maximum levels of Hg° were small compared to drastic reductions in CO, CO2, NOy, and SO2 from 2004/2005 to 2006/2007. These trends could be explained by a homogeneous distribution of Hg° over North American in winter due to its long lifetime and/or rapid removal of reactive mercury from anthropogenic sources. We caution that during warmer winters, the Hg°-CO slope possibly reflects Hg° loss relative to changes in CO more than their emission ratio.

  3. Identification sources of pollen spectra in dry and wet atmospheric deposition in the forest-steppe zone of Altai Krai (Russia)

    Science.gov (United States)

    Ryabchinskaya, Natalia; Nenasheva, Galina; Malygina, Natalia

    2015-04-01

    Pollen spectra circulating in the atmosphere contain the important information about primary biological aerosol particles (PBAP), worldwide interest in which has significantly increased in recent decades [Despres, 2012]. It is related to the fact that many researchers suggest primary aerosols as a condensation nucleus significantly affected on the formation of clouds and precipitation and, consequently, on the hydrological cycle and climate, especially at the regional level [Andreae et al., 2008; Poschlet et al., 2010; Prenni et al., 2009]. We present the comparison of pollen spectra obtained during the dry and wet atmospheric deposition in Altai Krai (Russia) and identification of the sources/regions of their receipts. Altai Krai is located in the center of the Eurasian continent, at the border of several natural and climatic zones. A significant part of the region's territory is characterized as a forest-steppe zone with a lot of natural and anthropogenic landscapes, accompanied by continental climate. It provides a rich diversity of natural vegetation and cultural associations. During last 10 years pollen grains has been monitored in the airspace of Barnaul city (the capital of Altai Krai) located in the central part of the forest-steppe zone). During the monitoring, the attempts to determine the origin of pollen spectra (local or introduced) were made as well. In the long-term average dates of the first wave of dusting in the spring season 2014 Burkard pollen traps were used in order to monitor the airspace in Barnaul, namely dry deposition of pollen grains [Nenasheva, 2013]. To estimate the wet deposition PBAP (pollen), which can reach 80% in the middle latitudes, precipitation sampler were installed close to Burkard pollen traps in order to sample precipitation. The samples were filtered through a filter having a pore diameter of 1 µm, then prepared and examined for the presence of pollen grains. The comparison of the results of pollen analysis of 10 samples

  4. A seasonal nitrogen deposition budget for Rocky Mountain National Park.

    Science.gov (United States)

    Benedict, K B; Carrico, C M; Kreidenweis, S M; Schichtel, B; Malm, W C; Collett, J L

    2013-07-01

    Nitrogen deposition is a concern in many protected ecosystems around the world, yet few studies have quantified a complete reactive nitrogen deposition budget including all dry and wet, inorganic and organic compounds. Critical loads that identify the level at which nitrogen deposition negatively affects an ecosystem are often defined using incomplete reactive nitrogen budgets. Frequently only wet deposition of ammonium and nitrate are considered, despite the importance of other nitrogen deposition pathways. Recently, dry deposition pathways including particulate ammonium and nitrate and gas phase nitric acid have been added to nitrogen deposition budgets. However, other nitrogen deposition pathways, including dry deposition of ammonia and wet deposition of organic nitrogen, still are rarely included. In this study, a more complete seasonal nitrogen deposition budget was constructed based on observations during a year-long study period from November 2008 to November 2009 at a location on the east side of Rocky Mountain National Park (RMNP), Colorado, USA. Measurements included wet deposition of ammonium, nitrate, and organic nitrogen, PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 microm, nitrate, and ammonium) concentrations of ammonium, nitrate, and organic nitrogen, and atmospheric gas phase concentrations of ammonia, nitric acid, and NO2. Dry deposition fluxes were determined from measured ambient concentrations and modeled deposition velocities. Total reactive nitrogen deposition by all included pathways was found to be 3.65 kg N x ha(-1) yr(-1). Monthly deposition fluxes ranged from 0.06 to 0.54 kg N x ha(-1)yr(-1), with peak deposition in the month of July and the least deposition in December. Wet deposition of ammonium and nitrate were the two largest deposition pathways, together contributing 1.97 kg N x ha(-1)yr(-1) or 54% of the total nitrogen deposition budget for this region. The next two largest deposition pathways were wet

  5. Mercury profiles in sediment from the marginal high of Arabian Sea: an indicator of increasing anthropogenic Hg input.

    Science.gov (United States)

    Chakraborty, Parthasarathi; Vudamala, Krushna; Chennuri, Kartheek; Armoury, Kazip; Linsy, P; Ramteke, Darwin; Sebastian, Tyson; Jayachandran, Saranya; Naik, Chandan; Naik, Richita; Nath, B Nagender

    2016-05-01

    Total Hg distributions and its speciation were determined in two sediment cores collected from the western continental marginal high of India. Total Hg content in the sediment was found to gradually increase (by approximately two times) towards the surface in both the cores. It was found that Hg was preferentially bound to sulfide under anoxic condition. However, redox-mediated reactions in the upper part of the core influenced the total Hg content in the sediment cores. This study suggests that probable increase in authigenic and allogenic Hg deposition attributed to the increasing Hg concentration in the surface sediment in the study area.

  6. Litter mercury deposition in the Amazonian rainforest.

    Science.gov (United States)

    Fostier, Anne Hélène; Melendez-Perez, José Javier; Richter, Larissa

    2015-11-01

    The objective of this work was to assess the flux of atmospheric mercury transferred to the soil of the Amazonian rainforest by litterfall. Calculations were based on a large survey of published and unpublished data on litterfall and Hg concentrations in litterfall samples from the Amazonian region. Litterfall based on 65 sites located in the Amazon rainforest averaged 8.15 ± 2.25 Mg ha(-1) y(-1). Average Hg concentrations were calculated from nine datasets for fresh tree leaves and ten datasets for litter, and a median concentration of 60.5 ng Hg g(-1) was considered for Hg deposition in litterfall, which averaged 49 ± 14 μg m(-2) yr(-1). This value was used to estimate that in the Amazonian rainforest, litterfall would be responsible for the annual removing of 268 ± 77 Mg of Hg, approximately 8% of the total atmospheric Hg deposition to land. The impact of the Amazon deforestation on the Hg biogeochemical cycle is also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Tomáš; Shanley, J.; Rohovec, Jan; Oulehle, F.; Krám, P.; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    Roč. 158, November (2015), s. 201-211 ISSN 0375-6742 R&D Projects: GA ČR(CZ) GAP210/11/1369 Institutional support: RVO:67985831 ; RVO:67985874 Keywords : Black Triangle * DOC quality * Filtered Hg * Hg/DOC ratio * Runoff fluxes * Seasonal changes * SUVA Subject RIV: DD - Geochemistry; DA - Hydrology ; Limnology (UH-J) Impact factor: 2.147, year: 2015

  8. A thermodynamic stability of bulk and epitaxial CdHgTe, ZnHgTe and MnHgTe solid solutions

    International Nuclear Information System (INIS)

    Dejbuk, V.G.; Dremlyuzhenko, S.G.; Ostapov, S.Eh.

    2005-01-01

    A thermodynamics of Cd 1-x Hg x Te, Zn x Hg 1-x Te and Mg x Hg 1-x Te alloys has been investigated for a delta-lattice parameter model. The phase diagrams obtained show the stability of Cd 1-x Hg x Te, Zn x Hg 1-x Te in the whole range of compositions, alongside with a miscibility gap for Mn x Hg 1-x Te being of 0.35 x Hg 1-x Te/CdTe and Mn x Hg 1-x Te/Cd 0.96 Zn 0.04 Te epitaxial films result in lowering critical temperatures and narrowing the miscibility gap [ru

  9. Spatial-temporal dynamics and sources of total Hg in a hydroelectric reservoir in the Western Amazon, Brazil.

    Science.gov (United States)

    Pestana, I A; Bastos, W R; Almeida, M G; de Carvalho, D P; Rezende, C E; Souza, C M M

    2016-05-01

    Damming rivers to construct hydroelectric reservoirs results in a series of impacts on the biogeochemical Hg cycle. For example, modifying the hydrodynamics of a natural watercourse can result in the suspension and transport of Hg deposits in the water column, which represents an exposure risk for biota. The objective of this study was to evaluate the influences of seasonality on the dispersion of total Hg in the Hydroelectric Power Plant (HPP)-Samuel Reservoir (Porto Velho/Brazil). Sampling campaigns were performed during the three following hydrological periods characteristic of the region: low (Oct/2011), ebbing (May/2012), and high (Feb/2013) water. Sediment profiles, suspended particulate matter (SPM), and aquatic macrophytes (Eicchornia crassipes and Oryza spp.) were collected, and their Hg concentrations and isotopic and elemental C and N signatures were determined. The drainage basin significantly influenced the SPM compositions during all the periods, with a small autochthonous influence from the reservoir during the low water. The highest SPM Hg concentrations inside the reservoir were observed during the high water period, suggesting that the hydrodynamics of this environment favor the suspension of fine SPM, which has a higher Hg adsorption capacity. The Hg concentrations in the sediment profiles were ten times lower than those in the SPM, indicating that large particles with low Hg concentrations were deposited to form the bottom sediment. Hg concentrations were higher in aquatic macrophyte roots than in their leaves and appeared to contribute to the formation of SPM during the low water period. In this environment, Hg transport mainly occurs in SPM from the Jamari River drainage basin, which is the primary source of Hg in this environment.

  10. Quantitative analysis of precipitation over Fukushima to understand the wet deposition process in March 2011

    Science.gov (United States)

    Yatagai, A.; Onda, Y.; Watanabe, A.

    2012-04-01

    The Great East Japan Earthquake caused a severe accident at the Fukushima-Daiichi nuclear power plant (NPP), leading to the emission of large amounts of radioactive pollutants into the environment. The transport and diffusion of these radioactive pollutants in the atmosphere caused a disaster for residents in and around Fukushima. Studies have sought to understand the transport, diffusion, and deposition process, and to understand the movement of radioactive pollutants through the soil, vegetation, rivers, and groundwater. However, a detailed simulation and understanding of the distribution of radioactive compounds depend on a simulation of precipitation and on the information on the timing of the emission of these radioactive pollutants from the NPP. Past nuclear expansion studies have demonstrated the importance of wet deposition in distributing pollutants. Hence, this study examined the quantitative precipitation pattern in March 2011 using rain-gauge observations and X-band radar data from Fukushima University. We used the AMeDAS rain-gauge network data of 1) the Japan Meteorological Agency (1273 stations in Japan) and 2) the Water Information System (47 stations in Fukushima prefecture) and 3) the rain-gauge data of the Environmental Information Network of NTT Docomo (30 stations in Fukushima) to construct 0.05-degree mesh data using the same method used to create the APHRODITE daily grid precipitation data (Yatagai et al., 2009). Since some AMeDAS data for the coastal region were lost due to the earthquake, the complementary network of 2) and 3) yielded better precipitation estimates. The data clarified that snowfall was observed on the night of Mar 15 into the morning of Mar 16 throughout Fukushima prefecture. This had an important effect on the radioactive contamination pattern in Fukushima prefecture. The precipitation pattern itself does not show one-on-one correspondence with the contamination pattern. While the pollutants transported northeast of the

  11. Model study on acidifying wet deposition in East Asia during wintertime

    Science.gov (United States)

    Han, Zhiwei; Ueda, Hiromasa; Sakurai, Tatsuya

    A regional air quality model (RAQM) has been developed and applied together with an aerosol model to investigate the states and characteristics of wet deposition in East Asia in December 2001. Model simulation is performed with monthly based emission inventory [Streets, D.G., Bond, T.C., Carmichael, G.R., Fernandes, S.D., Fu, Q., He, D., Klimont, Z., Nelson, S. M., Tsai, N.Y., Wang, M.Q., Woo, J.-H., Yarber, K.F., 2003. An inventory of gaseous and primary emissions in Asia in the year 2000. Journal of Geophysical Research 108(D21), 8809] and meteorological fields derived from MM5. Model results are compared with extensive monitoring data including relevant gaseous species and ions in precipitation. The validation demonstrates that this model system is able to represent most of the major physical and chemical processes involved in acid deposition and reproduces concentrations reasonably well, within a factor of 2 of observations in general. The study shows that the regions with pH less than 4.5 are mainly located in southwestern China, parts of the Yangtze Delta, the Yellow Sea and the Korean peninsula, indicating wide regions of acid precipitation in East Asia in wintertime. Japan islands mainly exhibit pH values of 4.5-5.0, whereas over wide areas of northern China, pH values are relatively high (⩾5.0) due to neutralization by alkaline materials such as calcium-laden particles and ammonia, which are more abundant in northern China than that in southern China. While acid rain over most of China is still characterized by sulfur-induced type, considerable areas of eastern China and the western Pacific Rim are found to be more affected by nitric acid than sulfuric acid in acidification of precipitation, which is supposed to result from a combined effect of variations in photochemistry and emission, suggesting the increasing importance of NO x emission in these regions.

  12. Zuotai and HgS differ from HgCl2 and methyl mercury in Hg accumulation and toxicity in weanling and aged rats.

    Science.gov (United States)

    Zhang, Bin-Bin; Li, Wen-Kai; Hou, Wei-Yu; Luo, Ya; Shi, Jing-Zhen; Li, Cen; Wei, Li-Xin; Liu, Jie

    2017-09-15

    Mercury sulfides are used in Ayurvedic medicines, Tibetan medicines, and Chinese medicines for thousands of years and are still used today. Cinnabar (α-HgS) and metacinnabar (β-HgS) are different from mercury chloride (HgCl 2 ) and methylmercury (MeHg) in their disposition and toxicity. Whether such scenario applies to weanling and aged animals is not known. To address this question, weanling (21d) and aged (450d) rats were orally given Zuotai (54% β-HgS, 30mg/kg), HgS (α-HgS, 30mg/kg), HgCl 2 (34.6mg/kg), or MeHg (MeHgCl, 3.2mg/kg) for 7days. Accumulation of Hg in kidney and liver, and the toxicity-sensitive gene expressions were examined. Animal body weight gain was decreased by HgCl 2 and to a lesser extent by MeHg, but unaltered after Zuotai and HgS. HgCl 2 and MeHg produced dramatic tissue Hg accumulation, increased kidney (kim-1 and Ngal) and liver (Ho-1) injury-sensitive gene expressions, but such changes are absent or mild after Zuotai and HgS. Aged rats were more susceptible than weanling rats to Hg toxicity. To examine roles of transporters in Hg accumulation, transporter gene expressions were examined. The expression of renal uptake transporters Oat1, Oct2, and Oatp4c1 and hepatic Oatp2 was decreased, while the expression of renal efflux transporter Mrp2, Mrp4 and Mdr1b was increased following HgCl 2 and MeHg, but unaffected by Zuotai and HgS. Thus, Zuotai and HgS differ from HgCl 2 and MeHg in producing tissue Hg accumulation and toxicity, and aged rats are more susceptible than weanling rats. Transporter expression could be adaptive means to reduce tissue Hg burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Electrophoretic deposition of titania nanoparticles: Wet density of ...

    Indian Academy of Sciences (India)

    Administrator

    field has a dual effect on the packing density of particles in the deposits formed by .... Saturated calomel electrode (SCE) and a platinum wire mesh were used as .... density of the deposit, the smaller the volume of liquid phase, which should be.

  14. Dual Nitrate Isotopes in Dry Deposition: Utility for Partitioning Nox Source Contributions to Landscape Nitrogen Deposition

    Science.gov (United States)

    Dry deposition is a major component of total nitrogen deposition and thus an important source of bioavailable nitrogen to ecosystems. However, relative to wet deposition, less is known regarding the sources and spatial variability of dry deposition. This is in part due to diffi...

  15. Hg concentrations in fish from coastal waters of California and Western North America

    Science.gov (United States)

    Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Joshua T.

    2016-01-01

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.

  16. Atmospheric gaseous elemental mercury (GEM concentrations and mercury depositions at a high-altitude mountain peak in south China

    Directory of Open Access Journals (Sweden)

    X. W. Fu

    2010-03-01

    Full Text Available China is regarded as the largest contributor of mercury (Hg to the global atmospheric Hg budget. However, concentration levels and depositions of atmospheric Hg in China are poorly known. Continuous measurements of atmospheric gaseous elemental mercury (GEM were carried out from May 2008 to May 2009 at the summit of Mt. Leigong in south China. Simultaneously, deposition fluxes of THg and MeHg in precipitation, throughfall and litterfall were also studied. Atmospheric GEM concentrations averaged 2.80±1.51 ng m−3, which was highly elevated compared to global background values but much lower than semi-rural and industrial/urban areas in China. Sources identification indicates that both regional industrial emissions and long range transport of Hg from central, south and southwest China were corresponded to the elevated GEM level. Seasonal and diurnal variations of GEM were observed, which reflected variations in source intensity, deposition processes and meteorological factors. Precipitation and throughfall deposition fluxes of THg and MeHg in Mt. Leigong were comparable or lower compared to those reported in Europe and North America, whereas litterfall deposition fluxes of THg and MeHg were higher compared to Europe and North America. This highlights the importance of vegetation to Hg atmospheric cycling. In th remote forest ecosystem of China, deposition of GEM via uptake of foliage followed by litterfall was very important for the depletion of atmospheric Hg. Elevated GEM level in ambient air may accelerate the foliar uptake of Hg through air which may partly explain the elevated litterfall deposition fluxes of Hg observed in Mt. Leigong.

  17. 199Hg Moessbauer measurements on mercury, alloys and Hg-fluorides

    International Nuclear Information System (INIS)

    Wurtinger, W.; Kankeleit, E.

    1979-01-01

    The Moessbauer effect on the 158 keV 5/2 - -1/2 - transition in 199 Hg, of the order of 10 ppm, has been studied using the current integration technique. The isomer shift between the Hg(I)- and Hg(II)-fluorides as well as the quadrupole splitting in Hg 2 Pt and Hg 2 F 2 are interpreted in terms of relativistic Hartree-Fock-Slater and Molecular Orbital calculations. The following nuclear parameters could be derived: Δ[r 2 ] = (3.2+-1.1) 10 -3 fm 2 and Q(5/2 - ) = (-0.8+-0.4)b. Evidence for an oblate triaxially deformed 199 Hg nucleus is derived from particle plus rotor calculations. (orig.)

  18. Soil as an archive of coal-fired power plant mercury deposition.

    Science.gov (United States)

    Rodríguez Martín, José Antonio; Nanos, Nikos

    2016-05-05

    Mercury pollution is a global environmental problem that has serious implications for human health. One of the most important sources of anthropogenic mercury emissions are coal-burning power plants. Hg accumulations in soil are associated with their atmospheric deposition. Our study provides the first assessment of soil Hg on the entire Spanish surface obtained from one sampling protocol. Hg spatial distribution was analysed with topsoil samples taken from 4000 locations in a regular sampling grid. The other aim was to use geostatistical techniques to verify the extent of soil contamination by Hg and to evaluate presumed Hg enrichment near the seven Spanish power plants with installed capacity above 1000 MW. The Hg concentration in Spanish soil fell within the range of 1-7564 μg kg(-1) (mean 67.2) and 50% of the samples had a concentration below 37 μg kg(-1). Evidence for human activity was found near all the coal-fired power plants, which reflects that metals have accumulated in the basin over many years. Values over 1000 μg kg(-1) have been found in soils in the vicinity of the Aboño, Soto de Ribera and Castellon power plants. However, soil Hg enrichment was detectable only close to the emission source, within an approximate range of only 15 km from the power plants. We associated this effect with airborne emissions and subsequent depositions as the potential distance through fly ash deposition. Hg associated with particles of ash tends to be deposited near coal combustion sources. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Use of criteria pollutants, active and passive mercury sampling, and receptor modeling to understand the chemical forms of gaseous oxidized mercury in Florida

    Science.gov (United States)

    Huang, J.; Miller, M. B.; Edgerton, E.; Gustin, M. S.

    2015-04-01

    The highest mercury (Hg) wet deposition in the United States (US) occurs along the Gulf of Mexico, and in the southern and central Mississippi River Valley. Gaseous oxidized Hg (GOM) is thought to be a major contributor due to its high water solubility and reactivity. Therefore, it is critical to understand the concentrations, potential for wet and dry deposition, and GOM compounds present in the air. Concentrations and dry deposition fluxes of GOM were measured at Outlying Landing Field (OLF), Florida, using a Tekran® 2537/1130/1135, and active and passive samplers using cation-exchange and nylon membranes. Relationships with Tekran® derived data must be interpreted with caution, since GOM concentrations can be biased low depending on the chemical compounds in air, and interferences with water vapor and ozone. Only gaseous elemental Hg and GOM are discussed here since the PBM measurement uncertainties are higher. Criteria air pollutants were concurrently measured and Tekran® data were assessed along with these using Principal Component Analysis to identify associations among air pollutants. Based on the diel pattern, high GOM concentrations at this site were associated with fossil fuel combustion and gas phase oxidation during the day, and gas phase oxidation and transport in the free troposphere. The ratio of GEM/CO at OLF (0.008 ng m-3 ppbv-1) was much higher than the numbers reported for the Western United States and central New York for domestic emissions or biomass burning (0.001 ng m-3 ppbv-1), which we suggest is indicative of a marine boundary layer source. Results from nylon membranes with thermal desorption analyses suggest five potential GOM compounds exist in this area, including HgBr2, HgO, Hg(NO3)2, HgSO4, and an unknown compound. This indicates that the site is influenced by different gaseous phase reactions and sources. A~high GOM event related to high CO but average SO2 suggests the air parcels moved from the free troposphere and across

  20. Spatial and temporal variability of 7Be and 210Pb wet deposition during four successive monsoon storms in a catchment of northern Laos

    International Nuclear Information System (INIS)

    Gourdin, E.; Evrard, O.; Huon, S.; Reyss, J.-L.; Ribolzi, O.; Bariac, T.; Sengtaheuanghoung, O.; Ayrault, S.

    2014-01-01

    Fallout radionuclides 7 Be and 210 Pb have been identified as potentially relevant temporal tracers for studying soil particles dynamics (surface vs. subsurface sources contribution; remobilization of in-channel sediment) during erosive events in river catchments. An increasing number of studies compared 7 Be: 210 Pb activity ratio in rainwater and sediment to estimate percentages of freshly eroded particles. However, the lack of data regarding the spatial and temporal variability of radionuclide wet deposition during individual storms has been identified as one of the main gaps in these estimates. In order to determine these key parameters, rainwater samples were collected at three stations during four storms that occurred at the beginning of the monsoon (June 2013) in the Houay Xon mountainous catchment in northern Laos. Rainwater 7 Be and 210 Pb activities measured using very low background hyperpure Germanium detectors ranged from 0.05 to 1.72 Bq L −1 and 0.02 to 0.26 Bq L −1 , respectively. Water δ 18 O were determined on the same samples. Total rainfall amount of the four sampled storms ranged from 4.8 to 26.4 mm (51 mm in total) at the time-fractionated collection point. Corresponding cumulative 7 Be and 210 Pb wet depositions during the sampling period were 17.6 and 2.9 Bq m −2 , respectively. The 7 Be: 210 Pb activity ratio varied (1) in space from 6 to 9 for daily deposition and (2) in time from 3 to 12 for samples successively collected. Intra-event evolution of rainwater 7 Be and 210 Pb activities as well as δ 18 O highlighted the progressive depletion of local infra-cloud atmosphere radionuclide stock with time (washout), which remains consistent with a Raleigh-type distillation process for water vapour. Intra-storm ratio increasing with time showed the increasing contribution of rainout scavenging. Implications of such variability for soil particle labelling and erosion studies are briefly discussed and recommendations are formulated for the

  1. Temporal changes in the distribution, methylation, and bioaccumulation of newly deposited mercury in an aquatic ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Orihel, Diane M. [Clayton H. Riddell Faculty of Environment, Earth, and Resources, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 (Canada); Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada)], E-mail: orihel@ualberta.ca; Paterson, Michael J.; Blanchfield, Paul J.; Bodaly, R.A. [Freshwater Institute, Fisheries and Oceans Canada, 501 University Crescent, Winnipeg, Manitoba, R3T 2N6 (Canada); Gilmour, Cynthia C. [Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037 (United States); Hintelmann, Holger [Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9J 7B8 (Canada)

    2008-07-15

    Our objective was to examine how the behavior of atmospheric mercury (Hg) deposited to boreal lake mesocosms changed over time. We added inorganic Hg enriched in a different stable isotope in each of two years, which allowed us to differentiate between Hg added in the first and second year. Although inorganic Hg and methylmercury (MeHg) continued to accumulate in sediments throughout the experiment, the availability of MeHg to the food web declined within one year. This decrease was detected in periphyton, zooplankton, and water mites, but not in gomphid larvae, amphipods, or fish. We suggest that reductions in atmospheric Hg deposition should lead to decreases in MeHg concentrations in biota, but that changes will be more easily detected in short-lived pelagic species than long-lived species associated with benthic food webs. - Mercury deposited to aquatic ecosystems becomes less available for uptake by biota over time.

  2. Wetting of refractory metals with copper base alloys

    International Nuclear Information System (INIS)

    Anikeev, E.F.; Kostikov, V.I.; Chepelenko, V.N.; Batov, V.M.

    1978-01-01

    The effect is studied of phosphorus upon the wetting of molybdenum, niobium and tantalum by an alloy of the system copper-silver (10%) as a function of contact time and phosphorus concentration. Experiments have been conducted in vacuum of 5x10 -4 mm Hg at 900 deg C. It is established that the introduction of phosphorus into a copper-silver alloy improves the wetting of molybdenum, niobium and tantalum. Formation of intermetallic compounds on the alloy-refractory metal interface can be avoided by adjusting the time of contact of the solder with molybdenum, niobium and tantalum. As a solder with 2.9% phosphorus spreads well over copper, it is suggested to use said solder for brazing copper and the investigated refractory metals in items intended for service at temperatures of up to 600 deg C

  3. Changes in wetting and energetic properties of glass caused by deposition of different lipid layers

    Energy Technology Data Exchange (ETDEWEB)

    Golabek, Monika [Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria-Curie Sklodowska University, 20-031 Lublin (Poland); Holysz, Lucyna, E-mail: lucyna.holysz@poczta.umcs.lublin.pl [Department of Physical Chemistry - Interfacial Phenomena, Faculty of Chemistry, Maria-Curie Sklodowska University, 20-031 Lublin (Poland)

    2010-06-15

    An investigation of wetting and energetic properties of different lipid layers deposited on the glass surface was carried out by contact angles measurements and determination of the apparent surface free energy. The topography of the lipid layers was also determined with the help of atomic force microscopy (AFM). Two synthetic phospholipids were chosen for these studies, having the same phosphatidylcholine headgroup bound to the apolar part composed either by two saturated chains (1,2-dipalmitoyl-sn-glycero-3-phospshocholine - DPPC) or two unsaturated chains (1,2-dioleoyl-sn-glycero-3-phosphocholine - DOPC) and one lipid (1,2,3-trihexadecanoyl-sn-glycerol - tripalmitoylglycerol - TPG). The lipid layers, from the 1st to the 5th statistical monolayer, were deposited on the glass surface from chloroform solutions by spreading. The apparent surface free energy of the deposited layers was determined by contact angles measurements (advancing and receding) for three probe liquids (diiodomethane, water, and formamide), and then two concepts of interfacial interactions were applied. In the contact angle hysteresis approach (CAH) the apparent total surface free energy was calculated from the advancing and receding contact angles and surface tension of probe liquids. In the Lifshitz-van der Waals/acid-base approach (LWAB) the total surface free energy was calculated from the determined components of the energy, which were obtained from the advancing contact angles of the probe liquids only. Comparison of the results obtained by two approaches provided more information about the changes in the hydrophobicity/hydrophilicity of the layers depending on the number of monolayers and kind of the lipid deposited on the glass surface. It was found that the most visible changes in the surface free energy took place for the first two statistical monolayers irrespectively of the kind of the lipid used. Additionally, in all cases periodic oscillations from layer-to-layer in the lipid

  4. Urban acid deposition in Greater Manchester

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Longhurst, J.W.S.; Gee, D.R.; Hare, S.E. (Manchester Polytechnic, Manchester (UK). Acid Rain Information Centre)

    1989-08-01

    Data are presented from a monitoring network of 18 bulk precipitation collectors and one wet-only collector in the urban area of Greater Manchester, in the north west of England. Weekly samples were analysed for all the major ions in precipitation along with gaseous nitrogen dioxide concentrations from diffusion tubes. Statistical analysis of the data shows significant spatial variation of non marine sulphate, nitrate, ammonium, acidity and calcium concentrations, and nitrogen dioxide concentrations. Calcium is thought to be responsible for the buffering of acidity and is of local origin. Wet deposition is the likely removal process for calcium in the atmosphere and probably by below cloud scavenging. Nitrate and ammonium concentrations and depositions show close spatial, temporal and statistical association. Examination of high simultaneous episodes of nitrate and ammonium deposition shows that these depositions cannot be explained in terms of trajectories and it is suggested that UK emissions of ammonia may be important. Statistical analysis of the relationships between nitrate and ammonium depositions, concentrations and precipitation amount suggest that ammonia from mesoscale sources reacts reversibly with nitric acid aerosol and is removed by below cloud scavenging. High episodes of the deposition of non marine sulphate are difficult to explain by trajectory analysis alone, perhaps suggesting local sources. In a comparison between wet deposition and bulk deposition, it was shown that only 15.2% of the non marine sulphur was dry deposited to the bulk precipitation collector. 63 refs., 86 figs., 31 tabs.

  5. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Directory of Open Access Journals (Sweden)

    B. Croft

    2012-11-01

    Full Text Available The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model. To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model.

    A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude.

    Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition, depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme. Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold. However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction

  6. Uncertainty associated with convective wet removal of entrained aerosols in a global climate model

    Science.gov (United States)

    Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.

    2012-11-01

    The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all

  7. Sensitivity of stream methyl Hg concentrations to environmental change in the Adirondack mountains of New York, USA

    Science.gov (United States)

    Doug Burns; Karen Riva Murray; Elizabeth A. Nystrom; David M. Wolock; Geofrey Millard; Charles T. Driscoll

    2016-01-01

    The Adirondacks of New York have high levels of mercury (Hg) bioaccumulation as demonstrated by a region-wide fish consumption advisory for children and women who may become pregnant. The source of this Hg is atmospheric deposition that originates from regional, continental, and global emissions.

  8. Optical characterization of a-Si:H thin films grown by Hg-Photo-CVD

    International Nuclear Information System (INIS)

    Barhdadi, A.; Karbal, S.; M'Gafad, N.; Benmakhlouf, A.; Chafik El Idrissi, M.; Aka, B.M.

    2006-08-01

    Mercury-Sensitized Photo-Assisted Chemical Vapor Deposition (Hg-Photo-CVD) technique opens new possibilities for reducing thin film growth temperature and producing novel semiconductor materials suitable for the future generation of high efficiency thin film solar cells onto low cost flexible plastic substrates. This paper provides some experimental data resulting from the optical characterization of hydrogenated amorphous silicon thin films grown by this deposition technique. Experiments have been performed on both as-deposited layers and thermal annealed ones. (author) [fr

  9. Alternate wetting and drying decreases methylmercury in flooded rice (Oryza sativa) systems

    Science.gov (United States)

    Tanner, K. Christy; Windham-Myers, Lisamarie; Marvin-DiPasquale, Mark C.; Fleck, Jacob; Linquist, Bruce A.

    2018-01-01

    In flooded soils, including those found in rice (Oryza sativa L.) fields, microbes convert inorganic Hg to more toxic methylmercury (MeHg). Methylmercury is accumulated in rice grain, potentially affecting health. Methylmercury in rice field surface water can bioaccumulate in wildlife. We evaluated how introducing aerobic periods into an otherwise continuously flooded rice growing season affects MeHg dynamics. Conventional continuously flooded (CF) rice field water management was compared with alternate wetting and drying, where irrigation was stopped twice during the growing season, allowing soil to dry to 35% volumetric moisture content, at which point plots were reflooded (AWD-35). Methylmercury studies began at harvest in Year 3 and throughout Year 4 of a 4-yr replicated field experiment. Bulk soil, water, and plant samples were analyzed for MeHg and total Hg (THg), and iron (Fe) speciation was measured in soil samples. Rice grain yield over 4 yr did not differ between treatments. Soil chemistry responded quickly to AWD-35 dry-downs, showing significant oxidation of Fe(II) accompanied by a significant reduction of MeHg concentration (76% reduction at harvest) compared with CF. Surface water MeHg decreased by 68 and 39% in the growing and fallow seasons, respectively, suggesting that the effects of AWD-35 management can last through to the fallow season. The AWD-35 treatment reduced rice grain MeHg and THg by 60 and 32%, respectively. These results suggest that the more aerobic conditions caused by AWD-35 limited the activity of Hg(II)-methylating microbes and may be an effective way to reduce MeHg concentrations in rice ecosystems.

  10. Studies of the 198Hg(d,d') and 198Hg(d,p) reactions

    Science.gov (United States)

    Diaz Varela, Alejandra; Garrett, P. E.; Rand, E. T.; Ball, G. C.; Bilstein, V.; Laffoley, A. T.; Maclean, A. D.; Svensson, C. E.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.

    2017-09-01

    Limits on the electric dipole moment (EDM) continue to decrease for 199Hg, the most stringent upper limit for a nuclear EDM to date. The experimental limit on the observed atomic EDM for 199Hg is converted to a limit on the nuclear EDM via a calculation of the Schiff moment, requiring knowledge of the nuclear structure of 199Hg. The E 3 and E 1 strength distributions to the ground state of 199Hg, and E 2 transitions amongst excited states, would be ideal information to further constrain 199Hg Schiff moment theoretical models. The high level density of 199Hg makes those determinations challenging, however the similar information can be obtained from exploring surrounding even-even Hg isotopes. As part of a campaign to study the Hg isotopes near 199Hg, two experiments, 198Hg(d,d') 198Hg and 198Hg(d,p)199Hg reaction were performed using the Q3D spectrograph at the Maier-Leibnitz Laboratory (MLL) at Garching, Germany. A 22 MeV deuterium beam was used to impinge a 198Hg32S target. The (d,d') reaction allows us to probe the desired E 2 and E 3 matrix elements, while the (d,p) reaction provides information on the neutron single-particle states of 199Hg.

  11. History of HgTe-based photodetectors in Poland

    Science.gov (United States)

    Rogalski, A.

    2010-09-01

    In Poland, the HgCdTe studies began in 1960 at the Institute of Physics, Warsaw University. The material processing laboratory was created by Giriat and later by Dziuba, Gałązka, and others. Bridgman technique with sealed thick wall quartz ampoules was used to grow material suitable for research and experimental devices. Among the first papers published in 1961 and 1963 there were the Polish works devoted to preparation, doping, and electrical properties of HgCdTe. Infrared detector's research and development efforts in Poland were concentrated mostly on uncooled market niche. At the beginning, a modified isothermal vapour phase epitaxy has been used for research and commercial fabrication of photoconductive, photoelectromagnetic and other HgCdTe devices. Bulk growth and liquid phase epitaxy were also used. Recently, the fabrication of infrared devices relies on low temperature epitaxial technique, namely metalorganic vapour phase deposition. At present stage of development, the photoconductive and photoelectromagnetic (PEM) detectors are gradually replaced with photovoltaic devices which offer inherent advantages of no electric or magnetic bias, no heat load and no flicker noise. Potentially, photodiodes offer high performance and very fast response. However, conventional photovoltaic uncooled detectors suffer from low quantum efficiency and very low junction resistance. The problems have been solved with advanced band gap engineered architecture, multiple cell heterojunction devices connected in series, and monolithic integration of the detectors with microoptics. In final part of the paper, the Polish achievements in technology and performance of HgMnTe and HgZnTe photodetectors are presented.

  12. 46 CFR 53.12-1 - General (modifies HG-600 through HG-640).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false General (modifies HG-600 through HG-640). 53.12-1... HEATING BOILERS Instruments, Fittings, and Controls (Article 6) § 53.12-1 General (modifies HG-600 through HG-640). (a) The instruments, fittings and controls for heating boilers shall be as indicated in HG...

  13. Estimates of mercury flux into the United States from non-local and global sources : results from a 3-D CTM simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Drewniak, B. A.; Kotamarthi, V. R.; Streets, D.; Kim, M.; Crist, K.; Ohio Univ.

    2008-11-01

    The sensitivity of Hg concentration and deposition in the United States to emissions in China was investigated by using a global chemical transport model: Model for Ozone and Related Chemical Tracers (MOZART). Two forms of gaseous Hg were included in the model: elemental Hg (HG(0)) and oxidized or reactive Hg (HGO). We simulated three different emission scenarios to evaluate the model's sensitivity. One scenario included no emissions from China, while the others were based on different estimates of Hg emissions in China. The results indicated, in general, that when Hg emissions were included, HG(0) concentrations increased both locally and globally. Increases in Hg concentrations in the United States were greatest during spring and summer, by as much as 7%. Ratios of calculated concentrations of Hg and CO near the source region in eastern Asia agreed well with ratios based on measurements. Increases similar to those observed for HG(0) were also calculated for deposition of HGO. Calculated increases in wet and dry deposition in the United States were 5-7% and 5-9%, respectively. The results indicate that long-range transcontinental transport of Hg has a non-negligible impact on Hg deposition levels in the United States.

  14. Modeling wet deposition and concentration of inorganics over Northeast Asia with MRI-PM/c

    Directory of Open Access Journals (Sweden)

    M. Kajino

    2012-11-01

    Full Text Available We conducted a regional-scale simulation over Northeast Asia for the year 2006 using an aerosol chemical transport model, with time-varying lateral and upper boundary concentrations of gaseous species predicted by a global stratospheric and tropospheric chemistry-climate model. The present one-way nested global-through-regional-scale model is named the Meteorological Research Institute–Passive-tracers Model system for atmospheric Chemistry (MRI-PM/c. We evaluated the model's performance with respect to the major anthropogenic and natural inorganic components, SO42−, NH4+, NO3, Na+ and Ca2+ in the air, rain and snow measured at the Acid Deposition Monitoring Network in East Asia (EANET stations. Statistical analysis showed that approximately 40–50 % and 70–80 % of simulated concentration and wet deposition of SO42−, NH4+, NO3and Ca2+ are within factors of 2 and 5 of the observations, respectively. The prediction of the sea-salt originated component Na+ was not successful at near-coastal stations (where the distance from the coast ranged from 150 to 700 m, because the model grid resolution (Δx=60 km is too coarse to resolve it. The simulated Na+ in precipitation was significantly underestimated by up to a factor of 30.

  15. CdTe as a passivating layer in CdTe/HgCdTe heterostructures

    International Nuclear Information System (INIS)

    Virt, I. S.; Kurilo, I. V.; Rudyi, I. A.; Sizov, F. F.; Mikhailov, N. N.; Smirnov, R. N.

    2008-01-01

    CdTe/Hg 1-x Cd x Te heterostructures are studied. In the structures, CdTe is used as a passivating layer deposited as a polycrystal or single crystal on a single-crystal Hg 1-x Cd x Te film. The film and a passivating layer were obtained in a single technological process of molecular beam epitaxy. The structure of passivating layers was studied by reflection high-energy electron diffraction, and the effect of the structure of the passivating layer on the properties of the active layer was studied by X-ray diffractometry. Mechanical properties of heterostructures were studied by the microhardness method. Electrical and photoelectrical parameters of the Hg 1-x Cd x Te films are reported.

  16. Quadrupole moments of the 12+ isomers in 188Hg and 190Hg

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lonnroth, T.; Vajda, S.; Dafni, E.; Schatz, G.

    1984-01-01

    The electric quadrupole interaction of the 12 + isomers in 188 Hg and 190 Hg has been measured in solid Hg. The quadrupole moments deduced, vertical strokeQ[ 188 Hg(12 + )]vertical stroke = 91(11) e fm 2 and vertical strokeQ[ 190 Hg(12 + )]vertical stroke = 117(14) e fm 2 suggest a possible change in γ-deformation due to the rotation alignment of the isub(13/2) quasi-neutrons. The temperature dependence of the electric field gradient tensor in Hg was also determined. (orig.)

  17. Correlation of film density and wet etch rate in hydrofluoric acid of plasma enhanced atomic layer deposited silicon nitride

    Energy Technology Data Exchange (ETDEWEB)

    Provine, J., E-mail: jprovine@stanford.edu; Schindler, Peter; Kim, Yongmin; Walch, Steve P.; Kim, Hyo Jin [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Kim, Ki-Hyun [Manufacturing Technology Center, Samsung Electronics, Suwon, Gyeonggi-Do (Korea, Republic of); Prinz, Fritz B. [Department of Mechanical Engineering, Stanford University, Stanford, California 94305 (United States); Department of Materials Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2016-06-15

    The continued scaling in transistors and memory elements has necessitated the development of atomic layer deposition (ALD) of silicon nitride (SiN{sub x}), particularly for use a low k dielectric spacer. One of the key material properties needed for SiN{sub x} films is a low wet etch rate (WER) in hydrofluoric (HF) acid. In this work, we report on the evaluation of multiple precursors for plasma enhanced atomic layer deposition (PEALD) of SiN{sub x} and evaluate the film’s WER in 100:1 dilutions of HF in H{sub 2}O. The remote plasma capability available in PEALD, enabled controlling the density of the SiN{sub x} film. Namely, prolonged plasma exposure made films denser which corresponded to lower WER in a systematic fashion. We determined that there is a strong correlation between WER and the density of the film that extends across multiple precursors, PEALD reactors, and a variety of process conditions. Limiting all steps in the deposition to a maximum temperature of 350 °C, it was shown to be possible to achieve a WER in PEALD SiN{sub x} of 6.1 Å/min, which is similar to WER of SiN{sub x} from LPCVD reactions at 850 °C.

  18. Tracing aquatic bioavailable Hg in three different regions of China using fish Hg isotopes.

    Science.gov (United States)

    Liu, Cheng-Bin; Hua, Xiu-Bing; Liu, Hong-Wei; Yu, Ben; Mao, Yu-Xiang; Wang, Ding-Yong; Yin, Yong-Guang; Hu, Li-Gang; Shi, Jian-Bo; Jiang, Gui-Bin

    2018-04-15

    To trace the most concerned bioavailable mercury (Hg) in aquatic environment, fish samples were collected from three typical regions in China, including 3 rivers and 1 lake in the Tibetan Plateau (TP, a high altitude background region with strong solar radiation), the Three Gorges Reservoir (TGR, the largest artificial freshwater reservoir in China), and the Chinese Bohai Sea (CBS, a heavily human-impacted semi-enclosed sea). The Hg isotopic compositions in fish muscles were analyzed. The results showed that anthropogenic emissions were the main sources of Hg in fish from TGR and CBS because of the observed negative δ 202 Hg and positive Δ 199 Hg in these two regions (TGR, δ 202 Hg: - 0.72 to - 0.29‰, Δ 199 Hg: 0.15 - 0.52‰; CBS, δ 202 Hg: - 2.09 to - 0.86‰, Δ 199 Hg: 0.07 - 0.52‰). The relatively higher δ 202 Hg and Δ 199 Hg (δ 202 Hg: - 0.37 - 0.08‰, Δ 199 Hg: 0.50 - 1.89‰) in fish from TP suggested the insignificant disturbance from local anthropogenic activities. The larger slopes of Δ 199 Hg/Δ 201 Hg in fish from TGR (1.29 ± 0.14, 1SD) and TP (1.25 ± 0.06, 1SD) indicated methylmercury (MeHg) was produced and photo-reduced in the water column before incorporation into the fish. In contrast, the photoreduction of Hg 2+ was the main process in CBS (slope of Δ 199 Hg/Δ 201 Hg: 1.06 ± 0.06, 1SD). According to the fingerprint data of Hg isotopes, the most important source for aquatic bioavailable Hg in TP should be the long-range transported Hg, contrasting to the anthropogenic originated MeHg from surface sediments and runoffs in TGR and inorganic Hg from continental inputs in CBS. Therefore, the isotopic signatures of Hg in fish can provide novel clues in tracing sources and behaviors of bioavailable Hg in aquatic systems, which are critical for further understanding the biogeochemical cycling of Hg. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mobility and contamination assessment of mercury in coal fly ash, atmospheric deposition, and soil collected from Tianjin, China.

