WorldWideScience

Sample records for hg emission flux

  1. Emission Spectra of Working Mixtures of a HgBr/HgCl Excimer Lamp

    Science.gov (United States)

    Malinin, A. N.; Guĭvan, N. N.; Shimon, L. L.

    2000-12-01

    A study of emission spectra of a gas-discharge plasma produced in a HgBr/HgCl excimer lamp, which is filled with multicomponent working mixtures at atmospheric pressure (HgBr2 and HgCl2 with additions of molecular nitrogen and xenon), are reported. A gas-discharge plasma was produced by high-frequency (pulses ˜100 ns long with a repetition rate of up to 2000 Hz) barrier and surface discharges, which took place simultaneously. Emission of HgBr* and HgCl* excimer molecules, the second positive system of molecular oxygen, and helium and xenon lines in the UV, visible, and IR spectral regions was observed. The strongest emission of HgBr* and HgCl* molecules (the emission intensities were in the ratio 10:1) was observed in the HgBr2: HgCl2: N2: He mixture. Regularities in spectral and integrated characteristics of gas-discharge plasma emission are discussed.

  2. Temporal Characteristics of Emission of Working Mixtures of a HgBr/HgCl Excimer Lamp

    Science.gov (United States)

    Malinin, A. N.; Guĭvan, N. N.; Shimon, L. L.; Polyak, A. V.; Zubrilin, N. G.; Shchedrin, A. I.

    2001-12-01

    Results of a study of temporal characteristics of the emission of gas-discharge plasma of atmospheric pressure in multicomponent mixtures (mercury dibromide and dichloride with helium and additions of molecular nitrogen and xenon) of working media of HgBr/HgCl excimer lamps are presented. Gas-discharge plasma was produced and components of the working mixture were excited by high-frequency barrier and surface discharges occurring simultaneously. The repetition rate of the pumping pulse and its duration are 1000 Hz and ˜100 ns, respectively. It is found that the amplitude and the length of emission pulses and their trailing edge are modified in HgBr2: HgCl2: Xe: He and HgBr2: HgCl2: N2: He mixtures when xenon and molecular nitrogen are added, as compared to a HgBr2: HgCl2: He mixture. Regularities observed in temporal characteristics of gas-discharge plasma emission are discussed.

  3. Emission and gain studies of the Tl-Hg excimer

    Energy Technology Data Exchange (ETDEWEB)

    Chilukuri, S.; Nayfeh, M.H.

    1978-11-01

    The pressure and temperature dependence of the Tl-Hg excimer emission in the visible from an rf excited discharge has been studied. The gain of the system in the blue band at 4585 A is probed with an Ar-ion laser. With gain sensitivity limited to 1/2% due to beam steering and defocusing effects, the system has no gain.

  4. Sediment accumulation and mercury (Hg) flux in Avicennia marina forest of Deep Bay, China

    Science.gov (United States)

    Li, Ruili; Chai, Minwei; Guo, Meixian; Qiu, Guo Yu

    2016-08-01

    To investigate the rate of sediment accumulation and mercury (Hg) flux in Avicennia marina forest of Deep Bay, China, sediment cores were analyzed. The results showed that Hg concentrations were much higher at all depths compared to the background level. A high correlation between Hg and total organic carbon (TOC) indicated their similar anthropogenic origin. Sedimentation rate was estimated to be 1.38 cm a-1 by 210Pb geochronology. The increase in the mass sediment accumulation rates was rapid (range: 0.5-0.94 g cm-2 a-1), and the Hg fluxes ranged between 76 and 116 ng cm-2 a-1 during the last three decades. The reduction in both Hg concentrations and flux during the last decade may be due to the adoption of contamination control policies. Our results support the notion that the Hg fluxes determined from the sediment cores reveal the effects of anthropogenic influences from the areas around Deep Bay.

  5. Soil-Air Mercury Flux near a Large Industrial Emission Source before and after Closure (Flin Flon, Manitoba, Canada).

    Science.gov (United States)

    Eckley, Chris S; Blanchard, Pierrette; McLennan, Daniel; Mintz, Rachel; Sekela, Mark

    2015-08-18

    Prior to its closure, the base-metal smelter in Flin Flon, Manitoba, Canada was one of the North America's largest mercury (Hg) emission sources. Our project objective was to understand the exchange of Hg between the soil and the air before and after the smelter closure. Field and laboratory Hg flux measurements were conducted to identify the controlling variables and used for spatial and temporal scaling. Study results showed that deposition from the smelter resulted in the surrounding soil being enriched in Hg (up to 99 μg g(-1)) as well as other metals. During the period of smelter operation, air concentrations were elevated (30 ± 19 ng m(-3)), and the soil was a net Hg sink (daily flux: -3.8 ng m(-2) h(-1)). Following the smelter closure, air Hg(0) concentrations were reduced, and the soils had large emissions (daily flux: 108 ng m(-2) h(-1)). The annual scaling of soil Hg emissions following the smelter closure indicated that the landscape impacted by smelter deposition emitted or re-emitted almost 100 kg per year. Elevated soil Hg concentrations and emissions are predicted to continue for hundreds of years before background concentrations are re-established. Overall, the results indicate that legacy Hg deposition will continue to cycle in the environment long after point-source reductions.

  6. Mercury (Hg) emissions from domestic biomass combustion for space heating.

    Science.gov (United States)

    Huang, Jiaoyan; Hopke, Philip K; Choi, Hyun-Deok; Laing, James R; Cui, Huailue; Zananski, Tiffany J; Chandrasekaran, Sriraam Ramanathan; Rattigan, Oliver V; Holsen, Thomas M

    2011-09-01

    Three mercury (Hg) species (gaseous elemental mercury (GEM), gaseous oxidized mercury (GOM), and fine particulate-bound mercury (PBM(2.5))) were measured in the stack of a small scale wood combustion chamber at 400°C, in the stack of an advanced wood boiler, and in two areas influenced by wood combustion. The low temperature process (lab-scale) emitted mostly GEM (∼99% when burning wood pellets and ∼95% when burning unprocessed wood). The high temperature wood boiler emitted a greater proportion of oxidized Hg (approximately 65%) than the low temperature system. In field measurements, mean PBM(2.5) concentrations at the rural and urban sites in winter were statistically significantly higher than in warmer seasons and were well correlated with Delta-C concentrations, a wood combustion indictor measured by an aethalometer (UV-absorbable carbon minus black carbon). Overall the results suggest that wood combustion may be an important source of oxidized mercury (mostly in the particulate phase) in northern climates in winter.

  7. Measuring Hg and MeHg fluxes from dynamic systems using high resolution in situ monitoring - case study: the Sacramento-San Joaquin Delta

    Science.gov (United States)

    Fleck, J. A.; Bergamaschi, B. A.; Downing, B. D.; Lionberger, M. A.; Schoellhamer, D.; Boss, E.; Heim, W.; Stephenson, M.

    2006-12-01

    Quantifying net loads in tidal systems is difficult, time consuming, and often very expensive. Owing to the relatively rapid nature of tidal exchange, numerous measurements are required in a brief amount of time to accurately quantify constituent fluxes between a tidal wetland and its surrounding waters. Further complicating matters, the differences in chemical concentrations of a constituent between the flood and ebb tides are often small, so that the net export of the constituent is orders of magnitude smaller than the bulk exchange in either direction over the tidal cycle. Thus, high-resolution sampling coupled with high-sensitivity instruments over an adequate amount of time is required to accurately determine a net flux. These complications are exacerbated for mercury species because of the difficulties related to clean sampling and trace-level analysis. The USGS currently is collecting data to determine the fluxes of total mercury (Hg) and methyl-Hg (MeHg) in dissolved and particulate phases at Browns Island in the San Francisco Bay-Delta, a tidally influenced estuarine system. Our field deployment package consists of an upward-looking current profiler to quantify water flux, and an array of other instruments measuring the following parameters: UV absorption, DO, pH, salinity, temperature, water depth, optical backscatter, fluorescence, and spectral attenuation. Measurements are collected at 30-minute intervals for seasonal, month-long deployments in the main slough of Brown's Island. We infer Hg and MeHg concentrations by using multivariate analysis of spectral absorbance and fluorescence properties of the continuous measurements, and comparing them to those of discrete samples taken hourly over a 25-hour tidal cycle for each deployment. Preliminary results indicate that in situ measurements can be used to predict MeHg concentrations in a tidal wetland slough in both the filtered (r2=0.96) and unfiltered (r2=0.95) fractions. Despite seasonal differences in

  8. Enhanced Hg{sup 2+} removal and Hg{sup 0} re-emission control from wet fuel gas desulfurization liquors with additives

    Energy Technology Data Exchange (ETDEWEB)

    Tingmei Tang; Jiang Xu; Rongjie Lu; Jingjing Wo; Xinhua Xu [Zhejiang University, Hangzhou (China). Department of Environmental Engineering

    2010-12-15

    Secondary atmospheric pollutions may result from wet flue gas desulfurization (FGD) systems caused by the reduction of Hg{sup 2+} to Hg{sup 0}. The present study employed three agents: Na{sub 2}S, 2,4,6-trimercaptotiazine, trisodium salt nonahydrate (TMT) and sodium dithiocarbamate (DTCR) to precipitate aqueous Hg{sup 2+} in simulated desulfurization solutions. The effects of the precipitator's dosing quantity, the initial pH value, the reaction temperature, the concentrations of Cl{sup -} and other metal ions (e.g. Cu{sup 2+} and Pb{sup 2+}) on Hg{sup 2+} removal were studied. A linear relationship was observed between Hg{sup 2+} removal efficiency and the increasing precipitator's doses along with initial pH. The addition of chloride and metal ions impaired the Hg{sup 2+} removal from solutions due to the complexation of Cl{sup -} and Hg{sup 2+} as well as the chelating competition between Hg{sup 2+} and other metal ions. Based on a comprehensive comparison of the treatment effects, DTCR was found to be the most effective precipitating agent. Moreover, all the precipitating agents were potent enough to inhibit Hg{sup 2+} reduction as well as Hg{sup 0} re-emission from FGD liquors. More than 90% Hg{sup 2+} was captured by precipitating agents while Hg{sup 2+} reduction efficiency decreased from 54% to just less than 3%. The additives could efficiently control the secondary Hg{sup 0} pollution from FGD liquors. 21 refs., 6 figs.

  9. A laboratory-incubated redox oscillation experiment to investigate Hg fluxes from highly contaminated coastal marine sediments (Gulf of Trieste, Northern Adriatic Sea).

    Science.gov (United States)

    Emili, A; Carrasco, L; Acquavita, A; Covelli, S

    2014-03-01

    Mercury (Hg) mobility at the sediment-water interface was investigated during a laboratory incubation experiment conducted with highly contaminated sediments (13 μg g(-1)) of the Gulf of Trieste. Undisturbed sediment was collected in front of the Isonzo River mouth, which inflows Hg-rich suspended material originating from the Idrija (NW Slovenia) mining district. Since hypoxic and anoxic conditions at the bottom are frequently observed and can influence the Hg biogeochemical behavior, a redox oscillation was simulated in the laboratory, at in situ temperature, using a dark flux chamber. Temporal variations of several parameters were monitored simultaneously: dissolved Hg (DHg) and methylmercury (MeHg), O2, NH4 (+), NO3 (-) + NO2 (-), PO4 (3-), H2S, dissolved Mn(2+), dissolved inorganic and organic carbon (DIC and DOC). Under anoxic conditions, both Hg (665 ng m(2) day(-1)) and MeHg (550 ng m(2) day(-1)) fluxed from sediments into the water column, whereas re-oxygenation caused concentrations of MeHg and Hg to rapidly drop, probably due to re-adsorption onto Fe/Mn-oxyhydroxides and enhanced demethylation processes. Hence, during anoxic events, sediments of the Gulf of Trieste may be considered as an important source of DHg species for the water column. On the contrary, re-oxygenation of the bottom compartment mitigates Hg and MeHg release from the sediment, thus acting as a natural "defence" from possible interaction between the metal and the aquatic organisms.

  10. CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA.

    Science.gov (United States)

    O'Keefe, Jennifer M K; Henke, Kevin R; Hower, James C; Engle, Mark A; Stracher, Glenn B; Stucker, J D; Drew, Jordan W; Staggs, Wayne D; Murray, Tiffany M; Hammond, Maxwell L; Adkins, Kenneth D; Mullins, Bailey J; Lemley, Edward W

    2010-03-01

    Carbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr. The sum of CO(2) emissions from seven vents at the Ruth Mullins fire is 726+/-72t/yr, suggesting that the fire is consuming about 250-280t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21+/-1.8t/yr and >840+/-170g/yr, respectively. The CO(2) emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9x10(6)t CO(2)/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO(2) and Hg emissions from coal-fires in the U.S. are estimated at 1.4x10(7)-2.9x10(8)t/yr and 0.58-11.5t/yr, respectively. This initial work indicates that coal fires may be an important source of CO(2), CO, Hg and other atmospheric constituents.

  11. Estimating mercury emission outflow from East Asia using CMAQ-Hg

    Directory of Open Access Journals (Sweden)

    C.-J. Lin

    2009-10-01

    Full Text Available East Asia contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. Recently, there are concerns for the long-range transport of mercury from East Asia to North America, which may lead to enhanced dry and wet depositions in North America. In this study, we performed four monthly simulations (January, April, July and October in 2005 using CMAQ-Hg v4.6 in an East Asian model domain. Coupled with a mass balance analysis and a number of emission inventory scenarios, the chemical transport of atmospheric mercury, the seasonal mercury transport budgets and mercury emission outflow from the East Asian region were investigated. The total annual mercury deposition in the region for the modeling year is estimated to be 821 Mg, with 396 Mg contributed by wet deposition and 425 Mg contributed by dry deposition. Regional mercury transport budgets show strong seasonal variability, with a net removal of RGM (7~5 Mg mo−1 and PHg (13~21 Mg mo−1, and a net export of GEM (60~130 Mg mo−1 from the study domain. The annual outflow caused by the East Asian emission is estimated to be in the range of 1369~1671 Mg yr−1, primarily in the form of GEM. This represents about 75% of the total mercury emissions (anthropogenic and natural in the region. The emission outflow from this source region would contribute to 20~30% of mercury deposition in areas remote from anthropogenic emission sources.

  12. Emission-Line Fluxes of Northern Planetary Nebulae

    CERN Document Server

    Aksaker, N; Kızıloğlu, Ü; Atalay, B

    2015-01-01

    We present long slit spectrophotometric emission line fluxes of bright and extended (<5 arcsec in diameter) Planetary Nebulae (PNe) selected from Acker et al. 1992 catalog with suitable equitorial coordinates for Northern hemisphere. In total, 17 PNe have been choosen and observed in 2008--2010. To measure absolute fluxes, broad slit sizes, ranging from 3.5\\arcsec to 7.5\\arcsec were used and thus equivalent widths of all observable emission line fluxes were also calculated. Among 17 PNe's observed, line flux measurements of 12 of them were made for the first time. This work also aims to extend the sky coverage of emission line flux standards in Northern hemisphere (Dopita & Hua 1997 - 52 PNe in Southern hemisphere; Wright et al. 2005 - 6 PNe in Northern hemisphere). Electron temperatures and densities, and chemical abundances of these PNe were also calculated in this work. These data is expected to lead the photometric or spectrometric further work for absolute emission line flux measurements needed fo...

  13. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations

    Science.gov (United States)

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-01

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO2 emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30–40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO2 and NO2 emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy. PMID:28125054

  14. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations.

    Science.gov (United States)

    Wu, Fengcheng; Li, Ang; Xie, Pinhua; Chen, Hao; Hu, Zhaokun; Zhang, Qiong; Liu, Jianguo; Liu, Wenqing

    2017-01-25

    Mobile differential optical absorption spectroscopy (mobile DOAS) is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities) in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO₂ emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS) under different drive speeds and wind fields revealed that the optimal drive velocity is 30-40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO₂ and NO₂ emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy.

  15. Emission Flux Measurement Error with a Mobile DOAS System and Application to NOx Flux Observations

    Directory of Open Access Journals (Sweden)

    Fengcheng Wu

    2017-01-01

    Full Text Available Mobile differential optical absorption spectroscopy (mobile DOAS is an optical remote sensing method that can rapidly measure trace gas emission flux from air pollution sources (such as power plants, industrial areas, and cities in real time. Generally, mobile DOAS is influenced by wind, drive velocity, and other factors, especially in the usage of wind field when the emission flux in a mobile DOAS system is observed. This paper presents a detailed error analysis and NOx emission with mobile DOAS system from a power plant in Shijiazhuang city, China. Comparison of the SO2 emission flux from mobile DOAS observations with continuous emission monitoring system (CEMS under different drive speeds and wind fields revealed that the optimal drive velocity is 30–40 km/h, and the wind field at plume height is selected when mobile DOAS observations are performed. In addition, the total errors of SO2 and NO2 emissions with mobile DOAS measurements are 32% and 30%, respectively, combined with the analysis of the uncertainties of column density, wind field, and drive velocity. Furthermore, the NOx emission of 0.15 ± 0.06 kg/s from the power plant is estimated, which is in good agreement with that from CEMS observations of 0.17 ± 0.07 kg/s. This study has significantly contributed to the measurement of the mobile DOAS system on emission from air pollution sources, thus improving estimation accuracy.

  16. EURISOL-DS Multi-MWatt Hg Target: Neutron flux and fission rate calculations for the MAFF configuration

    CERN Document Server

    Romanets, Y; Vaz, P; Herrera-Martinez, A; Kadi, Y; Kharoua, C; Lettry, J; Lindroos, M

    The EURISOL (The EURopean Isotope Separation On-Line Radioactive Ion Beam) project aims at producing high intensity radioactive ion beams produced by neutron induced fission on a fissile target (235U) surrounding a liquid mercury converter. A proton beam of 1 GeV and 4 MW impinges on the Hg converter generating by spallation reactions high neutron fluxes. In this work the state-of-the-art Monte Carlo codes MCNPX and FLUKA were used to assess the neutronics performance of the system which geometry, inspired from the MAFF concept, allows a versatile manipulation of the fission targets. The objective of the study was to optimize the geometry of the system and the materials used in the fuel and reflector elements of the system, in order to achieve the highest possible fission rate.

  17. High heat flux transport by microbubble emission boiling

    Science.gov (United States)

    Suzuki, Koichi

    2007-10-01

    In highly subcooled flow boiling, coalescing bubbles on the heating surface collapse to many microbubbles in the beginning of transition boiling and the heat flux increases higher than the ordinary critical heat flux. This phenomenon is called Microbubble Emission Boiling, MEB. It is generated in subcooled flow boiling and the maximum heat flux reaches about 1 kW/cm2(10 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s for a small heating surface of 10 mm×10 mm which is placed at the bottom surface of horizontal rectangular channel. The high pressure in the channel is observed at collapse of the coalescing bubbles and it is closely related the size of coalescing bubbles. Periodic pressure waves are observed in MEB and the heat flux increases linearly in proportion to the pressure frequency. The frequency is considered the frequency of liquid-solid exchange on the heating surface. For the large sized heating surface of 50 mm length×20 mm width, the maximum heat flux obtained is 500 W/cm2 (5 MW/m2) at liquid subcooling of 40 K and liquid velocity of 0.5 m/s. This is considerably higher heat flux than the conventional cooling limit in power electronics. It is difficult to remove the high heat flux by MEB for a longer heating surface than 50 mm by single channel type. A model of advanced cooling device is introduced for power electronics by subcooled flow boiling with impinging jets. Themaxumum cooling heat flux is 500 W/cm2 (5 MW/m2). Microbubble emission boiling is useful for a high heat flux transport technology in future power electronics used in a fuel-cell power plant and a space facility.