    Science.gov (United States)

    Wei, Zheng; Wu, Guanghong; Su, Ruixian; Li, Congwei; Liang, Peiyu

    2011-09-01

    Samples of class F coal fly ash (levels I, II, and III), slag, coal, atmospheric deposition, and soils collected from Tianjin, China, were analyzed using U.S. Environmental Protection Agency (U.S. EPA) Method 3052 and a sequential extraction procedure, to investigate the pollution status and mobility of Hg. The results showed that total mercury (HgT) concentrations were higher in level I fly ash (0.304 µg/g) than in level II and level III fly ash and slag (0.142, 0.147, and 0.052 µg/g, respectively). Total Hg in the atmospheric deposition was higher during the heating season (0.264 µg/g) than the nonheating season (0.135 µg/g). Total Hg contents were higher in suburban area soils than in rural and agricultural areas. High HgT concentrations in suburban area soils may be a result of the deposition of Hg associated with particles emitted from coal-fired power plants. Mercury in fly ash primarily existed as elemental Hg, which accounted for 90.1, 85.3, and 90.6% of HgT in levels I, II, and III fly ash, respectively. Mercury in the deposition existed primarily as sulfide Hg, which accounted for 73.8% (heating season) and 74.1% (nonheating season) of HgT. However, Hg in soils existed primarily as sulfide Hg, organo-chelated Hg and elemental Hg, which accounted for 37.8 to 50.0%, 31.7 to 41.8%, and 13.0 to 23.9% of HgT, respectively. The percentage of elemental Hg in HgT occurred in the order fly ash > atmospheric deposition > soils, whereas organo-chelated Hg and sulfide Hg occurred in the opposite order. The present approach can provide a window for understanding and tracing the source of Hg in the environment in Tianjin and the risk associated with Hg bioaccessibility. Copyright © 2011 SETAC.

  20. Dispersant Application during SG Wet Layup at SK Unit 1

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyukchul; Lee, Dooho; Sung, Kibang [KHNP Central Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The corrosion products in the feedwater are deposited onto the steam generators (SGs) despite the effort to control them within limit of impurity. This deposit is one of causes for occurrence of SCC (Stress Corrosion Cracking), water level fluctuation and further corrosion of SGs. To minimize corrosion and remove deposit, the nuclear power plants apply high pH to the secondary system and SG chemical cleaning, respectively. But these methods can be costly and carry risks of extended outages or incomplete cleaning. Another method is an on-line dispersant application. The role of dispersant is to make deposit suspended in the SGs. Then, the suspended deposit is discharged to the blowdown system. The iron removal is increased in the blowdown system during the dispersant application. Additional significant benefit in the form of reduced corrosion product transport may be obtained through applying dispersant in the SGs wet lay operational mode. This method helps to reduce the total SGs loading without affecting critical outage activities and with minimal additional effort on the part of the utilities. This study provides the results of the dispersant application trial during the SG wet layup at SK Unit 1. As the PAA concentrations were increased, the corrosion rates of Alloy 690 and SA 106 Gr.B were increased. The corrosion rate of Alloy 690 was 2 times less than that of SA 106 Gr.B at 100 ppm of PAA based on the electrochemical experimental. There were no significant feasibility problems with application of PAA during the SG wet layup. The reasonable estimation of the additional mass removed by the presence of PAA during SGs wet layup is 460 g. The iron removal depended on PAA concentration injected based on the comparative results of the SK Unit 1 and TMI-1. It is expected that injection of PAA into the SG result in a significant decrease in the amount of iron transported to the SGs during the startup.

  1. Using Simple Science to Influence Corporate Responsibility—A Lesson from Mercury (Hg)

    Science.gov (United States)

    Filippelli, G. M.

    2016-12-01

    Mercury (Hg) is a powerful neurotoxin with wide environmental distribution. Typical population exposure to Hg comes from fish consumption, with fish being the final ecological endpoint of Hg magnification after a series of biogeochemical processes. The emission of Hg from coal-fired power plants has been strongly implicated as a key source of environmental Hg, and thus the target for various public policy initiatives in the US and abroad. We conducted a study of Hg distribution in surface soils over a broad area of central Indiana (US) to understand the major sources of Hg to local fish, and to assess the potential role of policy compliance in reducing Hg. We found a plume-like distribution pattern for soil Hg, with values exceeding 400 ppb Hg in the heart of the plume, and reducing to background concentration of about 30 ppb outside of the plume. The plume covered hundreds of square kilometers, was centered directly over the downtown area of Indianapolis (a city of roughly 1 million inhabitants), and could be roughly backtracked to a source in the southwest corner of the city, coincident with a large coal-fired utility plant that has the highest reported emissions of Hg in the area. Evidence of this link between a local source of Hg and net Hg deposition, with related implications for Hg runoff to local stream, biomagnification to fish, and fish consumption advisories was reported in regional newspapers and eventually published in scientific journals. But importantly, these findings were used by an NGO (the Beyond Coal campaign by Indiana branch of the Sierra Club) at a critical time to influence a decision by the owner of the power plant of whether to comply with the Hg policy rule by either adding higher technology scrubbing technologies to the plant or simply to convert the plant over to natural gas as the fuel source (a costlier choice upfront). The utility chose the latter option, and with the permanent elimination of Hg emissions, the net measurable effects

  2. Equilibrium mercury isotope fractionation between dissolved Hg(II) species and thiol-bound Hg

    NARCIS (Netherlands)

    Wiederhold, Jan G.; Cramer, Christopher J.; Daniel, Kelly; Infante, Ivan; Bourdon, Bernard; Kretzschmar, Ruben

    2010-01-01

    Stable Hg isotope ratios provide a new tool to trace environmental Hg cycling. Thiols (-SH) are the dominant Hg-binding groups in natural organic matter. Here, we report experimental and computational results on equilibrium Hg isotope fractionation between dissolved Hg(II) species and thiol-bound

  3. Characterization of silver nanoparticles prepared by wet chemical ...

    African Journals Online (AJOL)

    Results: The silver nanoparticles formed were spherical in shape with mean size of 10.3 nm. The ... antibacterial activity against various strains of bacteria. Keywords: Wet ..... Fang J, Zhong C, Mu R. The study of deposited silver particulate ...

  4. 46 CFR 53.10-3 - Inspection and tests (modifies HG-500 through HG-540).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Inspection and tests (modifies HG-500 through HG-540... tests (modifies HG-500 through HG-540). (a) The inspections required by HG-500 through HG-540 must be performed by the “Authorized Inspector” as defined in HG-515 of section IV of the ASME Boiler and Pressure...

  5. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: Interpretation with a new agricultural emissions inventory (MASAGE_NH3)

    Science.gov (United States)

    We use the adjoint of a global 3-D chemical transport model (GEOS-Chem) to optimizeammonia (NH3European Union, and China by inversion of 2005–2008 network data for NH+4 wet deposition fluxes. Optimized emissions are derive...

  6. Simple and green synthesis of piperazine-grafted reduced graphene oxide and its application for the detection of Hg(II)

    Science.gov (United States)

    Zuo, Yinxiu; Xu, Jingkun; Xing, Huakun; Duan, Xuemin; Lu, Limin; Ye, Guo; Jia, Haiyan; Yu, Yongfang

    2018-04-01

    In this paper, piperazine-grafted reduced graphene oxide (NH-rGO) was synthesized via a simple and green two-step procedure: (i) opening of the resulting epoxides of graphene oxide (GO) with piperazine (NH) through nucleophilic substitution; (ii) reduction of GO with ascorbic acid. Its structure and morphology were characterized by scanning electron microscopy and x-ray photoelectron spectroscopy. The NH-rGO modified glassy carbon electrode was explored as an electrochemical sensor for the determination of Hg(II) using a differential pulse anodic stripping voltammetry technique. Hg(II) can be efficiently accumulated and deposited on the surface of a modified electrode by strong coordination chemical bonds formed between Hg(II) and NH. And then the anodic stripping current can be significantly enhanced by rGO with the merits of large specific surface area and high conductivity, which served as a signal amplifier, finally realizing the highly sensitive determination of Hg(II). The experimental parameters including the pH value of the acetate buffer, deposition potential and deposition time were optimized. Under optimal conditions, the developed sensor exhibited a wide linear range from 0.4-12 000 nM with a low limit of detection of 0.2 nM, which is well below the guideline value in drinking water set by the WHO. Moreover, the practical application of this method was confirmed by an assay of Hg(II) in tap water samples with acceptable results.

  7. Mercury isotope constraints on the source for sediment-hosted lead-zinc deposits in the Changdu area, southwestern China

    Science.gov (United States)

    Xu, Chunxia; Yin, Runsheng; Peng, Jiantang; Hurley, James P.; Lepak, Ryan F.; Gao, Jianfeng; Feng, Xinbin; Hu, Ruizhong; Bi, Xianwu

    2018-03-01

    The Lanuoma and Cuona sediment-hosted Pb-Zn deposits hosted by Upper Triassic limestone and sandstone, respectively, are located in the Changdu area, SW China. Mercury concentrations and Hg isotopic compositions from sulfide minerals and potential source rocks (e.g., the host sedimentary rocks and the metamorphic basement) were investigated to constrain metal sources and mineralization processes. In both deposits, sulfide minerals have higher mercury (Hg) concentrations (0.35 to 1185 ppm) than the metamorphic basement rocks (0.05 to 0.15 ppm) and sedimentary rocks (0.02 to 0.08 ppm). Large variations of mass-dependent fractionation (3.3‰ in δ202Hg) and mass-independent fractionation (0.3‰ in Δ199Hg) of Hg isotopes were observed. Sulfide minerals have Hg isotope signatures that are similar to the hydrothermal altered rocks around the deposit, and similar to the metamorphic basement, but different from barren sedimentary rocks. The variation of Δ199Hg suggests that Hg in sulfides was mainly derived from the underlying metamorphic basement. Mercury isotopes could be a geochemical tracer in understanding metal sources in hydrothermal ore deposits.

  8. Cu and Cu(Mn) films deposited layer-by-layer via surface-limited redox replacement and underpotential deposition

    Energy Technology Data Exchange (ETDEWEB)

    Fang, J.S., E-mail: jsfang@nfu.edu.tw [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Sun, S.L. [Department of Materials Science and Engineering, National Formosa University, Huwei 63201, Taiwan (China); Cheng, Y.L. [Department of Electrical Engineering, National Chi-Nan University, Nan-Tou 54561, Taiwan (China); Chen, G.S.; Chin, T.S. [Department of Materials Science and Engineering, Feng Chia University, Taichung 40724, Taiwan (China)

    2016-02-28

    Graphical abstract: - Abstract: The present paper reports Cu and Cu(Mn) films prepared layer-by-layer using an electrochemical atomic layer deposition (ECALD) method. The structure and properties of the films were investigated to elucidate their suitability as Cu interconnects for microelectronics. Previous studies have used primarily a vacuum-based atomic layer deposition to form a Cu metallized film. Herein, an entirely wet chemical process was used to fabricate a Cu film using the ECALD process by combining underpotential deposition (UPD) and surface-limited redox replacement (SLRR). The experimental results indicated that an inadequate UPD of Pb affected the subsequent SLRR of Cu and lead to the formation of PbSO{sub 4}. A mechanism is proposed to explain the results. Layer-by-layer deposition of Cu(Mn) films was successfully performed by alternating the deposition cycle-ratios of SLRR-Cu and UPD-Mn. The proposed self-limiting growth method offers a layer-by-layer wet chemistry-based deposition capability for fabricating Cu interconnects.

  9. Characterization of soil fauna under the influence of mercury atmospheric deposition in Atlantic Forest, Rio de Janeiro, Brazil.

    Science.gov (United States)

    Buch, Andressa Cristhy; Correia, Maria Elizabeth Fernandes; Teixeira, Daniel Cabral; Silva-Filho, Emmanoel Vieira

    2015-06-01

    The increasing levels of mercury (Hg) found in the atmosphere arising from anthropogenic sources, have been the object of great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of strong importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transference to the soil through litter, playing an important role as sink of this element. Soil microarthropods are keys to understanding the soil ecosystem, and for such purpose were characterized by the soil fauna of two Units of Forest Conservation of the state of the Rio de Janeiro, inwhich one of the areas suffer quite interference from petrochemicals and industrial anthropogenic activities and other area almost exempts of these perturbations. The results showed that soil and litter of the Atlantic Forest in Brazil tend to stock high mercury concentrations, which could affect the abundance and richness of soil fauna, endangering its biodiversity and thereby the functioning of ecosystems. Copyright © 2015. Published by Elsevier B.V.

  10. Indium sulfide buffer layers deposited by dry and wet methods

    International Nuclear Information System (INIS)

    Asenjo, B.; Sanz, C.; Guillen, C.; Chaparro, A.M.; Gutierrez, M.T.; Herrero, J.

    2007-01-01

    Indium sulfide (In 2 S 3 ) thin films have been deposited on amorphous glass, glass coated by tin oxide (TCO) and crystalline silicon substrates by two different methods: modulated flux deposition (MFD) and chemical bath deposition (CBD). Composition, morphology and optical characterization have been carried out with Scanning Electron Microscopy (SEM), IR-visible-UV Spectrophotometry, X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometer. Different properties of the films have been obtained depending on the preparation techniques. With MFD, In 2 S 3 films present more compact and homogeneous surface than with CBD. Films deposited by CBD present also indium oxide in their composition and higher absorption edge values when deposited on glass

  11. Trace elements and rare earth elements in wet deposition of Lijiang, Mt. Yulong region, southeastern edge of the Tibetan Plateau.

    Science.gov (United States)

    Guo, Junming; Kang, Shichang; Huang, Jie; Sillanpää, Mika; Niu, Hewen; Sun, Xuejun; He, Yuanqing; Wang, Shijing; Tripathee, Lekhendra

    2017-02-01

    In order to investigate the compositions and wet deposition fluxes of trace elements and rare earth elements (REEs) in the precipitation of the southeastern edge of the Tibetan Plateau, 38 precipitation samples were collected from March to August in 2012 in an urban site of Lijiang city in the Mt. Yulong region. The concentrations of most trace elements and REEs were higher during the non-monsoon season than during the monsoon season, indicating that the lower concentrations of trace elements and REEs observed during monsoon had been influenced by the dilution effect of increased precipitation. The concentrations of trace elements in the precipitation of Lijiang city were slightly higher than those observed in remote sites of the Tibetan Plateau but much lower than those observed in the metropolises of China, indicating that the atmospheric environment of Lijiang city was less influenced by anthropogenic emissions, and, as a consequence, the air quality was still relatively good. However, the results of enrichment factor and principal component analysis revealed that some anthropogenic activities (e.g., the increasing traffic emissions from the rapid development of tourism) were most likely important contributors to trace elements, while the regional/local crustal sources rather than anthropogenic activities were the predominant contributors to the REEs in the wet deposition of Lijiang city. Our study was relevant not only for assessing the current status of the atmospheric environment in the Mt. Yulong region, but also for specific management actions to be implemented for the control of atmospheric inputs and the health of the environment for the future. Copyright © 2016. Published by Elsevier B.V.

  12. Mechanisms and rates of atmospheric deposition of selected trace elements and sulfate to a deciduous forest watershed. [Roles of dry and wet deposition concentrations measured in Walker Branch Watershed

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Harriss, R.C.; Turner, R.R.; Shriner, D.S.; Huff, D.D.

    1979-06-01

    The critical links between anthropogenic emissions to the atmosphere and their effects on ecosystems are the mechanisms and rates of atmospheric deposition. The atmospheric input of several trace elements and sulfate to a deciduous forest canopy is quantified and the major mechanisms of deposition are determined. The study area was Walker Branch Watershed (WBW) in eastern Tennessee. The presence of a significant quantity of fly ash and dispersed soil particles on upward-facing leaf and flat surfaces suggested sedimentation to be a major mechanism of dry deposition to upper canopy elements. The agreement for deposition rates measured to inert, flat surfaces and to leaves was good for Cd, SO/sub 4//sup =/, Zn, and Mn but poor for Pb. The precipitation concentrations of H/sup +/, Pb, Mn, and SO/sub 4//sup =/ reached maximum values during the summer months. About 90% of the wet deposition of Pb and SO/sub 4//sup =/ was attributed to scavenging by in-cloud processes while for Cd and Mn, removal by in-cloud scavenging accounted for 60 to 70% of the deposition. The interception of incoming rain by the forest canopy resulted in a net increase in the concentrations of Cd, Mn, Pb, Zn, and SO/sub 4//sup =/ but a net decrease in the concentration of H/sup +/. The source of these elements in the forest canopy was primarily dry deposited aerosols for Pb, primarily internal plant leaching for Mn, Cd, and Zn, and an approximately equal combination of the two for SO/sub 4//sup =/. Significant fractions of the total annual elemental flux to the forest floor in a representative chestnut oak stand were attributable to external sources for Pb (99%), Zn (44%), Cd (42%), SO/sub 4//sup =/ (39%), and Mn (14%), the remainder being related to internal element cycling mechanisms. On an annual scale the dry deposition process constituted a significant fraction of the total atmospheric input. (ERB)

  13. Spatial variations of wet deposition rates in an extended region of complex topography deduced from measurements of 210Pb soil inventories

    International Nuclear Information System (INIS)

    Branford, D.; Mourne, R.W.; Fowler, D.

    1998-01-01

    The radionuclide 210 Pb derived from gaseous 222 Rn present in the atmosphere becomes attached to the same aerosols as the bulk of the main pollutants sulphur and nitrogen. When scavenged from the atmosphere by precipitation, the 210 Pb is readily attached to organic matter in the surface horizons of the soil. Inventories of 210 Pb in soil can thus be used to measure the spatial variations in wet (or cloud) deposition due to orography averaged over many precipitation events (half-life of 210 Pb is 22·3 year). Measurements of soil 210 Pb inventories were made along a transect through complex terrain in the Scottish Highlands to quantify the orographic enhancement of wet deposition near the summits of the three mountains Ben Cruachan, Beinn Dorain and Ben Lawers, which, respectively, lie at distances of approximately 30, 55 and 80 km from the coast in the direction of the prevailing wind. The inventory of 210 Pb on the wind-facing slopes of Ben Cruachan shows an increase with altitude that rises faster than the precipitation rate, which is indicative of seeder-feeder scavenging of orographic cloud occurring around the summit. Results for Beinn Dorain show a smaller rise with altitude whereas those for Ben Lawers give no indication of a rise. It is concluded that the seeder-feeder mechanism in regions of complex topology decreases in effectiveness as a function of distance inland along the direction of the prevailing wind. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. Effects of wet deposition on the abundance and size distribution of black carbon in East Asia

    Science.gov (United States)

    Kondo, Y.; Moteki, N.; Oshima, N.; Ohata, S.; Koike, M.; Shibano, Y.; Takegawa, N.; Kita, K.

    2016-05-01

    An improved understanding of the variations in the mass concentration and size distribution of black carbon (BC) in the free troposphere (FT) over East Asia, where BC emissions are very high, is needed to reliably estimate the radiative forcing of BC in climate models. We measured these parameters and the carbon monoxide (CO) concentration by conducting the Aerosol Radiative Forcing in East Asia (A-FORCE) 2013W aircraft campaign in East Asia in winter 2013 and compared these data with measurements made in the same region in spring 2009. The median BC concentrations in the FT originating from North China (NC) and South China (SC) showed different seasonal variations, which were primarily caused by variations in meteorological conditions. CO concentrations above the background were much higher in SC than in NC in both seasons, suggesting a more active upward transport of CO. In SC, precipitation greatly increased from winter to spring, leading to an increased wet deposition of BC. As a result, the median BC concentration in the FT was highest in SC air in winter. This season and region were optimal for the effective transport of BC from the planetary boundary layer to the FT. The count median diameters of the BC size distributions generally decreased with altitude via wet removal during upward transport. The altitude dependence of the BC size distributions was similar in winter and spring, in accord with the similarity in the BC mixing state. The observed BC concentrations and microphysical properties will be useful for evaluating the performance of climate models.

  15. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    Science.gov (United States)

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  16. Binding of Hg by bacterial extracellular polysaccharide: a possible role in Hg tolerance.

    Science.gov (United States)

    Cruz, Kimberly; Guézennec, Jean; Barkay, Tamar

    2017-07-01

    Bacteria employ adaptive mechanisms of mercury (Hg) tolerance to survive in environments containing elevated Hg concentrations. The potential of extracellular polysaccharides (EPS) production by bacteria as a mechanism of Hg tolerance has not been previously investigated. The objectives of this study were to determine if bacterial EPS sorb Hg, and if so does sorption provide protection against Hg toxicity. Purified EPS with different chemical compositions produced by bacterial isolates from microbial mats in French Polynesian atolls and deep-sea hydrothermal vents were assessed for Hg sorption. The data showed that EPS sorbed up to 82% of Hg from solution, that this sorption was dependent on EPS composition, and that sorption was a saturable mechanism. Hg uptake capacities ranged from 0.005 to 0.454 mmol Hg/g for the different EPS. To determine if EPS production could alter bacterial Hg tolerance, Escherichia coli K-12 strains and their EPS defective mutants were tested by the disc inhibition assay. Mercury inhibited growth in a dose-dependent manner with wild-type strains having smaller (~1 mm), but statistically significant, zones of inhibition than various mutants and this difference was related to a 2-fold decline in the amount of EPS produced by the mutants relative to cell biomass. These experiments identified colanic acid and hexosamine as Hg-binding moieties in EPS. Together these data indicate that binding of Hg to EPS affords a low level of resistance to the producing bacteria.

  17. LARGE-SCALE MECURY CONTROL TECHNOLOGY TESTING FOR LIGNITE-FIRED UTILITIES-OXIDATION SYSTEMS FOR WET FGD

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Holmes; Steven A. Benson; Jeffrey S. Thompson

    2004-03-01

    The Energy & Environmental Research Center (EERC) is conducting a consortium-based effort directed toward resolving the mercury (Hg) control issues facing the lignite industry. Specifically, the EERC team--the EERC, EPRI, URS, ADA-ES, Babcock & Wilcox, the North Dakota Industrial Commission, SaskPower, and the Mercury Task Force, which includes Basin Electric Power Cooperative, Otter Tail Power Company, Great River Energy, Texas Utilities (TXU), Montana-Dakota Utilities Co., Minnkota Power Cooperative, BNI Coal Ltd., Dakota Westmoreland Corporation, and the North American Coal Company--has undertaken a project to significantly and cost-effectively oxidize elemental mercury in lignite combustion gases, followed by capture in a wet scrubber. This approach will be applicable to virtually every lignite utility in the United States and Canada and potentially impact subbituminous utilities. The oxidation process is proven at the pilot-scale and in short-term full-scale tests. Additional optimization is continuing on oxidation technologies, and this project focuses on longer-term full-scale testing. The lignite industry has been proactive in advancing the understanding of and identifying control options for Hg in lignite combustion flue gases. Approximately 1 year ago, the EERC and EPRI began a series of Hg-related discussions with the Mercury Task Force as well as utilities firing Texas and Saskatchewan lignites. This project is one of three being undertaken by the consortium to perform large-scale Hg control technology testing to address the specific needs and challenges to be met in controlling Hg from lignite-fired power plants. This project involves Hg oxidation upstream of a system equipped with an electrostatic precipitator (ESP) followed by wet flue gas desulfurization (FGD). The team involved in conducting the technical aspects of the project includes the EERC, Babcock & Wilcox, URS, and ADA-ES. The host sites include Minnkota Power Cooperative Milton R. Young

  18. Polycyclic aromatic hydrocarbon (PAH) deposition to and exchange at the air-water interface of Luhu, an urban lake in Guangzhou, China

    International Nuclear Information System (INIS)

    Li Jun; Cheng Hairong; Zhang Gan; Qi Shihua; Li Xiangdong

    2009-01-01

    Urban lakes are vulnerable to the accumulation of semivolatile organic compounds, such as PAHs from wet and dry atmospheric deposition. Little was reported on the seasonal patterns of atmospheric deposition of PAHs under Asian monsoon climate. Bulk (dry + wet) particle deposition, air-water diffusion exchange, and vapour wet deposition of PAHs in a small urban lake in Guangzhou were estimated based on a year-round monitoring. The total PAH particle deposition fluxes observed were 0.44-3.46 μg m -2 day -1 . The mean air-water diffusive exchange flux was 20.7 μg m -2 day -1 . The vapour deposition fluxes of PAHs ranged 0.15-8.26 μg m -2 day -1 . Remarkable seasonal variations of particulate PAH deposition, air-water exchange fluxes and vapour wet deposition were influenced by seasonal changes in meteorological parameters. The deposition fluxes were predominantly controlled by the precipitation intensity in wet season whereas by atmospheric concentration in dry season. - The PAH deposition fluxes were predominantly controlled by the precipitation intensity in wet season whereas by atmospheric concentration in dry season

  19. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg0 Removal from Flue Gases.

    Science.gov (United States)

    Cao, Tiantian; Li, Zhen; Xiong, Yong; Yang, Yue; Xu, Shengming; Bisson, Teresa; Gupta, Rajender; Xu, Zhenghe

    2017-10-17

    Silica-silver nanocomposites (Ag-SBA-15) are a novel class of multifunctional materials with potential applications as sorbents, catalysts, sensors, and disinfectants. In this work, an innovative yet simple and robust method of depositing silver nanoparticles on a mesoporous silica (SBA-15) was developed. The synthesized Ag-SBA-15 was found to achieve a complete capture of Hg 0 at temperatures up to 200 °C. Silver nanoparticles on the SBA-15 were shown to be the critical active sites for the capture of Hg 0 by the Ag-Hg 0 amalgamation mechanism. An Hg 0 capture capacity as high as 13.2 mg·g -1 was achieved by Ag(10)-SBA-15, which is much higher than that achievable by existing Ag-based sorbents and comparable with that achieved by commercial activated carbon. Even after exposure to more complex simulated flue gas flow for 1 h, the Ag(10)-SBA-15 could still achieve an Hg 0 removal efficiency as high as 91.6% with a Hg 0 capture capacity of 457.3 μg·g -1 . More importantly, the spent sorbent could be effectively regenerated and reused without noticeable performance degradation over five cycles. The excellent Hg 0 removal efficiency combined with a simple synthesis procedure, strong tolerance to complex flue gas environment, great thermal stability, and outstanding regeneration capability make the Ag-SBA-15 a promising sorbent for practical applications to Hg 0 capture from coal-fired flue gases.

  20. Wet Deposition of Perchlorate Over the Continental United States

    Science.gov (United States)

    Rajagopalan, S.; Jackson, A. W.; Anderson, T. A.

    2007-12-01

    Natural perchlorate (ClO4-) has been detected in soil, vegetation, food products, and ground and drinking water supplies at various concentrations across the world. For almost a century natural perchlorate has been known to exist in Chilean nitrate deposits that are up to 16 million years old, and recent isotopic evidence has confirmed its source to be predominantly atmospheric. Although the source of natural perchlorate has been attributed to atmospheric deposition, there is almost no data available concerning the deposition rate of perchlorate from precipitation. This research effort, supported by SERDP, was designed to investigate the range of concentrations, and temporal and spatial variations in perchlorate deposition. Sub-samples of precipitation collected through the National Atmospheric Deposition program over a two year period were analyzed for perchlorate. Sample locations included 14 continental states, and Puerto Rico. Perchlorate has been detected (DL= 5 ng/L) in over 65 % of all samples tested with a mean value of 12.60 ± 13.60 ng/L and ranged from 0.5) between ClO4- and other ions (Cl-, NO3-, SO4-2, Na+, K+, Ca+2, Mg+2, and NH4+). Results from this study will have important implications to the national perchlorate issue and may aid in explaining the occurrence of non-anthropogenic perchlorate being reported in arid and semi-arid areas.

  1. The Influence of Climate Change on Atmospheric Deposition of Mercury in the Arctic—A Model Sensitivity Study

    Science.gov (United States)

    Hansen, Kaj M.; Christensen, Jesper H.; Brandt, Jørgen

    2015-01-01

    Mercury (Hg) is a global pollutant with adverse health effects on humans and wildlife. It is of special concern in the Arctic due to accumulation in the food web and exposure of the Arctic population through a rich marine diet. Climate change may alter the exposure of the Arctic population to Hg. We have investigated the effect of climate change on the atmospheric Hg transport to and deposition within the Arctic by making a sensitivity study of how the atmospheric chemistry-transport model Danish Eulerian Hemispheric Model (DEHM) reacts to climate change forcing. The total deposition of Hg to the Arctic is 18% lower in the 2090s compared to the 1990s under the applied Special Report on Emissions Scenarios (SRES-A1B) climate scenario. Asia is the major anthropogenic source area (25% of the deposition to the Arctic) followed by Europe (6%) and North America (5%), with the rest arising from the background concentration, and this is independent of the climate. DEHM predicts between a 6% increase (Status Quo scenario) and a 37% decrease (zero anthropogenic emissions scenario) in Hg deposition to the Arctic depending on the applied emission scenario, while the combined effect of future climate and emission changes results in up to 47% lower Hg deposition. PMID:26378551

  2. Bioaccumulation of newly deposited mercury by fish and invertebrates : an enclosure study using stable mercury isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Paterson, M.J.; Blanchfield, P.J.; Podemski, C.; Rudd, J.W.M.; Sandilands, K.A. [Fisheries and Oceans Canada, Winnipeg, MB (Canada). Freshwater Inst.; Hintelmann, H.H.; Ogrinc, N. [Trent Univ., Peterborough, ON (Canada). Dept. of Chemistry; Gilmour, C.C. [Smithsonian Environmental Research Center, Edgewater, MD (United States); Harris, R. [Tetra Tech Inc., Oakville, ON (Canada)

    2006-10-15

    Concentrations of methyl mercury (MeHg) are elevated in fish from North American lakes, which has resulted in the closure of fisheries and the issuance of consumption advisories in many areas. This study investigated the utility of using stable isotopes of enriched stable mercury (Hg) to examine Hg accumulation in aquatic communities. Enriched stable HG isotopes were added to 4 10 m diameter enclosures in an experimental lake to increase inorganic Hg loading. The objective of the study was to trace low-level additions of isotope-enriched Hg through the biogeochemical cycle and into the food web; and to determine the relative contribution of the newly deposited Hg to MeHg accumulation by fish and other biota. The experiment was conducted over 2 summers with a variety of enriched Hg isotopes being added each year. Data suggested that changes in deposition of inorganic Hg will result in changes in MeHg accumulation by fish and other biota. Results showed that within 1 month, spikes of Hg were detected in water, zooplankton, and benthic invertebrates as MeHg, and in fish as total Hg. In 2001, concentrations in water of inorganic spike Hg added in 2000 were near detection limits. Concentrations of 2000 spike MeHg in water and biota remained unchanged or greater. The accumulation of ambient, non-spike MeHg predominated in all organisms despite comparatively large increases in inorganic Hg loading. It was concluded that although long-term changes in Hg deposition may result in changes in MeHg accumulation by biota, it may take upwards of a decade for steady-state conditions to be achieved. Further research is needed to determine to what extent data from the enclosures can be applied to natural lakes. 29 refs., 5 tabs., 5 figs.

  3. Uncooled middle wavelength infrared photoconductors based on (111) and (100) oriented HgCdTe

    Science.gov (United States)

    Madejczyk, Paweł; Kębłowski, Artur; Gawron, Waldemar; Martyniuk, Piotr; Kopytko, Małgorzata; Stępień, Dawid; Rutkowski, Jarosław; Piotrowski, Józef; Piotrowski, Adam; Rogalski, Antoni

    2017-09-01

    We present progress in metal organic chemical vapor deposition (MOCVD) growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool for the fabrication of different HgCdTe detector structures with a wide range of composition, donor/acceptor doping, and without post grown ex-situ annealing. Surface morphology, residual background concentration, and acceptor doping efficiency are compared in (111) and (100) oriented HgCdTe epilayers. At elevated temperatures, the carrier lifetime in measured p-type photoresistors is determined by Auger 7 process with about one order of magnitude difference between theoretical and experimental values. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for medium wavelength infrared photoconductors operated in high-operating temperature conditions.

  4. Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution.

    Science.gov (United States)

    Osterwalder, Stefan; Bishop, Kevin; Alewell, Christine; Fritsche, Johannes; Laudon, Hjalmar; Åkerblom, Staffan; Nilsson, Mats B

    2017-11-22

    Peatlands are a major source of methylmercury that contaminates downstream aquatic food webs. The large store of mercury (Hg) in peatlands could be a source of Hg for over a century even if deposition is dramatically reduced. However, the reliability of Hg mass balances can be questioned due to missing long-term land-atmosphere flux measurements. We used a novel micrometeorological system for continuous measurement of Hg peatland-atmosphere exchange to derive the first annual Hg budget for a peatland. The evasion of Hg (9.4 µg m -2 yr -1 ) over the course of a year was seven times greater than stream Hg export, and over two times greater than wet bulk deposition to the boreal peatland. Measurements of dissolved gaseous Hg in the peat pore water also indicate Hg evasion. The net efflux may result from recent declines in atmospheric Hg concentrations that have turned the peatland from a net sink into a source of atmospheric Hg. This net Hg loss suggests that open boreal peatlands and downstream ecosystems can recover more rapidly from past atmospheric Hg deposition than previously assumed. This has important implications for future levels of methylmercury in boreal freshwater fish and the estimation of historical Hg accumulation rates from peat profiles.

  5. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Science.gov (United States)

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) presents human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it ...

  6. Increasing importance of deposition of reduced nitrogen in the United States

    Science.gov (United States)

    Yi Li; Bret A. Schichtel; John T. Walker; Donna B. Schwede; Xi Chen; Christopher M. B. Lehmann; Melissa A. Puchalski; David A. Gay; Jeffrey L. Collett

    2016-01-01

    Rapid development of agriculture and fossil fuel combustion greatly increased US reactive nitrogen emissions to the atmosphere in the second half of the 20th century, resulting in excess nitrogen deposition to natural ecosystems. Recent efforts to lower nitrogen oxides emissions have substantially decreased nitrate wet deposition. Levels of wet ammonium...

  7. A Neutron Scattering Study of Lattice Dynamics of HgTe and HgSe

    DEFF Research Database (Denmark)

    Kepa, H.; Giebultowicz, T.; Buras, B.

    1982-01-01

    The dispersion relations for the acoustic and optic phonons in HgTe and for the acoustic phonons in HgSe were determined by neutron inelastic scattering in three high symmetry directions. The effect of the free-carrier screening of the long-range electric field of LO phonons in HgTe was observed....... The formalism of the rigid ion model is used for numerical calculations of the phonon dispersion relations and the phonon densities of states in HgTe and HgSe....

  8. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    Mercury (Hg) associated with mixed waste generated by nuclear weapons manufacturing has contaminated vast areas of the Oak Ridge Reservation (ORR). Neurotoxic methylmercury (MeHg) has been formed from the inorganic Hg wastes discharged into headwaters of East Fork Poplar Creek (EFPC). Thus, understanding the processes and mechanisms that lead to Hg methylation along the flow path of EFPC is critical to predicting the impacts of the contamination and the design of remedial action at the ORR. In part I of our project, we investigated Hg(0) oxidation and methylation by anaerobic bacteria. We discovered that the anaerobic bacterium Desulfovibrio desulfuricans ND132 can oxidize elemental mercury [Hg(0)]. When provided with dissolved elemental mercury, D. desulfuricans ND132 converts Hg(0) to Hg(II) and neurotoxic methylmercury [MeHg]. We also demonstrated that diverse species of subsurface bacteria oxidizes dissolved elemental mercury under anoxic conditions. The obligate anaerobic bacterium Geothrix fermentans H5, and the facultative anaerobic bacteria Shewanella oneidensis MR-1 and Cupriavidus metallidurans AE104 can oxidize Hg(0) to Hg(II) under anaerobic conditions. In part II of our project, we established anaerobic enrichment cultures and obtained new bacterial strains from the DOE Oak Ridge site. We isolated three new bacterial strains from subsurface sediments collected from Oak Ridge. These isolates are Bradyrhizobium sp. strain FRC01, Clostridium sp. strain FGH, and a novel Negativicutes strain RU4. Strain RU4 is a completely new genus and species of bacteria. We also demonstrated that syntrophic interactions between fermentative bacteria and sulfate-reducing bacteria in Oak Ridge saprolite mediate iron reduction via multiple mechanisms. Finally, we tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge site, where nitrate is a major contaminant. We showed that there is an inverse

  9. Atmospheric deposition of polycyclic aromatic hydrocarbons (PAHs) in Shanghai: the spatio-temporal variation and source identification

    Science.gov (United States)

    Cheng, Chen; Bi, Chunjuan; Wang, Dongqi; Yu, Zhongjie; Chen, Zhenlou

    2018-03-01

    This study investigated the dry and wet deposition fluxes of atmospheric polycyclic aromatic hydrocarbons (PAHs) in Shanghai, China. The flux sources were traced based on composition and spatio-temporal variation. The results show that wet deposition concentrations of PAHs ranged from 0.07 to 0.67 mg·L-1 and were correlated with temperature ( P<0.05). Dry deposition of PAHs concentrations ranged from 3.60-92.15 mg·L-1 and were higher in winter and spring than in summer and autumn. The annual PAH average fluxes were 0.631 mg·m-2·d-1 and 4.06 mg·m-2·d-1 for wet and dry deposition, respectively. The highest wet deposition of PAH fluxes was observed in summer, while dry deposition fluxes were higher in winter and spring. Atmospheric PAHs were deposited as dry deposition in spring and winter, yet wet deposition was the dominant pathway during summer. Total atmospheric PAH fluxes were higher in the northern areas than in the southern areas of Shanghai, and were also observed to be higher in winter and spring. Annual deposition of atmospheric PAHs was about 10.8 t in across all of Shanghai. Wet deposition of PAHs was primarily composed of two, three, or four rings, while dry deposition of PAHs was composed of four, five, or six rings. The atmospheric PAHs, composed of four, five, or six rings, primarily existed in the form of particulates. Coal combustion and vehicle emissions were the dominant sources of PAH in the observed area of downtown Shanghai. In suburban areas, industrial pollution, from sources such as coke oven, incinerator, and oil fired power plant, was as significant as vehicle emissions in contributing to the deposition of PAHs.

  10. Comparative study of tantalum deposition by chemical vapor deposition and electron beam vacuum evaporation

    International Nuclear Information System (INIS)

    Spitz, J.; Chevallier, J.

    1975-01-01

    The coating by tantalum of steel parts has been carried out by the two following methods: chemical vapor deposition by hydrogen reduction of TaCl 5 (temperature=1100 deg C, pressure=200 mmHg, H 2 /TaCl 5 =10); electron beam vacuum evaporation. In this case Ta was firstly condensed by ion plating (P(Ar)=5x10 -3 up to 2x10 -2 mmHg; U(c)=3 to -4kV and J(c)=0.2 to 1mAcm -2 ) in order to ensure a good adhesion between deposit and substrate; then by vacuum condensation (substrate temperature: 300 to 650 deg C) to ensure that the coating is impervious to HCl an H 2 SO 4 acids. The advantages and inconveniences of each method are discussed [fr

  11. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington forests, USA

    Science.gov (United States)

    Linda H. Geiser; Sarah E. Jovan; Doug A. Glavich; Matthew K. Porter

    2010-01-01

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry,...

  12. Formation of Pentacene wetting layer on the SiO2 surface and charge trap in the wetting layer

    International Nuclear Information System (INIS)

    Kim, Chaeho; Jeon, D.

    2008-01-01

    We studied the early-stage growth of vacuum-evaporated pentacene film on a native SiO 2 surface using atomic force microscopy and in-situ spectroscopic ellipsometry. Pentacene deposition prompted an immediate change in the ellipsometry spectra, but atomic force microscopy images of the early stage films did not show a pentacene-related morphology other than the decrease in the surface roughness. This suggested that a thin pentacene wetting layer was formed by pentacene molecules lying on the surface before the crystalline islands nucleated. Growth simulation based on the in situ spectroscopic ellipsometry spectra supported this conclusion. Scanning capacitance microscopy measurement indicated the existence of trapped charges in the SiO 2 and pentacene wetting layer

  13. Total dissolved atmospheric nitrogen deposition in the anoxic Cariaco basin

    Science.gov (United States)

    Rasse, R.; Pérez, T.; Giuliante, A.; Donoso, L.

    2018-04-01

    Atmospheric deposition of total dissolved nitrogen (TDN) is an important source of nitrogen for ocean primary productivity that has increased since the industrial revolution. Thus, understanding its role in the ocean nitrogen cycle will help assess recent changes in ocean biogeochemistry. In the anoxic Cariaco basin, the place of the CARIACO Ocean Time-Series Program, the influence of atmospherically-deposited TDN on marine biogeochemistry is unknown. In this study, we measured atmospheric TDN concentrations as dissolved organic (DON) and inorganic (DIN) nitrogen (TDN = DIN + DON) in atmospheric suspended particles and wet deposition samples at the northeast of the basin during periods of the wet (August-September 2008) and dry (March-April 2009) seasons. We evaluated the potential anthropogenic N influences by measuring wind velocity and direction, size-fractionated suspended particles, chemical traces and by performing back trajectories. We found DIN and DON concentration values that ranged between 0.11 and 0.58 μg-N m-3 and 0.11-0.56 μg-N m-3 in total suspended particles samples and between 0.08 and 0.54 mg-N l-1 and 0.02-1.3 mg-N l-1 in wet deposition samples, respectively. Continental air masses increased DON and DIN concentrations in atmospheric suspended particles during the wet season. We estimate an annual TDN atmospheric deposition (wet + particles) of 3.6 × 103 ton-N year-1 and concluded that: 1) Atmospheric supply of TDN plays a key role in the C and N budget of the basin because replaces a fraction of the C (20% by induced primary production) and N (40%) removed by sediment burial, 2) present anthropogenic N could contribute to 30% of TDN atmospheric deposition in the basin, and 3) reduced DON (gas + particles) should be a significant component of bulk N deposition.

  14. Tracing historical trends of Hg in the Mississippi River using Hg concentrations and Hg isotopic compositions in a lake sediment core, Lake Whittington, Mississippi, USA

    Science.gov (United States)

    Gray, John E.; Van Metre, Peter C.; Pribil, Michael J.; Horowitz, Arthur J.

    2015-01-01

    Concentrations and isotopic compositions of mercury (Hg) in a sediment core collected from Lake Whittington, an oxbow lake on the Lower Mississippi River, were used to evaluate historical sources of Hg in the Mississippi River basin. Sediment Hg concentrations in the Lake Whittington core have a large 10-15 y peak centered on the 1960s, with a maximum enrichment factor relative to Hg in the core of 4.8 in 1966. The Hg concentration profile indicates a different Hg source history than seen in most historical reconstructions of Hg loading. The timing of the peak is consistent with large releases of Hg from Oak Ridge National Laboratory (ORNL), primarily in the late 1950s and 1960s. Mercury was used in a lithiumisotope separation process by ORNL and an estimated 128Mg (megagrams) of Hgwas discharged to a local stream that flows into the Tennessee River and, eventually, the Mississippi River. Mass balance analyses of Hg concentrations and isotopic compositions in the Lake Whittington core fit a binary mixing model with a Hg-rich upstream source contributing about 70% of the Hg to Lake Whittington at the height of the Hg peak in 1966. This upstream Hg source is isotopically similar to Hg isotope compositions of stream sediment collected downstream near ORNL. It is estimated that about one-half of the Hg released from the ORNL potentially reached the LowerMississippi River basin in the 1960s, suggesting considerable downstream transport of Hg. It is also possible that upstream urban and industrial sources contributed some proportion of Hg to Lake Whittington in the 1960s and 1970s.

  15. Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology.

    Science.gov (United States)

    Kryza, Maciej; Dore, Anthony J; Błaś, Marek; Sobik, Mieczysław

    2011-04-01

    The relative contribution of reduced nitrogen to acid and eutrophic deposition in Europe has increased recently as a result of European policies which have been successful in reducing SO(2) and NO(x) emissions but have had smaller impacts on ammonia (NH(3)) emissions. In this paper the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model was used to calculate the spatial patterns of annual average ammonia and ammonium (NH(4)(+)) air concentrations and reduced nitrogen (NH(x)) dry and wet deposition with a 5 km × 5 km grid for years 2002-2005. The modelled air concentrations of NH(3) and dry deposition of NH(x) show similar spatial patterns for all years considered. The largest year to year changes were found for wet deposition, which vary considerably with precipitation amount. The FRAME modelled air concentrations and wet deposition are in reasonable agreement with available measurements (Pearson's correlation coefficients above 0.6 for years 2002-2005), and with spatial patterns of concentrations and deposition of NH(x) reported with the EMEP results, but show larger spatial gradients. The error statistics show that the FRAME model results are in better agreement with measurements if compared with EMEP estimates. The differences in deposition budgets calculated with FRAME and EMEP do not exceed 17% for wet and 6% for dry deposition, with FRAME estimates higher than for EMEP wet deposition for modelled period and lower or equal for dry deposition. The FRAME estimates of wet deposition budget are lower than the measurement-based values reported by the Chief Inspectorate of Environmental Protection of Poland, with the differences by approximately 3%. Up to 93% of dry and 53% of wet deposition of NH(x) in Poland originates from national sources. Over the western part of Poland and mountainous areas in the south, transboundary transport can contribute over 80% of total (dry + wet) NH(x) deposition. The spatial pattern of the relative contribution of

  16. Electron beam induced Hg desorption and the electronic structure of the Hg depleted surface of Hg1/sub -//sub x/Cd/sub x/Te

    International Nuclear Information System (INIS)

    Shih, C.K.; Friedman, D.J.; Bertness, K.A.; Lindau, I.; Spicer, W.E.; Wilson, J.A.