  18. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  19. Emission spectra from direct current and microwave powered Hg lamps at very high pressure

    Science.gov (United States)

    Hamady, M.; Lister, G. G.; Stafford, L.

    2013-11-01

    Discharge lamps containing mercury at pressures above 100 bar are commercially used in data projectors and television projector systems. Due to their small size, these lamps are difficult to investigate experimentally, but spectral measurements, combined with radiation transport calculations, have provided useful information on the visible spectrum. However, classical spectral line broadening theory is inadequate to describe the UV portion of the spectrum, so self-consistent modelling of these discharges is not possible at present. This paper discusses the differences between discharges containing electrodes and discharges sustained by a microwave (mw) electromagnetic field, on the basis of the experimentally measured temperature profile in an electroded discharge, and a temperature profile computed from a 1D power balance model for a microwave discharge. A model based on the ray-tracing method is employed to simulate the radiation transport in these lamps. The model has been validated by comparing the emission spectrum from dc discharge lamps with those obtained experimentally. The output flux, luminous flux, luminous efficacy, the correlated colour temperature, the chromaticity coordinates and photometric curves of the lamp were then obtained. These results were also compared with those of a theoretically calculated temperature profile for the same lamp, excited by microwave power in the TM010 mode.

  20. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007

    Directory of Open Access Journals (Sweden)

    H. Z. Tian

    2010-09-01

    Full Text Available Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg, arsenic (As, and selenium (Se from coal combustion in China for the period 1980–2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.. Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1°×1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t, Henan (33.63 t, Shanxi (21.14 t, Guizhou (19.48 t, and Hebei (19.35 t; the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t, Hunan (213.20 t, Jilin (141.21 t, Hebei (138.54 t, and Inner Mongolia (127.49 t; while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong

  1. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980-2007

    Science.gov (United States)

    Tian, H. Z.; Wang, Y.; Xue, Z. G.; Cheng, K.; Qu, Y. P.; Chai, F. H.; Hao, J. M.

    2010-12-01

    Emissions of hazardous trace elements in China are of great concern because of their negative impacts on local air quality as well as on regional environmental health and ecosystem risks. In this paper, the atmospheric emissions of mercury (Hg), arsenic (As), and selenium (Se) from coal combustion in China for the period 1980-2007 are estimated on the basis of coal consumption data and emission factors, which are specified by different categories of combustion facilities, coal types, and the equipped air pollution control devices configuration (Dust collectors, FGD, etc.). Specifically, multi-year emission inventories of Hg, As, and Se from 30 provinces and 4 economic sectors (thermal power, industry, residential use, and others) are evaluated and analyzed in detail. Furthermore, the gridded distribution of provincial-based Hg, As, and Se emissions in 2005 at a resolution of 1° × 1° is also plotted. It shows that the calculated national total atmospheric emissions of Hg, As, and Se from coal combustion have rapidly increased from 73.59 t, 635.57 t, and 639.69 t in 1980 to 305.95 t, 2205.50 t, and 2352.97 t in 2007, at an annually averaged growth rate of 5.4%, 4.7%, and 4.9%, respectively. The industrial sector is the largest source for Hg, As, and Se, accounting for about 50.8%, 61.2%, and 56.2% of the national totals, respectively. The share of power plants is 43.3% for mercury, 24.9% for arsenic, and 33.4% for selenium, respectively. Also, it shows remarkably different regional contribution characteristics of these 3 types of trace elements, the top 5 provinces with the heaviest mercury emissions in 2007 are Shandong (34.40 t), Henan (33.63 t), Shanxi (21.14 t), Guizhou (19.48 t), and Hebei (19.35 t); the top 5 provinces with the heaviest arsenic emissions in 2007 are Shandong (219.24 t), Hunan (213.20 t), Jilin (141.21 t), Hebei (138.54 t), and Inner Mongolia (127.49 t); while the top 5 provinces with the heaviest selenium emissions in 2007 are Shandong (289

  2. Poynting flux dominated jets challenged by their photospheric emission

    Energy Technology Data Exchange (ETDEWEB)

    Bégué, Damien [The Oskar Klein Centre for Cosmoparticle Physics, AlbaNova, SE-106 91 Stockholm (Sweden); Department of Physics, KTH Royal Institute of Technology, AlbaNova, University Center, SE-106 91 Stockholm (Sweden)

    2015-12-17

    One of the key open question for gamma-ray bursts (GRBs) jets, is the magnetization of the outflow. Here we consider the photospheric emission of Poynting flux dominated outflows, when the dynamics is mediated by magnetic reconnection. We show that thermal three-particle processes, responsible for the thermalization of the plasma, become inefficient far below the photosphere. Conservation of the total photon number above this radius, combined with Compton scattering below the photosphere enforces kinetic equilibrium between electrons and photons. This, in turn, leads to an increase in the observed photon temperature, which reaches ≳ 8 MeV (observed energy) when decoupling the plasma at the photosphere. This result is weakly dependent on the free model parameters. The predicted peak energy is more than an order of magnitude higher than the observed peak energy of most GRBs, which puts strong constraints on the magnetization of these outflows.

  3. Spatially resolved SO2 flux emissions from Mt Etna

    Science.gov (United States)

    Bitetto, M.; Delle Donne, D.; Tamburello, G.; Battaglia, A.; Coltelli, M.; Patanè, D.; Prestifilippo, M.; Sciotto, M.; Aiuppa, A.

    2016-01-01

    Abstract We report on a systematic record of SO2 flux emissions from individual vents of Etna volcano (Sicily), which we obtained using a permanent UV camera network. Observations were carried out in summer 2014, a period encompassing two eruptive episodes of the New South East Crater (NSEC) and a fissure‐fed eruption in the upper Valle del Bove. We demonstrate that our vent‐resolved SO2 flux time series allow capturing shifts in activity from one vent to another and contribute to our understanding of Etna's shallow plumbing system structure. We find that the fissure eruption contributed ~50,000 t of SO2 or ~30% of the SO2 emitted by the volcano during the 5 July to 10 August eruptive interval. Activity from this eruptive vent gradually vanished on 10 August, marking a switch of degassing toward the NSEC. Onset of degassing at the NSEC was a precursory to explosive paroxysmal activity on 11–15 August.

  4. GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions

    Directory of Open Access Journals (Sweden)

    H. S. Chen

    2014-10-01

    Full Text Available Atmospheric mercury (Hg is a toxic pollutant and can be transported over the whole globe due to its long lifetime in the atmosphere. For the purpose of assessing Hg hemispheric transport and better characterizing regional Hg pollution, a global nested atmospheric Hg transport model (GNAQPMS-Hg has been developed. In GNAQPMS-Hg, the gas and aqueous phase Hg chemistry representing the transformation among three forms of Hg: elemental mercury (Hg(0, divalent mercury (Hg(II, and primary particulate mercury (Hg(P are calculated. A detailed description of the model, including mercury emissions, gas and aqueous phase chemistry, and dry and wet deposition is given in this study. Worldwide observations including extensive data in China have been collected for model evaluation. Comparison results show that the model reasonably simulates the global mercury budget and the spatial–temporal variation of surface mercury concentrations and deposition. Overall, model predictions of annual total gaseous mercury (TGM and wet deposition agree with observations within a factor of two, and within a factor of five for oxidized mercury and dry deposition. The model performs significantly better in North America and Europe than in East Asia. This can probably be attributed to the large uncertainties in emission inventories, coarse model resolution and to the inconsistency between the simulation and observation periods in East Asia. Compared to the global simulation, the nested simulation shows improved skill at capturing the high spatial variability of Hg concentrations and deposition over East Asia. In particular, the root mean square error (RMSE of simulated Hg wet deposition over East Asia is reduced by 24% in the nested simulation. Model sensitivity studies indicate that Chinese primary anthropogenic emissions account for 30 and 62% of surface mercury concentrations and deposition over China, respectively. Along the rim of the western Pacific, the contributions

  5. Standardization of flux chambers and wind tunnels for area source emission measurements at animal feeding operations

    Science.gov (United States)

    Researchers and practitioners have used many varied designs of wind tunnels and flux chambers to measure the flux of volatile organic compounds, odor, and ammonia from area sources at animal feeding operations. The measured fluxes are used to estimate emission factors or compare treatments. We sho...

  6. Salt-marsh plants as potential sources of Hg0 into the atmosphere

    Science.gov (United States)

    Canário, João; Poissant, Laurier; Pilote, Martin; Caetano, Miguel; Hintelmann, Holger; O'Driscoll, Nelson J.

    2017-03-01

    To assess the role of salt-marsh plants on the vegetation-atmospheric Hg0 fluxes, three salt marsh plant species, Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima were selected from a moderately contaminated site in the Tagus estuary during May 2012. Total mercury in stems and leaves for each plant as well as total gaseous mercury and vegetation-air Hg0 fluxes were measured over two continuous days. Mercury fluxes were estimated with a dynamic flux Tedlar® bag coupled to a high-resolution automated mercury analyzer (Tekran 2537A). Other environmental parameters such as air temperature, relative humidity and net solar radiation were also measured aside. H. portulacoides showed the highest total mercury concentrations in stems and leaves and the highest average vegetation-air Hg0 flux (0.48 ± 0.40 ng Hg m-2 h-1). The continuous measurements converged to a daily pattern for all plants, with enhanced fluxes during daylight and lower flux during the night. It is noteworthy that throughout the measurements a negative flux (air-vegetation) was never observed, suggesting the absence of net Hg0 deposition. Based on the above fluxes and the total area occupied by each species we have estimated the total amount of Hg0 emitted from this salt-marsh plants. A daily emission of 1.19 mg Hg d-1 was predicted for the Alcochete marsh and 175 mg Hg d-1 for the entire salt marsh area of the Tagus estuary.

  7. Multi-Pollutant Emissions Control: Pilot Plant Study of Technologies for Reducing Hg, SO3, NOx and CO2 Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Fenger; Richard A. Winschel

    2005-08-31

    A slipstream pilot plant was built and operated to investigate technology to adsorb mercury (Hg) onto the existing particulate (i.e., fly ash) by cooling flue gas to 200-240 F with a Ljungstrom-type air heater or with water spray. The mercury on the fly ash was then captured in an electrostatic precipitator (ESP). An alkaline material, magnesium hydroxide (Mg(OH){sub 2}), is injected into flue gas upstream of the air heater to control sulfur trioxide (SO{sub 3}), which prevents acid condensation and corrosion of the air heater and ductwork. The slipstream was taken from a bituminous coal-fired power plant. During this contract, Plant Design and Construction (Task 1), Start Up and Maintenance (Task 2), Baseline Testing (Task 3), Sorbent Testing (Task 4), Parametric Testing (Task 5), Humidification Tests (Task 6), Long-Term Testing (Task 7), and a Corrosion Study (Task 8) were completed. The Mercury Stability Study (Task 9), ESP Report (Task 11), Air Heater Report (Task 12) and Final Report (Task 14) were completed. These aspects of the project, as well as progress on Public Outreach (Task 15), are discussed in detail in this final report. Over 90% mercury removal was demonstrated by cooling the flue gas to 200-210 F at the ESP inlet; baseline conditions with 290 F flue gas gave about 26% removal. Mercury removal is sensitive to flue gas temperature and carbon content of fly ash. At 200-210 F, both elemental and oxidized mercury were effectively captured at the ESP. Mg(OH){sub 2} injection proved effective for removal of SO{sub 3} and eliminated rapid fouling of the air heater. The pilot ESP performed satisfactorily at low temperature conditions. Mercury volatility and leaching tests did not show any stability problems. No significant corrosion was detected at the air heater or on corrosion coupons at the ESP. The results justify larger-scale testing/demonstration of the technology. These conclusions are presented and discussed in two presentations given in July and

  8. Surface-air mercury fluxes across Western North America: A synthesis of spatial trends and controlling variables

    Science.gov (United States)

    Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David

    2016-01-01

    Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.

  9. Linking aerosol fluxes in street canyons to urban city-scale emissions

    Directory of Open Access Journals (Sweden)

    B. K. Tay

    2009-09-01

    Full Text Available In this study we investigate ultrafine particle (UFP fluxes using a first order eddy viscosity turbulence closure Computational Fluid Dynamics (CFD model and determine the different factors that influence emissions of UFP into the urban boundary layer. Both vertical turbulent fluxes as well as the fluxes due to mean flow are shown to contribute to the overall ventilation characteristics of street canyons. We then derive a simple parameterised numerical prediction model for canyon top UFP venting which is then compared with tower based micrometeorological flux measurements obtained during the REPARTEE and CityFlux field experiments.

  10. Mercury emissions from coal combustion: modeling and comparison of Hg capture in a fabric filter versus an electrostatic precipitator.

    Science.gov (United States)

    Scala, Fabrizio; Clack, Herek L

    2008-04-01

    Mercury emissions from coal combustion must be reduced, in response to new air quality regulations in the U.S. Although the most mature control technology is adsorption across a dust cake of powdered sorbent in a fabric filter (FF), most particulate control in the U.S. associated with coal combustion takes the form of electrostatic precipitation (ESP). Using recently developed models of mercury adsorption within an ESP and within a growing sorbent bed in a FF, parallel analyses of elemental mercury (Hg(0)) uptake have been conducted. The results show little difference between an ESP and a FF in absolute mercury removal for a low-capacity sorbent, with a high-capacity sorbent achieving better performance in the FF. Comparisons of fractional mercury uptake per-unit-pressure-drop provide a means for incorporating and comparing the impact of the much greater pressure drop of a FF as compared to an ESP. On a per-unit-pressure-drop basis, mercury uptake within an ESP exhibited better performance, particularly for the low-capacity sorbent and high mass loadings of both sorbents.

  11. Positron emission tomography for measurement of copper fluxes in live organisms

    OpenAIRE

    Peng, Fangyu

    2014-01-01

    Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography–computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spa...

  12. OPEN PATH TUNABLE DIODE LASER ABSORPTION SPECTROSCOPY FOR ACQUISITION OF FUGITIVE EMISSION FLUX DATA

    Science.gov (United States)

    Air pollutant emission from unconfined sources is an increasingly important environmental issue. The U.S. EPA has developed a gorund-based optical remote sensing method that enables direct measurement of fugitive emission flux from large area sources. Open-path Fourier transfor...

  13. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090-2099

    Science.gov (United States)

    Veira, A.; Lasslop, G.; Kloster, S.

    2016-04-01

    Global warming is expected to considerably impact wildfire activity and aerosol emission release in the future. Due to their complexity, the future interactions between climate change, wildfire activity, emission release, and atmospheric aerosol processes are still uncertain. Here we use the process-based fire model SPITFIRE within the global vegetation model JSBACH to simulate wildfire activity for present-day climate conditions and future Representative Concentration Pathways (RCPs). The modeled fire emission fluxes and fire radiative power serve as input for the aerosol-climate model ECHAM6-HAM2, which has been extended by a semiempirical plume height parametrization. Our results indicate a general increase in extratropical and a decrease in tropical wildfire activity at the end of the 21st century. Changes in emission fluxes are most pronounced for the strongest warming scenario RCP8.5 (+49% in the extratropics, -37% in the tropics). Tropospheric black carbon (BC) concentrations are similarly affected by changes in emission fluxes and changes in climate conditions with regional variations of up to -50% to +100%. In the Northern Hemispheric extratropics, we attribute a mean increase in aerosol optical thickness of +0.031±0.002 to changes in wildfire emissions. Due to the compensating effects of fire intensification and more stable atmospheric conditions, global mean emission heights change by at most 0.3 km with only minor influence on BC long-range transport. The changes in wildfire emission fluxes for the RCP8.5 scenario, however, may largely compensate the projected reduction in anthropogenic BC emissions by the end of the 21st century.

  14. Disaggregating Fossil Fuel Emissions from Biospheric Fluxes: Methodological Improvements for Inverse Methods

    Science.gov (United States)

    Yadav, V.; Shiga, Y. P.; Michalak, A. M.

    2012-12-01

    The accurate spatio-temporal quantification of fossil fuel emissions is a scientific challenge. Atmospheric inverse models have the capability to overcome this challenge and provide estimates of fossil fuel emissions. Observational and computational limitations limit current analyses to the estimations of a combined "biospheric flux and fossil-fuel emissions" carbon dioxide (CO2) signal, at coarse spatial and temporal resolution. Even in these coarse resolution inverse models, the disaggregation of a strong biospheric signal form a weaker fossil-fuel signal has proven difficult. The use of multiple tracers (delta 14C, CO, CH4, etc.) has provided a potential path forward, but challenges remain. In this study, we attempt to disaggregate biospheric fluxes and fossil-fuel emissions on the basis of error covariance models rather through tracer based CO2 inversions. The goal is to more accurately define the underlying structure of the two processes by using a stationary exponential covariance model for the biospheric fluxes, in conjunction with a semi-stationary covariance model derived from nightlights for fossil fuel emissions. A non-negativity constraint on fossil fuel emissions is imposed using a data transformation approach embedded in an iterative quasi-linear inverse modeling algorithm. The study is performed for January and June 2008, using the ground-based CO2 measurement network over North America. The quality of disaggregation is examined by comparing the inferred spatial distribution of biospheric fluxes and fossil-fuel emissions in a synthetic-data inversion. In addition to disaggregation of fluxes, the ability of the covariance models derived from nightlights to explain the fossil-fuel emissions over North America is also examined. The simple covariance model proposed in this study is found to improve estimation and disaggregation of fossil-fuel emissions from biospheric fluxes in the tracer-based inverse models.

  15. Determination of Hg{sup 2+} by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qing [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); Zhang, Zhen [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China); School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Wang, Zheng, E-mail: wangzheng@mail.sic.ac.cn [Shanghai Institute of Ceramics, Chinese Academy of Science, Shanghai 200050 (China)

    2014-10-03

    Highlights: • A modified SBA-15 mesoporous silica (SH-SBA-15) was synthesized as a sorbent. • On-line SPE combined with SCGD-AES based on FIA was used to detect Hg{sup 2+} firstly. • A simple, low-cost Hg{sup 2+} analysis in a complex matrix was established. • The sensitive detection of Hg{sup 2+} was achieved with a detection limit of 0.75 μg L{sup −1}. - Abstract: A simple and sensitive method to determine Hg{sup 2+} was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized L-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg{sup 2+} elution conditions, namely, an FI flow rate of 2.0 mL min{sup −1} and an eluent comprised of 10% thiourea in 0.2 mol L{sup −1} HNO{sub 3}. The detection limit of FI–SCGD-AES was determined to be 0.75 μg L{sup −1}, and the precision of the 11 replicate Hg{sup 2+} measurements was 0.86% at a concentration of 100 μg L{sup −1}. The proposed method was validated by determining Hg{sup 2+} in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310)

  16. Simultaneous coastal measurements of ozone deposition fluxes and iodine-mediated particle emission fluxes with subsequent CCN formation

    Directory of Open Access Journals (Sweden)

    J. D. Whitehead

    2010-01-01

    Full Text Available Here we present the first observations of simultaneous ozone deposition fluxes and ultrafine particle emission fluxes over an extensive infra-littoral zone. Fluxes were measured by the eddy covariance technique at the Station Biologique de Roscoff, on the coast of Brittany, north-west France. This site overlooks a very wide (3 km littoral zone controlled by very deep tides (9.6 m exposing extensive macroalgae beds available for significant iodine mediated photochemical production of ultrafine particles. The aspect at the Station Biologique de Roscoff provides an extensive and relatively flat, uniform fetch within which micrometeorological techniques may be utilized to study links between ozone deposition to macroalgae (and sea water and ultrafine particle production.