    1986-01-01

    Auger electron spectroscopy (AES), x-ray photoemission spectroscopy (XPS), low energy electron diffraction (LEED), and angle-resolved ultraviolet photoemission spectroscopy (ARPES) were used to study the electron beam induced Hg desorption from a cleaved (110)Hg/sub 1-//sub x/Cd/sub x/Te surface and the electronic structure of the Hg depleted surface. Solid state recrystallized Hg/sub 1-//sub x/Cd/sub x/Te single crystals were used. It was found that the electron beam heating dominated the electron beam induced Hg desorption on Hg/sub 1-//sub x/Cd/sub x/Te. At the electron beam energy used, the electron beam heating extended several thousand angstroms deep. However, the Hg depletion saturated after a few monolayers were depleted of Hg atoms. At the initial stage of Hg loss (only 3%), the surface band bends upward (more p type). The ARPES spectrum showed the loss of some E vs k dispersion after 22% Hg atoms were removed from the surface region, and no dispersion was observed after 43% Hg atoms were removed. These results have important implications on the electronic structure of the surfaces and interfaces of which the stoichiometry is altered

  17. Litterfall mercury dry deposition in the eastern USA

    Science.gov (United States)

    Martin R. Risch; John F. DeWild; David P. Krabbenhoft; Randall K. Kolka; Leiming. Zhang

    2012-01-01

    Mercury (Hg) in autumn litterfall frompredominately deciduous forestswas measured in 3 years of samples from 23 Mercury Deposition Network sites in 15 states across the eastern USA. Annual litterfall Hg dry depositionwas significantly higher (median 12.3 micrograms per square meter (µg/m2), range 3.5-23.4 µg/m2...

  18. Chemical characteristics of atmospheric deposition collected at two ENEA stations near Bologna

    International Nuclear Information System (INIS)

    Barilli, L.; Olivieri, P.; Salvi, S.; Morselli, L.; Grandi, E.; Ianuccilli, A.

    1997-06-01

    This article presents the results of the measurements of the water quality in acid rains, collected by a Wet and Dry Sampler in 1994 and in 1995 at two ENEA stations, Brasimone and Bologna town, belonging to the RIDEP network and characterized by different geography and different anthropogenic sources. In the Bologna station from April 95 an innovative sampler DAS (Dry Deposition on Aquatic Surface) has been activated. The monitoring has allowed determining the wet deposition fluxes in both the stations and pointing out the differences between two areas characterized by different topology. Besides the DAS sampler has allowed evaluating the total deposition fluxes (wet and dry deposition) in the Bologna station and comparing them with the ''critical loads'' pertaining to the examined territory

  19. Atmospheric deposition of polycyclic aromatic hydrocarbons near New England coastal waters

    Science.gov (United States)

    Golomb, D.; Barry, E.; Fisher, G.; Varanusupakul, P.; Koleda, M.; Rooney, T.

    Wet and dry deposition of polycyclic aromatic hydrocarbons (PAHs) was measured at Nahant, Massachusetts, a peninsula jutting into Massachusetts Bay and Wolf Neck, a peninsula jutting into Casco Bay, Maine. Wet deposition (rain and snow) was collected in a funnel which drains into a shielded, temperature controlled receiving bottle. Dry deposition of gaseous and particulate PAHs was collected onto an exposed water surface. PAHs were analyzed by solid phase extraction and gas chromatography-mass spectrometry. Sixteen PAH species were analyzed, ranging from acenaphthylene to coronene. The mean wet deposition rate of the sum of the 16 species is 720 ng m -2 cm -1 precipitation at Nahant, and 831 ng m -2 cm -1 precipitation at Wolf Neck. Wet deposition is attributed to regional PAH emitting sources. Storm patterns appear to bring somewhat higher wet deposition of PAHs to Wolf Neck than to Nahant. The mean dry deposition rate is 95 ng m -2 h -1 at Nahant and 9.3 ng m -2 h -1 at Wolf Neck. The large difference is attributed to the fact that Nahant is close to the urban-industrial metropolitan Boston area and Logan International Airport, whereas Wolf Neck has no major PAH-emitting sources nearby. Individual measurements have an error bracket of ±30%. The Chemical Mass Balance model was used to apportion the dry deposition to source categories. At Nahant, nine samples gave valid statistical attributes with a mean apportionment: jet exhaust 35%, gasoline fueled vehicles 32%, diesel fueled vehicles 17%, wood combustion 13%, others 3%. At Wolf Neck, six samples yielded a mean apportionment: jet exhaust 30%, gasoline vehicles 28%, diesel vehicles 18%, wood combustion 16%, others 8%. There is a considerable variation between the samples. The apportionment is greatly dependent on the quality and selection of the model inputs, i.e. source signatures, which for PAHs are questionable.

  20. Superconductivity of Hg3NbF6 and Hg3TaF6

    International Nuclear Information System (INIS)

    Datars, W.R.; Morgan, K.R.; Gillespie, R.J.

    1983-01-01

    Low-temperature ac susceptibility measurements show that two new metallic compounds, Hg 3 TaF 6 and Hg 3 NbF 6 , are superconductors with a critical temperature of 7.0 K. Critical fields are 20% higher in Hg 3 TaF 6 but the temperature dependence of the critical field of the compounds is very similar down to 1.35 K. The critical field extrapolated to T = 0 K is 0.17 T for Hg 3 TaF 6 and 0.13 T for Hg 3 NbF 6

  1. Contrasting mercury and manganese deposition in a mangrove-dominated estuary (Guaratuba Bay, Brazil)

    Science.gov (United States)

    Sanders, C. J.; Santos, I. R.; Silva-Filho, E. V.; Patchineelam, S. R.

    2008-08-01

    Sediment cores were taken at seven sites along the mangrove-bound Guaratuba Bay estuary (southern Brazil), with the purpose of assessing conditions controlling Hg deposition along a horizontal estuarine sediment gradient. The data suggest contrasting depositional patterns for Hg and Mn in this relatively pristine setting. Total Hg contents of bulk sediments ranged from 12 to 36 ng/g along the estuary, the highest values being found in muddier organic-rich sediments of the upper estuary (the corresponding mud gradient is 12 to 42 wt.%, and the organic matter gradient 4 to 10 wt.%). Thus, the deposition of fine sediments relatively enriched in mercury occurs primarily in closer proximity to the freshwater source. The data also indicate a reverse gradient in reactive Mn contents, ranging from 29 to 81 μg/g, and increasing seaward. This implies that reactive Mn is mobilized from fine-grained reducing mangrove forest sediments in the upper estuary, and deposited downstream in sandier, oxygen-rich nearshore sediments. These results suggest that mangrove-surrounded estuaries may act as barriers to mercury transport to coastal waters, but as a source of manganese. The present findings also imply that reactive Mn may be used as an indication of Hg depositional patterns in other similar coastal sedimentary settings.

  2. 40 CFR 60.4112 - Changing Hg designated representative and alternate Hg designated representative; changes in...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Changing Hg designated representative and alternate Hg designated representative; changes in owners and operators. 60.4112 Section 60.4112... Generating Units Hg Designated Representative for Hg Budget Sources § 60.4112 Changing Hg designated...

  3. Pathways of CH3Hg and Hg ingestion in benthic organisms: an enriched isotope approach.

    Science.gov (United States)

    Taylor, Vivien F; Bugge, Deenie; Jackson, Brian P; Chen, Celia Y

    2014-05-06

    Mercury is a widespread contaminant in marine food webs, and identifying uptake pathways of mercury species, CH3Hg(+) and Hg(2+), into low trophic level organisms is important to understanding its entry into marine food webs. Enriched stable isotope tracers were used to study benthic vs. pelagic pathways of CH3Hg(+) and Hg(2+) uptake via food to the infaunal estuarine amphipod, Leptocheirus plumulosus. Algal cells differentially labeled with isotopically enriched CH3Hg(+) or Hg(2+) were added simultaneously to the sediment and water column of microcosms, and Hg species were monitored in amphipods and in sediment and water compartments. Methylation of Hg(2+) occurred during the course of the experiment, enhancing the uptake of Hg(2+) spikes. Trophic transfer of Hg from algae added to the water column was determined to be the major uptake route for amphipods, suggesting inputs of contaminated organic matter from the pelagic zone are important to mercury bioaccumulation even in organisms living in sediments.

  4. Elastic, dynamical, and electronic properties of LiHg and Li3Hg: First-principles study

    Science.gov (United States)

    Wang, Yan; Hao, Chun-Mei; Huang, Hong-Mei; Li, Yan-Ling

    2018-04-01

    The elastic, dynamical, and electronic properties of cubic LiHg and Li3Hg were investigated based on first-principles methods. The elastic constants and phonon spectral calculations confirmed the mechanical and dynamical stability of the materials at ambient conditions. The obtained elastic moduli of LiHg are slightly larger than those of Li3Hg. Both LiHg and Li3Hg are ductile materials with strong shear anisotropy as metals with mixed ionic, covalent, and metallic interactions. The calculated Debye temperatures are 223.5 K and 230.6 K for LiHg and Li3Hg, respectively. The calculated phonon frequency of the T2 g mode in Li3Hg is 326.8 cm-1. The p states from the Hg and Li atoms dominate the electronic structure near the Fermi level. These findings may inspire further experimental and theoretical study on the potential technical and engineering applications of similar alkali metal-based intermetallic compounds.

  5. Interception of wet deposited atmospheric pollutants by herbaceous vegetation: Data review and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Gonze, M.-A., E-mail: marc-andre.gonze@irsn.fr; Sy, M.M.

    2016-09-15

    Better understanding and predicting interception of wet deposited pollutants by vegetation remains a key issue in risk assessment studies of atmospheric pollution. We develop different alternative models, following either empirical or semi-mechanistic descriptions, on the basis of an exhaustive dataset consisting of 440 observations obtained in controlled experiments, from 1970 to 2014, for a wide variety of herbaceous plants, radioactive substances and rainfall conditions. The predictive performances of the models and the uncertainty/variability of the parameters are evaluated under Hierarchical Bayesian modelling framework. It is demonstrated that the variability of the interception fraction is satisfactorily explained and quite accurately modelled by a process-based alternative in which absorption of ionic substances onto the foliage surfaces is determined by their electrical valence. Under this assumption, the 95% credible interval of the predicted interception fraction encompasses 81% of the observations, including situations where either plant biomass or rainfall intensity are unknown. This novel approach is a serious candidate to challenge existing empirical relationships in radiological or chemical risk assessment tools. - Highlights: • Literature data on the interception of atmospheric pollutants by herbs were reviewed • Predictive models were developed and evaluated in the Bayesian modelling framework • Sensitivity of interception to environmental conditions was satisfactorily explained • 81% of the observations were satisfactorily predicted by a semi-mechanistic model • This model challenges empirical relationships currently used in risk assessment tools.

  6. MOCVD growth of CdTe and HgTe on GaAs in a vertical, high-speed, rotating-disc reactor

    International Nuclear Information System (INIS)

    Tompa, G.S.; Nelson, C.R.; Reinert, P.D.; Saracino, M.A.; Terrill, L.A.; Colter, P.C.

    1989-01-01

    The metalorganic chemical vapor deposition (MOCVD) growth of CdTe and HgTe on GaAs (111) and (100) substrates in a vertical, high-speed, rotating-disc reactor was investigated. A range of total reactor pressure, carrier gas flow rate, chemical concentrations, deposition temperature, and rotation rate have been investigated in an attempt to optimize growth conditions. Diisopropyltelluride (DIPTe) and Dimethylcadmium (DMCd) were used as growth precursors. Thickness uniformity varies less than +/- 1.5% over 50 mm diameter wafers. Films having FWHM X-ray rocking curves less than 90 arcsec were obtained on GaAs (111) substrates. The films have excellent surface morphology, exhibiting less than 5 x 10 4 cm - 2 orange peel dents which are much-lt 1 μm in size. An elemental mercury source was added to the growth system. Initial results for the growth of HgTe and HgCdTe are discussed

  7. Intercomparison of rain sampers with respect to physical and chemical parameters aiming at the standardization of methods to measure wet deposition. Vergleich von Niederschlagssammlern in Hinblick auf physikalische und chemische Parameter mit dem Ziel einer Standardisierung der Messtechnik der nassen Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Danecker, W

    1990-02-28

    From 1 April 1986 to 31 December 1989, with support from the BMFT till 31 March 1989, the problem of standardization of methods to measure wet deposition was investigated in cooperation with the Meteorological Observatorium Hamburg. In a large field experiment 11 different rain samplers were intercompared for a long period with respect to their suitability for measurement of wet deposition of atmospheric trace substances. The observed systematic differences could be related to specific contamination sources. In addition differing large surface effects of the rain drainage system of the samplers were investigated. Two intercalibrations were performed with the participation of 26 and 21 experienced European laboratories. The results for the 12 measured parameters in rainwater clearly show the available analytical technique of today. Statistical evaluation and return of the individual results for the participating laboratories allowed them to control their methods and check for reliability of common analytical procedures. Conclusions and results of the project have been incorporated in the VDI-guideline 3870 'Measurement of rain constituents' as well as into the report BPT 1/89 of the GSF. (orig.) With 11 refs., 57 tabs., 84 figs.

  8. Triaxiality in the even-mass Hg isotopes: A discontinuity at 200Hg

    International Nuclear Information System (INIS)

    Morrison, I.; Spear, R.H.

    1981-01-01

    The mass dependence of excitation energies of the 2 + 1 , 2 + 2 , and 4 + 1 states of the even-mass Hg isotopes, and of some related B(E2) values, shows a marked discontinuity at 200 Hg. Analysis of B(E2;0 + 1 →2 + 1 ) values in terms of an extended interacting boson approximation model suggests that this discontinuity is due to a change in the proton and neutron distributions at 200 Hg. Apart from 200 Hg, the data favor γ-soft models rather than the rigid triaxial-rotor model

  9. Collection of Wet-Origin Footwear Impressions on Various Surfaces Using an Electrostatic Dust Print Lifter.

    Science.gov (United States)

    Hong, Sungwook; Park, Miseon

    2018-01-19

    Electrostatic dust print lift method is known to be able to recover only dry-origin footwear impression. However, the wet-origin footwear impression could also be recovered using this method. As the amount of dust accumulated before deposition of the wet-origin footwear impression increased, the intensity of the footwear impression lifted with this method became stronger. If the footwear impression is not affected by moisture after it is made, the 28-h old wet-origin footwear impression could be recovered using this method. The intensity of the lifted footwear impression did not decrease significantly even when the number of sequential steps increased as long as the shoe sole is wet. However, when the moisture on the shoe sole depleted, the intensity of the footwear impression decreased sharply. This method has the advantage of being able to enhance the footwear impression without being affected by the footwear impressions deposited in the past. © 2018 American Academy of Forensic Sciences.

  10. Toward Synchronous Evaluation of Source Apportionments for Atmospheric Concentration and Deposition of Sulfate Aerosol Over East Asia

    Science.gov (United States)

    Itahashi, S.

    2018-03-01

    Source apportionments for atmospheric concentration, dry deposition, and wet deposition of sulfate aerosol (SO42-) were synchronously evaluated over East Asia, a main source of anthropogenic sulfur dioxide (SO2) emissions. Estimating dry deposition was difficult owing to the difficulty of measuring deposition velocity directly; therefore, sensitivity simulations using two dry deposition schemes were conducted. Moreover, sensitivity simulations for different emission inventories, the largest uncertainty source in the air quality model, were also conducted. In total, four experimental settings were used. Model performance was verified for atmospheric concentration and wet deposition using a ground-based observation network in China, Korea, and Japan, and all four model settings captured the observations. The underestimation of wet deposition over China was improved by an adjusted approach that linearly scaled the modeled precipitation values to observations. The synchronous evaluation of source apportionments for atmospheric concentration and dry and wet deposition showed the dominant contribution of anthropogenic emissions from China to the atmospheric concentration and deposition in Japan. The contributions of emissions from volcanoes were more important for wet deposition than for atmospheric concentration. Differences in the dry deposition scheme and emission inventory did not substantially influence the relative ratio of source apportionments over Japan. Because the dry deposition was more attributed to local factors, the differences in dry deposition may be an important determinant of the source contributions from China to Japan. Verification of these findings, including the dry deposition velocity, is necessary for better understanding of the behavior of sulfur compound in East Asia.

  11. On the mean square displacements (MSD) of Hg and Te in HgTe

    International Nuclear Information System (INIS)

    Madhavan, Y.; Ramachandran, K.

    1989-01-01

    The mean square displacements (MSD) of Hg and Te in the perfect system of HgTe are worked out in the modified rigid ion model of Plumelle and Vandevyver. Also the MSD of Hg and Te neighbours around anion and cation vacancies in HgTe are worked out giving an active role for the vacancy following the theory of Maradudin et al. The results are compared with experimental values. (author)

  12. Long term precipitation chemistry and wet deposition in a remote dry savanna site in Africa (Niger

    Directory of Open Access Journals (Sweden)

    C. Galy-Lacaux

    2009-03-01

    , the total mean wet deposition flux in the Sahelian region is of 60.1 mmol.m−2.yr−1 ±25%. Finally, Banizoumbou measurements are compared to other long-term measurements of precipitation chemistry in the wet savanna of Lamto (Côte d'Ivoire and in the forested zone of Zoétélé (Cameroon. The total chemical loading presents a maximum in the dry savanna and a minimum in the forest (from 143.7, 100.2 to 86.6 μeq.l−1, associated with the gradient of terrigeneous sources. The wet deposition fluxes present an opposite trend, with 60.0 mmol.m−2.yr−1 in Banizoumbou, 108.6 mmol.m−2.yr−1 in Lamto and 162.9 mmol.m−2.yr−1 in Zoétélé, controlled by rainfall gradient along the ecosystems transect.

  13. Surfactant-induced deposit structures in relation to the biological efficacy of glyphosate on easy- and difficult-to-wet weed species.

    Science.gov (United States)

    Kraemer, Thorsten; Hunsche, Mauricio; Noga, Georg

    2009-08-01

    Typical active ingredient (AI) residue patterns are formed during droplet drying on plant surfaces owing to the interaction of spray solution characteristics and leaf micromorphology. Currently, comparatively little is known about the influence of AI deposit patterns within a spray droplet residue area on the penetration and biological efficacy of glyphosate. A scanning electron microscope with energy dispersive X-ray microanalysis has been used to characterise residue patterns and to quantify the area ultimately covered by glyphosate within the droplet spread area. The easy-to-wet weed species Stellaria media L. and Viola arvensis L., as well as the difficult-to-wet Chenopodium album L. and Setaria viridis L., differing in their surface micromorphology, have been used. Rapeseed oil ethoxylates (RSO 5 or RSO 60) were added to glyphosate solutions to provide different droplet spread areas. Addition of RSO 5 enhanced droplet spread area more than RSO 60, and both caused distinct glyphosate residue patterns. The biological efficacy of treatment solutions showed no significant correlation with the area ultimately covered by glyphosate. The results have implications on herbicide uptake models. This study shows that droplet spread area does not correspond to the area ultimately covered by glyphosate, and that the latter does not affect glyphosate phytotoxicity.

  14. High nitrogen deposition in an agricultural ecosystem of Shaanxi, China.

    Science.gov (United States)

    Liang, Ting; Tong, Yan'an; Liu, Xuejun; Xu, Wen; Luo, Xiaosheng; Christie, Peter

    2016-07-01

    Atmospheric nitrogen (N) deposition plays an important role in the global N cycle. Data for dry and wet N deposition in agricultural ecosystem of Shaanxi in China is still imperfect; in this study, we continuously measured concentrations and fluxes of dry N deposition from 2010 to 2013 in Yangling district of Shaanxi province and wet N deposition from 2010 to 2012. The average annual concentrations of NH3, NO2, HNO3, particulate ammonium, and nitrate (pNH4 (+) and pNO3 (-)) varied among 3.9-9.1, 6.6-8.0, 1.2-1.4, 3.1-4.3, and 3.3-4.8 μg N m(-3), respectively, with mean values of 6.0, 7.2, 1.3, 3.8, and 4.1 μg N m(-3), respectively, during the entire monitoring period. The annual NH4 (+)-N and NO3 (-)-N concentrations in precipitation ranged 3.9-4.3 and 2.8-3.4 mg N L(-1) with the mean values of 4.1 and 3.3 mg N L(-1). The NH4 (+)-N/NO3 (-)-N ratio in rainfall averaged 1.2. Dry N deposition flux was determined to be 19.2 kg N ha(-1) year(-1) and the wet N deposition flux was 27.2 kg N ha(-1) year(-1). The amount of total atmospheric N deposition (dry plus wet) reached 46.4 kg N ha(-1) year(-1), in which dry deposition accounted 41 %. Gaseous N deposition comprised over 75 % of the dry deposition, and the proportion of oxidized N in dry deposition was equal to the reduced N. Therefore, the results suggest that more stringent regional air pollution control policies are required in the target area and that N deposition is an important nutrient resource from the atmosphere that must be taken into consideration in nutrient management planning of agricultural ecosystems.

  15. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species

    International Nuclear Information System (INIS)

    Greger, Maria; Wang Yaodong; Neuschuetz, Clara

    2005-01-01

    In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 μg L -1 Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected. - Mercury translocation to shoots was low

  16. Wet deposition and soil content of Beryllium - 7 in a micro-watershed of Minas Gerais (Brazil).

    Science.gov (United States)

    Esquivel L, Alexander D; Moreira, Rubens M; Monteiro, Roberto Pellacani G; Dos Santos, Anômora A Rochido; Juri Ayub, Jimena; Valladares, Diego L

    2017-04-01

    Beryllium-7 ( 7 Be) is a natural radionuclide of cosmogenic origin, normally used as a tracer for several environmental processes; such as soil redistribution, sediment source discrimination, atmospheric mass transport, and trace metal scavenging from the atmosphere. In this research the content of 7 Be in soil, its seasonal variation throughout the year and its relationship with the rainfall regime in the Mato Frio creek micro-watershed was investigated, to assess its potential use in estimating soil erosion. The 7 Be content in soil shows a marked variation throughout the year. Minimum 7 Be values were observed in the dry season (from April to September) and were between 7 and 14 times higher in the rainy season (from October to March). The seasonal oscillations in 7 Be soil content could be explained by the asymmetric rainfall regime. A highly linear relationship between rainfall amount and 7 Be deposition was observed in rain water. A good agreement between 7 Be soil content and 7 Be atmospheric deposition was noticed, mainly in wet months. 7 Be penetration in soil reaches a 5 cm depth, this could be explained by the soil type in the region. The soils are Acrisol type, characterized by low pH values and clay illuviation in deeper layers of the soil. In some regions of Brazil special attention should be paid if this radionuclide will be used as soil erosion tracer, taking into account the soil origin and its particular properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Hyperemesis Gravidarum (HG)

    Science.gov (United States)

    ... Treatments Risks Complications Impact Take a Poll If HG continued past mid-pregnancy , did you experience complications ... Understanding Hyperemesis | Overview About Hyperemesis Gravidarum Hyperemesis gravidarum (HG) is a severe form of nausea and vomiting ...

  18. Photoionization study of HgAr

    International Nuclear Information System (INIS)

    Linn, S.H.; Brom, J.M. Jr.; Tzeng, W.; Ng, C.Y.

    1985-01-01

    Photoionization efficiency data for HgAr + have been obtained in the region of 680--1240 A. The ionization energy of HgAr was determined to be 10.217 +- 0.012 eV. This value allows the calculation of the dissociation energy of HgAr + to be 0.228 +- 0.017 eV. The relative probabilities for the formation of HgAr + via the reactions Ar* x Hg or Hg* x Ar→ HgAr + +e - with Ar* and Hg* prepared in high Rydberg states in the energy range of 10.22--15.79 eV were estimated. Although the radii for the 3d and 5s Rydberg ortitals of Ar have similar values, the probabilities for the formation of HgAr + from Hg x Ar* with Ar* in the 5s[3/2] 0 1 and 5s'[1/2] 0 1 Rydberg states are substantially greater than those when the Ar* excited atoms are in the 3d[1/2] 0 1 , 3s[3/2] 0 1 , and 3d'[3/2] 0 1 Rydberg levels. The ratio for the cross sections for the formation of HgAr + from Hg x Ar* with Ar* formed in the 3d[1/2] 0 1 and 4d[1/2] 0 1 states, as well as that with Ar* prepared in the 5d[1/2] 0 1 and 6d[1/2] 0 1 states, were found to be consistent with the predictions of the previous impact parameter calculations

  19. Deposition of reactive nitrogen during the Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study

    International Nuclear Information System (INIS)

    Beem, Katherine B.; Raja, Suresh; Schwandner, Florian M.; Taylor, Courtney; Lee, Taehyoung; Sullivan, Amy P.; Carrico, Christian M.; McMeeking, Gavin R.; Day, Derek; Levin, Ezra; Hand, Jenny; Kreidenweis, Sonia M.; Schichtel, Bret; Malm, William C.; Collett, Jeffrey L.

    2010-01-01

    Increases in reactive nitrogen deposition are a growing concern in the U.S. Rocky Mountain west. The Rocky Mountain Airborne Nitrogen and Sulfur (RoMANS) study was designed to improve understanding of the species and pathways that contribute to nitrogen deposition in Rocky Mountain National Park (RMNP). During two 5-week field campaigns in spring and summer of 2006, the largest contributor to reactive nitrogen deposition in RMNP was found to be wet deposition of ammonium (34% spring and summer), followed by wet deposition of nitrate (24% spring, 28% summer). The third and fourth most important reactive nitrogen deposition pathways were found to be wet deposition of organic nitrogen (17%, 12%) and dry deposition of ammonia (14%, 16%), neither of which is routinely measured by air quality/deposition networks operating in the region. Total reactive nitrogen deposition during the spring campaign was determined to be 0.45 kg ha -1 and more than doubled to 0.95 kg ha -1 during the summer campaign. - The reactive nitrogen deposition budget for Rocky Mountain National Park.

  20. Critical elements in Carlin, epithermal, and orogenic gold deposits

    Science.gov (United States)

    Goldfarb, Richard J.; Hofstra, Albert H.; Simmons, Stuart F.

    2016-01-01

    Carlin, epithermal, and orogenic gold deposits, today mined almost exclusively for their gold content, have similar suites of anomalous trace elements that reflect similar low-salinity ore fluids and thermal conditions of metal transport and deposition. Many of these trace elements are commonly referred to as critical or near-critical elements or metals and have been locally recovered, although typically in small amounts, by historic mining activities. These elements include As, Bi, Hg, In, Sb, Se, Te, Tl, and W. Most of these elements are now solely recovered as by-products from the milling of large-tonnage, base metal-rich ore deposits, such as porphyry and volcanogenic massive sulfide deposits.A combination of dominance of the world market by a single country for a single commodity and a growing demand for many of the critical to near-critical elements could lead to future recovery of such elements from select epithermal, orogenic, or Carlin-type gold deposits. Antimony continues to be recovered from some orogenic gold deposits and tellurium could potentially be a primary commodity from some such deposits. Tellurium and indium in sphalerite-rich ores have been recovered in the past and could be future commodities recovered from epithermal ores. Carlin-type gold deposits in Nevada are enriched in and may be a future source for As, Hg, Sb, and/or Tl. Some of the Devonian carbonaceous host rocks in the Carlin districts are sufficiently enriched in many trace elements, including Hg, Se, and V, such that they also could become resources. Thallium may be locally enriched to economic levels in Carlin-type deposits and it has been produced from Carlin-like deposits elsewhere in the world (e.g., Alsar, southern Macedonia; Lanmuchang, Guizhou province, China). Mercury continues to be recovered from shallow-level epithermal deposits, as well as a by-product of many Carlin-type deposits where refractory ore is roasted to oxidize carbon and pyrite, and mercury is then

  1. Effects of wet-cupping on blood pressure in hypertensive patients: a randomized controlled trial.

    Science.gov (United States)

    Aleyeidi, Nouran A; Aseri, Khaled S; Matbouli, Shadia M; Sulaiamani, Albaraa A; Kobeisy, Sumayyah A

    2015-11-01

    Although cupping remains a popular treatment modality worldwide, its efficacy for most diseases, including hypertension, has not been scientifically evaluated. We aimed to determine the efficacy of wet-cupping for high blood pressure, and the incidence of the procedure's side effects in the intervention group. This is a randomized controlled trial conducted in the General Practice Department at King Abdulaziz University Hospital, Jeddah, Saudi Arabia, between May 2013 and February 2014. There were two groups (40 participants each): intervention group undergoing wet-cupping (hijama) in addition to conventional hypertension treatment, and a control group undergoing only conventional hypertension treatment. Three wet-cupping sessions were performed every other day. The mean systolic and diastolic blood pressures were measured using a validated automatic sphygmomanometer. The follow-up period was 8 weeks. Wet-cupping provided an immediate reduction of systolic blood pressure. After 4 weeks of follow-up, the mean systolic blood pressure in the intervention group was 8.4 mmHg less than in the control group (P=0.046). After 8 weeks, there were no significant differences in blood pressures between the intervention and control groups. In this study, wet-cupping did not result in any serious side effects. Wet-cupping therapy is effective for reducing systolic blood pressure in hypertensive patients for up to 4 weeks, without serious side effects. Wet-cupping should be considered as a complementary hypertension treatment, and further studies are needed. ClinicalTrials.gov Identifier NCT01987583.

  2. Impact of Land Use on the Mobility of Hg Species in Different Compartments of a Tropical Watershed in Brazil.

    Science.gov (United States)

    de Lima, Clara Ayume Ito; de Almeida, Marcelo Gomes; Pestana, Inacio Abreu; Bastos, Wanderley R; do Nascimento Recktenvald, Maria Cristina Nery; de Souza, Cristina Maria Magalhães; Pedrosa, Paulo

    2017-11-01

    This study evaluated the levels of total Hg and CH 3 Hg + from a comprehensive perspective, considering the retention, leaching, and deposition of these contaminants in the main compartments (soil, plant litter, and sediment) of three landscapes (Atlantic Forest, pasture, and agricultural area) in a watershed in northern Rio de Janeiro State, Brazil. Variables analyzed were total Hg, CH 3 Hg + , organic carbon, total nitrogen, grain size, and surface area. In soil samples, total Hg levels were the highest in agricultural soil followed by forest soil and pasture (97.3, 87.6, and 77.1 ng g -1 , respectively), and CH 3 Hg + was lower than 1.7%. Total Hg levels in leaf litter varied between 22.6 and 34.2 ng g -1 , and CH 3 Hg + was 4.37%. In sediment, Hg (60-180 ng g -1 ) and CH 3 Hg + (Hg species, and the effect of each variable varied with the landscape, showing that plant cover should not be ignored in investigations related to Hg species retention in a watershed. The landscapes surveyed in the present study clearly influence the quantitative and qualitative distribution of Hg species. On the other hand, anthropic processes associated with changes in soil use did not have any critical effects on the absolute levels of total Hg and CH 3 Hg + , meaning that the landscapes evaluated seem to represent the background concentration of these chemical species for the evaluated watershed.

  3. Chronologically matched toenail-Hg to hair-Hg ratio: temporal analysis within the Japanese community (U.S.

    Directory of Open Access Journals (Sweden)

    Hinners Thomas

    2012-10-01

    Full Text Available Abstract Background Toenail-Hg levels are being used as a marker of methylmercury (MeHg exposure in efforts to associate exposure with effects such as cardiovascular disease. There is a need to correlate this marker with more established biomarkers that presently underlie existing dose–response relationships in order to compare these relationships across studies. Methods As part of the Arsenic Mercury Intake Biometric Study, toenail clippings were collected at three time points over a period of one year amongst females from within the population of Japanese living near Puget Sound in Washington State (US. Variability in temporal intra-individual toenail-Hg levels was examined and chronologically matched hair and toenail samples were compared to more accurately define the toxicokinetic variability of Hg levels observed between the two compartments. Results Mean toenail-Hg values (n=43 for the 1st, 2nd and 3rd visits were 0.60, 0.60 and 0.56 ng/mg. Correlations were as follows: r=0.92 between 1st and 2nd clinic visits, r=0.75 between 1st and 3rd visits and r=0.87 between 2nd and 3rd visits. With few exceptions, toenail-Hg values from any visit were within 50-150% of the individual’s mean toenail-Hg level. Nearly all participants had less than a two-fold change in toenail-Hg levels across the study period. A regression model of the relationship between toenail-Hg and hair-Hg (n = 41 levels representing the same time period of exposure, gave a slope (Hg ng/mg of 2.79 for hair relative to toenail (r=0.954. Conclusions A chronologically matched hair-Hg to toenail-Hg ratio has been identified within a population that consumes fish regularly and in quantity. Intra-individual variation in toenail-Hg levels was less than two-fold and may represent dietary-based fluctuations in body burden for individuals consuming various fish species with different contaminant levels. The chronologically matched ratio will be useful for relating MeHg exposure and

  4. Hg-coordination studies of oligopeptides containing cysteine, histidine and tyrosine by $^{199m}$Hg-TDPAC

    CERN Document Server

    Ctortecka, B; Mallion, S; Butz, T; Hoffmann, R

    1999-01-01

    In order to study the interaction of histidine- and tyrosine- containing peptide chains with Hg(II), the nuclear quadrupole interaction (NQI) of /sup 199m/Hg in the Hg complexes of the oligopeptides alanyl-alanyl-histidyl-alanyl-alanine-amid (AAHAA-NH /sub 2/) and alanyl-alanyl-tyrosyl-alanyl-alanine-amid (AAYAA-NH/sub 2/) was determined by time differential perturbed angular correlation and is compared with previous data on alanyl-alanyl-cysteyl-alanyl- alanyl (AACAA-OH). The /sup 199m/Hg-NQIs depend on the oligopeptide to Hg(II) stoichiometry and indicate that two-fold and four-fold coordinations occur for the bound Hg(II). (12 refs).

  5. Detailed Assessment of the Kinetics of Hg-Cell Association, Hg Methylation, and Methylmercury Degradation in Several Desulfovibrio Species

    Science.gov (United States)

    Graham, Andrew M.; Bullock, Allyson L.; Maizel, Andrew C.; Elias, Dwayne A.

    2012-01-01

    The kinetics of inorganic Hg [Hg(II)i] association, methylation, and methylmercury (MeHg) demethylation were examined for a group of Desulfovibrio species with and without MeHg production capability. We employed a detailed method for assessing MeHg production in cultures, including careful control of medium chemistry, cell density, and growth phase, plus mass balance of Hg(II)i and MeHg during the assays. We tested the hypothesis that differences in Hg(II)i sorption and/or uptake rates drive observed differences in methylation rates among Desulfovibrio species. Hg(II)i associated rapidly and with high affinity to both methylating and nonmethylating species. MeHg production by Hg-methylating strains was rapid, plateauing after ∼3 h. All MeHg produced was rapidly exported. We also tested the idea that all Desulfovibrio species are capable of Hg(II)i methylation but that rapid demethylation masks its production, but we found this was not the case. Therefore, the underlying reason why MeHg production capability is not universal in the Desulfovibrio is not differences in Hg affinity for cells nor differences in the ability of strains to degrade MeHg. However, Hg methylation rates varied substantially between Hg-methylating Desulfovibrio species even in these controlled experiments and after normalization to cell density. Thus, biological differences may drive cross-species differences in Hg methylation rates. As part of this study, we identified four new Hg methylators (Desulfovibrio aespoeensis, D. alkalitolerans, D. psychrotolerans, and D. sulfodismutans) and four nonmethylating species (Desulfovibrio alcoholivorans, D. tunisiensis, D. carbinoliphilus, and D. piger) in our ongoing effort to generate a library of strains for Hg methylation genomics. PMID:22885751

  6. Evidence of Hg-chain formation in HgxTiS2: a 199mHg-TDPAC study

    International Nuclear Information System (INIS)

    Troeger, W.; Butz, T.; Ouvrard, G.

    1993-01-01

    We determined the 199m Hg nuclear quadrupole interaction in the ''misfit'' or ''superstoichiometric'' compound Hg x TiS 2 by time differential perturbed angular correlation. A unique Hg-site with ν Q = 511(1) MHz and η = 0.410(4) was observed, irrespective of the Hg-uptake (2/3 ≤ x ≤ 4/3). We propose a model of Hg-Hg zig-zag chains which accounts for these observations as well as for the X-ray diffraction data. (orig.)

  7. Distributed regularity of accompanying element and its deep prospecting significances in Guizhou 504 uranium mineral deposit

    International Nuclear Information System (INIS)

    Zhang Weiqian; Huang Kaiping; Cheng Guangqing

    2012-01-01

    In the 504 hydrotherm type mineral deposit, Mo, Hg, Ni, Re, Te, Se element (Mo, Hg are industrial mineral deposit and Ni, Re, Te, Se are scarce element) reach the industrial integrated utilization request, the scarce element widely distributed in acid orebody (upper ore zone) and alkali orebody (lower ore zone). Based on composite samples of uranium ore in the analysis, through computer processing, the linear regression and R-factor analysis, Reveals the relationship between uranium and other elements. They haven't correlation among the U, Hg, Mo. The relation- ship among the Ni, Re, Te, Se is germane. Using this correlation, deep in the deposit and surrounding exploration provides the basis for deep. (authors)

  8. Soil aggregate formation: the role of wetting-drying cycles in the genesis of interparticle bonding

    Science.gov (United States)

    Albalasmeh, Ammar; Ghezzehei, Teamrat

    2013-04-01

    Soil structure influences many soil properties including aeration, water retention, drainage, bulk density, and resistance to erosion and indirectly influences most biological and chemical processes that occur in and around soil. In nature, soil is continually exposed to wetting (e.g., rainfall and diffusive flow) and drying (e.g., evaporation, diffusive flow and plant uptake). These natural wetting and drying cycles of soils are physical events that profoundly affect the development of soil structure, aggregate stability, carbon (C) flux and mineralization. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We found that aggregates of sand and silt particles can be formed by subjecting loose particles to wetting-drying cycles in the presence of dilute solutions of organic matter that mimic root or microbial exudates. Moreover, majority of the organic matter was deposited in the contact region between the sand particles, where the water accumulates during drying. The model predictions and aggregate stability measurements are supported by scanning electron micrographs that clearly show the process of aggregate formation.

  9. A Theoretical Study of the Oxidation of Hg0 to HgBr2 in the Troposphere

    DEFF Research Database (Denmark)

    Goodsite, M. E.; Plane, J. M C; Skov, H.

    2004-01-01

    The oxidation of elemental mercury (Hg0) to the divalent gaseous mercury dibromide (HgBr2) has been proposed to account for the removal of Hg0 during depletion events in the springtime Arctic. The mechanism of this process is explored in this paper by theoretical calculations of the relevant rate...... coefficients. Rice-Ramsberger-Kassel-Marcus (RRKM) theory, together with ab initio quantum calculations where required, are used to estimate the following: recombination rate coefficients of Hg with Br, I, and O; the thermal dissociation rate coefficient of HgBr; and the recombination rate coefficients of Hg......Br with Br, I, OH, and O2. A mechanism based on the initial recombination of Hg with Br, followed by the addition of a second radical (Br, I, or OH) in competition with thermal dissociation of HgBr, is able to account for the observed rate of Hg 0 removal, both in Arctic depletion events and at lower...

  10. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer

    International Nuclear Information System (INIS)

    Ribeiro Guevara, Sergio; Perez Catan, Soledad; Zizek, Suzana; Repinc, Urska; Jacimovic, Radojko; Horvat, Milena

    2007-01-01

    isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me 197 Hg production from 197 Hg 2+ spike, but also with Hg 2+ contamination and Me 197 Hg artefacts) with marine sediments was about 0.005% g -1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g -1 WS, which is far below natural mercury levels. (orig.)

  11. Dynamics of wetting explored with inkjet printing

    Directory of Open Access Journals (Sweden)

    Völkel Simeon

    2017-01-01

    Full Text Available An inkjet printer head, which is capable of depositing liquid droplets with a resolution of 22 picoliters and high repeatability, is employed to investigate the wetting dynamics of drops printed on a horizontal plane as well as on a granular monolayer. For a sessile drop on a horizontal plane, we characterize the contact angle hysteresis, drop volume and contact line dynamics from side view images. We show that the evaporation rate scales with the dimension of the contact line instead of the surface area of the drop. We demonstrate that the system evolves into a closed cycle upon repeating the depositing-evaporating process, owing to the high repeatability of the printing facility. Finally, we extend the investigation to a granular monolayer in order to explore the interplay between liquid deposition and granular particles.

  12. Distinct toxicological characteristics and mechanisms of Hg2+ and MeHg in Tetrahymena under low concentration exposure.

    Science.gov (United States)

    Liu, Cheng-Bin; Qu, Guang-Bo; Cao, Meng-Xi; Liang, Yong; Hu, Li-Gang; Shi, Jian-Bo; Cai, Yong; Jiang, Gui-Bin

    2017-12-01

    Inorganic divalent mercury complexes (Hg 2+ ) and monomethylmercury complexes (MeHg) are the main mercury species in aquatic systems and their toxicity to aquatic organisms is of great concern. Tetrahymena is a type of unicellular eukaryotic protozoa located at the bottom of food chain that plays a fundamental role in the biomagnification of mercury. In this work, the dynamic accumulation properties, toxicological characteristics and mechanisms of Hg 2+ and MeHg in five Tetrahymena species were evaluated in detail. The results showed that both Hg 2+ and MeHg were ingested and exhibited inhibitory effects on the proliferation or survival of Tetrahymena species. However, the ingestion rate of MeHg was significantly higher than that of Hg 2+ . The mechanisms responsible for the toxicity of MeHg and Hg 2+ were different, although both chemicals altered mitochondrial membrane potential (MMP). MeHg disrupted the integrity of membranes while Hg 2+ had detrimental effects on Tetrahymena as a result of the increased generation of reactive oxygen species (ROS). In addition, the five Tetrahymena species showed different capacities in accumulating Hg 2+ and MeHg, with T. corlissi exhibiting the highest accumulations. The study also found significant growth-promoting effect on T. corlissi under low concentration exposure (0.003 and 0.01μg Hg/mL (15 and 50nM)), suggesting different effect and mechanism that should be more closely examined when assessing the bioaccumulation and toxicity of mercury in aquatic ecosystems. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Development of TiO2 containing hardmasks through PEALD deposition

    Science.gov (United States)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hao; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-03-01

    With the increasing prevalence of complex device integration schemes, tri layer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination, and are limited in their ability to scale down thickness without comprising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of PEALD deposited TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a tri layer scheme patterned with PEALD based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited vs a spin-on metal hardmask.

  14. Hg and Pt-metals in meteorite carbon-rich residues - Suggestions for possible host phase for Hg

    Science.gov (United States)

    Jovanovic, S.; Reed, G. W., Jr.

    1980-01-01

    Carbon-rich and oxide residual phases have been isolated from Allende and Murchison by acid demineralization for the determination of their Hg, Pt-metal, Cr, Sc, Co, and Fe contents. Experimental procedures used eliminated the possibility of exogenous and endogenous contaminant trace elements from coprecipitating with the residues. Large enrichments of Hg and Pt-metals were found in Allende but not in Murchison residues. Hg-release profiles from stepwise heating experiments suggest a sulfide as the host for Hg. Diffusion calculations for Hg based on these experiments indicate an activation energy of 7-8 kcal/mol, the same as that for Hg in troilite from an iron meteorite. This is further support for a sulfide host phase for Hg. Equilibration of Hg with this phase at approximately 900 K is indicated. Reasons for the presence of Pt-metals in noncosmic relative abundances are explored.

  15. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  16. Fate and Transport of Mercury in Environmental Media and Human Exposure

    Science.gov (United States)

    Kim, Moon-Kyung

    2012-01-01

    Mercury is emitted to the atmosphere from various natural and anthropogenic sources, and degrades with difficulty in the environment. Mercury exists as various species, mainly elemental (Hg0) and divalent (Hg2+) mercury depending on its oxidation states in air and water. Mercury emitted to the atmosphere can be deposited into aqueous environments by wet and dry depositions, and some can be re-emitted into the atmosphere. The deposited mercury species, mainly Hg2+, can react with various organic compounds in water and sediment by biotic reactions mediated by sulfur-reducing bacteria, and abiotic reactions mediated by sunlight photolysis, resulting in conversion into organic mercury such as methylmercury (MeHg). MeHg can be bioaccumulated through the food web in the ecosystem, finally exposing humans who consume fish. For a better understanding of how humans are exposed to mercury in the environment, this review paper summarizes the mechanisms of emission, fate and transport, speciation chemistry, bioaccumulation, levels of contamination in environmental media, and finally exposure assessment of humans. PMID:23230463

  17. Determination of equilibrium phase composition in the Hg-HgTe-CdTe system by ''dew point'' method

    International Nuclear Information System (INIS)

    Vanyukov, A.V.; Krotov, I.I.; Ermakov, A.I.