    Ozone deposition to seawater at high tide was significantly slower (vd[O3]=0.302±0.095 mm s−1 than low tidal deposition. A statistically significant difference in the deposition velocities to macroalgae at low tide was observed between night time (vd[O3]=1.00±0.10 mm s−1 and daytime (vd[O3]=2.05±0.16 mm s−1 when ultrafine particle formation results in apparent particle emission. Very high emission fluxes of ultrafine particles were observed during daytime periods at low tides ranging from 50 000 particles cm−2 s−1 to greater than 200 000 particles cm−2 s−1 during some of the lowest tides. These emission fluxes exhibited a significant relationship with particle number concentrations comparable with previous observations at another location. Apparent particle growth rates were estimated to be in the range 17–150 nm h−1 for particles in the size range 3–10 nm. Under certain conditions, particle growth may be inferred to continue to greater than 120 nm over tens

  17. Integral emission factors for methane determined using urban flux measurements and local-scale inverse models

    Science.gov (United States)

    Christen, Andreas; Johnson, Mark; Molodovskaya, Marina; Ketler, Rick; Nesic, Zoran; Crawford, Ben; Giometto, Marco; van der Laan, Mike

    2013-04-01

    The most important long-lived greenhouse gas (LLGHG) emitted during combustion of fuels is carbon dioxide (CO2), however also traces of the LLGHGs methane (CH4) and nitrous oxide (N2O) are released, the quantities of which depend largely on the conditions of the combustion process. Emission factors determine the mass of LLGHGs emitted per energy used (or kilometre driven for cars) and are key inputs for bottom-up emission modelling. Emission factors for CH4 are typically determined in the laboratory or on a test stand for a given combustion system using a small number of samples (vehicles, furnaces), yet associated with larger uncertainties when scaled to entire fleets. We propose an alternative, different approach - Can integrated emission factors be independently determined using direct micrometeorological flux measurements over an urban surface? If so, do emission factors determined from flux measurements (top-down) agree with up-scaled emission factors of relevant combustion systems (heating, vehicles) in the source area of the flux measurement? Direct flux measurements of CH4 were carried out between February and May, 2012 over a relatively densely populated, urban surface in Vancouver, Canada by means of eddy covariance (EC). The EC-system consisted of an ultrasonic anemometer (CSAT-3, Campbell Scientific Inc.) and two open-path infrared gas analyzers (Li7500 and Li7700, Licor Inc.) on a tower at 30m above the surface. The source area of the EC system is characterised by a relative homogeneous morphometry (5.3m average building height), but spatially and temporally varying emission sources, including two major intersecting arterial roads (70.000 cars drive through the 50% source area per day) and seasonal heating in predominantly single-family houses (natural gas). An inverse dispersion model (turbulent source area model), validated against large eddy simulations (LES) of the urban roughness sublayer, allows the determination of the spatial area that

  18. Determination of Hg(2+) by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry.

    Science.gov (United States)

    Li, Qing; Zhang, Zhen; Wang, Zheng

    2014-10-03

    A simple and sensitive method to determine Hg(2+) was developed by combining solution-cathode glow discharge atomic emission spectrometry (SCGD-AES) with flow injection (FI) based on on-line solid-phase extraction (SPE). We synthesized l-cysteine-modified mesoporous silica and packed it in an SPE microcolumn, which was experimentally determined to possess a good mercury adsorption capacity. An enrichment factor of 42 was achieved under optimized Hg(2+) elution conditions, namely, an FI flow rate of 2.0 mL min(-1) and an eluent comprised of 10% thiourea in 0.2 mol L(-1) HNO3. The detection limit of FI-SCGD-AES was determined to be 0.75 μg L(-1), and the precision of the 11 replicate Hg(2+) measurements was 0.86% at a concentration of 100 μg L(-1). The proposed method was validated by determining Hg(2+) in certified reference materials such as human hair (GBW09101b) and stream sediment (GBW07310).

  19. Estimated IR and phosphorescence emission fluxes for specific Polycyclic Aromatic Hydrocarbons in the Red Rectangle

    CERN Document Server

    Mulas, G; Joblin, C; Toublanc, D

    2005-01-01

    Following the tentative identification of the blue luminescence in the Red Rectangle by Vijh et al. (2005), we compute absolute fluxes for the vibrational IR emission and phosphorescence bands of three small polycyclic aromatic hydrocarbons. The calculated IR spectra are compared with available ISO observations. A subset of the emission bands are predicted to be observable using presently available facilities, and can be used for an immediate, independent, discriminating test on their alleged presence in this well-known astronomical object.

  20. Particulate emissions from a beef cattle feedlot using the flux-gradient technique.

    Science.gov (United States)

    Bonifacio, Henry F; Maghirang, Ronaldo G; Trabue, Steven L; McConnell, Laura L; Prueger, John H; Razote, Edna B

    2014-07-01

    Data on air emissions from open-lot beef cattle () feedlots are limited. This research was conducted to determine fluxes of particulate matter with an aerodynamic diameter ≤10 μm (PM) from a commercial beef cattle feedlot in Kansas using the flux-gradient technique, a widely used micrometeorological method for air emissions from open sources. Vertical PM concentration profiles and micrometeorological parameters were measured at the feedlot using tapered element oscillating microbalance PM samplers and eddy covariance instrumentations (i.e., sonic anemometer and infrared hygrometer), respectively, from May 2010 through September 2011, representing feedlot conditions with air temperatures ranging from -24 to 39°C. Calculated hourly PM fluxes varied diurnally and seasonally, ranging up to 272 mg m h, with an overall median of 36 mg m h. For warm conditions (air temperature of 21 ± 10°C), the highest hourly PM fluxes (range 116-146 mg m h) were observed during the early evening period, from 2000 to 2100 h. For cold conditions (air temperature of -2 ± 8°C), the highest PM fluxes (range 14-27 mg m h) were observed in the afternoon, from 1100 to 1500 h. Changes in the hourly trend of PM fluxes coincided with changes in friction velocity, air temperature, sensible heat flux, and surface roughness. The PM emission was also affected by the pen surface water content, where a water content of at least 20% (wet basis) would be sufficient to effectively reduce PM emissions from pens by as much as 60%.

  1. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Science.gov (United States)

    Karl, T.; Apel, E.; Hodzic, A.; Riemer, D. D.; Blake, D. R.; Wiedinmyer, C.

    2009-01-01

    Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC) fluxes of Volatile Organic Compounds (VOC) using Proton Transfer Reaction Mass Spectrometry (PTR-MS) on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC) flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10-15 g/g) including the International airport (e.g. 3-5 g/g) and a mean flux (concentration) ratio of 3.2±0.5 g/g (3.9±0.3 g/g) across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX- Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes) compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE) and the biomass burning marker acetonitrile (CH3CN), we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2-13%).

  2. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2009-01-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-median midday toluene and benzene fluxes are calculated to be on the order of 14.1±4.0 mg/m2/h and 4.7±2.3 mg/m2/h, respectively. For comparison the adjusted CAM2004 emission inventory estimates toluene fluxes of 10 mg/m2/h along the footprint of the flight-track. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 g/g including the International airport (e.g. 3–5 g/g and a mean flux (concentration ratio of 3.2±0.5 g/g (3.9±0.3 g/g across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (BTEX– Benzene/Toluene/Ethylbenzene/m, p, o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >87% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds in the MCMA (2–13%.

  3. Eddy covariance VOC emission and deposition fluxes above grassland using PTR-TOF

    Directory of Open Access Journals (Sweden)

    T. M. Ruuskanen

    2010-09-01

    Full Text Available Eddy covariance (EC is the preferable technique for flux measurements since it is the only direct flux determination method. It requires a continuum of high time resolution measurements (e.g. 5–20 Hz. For volatile organic compounds (VOC soft ionization via proton transfer reaction has proven to be a quantitative method for real time mass spectrometry; here we use a proton transfer reaction time of flight mass spectrometer (PTR-TOF for 10 Hz EC measurements of full mass spectra up to m/z 315. The mass resolution of the PTR-TOF enabled the identification of chemical formulas and separation of oxygenated and hydrocarbon species exhibiting the same nominal mass. We determined 481 ion mass peaks from ambient air concentration above a managed, temperate mountain grassland in Neustift, Stubai Valley, Austria. During harvesting we found significant fluxes of 18 compounds distributed over 43 ions, including protonated parent compounds, as well as their isotopes and fragments and VOC-H+-water clusters. The dominant BVOC fluxes were methanol, acetaldehyde, ethanol, hexenal and other C6 leaf wound compounds, acetone, acetic acid, monoterpenes and sequiterpenes.

    The smallest reliable fluxes we determined were less than 0.1 nmol m−2 s−1, as in the case of sesquiterpene emissions from freshly cut grass. Terpenoids, including mono- and sesquiterpenes, were also deposited to the grassland before and after the harvesting. During cutting, total VOC emission fluxes up to 200 nmol C m−2 s−1 were measured. Methanol emissions accounted for half of the emissions of oxygenated VOCs and a third of the carbon of all measured VOC emissions during harvesting.