    1978-01-01

    Using the ''dew point'' method a study has been made of the equilibrium composition of the solid and liquid phases in the Hg-HgTe-CdTe system at 404, 435 and 454 deg C. It has been pointed out that crystallization of cadmium-rich solid solutions of Cdsub(x)Hgsub(1-x) Te takes place from a liquid phase with a much higher concentration of Hg. The activity of Hg in the liquid phase increases along the liquidus isotherm in the direction from section Hg-HgTe to section HgCdTe in accordance with the increase of its concentration. An increase in activity of Hg in the solid phase of Cdsub(x)Hgsub(1-x)Te has been noted with the reduction of its concentration

  18. Nitrogen emission and deposition budget in West and Central Africa

    International Nuclear Information System (INIS)

    Galy-Lacaux, C; Delon, C

    2014-01-01

    Atmospheric nitrogen depends on land surface exchanges of nitrogen compounds. In Sub Saharan Africa, deposition and emission fluxes of nitrogen compounds are poorly quantified, and are likely to increase in the near future due to land use change and anthropogenic pressure. This work proposes an estimate of atmospheric N compounds budget in West and Central Africa, along an ecosystem transect, from dry savanna to wet savanna and forest, for years 2000−2007. The budget may be considered as a one point in time budget, to be included in long term studies as one of the first reference point for Sub Saharan Africa. Gaseous dry deposition fluxes are estimated by considering N compounds concentrations measured in the frame of the IDAF network (IGAC/DEBITS/AFrica) at the monthly scale and modeling of deposition velocities at the IDAF sites, taking into account the bi directional exchange of ammonia. Particulate dry deposition fluxes are calculated using the same inferential method. Wet deposition fluxes are calculated from measurements of ammonium and nitrate chemical content in precipitations at the IDAF sites combined with the annual rainfall amount. In terms of emission, biogenic NO emissions are simulated at each IDAF site with a surface model coupled to an emission module elaborated from an artificial neural network equation. Ammonia emissions from volatilization are calculated from literature data on livestock quantity in each country and N content in manure. NO x and NH 3 emission from biomass burning and domestic fires are estimated from satellite data and emission factors. The total budget shows that emission sources of nitrogen compounds are in equilibrium with deposition fluxes in dry and wet savannas, with respectively 7.40 (±1.90) deposited and 9.01 (±3.44) kgN ha −1 yr −1 emitted in dry savanna, 8.38 (±2.04) kgN ha −1 yr −1 deposited and 9.60 (±0.69) kgN ha −1 yr −1 emitted in wet savanna. In forested ecosystems, the total budget is dominated

  19. Atmospheric deposition of heavy metals due to dry, wet and occult deposition at the altitude profile Achenkirch

    International Nuclear Information System (INIS)

    Stopper, S.

    2001-12-01

    The goal of this work was to determine the height dependence of the three types of deposition throughout a one year time period to be able to get information about their elevational and seasonal behavior. In the time period from October 1998 to November 1999 measurements of Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn in aerosol, rain and cloud water were conducted in the Achenkirch-Valley in Tyrol, Austria. Afterwards the dry and occult deposition were modeled. The estimated annual inputs of metals at the two measurement sites Christlumkopf (1758 m a.s.l.) Mueeggerkoel (940 m a.s.l.) and the limits of the national law for protection of forest are shown. The measured depositions at both sites were far below the legal regulations. Due to the much higher occult deposition ratio at the top of the mountain the total annual input at the Christlumkopf was higher than at the Mueeggerkoel. This indicates the potential importance of occult deposition. (author)

  20. A numerical modelling study on regional mercury budget for eastern North America

    Directory of Open Access Journals (Sweden)

    X. Lin

    2003-01-01

    Full Text Available In this study, we have integrated an up-to-date physio-chemical transformation mechanism of Hg into the framework of US EPA's CMAQ model system. In addition, the model adapted detailed calculations of the air-surface exchange for Hg to properly describe Hg re-emissions and dry deposition from and to natural surfaces. The mechanism covers Hg in three categories, elemental Hg (Hg0, reactive gaseous Hg (RGM and particulate Hg (HgP. With interfacing to MM5 (meteorology processor and SMOKE (emission processor, we applied the model to a 4-week period in June/July 1995 on a domain covering most of eastern North America. Results indicate that the model simulates reasonably well the levels of total gaseous Hg (TGM and the specific Hg wet deposition measurements made by the Hg deposition network (MDN. Moreover, results from various scenario runs reveal that the Hg system behaves in a closely linear way in terms of contributions from different source categories, i.e. anthropogenic emissions, natural re-emissions and background. Analyses of the scenario results suggest that 37% of anthropogenically emitted Hg was deposited back in the model domain with 5155 kg of anthropogenic Hg moving out of the domain during the simulation period. Overall, the domain served as a net source, which supplied ~a half ton of Hg to the global background pool over the period. Our model validation and a sensitivity test further rationalized the rate constant for gaseous oxidation of Hg0 by hydroxyl radical OH used in the global scale modelling study by Bergan and Rodhe (2001. A further laboratory determination of the reaction rate constant, including its temperature dependence, stands as one of the important issues critical to improving our knowledge on the budget and cycling of Hg.

  1. The mercury chromates Hg6Cr2O9 and Hg6Cr2O10-Preparation and crystal structures, and thermal behaviour of Hg6Cr2O9

    International Nuclear Information System (INIS)

    Weil, Matthias; Stoeger, Berthold

    2006-01-01

    The basic mercury(I) chromate(VI), Hg 6 Cr 2 O 9 (=2Hg 2 CrO 4 .Hg 2 O), has been obtained under hydrothermal conditions (200deg. C, 5 days) in the form of orange needles as a by-product from reacting elemental mercury and K 2 Cr 2 O 7 . Hydrothermal treatment of microcrystalline Hg 6 Cr 2 O 9 in demineralised water at 200deg. C for 3 days led to crystal growth of red crystals of the basic mercury(I, II) chromate(VI), Hg 6 Cr 2 O 10 (=2Hg 2 CrO 4 .2HgO). The crystal structures were solved and refined from single crystal X-ray data sets. Hg 6 Cr 2 O 9 : space group P2 1 2 1 2 1 , Z=4, a=7.3573(12), b=8.0336(13), c=20.281(3)A, 3492 structure factors, 109 parameters, R[F 2 >2σ(F 2 )]=0.0371, wR(F 2 all)=0.0517; Hg 6 Cr 2 O 10 : space group Pca2 1 , Z=4, a=11.4745(15), b=9.4359(12), c=10.3517(14)A, 3249 structure factors, 114 parameters, R[F 2 >2σ(F 2 )]=0.0398, wR(F 2 all)=0.0625. Both crystal structures are made up of an intricate mercury-oxygen network, subdivided into single building blocks [O-Hg-Hg-O] for the mercurous compound, and [O-Hg-Hg-O] and [O-Hg-O] for the mixed-valent compound. Hg 6 Cr 2 O 9 contains three different Hg 2 2+ dumbbells, whereas Hg 6 Cr 2 O 10 contains two different Hg 2 2+ dumbbells and two Hg 2+ cations. The Hg I -Hg I distances are characteristic and range between 2.5031(15) and 2.5286(9)A. All Hg 2 2+ groups exhibit an unsymmetrical oxygen environment. The oxygen coordination of the Hg 2+ cations is nearly linear with two tightly bonded O atoms at distances around 2.07A. For both structures, the chromate(VI) anions reside in the vacancies of the Hg-O network and deviate only slightly from the ideal tetrahedral geometry with average Cr-O distances of ca. 1.66A. Upon heating at temperatures above 385deg. C, Hg 6 Cr 2 O 9 decomposes in a four-step mechanism with Cr 2 O 3 as the end-product at temperatures above 620 deg. C

  2. Crystal structure of the Hg4SiS6 and Hg4SiSe6 compounds

    International Nuclear Information System (INIS)

    Gulay, L.D.; Olekseyuk, I.D.; Parasyuk, O.V.

    2002-01-01

    The crystal structures of Hg 4 SiS 6 and Hg 4 SiSe 6 compounds were investigated using X-ray powder diffraction. These compounds crystallize in the monoclinic Cc space group with the lattice parameters a=1.23020(5), b=0.71031(4), c=1.22791(4) nm, β=109.721(3) deg. for Hg 4 SiS 6 and a=1.28110(4), b=0.74034(4), c=1.27471(1) nm, β=109.605(3) deg. for Hg 4 SiSe 6 . Atomic parameters were refined in the isotropic approximation (R I =0.0571 and R I =0.0555 for the Hg 4 SiS 6 and Hg 4 SiSe 6 , respectively)

  3. New technique for quantification of elemental hg in mine wastes and its implications for mercury evasion into the atmosphere

    Science.gov (United States)

    Jew, A.D.; Kim, C.S.; Rytuba, J.J.; Gustin, M.S.; Brown, Gordon E.

    2011-01-01

    Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline ??-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range. ?? 2011 American Chemical Society.

  4. Mercury speciation in plankton from the Cabo Frio Bay, SE--Brazil.

    Science.gov (United States)

    Silva-Filho, Emmanoel V; Kütter, Vinicius T; Figueiredo, Thiago S; Tessier, Emmanuel; Rezende, Carlos E; Teixeira, Daniel C; Silva, Carlos A; Donard, Olivier F X

    2014-12-01

    Mercury (Hg) is considered a global pollutant, and the scientific community has shown great concern about its toxicity as it may affect the biota of entire systems, through bioaccumulation and bioamplification processes of its organic form, methylmercury (MeHg), along food web. However, few research studies deal with bioaccumulation of Hg from marine primary producers and the first-order consumers. So, this study aims to determine Hg distribution and concentration levels in phytoplankton and zooplankton in the Cabo Frio Bay, Brazil, a site influenced by coastal upwelling. The results from Hg speciation analyses show that inorganic mercury Hg(II) was the predominant specie in plankton from this bay. The annual Hg species distribution in plankton shown mean concentration of 2.00 ± 1.28 ng Hg(II) g(-1) and 0.15 ± 0.08 ng MeHg g(-1) wet weight (phytoplankton) and 2.5 ± 2.03 ng Hg(II) g(-1) and 0.25 ± 0.09 ng MeHg g(-1) wet weight (zooplankton). Therefore, upwelling zones should be considered in the Hg biogeochemical cycle models as a process that enhances Hg(II) bioaccumulation in plankton, raising its bioavailability and shelf deposition.

  5. The anthracite of Nazar-Ayloksk deposit

    International Nuclear Information System (INIS)

    Mirsaidov, U.M.

    2002-01-01

    In this chapter of book author gives information about anthracites of Nazar-Ayloksk deposit. It was show that heightened and anomalous content of some elements-dirt in these anthracites of deposit create presupposition of using them as complex energy-mineral raw material. In same time at using coal as fuel it is necessary take in to account heightened content such toxic elements as Sb, Hg and As and some others which are ecologically harmful

  6. Quantitative imaging of D-2-hydroxyglutarate (D2HG in selected histological tissue areas by a novel bioluminescence technique

    Directory of Open Access Journals (Sweden)

    Nadine Fabienne Voelxen

    2016-03-01

    Full Text Available AbstractPatients with malignant gliomas have a poor prognosis with average survival of less than one year. Whereas in other tumor entities the characteristics of tumor metabolism are successfully used for therapeutic approaches, such developments are very rare in brain tumors, notably in gliomas. One metabolic feature characteristic of gliomas, in particular diffuse astrocytomas and oligodendroglial tumors, is the variable content of D-2-hydroxyglutarate (D2HG, a metabolite, which was discovered first in this tumor entity. D2HG is generated in large amounts due to various gain-of–function mutations in the isocitrate dehydrogenases IDH-1 and IDH-2. Meanwhile, D2HG has been detected in several other tumor entities including intrahepatic bile-duct cancer, chondrosarcoma, acute myeloid leukemia, and angioimmunoblastic T-cell lymphoma. D2HG is barely detectable in healthy tissue (< 0.1 mM, but its concentration increases up to 35 mM in malignant tumor tissues. Consequently, the oncometabolite D2HG has gained increasing interest in the field of tumor metabolism. To facilitate its quantitative measurement without loss of spatial resolution at a microscopical level, we have developed a novel bioluminescence assay for determining D2HG in sections of snap-frozen tissue. The assay was verified independently by photometric tests and liquid chromatography / mass spectrometry (LC/MS. The novel technique allows the microscopically resolved determination of D2HG in a concentration range of 0 – 10 µmol/g tissue (wet weight. In combination with the already established bioluminescence imaging techniques for ATP, glucose, pyruvate, and lactate, the novel D2HG assay enables a comparative characterization of the metabolic profile of individual tumors in a further dimension.

  7. Surface passivation of HgCdTe by CdZnTe and its characteristics

    Science.gov (United States)

    Lee, T. S.; Choi, K. K.; Jeoung, Y. T.; Kim, H. K.; Kim, J. M.; Kim, Y. H.; Chang, J. M.; Song, W. S.; Kim, S. U.; Park, M. J.; Lee, S. D.

    1997-06-01

    In this paper, we report the results of capacitance-voltage measurements conducted on several metal-insulator semiconductor (MIS) capacitors in which HgCdTe surfaces are treated with various surface etching and oxidation processes. CdZnTe passivation layers were deposited on HgCdTe surfaces by thermal evaporation after the surfaces were etched with 0.5-2.0% bromine in methanol solution, or thin oxide layers (tox ˜ few ten Å) were grown on the surfaces, in order to investigate effects of the surface treatments on the electrical properties of the surfaces, as determined from capacitance-voltage (C-V) measurements at 80K and 1 MHz. A negative flat band voltage has been observed for MIS capacitors fabricated after etching of HgCdTe surfaces with bromine in methanol solutions, which is reported to make the surface Te-rich. It is inferred that residual Te on the surface is a positive charge, Te4+. C-V characteristics for MIS capacitors fabricated on oxide surfaces grown by air-exposure and electrolytic process have shown large hysteresis effects, from which it is inferred that imperfect and electrically active oxide compounds and HgTe particles near the surface become slow interface states.

  8. Determination of dry and wet deposition in forest areas in the Federal Republic of Germany. Final report. Pt. A. Feststellung der Schadstoffbelastung von Waldgebieten in der Bundesrepublik Deutschland durch trockene und nasse Deposition. Abschlussbericht. T. A

    Energy Technology Data Exchange (ETDEWEB)

    Georgii, H.W.; Grosch, S.; Schmitt, G.

    1986-08-01

    A network of 7 forest stations was maintained during the period of 1982-1985. The investigation included the evaluation of the dry and wet deposition of the following compounds: H/sup +/, SO/sub 4//sup 2-/, NO/sub 3//sup -/, Cl/sup -/, Pb, Mn, Fe, Cd, Na, K, Ca and Mg. During a certain period of time also the compounds Al, Cu, Cr and NH/sub 4//sup +/ were analyzed. Measurements of the aerosols and bulk deposition in different levels of the forest stands give information about the influence of spruce stands on the distribution of deposition. Detailed investigation on the composition of fogwater show the importance of fog with respect to the atmospheric input into forest ecosystems. Investigations of ozone at stations in the Taunus area show increasing concentrations with increasing altitudes. The sudden release of accumulated pollutants in snow appearing in the spring time during the thaw is shown. Sequential rain sampling at stations at different altitudes gives information about the contribution of 'rain-out' and 'wash-out'-processes with respect of the chemical composition of the rain. (orig.) With 55 refs., 20 tabs., 99 figs.

  9. Mercury nonstoichiometry of the Hg1-xBa2CuO4+δ superconductor and the P(Hg)-P(O2)-T phase diagram of the Hg-Ba-Cu-O system

    International Nuclear Information System (INIS)

    Alyoshin, V.A.; Mikhailova, D.A.; Rudnyi, E.B.; Antipov, E.V.

    2002-01-01

    The P(Hg)-P(O 2 )-T phase diagram of the Hg-Ba-Cu-O system for the Ba:Cu=2:1 ratio was experimentally studied and followed by means of the thermodynamic modeling. It was shown that the Hg 1-x Ba 2 CuO 4+δ (Hg-1201) superconductor possesses a significant range of Hg-nonstoichiometry and exists in a certain P(Hg), P(O 2 ) and T range. Mercury nonstoichiometry of Hg-1201 was investigated in the 923≤T≤1095 K; 2.0≤P(Hg)≤8.4 atm; 0.09≤P(O 2 )≤0.86 atm ranges. It was found that the mercury content varies in the range of 0.80-0.94 under these conditions. The Gibbs energy of the Hg-1201 phase was estimated as a function of temperature and mercury concentration. The obtained results allow optimizing the synthesis conditions of Hg-1201 with a given Hg-content including preparation of the Hg-stoichiometric phase

  10. Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Directory of Open Access Journals (Sweden)

    J. Brandt

    2002-01-01

    Full Text Available A tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model, has been developed for modelling transport, dispersion and deposition (wet and dry of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the total deposition of  137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations for dry- and wet deposition. The performance, compared to measurements, of using different combinations of two different wet deposition parameterizations and three different parameterizations of dry deposition has been evaluated, using different statistical tests. The best model performance, compared to measurements, is obtained when parameterizing the total deposition combined of a simple method for dry deposition and a subgrid-scale averaging scheme for wet deposition based on relative humidities. The same major conclusion is obtained for all the three different radioactive isotopes and using two different deposition measurement databases. Large differences are seen in the results obtained by using the two different parameterizations of wet deposition based on precipitation rates and relative humidities, respectively. The parameterization based on subgrid-scale averaging is, in all cases, performing better than the parameterization based on precipitation rates. This indicates that the in-cloud scavenging process is more important than the below cloud scavenging process for the submicron particles and that the precipitation rates are

  11. History of atmospheric deposition of Cd, Hg, and Pb in North America: Evidence from lake and peat bog sediments

    International Nuclear Information System (INIS)

    Norton, S.A.; Dillon, P.J.; Evans, R.D.; Mierle, G.; Kahl, J.S.

    1990-01-01

    The precipitation chemistry and lake and peat sediment chemistry of three metals emitted to the atmosphere in significant amounts as a result of anthropogenic activity are reviewed. The three metals, Cd, Hg, and Pb, have contrasting source terms, atmospheric residence times, and chemical mobility. Lake and ombrotrophic peat bog sediments record increases in the concentrations and accumulation rates of the metals for most of temperate North America for the last 100 years. These increases are largely related to the burning of coal, smelting of nonferrous metals, the transportation industry, and the industrial production of chlorine. Modern atmospheric fluxes of Cd in central North America are about 1,000 times background fluxes; accumulation rates for Cd in sediments have increased two to 3 times above background, beginning about 100 years ago. Global scale Hg pollution off the atmosphere is suggested by concentrations in northern hemisphere air that are double the Hg content of southern hemisphere air. Accumulation rates of Hg in sediment have approximately doubled in the last 100 years. However, these rates are approximately an order of magnitude less than those for Cd. Modern increases in Pb concentrations are ubiquitous for all lakes examines thus far in North America. Input is from multiple sources and thus the timing of increased accumulation rates in sediment varies across the continent. Typical modern accumulation rates reach maxima at 20 to 30 mg/sq-m/yr, or 100 times that of Cd and 1,000 times that off Hg. Recent decreases in atmospheric lead are reflected in decreases in the accumulation rate of Pb in both lake and peat bog sediment in eastern North America

  12. Identification of contamination in a lake sediment core using Hg and Pb isotopic compositions, Lake Ballinger, Washington, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Pribil, Michael J.; Van Metre, Peter C.; Borrok, David M.; Thapalia, Anita

    2013-01-01

    Highlights: ► Hg and Pb concentration and isotopic compositions traced anthropogenic sources. ► Concentrations and metal loadings of Hg and Pb increased during the smelting period. ► Hg isotopic compositions changed during smelting compared to the pre-smelting period. ► Data indicate mass independent fractionation of Hg isotopes. - Abstract: Concentrations and isotopic compositions of Hg and Pb were measured in a sediment core collected from Lake Ballinger, near Seattle, Washington, USA. Lake Ballinger has been affected by input of metal contaminants emitted from the Tacoma smelter, which operated from 1887 to 1986 and was located about 53 km south of the lake. Concentrations and loadings of Hg and Pb in Lake Ballinger increased by as much as three orders of magnitude during the period of smelting as compared to the pre-smelting period. Concentrations and loadings of Hg and Pb then decreased by about 55% and 75%, respectively, after smelting ended. Isotopic compositions of Hg changed considerably during the period of smelting (δ 202 Hg = −2.29‰ to −0.38‰, mean −1.23‰, n = 9) compared to the pre-smelting period (δ 202 Hg = −2.91‰ to −2.50‰, mean −2.75‰, n = 4). Variations were also observed in 206 Pb/ 207 Pb and 208 Pb/ 207 Pb isotopic compositions during these periods. Data for Δ 199 Hg and Δ 201 Hg indicate mass independent fractionation (MIF) of Hg isotopes in Lake Ballinger sediment during the smelting and post-smelting period and suggest MIF in the ore smelted, during the smelting process, or chemical modification at some point in the past. Negative values for Δ 199 Hg and Δ 201 Hg for the pre-smelting period are similar to those previously reported for soil, peat, and lichen, likely suggesting some component of atmospheric Hg. Variations in the concentrations and isotopic compositions of Hg and Pb were useful in tracing contaminant sources and the understanding of the depositional history of sedimentation in Lake Ballinger

  13. Atmospheric deposition of mercury in Atlantic Forest and ecological risk to soil fauna

    Science.gov (United States)

    Cristhy Buch, Andressa; Cabral Teixeira, Daniel; Fernandes Correia, Maria Elizabeth; Vieira Silva-Filho, Emmanoel

    2014-05-01

    The increasing levels of mercury (Hg) found in the atmosphere nowadays has a great contribution from anthropogenic sources and has been a great concern in the past two decades in industrialized countries. Brazil is the seventh country with the highest rate of mercury in the atmosphere. Certainly, the petroleum refineries have significant contribution, seen that 100 million m3 of crude oil are annually processed. These refineries contribute with low generation of solid waste; however, a large fraction of Hg can be emitted to the atmosphere. There are sixteen refineries in Brazil, three of them located in the state of Rio de Janeiro. The Hg is a toxic and hazardous trace element, naturally found in the earth crust. The major input of Hg to ecosystems is through atmospheric deposition (wet and dry), being transported in the atmosphere over large distances. The forest biomes are of great importance in the atmosphere/soil cycling of elemental Hg through foliar uptake and subsequent transfer to the soil through litterfall, which play an important role as Hg sink. The Atlantic Forest of Brazil is the greater contributor of fauna and flora biodiversity in the world and, according to recent studies, this biome has the highest concentrations of mercury in litter in the world, as well as in China, at Subtropical Forest. Ecotoxicological assessments can predict the potential ecological risk of Hg toxicity in the soil can lead to impact the soil fauna and indirectly other trophic levels of the food chain within one or more ecosystems. This study aims to determine mercury levels that represent risks to diversity and functioning of soil fauna in tropical forest soils. The study is conducted in two forest areas inserted into conservation units of Rio de Janeiro state. One area is located next to an important petroleum refinery in activity since fifty-two years ago, whereas the other one is located next to other refinery under construction (beginning activities in 2015), which will

  14. Sulfurization of Dissolved Organic Matter Increases Hg-Sulfide-Dissolved Organic Matter Bioavailability to a Hg-Methylating Bacterium.

    Science.gov (United States)

    Graham, Andrew M; Cameron-Burr, Keaton T; Hajic, Hayley A; Lee, Connie; Msekela, Deborah; Gilmour, Cynthia C

    2017-08-15

    Reactions of dissolved organic matter (DOM) with aqueous sulfide (termed sulfurization) in anoxic environments can substantially increase DOM's reduced sulfur functional group content. Sulfurization may affect DOM-trace metal interactions, including complexation and metal-containing particle precipitation, aggregation, and dissolution. Using a diverse suite of DOM samples, we found that susceptibility to additional sulfur incorporation via reaction with aqueous sulfide increased with increasing DOM aromatic-, carbonyl-, and carboxyl-C content. The role of DOM sulfurization in enhancing Hg bioavailability for microbial methylation was evaluated under conditions typical of Hg methylation environments (μM sulfide concentrations and low Hg-to-DOM molar ratios). Under the conditions of predicted metacinnabar supersaturation, microbial Hg methylation increased with increasing DOM sulfurization, likely reflecting either effective inhibition of metacinnabar growth and aggregation or the formation of Hg(II)-DOM thiol complexes with high bioavailability. Remarkably, Hg methylation efficiencies with the most sulfurized DOM samples were similar (>85% of total Hg methylated) to that observed in the presence of l-cysteine, a ligand facilitating rapid Hg(II) biouptake and methylation. This suggests that complexes of Hg(II) with DOM thiols have similar bioavailability to Hg(II) complexes with low-molecular-weight thiols. Overall, our results are a demonstration of the importance of DOM sulfurization to trace metal and metalloid (especially mercury) fate in the environment. DOM sulfurization likely represents another link between anthropogenic sulfate enrichment and MeHg production in the environment.

  15. Investigation of Hg uptake and transport between paddy soil and rice seeds combining Hg isotopic composition and speciation

    OpenAIRE

    C. Feng; Z. Pedrero; P. Li; B. Du; X. Feng; M. Monperrus; E. Tessier; S. Berail; D. Amouroux

    2016-01-01

    Abstract Human consumption of rice constitutes a potential toxicological risk in mercury (Hg) polluted areas such as Hg mining regions in China. It is recognized to be an important source of Hg for the local human diet considering the efficient bioaccumulation of methylmercury (MeHg) in rice seed. To assess Hg sources and uptake pathways to the rice plants, Hg speciation and isotopic composition were investigated in rice seeds and their corresponding paddy soils from different locations withi...

  16. Collective structures in 185Hg

    International Nuclear Information System (INIS)

    Bourgeois, C.; Hildingsson, L.; Perrin, N.; Sergolle, H.; Hannachi, F.; Bastin, G.; Porquet, M.G.; Thibaud, J.P.; Beck, F.A.; Merdinger, J.C.

    1988-01-01

    Excited states of 185 Hg have been investigated via the 161 Dy ( 28 Si, 4n) reaction at 145 MeV. In-beam gamma-ray spectroscopy studies have been performed with the ''Chateau de Cristal'' 4π-multidetector array. Level scheme of 185 Hg has been established. Shape coexistence, still present in 185 Hg like in the neighbouring Hg isotopes, manifests itself through a weakly populated decoupled band built on the 13/2+ isomer and three strongly-coupled bands built on the prolate 1/2-[521], 7/2-[514], and 9/2+[624] Nilsson states

  17. A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use.

    Science.gov (United States)

    Obrist, Daniel; Kirk, Jane L; Zhang, Lei; Sunderland, Elsie M; Jiskra, Martin; Selin, Noelle E

    2018-03-01

    We review recent progress in our understanding of the global cycling of mercury (Hg), including best estimates of Hg concentrations and pool sizes in major environmental compartments and exchange processes within and between these reservoirs. Recent advances include the availability of new global datasets covering areas of the world where environmental Hg data were previously lacking; integration of these data into global and regional models is continually improving estimates of global Hg cycling. New analytical techniques, such as Hg stable isotope characterization, provide novel constraints of sources and transformation processes. The major global Hg reservoirs that are, and continue to be, affected by anthropogenic activities include the atmosphere (4.4-5.3 Gt), terrestrial environments (particularly soils: 250-1000 Gg), and aquatic ecosystems (e.g., oceans: 270-450 Gg). Declines in anthropogenic Hg emissions between 1990 and 2010 have led to declines in atmospheric Hg 0 concentrations and Hg II wet deposition in Europe and the US (- 1.5 to - 2.2% per year). Smaller atmospheric Hg 0 declines (- 0.2% per year) have been reported in high northern latitudes, but not in the southern hemisphere, while increasing atmospheric Hg loads are still reported in East Asia. New observations and updated models now suggest high concentrations of oxidized Hg II in the tropical and subtropical free troposphere where deep convection can scavenge these Hg II reservoirs. As a result, up to 50% of total global wet Hg II deposition has been predicted to occur to tropical oceans. Ocean Hg 0 evasion is a large source of present-day atmospheric Hg (approximately 2900 Mg/year; range 1900-4200 Mg/year). Enhanced seawater Hg 0 levels suggest enhanced Hg 0 ocean evasion in the intertropical convergence zone, which may be linked to high Hg II deposition. Estimates of gaseous Hg 0 emissions to the atmosphere over land, long considered a critical Hg source, have been revised downward, and

  18. Long-term trends of sulfur deposition in East Asia during 1981-2005

    Science.gov (United States)

    Kuribayashi, Masatoshi; Ohara, Toshimasa; Morino, Yu; Uno, Itsushi; Kurokawa, Jun-ichi; Hara, Hiroshi

    2012-11-01

    We used a chemical transport model to investigate the long-term trends of sulfur deposition in East Asia during 1981-2005. The model reproduced the observed spatial distributions in East Asia of the rate of wet deposition of non-seasalt sulfate (nss-SO42-), volume-weighted mean concentrations of nss-SO42- in precipitation, precipitation, and concentrations in air of gaseous sulfur dioxide and particulate nss-SO42-. The model also reproduced well observed seasonal variations and long-term trends of wet deposition of nss-SO42- in Japan from 1988 to 2005. The increasing rate of wet deposition of nss-SO42- in Japan during 1991-2005 was demonstrated with 99.9% significance for both observed and modeled data. The annual rate of total (wet + dry) sulfur deposition in Japan increased from 15.6 Gmol S y-1 in 1981-1985 to 23.9 Gmol S y-1 in 2001-2005 in response to both increasing contributions from Chinese emissions and the eruption of Miyakejima volcano in 2000. During that 25-year period, approximately 2.1% of the sulfur from Chinese emissions was deposited in Japan. Over the same period, the rate of deposition of sulfur in East Asia increased gradually from 14.2 mmol S m-2 y-1 to 24.0 mmol S m-2 y-1, and the contribution of emissions from China to total sulfur deposition in East Asia increased from 65% to 77%. The contribution of Miyakejima volcano was 3% during 2001-2005. The increase in the sulfur deposition rate was remarkably high on the North China Plain, around Guangzhou, and south of Chongqing. The rate of increase in East Asia was greatest in winter, although the rate of sulfur deposition was highest in summer. Sulfur flux from China to Japan increased by a factor of 2.5 at altitudes of 0-3000 m from 1981 to 2005.

  19. Use of Hg-Electroplated-Pt Ultramicroelectrode for Determining Elemental Sulphur in Naphtha Samples

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Andrade

    2012-01-01

    Full Text Available This paper describes the applicability of a Hg-electroplated-Pt ultramicroelectrode in the quantification of elemental sulphur in naphtha samples by square-wave voltammetry. A reproducible deposition methodology was studied and is reported in this paper. This methodology is innovative and relies on the quality of the mercury stock solution to obtain reproducible surfaces required for the analytical methodology. All analyses were performed using a Hg-electroplated-Pt ultramicroelectrode (Hg-Pt UME due to the low sensibility of such devices to ohmic drops in resistive solutions. The responses of the peak areas in voltammetric experiments were linear in all of the range studied. The method developed here is accurate and reproducible, with a detection limit of 0.010 mg L−1 and a good recovery range for both standard solutions of elemental sulphur (85 to 99% and real naphtha sample (79%. These results attest to the potential for the application of this electroanalytical methodology in determining elemental sulphur in naphtha samples containing mercaptans and disulphides.

  20. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    Science.gov (United States)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (pdetermined specific potential methylation rate constant (Km, day-1) and % MeHg (concentrations of MeHg normalized to total Hg) in the sediment. This indicates that MeHg production overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of

  1. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  2. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    Science.gov (United States)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  3. Novel methodology for the study of mercury methylation and reduction in sediments and water using {sup 197}Hg radiotracer

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro Guevara, Sergio; Perez Catan, Soledad [Centro Atomico Bariloche, Laboratorio de Analisis por Activacion Neutronica, Bariloche (Argentina); Zizek, Suzana; Repinc, Urska; Jacimovic, Radojko; Horvat, Milena [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2007-03-15

    the present work, {sup 197}Hg tracer was produced from mercury 51.58% enriched in the {sup 196}Hg isotope, and a 340-fold increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me{sup 197}Hg production from {sup 197}Hg{sup 2+} spike, but also with Hg{sup 2+} contamination and Me{sup 197}Hg artefacts) with marine sediments was about 0.005% g{sup -1} WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g{sup -1} WS, which is far below natural mercury levels. (orig.)

  4. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety valve requirements for steam boilers (modifies HG-400 and HG-401). 53.05-1 Section 53.05-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and the...

  5. Hg0 and HgCl2 Reference Gas Standards: NIST Traceability and Comparability (And EPA ALT Methods for Hg and HCl )

    Science.gov (United States)

    EPA and NIST have collaborated to establish the necessary procedures for establishing the required NIST traceability of commercially-provided Hg0 and HgCl2 reference generators. This presentation will discuss the approach of a joint EPA/NIST study to accurately quantify the tru...

  6. Use of new threshold detector 199Hg(n,n')/sup 199m/Hg for neutron spectrum unfolding

    International Nuclear Information System (INIS)

    Sakurai, K.

    1982-01-01

    The nuclear data for the 199 Hg(n,n')/sup 199m/Hg reaction are reviewed and the data are used for neutron spectrum unfolding. The neutron spectrum of the YAYOI glory-hole is unfolded by SAND II with 10 nuclear reactions including the 199 Hg(n,n')/sup 199m/Hg reaction. The ratio of the measured reaction rate to the calculated reaction rate is about 1:1.1 for the guess spectrum. The 199 Hg(n,n')/sup 199m/Hg, 115 In(n,n')/sup 115m/In, 103 Rh(n,n')/sup 103m/Rh reactions should be useful threshold detectors for the neutron dosimetry with low level fast neutron flux

  7. The application of 199Hg NMR and 199mHg perturbed angular correlation (PAC) spectroscopy to define the biological chemistry of HgII

    DEFF Research Database (Denmark)

    Iranzo, Olga; Thulstrup, Peter Waaben; Ryu, Seung-baek

    2007-01-01

    The use of de novo designed peptides is a powerful strategy to elucidate HgII-protein interactions and to gain insight into the chemistry of HgII in biological systems. Cysteine derivatives of the designed -helical peptides of the TRI family [Ac-G-(LaKbAcLdEeEfKg)4-G-NH2] bind HgII at high p...... to characterize the distinct species that are generated under different pH conditions and peptide TRI L9C/HgII ratios. These studies prove for the first time the formation of [Hg{(TRI L9C)2-(TRI L9C H)}], a dithiolate-HgII complex in the hydrophobic interior of the three-stranded coiled coil (TRI L9C)3. 199Hg NMR...

  8. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea)

    International Nuclear Information System (INIS)

    Lapanje, A.; Drobne, D.; Nolde, N.; Valant, J.; Muscet, B.; Leser, V.; Rupnik, M.

    2008-01-01

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10 μg Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed. - Isopods (Porcellio scaber) as well as their bacterial gut community from a mercury-polluted site are mercury tolerant

  9. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea)

    Energy Technology Data Exchange (ETDEWEB)

    Lapanje, A. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Institute of Physical Biology, Veliko Mlacevo 59, 1290 Grosuplje (Slovenia)], E-mail: ales.lapanje@bf.uni-lj.si; Drobne, D. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Nolde, N. [Institute Jozef Stefan, Department of Environmental Sciences, Jamova 39, 1000 Ljubljana (Slovenia); Valant, J. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Muscet, B. [Institute of Physical Biology, Veliko Mlacevo 59, 1290 Grosuplje (Slovenia); Leser, V. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Rupnik, M. [Institute of Public Health, Prvomajska 1, 2000 Maribor (Slovenia); Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor (Slovenia)

    2008-06-15

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10 {mu}g Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed. - Isopods (Porcellio scaber) as well as their bacterial gut community from a mercury-polluted site are mercury tolerant.

  10. Lichen-based critical loads for atmospheric nitrogen deposition in Western Oregon and Washington Forests, USA

    Energy Technology Data Exchange (ETDEWEB)

    Geiser, Linda H., E-mail: lgeiser@fs.fed.u [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Jovan, Sarah E. [US Forest Service Forest Inventory and Analysis Program, Pacific Northwest Research Station, 620 SW Main St, Suite 400, Portland, OR 97205 (United States); Glavich, Doug A. [US Forest Service Pacific Northwest Region Air Resource Management Program, Siuslaw National Forest, PO Box 1148, Corvallis, OR 97339 (United States); Porter, Matthew K. [Laboratory for Atmospheric Research, Washington State University, Pullman, WA 99164 (United States)

    2010-07-15

    Critical loads (CLs) define maximum atmospheric deposition levels apparently preventative of ecosystem harm. We present first nitrogen CLs for northwestern North America's maritime forests. Using multiple linear regression, we related epiphytic-macrolichen community composition to: 1) wet deposition from the National Atmospheric Deposition Program, 2) wet, dry, and total N deposition from the Communities Multi-Scale Air Quality model, and 3) ambient particulate N from Interagency Monitoring of Protected Visual Environments (IMPROVE). Sensitive species declines of 20-40% were associated with CLs of 1-4 and 3-9 kg N ha{sup -1} y{sup -1} in wet and total deposition. CLs increased with precipitation across the landscape, presumably from dilution or leaching of depositional N. Tight linear correlation between lichen and IMPROVE data suggests a simple screening tool for CL exceedance in US Class I areas. The total N model replicated several US and European lichen CLs and may therefore be helpful in estimating other temperate-forest lichen CLs. - Lichen-based critical loads for N deposition in western Oregon and Washington forests ranged from 3 to 9 kg ha{sup -1} y{sup -1}, increasing with mean annual precipitation.

  11. HgTe based topological insulators

    International Nuclear Information System (INIS)

    Bruene, Christoph

    2014-01-01

    This PhD thesis summarizes the discovery of topological insulators and highlights the developments on their experimental observations. The work focuses on HgTe. The thesis is structured as follows: - The first chapter of this thesis will give a brief overview on discoveries in the field of topological insulators. It focuses on works relevant to experimental results presented in the following chapters. This includes a short outline of the early predictions and a summary of important results concerning 2-dimensional topological insulators while the final section discusses observations concerning 3-dimensional topological insulators. - The discovery of the quantum spin Hall effect in HgTe marked the first experimental observation of a topological insulator. Chapter 2 focuses on HgTe quantum wells and the quantum spin Hall effect. The growth of high quality HgTe quantum wells was one of the major goals for this work. In a final set of experiments the spin polarization of the edge channels was investigated. Here, we could make use of the advantage that HgTe quantum well structures exhibit a large Rashba spin orbit splitting. - HgTe as a 3-dimensional topological insulator is presented in chapter 3. - Chapters 4-6 serve as in depth overviews of selected works: Chapter 4 presents a detailed overview on the all electrical detection of the spin Hall effect in HgTe quantum wells. The detection of the spin polarization of the quantum spin Hall effect is shown in chapter 5 and chapter 6 gives a detailed overview on the quantum Hall effect originating from the topological surface state in strained bulk HgTe.

  12. Coastal erosion as a source of mercury into the marine environment along the Polish Baltic shore.

    Science.gov (United States)

    Bełdowska, Magdalena; Jędruch, Agnieszka; Łęczyński, Leszek; Saniewska, Dominika; Kwasigroch, Urszula

    2016-08-01

    The climate changes in recent years in the southern Baltic have been resulting in an increased frequency of natural extreme phenomena (i.e. storms, floods) and intensification of abrasion processes, which leads to introduction of large amounts of sedimentary deposits into the marine environment. The aim of this study was to determine the mercury load introduced to the Baltic Sea with deposits crumbling off the cliffs-parts of the coast that are the most exposed to abrasion. The studies were carried out close to five cliffs located on the Polish coast in the years 2011-2014. The results show that coastal erosion could be an important Hg source into the marine environment. This process is the third most important route, after riverine and precipitation input, by which Hg may enter the Gulf of Gdańsk. In the Hg budget in the gulf, the load caused by erosion (14.3 kg a(-1)) accounted for 80 % of the wet deposition and was 50 % higher than the amount of mercury introduced with dry deposition. Although the Hg concentration in the cliff deposits was similar to the natural background, due to their large mass, this problem could be significant. In addition, the preliminary studies on the impact of coastal erosion on the Hg level in the marine ecosystem have shown that this process may be one of the Hg sources into the trophic chain.

  13. Influence of predictive contamination to agricultural products due to dry and wet processes during an accidental release of radionuclides

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Jeong, Hyo Joon; Han, Moon Hee; Lee, Chang Woo

    2003-01-01

    The influence of predictive contamination to agricultural products due to the wet processes as well as dry processes from radioactive air concentration during a nuclear emergency is comprehensively analyzed. The previous dynamic food chain model DYNACON considering Korean agricultural and environmental conditions, in which the initial input parameter was radionuclide concentrations on the ground, is improved so as to evaluate radioactive contamination to agricultural products from either radioactive air concentrations or radionuclide concentrations on the ground. As for the results, wet deposition is a more dominant mechanism than dry deposition in contamination on the ground. While, the contamination levels of agricultural products are strongly dependent on radionuclide and precipitation when the deposition of radionuclides occurs. It means that the contamination levels of agricultural products are determined from which is the more dominant process between deposition on the ground and interception to agricultural plants

  14. Sensitivity model study of regional mercury dispersion in the atmosphere

    Science.gov (United States)

    Gencarelli, Christian N.; Bieser, Johannes; Carbone, Francesco; De Simone, Francesco; Hedgecock, Ian M.; Matthias, Volker; Travnikov, Oleg; Yang, Xin; Pirrone, Nicola

    2017-01-01

    Atmospheric deposition is the most important pathway by which Hg reaches marine ecosystems, where it can be methylated and enter the base of food chain. The deposition, transport and chemical interactions of atmospheric Hg have been simulated over Europe for the year 2013 in the framework of the Global Mercury Observation System (GMOS) project, performing 14 different model sensitivity tests using two high-resolution three-dimensional chemical transport models (CTMs), varying the anthropogenic emission datasets, atmospheric Br input fields, Hg oxidation schemes and modelling domain boundary condition input. Sensitivity simulation results were compared with observations from 28 monitoring sites in Europe to assess model performance and particularly to analyse the influence of anthropogenic emission speciation and the Hg0(g) atmospheric oxidation mechanism. The contribution of anthropogenic Hg emissions, their speciation and vertical distribution are crucial to the simulated concentration and deposition fields, as is also the choice of Hg0(g) oxidation pathway. The areas most sensitive to changes in Hg emission speciation and the emission vertical distribution are those near major sources, but also the Aegean and the Black seas, the English Channel, the Skagerrak Strait and the northern German coast. Considerable influence was found also evident over the Mediterranean, the North Sea and Baltic Sea and some influence is seen over continental Europe, while this difference is least over the north-western part of the modelling domain, which includes the Norwegian Sea and Iceland. The Br oxidation pathway produces more HgII(g) in the lower model levels, but overall wet deposition is lower in comparison to the simulations which employ an O3 / OH oxidation mechanism. The necessity to perform continuous measurements of speciated Hg and to investigate the local impacts of Hg emissions and deposition, as well as interactions dependent on land use and vegetation, forests, peat

  15. Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    International Nuclear Information System (INIS)

    Li Yongliang; Xu Qiuxia

    2010-01-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 0 C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N 2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case. (semiconductor technology)

  16. Sudden change of quadrupole moment between the first 5/2- states of 197Hg and 199Hg

    International Nuclear Information System (INIS)

    Herzog, P.; Krien, K.; Freitag, M.; Reuschenbach, M.; Walitzki, H.

    1980-01-01

    Low-temperature time differential perturbed angular correlation experiments with the 164 KeV-134 keV cascade of sup(197m)Hg in a zinc matrix give evidence that the hitherto accepted value of the quadrupole moment of the first 5/2 - state of 197 Hg is erroneous. A new value is derived from a time differential perturbed angular correlation experiment with the 374 keV-158 keV cascade of sup(199m)Hg implanted into a Be single crystal and comparison with an analogous experiment for sup(197m)Hg. Taking Q(5/2 - , 199 Hg) = +0.95(7) b we derive Q(5/2 - , 197 Hg) = 0.081(6) b. This change of quadrupole moment is discussed in the framework of the shell model. (orig.)

  17. Wetting, Solubility and Chemical Characteristics of Plasma-Polymerized 1-Isopropyl-4-Methyl-1,4-Cyclohexadiene Thin Films

    Directory of Open Access Journals (Sweden)

    Jakaria Ahmad

    2014-07-01

    Full Text Available Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene using radio frequency (RF plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.

  18. Phase equilibria and thermodynamic functions for Ag–Hg and Cu–Hg binary systems

    International Nuclear Information System (INIS)

    Liu, Yajun; Wang, Guan; Wang, Jiang; Chen, Yang; Long, Zhaohui

    2012-01-01

    Highlights: ► The thermodynamic properties of Ag–Hg and Cu–Hg are explored in order to facilitate dental materials design. ► A self-consistent set of thermodynamic parameters is obtained. ► The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag–Hg and Cu–Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.