  4. 40 CFR 75.81 - Monitoring of Hg mass emissions and heat input at the unit level.

    Science.gov (United States)

    2010-07-01

    ... cubic meter (µg/scm); and (2) A flow monitoring system; and (3) A continuous moisture monitoring system... Hg concentration monitoring system (as defined in § 72.2 of this chapter) or a sorbent trap monitoring system (as defined in § 72.2 of this chapter), to measure the mass concentration of total...

  5. Trace determination of Hg together with As, Sb, Se by miniaturized optical emission spectrometry integrated with chemical vapor generation and capacitively coupled argon microwave miniplasma discharge

    Science.gov (United States)

    Matusiewicz, Henryk; Ślachciński, Mariusz

    2017-07-01

    A miniaturized optical emission spectrometer (OES) with capacitively coupled argon microwave microplasma (μCMP) as and excitation source and chemical vapor generation (CVG) for sample introduction was constructed for the determination of trace Hg, As, Sb and Se. The applied method enabled simultaneous determination of hydride-forming elements (As, Sb, Se) and volatile Hg. Mercury cold vapor and the hydride volatile species of As, Sb and Se were generated when standard or sample solutions were separated from the liquid phase for transport to the capacitively coupled microwave microplasma and detection of their atomic emission. A univariate approach and the simplex optimization procedure were used to achieve optimized conditions and derive analytical figures of merit. The experimental concentration detection limits (LODs) for simultaneous determination, calculated as the concentration giving a signal equal to three times of the standard deviation of the blank (LOD, 3σblank criterion, peak height) were 3.0, 1.4, 1.5 and 3.8 ng mL- 1 for Hg, As, Sb and Se, respectively. The method was validated by the analysis of three Certified Reference Materials (NIST 2711, NRCC DOLT-2, NIST 1643e) of different matrix composition and by the standard addition technique. The method offers relatively good precision (RSD ranged from 5% to 8%) for microsampling (200 μL) analysis. The measured of contents of elements in certified reference materials were in good agreement with the certified values (Hg 1.99-6.25 μg g- 1, As 16.6-105 μg g- 1, Sb 19.4-56.88 μg g- 1, Se 1.52-11.68 μg g- 1), according to the Student t-test, for a confidence level of 95%.

  6. [Dynamics of H2S and COS emission fluxes from Calamagrostis different calamagrostis angustifolia wetlands in Sanjiang Plain].

    Science.gov (United States)

    Li, Xin-Hua; Liu, Jing-Shuang; Yang, Ji-Song

    2006-11-01

    Using the static chamber and chromatogram method, H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia in Sanjiang Plain were measured during growth season(5-9 month), the results showed that the seasonal and diurnal variations of H2S and COS emission fluxes were obvious, the mean H2S and COS emission fluxes from the mash meadow Calamagrostis angustifolia were 0.34 microg x (m2 x h)(-1) and - 0.29 microg x (m2 x h)(-1) respectively, the Calamagrostis angustifolia wetlands were the sources for H2S and the sinks for COS during the growth time. The emission fluxes of H2S and COS were affected by the Calamagrostis angustifolia growth, and there were H2S emission peak and COS absorbed peak during the bloom growth time, meanwhile the integrative correlation of H2S and COS emission fluxes were observed.

  7. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    NARCIS (Netherlands)

    Vilà-Guerau de Arellano, J.; Dries, van den K.; Pino, D.

    2009-01-01

    We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL). A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of i

  8. Airborne heavy metals over Europe: emissions, long-range transport and deposition fluxes to natural ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik

    1999-07-01

    This paper presents a brief review of the processes by which airborne heavy metals are transported from the main emission areas in Europe and become subject to deposition and absorption into terrestrial and aquatic ecosystems with subsequent transport and transformation within the biotic and abiotic media that comprise these ecosystems. Results from numerical simulation models capable of simulating long-range transport of heavy metals over Europe together with measurement data of heavy metal concentrations in air and precipitation and the corresponding dry and wet deposition fluxes are reported. European wide inventories of anthropogenic heavy metal emissions based on location and capacity of their dominating source categories such as fossil fuel burning in power plants, industrial and residential combustion, waste incineration and road traffic are briefly described. Emission reduction scenarios with respect to introduction of lead free gasoline are outlined. The critical gaps of knowledge on heavy metals in the atmosphere are identified focusing on uncertainties associated with emission fluxes in Eastern Europe and the scarcity of measurement data in that area. Future research is needed to estimate the effects of emission reductions on deposition fluxes of heavy metals to sensitive ecosystems such as forested areas in Europe is recommended. Special emphasis is placed on mercury, lead and cadmium which have been defined within the European convention on long-range transboundary air pollution of the United Nations-Economic Commission Europe (UN-ECE) to be the priority heavy metals of concern. (orig.)

  9. Geogenic Sources Strongly Contribute to the Mackenzie River Delta's Methane Emissions Derived From Airborne Flux Data

    Science.gov (United States)

    Kohnert, K.; Serafimovich, A.; Metzger, S.; Hartmann, J.; Sachs, T.

    2015-12-01

    Arctic permafrost-associated wetlands and thawing permafrost emit the greenhouse gas methane (CH4), either as a product of recent microbial activity in the active layer or taliks, or from deeper geogenic sources where pathways through the permafrost exist. Current emission estimates vary strongly between different models and there is still disagreement between bottom-up estimates from local field studies and top-down estimates from atmospheric measurements. We use airborne flux data from two campaigns in the Mackenzie River Delta, Canada, in July 2012 and 2013 to directly quantify permafrost CH4 emissions on the regional scale, to analyse the regional pattern of CH4 fluxes and to estimate the contribution of geogenic emissions to the overall CH4 budget of the delta. CH4 fluxes were calculated with a time-frequency resolved version of the eddy covariance technique, resulting in a gridded 100 m x 100 m resolution flux map within the footprints of the flight tracks. We distinguish geogenic gas seeps from biogenic sources by their strength and show that they contribute strongly to the annual CH4 budget of the delta. Our study provides the first estimate of annual CH4 release from the Mackenzie River Delta and the adjacent coastal plain. We show that one percent of the covered area contains the strongest geogenic seeps which contribute disproportionately to the annual emission estimate. Our results show that geogenic CH4 emissions might need more attention, especially in areas where permafrost is vulnerable to thawing sufficiently to create pathways for geogenic gas migration. The presented map can be used as a baseline for future CH4 flux studies in the Mackenzie River Delta.

  10. Emissions of volatile organic compounds inferred from airborne flux measurements over a megacity

    Directory of Open Access Journals (Sweden)

    T. Karl

    2008-07-01

    Full Text Available Toluene and benzene are used for assessing the ability to measure disjunct eddy covariance (DEC fluxes of Volatile Organic Compounds (VOC using Proton Transfer Reaction Mass Spectrometry (PTR-MS on aircraft. Statistically significant correlation between vertical wind speed and mixing ratios suggests that airborne VOC eddy covariance (EC flux measurements using PTR-MS are feasible. City-average midday toluene and benzene fluxes are calculated to be on the order of 15.5±4.0 mg/m2/h and 4.7±2.3 mg/m2/h respectively. These values argue for an underestimation of toluene and benzene emissions in current inventories used for the Mexico City Metropolitan Area (MCMA. Wavelet analysis of instantaneous toluene and benzene measurements during city overpasses is tested as a tool to assess surface emission heterogeneity. High toluene to benzene flux ratios above an industrial district (e.g. 10–15 including the International airport (e.g. 3–5 and a mean flux (concentration ratio of 3.2±0.5 (3.9±0.3 across Mexico City indicate that evaporative fuel and industrial emissions play an important role for the prevalence of aromatic compounds. Based on a tracer model, which was constrained by BTEX (Benzene/Toluene/Ethylbenzene/m,p,o-Xylenes compound concentration ratios, the fuel marker methyl-tertiary-butyl-ether (MTBE and the biomass burning marker acetonitrile (CH3CN, we show that a combination of industrial, evaporative fuel, and exhaust emissions account for >90% of all BTEX sources. Our observations suggest that biomass burning emissions play a minor role for the abundance of BTEX compounds (0–10% in the MCMA.

  11. The Indianapolis Flux Experiment (INFLUX: A test-bed for developing urban greenhouse gas emission measurements

    Directory of Open Access Journals (Sweden)

    Kenneth J. Davis

    2017-05-01

    Full Text Available The objective of the Indianapolis Flux Experiment (INFLUX is to develop, evaluate and improve methods for measuring greenhouse gas (GHG emissions from cities. INFLUX’s scientific objectives are to quantify CO2 and CH4 emission rates at 1 km2 resolution with a 10% or better accuracy and precision, to determine whole-city emissions with similar skill, and to achieve high (weekly or finer temporal resolution at both spatial resolutions. The experiment employs atmospheric GHG measurements from both towers and aircraft, atmospheric transport observations and models, and activity-based inventory products to quantify urban GHG emissions. Multiple, independent methods for estimating urban emissions are a central facet of our experimental design. INFLUX was initiated in 2010 and measurements and analyses are ongoing. To date we have quantified urban atmospheric GHG enhancements using aircraft and towers with measurements collected over multiple years, and have estimated whole-city CO2 and CH4 emissions using aircraft and tower GHG measurements, and inventory methods. Significant differences exist across methods; these differences have not yet been resolved; research to reduce uncertainties and reconcile these differences is underway. Sectorally- and spatially-resolved flux estimates, and detection of changes of fluxes over time, are also active research topics. Major challenges include developing methods for distinguishing anthropogenic from biogenic CO2 fluxes, improving our ability to interpret atmospheric GHG measurements close to urban GHG sources and across a broader range of atmospheric stability conditions, and quantifying uncertainties in inventory data products. INFLUX data and tools are intended to serve as an open resource and test bed for future investigations. Well-documented, public archival of data and methods is under development in support of this objective.