  19. Phase equilibria and thermodynamic functions for Ag-Hg and Cu-Hg binary systems

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yajun, E-mail: yajunliu@gatech.edu [School of Materials and Energy, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Guan [School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006 (China); Wang, Jiang [School of Materials Science and Engineering, Guilin University of Electronic Technology, Guilin, Guangxi 541004 (China); Chen, Yang [Mining, Metallurgy and Materials Research Department, General Research Institute for Nonferrous Metals, Beijing 100088 (China); Long, Zhaohui [School of Mechanical Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China)

    2012-11-10

    Highlights: Black-Right-Pointing-Pointer The thermodynamic properties of Ag-Hg and Cu-Hg are explored in order to facilitate dental materials design. Black-Right-Pointing-Pointer A self-consistent set of thermodynamic parameters is obtained. Black-Right-Pointing-Pointer The experimental information can be well reproduced by the optimized thermodynamic data. - Abstract: In order to facilitate the computational design of new amalgams for novel dental alloys, the phase equilibria, phase diagrams and thermodynamic functions for Ag-Hg and Cu-Hg binary systems are explored in this work, based on the CALPHAD framework and experimental characterizations. The Gibbs free energies of the solution phases as well as the stoichiometric phases are calculated, with the aid of enthalpies of mixing, activities, enthalpies of formation, and phase equilibrium data. The thermodynamic descriptions provided in this work enable the stabilities of each phase at various temperatures and compositions to be well described, which contribute to the establishment of a general database to design novel metallic dental materials.

  20. A study of capillary discharge lamps in Ar-Hg and Xe-Hg mixtures

    International Nuclear Information System (INIS)

    Denisova, N; Gavare, Z; Revalde, G; Skudra, Ja; Veilande, R

    2011-01-01

    Low-pressure capillary discharge lamps in Ar-Hg and Xe-Hg mixtures are studied. The discharge size is 0.5 mm (500 μm) in radius. According to the literature, such types of plasma sources are classified as microplasmas. The studies include spectrally resolved optical measurements, tomographic reconstructions and numerical simulations using the collisional-radiative model for an Ar-Hg plasma. We discuss the problems of theoretical modelling and experimental diagnostics of microplasma sources. It is shown that the conventional collisional-radiative model, based on the assumption that transportation of atoms in the highly excited states can be neglected, has limitations in modelling a capillary discharge in an Ar-Hg mixture. It is found that diffusion of highly excited mercury atoms to the wall influences the emission properties of the capillary discharge. We have concluded that applications of the emission tomography method to microplasmas require a special analysis in each particular case.

  1. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1992-01-01

    Experimental results exploring gravity-driven wetting front instability in a pre-wetted, rough-walled analog fracture are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  2. Wetting front instability in an initially wet unsaturated fracture

    International Nuclear Information System (INIS)

    Nicholl, M.J.; Glass, R.J.; Nguyen, H.A.

    1993-01-01

    Experimental results exploring gravity-driven wetting from instability in a pre-wetted, rough-walled analog fractures such as those at Yucca Mountain are presented. Initial conditions considered include a uniform moisture field wetted to field capacity of the analog fracture and the structured moisture field created by unstable infiltration into an initially dry fracture. As in previous studies performed under dry initial conditions, instability was found to result both at the cessation of stable infiltration and at flux lower than the fracture capacity under gravitational driving force. Individual fingers were faster, narrower, longer, and more numerous than observed under dry initial conditions. Wetting fronts were found to follow existing wetted structure, providing a mechanism for rapid recharge and transport

  3. Conceptual Modeling of the Influence of Wetting and Drying Cycles on Soil Aggregation and Stabilization

    Science.gov (United States)

    Albalasmeh, A. A.; Ghezzehei, T.

    2011-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. The interaction of environmental and biotic agents influences the physical condition of the soil, particularly through soil structural evolution. Wetting and drying cycles are important environmental processes known to enhance aggregation, while clay minerals, sesquioxides and soil organic matter (SOM) are the soil solids most involved in soil structural development. We hypothesize that drying of capillary water transports suspended and/or dissolved cementing agents toward inter-particle contacts and eventually deposits part of the colloidal mass forming inter-particle bonds. Here, we will show the role of wetting and drying cycles on soil aggregation and stabilization and how these cycles transport and deposit organic cementing agents at the inter-particle contact. We will present results of the effect of particle size, number of wetting and drying cycles, viscosity, molecule length and concentration of suspended and/or dissolved cementing agents on soil aggregation and stabilization.

  4. PREFACE: Dynamics of wetting Dynamics of wetting

    Science.gov (United States)

    Grest, Gary S.; Oshanin, Gleb; Webb, Edmund B., III

    2009-11-01

    Capillary phenomena associated with fluids wetting other condensed matter phases have drawn great scientific interest for hundreds of years; consider the recent bicentennial celebration of Thomas Young's paper on equilibrium contact angles, describing the geometric shape assumed near a three phase contact line in terms of the relevant surface energies of the constituent phases [1]. Indeed, nearly a century has passed since the seminal papers of Lucas and Washburn, describing dynamics of capillary imbibition [2, 3]. While it is generally appreciated that dynamics of fluid wetting processes are determined by the degree to which a system is out of capillary equilibrium, myriad complications exist that challenge the fundamental understanding of dynamic capillary phenomena. The topic has gathered much interest from recent Nobel laureate Pierre-Gilles de Gennes, who provided a seminal review of relevant dissipation mechanisms for fluid droplets spreading on solid surfaces [4] Although much about the dynamics of wetting has been revealed, much remains to be learned and intrinsic technological and fundamental interest in the topic drives continuing high levels of research activity. This is enabled partly by improved experimental capabilities for resolving wetting processes at increasingly finer temporal, spatial, and chemical resolution. Additionally, dynamic wetting research advances via higher fidelity computational modeling capabilities, which drive more highly refined theory development. The significance of this topic both fundamentally and technologically has resulted in a number of reviews of research activity in wetting dynamics. One recent example addresses the evaluation of existing wetting dynamics theories from an experimentalist's perspective [5]. A Current Opinion issue was recently dedicated to high temperature capillarity, including dynamics of high temperature spreading [6]. New educational tools have recently emerged for providing instruction in wetting

  5. Isotopic Hg in an Allende carbon-rich residue

    Science.gov (United States)

    Reed, G. W., Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body.

  6. Development of TiO2 containing hardmasks through plasma-enhanced atomic layer deposition

    Science.gov (United States)

    De Silva, Anuja; Seshadri, Indira; Chung, Kisup; Arceo, Abraham; Meli, Luciana; Mendoza, Brock; Sulehria, Yasir; Yao, Yiping; Sunder, Madhana; Truong, Hoa; Matham, Shravan; Bao, Ruqiang; Wu, Heng; Felix, Nelson M.; Kanakasabapathy, Sivananda

    2017-04-01

    With the increasing prevalence of complex device integration schemes, trilayer patterning with a solvent strippable hardmask can have a variety of applications. Spin-on metal hardmasks have been the key enabler for selective removal through wet strip when active areas need to be protected from dry etch damage. As spin-on metal hardmasks require a dedicated track to prevent metal contamination and are limited in their ability to scale down thickness without compromising on defectivity, there has been a need for a deposited hardmask solution. Modulation of film composition through deposition conditions enables a method to create TiO2 films with wet etch tunability. This paper presents a systematic study on development and characterization of plasma-enhanced atomic layer deposited (PEALD) TiO2-based hardmasks for patterning applications. We demonstrate lithographic process window, pattern profile, and defectivity evaluation for a trilayer scheme patterned with PEALD-based TiO2 hardmask and its performance under dry and wet strip conditions. Comparable structural and electrical performance is shown for a deposited versus a spin-on metal hardmask.

  7. An investigation of mercury sources in the Puyango-Tumbes River: Using stable Hg isotopes to characterize transboundary Hg pollution.

    Science.gov (United States)

    Schudel, Gary; Miserendino, Rebecca Adler; Veiga, Marcello M; Velasquez-López, P Colon; Lees, Peter S J; Winland-Gaetz, Sean; Davée Guimarães, Jean Remy; Bergquist, Bridget A

    2018-07-01

    Mercury (Hg) concentrations and stable isotopes along with other trace metals were examined in environmental samples from Ecuador and Peru's shared Puyango-Tumbes River in order to determine the extent to which artisanal- and small-scale gold mining (ASGM) in Portovelo-Zaruma, Ecuador contributes to Hg pollution in the downstream aquatic ecosystem. Prior studies investigated the relationship between ASGM activities and downstream Hg pollution relying primarily on Hg concentration data. In this study, Hg isotopes revealed an isotopically heavy Hg signature with negligible mass independent fractionation (MIF) in downstream sediments, which was consistent with the signature observed in the ASGM source endmember. This signature was traced as far as ∼120 km downstream of Portovelo-Zaruma, demonstrating that Hg stable isotopes can be used as a tool to fingerprint and trace sources of Hg over vast distances in freshwater environments. The success of Hg isotopes as a source tracer in fresh waters is largely due to the particle-reactive nature of Hg. Furthermore, the magnitude and extent of downstream Hg, lead, copper and zinc contamination coupled with the Hg isotopes suggest that it is unlikely that the smaller artisanal-scale activities, which do not use cyanidation, are responsible for the pollution. More likely it is the scale of ores processed and the cyanide leaching, which can release other metals and enhance Hg transport, used during small-scale gold mining that is responsible. Thus, although artisanal- and small-scale gold mining occur in tandem in Portovelo-Zaruma, a distinction should be made between these two activities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Electric field gradients in Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    &H functional performs best at both 4-component and ZORA levels. We furthermore observe that changes in the largest component of the diagonalised EFG tensor, Vzz, of linear HgCl2 show a slightly stronger dependence than the r-3 scaling upon bond length r(Hg-Cl) alterations. The 4-component/BH&H Vzz value of -9.......26 a.u. for a bent HgCl2 (¿ Cl-Hg-Cl = 120¿) is close to -9.60 a.u. obtained for the linear HgCl2 structure. Thus a point charge model for EFG calculations completely fails in this case. By means of a projection analysis of molecular orbital (MO) contributions to Vzz in terms of the atomic constituents...

  9. Two-Dimensional Wetting Transition Modeling with the Potts Model

    Science.gov (United States)

    Lopes, Daisiane M.; Mombach, José C. M.

    2017-12-01

    A droplet of a liquid deposited on a surface structured in pillars may have two states of wetting: (1) Cassie-Baxter (CB), the liquid remains on top of the pillars, also known as heterogeneous wetting, or (2) Wenzel, the liquid fills completely the cavities of the surface, also known as homogeneous wetting. Studies show that between these two states, there is an energy barrier that, when overcome, results in the transition of states. The transition can be achieved by changes in geometry parameters of the surface, by vibrations of the surface or by evaporation of the liquid. In this paper, we present a comparison of two-dimensional simulations of the Cassie-Wenzel transition on pillar-structured surfaces using the cellular Potts model (CPM) with studies performed by Shahraz et al. In our work, we determine a transition diagram by varying the surface parameters such as the interpillar distance ( G) and the pillar height ( H). Our results were compared to those obtained by Shahraz et al. obtaining good agreement.

  10. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury.

    Science.gov (United States)

    Perrot, Vincent; Masbou, Jeremy; Pastukhov, Mikhail V; Epov, Vladimir N; Point, David; Bérail, Sylvain; Becker, Paul R; Sonke, Jeroen E; Amouroux, David

    2016-02-01

    In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.

  11. Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure

    Science.gov (United States)

    Abdallah, B.; Naddaf, M.; A-Kharroub, M.

    2013-03-01

    Non-stiochiometric zirconium nitride (ZrNx) thin films have been deposited on silicon substrates by vacuum arc discharge of (N2 + Ar) gas mixtures at different N2 partial pressure ratio. The microstructure, mechanical, electrical and wetting properties of these films are studied by means of X-ray diffraction (XRD), micro-Raman spectroscopy, Rutherford back scattering (RBS) technique, conventional micro-hardness testing, electrical resistivity, atomic force microscopy (AFM) and contact angle (CA) measurements. RBS results and analysis show that the (N/Zr) ratio in the film increases with increasing the N2 partial pressure. A ZrNx film with (Zr/N) ratio in the vicinity of stoichiometric ZrN is obtained at N2 partial pressure of 10%. XRD and Raman results indicate that all deposited films have strained cubic crystal phase of ZrN, regardless of the N2 partial pressure. On increasing the N2 partial pressure, the relative intensity of (1 1 1) orientation with respect to (2 0 0) orientation is seen to decrease. The effect of N2 partial pressure on micro-hardness and the resistivity of the deposited film is revealed and correlated to the alteration of grain size, crystallographic texture, stoichiometry and residual stress developed in the film. In particular, it is found that residual stress and nitrogen incorporation in the film play crucial role in the alteration of micro-hardness and resistivity respectively. In addition, CA and AFM results demonstrate that as N2 partial pressure increases, both the surface hydrophobicity and roughness of the deposited film increase, leading to a significant decrease in the film surface free energy (SFE).

  12. Novel methodology for the study of mercury methylation and reduction in sediments and water using 197Hg radiotracer.

    Science.gov (United States)

    Ribeiro Guevara, Sergio; Zizek, Suzana; Repinc, Urska; Pérez Catán, Soledad; Jaćimović, Radojko; Horvat, Milena

    2007-03-01

    increase in specific activity with respect to natural mercury targets was obtained. When this high specific activity tracer is employed, mercury methylation and reduction experiments with minimum mercury additions are feasible. Tracer recovery in methylation experiments (associated with Me197Hg production from 197Hg2+ spike, but also with Hg2+ contamination and Me197Hg artefacts) with marine sediments was about 0.005% g-1 WS (WS: wet sediment) after 20 h incubation with mercury additions of 0.05 ng g-1 WS, which is far below natural mercury levels. In this case, the amount of Hg2+ reduced to Hg0 (expressed as the percent 197Hg0 recovered with respect to the 197Hg2+ added) varied from 0.13 to 1.6% g-1 WS. Me197Hg production from 197Hg2+ spike after 20 h of incubation of freshwater sediment ranged from 0.02 to 0.13% g-1 WS with mercury additions of 2.5 ng g-1 WS, which is also far below natural levels. 197Hg0 recoveries were low, 0.0058+/-0.0013% g-1 WS, but showed good reproducibility in five replicates. Me197Hg production from 197Hg2+ spiked in freshwater samples ranged from 0.1 to 0.3% over a period of three days with mercury additions of 10 ng L-1. A detection limit of 0.05% for Me197Hg production from 197Hg2+ spike was obtained in seawater in a 25 h incubation experiment with mercury additions of 12 ng L-1.

  13. Fate and wetting potential of bio-refractory organics in membrane distillation for coke wastewater treatment.

    Science.gov (United States)

    Ren, Jing; Li, Jianfeng; Chen, Zuliang; Cheng, Fangqin

    2018-06-02

    Membrane distillation (MD) has been hindered in industrial applications due to the potential wetting or fouling caused by complicated organic compositions. This study investigated the correlations between the fate and wetting potential of bio-refractory organics in the MD process, where three coke wastewater samples pre-treated with bio-degradation and coagulation served as feed solutions. Results showed that although most of the bio-refractory organics in coke wastewater were rejected by the hydrophobic membrane, some volatile aromatic organics including benzenes, phenols, quinolines and naphthalenes passed through the membrane during the MD process. Interestingly, membrane wetting occurred coincidently with the penetration of phenolic and heterocyclic organics. The wetting rate was obviously correlated with the feed composition and membrane surface properties. Ultimately, novel insights into the anti-wetting strategy of MD with bio-refractory organics was proposed, illustrating that the polyaluminum chloride/polyacrylamide coagulation not only removed contaminants which could accelerate membrane wetting, but also retarded membrane wetting by the complexation with organics. The deposition of these complexes on the membrane surface introduced a secondary hydrophilic layer on the hydrophobic substrate, which established a composite membrane structure with superior wetting resistance. These new findings would be beneficial to wetting control in membrane distillation for wastewater treatment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Isotopic Hg in an Allende carbon-rich residue

    International Nuclear Information System (INIS)

    Reed, G.W. Jr.; Jovanovic, S.

    1990-01-01

    A carbon-rich residue from Allende subjected to stepwise heating yielded two isotopically resolvable types of Hg: one with an (Hg-196)/(Hg-202) concentration ratio the same as terrestrial (monitor) Hg; the other enriched in Hg-196 relative to Hg-202 by about 60 percent. Hg with the 202 isotope enriched relative to 196, as is found in bulk Allende, was not observed. Whether the result of mass fractionation or nucleosynthesis, the distinct types of Hg entered different carrier phases and were not thermally mobilized since the accretion of the Allende parent body. 9 refs

  15. 40 CFR 60.4142 - Hg allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg allowance allocations. 60.4142... Coal-Fired Electric Steam Generating Units Hg Allowance Allocations § 60.4142 Hg allowance allocations. (a)(1) The baseline heat input (in MMBtu) used with respect to Hg allowance allocations under...

  16. Study of systematic errors in the determination of total Hg levels in the range -5% in inorganic and organic matrices with two reliable spectrometrical determination procedures

    International Nuclear Information System (INIS)

    Kaiser, G.; Goetz, D.; Toelg, G.; Max-Planck-Institut fuer Metallforschung, Stuttgart; Knapp, G.; Maichin, B.; Spitzy, H.

    1978-01-01

    In the determiniation of Hg at ng/g and pg/g levels systematic errors are due to faults in the analytical methods such as intake, preparation and decomposition of a sample. The sources of these errors have been studied both with 203 Hg-radiotracer techniques and two multi-stage procedures developed for the determiniation of trace levels. The emission spectrometrie (OES-MIP) procedure includes incineration of the sample in a microwave induced oxygen plasma (MIP), the isolation and enrichment on a gold absorbent and its excitation in an argon plasma (MIP). The emitted Hg-radiation (253,7 nm) is evaluated photometrically with a semiconductor element. The detection limit of the OES-MIP procedure was found to be 0,01 ng, the coefficient of variation 5% for 1 ng Hg. The second procedure combines a semi-automated wet digestion method (HCLO 3 /HNO 3 ) with a reduction-aeration (ascorbic acid/SnCl 2 ), and the flameless atomic absorption technique (253,7 nm). The detection limit of this procedure was found to be 0,5 ng, the coefficient of variation 5% for 5 ng Hg. (orig.) [de

  17. Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films.

    Science.gov (United States)

    Rahman, Nazia; Sato, Nobuhiro; Sugiyama, Masaaki; Hidaka, Yoshiki; Okabe, Hirotaka; Hara, Kazuhiro

    2014-01-01

    Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) using hydrolyzed acrylamide (AAm)-grafted polyethylene terephthalate (PET) films was examined to explore the potential reuse of waste PET materials. Selective recovery of Hg(II) from a mixture of soft acids with similar structure, such as Hg(II) and Pb(II), is important to allow the reuse of recovered Hg(II). An adsorbent for selective Hg(II) adsorption was prepared by γ-ray-induced grafting of AAm onto PET films followed by partial hydrolysis through KOH treatment. The adsorption capacity of the AAm-grafted PET films for Hg(II) ions increased from 15 to 70 mg/g after partial hydrolysis because of the reduction of hydrogen bonding between -CONH2 groups and the corresponding improved access of metal ions to the amide groups. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The absorbent film showed high selectivity for the adsorption of Hg(II) over Pb(II) throughout the entire initial metal concentration range (100-500 mg/L) and pH range (2.2-5.6) studied. The high selectivity is attributed to the ability of Hg(II) ions to form covalent bonds with the amide groups. The calculated selectivity coefficient for the adsorbent binding Hg(II) over Pb(II) was 19.2 at pH 4.5 with an initial metal concentration of 100 mg/L. Selective Hg(II) adsorption equilibrium data followed the Langmuir model and kinetic data were well fitted by a pseudo-second-order equation. The adsorbed Hg(II) and Pb(II) ions were effectively desorbed from the adsorbent film by acid treatment, and the regenerated film showed no marked loss of adsorption capacity upon reuse for selective Hg(II) adsorption.

  18. [Wet work].

    Science.gov (United States)

    Kieć-Swierczyńska, Marta; Chomiczewska, Dorota; Krecisz, Beata

    2010-01-01

    Wet work is one of the most important risk factors of occupational skin diseases. Exposure of hands to the wet environment for more than 2 hours daily, wearing moisture-proof protective gloves for a corresponding period of time or necessity to wash hands frequently lead to the disruption of epidermal stratum corneum, damage to skin barrier function and induction of irritant contact dermatitis. It may also promote penetration of allergens into the skin and increase the risk of sensitization to occupational allergens. Exposure to wet work plays a significant role in occupations, such as hairdressers and barbers, nurses and other health care workers, cleaning staff, food handlers and metalworkers. It is more common among women because many occupations involving wet work are female-dominated. The incidence of wet-work-induced occupational skin diseases can be reduced by taking appropriate preventive measures. These include identification of high-risk groups, education of workers, organization of work enabling to minimize the exposure to wet work, use of personal protective equipment and skin care after work.

  19. National implementation of the UNECE convention on long-range transboundary air pollution (effects). Pt. 1. Deposition loads: methods, modelling and mapping results, trends

    Energy Technology Data Exchange (ETDEWEB)

    Gauger, Thomas [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE); Stuttgart Univ. (Germany). Inst. of Navigation; Haenel, Hans-Dieter; Roesemann, Claus [Federal Agricultural Research Centre, Braunschweig (DE). Inst. of Agroecology (FAL-AOE)

    2008-09-15

    The report on the implementation of the UNECE convention on long-range transboundary air pollution Pt.1, deposition loads (methods, modeling and mapping results, trends) includes the following chapters: Introduction, deposition on air pollutants used for the input for critical loads in exceeding calculations, methods applied for mapping total deposition loads, mapping wet deposition, wet deposition mapping results, mapping dry deposition, dry deposition mapping results, cloud and fog mapping results, total deposition mapping results, modeling the air concentration of acidifying components and heavy metals, agricultural emissions of acidifying and eutrophying species.

  20. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M., E-mail: Morteza.Eslamian@sjtu.edu.cn

    2015-05-30

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  1. Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating

    International Nuclear Information System (INIS)

    Zabihi, F.; Xie, Y.; Gao, S.; Eslamian, M.

    2015-01-01

    Highlights: • Nanostructure of spun-on and spray-on PEDOT:PSS thin films is studied. • A correlation is established between the film nanostructure and electrical conductivity. • Effect of process parameters is studied on the film characteristics. • A high solution concentration, high process temperature and multiple deposition layers are recommended. - Abstract: The goal of this paper is to study the characteristics of PEDOT:PSS thin films and the effects of varying the processing parameters on the structure, functionality, and surface wetting of spun-on and spray-on PEDOT:PSS thin films. PEDOT:PSS is a polymer mixture, which is electrically conductive and transparent and, therefore, is an attractive material for some optoelectronic applications, such as organic and perovskite solar cells. In this work, the films are fabricated using spin coating (a lab-scale method) and spray coating (an up-scalable method). The effects of spinning speed, drying time, and post-annealing temperature on spun-on samples and the effects of the substrate temperature and number of spray passes (deposition layers) on spray-on samples, as well as the effect of precursor solution concentration on both cases are investigated. Various characterization tools, such as AFM, SEM, XRD, confocal laser scanning microscopy (CLSM), and electrical conductivity measurements are used to determine the film roughness, thickness, structure, and morphology. The solution precursor physical data, such as contact angle on glass substrates, viscosity, and interfacial tension, are also obtained within a practical range of temperatures and concentrations. It is found that in both spin and spray coating routes, only well-controlled operating conditions result in the formation of conductive and defect-free PEDOT:PSS films. The formation of PEDOT:PSS thin films with small grains composed of PEDOT forming the core of the grains and PSS forming a shell or coating, which are evenly distributed in a PSS

  2. Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia

    Directory of Open Access Journals (Sweden)

    U. Rummel

    2007-10-01

    Full Text Available Within the project EUropean Studies on Trace gases and Atmospheric CHemistry as a contribution to Large-scale Biosphere-atmosphere experiment in Amazonia (LBA-EUSTACH, we performed tower-based eddy covariance measurements of O3 flux above an Amazonian primary rain forest at the end of the wet and dry season. Ozone deposition revealed distinct seasonal differences in the magnitude and diel variation. In the wet season, the rain forest was an effective O3 sink with a mean daytime (midday maximum deposition velocity of 2.3 cm s−1, and a corresponding O3 flux of −11 nmol m−2 s−1. At the end of the dry season, the ozone mixing ratio was about four times higher (up to maximum values of 80 ppb than in the wet season, as a consequence of strong regional biomass burning activity. However, the typical maximum daytime deposition flux was very similar to the wet season. This results from a strong limitation of daytime O3 deposition due to reduced plant stomatal aperture as a response to large values of the specific humidity deficit. As a result, the average midday deposition velocity in the dry burning season was only 0.5 cm s−1. The large diel ozone variation caused large canopy storage effects that masked the true diel variation of ozone deposition mechanisms in the measured eddy covariance flux, and for which corrections had to be made. In general, stomatal aperture was sufficient to explain the largest part of daytime ozone deposition. However, during nighttime, chemical reaction with nitrogen monoxide (NO was found to contribute substantially to the O3 sink in the rain forest canopy. Further contributions were from non-stomatal plant uptake and other processes that could not be clearly identified.

    Measurements, made simultaneously on a 22 years old cattle pasture enabled the spatially and temporally direct comparison of O3

  3. A functional graphene oxide-ionic liquid composites-gold nanoparticle sensing platform for ultrasensitive electrochemical detection of Hg2+.

    Science.gov (United States)

    Zhou, Na; Li, Jinhua; Chen, Hao; Liao, Chunyang; Chen, Lingxin

    2013-02-21

    A simple and sensitive electrochemical assay strategy of stripping voltammetry for mercury ions (Hg(2+)) detection is described based on the synergistic effect between ionic liquid functionalized graphene oxide (GO-IL) and gold nanoparticles (AuNPs). The AuNPs-GO-IL modified onto glassy carbon electrode (GCE) resulted in highly enhanced electron conductive nanostructured membrane and large electroactive surface area, which was excellently examined by scanning electron microscopy and cyclic voltammetry. After accumulating Hg(2+), anodic stripping voltammetry (ASV) was performed, and differential pulse voltammetry (DPV) was employed for signal recording of Hg(2+). Several main experimental parameters were optimized, i.e., deposition potential and time of AuNPs were -0.2 V and 180 s, respectively, and accumulation potential and time of Hg(2+) were -0.3 V and 660 s, respectively. Under the optimal conditions, this AuNPs-GO-IL-GCE sensor attained a good linearity in a wide range of 0.1-100 nM (R = 0.9808) between the concentration of the Hg(2+) standard and peak current. The limit of detection was estimated to be 0.03 nM at a signal-to-noise ratio of 3σ. A variety of common coexistent ions in water samples were investigated, showing no obvious interferences on the Hg(2+) detection. The practical application of the proposed sensor has been carried out and demonstrated as feasible for determination of trace levels of Hg(2+) in drinking and environmental water samples.

  4. Sulfur accumulation and atmospherically deposited sulfate in the Lake States.

    Science.gov (United States)

    Mark B. David; George Z. Gernter; David F. Grigal; Lewis F. Ohmann

    1989-01-01

    Characterizes the mass of soil sulfur (adjusted for nitrogen), and atmospherically deposited sulfate along an acid precipitation gradient from Minnesota to Michigan. The relationship of these variables, presented graphically through contour mapping, suggests that patterns of atmospheric wet sulfate deposition are reflected in soil sulfur pools.

  5. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  6. Massive accumulation of highly polluted sedimentary deposits by river damming

    Energy Technology Data Exchange (ETDEWEB)

    Palanques, Albert, E-mail: albertp@icm.csic.es [Institute of Marine Sciences (CSIC), Passeig Maritim de la Barceloneta, 37-49, Barcelona 08003 (Spain); Grimalt, Joan [Institute of Environmental Assessment and Water Research (CSIC), Jordi Girona, 18, Barcelona 08034 (Spain); Belzunces, Marc; Estrada, Ferran; Puig, Pere; Guillén, Jorge [Institute of Marine Sciences (CSIC), Passeig Maritim de la Barceloneta, 37-49, Barcelona 08003 (Spain)

    2014-11-01

    Uncontrolled dumping of anthropogenic waste in rivers regulated by dams has created contaminated deposits in reservoirs that have remained unidentified for decades. The Flix Reservoir is located in the Ebro River, the second largest river flowing into the NW Mediterranean, has been affected by residue dumping from a chlor-alkali electrochemical plant for decades. High-resolution seismic profiles, bathymetric data, surficial sediment samples and sediment cores were obtained in the Flix Reservoir to study the characteristics of the deposit accumulated by this dumping. These data were used to reconstruct the waste deposit history. Since the construction of the Flix Dam in 1948, more than 3.6 × 10{sup 5} t of industrial waste has accumulated in the reservoir generating a delta-like deposit formed by three sediment lobes of fine-grained material highly contaminated by Hg, Cd, Zn and Cr (max: 640, 26, 420 and 750 mg kg{sup −1}, respectively). This contamination was associated with the Hg that was used for the cathode in the electrochemical plant from 1949 and with the production of phosphorite derivatives from 1973. After the construction of two large dams only a few kilometres upstream during the 1960s, the solids discharged from the industrial complex became the main sediment source to the Flix Reservoir. The deposit has remained in the reservoir forming a delta that obstructs about 50% of the river water section. Its stability only depended on the flow retention by the Flix Dam. At present, this contaminated waste deposit is being removed from the water reservoir as it is a cause of concern for the environment and for human health downriver. - Highlights: • A delta-like anthropogenic deposit prograded into the reservoir behind the Flix dam. • More than 3.6 × 10{sup 5} t of anthropogenic waste was accumulated in less than 4 decades. • A waste deposit with extreme levels of Hg and Cd was trapped in the Flix Reservoir. • The main pollution was related to

  7. Characterization of deep wet etching of fused silica glass for single cell and optical sensor deposition

    International Nuclear Information System (INIS)

    Zhu, Haixin; Holl, Mark; Ray, Tathagata; Bhushan, Shivani; Meldrum, Deirdre R

    2009-01-01

    The development of a high-throughput single-cell metabolic rate monitoring system relies on the use of transparent substrate material for a single cell-trapping platform. The high optical transparency, high chemical resistance, improved surface quality and compatibility with the silicon micromachining process of fused silica make it very attractive and desirable for this application. In this paper, we report the results from the development and characterization of a hydrofluoric acid (HF) based deep wet-etch process on fused silica. The pin holes and notching defects of various single-coated masking layers during the etching are characterized and the most suitable masking materials are identified for different etch depths. The dependence of the average etch rate and surface roughness on the etch depth, impurity concentration and HF composition are also examined. The resulting undercut from the deep HF etch using various masking materials is also investigated. The developed and characterized process techniques have been successfully implemented in the fabrication of micro-well arrays for single cell trapping and sensor deposition. Up to 60 µm deep micro-wells have been etched in a fused silica substrate with over 90% process yield and repeatability. To our knowledge, such etch depth has never been achieved in a fused silica substrate by using a non-diluted HF etchant and a single-coated masking layer at room temperature

  8. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  9. Precipitation composition and wet deposition temporal pattern in Central Serbia for the period from 1998 to 2004.

    Science.gov (United States)

    Golobocanin, D; Zujić, A; Milenković, A; Miljević, N

    2008-07-01

    Bulk samples collected on a daily basis at three principal meteorological stations in central Serbia were analyzed on chloride (Cl(-)), nitrate (NO(3)(-)), sulfate (SO(4)(2-)), sodium (Na(+)), ammonium (NH(4)(+)), potassium (K(+)), calcium (Ca(2+)), and magnesium (Mg(2+)) in addition to precipitation amount, pH and conductivity measurements over the period 1998-2004. The data were subjected to variety of analyses (linear regression, principal component analysis, time series analysis) to characterize precipitation chemistry in the study area. The most abundant ion was SO(2-)(4) with annual volume weighted mean concentration of 242 microeq L(-1). Neutralization of precipitation acidity occurs both as a result of the dissolution of alkaline compounds containing Ca(2+), Mg(2+), and K(+) as well as the absorption of ammonia. The ratio of SO(4)(2-)/NO(3)(-) was above 5, which indicated that the combustion process of low-grade domestic lignite for electricity generation from coal-fired thermal power plants was the main source of pollution in the investigated area. A considerable mean annual bulk wet deposition of SO(4)-S determined by precipitation amount and concentrations of sulfate in the precipitation was calculated to be 12-35 kg ha(-1).

  10. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL2 (L=CH3, Cl, Br, I) and trigonal planar [HgCl3]- complexes using four-component relativistic Dirac-Coulomb (DC) and non...

  11. Nitrogen deposition: the up and down side for production agriculture.

    Science.gov (United States)

    Pamela Padgett

    2009-01-01

    Deposition of nitrogen-containing air pollutants contributes as much as 80 kg-N yr-1 to rural lands in proximity to large urban centers. Even in areas distant from pollution sources atmospheric deposition in the US, and much of Europe, is 5 to 10 times higher than natural background levels. Wet deposition in rain, snow, and fog is relatively easy to measure and has...

  12. Mercury Exchange at the Air-Water-Soil Interface: An Overview of Methods

    Directory of Open Access Journals (Sweden)

    Fengman Fang

    2002-01-01

    Full Text Available An attempt is made to assess the present knowledge about the methods of determining mercury (Hg exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  13. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  14. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  15. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution.

    Science.gov (United States)

    Hung, Chang-Mao

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h(-1).

  16. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    International Nuclear Information System (INIS)

    Hung, Chang-Mao

    2009-01-01

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h -1 .

  17. Acid Deposition Phenomena

    International Nuclear Information System (INIS)

    Ramadan, A.E.K.

    2004-01-01

    Acid deposition, commonly known as acid rain, occurs when emissions from the combustion of fossil fuels and other industrial processes undergo complex chemical reactions in the atmosphere and fall to the earth as wet deposition (rain, snow, cloud, fog) or dry deposition (dry particles, gas). Rain and snow are already naturally acidic, but are only considered problematic when less than a ph of 5.0 The main chemical precursors leading to acidic conditions are atmospheric concentrations of sulfur dioxide (SO 2 ) and nitrogen oxides (NO x ). When these two compounds react with water, oxygen, and sunlight in the atmosphere, the result is sulfuric (H 2 SO 4 ) and nitric acids (HNO 3 ), the primary agents of acid deposition which mainly produced from the combustion of fossil fuel and from petroleum refinery. Airborne chemicals can travel long distances from their sources and can therefore affect ecosystems over broad regional scales and in locations far from the sources of emissions. According to the concern of petroleum ministry with the environment and occupational health, in this paper we will discussed the acid deposition phenomena through the following: Types of acidic deposition and its components in the atmosphere Natural and man-made sources of compounds causing the acidic deposition. Chemical reactions causing the acidic deposition phenomenon in the atmosphere. Factors affecting level of acidic deposition in the atmosphere. Impact of acid deposition. Procedures for acidic deposition control in petroleum industry

  18. Converting Hg-1212 to Tl-2212 via Tl-Hg cation exchange in combination with Tl cation intercalation

    International Nuclear Information System (INIS)

    Zhao Hua; Wu, Judy Z

    2007-01-01

    In a cation exchange process developed recently for epitaxy of HgBa 2 CaCu 2 O 6 (Hg-1212) thin films, TlBa 2 CaCu 2 O 7 (Tl-1212) or Tl 2 Ba 2 CaCu 2 O 9 (Tl-2212) precursor films were employed as the precursor matrices and Hg-1212 was obtained by replacing Tl cations on the precursor lattice with Hg cations. The reversibility of the cation exchange dictates directly the underlying mechanism. Following our recent success in demonstrating a complete reversibility within '1212' structure, we show the conversion from Hg-1212 to Tl-2212 can be achieved via two steps: conversion from Hg-1212 to Tl-1212 followed by Tl intercalation to form double Tl-O plans in each unit cell. The demonstrated reversibility of the cation exchange process has confirmed the process is a thermal perturbation of weakly bonded cations on the lattice and the direction of the process is determined by the population ratio between the replacing cations and that to be replaced

  19. Atmospheric concentrations and deposition of oxidised sulfur and nitrogen species at Petaling Jaya, Malaysia, 1993-1998

    Energy Technology Data Exchange (ETDEWEB)

    Ayers, G.P.; Gillett, R.W.; Manins, P.C. [CSIRO Atmospheric Research, Aspendale, VIC (Australia); Peng Leong Chow; Fook Lim Sze [Malaysian Meteorological Service, Petaling Jaya (Malaysia); Kong Cheah Wai [Tenaga Nasional R and D Berhad, Kajang (Malaysia)

    2000-02-01

    Wet-only rainwater composition, acid-precursor gas mixing ratios and aerosol loading were determined from weekly-averaged samples at Petaling Jaya, Malaysia, over the five year period from March 1993 to March 1998. Annual deposition fluxes of acidic sulfur and nitrogen species estimated from these data show this site to be heavily impacted by acidic deposition, with total oxidised sulfur plus nitrogen deposition in the range 277-480 meq m{sup -2} yr{sup -1}. Average contributions were 56% as sulfur species, 44% as nitrogen species, with wet deposition in this region of high rainfall accounting for 67% of total deposition. Thus total acid deposition fluxes were equivalent to levels that provided motivation for emissions reduction programs in both Europe and North America. The possibility of adverse environmental effects in Malaysia caused by acid deposition therefore merits serious consideration and assessment.

  20. Accumulation of wet-deposited radiocaesium and radiostrontium by spring oilseed rape (Brássica napus L.) and spring wheat (Tríticum aestívum L.)

    International Nuclear Information System (INIS)

    Bengtsson, Stefan B.; Eriksson, Jan; Gärdenäs, Annemieke I.; Vinichuk, Mykhailo; Rosén, Klas

    2013-01-01

    The accumulation of 134 Cs and 85 Sr within different parts of spring oilseed rape and spring wheat plants was investigated, with a particular focus on transfer to seeds after artificial wet deposition at different growth stages during a two-year field trial. In general, the accumulation of radionuclides in plant parts increased when deposition was closer to harvest. The seed of spring oilseed rape had lower concentrations of 85 Sr than spring wheat grain. The plants accumulated more 134 Cs than 85 Sr. We conclude that radionuclides can be transferred into human food chain at all growing stages, especially at the later stages. The variation in transfer factors during the investigation, and in comparison to previous results, implies the estimation of the risk for possible transfer of radionuclides to seeds in the event of future fallout during a growing season is still subject to considerable uncertainty. -- Highlights: •Accumulation of 134 Cs and 85 Sr in plants increased the closer to harvest the nuclides were deposited. • 134 Cs and 85 Sr concentrations in seeds were highest when deposited after flowering. •Activity concentrations of 134 Cs in spring oilseed rape were higher than the activity concentrations of 85 Sr. •Oilseed rape redistributes 134 Cs and 85 Sr to seed at a lower rate than wheat redistributes 134 Cs and 85 Sr to grain. -- Intercepted radionuclides can be transferred into the food chain for humans

  1. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  2. Ab initio study of structural, electronic and optical properties of MnHg(SCN)4 and FeHg(SCN)4

    International Nuclear Information System (INIS)

    He, K.H.; Zheng, G.; Chen, G.; Lue, T.; Wan, M.; Ji, G.F.

    2007-01-01

    The structural, electronic and optical properties of MnHg(SCN) 4 and FeHg(SCN) 4 were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN) 4 have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN) 4 . The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN) 4 lag behind those of MnHg(SCN) 4 and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena

  3. Compton profiles and electronic structure of HgBr{sub 2} and HgI{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, G.; Dashora, Alpa [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur, 313001 Rajasthan (India); Sharma, M. [Physics Division, State Forensic Science Laboratory, Jaipur, 302016 Rajasthan (India); Ahuja, B.L. [Department of Physics, University College of Science, M.L. Sukhadia University, Udaipur, 313001 Rajasthan (India)], E-mail: blahuja@yahoo.com

    2010-02-15

    In this paper, we present the first-ever experimental Compton line shapes of HgBr{sub 2} and HgI{sub 2} using {sup 137}Cs Compton spectrometer. To compare our experimental momentum densities, we have computed the Compton profiles using Hartree-Fock and density functional theory within linear combination of atomic orbitals. We have also computed the energy bands and density of states using the linear combination of atomic orbitals and full potential linearized augmented plane wave method. On the basis of equal-valence-electron-density profiles, it is seen that HgI{sub 2} is more covalent than HgBr{sub 2} which is in agreement with the valence charge densities. The experimental isotropic profiles are found to be relatively in better agreement with the Hartree-Fock data. We have also discussed the photoluminescence and detection properties of both the halides.

  4. Hg(+) Frequency Standards

    Science.gov (United States)

    Prestage, John D.; Tjoelker, Robert L.; Maleki, Lute

    2000-01-01

    In this paper we review the development of Hg(+) microwave frequency standards for use in high reliability and continuous operation applications. In recent work we have demonstrated short-term frequency stability of 3 x 10(exp -14)/nu(sub tau) when a cryogenic oscillator of stability 2-3 x 10(exp 15) was used a the local oscillator. The trapped ion frequency standard employs a Hg-202 discharge lamp to optically pump the trapped Hg(+)-199 clock ions and a helium buffer gas to cool the ions to near room temperature. We describe a small Hg(+) ion trap based frequency standard with an extended linear ion trap (LITE) architecture which separates the optical state selection region from the clock resonance region. This separation allows the use of novel trap configurations in the resonance region since no optical pumping is carried out there. A method for measuring the size of an ion cloud inside a linear trap with a 12-rod trap is currently being investigated. At approx. 10(exp -12), the 2nd order Doppler shift for trapped mercury ion frequency standards is one of the largest frequency offsets and its measurement to the 1% level would represent an advance in insuring the very long-term stability of these standards to the 10(exp -14) or better level. Finally, we describe atomic clock comparison experiments that can probe for a time variation of the fine structure constant, alpha = e(exp 2)/2(pi)hc, at the level of 10(exp -20)/year as predicted in some Grand Unified String Theories.

  5. Innovative 'Artificial Mussels' technology for assessing spatial and temporal distribution of metals in Goulburn-Murray catchments waterways, Victoria, Australia: effects of climate variability (dry vs. wet years).

    Science.gov (United States)

    Kibria, Golam; Lau, T C; Wu, Rudolf

    2012-12-01

    The "Artificial mussel" (AM), a novel passive sampling technology, was used for the first time in Australia in freshwater to monitor and assess the risk of trace metals (Cd, Cu, Hg, Pb, and Zn). AMs were deployed at 10 sites within the Goulburn-Murray Water catchments, Victoria, Australia during a dry year (2009-2010) and a wet year (2010-2011). Our results showed that the AMs accumulated all the five metals. Cd, Pb, Hg were detected during the wet year but below detection limits during the dry year. At some sites close to orchards, vine yards and farming areas, elevated levels of Cu were clearly evident during the dry year, while elevated levels of Zn were found during the wet year; the Cu indicates localized inputs from the agricultural application of copper fungicide. The impacts from old mines were significantly less compared 'hot spots'. Our study demonstrated that climate variability (dry, wet years) can influence the metal inputs to waterways via different transport pathways. Using the AMs, we were able to identify various 'hot spots' of heavy metals, which may pose a potential risk to aquatic ecosystems (sub-lethal effects to fish) and public (via food chain metal bioaccumulation and biomagnification) in the Goulburn-Murray Water catchments. The State Protection Policy exempted artificial channels and drains from protection of beneficial use (including protection of aquatic ecosystems) and majority of sites ('hot spots') were located within artificial irrigation channels. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Chemical cycling and deposition of atmospheric mercury in polar regions: review of recent measurements and comparison with models

    Directory of Open Access Journals (Sweden)

    H. Angot

    2016-08-01

    Full Text Available Mercury (Hg is a worldwide contaminant that can cause adverse health effects to wildlife and humans. While atmospheric modeling traces the link from emissions to deposition of Hg onto environmental surfaces, large uncertainties arise from our incomplete understanding of atmospheric processes (oxidation pathways, deposition, and re-emission. Atmospheric Hg reactivity is exacerbated in high latitudes and there is still much to be learned from polar regions in terms of atmospheric processes. This paper provides a synthesis of the atmospheric Hg monitoring data available in recent years (2011–2015 in the Arctic and in Antarctica along with a comparison of these observations with numerical simulations using four cutting-edge global models. The cycle of atmospheric Hg in the Arctic and in Antarctica presents both similarities and differences. Coastal sites in the two regions are both influenced by springtime atmospheric Hg depletion events and by summertime snowpack re-emission and oceanic evasion of Hg. The cycle of atmospheric Hg differs between the two regions primarily because of their different geography. While Arctic sites are significantly influenced by northern hemispheric Hg emissions especially in winter, coastal Antarctic sites are significantly influenced by the reactivity observed on the East Antarctic ice sheet due to katabatic winds. Based on the comparison of multi-model simulations with observations, this paper discusses whether the processes that affect atmospheric Hg seasonality and interannual variability are appropriately represented in the models and identifies research gaps in our understanding of the atmospheric Hg cycling in high latitudes.

  7. Monomethylmercury sources in a tropical artificial reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Muresan, Bogdan [Institut francais de recherche pour l' exploitation durable de la mer (IFREMER), BP 21105, F.44311 Nantes cedex 3 (France); Cossa, Daniel [Institut francais de recherche pour l' exploitation durable de la mer (IFREMER), BP 21105, F.44311 Nantes cedex 3 (France)], E-mail: dcossa@ifremer.fr; Richard, Sandrine [HYDRECO, Laboratoire de Petit-Saut, BP 823, F.97388 Kourou, French Guiana (France); Dominique, Yannick [Laboratoire d' ecophysiologie et d' ecotoxicologie des systemes aquatiques (LEESA), CNRS 5805, F.33120 Arcachon (France)

    2008-05-15

    The distribution and speciation of mercury (Hg) in the water column, the inputs (wet deposition and tributaries) and the outputs (atmospheric evasion and outlet) of an artificial partially anoxic tropical lake (Petit-Saut reservoir, French Guiana) were investigated on a seasonal basis in order to appraise the cycling and transformations of this metal. The total mercury (HgT) concentrations in the oxygenated epilimnetic waters averaged 5 {+-} 3 pmol L{sup -1} in the unfiltered samples (HgT{sub UNF}) and 4 {+-} 2 pmol L{sup -1} in the dissolved (HgT{sub D}) phase (<0.45 {mu}m). On average, the monomethylmercury (MMHg) constituted 8%, 40% and 18% of the HgT in the dissolved phase, the particulate suspended matter and in the unfiltered samples, respectively. Covariant elevated concentrations of particulate MMHg and chlorophyll a in the epilimnion suggest that phytoplankton is an active component for the MMHg transfer in the lake. In the anoxic hypolimnion the HgT{sub UNF} averages 13 {+-} 6 pmol L{sup -1} and the HgT{sub D} 8 {+-} 4 pmol L{sup -1}. The averages of MMHg{sub P} and MMHg{sub D} in hypolimnetic waters were two and three times the corresponding values of the epilimnion, 170 {+-} 90 pmol g{sup -1} and 0.9 {+-} 0.5 pmol L{sup -1}, respectively. In the long dry and wet seasons, at the flooded forest and upstream dam sampling stations, the vertical profiles of MMHg{sub D} concentrations accounted for two distinct maxima: one just below the oxycline and the other near the benthic interface. Direct wet atmospheric deposition accounted for 14 moles yr{sup -1} HgT{sub UNF}, with 0.7 moles yr{sup -1} as MMHg{sub UNF}, while circa 76 moles yr{sup -1} of HgT{sub UNF}, with 4.7 moles yr{sup -1} as MMHg{sub UNF}, coming from tributaries. Circa 78 moles ({approx}17% as MMHg) are annually exported through the dam, while 23 moles yr{sup -1} of Hg{sup 0} evolve in the atmosphere. A mass balance calculation suggests that the endogenic production of MMHg{sub UNF} attained 8

  8. On the Marija Reka mercury deposit and on its comparison with the Litija and Idrija deposits from the aspect of plate tectonics

    Directory of Open Access Journals (Sweden)

    Ivan Mlakar

    1995-12-01

    Full Text Available The surroundings of the Marija Reka deposit were studied in detail, and on the basis of literature data its geologic structure was reconstructed.The chemical elements Ni and Hg are correlated, and therefore comparisons were made with the deposits in Sava folds in which also mercury occurs. Positive correlation was established between the intensity of extension of the Earth's crust, occurrence of basic volcanics, and nickel and native mercury. Results indicatethe deep-seated source of these elements, and the Permian age of the Marija Reka deposit.By considering numerous geochemical data new views on the perspective of the deposit were expressed.

  9. Hg transfer from contaminated soils to plants and animals

    NARCIS (Netherlands)

    Rodrigues, S.M.; Henriques, B.; Reis, A.T.; Duarte, A.C.; Pereira, E.; Romkens, P.F.A.M.

    2012-01-01

    Understanding the transfer of mercury (Hg) from soil to crops is crucial due to Hg toxicity and Hg occurrence in terrestrial systems. Previous research has shown that available Hg in soils contributes to plant Hg levels. Plant Hg concentrations are related to soil conditions and plant

  10. Bioaccumulation of As, Cd, Cr, Hg(II), and MeHg in killifish (Fundulus heteroclitus) from amphipod and worm prey

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Jessica, E-mail: dutton.jess@gmail.com; Fisher, Nicholas S., E-mail: nfisher@notes.cc.sunysb.edu

    2011-08-15

    Elevated metal levels in fish are a concern for the fish themselves, their predators, and possibly humans who consume contaminated seafood. Metal bioaccumulation models often rely on assimilation efficiencies (AEs) of ingested metals and loss rate constants after dietary exposure (k{sub ef}s). These models can be used to better understand processes regulating metal accumulation and can be used to make site-specific predictions of metal concentrations in animal tissues. Fish often consume a varied diet, and prey choice can influence these two parameters. We investigated the trophic transfer of As, Cd, Cr, Hg(II), and methylmercury (MeHg) from a benthic amphipod (Leptocheirus plumulosus) and an oligochaete (Lumbriculus variegatus) to killifish (Fundulus heteroclitus) using gamma-emitting radioisotopes. Except for MeHg, AEs varied between prey type. AEs were highest for MeHg (92%) and lowest for Cd (2.9-4.5%) and Cr (0.2-4%). Hg(II) showed the largest AE difference between prey type (14% amphipods, 24% worms). For Cd and Hg(II) k{sub ef}s were higher after consuming amphipods than consuming worms. Tissue distribution data shows that Cd and Hg(II) were mainly associated with the intestine, whereas As and MeHg were transported throughout the body. Calculated trophic transfer factors (TTFs) suggest that MeHg is likely to biomagnify at this trophic step at all ingestion rates, whereas As, Cd, Cr, and Hg(II) will not. Data collected in this study and others indicate that using one prey item to calculate AE and k{sub ef} could lead to an over- or underestimation of these parameters. - Highlights: {yields} We investigated the trophic transfer of metals to killifish from amphipod and worm prey. {yields} Prey choice influences metal accumulation from the diet. {yields} Only MeHg is likely to biomagnify at this trophic step.

  11. Multi-model study of HTAP II on sulfur and nitrogen deposition

    Science.gov (United States)

    Tan, Jiani; Fu, Joshua S.; Dentener, Frank; Sun, Jian; Emmons, Louisa; Tilmes, Simone; Sudo, Kengo; Flemming, Johannes; Eiof Jonson, Jan; Gravel, Sylvie; Bian, Huisheng; Davila, Yanko; Henze, Daven K.; Lund, Marianne T.; Kucsera, Tom; Takemura, Toshihiko; Keating, Terry

    2018-05-01

    This study uses multi-model ensemble results of 11 models from the second phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modeled wet deposition is evaluated with observation networks in North America, Europe and East Asia. The modeled results agree well with observations, with 76-83 % of stations being predicted within ±50 % of observations. The models underestimate SO42-, NO3- and NH4+ wet depositions in some European and East Asian stations but overestimate NO3- wet deposition in the eastern United States. Intercomparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows that HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modeled dry deposition is generally higher than the inferential data calculated by observed concentration and modeled velocity in North America, but the inferential data have high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % in continental regions and 51 % in the ocean (19 % of which coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. About 65 % of N is deposited in continental regions, and 35 % in the ocean (15 % of which coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Comparing our results to the results in 2001 from HTAP I, we find that the global distributions of S and N deposition have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44 %). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia

  12. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    Science.gov (United States)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  13. Three distinct Holocene intervals of stalagmite deposition and nondeposition revealed in NW Madagascar, and their paleoclimate implications

    Science.gov (United States)

    Riavo Gilbertinie Voarintsoa, Ny; Railsback, Loren Bruce; Brook, George Albert; Wang, Lixin; Kathayat, Gayatri; Cheng, Hai; Li, Xianglei; Edwards, Richard Lawrence; Rakotondrazafy, Amos Fety Michel; Olga Madison Razanatseheno, Marie

    2017-12-01

    Petrographic features, mineralogy, and stable isotopes from two stalagmites, ANJB-2 and MAJ-5, respectively from Anjohibe and Anjokipoty caves, allow distinction of three intervals of the Holocene in NW Madagascar. The Malagasy early Holocene (between ca. 9.8 and 7.8 ka) and late Holocene (after ca. 1.6 ka) intervals (MEHI and MLHI, respectively) record evidence of stalagmite deposition. The Malagasy middle Holocene interval (MMHI, between ca. 7.8 and 1.6 ka) is marked by a depositional hiatus of ca. 6500 years. Deposition of these stalagmites indicates that the two caves were sufficiently supplied with water to allow stalagmite formation. This suggests that the MEHI and MLHI intervals may have been comparatively wet in NW Madagascar. In contrast, the long-term depositional hiatus during the MMHI implies it was relatively drier than the MEHI and the MLHI. The alternating wet-dry-wet conditions during the Holocene may have been linked to the long-term migrations of the Intertropical Convergence Zone (ITCZ). When the ITCZ's mean position is farther south, NW Madagascar experiences wetter conditions, such as during the MEHI and MLHI, and when it moves north, NW Madagascar climate becomes drier, such as during the MMHI. A similar wet-dry-wet succession during the Holocene has been reported in neighboring locations, such as southeastern Africa. Beyond these three subdivisions, the records also suggest wet conditions around the cold 8.2 ka event, suggesting a causal relationship. However, additional Southern Hemisphere high-resolution data will be needed to confirm this.

  14. Oblate shapes of 200,202,204Hg

    International Nuclear Information System (INIS)

    Bockisch, A.; Bharuth-Ram, K.; Kleinfeld, A.M.; Lieb, K.P.

    1979-01-01

    Measurements of the reorientation effect for the first excited 2 + states in 200 , 202 , 204 Hg were performed by exploiting the dependence of the γ-ray yield on Q 2 + for different projectiles. For 200 Hg, a positive quadrupole moment of Q 2 = 0.96 +- 0.11 eb (for negative interference) or Q 2 = 1.11 +- 0.11 eb (for positive interference) was determined indicating an oblate shape. Small positive Q 2 values were also found for 202 Hg and 204 Hg. Nine B(E2) values for excitation of the 2 + , 2 + ' and 4 + states in 196-204 Hg were measured. (orig.) [de

  15. Hg stable isotope analysis by the double-spike method.

    Science.gov (United States)

    Mead, Chris; Johnson, Thomas M

    2010-06-01

    Recent publications suggest great potential for analysis of Hg stable isotope abundances to elucidate sources and/or chemical processes that control the environmental impact of mercury. We have developed a new MC-ICP-MS method for analysis of mercury isotope ratios using the double-spike approach, in which a solution containing enriched (196)Hg and (204)Hg is mixed with samples and provides a means to correct for instrumental mass bias and most isotopic fractionation that may occur during sample preparation and introduction into the instrument. Large amounts of isotopic fractionation induced by sample preparation and introduction into the instrument (e.g., by batch reactors) are corrected for. This may greatly enhance various Hg pre-concentration methods by correcting for minor fractionation that may occur during preparation and removing the need to demonstrate 100% recovery. Current precision, when ratios are normalized to the daily average, is 0.06 per thousand, 0.06 per thousand, 0.05 per thousand, and 0.05 per thousand (2sigma) for (202)Hg/(198)Hg, (201)Hg/(198)Hg, (200)Hg/(198)Hg, and (199)Hg/(198)Hg, respectively. This is slightly better than previously published methods. Additionally, this precision was attained despite the presence of large amounts of other Hg isotopes (e.g., 5.0% atom percent (198)Hg) in the spike solution; substantially better precision could be achieved if purer (196)Hg were used.

  16. A ratiometric electrochemical biosensor for sensitive detection of Hg2+ based on thymine-Hg2+-thymine structure.

    Science.gov (United States)

    Xiong, Erhu; Wu, Liang; Zhou, Jiawan; Yu, Peng; Zhang, Xiaohua; Chen, Jinhua

    2015-01-01

    In this paper, a simple, selective and reusable electrochemical biosensor for the sensitive detection of mercury ions (Hg(2+)) has been developed based on thymine (T)-rich stem-loop (hairpin) DNA probe and a dual-signaling electrochemical ratiometric strategy. The assay strategy includes both "signal-on" and "signal-off" elements. The thiolated methylene blue (MB)-modified T-rich hairpin DNA capture probe (MB-P) firstly self-assembled on the gold electrode surface via Au-S bond. In the presence of Hg(2+), the ferrocene (Fc)-labeled T-rich DNA probe (Fc-P) hybridized with MB-P via the Hg(2+)-mediated coordination of T-Hg(2+)-T base pairs. As a result, the hairpin MB-P was opened, the MB tags were away from the gold electrode surface and the Fc tags closed to the gold electrode surface. These conformation changes led to the decrease of the oxidation peak current of MB (IMB), accompanied with the increase of that of Fc (IFc). The logarithmic value of IFc/IMB is linear with the logarithm of Hg(2+) concentration in the range from 0.5 nM to 5000 nM, and the detection limit of 0.08 nM is much lower than 10nM (the US Environmental Protection Agency (EPA) limit of Hg(2+) in drinking water). What is more, the developed DNA-based electrochemical biosensor could be regenerated by adding cysteine and Mg(2+). This strategy provides a simple and rapid approach for the detection of Hg(2+), and has promising application in the detection of Hg(2+) in real environmental samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Interactions of Hg(ii) with oligonucleotides having thymine-thymine mispairs. Optimization of an impedimetric Hg(ii) sensor.

    Science.gov (United States)

    Kamal, Ajar; She, Zhe; Sharma, Renu; Kraatz, Heinz-Bernhard

    2017-05-21

    The present work describes the effect of the number of thymine-thymine mispairs in single strand DNA probes on Hg(ii) interactions and further to develop a highly sensitive DNA based impedimetric sensor for Hg(ii) detection. To achieve this goal, the influence of the number of T-T mispairs on the signal response prompted by DNA-Hg(ii) binding interactions was examined on three designed DNA probes: 5'-OH-(CH 2 ) 6 -S-S-(CH 2 ) 6 -AGTCCACACGTTCCTTACGC-3', 5'-OH-(CH 2 ) 6 -S-S-(CH 2 ) 6 -AGTCCACATTTTCCTTTTGC-3', 5'-OH-(CH 2 ) 6 -S-S-(CH 2 ) 6 -AGTCCATTTTTTCCTTTTTT-3' having 2T-T, 4T-T and 6T-T mispairs with identical length, respectively. This study revealed that the number of T-T mispairs plays a critical role in maximizing the signal intensity of DNA-Hg(ii) binding interactions. Based on these results, DNA comprising maximum number of T-T mispairs was further utilized for construction of the Hg(ii) sensor, which exhibited a linear correlation between the change in charge transfer resistance (ΔR CT ) and the concentration of Hg(ii) over the range of 1.0 × 10 -5 M to 1.0 × 10 -10 M with a lower detection limit of 3.2 × 10 -11 M. The selectivity was tested against 12 different metal ions including Hg(ii). The ΔR CT response from Hg(ii) is 3 times higher than the nearest competitor Pb(ii) and approximately 10 times than other ions. The potential application of such a robust and label-free DNA sensor was demonstrated by analyzing environmental samples collected from Lake Ontario.

  18. Assessment of Hg Pollution Released from a WWII Submarine Wreck (U-864) by Hg Isotopic Analysis of Sediments and Cancer pagurus Tissues.

    Science.gov (United States)

    Rua-Ibarz, Ana; Bolea-Fernandez, Eduardo; Maage, Amund; Frantzen, Sylvia; Valdersnes, Stig; Vanhaecke, Frank

    2016-10-04

    Hg pollution released from the U-864 submarine sunk during WWII and potential introduction of that Hg into the marine food chain have been studied by a combination of quantitative Hg and MeHg determination and Hg isotopic analysis via cold vapor generation multicollector inductively coupled plasma-mass spectrometry (CVG-MC-ICP-MS) in sediment and Cancer pagurus samples. The sediment pollution could be unequivocally linked with the metallic Hg present in the wreck. Crabs were collected at the wreck location and 4 nmi north and south, and their brown and claw meat were analyzed separately. For brown meat, the δ 202 Hg values of the individuals from the wreck location were shifted toward the isotopic signature of the sediment and, thus, the submarine Hg. Such differences were not found for claw meat. The isotope ratio results suggest direct ingestion of metallic Hg by C. pagurus but do not offer any proof for any other introduction of the submarine Hg into the marine food chain.

  19. Modeling early in situ wetting of a compacted bentonite buffer installed in low permeable crystalline bedrock

    Science.gov (United States)

    Dessirier, B.; Frampton, A.; Fransson, À.; Jarsjö, J.

    2016-08-01

    The repository concept for geological disposal of spent nuclear fuel in Sweden and Finland is planned to be constructed in sparsely fractured crystalline bedrock and with an engineered bentonite buffer to embed the waste canisters. An important stage in such a deep repository is the postclosure phase following the deposition and the backfilling operations when the initially unsaturated buffer material gets hydrated by the groundwater delivered by the natural bedrock. We use numerical simulations to interpret observations on buffer wetting gathered during an in situ campaign, the Bentonite Rock Interaction Experiment, in which unsaturated bentonite columns were introduced into deposition holes in the floor of a 417 m deep tunnel at the Äspö Hard Rock Laboratory in Sweden. Our objectives are to assess the performance of state-of-the-art flow models in reproducing the buffer wetting process and to investigate to which extent dependable predictions of buffer wetting times and saturation patterns can be made based on information collected prior to buffer insertion. This would be important for preventing insertion into unsuitable bedrock environments. Field data and modeling results indicate the development of a de-saturated zone in the rock and show that in most cases, the presence or absence of fractures and flow heterogeneity are more important factors for correct wetting predictions than the total inflow. For instance, for an equal open-hole inflow value, homogeneous inflow yields much more rapid buffer wetting than cases where fractures are represented explicitly thus creating heterogeneous inflow distributions.

  20. Dry deposition of gaseous oxidized mercury in Western Maryland.

    Science.gov (United States)

    Castro, Mark S; Moore, Chris; Sherwell, John; Brooks, Steve B

    2012-02-15

    The purpose of this study was to directly measure the dry deposition of gaseous oxidized mercury (GOM) in western Maryland. Annual estimates were made using passive ion-exchange surrogate surfaces and a resistance model. Surrogate surfaces were deployed for seventeen weekly sampling periods between September 2009 and October 2010. Dry deposition rates from surrogate surfaces ranged from 80 to 1512 pgm(-2)h(-1). GOM dry deposition rates were strongly correlated (r(2)=0.75) with the weekly average atmospheric GOM concentrations, which ranged from 2.3 to 34.1 pgm(-3). Dry deposition of GOM could be predicted from the ambient air concentrations of GOM using this equation: GOM dry deposition (pgm(-2)h(-1))=43.2 × GOM concentration-80.3. Dry deposition velocities computed using GOM concentrations and surrogate surface GOM dry deposition rates, ranged from 0.2 to 1.7 cms(-1). Modeled dry deposition rates were highly correlated (r(2)=0.80) with surrogate surface dry deposition rates. Using the overall weekly average surrogate surface dry deposition rate (369 ± 340 pg m(-2)h(-1)), we estimated an annual GOM dry deposition rate of 3.2 μg m(-2)year(-1). Using the resistance model, we estimated an annual GOM dry deposition rate of 3.5 μg m(-2)year(-1). Our annual GOM dry deposition rates were similar to the dry deposition (3.3 μg m(-2)h(-1)) of gaseous elemental mercury (GEM) at our site. In addition, annual GOM dry deposition was approximately 1/2 of the average annual wet deposition of total mercury (7.7 ± 1.9 μg m(-2)year(-1)) at our site. Total annual mercury deposition from dry deposition of GOM and GEM and wet deposition was approximately 14.4 μg m(-2)year(-1), which was similar to the average annual litterfall deposition (15 ± 2.1 μg m(-2)year(-1)) of mercury, which was also measured at our site. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Mercury in the mix: An in situ mesocosm approach to assess relative contributions of mercury sources to methylmercury production and bioaccumulation in the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Fleck, J.; Krabbenhoft, D. P.; Kraus, T. E. C.; Ackerman, J.; Stumpner, E. B.; DeWild, J.; Marvin-DiPasquale, M. C.; Tate, M.; Ogorek, J.

    2014-12-01

    Mercury (Hg) contamination is considered one of the greatest threats to the Sacramento-San Joaquin Delta and the San Francisco Estuary ecosystems. This threat is driven by the transformation of Hg, deposited in the Delta from erosion of upstream historic mining debris and atmospheric deposition, by native bacteria into the more toxic and biologically available form, methylmercury (MeHg), in the wetlands and sediment of the Delta. To effectively manage this threat, a quantitative understanding of the relative contribution of the different Hg sources to MeHg formation is needed. Mass balance estimates indicate as much as 99% of the Hg entering the Delta arrives via tributary inputs. Of the tributary Hg load, approximately 90% is adsorbed to suspended particles from tributary discharge and 10% is in the dissolved fraction, potentially of atmospheric origin. In comparison, the remaining 1-2% of the Hg entering the Delta arrives through direct atmospheric deposition (wet and dry). The relative importance of these sources to MeHg production within the Delta is not linearly related to the mass inputs because atmospherically-derived Hg is believed to be more reactive than sediment-bound Hg with respect to MeHg formation. We conducted an in situ mesocosm dosing experiment where different Hg sources to the Delta (direct atmospheric, dissolved riverine and suspended sediment) were "labeled" with different stable Hg isotopes and added to mesocosms within four different wetlands. Mercury isotopes added with the streambed sediments were equilibrated in sealed containers for six months; while the Hg isotopes associated with the precipitation and river water were equilibrated for 24 hours prior to use. After adding the isotopes, we sampled the water column, overlying air, bottom sediments and fish (Gambusia) at time intervals up to 30 days. Preliminary results from this experiment suggest that aqueous Hg sources (Hg introduced with precipitation and filtered river water) are 10

  2. Activity of Cu-activated carbon fiber catalyst in wet oxidation of ammonia solution

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Mao, E-mail: hungcm1031@gmail.com [Department of Industry Engineering and Management, Yung-Ta Institute of Technology and Commerce, 316 Chung-shan Road, Linlo, Pingtung 909, Taiwan (China)

    2009-07-30

    Aqueous solutions of 200-1000 mg/L of ammonia were oxidized in a trickle-bed reactor using Cu-activated carbon fiber (ACF) catalysts, which were prepared by incipient wet impregnation with aqueous solutions of copper nitrate that was deposited on ACF substrates. The results reveal that the conversion of ammonia by wet oxidation in the presence of Cu-ACF catalysts was a function of the metal loading weight ratio of the catalyst. The total conversion efficiency of ammonia was 95% during wet oxidation over the catalyst at 463 K at an oxygen partial pressure of 3.0 MPa. Moreover, the effect of the initial concentration of ammonia and the reaction temperature on the removal of ammonia from the effluent streams was also studied at a liquid space velocity of less than 3.0 h{sup -1}.

  3. 40 CFR 60.4111 - Alternate Hg designated representative.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Alternate Hg designated representative... Times for Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4111 Alternate Hg designated representative. (a) A certificate of representation under § 60.4113...

  4. Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium

    International Nuclear Information System (INIS)

    Caille, Nathalie; Vauleon, Clotilde; Leyval, Corinne; Morel, Jean-Louis

    2005-01-01

    Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope 203 Hg. Zinc concentrations (197-543 mg kg -1 DM) in leaves were higher than Cu concentration (197-543 mg kg -1 DM), Pb concentration (2.3-2.6 mg kg -1 DM) and Hg concentration (0.9-1.7 mg kg -1 DM). Leaves-to-sediment ratios decreased as follows: Zn>Cu>Hg>Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account by decision makers

  5. Metal transfer to plants grown on a dredged sediment: use of radioactive isotope 203Hg and titanium.

    Science.gov (United States)

    Caille, Nathalie; Vauleon, Clotilde; Leyval, Corinne; Morel, Jean-Louis

    2005-04-01

    Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope 203Hg. Zinc concentrations (197-543 mg kg(-1) DM) in leaves were higher than Cu concentration (197-543 mg kg(-1) DM), Pb concentration (2.3-2.6 mg kg(-1) DM) and Hg concentration (0.9-1.7 mg kg(-1) DM). Leaves-to-sediment ratios decreased as follows: Zn > Cu > Hg > Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account by decision

  6. Anadromous char as an alternate food choice to marine animals: A synthesis of Hg concentrations, population features and other influencing factors

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Marlene S., E-mail: marlene.evans@ec.gc.ca [Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5 (Canada); Muir, Derek C.G. [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6 (Canada); Keating, Jonathan [Environment Canada, Water Science and Technology Directorate, 11 Innovation Blvd., Saskatoon SK S7N 3H5 (Canada); Wang, Xiaowa [Environment Canada, Water Science and Technology Directorate, 867 Lakeshore Rd., Burlington, ON L7R 4A6 (Canada)

    2015-03-15

    This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004–2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically < 0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ{sup 15}N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ{sup 13}C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic

  7. Anadromous char as an alternate food choice to marine animals: A synthesis of Hg concentrations, population features and other influencing factors

    International Nuclear Information System (INIS)

    Evans, Marlene S.; Muir, Derek C.G.; Keating, Jonathan; Wang, Xiaowa

    2015-01-01

    This study was conducted to confirm sporadic measurements made over the late 1970s to the early 1990s which determined that mercury (Hg) concentrations were low in anadromous char across Arctic and subarctic Canada including northern Québec and Labrador. Over 2004–2013, anadromous char populations across northern Canada were investigated at 20 sites for Hg concentrations and life history characteristics. Hg concentrations were extremely low in anadromous char muscle, typically < 0.05 μg/g (wet weight) and, at each location, generally increased with fish length, age and nitrogen isotope (δ 15 N) ratio and decreased with condition factor and %lipid; correlations with carbon isotope (δ 13 C) ratio were inconsistent. Location and year were significant variables influencing Hg concentrations over the study area; longitude and latitude also were significant influencing variables. Char length, weight, age, condition factor and lipid content explained additional variance. A tendency towards higher Hg concentrations with increasing latitude may be partially related to decreasing growth of char towards the north. However, Hg concentrations in char were positively correlated with growth rates suggesting that Hg concentrations in char also were higher in the more productive study areas, including to the west where mainland riverine inputs of terrestrial carbon, nutrients, and Hg were greater. The data base for assessing time trends in char was limited by the small number of years investigated at most locations, variable fish size across years, small sample size, etc. Where temporal trends were detected, they were of increase on the long term (1970s, 1980s or early 1990s to the present) but of decrease on the short term (early 2000s to present) with Nain (Labrador) showing the converse pattern. Higher Hg concentrations were also related to lower condition factor and cooler springs. Hg concentrations in anadromous char are compared with other terrestrial, aquatic and

  8. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    Science.gov (United States)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  9. Assessment of Hg contamination and exposure to miners and schoolchildren at a small-scale gold mining and recovery operation in Thailand.

    Science.gov (United States)

    Umbangtalad, S; Parkpian, P; Visvanathan, C; Delaune, R D; Jugsujinda, A

    2007-12-01

    Gold extracted by Hg-amalgamation process, which can cause both health and environmental problems, is widespread in South East Asia including Myanmar, Laos, Cambodia, and Thailand. Small-scale gold mining operations have been carried out since the year 2000 in Phanom Pha District, Phichit Province, Thailand. Since no data is available for evaluating Hg exposure, an investigation of mercury (Hg) contamination and exposure assessment was carried out at this mine site. Environmental monitoring illustrated the total Hg in water was as high as 4 microg/l while Hg in sediment ranged between 102 to 325 microg/kg dry weight. Both Hg deposition from the air (1.28 microg/100 cm(2)/day) and concentration in surface soil (20,960 microg/kg dry weight) were elevated in the area of amalgamation. The potential of Hg exposure to miners as well as to schoolchildren was assessed. The concentrations of Hg in urine of 79 miners who were directly (group I) or indirectly (group II) involved in the gold recovery operation were 32.02 and 20.04 microg/g creatinine, respectively, which did not exceed regulatory limits (35 microg/g creatinine). Hair Hg levels in both groups (group I and group II) also were not significantly higher than the non-exposed group. In terms of risk factors, gender and nature of food preparation and consumption were the two significant variables influencing the concentration of Hg in urine of miners (P mining process. In a second Hg exposure assessment, a group of 59 schoolchildren who attended an elementary school near the gold mine site was evaluated for Hg exposure. A slightly higher Hg urine concentration was detected in group I and group II (involved and not involved in gold recovery) at average levels of 15.82 and 9.95 microg/g creatinine, respectively. The average Hg values for both groups were below the established levels indicating no risk from Hg intake. Average Hg hair level in all schoolchildren (0.93 microg/g) was not significantly higher than reference

  10. Role of wetting and drying cycles in formation and growth of soil aggregates

    Science.gov (United States)

    Ghezzehei, T. A.; Lopez, J. P.

    2009-12-01

    Soil structure directly determines important soil physical properties including porosity, hydraulic conductivity, water retention, and mechanical strength and indirectly influences most biological and chemical processes that occur in and around soil. In response to the various processes that occur within it, soil structure evolves continuously at multiple spatial and temporal scales. We hypothesize that the rhythm of the evolution is controlled by wetting and drying cycles. Here, we will present a mathematical description of the role of wetting and drying cycles in the formation and stabilization of soil aggregates with emphasis on two important roles of wetting and drying cycles: (1) transport and deposition of organic and inorganic cementing agents at the most effective locations, (2) chemical and physical alteration of cementing agents during desiccation and the resultant semi-permanent bonding (or bond hardening). Our results demonstrate that size and strength of aggregates are determined by particle size, degree of dryness, number of wetting-drying cycles, as well as concentration and solubility of dissolved and/or colloidal cementing agents. These results are in general agreement with experimental observations obtained from the literature.

  11. The Role of Ge Wetting Layer and Ge Islands in Si MSM Photodetectors

    International Nuclear Information System (INIS)

    Mahmodi, H.; Hashim, M. R.

    2010-01-01

    In this work, Ge thin films were deposited on silicon substrates by radio frequency magnetron sputtering to form Ge islands from Ge layer on Si substrate during post-growth rapid thermal annealing (RTA). The size of the islands decreases from 0.6 to 0.1 as the rapid thermal annealing time increases from 30 s to 60 s at 900 deg. C. Not only that the annealing produces Ge islands but also wetting layer. Energy Dispersive X-ray Spectroscopy (EDX) and Scanning Electron Microscopy (SEM) were employed for structural analysis of Ge islands. Metal-Semiconductor-Metal photodetectors (MSM PDs) were fabricated on Ge islands (and wetting layer)/Si. The Ge islands and wetting layer between the contacts of the fabricated devices are etched in order to see their effects on the device. The performance of the Ge islands MSM-PD was evaluated by dark and photo current-voltage (I-V) measurements at room temperature (RT). It was found that the device with island and wetting layer significantly enhance the current gain (ratio of photo current to dark current) of the device.

  12. Atmospheric deposition and soil vertical distribution of {sup 7}Be in a semiarid region of central Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Lohaiza, Flavia A.; Velasco, Hugo; Ayub, Jimena Juri; Rizzotto, Marcos; Valladares, Diego L. [Grupo de Estudios Ambientales, Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis - CONICET, Ejercito de los Andes 950, D5700HHW San Luis (Argentina)

    2014-07-01

    Beryllium-7 is a potentially powerful tracer of soil erosion but poor information on {sup 7}Be atmospheric deposition and associated soil inventories in a semiarid region of Central Argentina exists. We estimated the {sup 7}Be atmospheric wet deposition and {sup 7}Be inventory in undisturbed soils north of the City of San Luis (S 33 deg. 9'; W 66 deg. 16') and explored its seasonal variation. Rain and soil samples were collected during 2006-2008 and 2009-2012, respectively. The atmospheric wet deposition was estimated considering both the mean activity concentration in rainwater and the precipitation regime of the region. Using the assessed monthly wet deposition of {sup 7}Be, the expected {sup 7}Be areal activity in soil was estimated applying a simple model. These estimated values were confronted with the experimental measurements in soil. The {sup 7}Be rainwater activity concentration ranged from 0.7 to 3.2 Bq l{sup -1}, with a mean of 1.7 Bq l{sup -1} (sd = 0.53 Bq l{sup -1}). A good linear relationship between {sup 7}Be wet deposition and rain magnitude was obtained (R=0.92, p<0.0001). The wet deposition on soil ranged from 1.1 to 120 Bq m{sup -2} with a mean value of 32.7 Bq m-2 (sd = 29.9 Bq m-2). The annual depositional flux was estimated at 1140 ± 120 Bq m{sup -2} y{sup -1}. The {sup 7}Be mass activity (Bq kg{sup -1}) values in soil samples in the wet period (November-April) were higher than in the dry period (May-October). A typical decreasing exponential function of {sup 7}Be areal activity (Bq m{sup -2}) with soil mass depth (kg m{sup -2}) was found and the distribution parameters for each month were determined. The minimum value of areal activity was 51 Bq m{sup -2} in August, reaching the maximum of 438 Bq m{sup -2} in February. The relaxation mass depth ranged from 2.9 kg m{sup -2} in March to 1.3 kg m{sup -2} in August. The confrontation of experimental measurements in soil with the estimated values using the model showed a good agreement

  13. Deposition of acidifying compounds

    International Nuclear Information System (INIS)

    Fowler, D.; Cape, J.N.; Sutton, M.A.; Mourne, R.; Hargreaves, K.J.; Duyzer, J.H.; Gallagher, M.W.

    1992-01-01

    Inputs of acidifying compounds to terrestrial ecosystems include deposition of the gases NO 2 , NO, HNO 2 , HNO 3 , NH 3 and SO 2 and the ions NO 3- , NH 4+ , SO 4 2- and H + in precipitation, cloud droplets and particles. Recent research has identified particular ecosystems and regions in which terrestrial effects are closely linked with specific deposition processes. This review paper identifies areas in which important developments have occurred during the last five years and attempts to show which aspects of the subject are most important for policy makers. Amongst the conclusions drawn, the authors advise that current uncertainties in estimates of S and N inputs by dry deposition should be incorporated in critical load calculations, and that, in regions dominated by wet deposition, spatial resolution of total inputs should be improved to match the current scales of information on landscape sensitivity to acidic inputs. 44 refs., 9 figs

  14. Intracellular Hg(0) Oxidation in Desulfovibrio desulfuricans ND132.

    Science.gov (United States)

    Wang, Yuwei; Schaefer, Jeffra K; Mishra, Bhoopesh; Yee, Nathan

    2016-10-03

    The disposal of elemental mercury (Hg(0)) wastes in mining and manufacturing areas has caused serious soil and groundwater contamination issues. Under anoxic conditions, certain anaerobic bacteria can oxidize dissolved elemental mercury and convert the oxidized Hg to neurotoxic methylmercury. In this study, we conducted experiments with the Hg-methylating bacterium Desulfovibrio desulfuricans ND132 to elucidate the role of cellular thiols in anaerobic Hg(0) oxidation. The concentrations of cell-surface and intracellular thiols were measured, and specific fractions of D. desulfuricans ND132 were examined for Hg(0) oxidation activity and analyzed with extended X-ray absorption fine structure (EXAFS) spectroscopy. The experimental data indicate that intracellular thiol concentrations are approximately six times higher than those of the cell wall. Cells reacted with a thiol-blocking reagent were severely impaired in Hg(0) oxidation activity. Spheroplasts lacking cell walls rapidly oxidized Hg(0) to Hg(II), while cell wall fragments exhibited low reactivity toward Hg(0). EXAFS analysis of spheroplast samples revealed that multiple different forms of Hg-thiols are produced by the Hg(0) oxidation reaction and that the local coordination environment of the oxidized Hg changes with reaction time. The results of this study indicate that Hg(0) oxidation in D. desulfuricans ND132 is an intracellular process that occurs by reaction with thiol-containing molecules.

  15. Enhanced photocatalytic activity and characterization of magnetic Ag/BiOI/ZnFe2O4 composites for Hg0 removal under fluorescent light irradiation

    Science.gov (United States)

    Li, Chengwei; Zhang, Anchao; Zhang, Lixiang; Song, Jun; Su, Sheng; Sun, Zhijun; Xiang, Jun

    2018-03-01

    A series of magnetic Ag/BiOI/ZnFe2O4 hybrids synthesized via hydrothermal process, subsequent deposition-precipitation and photoreduction method were employed to remove elemental mercury (Hg0) under fluorescent light irradiation. The effects of Ag content, fluorescent light irradiation, reaction temperature, pH value, flue gas composition, anions and photocatalyst dosage on Hg0 removal were investigated in detail. The as-synthesized photocatalysts were characterized using N2 adsorption-desorption, XRD, SEM, TEM, HRTEM, XPS, VSM, DRS, ESR, PL and photocurrent response. The results showed that the ternary Ag/BiOI/ZnFe2O4 hybrids possessed enhanced visible-light-responsive photocatalytic performances for Hg0 removal. Ag/BiOI/ZnFe2O4 photocatalyst could be easily recovered from the reaction solution by an extra magnet and was stable in the process of Hg0 removal. Lower content of Ag was highly dispersed on the surface of BiOI/ZnFe2O4, while higher content of Ag would result in some aggregations and/or the blockages of micropore. In comparison to BiOI/ZnFe2O4, Ag deposited BiOI/ZnFe2O4 material showed lower recombination rate of electron-hole pairs. The superior Hg0 oxidation removal could correspond to good match of BiOI and ZnFe2O4, excellent fluidity and surface plasmon resonance effect of Ag0 nanoparticles, which led to higher separation efficiency of photogenerated electrons and holes, thereby enhancing the hybrids' photocatalytic activity.

  16. Luminescent turn-on detection of Hg(II) via the quenching of an iridium(III) complex by Hg(II)-mediated silver nanoparticles.

    Science.gov (United States)

    Liu, Jinshui; Vellaisamy, Kasipandi; Yang, Guanjun; Leung, Chung-Hang; Ma, Dik-Lung

    2017-06-15

    A novel luminescent turn-on detection method for Hg(II) was developed. The method was based on the silver nanoparticle (AgNP)-mediated quenching of Ir(III) complex 1. The addition of Hg(II) ions causes the luminescence of complex 1 to be recovered due to the oxidation of AgNPs by Hg(II) ions to form Ag(I) and Ag/Hg amalgam. The luminescence intensity of 1 increased in accord with an increased Hg(II) concentration ranging from 0 nM to 180 nM, with the detection limit of 5 nM. This approach offers an innovative method for the quantification of Hg(II).

  17. 40 CFR 60.4160 - Submission of Hg allowance transfers.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Submission of Hg allowance transfers... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Transfers § 60.4160 Submission of Hg allowance transfers. An Hg authorized account representative seeking recordation of a Hg allowance transfer...

  18. Are climate warming and enhanced atmospheric deposition of sulfur and nitrogen threatening tufa landscapes in Jiuzhaigou National Nature Reserve, Sichuan, China?

    Science.gov (United States)

    Qiao, Xue; Du, Jie; Lugli, Stefano; Ren, Jinhai; Xiao, Weiyang; Chen, Pan; Tang, Ya

    2016-08-15

    Massive deposition of calcium carbonate in ambient temperature waters (tufa) can form magnificent tufa landscapes, many of which are designated as protected areas. However, tufa landscapes in many areas are threatened by both local anthropogenic activities and climate change. This study, for the first time, posed the question whether the tufa landscape degradation (characterized by tufa degradation and increased biomass of green algae) in Jiuzhaigou National Nature Reserve of China is partially caused by regional air pollution and climate warming. The results indicate that wet deposition (including rain and snow) polluted by anthropogenic SO2, NOx, and NH3 emissions dissolves exposed tufa and may considerably reduce tufa deposition rate and even cause tufa dissolution within shallow waters. These effects of wet deposition on tufa enhanced as pH of wet deposition decreased from 8.01 to 5.06. Annual Volume Weighted Mean concentration of reactive nitrogen (including NH4(+) and NO3(-)) in wet deposition (26.1μmolL(-1)) was 1.8 times of the corresponding value of runoff (14.8μmolL(-1)) and exceeded China's national standard of total nitrogen in runoff for nature reserves (14.3μmolL(-1)), indicating a direct nitrogen fertilization effect of wet deposition on green algae. As water temperature is the major limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5cm) of runoff (depthclimate warming in this region would favor algal growth. In sum, this study suggests that climate warming and enhanced sulfur and nitrogen deposition have contributed to the current degradation of tufa landscape in Jiuzhaigou, but in order to quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa landscape evolution. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Knowledge gained from analyzing mercury speciation data monitored in North America

    Science.gov (United States)

    Zhang, L.; Cheng, I.; Gay, D. A.; Xu, X.; Wu, Z.

    2017-12-01

    This presentation summarizes knowledge gained in several recent studies through analysis and application of mercury (Hg) speciation data monitored in North America. Annual Hg dry deposition to vegetated surfaces in the rural or remote environment in North America was dominated by leaf uptake of gaseous elemental mercury (GEM), contrary to what was commonly assumed in earlier studies which frequently omitted GEM dry deposition as an important process (Zhang et al., EST, 2016). Dry deposition exceeded wet deposition by a large margin in all of the seasons except in the summer at the majority of the sites. Based on the gaseous oxidized mercury (GOM) concentrations predicted from measured Hg wet deposition using a scavenging ratio method, multi-year average GOM concentrations collected using Tekran speciation instrument were likely biased low by a factor of 2 at about half of the studied sites (Cheng and Zhang, EST, 2017). A decline in the number of source regions impacting ambient GEM and GOM was found from 2005-2014 at an eastern U.S. site through concentration-weighted trajectory (CWT) analysis (Cheng et al., JAS, 2017). Source contributions decreased by up to 20% for GEM, greater than 60% for GOM, and 20-60% for PBM in 2011-2014 than in 2006-2008, largely due to power plant Hg emission reductions since 2009. A study comparing Positive Matrix Factorization (PMF) and Principal Components Analysis (PCA) receptor methods identified similar sources impacting Kejimkujik National Park, Canada, including combustion, industrial sulfur, photochemistry and re-emissions, and oceanic sea-salt emissions. Improving the quality of the Hg data used in receptor methods by imputation did not improve the PMF results, but reducing the fraction of below detection limit data was effective (Xu et al., ACP, 2017). PCA results using reactive mercury (RM=GOM+PBM) or excluding low GOM values were similar to those using the original data. Source contributions from CWT analysis were more

  20. Hg uptake in ureteral obstructions

    International Nuclear Information System (INIS)

    Desgrez, J.P.; Bourguignon, M.; Raynaud, C.; CEA, 91 - Orsay

    1976-01-01

    In the presence of a total obstruction the results obtained with the Hg uptake test, as indeed with other functional tests, inform on the value of the kidney function at the time but have no prognostic value where repair possibilities are concerned. Some preliminary results seem to show however that very soon after the obstacle is removed, by the 10th or 15th day perhaps, quantitative functional tests may once more be used to evaluate the functional prognosis. This would mean that by waiting about two weeks after the disappearance of a total obstruction the Hg uptake test may again be used in all confidence. In order to check this deduction, which is based on slender evidence but which nevertheless has important practical implications, the measurement of the Hg uptake rate during the days following removal of the obstacle appears essential. In long-standing partial obstructions the Hg uptake rate gives an accurate assessment of the functional balance and helps considerably in the choice of therapy [fr

  1. Sedimentary mercury (Hg) in the marginal seas adjacent to Chinese high-Hg emissions: Source-to-sink, mass inventory, and accumulation history.

    Science.gov (United States)

    Kim, Jihun; Lim, Dhongil; Jung, Dohyun; Kang, Jeongwon; Jung, Hoisoo; Woo, Hanjun; Jeong, Kapsik; Xu, Zhaokai

    2018-03-01

    We comprehensively investigated sedimentary Hg in Yellow and East China Seas (YECSs), which constitute potentially important depocenters for large anthropogenic Hg emissions from mainland China. A large dataset of Al-TOC-Hg concentrations led to an in-depth understanding of sedimentary Hg in the entire YECSs, including distribution and its determinants, source-to-sink, background levels, inventory in flux and budget, and accumulation history. Especially, the net atmospheric Hg flux to the sediments was estimated to be 1.3 × 10 -5  g/m 2 /yr, which corresponded reasonably well to that calculated using a box model. About 21.2 tons of atmospheric Hg (approximately 4% of the total anthropogenic atmospheric Hg emissions from China) were buried annually in the YECS basin. This result implies that most of atmospheric Hg from China is transferred to the surface of the Pacific (including the East/Japan Sea and South China Sea) by the westerlies and, consequently, can play a critical role in open-sea aquatic ecosystems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Immobilization of aqueous Hg(II) by mackinawite (FeS)

    International Nuclear Information System (INIS)

    Liu Jianrong; Valsaraj, Kalliat T.; Devai, Istvan; DeLaune, R.D.