  12. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-06-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  13. On inferring isoprene emission surface flux from atmospheric boundary layer concentration measurements

    Directory of Open Access Journals (Sweden)

    J. Vilà-Guerau de Arellano

    2009-02-01

    Full Text Available We examine the dependence of the inferred isoprene surface emission flux from atmospheric concentration on the diurnal variability of the convective boundary layer (CBL. A series of systematic numerical experiments carried out using the mixed-layer technique enabled us to study the sensitivity of isoprene fluxes to the entrainment process, the partition of surface fluxes, the horizontal advection of warm/cold air masses and subsidence. Our findings demonstrate the key role played by the evolution of boundary layer height in modulating the retrieved isoprene flux. More specifically, inaccurate values of the potential temperature lapse rate lead to changes in the dilution capacity of the CBL and as a result the isoprene flux may be overestimated or underestimated by as much as 20%. The inferred emission flux estimated in the early morning hours is highly dependent on the accurate estimation of the discontinuity of the thermodynamic values between the residual layer and the rapidly forming CBL. Uncertainties associated with the partition of the sensible and latent heat flux also yield large deviations in the calculation of the isoprene surface flux. Similar results are obtained if we neglect the influence of warm or cold advection in the development of the CBL. We show that all the above-mentioned processes are non-linear, for which reason the dynamic and chemical evolutions of the CBL must be solved simultaneously. Based on the discussion of our results, we suggest the measurements needed to correctly apply the mixed-layer technique in order to minimize the uncertainties associated with the diurnal variability of the convective boundary layer.

  14. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M. [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Mitchell, C.P.J., E-mail: carl.mitchell@utoronto.ca [University of Toronto Scarborough, Department of Physical and Environmental Sciences, 1265 Military Trail, Toronto, ON M1C 1A4 (Canada); Eckley, C.S. [Meteorological Service of Canada, Environment Canada, 4905 Dufferein Street, Toronto, ON M3H 5T4 (Canada); Eggert, S.L.; Kolka, R.K.; Sebestyen, S.D. [Northern Research Station, USDA Forest Service, 1831 Hwy 169 E, Grand Rapids, MN 55744 (United States); Swain, E.B. [Minnesota Pollution Control Agency, St. Paul, MN 55155 (United States)

    2014-10-15

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil–air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown. We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg emissions from the forest floor were monitored after two forest harvesting prescriptions, a traditional clear-cut and a clearcut followed by biomass harvest, and compared to an un-harvested reference plot. Gaseous Hg emissions were measured in quadruplicate at four different times between March and November 2012 using Teflon dynamic flux chambers. We also applied enriched Hg isotope tracers and separately monitored their emission in triplicate at the same times as ambient measurements. Clearcut followed by biomass harvesting increased ambient Hg emissions the most. While significant intra-site spatial variability was observed, Hg emissions from the biomass harvested plot (180 ± 170 ng m{sup −2} d{sup −1}) were significantly greater than both the traditional clearcut plot (− 40 ± 60 ng m{sup −2} d{sup −1}) and the un-harvested reference plot (− 180 ± 115 ng m{sup −2} d{sup −1}) during July. This difference was likely a result of enhanced Hg{sup 2+} photoreduction due to canopy removal and less shading from downed woody debris in the biomass harvested plot. Gaseous Hg emissions from more recently deposited Hg, as presumably representative of isotope tracer measurements, were not significantly influenced by harvesting. Most of the Hg tracer applied to the forest floor became sequestered within the ground vegetation and debris, leaf litter, and soil. We observed a dramatic lessening of tracer Hg emissions to near detection levels within 6 months. As post-clearcutting residues are increasingly used as a fuel or fiber resource, our observations suggest that gaseous Hg emissions from forest

  15. Seasonal variations in metallic mercury (Hg0) vapor exchange over biannual wheat-corn rotation cropland in the North China Plain

    Science.gov (United States)

    Sommar, Jonas; Zhu, Wei; Shang, Lihai; Lin, Che-Jen; Feng, Xinbin

    2016-04-01

    Air-surface gas exchange of Hg0 was measured in five approximately bi-weekly campaigns (in total 87 days) over a wheat-corn rotation cropland located on the North China Plain (NCP) using the relaxed eddy accumulation (REA) technique. The campaigns were separated over the duration of a full-year period (2012-2013) aiming to capture the flux pattern over essential growing stages of the planting system with a low homogeneous topsoil Hg content ( ˜ 45 ng g-1). Contrasting pollution regimes influenced air masses at the site and corresponding Hg0 concentration means (3.3 in late summer to 6.2 ng m-3 in winter) were unanimously above the typical hemispheric background of 1.5-1.7 ng m-3 during the campaigns. Extreme values in bi-directional net Hg0 exchange were primarily observed during episodes of peaking Hg0 concentrations. In tandem with under-canopy chamber measurements, the above-canopy REA measurements provided evidence for a balance between Hg0 ground emissions and uptake of Hg0 by the developed canopies. During the wheat growing season covering ˜ 2 / 3 of the year at the site, net field-scale Hg0 emission prevailed for periods of active plant growth until canopy senescence (mean flux: 20.0 ng m-3), showing the dominance of Hg0 soil efflux during warmer seasons. In the final vegetative stage of corn and wheat, ground and above-canopy Hg0 flux displayed inversed daytime courses with a near mid-day maximum (emission) and minimum (deposition), respectively. In contrast to wheat, Hg0 uptake of the corn canopy at this stage offset ground Hg0 emissions with additional removal of Hg0 from the atmosphere. Differential uptake of Hg0 between wheat (C3 species) and corn (C4 species) foliage is discernible from estimated Hg0 flux (per leaf area) and Hg content in mature cereal leaves, being a factor of > 3 higher for wheat (at ˜ 120 ng g-1 dry weight). Furthermore, this study shows that intermittent flood irrigation of the air-dry field induced a short pulse of Hg0 emission

  16. β -decay half-lives and β -delayed neutron emission probabilities for several isotopes of Au, Hg, Tl, Pb, and Bi, beyond N =126

    Science.gov (United States)

    Caballero-Folch, R.; Domingo-Pardo, C.; Agramunt, J.; Algora, A.; Ameil, F.; Ayyad, Y.; Benlliure, J.; Bowry, M.; Calviño, F.; Cano-Ott, D.; Cortès, G.; Davinson, T.; Dillmann, I.; Estrade, A.; Evdokimov, A.; Faestermann, T.; Farinon, F.; Galaviz, D.; García, A. R.; Geissel, H.; Gelletly, W.; Gernhäuser, R.; Gómez-Hornillos, M. B.; Guerrero, C.; Heil, M.; Hinke, C.; Knöbel, R.; Kojouharov, I.; Kurcewicz, J.; Kurz, N.; Litvinov, Yu. A.; Maier, L.; Marganiec, J.; Marta, M.; Martínez, T.; Montes, F.; Mukha, I.; Napoli, D. R.; Nociforo, C.; Paradela, C.; Pietri, S.; Podolyák, Zs.; Prochazka, A.; Rice, S.; Riego, A.; Rubio, B.; Schaffner, H.; Scheidenberger, Ch.; Smith, K.; Sokol, E.; Steiger, K.; Sun, B.; Taín, J. L.; Takechi, M.; Testov, D.; Weick, H.; Wilson, E.; Winfield, J. S.; Wood, R.; Woods, P. J.; Yeremin, A.

    2017-06-01

    Background: There have been measurements on roughly 230 nuclei that are β -delayed neutron emitters. They range from 8He up to 150La. Apart from 210Tl, with a branching ratio of only 0.007%, no other neutron emitter has been measured beyond A =150 . Therefore, new data are needed, particularly in the region of heavy nuclei around N =126 , in order to guide theoretical models and help understand the formation of the third r -process peak at A ˜195 . Purpose: To measure both β -decay half-lives and neutron branching ratios of several neutron-rich Au, Hg, Tl, Pb, and Bi isotopes beyond N =126 . Method: Ions of interest were produced by fragmentation of a 238U beam, selected and identified via the GSI-FRS fragment separator. A stack of segmented silicon detectors (SIMBA) was used to measure ion implants and β decays. An array of 30 3He tubes embedded in a polyethylene matrix (BELEN) was used to detect neutrons with high efficiency and selectivity. A self-triggered digital system is employed to acquire data and to enable time correlations. The latter were analyzed with an analytical model and results for the half-lives and neutron-branching ratios were derived by using the binned maximum-likelihood method. Results: Twenty new β -decay half-lives are reported for Au-206204, Hg-211208,Tl-216211,Pb-218215 , and Bi-220218, nine of them for the first time. Neutron emission probabilities are reported for Hg,211210 and Tl-216211. Conclusions: The new β -decay half-lives are in good agreement with previous measurements on nuclei in this region. The measured neutron emission probabilities are comparable to or smaller than values predicted by global models such as relativistic Hartree Bogoliubov plus the relativistic quasi-particle random phase approximation (RHB + RQRPA).

  17. Urban Fluxes Monitoring and Development of Planning Strategies to Reduce Ghg Emissions in AN European City

    Science.gov (United States)

    Marras, S.; Sirca, C.; Bellucco, V.; Falk, M.; Pyles, R. D.; Snyder, R. L.; Paw U, K.; Duce, P.; Blecic, I.; Trunfio, G. A.; Cecchini, A.; Spano, D.