    2008-01-01

    As one of the major constituents of acid volatile sulfide (AVS) in anoxic sediments, mackinawite (FeS) is known for its ability to scavenge trace metals. The interaction between aqueous Hg(II) (added as HgCl 2 ) and synthetic FeS was studied via batch sorption experiments conducted under anaerobic conditions. Due to the release of H + during formation of hydrolyzed Hg(II) species which is more reactive than Hg 2+ in surface adsorption, the equilibrium pH decreased with the increase in Hg(II)/FeS molar ratio. Counteracting the loss of FeS solids at lower pH, the maximum capacity for FeS to remove aqueous Hg(II) was approximately 0.75 mol Hg(II) (mol FeS) -1 . The comparison of X-ray power diffraction (XRPD) patterns of synthetic FeS sorbent before and after sorption showed that the major products formed from the interaction between FeS and the aqueous Hg(II) were metacinnabar, cinnabar, and mercury iron sulfides. With the addition of FeS at 0.4 g L -1 to a 1 mM Hg(II) solution with an initial pH of 5.6, Fe 2+ release was approximately 0.77 mol Fe 2+ per mol Hg(II) removed, suggesting that 77% of Hg(II) was removed via precipitation reaction under these conditions, with 23% of Hg(II) removed by adsorption. Aeration does not cause significant release of Hg(II) into the water phase

  3. Particle-assisted wetting

    International Nuclear Information System (INIS)

    Xu Hui; Yan Feng; Tierno, Pietro; Marczewski, Dawid; Goedel, Werner A

    2005-01-01

    Wetting of a solid surface by a liquid is dramatically impeded if either the solid or the liquid is decorated by particles. Here it is shown that in the case of contact between two liquids the opposite effect may occur; mixtures of a hydrophobic liquid and suitable particles form wetting layers on a water surface though the liquid alone is non-wetting. In these wetting layers, the particles adsorb to, and partially penetrate through, the liquid/air and/or the liquid/water interface. This formation of wetting layers can be explained by the reduction in total interfacial energy due to the replacement of part of the fluid/fluid interfaces by the particles. It is most prominent if the contact angles at the fluid/fluid/particle contact lines are close to 90 0

  4. The Role of Surface Chemistry in Adhesion and Wetting of Gecko Toe Pads

    Science.gov (United States)

    Badge, Ila; Stark, Alyssa Y.; Paoloni, Eva L.; Niewiarowski, Peter H.; Dhinojwala, Ali

    2014-10-01

    An array of micron-sized setal hairs offers geckos a unique ability to walk on vertical surfaces using van der Waals interactions. Although many studies have focused on the role of surface morphology of the hairs, very little is known about the role of surface chemistry on wetting and adhesion. We expect that both surface chemistry and morphology are important, not only to achieve optimum dry adhesion but also for increased efficiency in self-cleaning of water and adhesion under wet conditions. Here, we used a plasma-based vapor deposition process to coat the hairy patterns on gecko toe pad sheds with polar and non-polar coatings without significantly perturbing the setal morphology. By a comparison of wetting across treatments, we show that the intrinsic surface of gecko setae has a water contact angle between 70-90°. As expected, under wet conditions, adhesion on a hydrophilic surface (glass) was lower than that on a hydrophobic surface (alkyl-silane monolayer on glass). Surprisingly under wet and dry conditions the adhesion was comparable on the hydrophobic surface, independent of the surface chemistry of the setal hairs. This work highlights the need to utilize morphology and surface chemistry in developing successful synthetic adhesives with desirable adhesion and self-cleaning properties.

  5. Injury of Hg2+ and DBS on Lemna minor%Hg2+、DBS对浮萍的伤害研究

    Institute of Scientific and Technical Information of China (English)

    马剑敏; 王琳; 杜晋立; 吴晶敏

    2001-01-01

    The injury degree of Lemna minor by the stress of Hg2+ and DBSare reported.The concentrations of chlorophyll and dissolved protein decrease with the increase of Hg2+ and DBS concentrations or as treatment time is continued,dead percentage increase with the increase of Hg2+ and DBS concentrations or as treatment time is continued.When the concentrations of HgCl2 is 6mg/L or DBS is 12mg/L,about 70% of Lemna minor can live for 10 days at least.%研究了在Hg2+、DBS胁迫下,浮萍(LemnaminorL.)植株的枯死率、叶绿素含量和可溶性蛋白质含量的变化。植株的枯死率随Hg2+、DBS浓度升高和处理时间的延长而增加;叶绿素和蛋白质含量随Hg2+和DBS浓度升高和处理时间的延长而逐渐下降。在HgCl2、DBS浓度分别为6mg/L、12mg/L时,约70%的浮萍10d内仍存活。

  6. Fourier transform nuclear magnetic resonance studies of 199Hg

    International Nuclear Information System (INIS)

    Krueger, H.; Lutz, O.; Nolle, A.; Schwenk, A.

    1975-01-01

    199 Hg Fourier Transform NMR studies of various solutions of diverse mercury salts in H 2 O and D 2 O or in the appropriate protonated and deuterated acids are reported for both Hg 2 ++ and Hg ++ . In the different solutions investigated the 199 Hg line positions depend on the concentration of the solution, on the solvents and their isotopic composition and on the temperature of the sample. A ratio of the Larmor frequency of 199 Hg and of 2 H in a Hg(NO 3 ) 2 solution in dilute DNO 3 is given. Using this ratio and the measured chemical shifts, a ratio of the Larmor frequencies of 199 Hg for infinite dilution relative to 2 H in pure D 2 O is given. From this a g 1 -factor for 199 Hg is derived and compared with the g 1 -factor of an optical pumping experiment. The resulting shielding constant is sigma (hydrated 199 Hg ++ versus 199 Hg atom) = -24.32(5) x 10 -4 . This yields an atomic reference scale for all measured NMR line shifts of mercury. (orig.) [de

  7. Seasonal Patterns of Dry Deposition at a High-Elevation Site in the Colorado Rocky Mountains

    Science.gov (United States)

    Oldani, Kaley M.; Mladenov, Natalie; Williams, Mark W.; Campbell, Cari M.; Lipson, David A.

    2017-10-01

    In the Colorado Rocky Mountains, high-elevation barren soils are deficient in carbon (C) and phosphorus (P) and enriched in nitrogen (N). The seasonal variability of dry deposition and its contributions to alpine elemental budgets is critical to understanding how dry deposition influences biogeochemical cycling in high-elevation environments. In this 2 year study, we evaluated dry and wet deposition inputs to the Niwot Ridge Long Term Ecological Research (NWT LTER) site in the Colorado Rocky Mountains. The total organic C flux in wet + dry (including soluble and particulate C) deposition was >30 kg C ha-1 yr-1 and represents a substantial input for this C-limited environment. Our side-by-side comparison of dry deposition collectors with and without marble insert indicated that the insert improved retention of dry deposition by 28%. Annual average dry deposition fluxes of water-soluble organic carbon (4.25 kg C ha-1 yr-1) and other water-soluble constituents, including ammonium (0.16 kg NH4+ha-1 yr-1), nitrate (1.99 kg NO3- ha-1 yr-1), phosphate (0.08 kg PO43- ha-1 yr-1), and sulfate (1.20 kg SO42- ha-1 yr-1), were comparable to those in wet deposition, with highest values measured in the summer. Backward trajectory analyses implicate air masses passing through the arid west and Four Corners, USA, as dominant source areas for dry deposition, especially in spring months. Synchronous temporal patterns of deposition observed at the NWT LTER site and a distant Rocky Mountain National Park Clean Air Status and Trends Network site indicate that seasonal dry deposition patterns are regional phenomena with important implications for the larger Rocky Mountain region.

  8. Complex three-dimensional structures in Si{1 0 0} using wet bulk micromachining

    International Nuclear Information System (INIS)

    Pal, Prem; Sato, Kazuo

    2009-01-01

    Complex three-dimensional structures for microelectromechanical systems (MEMS) are fabricated in Si{1 0 0} wafers using wet bulk micromachining. The structures are divided into two categories: fixed and freestanding. The fabrication processes for both types utilize single wafers with sequentially deposited nitride and oxide layers, local oxidation of silicon (LOCOS) and two steps of wet anisotropic etching. The fixed structures contain perfectly sharp edges. Thermally deposited oxide is used as the material for the freestanding structures. Wet etching is performed in tetramethyl ammonium hydroxide (TMAH) with and without Triton X-100 (C 14 H 22 O(C 2 H 4 O) n , n = 9–10). For the fixed structures, both etching steps are performed either in 25 wt% TMAH + Triton or pure TMAH or both, depending upon the type of the structures. In the case of freestanding systems, TMAH + Triton is utilized first, followed by pure TMAH. The fabrication methods enable densely arrayed structures, allowing the manufacture of corrugated diaphragms, compact size liquid (or gas) flow delivery systems, newly shaped mold for soft MEMS structures (e.g. PDMS (polydimethylsiloxane)) and other applications. The present research is an approach to fabricate advanced MEMS structures, extending the range of 3D structures fabricated by silicon anisotropic etching

  9. Design and synthesis of BODIPY-clickate based Hg(2+) sensors: the effect of triazole binding mode with Hg(2+) on signal transduction.

    Science.gov (United States)

    Vedamalai, Mani; Kedaria, Dhaval; Vasita, Rajesh; Mori, Shigeki; Gupta, Iti

    2016-02-14

    BODIPY-clickates, F1 and F2, for the detection of Hg(2+) have been designed, synthesized and characterized. Both F1 and F2 showed hyperchromic shifts in the UV-visible spectra in response to increasing Hg(2+) concentrations. Hg(2+) ion binding caused perturbation of the emission quenching process and chelation induced enhanced bathochromic emission of F1 and F2 to 620 nm and 660 nm, respectively. Job's plot clearly indicated that the binding ratio of F1 and F2 with Hg(2+) was 1 : 1. The NMR titration of BODIPY-clickates with Hg(2+) confirmed that aromatic amines and triazoles were involved in the binding event. Furthermore, HRMS data of F1-Hg(2+) and F2-Hg(2+) supported the formation of mercury complexes of BODIPY-clickates. The dissociation constant for the interaction between fluorescent probes F1 and F2 with Hg(2+) was found to be 24.4 ± 5.1 μM and 22.0 ± 3.9 μM, respectively. The Hg(2+) ion induced fluorescence enhancement was almost stable in a pH range of 5 to 8. Having less toxicity to live cells, both the probes were successfully used to map the Hg(2+) ions in live A549 cells.

  10. Metal transfer to plants grown on a dredged sediment: use of radioactive isotope {sup 203}Hg and titanium

    Energy Technology Data Exchange (ETDEWEB)

    Caille, Nathalie [ENSAIA-INRA/INPL, 2 avenue de la Foret de Haye, F-54505 Vandoeuvre-les-Nancy (France); CNRSSP, 930 boulevard Lahure, F-59505 Douai (France); Laboratoire des Interactions Microorganismes-Mineraux-Matiere organique dans les sols, CNRS, 17 rue Notre-Dame des Pauvres, F-54505 Vandoeuvre-les-Nancy (France); Vauleon, Clotilde [CNRSSP, 930 boulevard Lahure, F-59505 Douai (France); Leyval, Corinne [Laboratoire des Interactions Microorganismes-Mineraux-Matiere organique dans les sols, CNRS, 17 rue Notre-Dame des Pauvres, F-54505 Vandoeuvre-les-Nancy (France); Morel, Jean-Louis [ENSAIA-INRA/INPL, 2 avenue de la Foret de Haye, F-54505 Vandoeuvre-les-Nancy (France)]. E-mail: jean-louis.Morel@ensaia.inpl-nancy.fr

    2005-04-01

    Improperly disposed of dredged sediments contaminated with metals may induce long-term leaching and an increase of metal concentrations in ground waters and vegetal cover plants. The objective of the study was to quantify the sediment-to-plant transfer of Cu, Pb, Hg and Zn with a particular focus on the pathway of Hg and to determine whether the establishment of vegetal cover modifies the metal availability. A pot experiment with rape (Brassica napus), cabbage (Brassica oleraccea) and red fescue (Festuca rubra) was set up using a sediment first spiked with the radioisotope {sup 203}Hg. Zinc concentrations (197-543 mg kg{sup -1} DM) in leaves were higher than Cu concentration (197-543 mg kg{sup -1} DM), Pb concentration (2.3-2.6 mg kg{sup -1} DM) and Hg concentration (0.9-1.7 mg kg{sup -1} DM). Leaves-to-sediment ratios decreased as follows: Zn>Cu>Hg>Pb. According to Ti measurements, metal contamination by dry deposition was less than 1%. Mercury concentration in plant leaves was higher than European and French thresholds. Foliar absorption of volatile Hg was a major pathway for Hg contamination with a root absorption of Hg higher in rape than in cabbage and red fescue. Growth of each species increased Cu solubility. Zinc solubility was increased only in the presence of rape. The highest increase of Cu solubility was observed for red fescue whereas this species largely decreased Zn solubility. Dissolved organic carbon (DOC) measurements suggested that Cu solubilisation could result from organic matter or release of natural plant exudates. Dissolved inorganic carbon (DIC) measures suggested that the high Zn solubility in the presence of rape could originate from a generation of acidity in rape rhizosphere and a subsequent dissolution of calcium carbonates. Consequently, emission of volatile Hg from contaminated dredged sediments and also the potential increase of metal solubility by a vegetal cover of grass when used in phytostabilisation must be taken into account

  11. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains

    Science.gov (United States)

    Mladenov, N.; Williams, M. W.; Schmidt, S. K.; Cawley, K.

    2012-08-01

    Many alpine areas are experiencing deglaciation, biogeochemical changes driven by temperature rise, and changes in atmospheric deposition. There is mounting evidence that the water quality of alpine streams may be related to these changes, including rising atmospheric deposition of carbon (C) and nutrients. Given that barren alpine soils can be severely C limited, atmospheric deposition sources may be an important source of C and nutrients for these environments. We evaluated the magnitude of atmospheric deposition of C and nutrients to an alpine site, the Green Lake 4 catchment in the Colorado Rocky Mountains. Using a long-term dataset (2002-2010) of weekly atmospheric wet deposition and snowpack chemistry, we found that volume weighted mean dissolved organic carbon (DOC) concentrations were 1.12 ± 0.19 mg l-1, and weekly concentrations reached peaks as high at 6-10 mg l-1 every summer. Total dissolved nitrogen concentration also peaked in the summer, whereas total dissolved phosphorus and calcium concentrations were highest in the spring. To investigate potential sources of C in atmospheric deposition, we evaluated the chemical quality of dissolved organic matter (DOM) and relationships between DOM and other solutes in wet deposition. Relationships between DOC concentration, fluorescence, and nitrate and sulfate concentrations suggest that pollutants from nearby urban and agricultural sources and organic aerosols derived from sub-alpine vegetation may influence high summer DOC wet deposition concentrations. Interestingly, high DOC concentrations were also recorded during "dust-in-snow" events in the spring, which may reflect an association of DOM with dust. Detailed chemical and spectroscopic analyses conducted for samples collected in 2010 revealed that the DOM in many late spring and summer samples was less aromatic and polydisperse and of lower molecular weight than that of winter and fall samples. Our C budget estimates for the Green Lake 4 catchment

  12. Enhanced Control of Mercury and other HAPs by Innovative Modifications to Wet FGD Processes

    International Nuclear Information System (INIS)

    Hargrove, O.W.; Carey, T.R.; Richardson, C.F.; Skarupa, R.C.; Meserole, F.B.; Rhudy, R.G.; Brown, Thomas D.

    1997-01-01

    The overall objective of this project was to learn more about controlling emissions of hazardous air pollutants (HAPs) from coal-fired power plants that are equipped with wet flue gas desulfurization (FGD) systems. The project was included by FETC as a Phase I project in its Mega-PRDA program. Phase I of this project focused on three research areas. These areas in order of priority were: (1) Catalytic oxidation of vapor-phase elemental mercury; (2) Enhanced particulate-phase HAPs removal by electrostatic charging of liquid droplets; and (3) Enhanced mercury removal by addition of additives to FGD process liquor. Mercury can exist in two forms in utility flue gas--as elemental mercury and as oxidized mercury (predominant form believed to be HgCl 2 ). Previous test results have shown that wet scrubbers effectively remove the oxidized mercury from the gas but are ineffective in removing elemental mercury. Recent improvements in mercury speciation techniques confirm this finding. Catalytic oxidation of vapor-phase elemental mercury is of interest in cases where a wet scrubber exists or is planned for SO 2 control. If a loW--cost process could be developed to oxidize all of the elemental mercury in the flue gas, then the maximum achievable mercury removal across the existing or planned wet scrubber would increase. Other approaches for improving control of HAPs included a method for improving particulate removal across the FGD process and the use of additives to increase mercury solubility. This paper discusses results related only to catalytic oxidation of elemental mercury

  13. A comparative study of transfer factors of water, iodine and strontium on rye-grass and clover. Development of a model of evaluation of the limits of foliar contamination by wet deposit

    International Nuclear Information System (INIS)

    Angeletti, Livio; Levi, Emilio.

    1977-07-01

    Transfer factors of water, iodine ( 131 I) and strontium ( 85 Sr) on above-ground parts of rye-grass and clover were determined as a function of aspersion intensities. An analysis of the results showed the effect of aspersion intensities, nature of the chemical element and plant species on the values of transfer factors of iodine and strontium. It also made it possible to propose a simple method of evaluation of contamination limits of the aerial parts of plants by wet deposit, based on transfer values of water on plants only [fr

  14. Carbon-13 isotope effects on 199Hg nuclear shielding

    International Nuclear Information System (INIS)

    Sebald, Angelika; Wrackmeyer, Bernd

    1985-01-01

    Secondary 13 C/ 12 C isotope effects on 199 Hg nuclear shielding (Δdeltasup(i)( 199 Hg)) are of interest because of the unusual shift to high frequency which has been observed for a few alkyl mercury compounds. Continuing interest in the NMR parameters of mercury compounds prompted a search for the values Δdeltasup(i)( 199 Hg) in a greater variety of organomercurials. This should help to find out about the range of Δdeltasup(i)( 199 Hg) and to obtain a firmer basis for the discussion of the high-frequency shifts. The data and experimental conditions are given for chemical shifts delta 199 Hg, coupling constants sup(n)J( 199 Hg 13 C) and 13 C/ 12 C isotope shifts Δdeltasup(i)( 199 Hg) of fourteen 199 Hg organomercury compounds. The results are discussed. (author)

  15. Litterfall mercury deposition in Atlantic forest ecosystem from SE – Brazil

    International Nuclear Information System (INIS)

    Teixeira, Daniel C.; Montezuma, Rita C.; Oliveira, Rogério R.; Silva-Filho, Emmanoel V.

    2012-01-01

    Litterfall is believed to be the major flux of Hg to soils in forested landscapes, yet much less is known about this input on tropical environment. The Hg litterfall flux was measured during one year in Atlantic Forest fragment, located within Rio de Janeiro urban perimeter, in the Southeastern region of Brazil. The results indicated a mean annual Hg concentration of 238 ± 52 ng g −1 and a total annual Hg deposition of 184 ± 8.2 μg m −2 y −1 . The negative correlation observed between rain precipitation and Hg concentrations is probably related to the higher photosynthetic activity observed during summer. The total Hg concentration in leaves from the most abundant species varied from 60 to 215 ng g −1 . Hg concentration showed a positive correlation with stomatal and trichomes densities. These characteristics support the hypothesis that Tropical Forest is an efficient mercury sink and litter plays a key role in Hg dynamics. - Highlights: ► The litter production from an Atlantic Forest was measured by one year. ► Concentration and flux of mercury was measured from these litter samples. ► The Hg concentrations from 5 trees were taken. ► Correlations between the data found and meteorological and anatomical plant parameters were confronted. ► The high Hg values found and their distribution points to a great sequester potential from this biome. - Hg high values in litter are a pattern found at Tropical Forest, it seems to be correlated with physio-anatomical plant characteristics from this biome.

  16. ABB wet flue gas desulfurization

    Energy Technology Data Exchange (ETDEWEB)

    Niijhawan, P.

    1994-12-31

    The wet limestone process for flue gas desulfurization (FGD) is outlined. The following topics are discussed: wet flue gas desulfurization, wet FGD characteristics, wet scrubbers, ABB wet FGD experience, wet FGD forced oxidation, advanced limestone FGD systems, key design elements, open spray tower design, spray tower vs. packed tower, important performance parameters, SO{sub 2} removal efficiency, influence by L/G, limestone utilization, wet FGD commercial database, particulate removal efficiencies, materials of construction, nozzle layout, spray nozzles, recycle pumps, mist elimination, horizontal flow demister, mist eliminator washing, reagent preparation system, spray tower FGDS power consumption, flue gas reheat options, byproduct conditioning system, and wet limestone system.

  17. Measurements of dry-deposition parameters for the California acid-deposition monitoring program. Final report

    International Nuclear Information System (INIS)

    Watson, J.G.; Chow, J.C.; Egami, R.T.; Bowen, J.L.; Frazier, C.A.

    1991-06-01

    The State of California monitors the concentrations of acidic gases and particles at 10 sites throughout the state. Seven sites represent urban areas (South Coast Air Basin - three sites, San Francisco Bay Area, Bakersfield, Santa Barbara, and Sacramento) and three represent forested areas (Sequoia National Park, Yosemite National Park, and Gasquet). Several sites are collocated with monitoring instruments for other air quality and forest response networks. Continuous monitors for the dry deposition network collect hourly average values for ozone, wind speed, wind direction, atmospheric stability, temperature, dew point, time of wetness, and solar radiation. A newly-designed gas/particle sampler collects daytime (6 a.m. to 6 p.m.) and nighttime (6 p.m. to 6 a.m.) samples every sixth day for sulfur dioxide, ammonia, nitrogen dioxide, and nitric acid. Particles are collected on the same day/night schedule in PM(10) and PM(2.5) size ranges, and are analyzed for mass, sulfate, nitrate, chloride, ammonium, sodium, magnesium, potassium, and calcium ions. The sampling schedule follows the regulatory schedule adopted by the EPA and ARB for suspended particulate matter. Wet deposition data are collected at or nearby the dry deposition stations. The first year of the monitoring program included installation of the network, training of technicians, acquisition and validation of data, and transfer of the sampling and analysis technology to Air Resources Board operating divisions. Data have been validated and stored for the period May, 1988 through September, 1989

  18. Long-term trends in total inorganic nitrogen and sulfur deposition in the US from 1990 to 2010

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2018-06-01

    Full Text Available Excess deposition (including both wet and dry deposition of nitrogen and sulfur is detrimental to ecosystems. Recent studies have investigated the spatial patterns and temporal trends of nitrogen and sulfur wet deposition, but few studies have focused on dry deposition due to the scarcity of dry deposition measurements. Here, we use long-term model simulations from the coupled Weather Research and Forecasting and the Community Multiscale Air Quality (WRF-CMAQ model covering the period from 1990 to 2010 to study changes in spatial distribution as well as temporal trends in total (TDEP, wet (WDEP, and dry deposition (DDEP of total inorganic nitrogen (TIN and sulfur (TS in the United States (US. We first evaluate the model's performance in simulating WDEP over the US by comparing the model results with observational data from the US National Atmospheric Deposition Program. The coupled model generally underestimates the WDEP of both TIN (including both the oxidized nitrogen deposition, TNO3, and the reduced nitrogen deposition, NHx and TS, with better performance in the eastern US than the western US. The underestimation of the wet deposition by the model is mainly caused by the coarse model grid resolution, missing lightning NOx emissions, and the poor temporal and spatial representation of NH3 emissions. TDEP of both TIN and TS shows significant decreases over the US, especially in the east, due to the large emission reductions that occurred in that region. The decreasing trends of TIN TDEP are caused by decreases in TNO3, and the increasing trends of TIN deposition over the Great Plains and Tropical Wet Forests (Southern Florida Coastal Plain regions are caused by increases in NH3 emissions, although it should be noted that these increasing trends are not significant. TIN WDEP shows decreasing trends throughout the US, except for the Marine West Coast Forest region. TIN DDEP shows significant decreasing trends in the Eastern Temperate Forests

  19. Influence of defect structure on magnetic and electronic properties of Hg1-x Crx Se and Hg1-x Cox Se

    International Nuclear Information System (INIS)

    Prozorovskij, V.D.; Reshidova, I.Yu.; Puzynya, A.I.; Paranchich, Yu.S.

    1996-01-01

    The results of experimental investigations of the Shubnikov-de Haas oscillations at superhigh frequencies, electron spin resonance, magnetic susceptibility, relaxation dielectric losses, and galvanomagnetic measurements in the Hg 1-x Cr x Se and Hg 1-x Co x Se single crystal samples are presented. Analysis of the results Hg 1-x Cr x Se and Hg 1-x Co x Se depend on the defect structure of the substance and the type of defects making this structure. The manifestation of critical phenomena in Hg 1-x Cr x Se also depends on the defect structure

  20. Letter to the editor: Critical assessments of the current state of scientific knowledge, terminology, and research needs concerning the ecological effects of elevated atmospheric nitrogen deposition in China

    Science.gov (United States)

    Pan, Yuepeng; Liu, Yongwen; Wentworth, Gregory R.; Zhang, Lin; Zhao, Yuanhong; Li, Yi; Liu, Xuejun; Du, Enzai; Fang, Yunting; Xiao, Hongwei; Ma, Hongyuan; Wang, Yuesi

    2017-03-01

    In a publication in Atmospheric Environment (http://dx.doi.org/10.1016/j.atmosenv.2015.10.081), Gu et al. (2015) estimated that "the total nitrogen (N) deposition in 2010 was 2.32 g N m-2 yr-1" in China. This value is comparable with previous estimations based on a synthesized dataset of wet/bulk inorganic N deposition observations, which underestimates the total N deposition since their algorithm (equations (2) and (3) in their paper) does not account for dry deposition of NH3, HNO3, NOx and wet/dry deposition of HONO and organic nitrogen (e.g. amines, amides, PAN). Indeed, Gu et al. (2015) mixed the terminology of wet/bulk deposition and total deposition. Another flawed assumption by Gu et al. (2015) is that all inorganic N in precipitation estimated by their algorithm originates from fertilizer and coal combustion. This is incorrect and almost certainly causes biases in the spatial and temporal distribution of estimated wet/bulk inorganic N deposition (Fig. 5 in their paper), further considering the fact that they neglected important N sources like livestock and they did not consider the nonlinearity between various sources and deposition. Besides the input data on N deposition, the model validation (Sect. 2.3.2) described in their paper also requires clarification because the detailed validation information about the time series of observational dataset versus modeling results was not given. As a result of these combined uncertainties in their estimation of N deposition and the lack of detail for model-measurement comparison, their estimates of the impacts of N deposition on carbon storage in Chinese forests may need further improvement. We suggest the clarification of the terminology regarding N deposition, especially for wet deposition, bulk deposition, gaseous and particulate dry deposition or total deposition since the accurate distinction between these terms is crucial to investigating and estimating the effects of N deposition on ecosystems.

  1. Wet-chemical passivation of atomically flat and structured silicon substrates for solar cell application

    Science.gov (United States)

    Angermann, H.; Rappich, J.; Korte, L.; Sieber, I.; Conrad, E.; Schmidt, M.; Hübener, K.; Polte, J.; Hauschild, J.

    2008-04-01

    Special sequences of wet-chemical oxidation and etching steps were optimised with respect to the etching behaviour of differently oriented silicon to prepare very smooth silicon interfaces with excellent electronic properties on mono- and poly-crystalline substrates. Surface photovoltage (SPV) and photoluminescence (PL) measurements, atomic force microscopy (AFM) and scanning electron microscopy (SEM) investigations were utilised to develop wet-chemical smoothing procedures for atomically flat and structured surfaces, respectively. Hydrogen-termination as well as passivation by wet-chemical oxides were used to inhibit surface contamination and native oxidation during the technological processing. Compared to conventional pre-treatments, significantly lower micro-roughness and densities of surface states were achieved on mono-crystalline Si(100), on evenly distributed atomic steps, such as on vicinal Si(111), on silicon wafers with randomly distributed upside pyramids, and on poly-crystalline EFG ( Edge-defined Film-fed- Growth) silicon substrates. The recombination loss at a-Si:H/c-Si interfaces prepared on c-Si substrates with randomly distributed upside pyramids was markedly reduced by an optimised wet-chemical smoothing procedure, as determined by PL measurements. For amorphous-crystalline hetero-junction solar cells (ZnO/a-Si:H(n)/c-Si(p)/Al) with textured c-Si substrates the smoothening procedure results in a significant increase of short circuit current Isc, fill factor and efficiency η. The scatter in the cell parameters for measurements on different cells is much narrower, as compared to conventional pre-treatments, indicating more well-defined and reproducible surface conditions prior to a-Si:H emitter deposition and/or a higher stability of the c-Si surface against variations in the a-Si:H deposition conditions.

  2. Dissolved organic carbon in the precipitation of Seoul, Korea: Implications for global wet depositional flux of fossil-fuel derived organic carbon

    Science.gov (United States)

    Yan, Ge; Kim, Guebuem

    2012-11-01

    Precipitation was sampled in Seoul over a one-year period from 2009 to 2010 to investigate the sources and fluxes of atmospheric dissolved organic carbon (DOC). The concentrations of DOC varied from 15 μM to 780 μM, with a volume-weighted average of 94 μM. On the basis of correlation analysis using the commonly acknowledged tracers, such as vanadium, the combustion of fossil-fuels was recognized to be the dominant source. With the aid of air mass backward trajectory analyses, we concluded that the primary fraction of DOC in our precipitation samples originated locally in Korea, albeit the frequent long-range transport from eastern and northeastern China might contribute substantially. In light of the relatively invariant organic carbon to sulfur mass ratios in precipitation over Seoul and other urban regions around the world, the global magnitude of wet depositional DOC originating from fossil-fuels was calculated to be 36 ± 10 Tg C yr-1. Our study further underscores the potentially significant environmental impacts that might be brought about by this anthropogenically derived component of organic carbon in the atmosphere.

  3. Impact of Front Range sources on reactive nitrogen concentrations and deposition in Rocky Mountain National Park

    Directory of Open Access Journals (Sweden)

    Katherine B. Benedict

    2018-05-01

    Full Text Available Human influenced atmospheric reactive nitrogen (RN is impacting ecosystems in Rocky Mountain National Park (ROMO. Due to ROMO’s protected status as a Class 1 area, these changes are concerning, and improving our understanding of the contributions of different types of RN and their sources is important for reducing impacts in ROMO. In July–August 2014 the most comprehensive measurements (to date of RN were made in ROMO during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ. Measurements included peroxyacetyl nitrate (PAN, C1–C5 alkyl nitrates, and high-time resolution NOx, NOy, and ammonia. A limited set of measurements was extended through October. Co-located measurements of a suite of volatile organic compounds provide information on source types impacting ROMO. Specifically, we use ethane as a tracer of oil and gas operations and tetrachloroethylene (C2Cl4 as an urban tracer to investigate their relationship with RN species and transport patterns. Results of this analysis suggest elevated RN concentrations are associated with emissions from oil and gas operations, which are frequently co-located with agricultural production and livestock feeding areas in the region, and from urban areas. There also are periods where RN at ROMO is impacted by long-range transport. We present an atmospheric RN budget and a nitrogen deposition budget with dry and wet components. Total deposition for the period (7/1–9/30 was estimated at 1.58 kg N/ha, with 87% from wet deposition during this period of above average precipitation. Ammonium wet deposition was the dominant contributor to total nitrogen deposition followed by nitrate wet deposition and total dry deposition. Ammonia was estimated to be the largest contributor to dry deposition followed by nitric acid and PAN (other species included alkyl nitrates, ammonium and nitrate. All three species are challenging to measure routinely, especially at high time resolution.

  4. Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions

    Science.gov (United States)

    Yanxu Zhang,; Daniel J. Jacob,; Hannah M. Horowitz,; Long Chen,; Helen M. Amos,; Krabbenhoft, David P.; Franz Slemr,; Vincent L. St. Louis,; Elsie M. Sunderland,

    2015-01-01

    Observations of elemental mercury (Hg0) at sites in North America and Europe show large decreases (∼1–2% y−1) from 1990 to present. Observations in background northern hemisphere air, including Mauna Loa Observatory (Hawaii) and CARIBIC (Civil Aircraft for the Regular Investigation of the atmosphere Based on an Instrument Container) aircraft flights, show weaker decreases (Asia. Implementation of our inventory in a global 3D atmospheric Hg simulation [GEOS-Chem (Goddard Earth Observing System-Chemistry)] coupled to land and ocean reservoirs reproduces the observed large-scale trends in atmospheric Hg0 concentrations and in HgII wet deposition. The large trends observed in North America and Europe reflect the phase-out of Hg from commercial products as well as the cobenefit from SO2 and NOx emission controls on coal-fired utilities.

  5. 40 CFR 60.4114 - Objections concerning Hg designated representative.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Objections concerning Hg designated... Times for Coal-Fired Electric Steam Generating Units Hg Designated Representative for Hg Budget Sources § 60.4114 Objections concerning Hg designated representative. (a) Once a complete certificate of...

  6. Historical deposition and fluxes of mercury in Narraguinnep Reservoir, southwestern Colorado, USA

    International Nuclear Information System (INIS)

    Gray, John E.; Fey, David L.; Holmes, Charles W.; Lasorsa, Brenda K.

    2005-01-01

    Narraguinnep Reservoir has been identified as containing fish with elevated Hg concentrations and has been posted with an advisory recommending against consumption of fish. There are presently no point sources of significant Hg contamination to this reservoir or its supply waters. To evaluate potential historical Hg sources and deposition of Hg to Narraguinnep Reservoir, the authors measured Hg concentrations in sediment cores collected from this reservoir. The cores were dated by the 137 Cs method and these dates were further refined by relating water supply basin hydrological records with core sedimentology. Rates of historical Hg flux were calculated (ng/cm 2 /a) based on the Hg concentrations in the cores, sediment bulk densities, and sedimentation rates. The flux of Hg found in Narraguinnep Reservoir increased by approximately a factor of 2 after about 1970. The 3 most likely sources of Hg to Narraguinnep Reservoir are surrounding bedrocks, upstream inactive Au-Ag mines, and several coal-fired electric power plants in the Four Corners region. Patterns of Hg flux do not support dominant Hg derivation from surrounding bedrocks or upstream mining sources. There are 14 coal-fired power plants within 320 km of Narraguinnep Reservoir that produce over 80 x 10 6 MWH of power and about 1640 kg-Hg/a are released through stack emissions, contributing significant Hg to the surrounding environment. Two of the largest power plants, located within 80 km of the reservoir, emit about 950 kg-Hg/a. Spatial and temporal patterns of Hg fluxes for sediment cores collected from Narraguinnep Reservoir suggest that the most likely source of Hg to this reservoir is from atmospheric emissions from the coal-fired electric power plants, the largest of which began operation in this region in the late-1960s and early 1970s

  7. Wet periods in northeastern Brazil over the past 210 kyr linked to distant climate anomalies.

    Science.gov (United States)

    Wang, Xianfeng; Auler, Augusto S; Edwards, R Lawrence; Cheng, Hai; Cristalli, Patricia S; Smart, Peter L; Richards, David A; Shen, Chuan-Chou

    2004-12-09

    The tropics are the main source of the atmosphere's sensible and latent heat, and water vapour, and are therefore important for reconstructions of past climate. But long, accurately dated records of southern tropical palaeoclimate, which would allow the establishment of climatic connections to distant regions, have not been available. Here we present a 210,000-year (210-kyr) record of wet periods in tropical northeastern Brazil--a region that is currently semi-arid. The record is obtained from speleothems and travertine deposits that are accurately dated using the U/Th method. We find wet periods that are synchronous with periods of weak East Asian summer monsoons, cold periods in Greenland, Heinrich events in the North Atlantic and periods of decreased river runoff to the Cariaco basin. We infer that the wet periods may be explained with a southward displacement of the Intertropical Convergence Zone. This widespread synchroneity of climate anomalies suggests a relatively rapid global reorganization of the ocean-atmosphere system. We conclude that the wet periods probably affected rainforest distribution, as plant fossils show that forest expansion occurred during these intermittent wet intervals, and opened a forest corridor between the Amazonian and Atlantic rainforests.

  8. Hydrogen plasma treatment of silicon dioxide for improved silane deposition.

    Science.gov (United States)

    Gupta, Vipul; Madaan, Nitesh; Jensen, David S; Kunzler, Shawn C; Linford, Matthew R

    2013-03-19

    We describe a method for plasma cleaning silicon surfaces in a commercial tool that removes adventitious organic contamination and enhances silane deposition. As shown by wetting, ellipsometry, and XPS, hydrogen, oxygen, and argon plasmas effectively clean Si/SiO2 surfaces. However, only hydrogen plasmas appear to enhance subsequent low-pressure chemical vapor deposition of silanes. Chemical differences between the surfaces were confirmed via (i) deposition of two different silanes: octyldimethylmethoxysilane and butyldimethylmethoxysilane, as evidenced by spectroscopic ellipsometry and wetting, and (ii) a principal components analysis (PCA) of TOF-SIMS data taken from the different plasma-treated surfaces. AFM shows no increase in surface roughness after H2 or O2 plasma treatment of Si/SiO2. The effects of surface treatment with H2/O2 plasmas in different gas ratios, which should allow greater control of surface chemistry, and the duration of the H2 plasma (complete surface treatment appeared to take place quickly) are also presented. We believe that this work is significant because of the importance of silanes as surface functionalization reagents, and in particular because of the increasing importance of gas phase silane deposition.

  9. Uptake and clearance of mercury Hg (NO3)2-203Hg by the guppy (Lebistes reticulatus)

    International Nuclear Information System (INIS)

    Ferreira, J.R.; Rodrigues, N.S.; Nascimento Filho, V.F. do

    1982-01-01

    Fishes weighing between 20.6 and 536.9 mg were exposed to 25, 50 and 100 μg Hg.l -1 as Hg (NO 3 ) 2 labelled with 203 Hg, for 17 days in plastic aquaria containing 4 litre of soft aerated dechlorinated water. Whole body mercury contents were determined periodically by gamma counting, using a single channel spectrometer and a 3 in X 3 in NaI(Tl) well crystal. The highest bioconcentration of mercury was after 100 h of exposure for all the treatments. A further study on the clearance of mercury nitrate was carried out by transfering fishes to mercury-free water, after a period of 100 h of exposure in solutions of 35 and μg Hg.l -1 . The fishes were not sacrificed after the dose measurment, being returned to the aquaria for further sampling. The rate of clearance was similar for both concentrations. After 120 h exposure to uncontamined water, the fishes excreted the mercury previously absorbed. The correlation coefficient of the experimentals equations were 0.91 and 0.94, respectively, for the treatments 35 and 70 μg Hg.l -1 . Both experiments, uptake and clearance were made at same values of the water physico-chemical parameters (hardness = 36 mg CaCO 3 ; pH=7.2; O.D.=7.0 mg/l; temperature=23 +- 1 0 C). (Author) [pt

  10. Wet steam wetness measurement in a 10 MW steam turbine

    Directory of Open Access Journals (Sweden)

    Kolovratník Michal

    2014-03-01

    Full Text Available The aim of this paper is to introduce a new design of the extinction probes developed for wet steam wetness measurement in steam turbines. This new generation of small sized extinction probes was developed at CTU in Prague. A data processing technique is presented together with yielded examples of the wetness distribution along the last blade of a 10MW steam turbine. The experimental measurement was done in cooperation with Doosan Škoda Power s.r.o.

  11. The new barium zinc mercurides Ba3ZnHg10 and BaZn0.6Hg3.4 – Synthesis, crystal and electronic structure

    International Nuclear Information System (INIS)

    Schwarz, Michael; Wendorff, Marco; Röhr, Caroline

    2012-01-01

    The title compounds Ba 3 ZnHg 10 and BaZn 0.6 Hg 3.4 were synthesized from stoichiometric ratios of the elements in Ta crucibles. Their crystal structures, which both represent new structure types, have been determined using single crystal X-ray data. The structure of Ba 3 ZnHg 10 (orthorhombic, oP28, space group Pmmn, a=701.2(3), b=1706.9(8), c=627.3(3)pm, Z=2, R1=0.0657) contains folded 4 4 Hg nets, where the meshes form the bases of flat rectangular pyramids resembling the structure of BaAl 4 . The flat pyramids are connected via Hg–Zn/Hg bonds, leaving large channels at the folds, in which Ba(1) and Hg(2) atoms alternate. Whereas the remaining Hg/Zn atoms form a covalent 3D network of three- to five-bonded atoms with short M–M distances (273–301 pm; CN 9–11), the Hg(2) atoms in the channels adopt a comparatively large coordination number of 12 and increased distances (317–348 pm) to their Zn/Hg neighbours. In the structure of BaZn 0.6 Hg 3.4 (cubic, cI320, space group I4 ¯ 3d, a=2025.50(7) pm, Z=64, R1=0.0440), with a chemical composition not much different from that of Ba 3 ZnHg 10 , the Zn/Hg atoms of the mixed positions M(1/2) are arranged in an slightly distorted primitive cubic lattice with a 4×4×4 subcell relation to the unit cell. The 24 of the originating 64 cubes contain planar cis tetramers Hg(5,6) 4 with Hg in a nearly trigonal planar or tetrahedral coordination. In another 24 of the small cubes, two opposing faces are decorated by Hg(3,4) 2 dumbbells, two by Ba(2) atoms respectively. The third type of small cubes are centered by Ba(1) atoms only. The complex 3D polyanionic Hg/Zn network thus formed is compared with the Hg partial structure in Rb 3 Hg 20 applying a group-subgroup relation. Despite their different overall structures, the connectivity of the negatively charged Hg atoms, the rather metallic Zn bonding characteristic (as obtained from FP-LAPW band structure calculations) and the coordination number of 16 for all Ba cations

  12. Ab initio study of structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    He, K.H. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: he23981006@126.com; Zheng, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China)]. E-mail: gzheng25@yahoo.com; Chen, G. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Lue, T. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Wan, M. [College of Maths and Physics, China University of Geosciences, Wuhan 430074 (China); Ji, G.F. [Laboratory for Shock Wave and Detonation Physics, China Academy of Engineering Physics, Mianyang 621900 (China)

    2007-03-01

    The structural, electronic and optical properties of MnHg(SCN){sub 4} and FeHg(SCN){sub 4} were studied by means of quantum-mechanical calculations based on the density-functional theory and pseudopotential method. The lattice constants can be compared with the experimental values when the effects of temperature are considered. The peaks of partial density of states of S, C, N and Hg of FeHg(SCN){sub 4} have a tendency of shifting to the higher energy levels relative to those of MnHg(SCN){sub 4}. The distributions of the 3d electronic states in the transition metal atoms show quite large difference and decide different optical properties. We found that absorptional peaks of FeHg(SCN){sub 4} lag behind those of MnHg(SCN){sub 4} and the peak in the infrared range has a higher absorptional intensity, which are in accord with the experimental results. By analyzing the distributions and transitions of the 3d electronic states, we explained the different absorption phenomena.

  13. Deposition to forests in Europe: most important factors influencing dry deposition and models used for generalisation

    International Nuclear Information System (INIS)

    Erisman, Jan Willem; Draaijers, Geert

    2003-01-01

    The influence of forest characteristics on deposition can be modelled reasonably well; forest edge effects and dynamical processes are still uncertain. - Dry deposition of gases and particles to forests is influenced by factors influencing the turbulent transport, such as wind speed, tree height, canopy closure, LAI, etc. as well as by factors influencing surface condition, such as precipitation, relative humidity, global radiation, etc. In this paper, an overview of these factors is given and it is shown which are the most important determining temporal and spatial variation of dry deposition of sodium and sulphur. Furthermore, it is evaluated how well current deposition models are able to describe the temporal and spatial variation in dry deposition. It is concluded that the temporal variation is not modelled well enough, because of limited surface-wetness exchange parameterisations. The influence of forest characteristics are modelled reasonably well, provided enough data describing the forests and the spatial variation in concentration is available. For Europe these data are not available. The means to decrease the atmospheric deposition through forest management is discussed

  14. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Energy Technology Data Exchange (ETDEWEB)

    Kotnik, J.; Horvat, M.; Mandic, V.; Logar, M. [Department of Environmental Sciences, Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia)

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg{sup 2+}, Hg{sup 0}) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  15. Influence of the Sostanj coal-fired thermal power plant on mercury and methyl mercury concentrations in Lake Velenje, Slovenia

    Science.gov (United States)

    Kotnik; Horvat; Mandic; Logar

    2000-10-02

    Lake Velenje is located in one of the most polluted regions in Slovenia, the Salek Valley. The major source of pollution in the valley is the coal-fired thermal power plant in Sostanj (STPP, capacity 775 MW). It has five separate units. All units have electrostatic precipitators for fly ash removal. Unit 4 also has installed a wet flue gas desulfurisation system (FGD system). Total mercury (THg) concentrations were measured in lignite, slag and ash samples from the STPP. In flue gas, different mercury species (THg, MeHg, Hg2+, Hg0) were determined separately for unit 4 and unit 5 which use different flue gas cleaning technology. Mercury and methyl mercury (MeHg) concentrations were also measured in lake water at different depths, in inflow water, outflow water, rain, snow and lake sediments in order to establish the influence of the power plant on the lake. Most mercury emitted from the power plant is in the elemental form. The ratio between oxidised and elemental Hg depends on the flue gas cleaning technology. Mass balance calculations have been performed for the STPP. The results show that the major sources of mercury in Lake Velenje are wet deposition and lake inflows. Total and MeHg concentrations in the water column are very low and can be compared to other non-contaminated freshwater lakes in the world.

  16. Introduction to wetting phenomena

    International Nuclear Information System (INIS)

    Indekeu, J.O.

    1995-01-01

    In these lectures the field of wetting phenomena is introduced from the point of view of statistical physics. The phase transition from partial to complete wetting is discussed and examples of relevant experiments in binary liquid mixtures are given. Cahn's concept of critical-point wetting is examined in detail. Finally, a connection is drawn between wetting near bulk criticality and the universality classes of surface critical phenomena. (author)

  17. Canopy interaction with precipitation and sulphur deposition in two boreal forests of Quebec, Canada

    International Nuclear Information System (INIS)

    Marty, C.; Houle, D.; Duchesne, L.; Gagnon, C.

    2012-01-01

    The interaction of atmospheric sulphur (S) was investigated within the canopies of two boreal forests in Québec, Canada. The net canopy exchange approach, i.e. the difference between S–SO 4 in throughfall and precipitation, suggests high proportion of dry deposition in winter (up to 53%) as compared to summer (1–9%). However, a 3.5‰ decrease in δ 18 O–SO 4 throughfall in summer compared to incident precipitation points towards a much larger proportion of dry deposition during the warm season. We suggest that a significant fraction of dry deposition (about 1.2 kg ha −1 yr −1 , representing 30–40% of annual wet S deposition) which contributed to the decreased δ 18 O–SO 4 in throughfall was taken up by the canopy. Overall, these results showed that, contrary to what is commonly considered, S interchanges in the canopy could be important in boreal forests with low absolute atmospheric S depositions. - Highlights: ► We investigated sulphur interactions with the canopy of two boreal forests, Québec. ► Sulphur interchanges within the canopy were large and vary with seasons. ► About 1.2 kg S–SO 4 ha −1 yr −1 was taken up by the canopy during warm seasons. ► This represents 30–40% of annual wet S–SO 4 deposition. ► Canopy uptake must be considered for sulphur budget estimations in boreal forests. - The equivalent of 30–40% of annual wet S–SO 4 deposition was taken up by the canopy of two boreal forests during warm seasons.

  18. The roles of wetting liquid in the transfer process of single layer graphene onto arbitrary substrates.

    Science.gov (United States)

    Kim, Ju Hun; Yi, Junghwa; Jin, Hyeong Ki; Kim, Un Jeong; Park, Wanjun

    2013-11-01

    Wet transfer is crucial for most device structures of the proposed applications employing single layer graphene in order to take advantage of the unique physical, chemical, bio-chemical and electrical properties of the graphene. However, transfer methodologies that can be used to obtain continuous film without voids, wrinkles and cracks are limited although film perfectness critically depends on the relative surface tension of wetting liquids on the substrate. We report the importance of wetting liquid in the transfer process with a systematic study on the parameters governing film integrity in single layer graphene grown via chemical vapor deposition. Two different suspension liquids (in terms of polar character) are tested for adequacy of transfer onto SiO2 and hexamethyldisiloxane (HMDS). We found that the relative surface tension of the wetting liquid on the surfaces of the substrate is related to transfer quality. In addition, dimethyl sulfoxide (DMSO) is introduced as a good suspension liquid to HMDS, a mechanically flexible substrate.

  19. Influence of ore processing activity on Hg, As and Sb contamination and fractionation in soils in a former mining site of Monte Amiata ore district (Italy).

    Science.gov (United States)

    Protano, Giuseppe; Nannoni, Francesco

    2018-05-01

    A geochemical study was carried out at the former Abbadia San Salvatore (ASS) mining site of the Monte Amiata ore district (Italy). Hg, As and Sb total contents and fractionation using a sequential extraction procedure were determined in soil and mining waste samples. Ore processing activities provided a different contribution to Hg contamination and concentration in soil fractions, influencing its behaviour as volatility and availability. Soils of roasting zone showed the highest Hg contamination levels mainly due to the deposition of Hg released as Hg 0 by furnaces during cinnabar roasting. High Hg contents were also measured in waste from the lower part of mining dump due to the presence of cinnabar. The fractionation pattern suggested that Hg was largely as volatile species in both uncontaminated and contaminated soils and mining waste, and concentrations of these Hg species increased as contamination increased. These findings were in agreement with the fact that the ASS mining site is characterized by high Hg concentrations in the air and the presence of Hg 0 liquid droplets in soil. Volatile Hg species were also prevalent in uncontaminated soils likely because the Monte Amiata region is an area characterized by anomalous fluxes of gaseous Hg from natural and anthropogenic inputs. At the ASS mining site soils were also contaminated by Sb, while As contents were comparable with its local background in soil. In all soil and waste samples Sb and As were preferentially in residual fraction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Immobilization of Hg(II) by Coprecipitation in Sulfate-Cement Systems

    Science.gov (United States)

    2012-01-01

    Uptake and molecular speciation of dissolved Hg during formation of Al- or Fe-ettringite-type and high-pH phases were investigated in coprecipitation and sorption experiments of sulfate-cement treatments used for soil and sediment remediation. Ettringite and minor gypsum were identified by XRD as primary phases in Al systems, whereas gypsum and ferrihydrite were the main products in Hg–Fe precipitates. Characterization of Hg–Al solids by bulk Hg EXAFS, electron microprobe, and microfocused-XRF mapping indicated coordination of Hg by Cl ligands, multiple Hg and Cl backscattering atoms, and concentration of Hg as small particles. Thermodynamic predictions agreed with experimental observations for bulk phases, but Hg speciation indicated lack of equilibration with the final solution. Results suggest physical encapsulation of Hg as a polynuclear chloromercury(II) salt in ettringite as the primary immobilization mechanism. In Hg–Fe solids, structural characterization indicated Hg coordination by O atoms only and Fe backscattering atoms that is consistent with inner-sphere complexation of Hg(OH)20 coprecipitated with ferrihydrite. Precipitation of ferrihydrite removed Hg from solution, but the resulting solid was sufficiently hydrated to allow equilibration of sorbed Hg species with the aqueous solution. Electron microprobe XRF characterization of sorption samples with low Hg concentration reacted with cement and FeSO4 amendment indicated correlation of Hg and Fe, supporting the interpretation of Hg removal by precipitation of an Fe(III) oxide phase. PMID:22594782

  1. The Hg region: Superdeformation and other shapes

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Carpenter, M.P.; Fernandez, P.B.; Moore, E.F.; Ahmad, I.; Khoo, T.L.; Wolfs, F.L.H.; Drigert, M.W.; Ye, D.; Beard, K.B.; Reviol, W.; Bearden, I.; Benet, P.; Daly, P.J.; Grabowski, Z.W.

    1990-01-01

    We shall first summarize the present experimental situation concerning 192 Hg, the nucleus regarded as the analog of 152 Dy 8 for this SD region in that shell gaps are calculated 5 to occur at large deformation for Z=80 and N=112. Proton and neutron excitations out of te 192 Hg core will then be reviewed with particular emphasis on 191 Hg and 193 Tl. The implications of the results for pairing at large deformations and the need to consider other degrees of freedom (such as octupole correlations) will be addressed. The presentation will conclude with a brief discussion on other shapes seen in this region, with a particular emphasis on 191 Hg

  2. 40 CFR 60.4153 - Recordation of Hg allowance allocations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Recordation of Hg allowance allocations... Times for Coal-Fired Electric Steam Generating Units Hg Allowance Tracking System § 60.4153 Recordation of Hg allowance allocations. (a) By December 1, 2006, the Administrator will record in the Hg Budget...

  3. Even low to medium nitrogen deposition impacts vegetation of dry, coastal dunes around the Baltic Sea

    International Nuclear Information System (INIS)

    Remke, Eva; Brouwer, Emiel; Kooijman, Annemieke; Blindow, Irmgard; Esselink, Hans; Roelofs, Jan G.M.

    2009-01-01

    Coastal dunes around the Baltic Sea have received small amounts of atmospheric nitrogen and are rather pristine ecosystems in this respect. In 19 investigated dune sites the atmospheric wet nitrogen deposition is 3-8 kg N ha -1 yr -1 . The nitrogen content of Cladonia portentosa appeared to be a suitable biomonitor of these low to medium deposition levels. Comparison with EMEP-deposition data showed that Cladonia reflects the deposition history of the last 3-6 years. With increasing nitrogen load, we observed a shift from lichen-rich short grass vegetation towards species-poor vegetation dominated by the tall graminoid Carex arenaria. Plant species richness per field site, however, does not decrease directly with these low to medium N deposition loads, but with change in vegetation composition. Critical loads for acidic, dry coastal dunes might be lower than previously thought, in the range of 4-6 kg N ha -1 yr -1 wet deposition. - Even low to medium nitrogen deposition impacts Baltic dune vegetation promoting a dominance of taller graminoids

  4. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  5. Atmospheric Nitrogen Deposition at Two Sites in an Arid Environment of Central Asia.

    Science.gov (United States)

    Li, Kaihui; Liu, Xuejun; Song, Wei; Chang, Yunhua; Hu, Yukun; Tian, Changyan

    2013-01-01

    Arid areas play a significant role in the global nitrogen cycle. Dry and wet deposition of inorganic nitrogen (N) species were monitored at one urban (SDS) and one suburban (TFS) site at Urumqi in a semi-arid region of central Asia. Atmospheric concentrations of NH3, NO2, HNO3, particulate ammonium and nitrate (pNH4 (+) and pNO3 (-)) concentrations and NH4-N and NO3-N concentrations in precipitation showed large monthly variations and averaged 7.1, 26.6, 2.4, 6.6, 2.7 µg N m(-3) and 1.3, 1.0 mg N L(-1) at both SDS and TFS. Nitrogen dry deposition fluxes were 40.7 and 36.0 kg N ha(-1) yr(-1) while wet deposition of N fluxes were 6.0 and 8.8 kg N ha(-1) yr(-1) at SDS and TFS, respectively. Total N deposition averaged 45.8 kg N ha(-1) yr(-1)at both sites. Our results indicate that N dry deposition has been a major part of total N deposition (83.8% on average) in an arid region of central Asia. Such high N deposition implies heavy environmental pollution and an important nutrient resource in arid regions.

  6. Estudo eletroquímico e termoanalítico dos sistemas Ir/Hg e Pt - (30%) Ir/Hg

    OpenAIRE

    Milaré, Edilson [UNESP

    2004-01-01

    Eletrodos laminares de Ir ou Pt-Ir(30%) foram empregados como substratos para deposição eletroquímica de Hg, a partir de soluções contendo íons Hg(I), e remoção deste Hg por meio de voltametria cíclica (VC) ou térmica (termogravimetria / termogravimetria derivada - TG/DTG e calorimetria exploratória diferencial - DSC). A superfície dos eletrodos foi caracterizada empregando-se as técnicas complementares de análise: microscopia eletrônica de varredura (imagens SEM, microanálise por EDX e mapas...

  7. 40 CFR 60.45Da - Standard for mercury (Hg).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for mercury (Hg). 60.45Da... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC... gases that contain mercury (Hg) emissions in excess of each Hg emissions limit in paragraphs (a)(1...

  8. Magnetospectroscopy of double HgTe/CdHgTe quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Bovkun, L. S.; Krishtopenko, S. S.; Ikonnikov, A. V., E-mail: antikon@ipmras.ru; Aleshkin, V. Ya.; Kadykov, A. M. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Ruffenach, S.; Consejo, C.; Teppe, F.; Knap, W. [Laboratoire Charles Coulomb (L2C), UMR CNRS 5221 and UM (France); Orlita, M.; Piot, B.; Potemski, M. [Laboratoire National des Champs Magnetiques Intenses (LNCMI-G), CNRS-UJF-UPS-INSA (France); Mikhailov, N. N.; Dvoretskii, S. A. [Russian Academy of Sciences, Siberian Branch, Rzhanov Institute of Semiconductor Physics (Russian Federation); Gavrilenko, V. I. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2016-11-15

    The magnetoabsorption spectra in double HgTe/CdHgTe quantum wells (QWs) with normal and inverted band structures are investigated. The Landau levels in symmetric QWs with a rectangular potential profile are calculated based on the Kane 8 × 8 model. The presence of a tunnel-transparent barrier is shown to lead to the splitting of states and “doubling” of the main magnetoabsorption lines. At a QW width close to the critical one the presence of band inversion and the emergence of a gapless band structure, similar to bilayer graphene, are shown for a structure with a single QW. The shift of magnetoabsorption lines as the carrier concentration changes due to the persistent photoconductivity effect associated with a change in the potential profile because of trap charge exchange is detected. This opens up the possibility for controlling topological phase transitions in such structures.

  9. Ruditapes philippinarum and Ruditapes decussatus under Hg environmental contamination.

    Science.gov (United States)

    Velez, Cátia; Galvão, Petrus; Longo, Renan; Malm, Olaf; Soares, Amadeu M V M; Figueira, Etelvina; Freitas, Rosa

    2015-08-01

    The native species Ruditapes decussatus and the invasive species Ruditapes philippinarum have an important ecological role and socio-economic value, from the Atlantic and Mediterranean to the Indo-Pacific region. In the aquatic environment, they are subjected to the presence of different contaminants, such as mercury (Hg) and its methylated form, methylmercury (MeHg). However, few studies have assessed the impacts of Hg on bivalves under environmental conditions, and little is known on bivalve oxidative stress patterns due to Hg contamination. Therefore, this study aims to assess the Hg contamination in sediments as well as the concentration of Hg and MeHg in R. decussatus and R. philippinarum, and to identify the detoxification strategies of both species living in sympatry, in an aquatic system with historical Hg contamination. The risk to human health due to the consumption of clams was also evaluated. The results obtained demonstrated that total Hg concentration found in sediments from the most contaminated area was higher than the maximum levels established by Sediment Quality Guidelines. This study further revealed that the total Hg and MeHg accumulation in both species was strongly correlated with the total Hg contamination of the sediments. Nonetheless, the THg concentration in both species was lower than maximum permissible limits (MPLs) of THg defined by international organizations. R. decussatus and R. philippinarum showed an increase in lipid peroxidation levels along with the increase of THg accumulation by clams. Nevertheless, for both species, no clear trend was obtained regarding the activity of antioxidant (superoxide dismutase, catalase) and biotransformation (glutathione S-transferase) enzymes and metallothioneins with the increase of THg in clams. Overall, the present work demonstrated that both species can be used as sentinel species of contamination and that the consumption of these clams does not constitute a risk for human health.

  10. A fluorescent DNA based probe for Hg(II) based on thymine-Hg(II)-thymine interaction and enrichment via magnetized graphene oxide.

    Science.gov (United States)

    Li, Meng-Ke; Hu, Liu-Yin; Niu, Cheng-Gang; Huang, Da-Wei; Zeng, Guang-Ming

    2018-03-03

    The authors describe a fluorometric assay for the determination of Hg(II). A naphthalimide derivative is used as a label for a thymine (T) rich ssDNA, and graphene oxide magnetized with Fe 3 O 4 nanoparticles acts as a quencher and preconcentrators. In the absence of Hg(II), the labeled ssDNA does not separate from the magnetized graphene oxide. As a result, fluorescence is fully quenched. In the presence of Hg(II), a T-Hg(II)-T link is formed dues to the highly affinity between T and Hg(II). Hence, fluorescence is restored. The assay has a linear response in the 1.0 to 10.0 nM Hg(II) concentration range, and a 0.65 nM detection limit. The method is selective and sensitive. It was applied to the analysis of spiked environmental water samples, and data agreed well with those obtained by atomic fluorescence spectrometry. Graphical abstract Strategy of a fluorescent probe for detecting Hg(II). The method has a 0.65 nM detection limit and is selective. MGO: magnetized graphene oxide, AHN: a fluorescent derivative of naphthalimide.

  11. Effects of the wet air on the properties of the lanthanum oxide and lanthanum aluminate thin films

    International Nuclear Information System (INIS)

    Jun, Jin Hyung; Choi, Doo Jin

    2006-01-01

    Lanthanum oxide and lanthanum aluminate thin films were deposited on Si substrates. The as-grown films were stored in wet ambient and dry ambient for days and annealed after storage and also the structural and the electrical properties of the films were investigated. As the storage time increased, the La 2 O 3 films stored in wet ambient showed rapid reaction with moisture and the properties degraded. In case of the LAO films, although the thickness of the film also increased during hydration, the properties of the film did not so much changed due to the role of the incorporated aluminum. The LAO films showed better hydration resistance characteristics and so more suitable for conventional wet cleaning process in semiconductor fabrication

  12. The simplest representative of a complex series. The Hg-rich amalgam Yb_1_1Hg_5_4

    International Nuclear Information System (INIS)

    Tambornino, Frank; Hoch, Constantin

    2017-01-01

    Yb_1_1Hg_5_4 is a new member of a series of amalgams with composition close to MHg_5. Its crystal structure was solved and refined on the basis of single crystal data. The structure model was confirmed with a Rietveld refinement. Yb_1_1Hg_5_4 has the first crystal structure in this family in which no disorder effects such as mixed occupation, split positions or superstructure formation is observed. It therefore can be regarded as a parent structure for all other amalgams. The crystal structure of Yb_1_1Hg_5_4 can be derived from the Gd_1_4Ag_5_1 structure type, the aristotype of this family. We give a detailed crystal structure description for Yb_1_1Hg_5_4 and discuss it in the context of the further known crystal structures closely related. A ranking within this structure family can be established by calculating features for the structural complexity for all structures, including the individual disorder phenomena.

  13. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Scope (modifies HG-100). 53.01-5 Section 53.01-5... General Requirements § 53.01-5 Scope (modifies HG-100). (a) The regulations in this part apply to steam... governing various types of pressure vessels and boilers. (b) Modifies HG-100. The requirements of Part HG of...

  14. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Kappers, Astrid M.L.; Daanen, H.A.M.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the mechanics of wetness perception. This paper describes an experiment with six conditions regarding haptic discrimination of the wetness of fabrics. Three materials were used: cotton wool,

  15. Atmospheric nitrogen deposition budget in a subtropical hydroelectric reservoir (Nam Theun II case study, Lao PDR)

    Science.gov (United States)

    Adon, Marcellin; Galy-Lacaux, Corinne; Serça, Dominique; Guerin, Frederic; Guedant, Pierre; Vonghamsao, Axay; Rode, Wanidaporn

    2016-04-01

    With 490 km² at full level of operation, Nam Theun 2 (NT2) is one of the largest hydro-reservoir in South East Asia. NT2 is a trans-basin hydropower project that diverts water from the Nam Theun river (a Mekong tributary) to the Xe Ban Fai river (another Mekong tributary). Atmospheric deposition is an important source of nitrogen (N), and it has been shown that excessive fluxes of N from the atmosphere has resulted in eutrophication of many coastal waters. A large fraction of atmospheric N input is in the form of inorganic N. This study presents an estimation of the atmospheric inorganic nitrogen budget into the NT2 hydroelectric reservoir based on a two-year monitoring (July 2010 to July 2012) including gas concentrations and precipitation. Dry deposition fluxes are calculated from monthly mean surface measurements of NH3, HNO3 and NO2 concentrations (passive samplers) together with simulated deposition velocities, and wet deposition fluxes from NH4+ and NO3- concentrations in single event rain samples (automated rain sampler). Annual rainfall amount was 2500 and 3160 mm for the two years. The average nitrogen deposition flux is estimated at 1.13 kgN.ha-1.yr-1 from dry processes and 5.52 kgN.ha-1.yr-1 from wet ones, i.e., an average annual total nitrogen flux of 6.6 kgN.ha-1.yr-1 deposited into the NT2 reservoir. The wet deposition contributes to 83% of the total N deposition. The nitrogen deposition budget has been also calculated over the rain tropical forest surrounding the reservoir. Due to higher dry deposition velocities above forested ecosystems, gaseous dry deposition flux is estimated at 4.0 kgN.ha-1.yr-1 leading to a total nitrogen deposition about 9.5 kgN.ha-1.yr-1. This result will be compared to nitrogen deposition in the African equatorial forested ecosystems in the framework of the IDAF program (IGAC-DEBITS-AFrica).

  16. Contamination levels of mercury and cadmium in melon-headed whales (Peponocephala electra) from a mass stranding on the Japanese coast

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Tetsuya [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan)], E-mail: endotty@hoku-iryo-u.ac.jp; Hisamichi, Yohsuke; Kimura, Osamu [Faculty of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Ishikari-Tobetsu, Hokkaido 061-0293 (Japan); Haraguchi, Koichi [Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-Cho, Minami-Ku, Fukuoka 815-8511 (Japan); Baker, C. Scott [Marine Mammal Institute and Department of Fisheries and Wildlife, Oregon State University, Newport, Oregon 97365 (United States)

    2008-08-15

    Total mercury (T-Hg), methyl mercury (M-Hg), cadmium (Cd), selenium (Se), zinc (Zn) and copper (Cu) concentrations in the organs of melon-headed whales from a mass stranding on the Japanese coast were analyzed. The mean concentration of T-Hg in the liver (126 {+-} 97 {mu}g/wet g, n = 13) was markedly higher than those in kidney (6.34 {+-} 2.36 {mu}g/wet g, n = 12) and muscle (4.90 {+-} 2.33 {mu}g/wet g, n = 15). In contrast, the mean concentration of M-Hg in the liver (9.08 {+-} 2.24 {mu}g/wet g) was similar to those in the kidney (3.47 {+-} 0.91 {mu}g/wet g) and muscle (3.78 {+-} 1.53 {mu}g/wet g). The mean percentage of M-Hg in the T-Hg found in the liver (13.1 {+-} 10.3) was significantly lower than those in the kidney (58.3 {+-} 15.0) and muscle (78.9 {+-} 8.4). The molar ratio of T-Hg to Se in the liver was effectively 1.0, but those in the kidney and muscle were markedly lower. Conversely, the mean concentration of Cd was markedly higher in the kidney (24.4 {+-} 7.4 {mu}g/wet g) than in the liver (7.24 {+-} 2.08 {mu}g/wet g) and muscle (less than 0.05 {mu}g/wet g). These results suggest that the formation of Hg-Se compounds mainly occurs in the liver after the demethylation of M-Hg, and Cd preferentially accumulates in the kidney of melon-headed whales.

  17. Peculiarity of electron optical orientation in Hg1-xMnxTe and Hg1-xCdxTe alloys

    International Nuclear Information System (INIS)

    Georgitseh, E.I.; Ivanov-Omskij, V.I.; Pogorletskij, V.M.

    1991-01-01

    To clarify the effect of exchange interaction of electrons with manganese ions on electron spin relaxation, a study was made on optical orientation in Hg 1-x Mn x Te alloy and Hg 1-x Cd x Te alloys with similar parameters of energy spectrum at 4.2 K. It is shown that exchange interaction in semimagnetic Hg 1-x Mn x Te solutions, caused by the presence of manganese ions, reduced the time of spin relaxation. However, this reduction is not sufficient make optical orientation of electrons not observable

  18. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Kosters, N.D.; Daanen, H.A.M.; Kappers, A.M.L.

    2011-01-01

    The sensation of wetness is well-known but barely investigated. There are no specific wetness receptors in the skin, but the sensation is mediated by temperature and pressure perception. In our study, we have measured discrimination thresholds for the haptic perception of wetness of three di erent

  19. Haptic perception of wetness

    NARCIS (Netherlands)

    Bergmann Tiest, W.M.; Dolfine Kosters, N.; Daanen, h.a.m.; Kappers, A.M.L.

    2012-01-01

    In daily life, people interact with textiles of different degrees of wetness, but little is known about the me-chanics of wetness perception. This paper describes an experiment with six conditions regarding haptic dis-crimination of the wetness of fabrics. Three materials were used: cotton wool,

  20. 40 CFR 60.4124 - Hg budget permit revisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Hg budget permit revisions. 60.4124... Coal-Fired Electric Steam Generating Units Permits § 60.4124 Hg budget permit revisions. Except as provided in § 60.4123(b), the permitting authority will revise the Hg Budget permit, as necessary, in...

  1. Hg contents in soils and olive-tree (Olea Europea, L.) leaves from an area affected by elemental mercury pollution (Jódar, SE Spain).

    Science.gov (United States)

    López-Berdonces, Miguel Angel; María Esbrí, José; Amorós, José Angel; Lorenzo, Saturnino; Fernández-Calderón, Sergio; Higueras, Pablo; Perez-de-los-Reyes, Caridad

    2014-05-01

    Data from soil and olive tree leaves around a decommissioned chlor-alkali plant are presented in this communication. The factory was active in the period 1977-1991, producing during these years a heavily pollution of Guadalquivir River and hydrargyrism in more than local 45 workers. It is located at 7 km South of Jódar, a locality with some 12,120 inhabitants. Mercury usage was general in this type of plants, but at present it is being replaced by other types of technologies, due to the risks of mercury usage in personal and environment. A soil geochemistry survey was carried out in the area, along with the analysis of olive-tree leaves (in the plots with this culture) from the same area. 73 soil samples were taken at two different depths (0-15 cm and 15-30 cm), together with 41 olive tree samples. Mercury content of geologic and biologic samples was determined by means of Atomic Absorption Spectrometry with Zeeman Effect, using a Lumex RA-915+ device with the RP-91C pyrolysis attachment. Air surveys were carried our using a RA-915M Lumex portable analytical device. Soil mercury contents were higher in topsoil than in the deeper soil samples, indicating that incorporation of mercury was due to dry and wet deposition of mercury vapors emitted from the plant. Average content in topsoil is 564.5 ng g-1. Hg contents in olive-tree leaves were in the range 46 - 453 ng g-1, with an average of 160.6 ng g-1. This level is slightly lower than tolerable level for agronomic crops established by Kabata-Pendias (2001) in 200 ng g-1. We have also compared soil and leaf contents for each sampling site, finding a positive and significant correlation (R=0.49), indicating that Hg contents in the leaves are linked to Hg contents in the soils. BAC (Bioaccumulation Absorption Coefficient, calculated as ratio between soil and leaf concentration) is 0.28 (consistent with world references, BAC = 0.7), considered "medium" in comparison with other mineral elements. Main conclusions of this

  2. Mercury(II) and methylmercury(II) complexes of novel sterically hindered thiolates: 13C and 199Hg NMR studies and the crystal and molecular structures of [MeHg(SC6H2-2,4,6-Pri3)], [Hg(SC6H4-2-SiMe3)2], [Hg(2-SC5H3N-3-SiMe3)2], and [Hg{(2-SC6H4)2SiMe2}]2

    International Nuclear Information System (INIS)

    Block, E.; Brito, M.; Gernon, M.; McGowty, D.; Kang, Hyunkyu; Zubieta, J.

    1990-01-01

    Several series of complexes of the types [MeHg(SR)] and [Hg(SR) 2 ] have been synthesized, where the ligands are members of new classes of sterically hindered thiolates, including (triorganosilyl)methanethiols, 2-(triorganosilyl)benzenethiols, 3-(triorganosilyl)pyridine-2-thiols, and bis(2-mercaptophenyl) derivatives. Detailed 1 H, 13 C, and 199 Hg NMR studies revealed several general trends. The 199 Hg chemical shifts moved upfield in the order [MeHg(SR)] 2 ] 2 ] 2 ]. For the [MeHg(SR)] series of complexes, 1 J(Hg-C) correlates with δ( 13 C(methyl)) and with the type of thiolate ligand. Anomalous behavior is observed for oligomeric species. There is only a limited correlation of δ( 199 Hg) with steric cone angles for a subset of the complexes. Crystal data for the complexes are reported. 86 refs., 7 figs., 11 tabs

  3. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.

    Science.gov (United States)

    Xu, Pengyun; Coyle, Thomas W; Pershin, Larry; Mostaghimi, Javad

    2018-03-16

    Superhydrophobic surfaces are often created by fabricating suitable surface structures from low-surface-energy organic materials using processes that are not suitable for large-scale fabrication. Rare earth oxides (REO) exhibit hydrophobic behavior that is unusual among oxides. Solution precursor plasma spray (SPPS) deposition is a rapid, one-step process that can produce ceramic coatings with fine scale columnar structures. Manipulation of the structure of REO coatings through variation in deposition conditions may allow the wetting behavior to be controlled. Yb 2 O 3 coatings were fabricated via SPPS. Coating structure was investigated by scanning electron microscopy, digital optical microscopy, and x-ray diffraction. The static water contact angle and roll-off angle were measured, and the dynamic impact of water droplets on the coating surface recorded. Superhydrophobic behavior was observed; the best coating exhibited a water contact angle of ∼163°, a roll-off angle of ∼6°, and complete droplet rebound behavior. All coatings were crystalline Yb 2 O 3 , with a nano-scale roughness superimposed on a micron-scale columnar structure. The wetting behaviors of coatings deposited at different standoff distances were correlated with the coating microstructures and surface topographies. The self-cleaning, water flushing and water jetting tests were conducted and further demonstrated the excellent and durable hydrophobicity of the coatings. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Wetting layer states in low density InAs/InGaAs quantum dots from sub-critical InAs coverages

    International Nuclear Information System (INIS)

    Seravalli, L; Trevisi, G; Frigeri, P; Rossi, F; Buffagni, E; Ferrari, C

    2013-01-01

    In this work we study the properties of wetting layers in InAs/InGaAs/GaAs quantum dot (QD) structures suitable for single photon emission; the mandatory low density of QDs is obtained by an molecular beam epitaxy (MBE) approach based on the deposition of sub-critical InAs coverages followed by post-growth annealing. Such a growth regime is fundamentally different from the Stranski–Krastanow (SK) one commonly used for the deposition of QDs. By fitting x-ray diffraction (XRD) spectra, ten-steps composition profiles were derived and used as inputs of model calculations of the two-dimensional quantum energy system: model results were validated by comparison with photoluminescence spectra. A strong reduction of In molar fraction in wetting layers in comparison with SK structures was found, causing a larger wavefunction delocalization for carriers that populate the wetting layer energy levels. Moreover, by considering the limits for strain relaxation when In x Ga 1−x As capping layers are used, we grew structures with the highest possible values of x to study the modifications of the energy system. When x = 0.20 the electron–heavy hole overlap is almost halved and the carriers' probability of being in the first nanometre of the wetting layer is reduced by 60%. These results will be useful for advanced design of QD nanostructures for single photon sources. (paper)

  5. Arching Structures in Granular Sedimentary Deposits

    Czech Academy of Sciences Publication Activity Database

    Kulaviak, Lukáš; Hladil, Jindřich; Růžička, Marek; Drahoš, Jiří; Saint-Lary, L.

    2013-01-01

    Roč. 246, SEP (2013), s. 269-277 ISSN 0032-5910 R&D Projects: GA ČR GA104/07/1110; GA AV ČR IAAX00130702; GA MŠk(CZ) LG11014 Institutional support: RVO:67985858 ; RVO:67985831 Keywords : wet granulars * deposit * arching structure Subject RIV: CI - Industrial Chemistry, Chemical Engineering; DB - Geology ; Mineralogy (GLU-S) Impact factor: 2.269, year: 2013

  6. Hg+ ion density in low-pressure Ar-Hg discharge plasma used for liquid crystal display back-lighting

    International Nuclear Information System (INIS)

    Goto, Miki; Arai, Toshihiko

    1995-01-01

    The positive column of a low-pressure Ar-Hg discharge has been applied as a fluorescent light source for illumination. Many studies on the diagnostics and fundamental mechanisms have been carried out on both the classical fluorescent lamp (d=36 mm) and the compact fluorescent lamp (d=12 mm). On the other hand, a lamp of extremely narrow diameter (usually below 6 mm) has been recently developed for liquid crystal display (LCD) back-lighting and its importance is undoubtedly increasing. Some characteristics or mechanisms of the narrow-diameter lamp may be similar to those of the 36 mm one; however the similarity rule does not hold between them due to the contributions from a stepwise ionization process. Therefore, in order to clarify the excitation mechanism in the narrow-diameter lamp quantitatively, various parameters must be measured directly and some analysis must be done. The Hg + ion density and electron density are important parameters for the purpose of clarifying the excitation mechanism quantitatively. In this work, we have measured the Hg + ion density using the modified absorption method, and the electron density using the probe method in the Ar-Hg discharge of the 4 mm bore tube on bath temperature. Moreover, with combining the modified absorption method and the probe method, the Hg 2 + molecular ion density has been determined

  7. Streamwater fluxes of total mercury and methylmercury into and out of Lake Champlain

    International Nuclear Information System (INIS)

    Shanley, James B.; Chalmers, Ann T.

    2012-01-01

    From 2000 to 2004, we sampled for total mercury (THg) and methylmercury (MeHg) in inlet streams to Lake Champlain, targeting high flow periods to capture increases in THg and MeHg concentrations with increasing flow. We used these data to model stream THg and MeHg fluxes for Water Years 2001 through 2009. In this mountainous forested basin with a high watershed-to-lake area ratio of 18, fluvial export from the terrestrial watershed was the dominant source of Hg to the lake. Unfiltered THg and MeHg fluxes were dominated by the particulate fraction; about 40% of stream THg was in the filtered ( −2 yr −1 , or about 13% of atmospheric Hg wet and dry deposition to the basin. THg export from the lake represented only about 3% of atmospheric Hg input to the basin. - Highlights: ► We monitored total mercury and methylmercury in major tributaries to Lake Champlain. ► Mercury and methylmercury export was primarily as particulates during high flow. ► Only 13% of atmospheric total mercury input reached the lake via streams. ► Only 3% of atmospheric total mercury input reached the lake outlet. - Eighty-seven percent of total mercury deposition to the Lake Champlain basin is retained in the terrestrial basin; stream export of total and methylmercury to the lake is primarily in the particulate phase.

  8. Pollution and wet cleaning of separation nozzle systems for enrichment of uranium-235

    International Nuclear Information System (INIS)

    Bacher, W.; Bier, W.; Linder, N.

    1980-06-01

    Operational defects in separation nozzle plants resulting in air leaking into the system may cause permanent pollution of the narrow slits of the separation elements by products of the hydrolysis of UF 6 . The deposits may deteriorate the separation performance of the separation elements to such an extent that their further use for uranium enrichment is no longer feasible. Tests performed on commercial-scale separation element tubes indicated that the deposits can be removed by a wet chemical process effectively enough to restore the full separative power of the elements. The aspects of the technical application of the cleanup process are discussed. (orig.) [de

  9. Intense charge transfer surface based on graphene and thymine-Hg(II)-thymine base pairs for detection of Hg(2.).

    Science.gov (United States)

    Li, Jiao; Lu, Liping; Kang, Tianfang; Cheng, Shuiyuan

    2016-03-15

    In this article, we developed an electrochemiluminescence (ECL) sensor with a high-intensity charge transfer interface for Hg(2+) detection based on Hg(II)-induced DNA hybridization. The sensor was fabricated by the following simple method. First, graphene oxide (GO) was electrochemically reduced onto a glassy carbon electrode through cyclic voltammetry. Then, amino-labeled double-stranded (ds)DNA was assembled on the electrode surface using 1-pyrenebutyric acid N-hydroxysuccinimide as a linker between GO and DNA. The other terminal of dsDNA, which was labeled with biotin, was linked to CdSe quantum dots via biotin-avidin interactions. Reduced graphene oxide has excellent electrical conductivity. dsDNA with T-Hg(II)-T base pairs exhibited more facile charge transfer. They both accelerate the electron transfer performance and sensitivity of the sensor. The increased ECL signals were logarithmically linear with the concentration of Hg(II) when Hg(2+) was present in the detection solution. The linear range of the sensor was 10(-11) to 10(-8)mol/L (R=0.9819) with a detection limit of 10(-11)mol/L. This biosensor exhibited satisfactory results when it was used to detect Hg(II) in real water samples. The biosensor with high-intense charge transfer performance is a prospect avenue to pursue more and more sensitive detection method. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Energy Technology Data Exchange (ETDEWEB)

    Eckley, Chris S., E-mail: eckley.chris@epa.gov [US Environmental Protection Agency, Region-10, Seattle, WA 98101 (United States); Tate, Mike T. [US Geological Survey, Middleton, WI 53562 (United States); Lin, Che-Jen [Center for Advances on Water and Air quality, Lamar University, Beaumont, TX 77710 (United States); Gustin, Mae [Department of Natural Resources & Environmental Science, University of Nevada, Reno, NV 89557 (United States); Dent, Stephen [CDM Smith, Portland, OR 97205 (United States); Eagles-Smith, Collin [US Geological Survey, Corvallis, OR 97331 (United States); Lutz, Michelle A. [US Geological Survey, Middleton, WI 53562 (United States); Wickland, Kimberly P. [US Geological Survey Boulder, CO 80303 (United States); Wang, Bronwen [US Geological Survey, Anchorage, AK 99508 (United States); Gray, John E. [US Geological Survey, Denver, CO 80225 (United States); Edwards, Grant C. [Department of Environment and Geography, Macquarie University, North Ryde, NSW 2109 (Australia); Krabbenhoft, Dave P. [US Geological Survey, Middleton, WI 53562 (United States); Smith, David B. [US Geological Survey, Denver, CO 80225 (United States)

    2016-10-15

    global atmospheric Hg budget. • A database of soil-air Hg flux measurements for Western North America was created. • Ecosystem Hg fluxes were influenced by vegetation, light, and soil Hg and moisture. • Vegetation had a large effect on net-ecosystem fluxes due to shading and uptake. • Hg emission from sparsely vegetated landscapes was similar to Hg wet deposition.

  11. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    International Nuclear Information System (INIS)

    Eckley, Chris S.; Tate, Mike T.; Lin, Che-Jen; Gustin, Mae; Dent, Stephen; Eagles-Smith, Collin; Lutz, Michelle A.; Wickland, Kimberly P.; Wang, Bronwen; Gray, John E.; Edwards, Grant C.; Krabbenhoft, Dave P.; Smith, David B.

    2016-01-01

    global atmospheric Hg budget. • A database of soil-air Hg flux measurements for Western North America was created. • Ecosystem Hg fluxes were influenced by vegetation, light, and soil Hg and moisture. • Vegetation had a large effect on net-ecosystem fluxes due to shading and uptake. • Hg emission from sparsely vegetated landscapes was similar to Hg wet deposition.

  12. Wet-Bulb-Globe Temperature Data Report

    Science.gov (United States)

    2015-03-01

    Hour Min Pressure Dry Nat Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT...Wet Globe Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F...Dry Nat Wet Globe Dry Nat Wet Globe Wind Cld amt Cld type Obscuration Quest RH Kestrel RH VPSc RH S1 WBGT Q WBGT K2 WBGT GMT millibars deg F deg F deg

  13. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa.

    Science.gov (United States)

    Liu, Bing; Wang, Chaogang; Liu, Danxia; He, Ning; Deng, Xu

    2017-01-01

    A pigmented yeast R1 with strong tolerance to Hg2+ was isolated. Phylogenetic identification based on the analysis of 26S rDNA and ITS revealed R1 is a Rhodotorula mucilaginosa species. R1 was able to grow in the presence of 80 mg/L Hg2+, but the lag phase was much prolonged compared to its growth in the absence of Hg2+. The maximum Hg2+ binding capacity of R1 was 69.9 mg/g, and dead cells could bind 15% more Hg2+ than living cells. Presence of organic substances drastically reduced bioavailability of Hg2+ and subsequently decreased Hg2+ removal ratio from aqueous solution, but this adverse effect could be remarkably alleviated by the simultaneous process of cell propagation and Hg2+ biouptake with actively growing R1. Furthermore, among the functional groups involved in Hg2+ binding, carboxyl group contributed the most, followed by amino & hydroxyl group and phosphate group. XPS analysis disclosed the mercury species bound on yeast cells was HgCl2 rather than HgO or Hg0.

  14. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    Science.gov (United States)

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  15. The simplest representative of a complex series. The Hg-rich amalgam Yb{sub 11}Hg{sub 54}

    Energy Technology Data Exchange (ETDEWEB)

    Tambornino, Frank; Hoch, Constantin [LMU Muenchen (Germany). Dept. Chemie

    2017-09-01

    Yb{sub 11}Hg{sub 54} is a new member of a series of amalgams with composition close to MHg{sub 5}. Its crystal structure was solved and refined on the basis of single crystal data. The structure model was confirmed with a Rietveld refinement. Yb{sub 11}Hg{sub 54} has the first crystal structure in this family in which no disorder effects such as mixed occupation, split positions or superstructure formation is observed. It therefore can be regarded as a parent structure for all other amalgams. The crystal structure of Yb{sub 11}Hg{sub 54} can be derived from the Gd{sub 14}Ag{sub 51} structure type, the aristotype of this family. We give a detailed crystal structure description for Yb{sub 11}Hg{sub 54} and discuss it in the context of the further known crystal structures closely related. A ranking within this structure family can be established by calculating features for the structural complexity for all structures, including the individual disorder phenomena.

  16. Description and testing of three moisture sensors for measuring surface wetness on carbonate building stones

    Science.gov (United States)

    See, R.B.; Reddy, M.M.; Martin, R.G.

    1988-01-01

    Three moisture sensors were tested as a means for determining the surface wetness on carbonate building stones exposed to conditions that produce deposition of moisture. A relative-humidity probe, a gypsum-coated circuit grid, and a limestone-block resistor were tested as sensors for determining surface wetness. Sensors were tested under laboratory conditions of constant relative humidity and temperature and also under on-site conditions of variable relative humidity and temperature for eight weeks at Newcomb, NY. Laboratory tests indicated that relative humidity alone did not cause sensors to become saturated with water. However, the rates of drying indicated by the sensors after an initial saturation were inversely related to the relative humidity. On-site testing of the relative-humidity probe and the gypsum-coated ciruit grid indicated that they respond to a diurnal wetting and drying cycle; the limestone-block resistor responded only to rainfall.

  17. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    Science.gov (United States)

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and Stack concentration of Hg were less than 0.4 microg/Nm(3). Since Hg emissions were at low concentrations, Hg in soil from atmospheric fallout near this incinerator including uptake by local weeds were very low ranging from non detectable to 399 micro g/kg. However, low but elevated levels of Hg (76-275 micro g/kg) were observed in surface soil and deeper layers (0-40 cm) in the predominant downwind direction of incinerator over a distance of between 0.5-5 km. Soil Hg concentrations measured from a reference/background track opposite of the prevailing wind direction were lower ranging between 7-46 micro g/kg. Nevertheless, the trend of Hg build up in soil was clearly seen in the wet season only, suggesting that wet deposition process is a major Hg pollution source. Hg concentrations in the sea bottom sediment collected next to the last station track was small with values between 35-67 micro g/kg. Based upon the overall findings, in terms of current potential environmental risk

  18. Highly Efficient Spin-to-Charge Current Conversion in Strained HgTe Surface States Protected by a HgCdTe Layer

    Science.gov (United States)

    Noel, P.; Thomas, C.; Fu, Y.; Vila, L.; Haas, B.; Jouneau, P.-H.; Gambarelli, S.; Meunier, T.; Ballet, P.; Attané, J. P.

    2018-04-01

    We report the observation of spin-to-charge current conversion in strained mercury telluride at room temperature, using spin pumping experiments. We show that a HgCdTe barrier can be used to protect the HgTe from direct contact with the ferromagnet, leading to very high conversion rates, with inverse Edelstein lengths up to 2.0 ±0.5 nm . The influence of the HgTe layer thickness on the conversion efficiency is found to differ strongly from what is expected in spin Hall effect systems. These measurements, associated with the temperature dependence of the resistivity, suggest that these high conversion rates are due to the spin momentum locking property of HgTe surface states.

  19. Shape coexistence in neutron-deficient Hg isotopes studied via lifetime measurements in $^{184,186}$Hg and two-state mixing calculations

    CERN Document Server

    Gaffney, L P; Page, R.D.; Grahn, T.; Scheck, M.; Butler, P.A.; Bertone, P.F.; Bree, N.; Carroll, R.J.; Carpenter, M.P.; Chiara, C.J.; Dewald, A.; Filmer, F.; Fransen, C.; Huyse, M.; Janssens, R.V.F.; Joss, D.T.; Julin, R.; Kondev, F.G.; Nieminen, P.; Pakarinen, J.; Rigby, S.V.; Rother, W.; Van Duppen, P.; Watkins, H.V.; Wrzosek-Lipska, K.; Zhu, S.

    2014-01-01

    The neutron-deficient mercury isotopes, $^{184,186}$Hg, were studied with the Recoil Distance Doppler Shift (RDDS) method using the Gammasphere array and the K\\"oln Plunger device. The Differential Decay Curve Method (DDCM) was employed to determine the lifetimes of the yrast states in $^{184,186}$Hg. An improvement on previously measured values of yrast states up to $8^{+}$ is presented as well as first values for the $9_{3}$ state in $^{184}$Hg and $10^{+}$ state in $^{186}$Hg. $B(E2)$ values are calculated and compared to a two-state mixing model which utilizes the variable moment of inertia (VMI) model, allowing for extraction of spin-dependent mixing strengths and amplitudes.

  20. Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications?

    Science.gov (United States)

    Herman Sievering; Ivan Fernandez; John Lee; John Hom; Lindsey Rustad

    2000-01-01

    Dry deposition determinations, along with wet deposition and throughfall (TF) measurements, at a spruce fir forest in central Maine were used to estimate the effect of atmospherically deposited nitrogen (N) uptake on forest carbon storage. Using nitric acid and particulate N as well as TF ammonium and nitrate data, the growing season (May-October) net canopy uptake of...