    2013-12-01

    Cities and human settlements in general are a primary source of emissions that contribute to human-induced climate change. To investigate the impact of an urbanized area on urban metabolism components, an eddy covariance (EC) tower will be set up in a city (Sassari) located in the center of the Mediterranean basin (Sardinia, Italy). The EC tower, as well as a meteorological station and radiometers, will be set up to monitor energy, water, and carbon fluxes in the city center. A GHG emissions inventory will be also compiled to identify the main emission sources. In addition, a modeling framework will be used to study the impact of different urban planning strategies on carbon emission rates. The modeling framework consists of four models to analyze fluxes both at local and municipality scale: (i) a land surface model ACASA (Advanced Canopy-Atmosphere-Soil Algorithm, ACASA) to simulate the urban metabolism components at local scale; (ii) a Cellular Automata model to simulate the urban land-use dynamics in the near future (20-30 years); (iii) a transportation model to estimate the variation of the transportation network load, and (iv) the coupled model WRF-ACASA will be finally used to simulate the urban metabolism components at municipality scale. The participation of local stakeholders will allow the definition of future planning strategies with the aim to identify low carbon emissions strategies. The projects activities, methodologies applied, as well as the preliminary results will be reported here.

  18. New technique for quantification of elemental Hg in mine wastes and its implications for mercury evasion into the atmosphere.

    Science.gov (United States)

    Jew, Adam D; Kim, Christopher S; Rytuba, James J; Gustin, Mae S; Brown, Gordon E

    2011-01-15

    Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline α-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range.

  19. New technique for quantification of elemental hg in mine wastes and its implications for mercury evasion into the atmosphere

    Science.gov (United States)

    Jew, A.D.; Kim, C.S.; Rytuba, J.J.; Gustin, M.S.; Brown, Gordon E.

    2011-01-01

    Mercury in the environment is of prime concern to both ecosystem and human health. Determination of the molecular-level speciation of Hg in soils and mine wastes is important for understanding its sequestration, mobility, and availability for methylation. Extended X-ray absorption fine structure (EXAFS) spectroscopy carried out under ambient P-T conditions has been used in a number of past studies to determine Hg speciation in complex mine wastes and associated soils. However, this approach cannot detect elemental (liquid) mercury in Hg-polluted soils and sediments due to the significant structural disorder of liquid Hg at ambient-temperature. A new sample preparation protocol involving slow cooling through the crystallization temperature of Hg(0) (234 K) results in its transformation to crystalline ??-Hg(0). The presence and proportion of Hg(0), relative to other crystalline Hg-bearing phases, in samples prepared in this way can be quantified by low-temperature (77 K) EXAFS spectroscopy. Using this approach, we have determined the relative concentrations of liquid Hg(0) in Hg mine wastes from several sites in the California Coast Range and have found that they correlate well with measured fluxes of gaseous Hg released during light and dark exposure of the same samples, with higher evasion ratios from samples containing higher concentrations of liquid Hg(0). Two different linear relationships are observed in plots of the ratio of Hg emission under light and dark conditions vs % Hg(0), corresponding to silica-carbonate- and hot springs-type Hg deposits, with the hot springs-type samples exhibiting higher evasion fluxes than silica-carbonate type samples at similar Hg(0) concentrations. Our findings help explain significant differences in Hg evasion data for different mine sites in the California Coast Range. ?? 2011 American Chemical Society.

  20. Sensitivity of upper atmospheric emissions calculations to solar/stellar UV flux

    Directory of Open Access Journals (Sweden)

    Barthelemy Mathieu

    2014-01-01

    Full Text Available The solar UV (UltraViolet flux, especially the EUV (Extreme UltraViolet and FUV (Far UltraViolet components, is one of the main energetic inputs for planetary upper atmospheres. It drives various processes such as ionization, or dissociation which give rise to upper atmospheric emissions, especially in the UV and visible. These emissions are one of the main ways to investigate the upper atmospheres of planets. However, the uncertainties in the flux measurement or modeling can lead to biased estimates of fundamental atmospheric parameters, such as concentrations or temperatures in the atmospheres. We explore the various problems that can be identified regarding the uncertainties in solar/stellar UV flux by considering three examples. The worst case appears when the solar reflection component is dominant in the recorded spectrum as is seen for outer solar system measurements from HST (Hubble Space Telescope. We also show that the estimation of some particular line parameters (intensity and shape, especially Lyman α, is crucial, and that both total intensity and line profile are useful. In the case of exoplanets, the problem is quite critical since the UV flux of their parent stars is often very poorly known.

  1. Flowing Liquid Anode Atmospheric Pressure Glow Discharge as an Excitation Source for Optical Emission Spectrometry with the Improved Detectability of Ag, Cd, Hg, Pb, Tl, and Zn.

    Science.gov (United States)

    Greda, Krzysztof; Swiderski, Krzysztof; Jamroz, Piotr; Pohl, Pawel

    2016-09-06

    A novel atmospheric pressure glow discharge generated in contact with a flowing liquid anode (FLA-APGD) was developed as the efficient excitation source for the optical emission spectrometry (OES) detection. Differences in the appearance and the electrical characteristic of the FLA-APGD and a conventional system operated with a flowing liquid cathode (FLC-APGD) were studied in detail and discussed. Under the optimal operating conditions for the FLA-APGD, the emission from the analytes (Ag, Cd, Hg, Pb, Tl, and Zn) was from 20 to 120 times higher as compared to the FLC-APGD. Limits of detections (LODs) established with a novel FLA-APGD system were on average 20 times better than those obtained for the FLC-APGD. A further improvement of the LODs was achieved by reducing the background shift interferences and, as a result, the LODs for Ag, Cd, Hg, Pb, Tl, and Zn were 0.004, 0.040, 0.70, 1.7, 0.035, and 0.45 μg L(-1), respectively. The precision of the FLA-APGD-OES method was evaluated to be within 2-5% (as the relative standard deviation of the repeated measurements). The method found its application in the determination of the content of Ag, Cd, Hg, Pb, Tl, and Zn in a certified reference material (CRM) of Lobster hepatopancreas (TORT-2), four brass samples as well as mineral water and tea leaves samples spiked with the analytes. In the case of brass samples, a reference method, i.e., inductively coupled plasma optical emission spectrometry (ICP-OES) was used. A good agreement between the results obtained with FLA-APGD-OES and the certified values for the CRM TORT-2 as well as the reference values obtained with ICP-OES for the brass samples was revealed, indicating the good accuracy of the proposed method. The recoveries obtained for the spiked samples of mineral water and tea leaves were within the range of 97.5-102%.

  2. The impact of nebular emission on the broadband fluxes of high-redshift galaxies

    CERN Document Server

    Zackrisson, E; Leitet, E

    2008-01-01

    A substantial fraction of the light emitted from young or star-forming galaxies at ultraviolet to near-infrared wavelengths comes from the ionized interstellar medium in the form of emission lines and a nebular continuum. At high redshifts, star formation rates are on average higher and stellar populations younger than in the local Universe. Both of these effects act to boost the impact of nebular emission on the overall spectrum of galaxies. Even so, the broadband fluxes and colours of high-redshift galaxies are routinely analyzed under the assumption that the light observed originates directly from stars. Here, we assess the impact of nebular emission on broadband fluxes in Johnson/Cousins BVRIJHK, Sloan Digital Sky Survey griz and Spitzer IRAC/MIPS filters as a function of observed redshift (up to z=15) for galaxies with different star formation histories. We find that nebular emission may account for a non-negligible fraction of the light received from high-redshift galaxies. The ages and masses inferred ...

  3. Mapping methane sources and emissions over California from direct airborne flux and VOC source tracer measurements

    Science.gov (United States)

    Guha, A.; Misztal, P. K.; Peischl, J.; Karl, T.; Jonsson, H. H.; Woods, R. K.; Ryerson, T. B.; Goldstein, A. H.

    2013-12-01

    Quantifying the contributions of methane (CH4) emissions from anthropogenic sources in the Central Valley of California is important for validation of the statewide greenhouse gas (GHG) inventory and subsequent AB32 law implementation. The state GHG inventory is largely based on activity data and emission factor based estimates. The 'bottom-up' emission factors for CH4 have large uncertainties and there is a lack of adequate 'top-down' measurements to characterize emission rates. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agricultural and industry intensive region with large concentration of dairies and livestock operations, active oil and gas fields and refining operations, as well as rice cultivation all of which are known CH4 sources. In order to gain a better perspective of the spatial distribution of major CH4 sources in California, airborne measurements were conducted aboard a Twin Otter aircraft for the CABERNET (California Airborne BVOC Emissions Research in Natural Ecosystems Transects) campaign, where the driving research goal was to understand the spatial distribution of biogenic VOC emissions. The campaign took place in June 2011 and encompassed over forty hours of low-altitude and mixed layer airborne CH4 and CO2 measurements alongside coincident VOC measurements. Transects during eight unique flights covered much of the Central Valley and its eastern edge, the Sacramento-San Joaquin delta and the coastal range. We report direct quantification of CH4 fluxes using real-time airborne Eddy Covariance measurements. CH4 and CO2 were measured at 1-Hz data rate using an instrument based on Cavity Ring Down Spectroscopy (CRDS) along with specific VOCs (like isoprene, methanol, acetone etc.) measured at 10-Hz using Proton Transfer Reaction Mass Spectrometer - Eddy Covariance (PTRMS-EC) flux system. Spatially resolved eddy covariance

  4. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  5. Solid-state emissive B,S-bridged p-terphenyls: synthesis, properties, and utility as bifunctional fluorescent sensor for Hg2+ and F- ions.

    Science.gov (United States)

    Chen, Dong-Mei; Wang, Sheng; Li, Hong-Xiang; Zhu, Xiao-Zhang; Zhao, Cui-Hua

    2014-12-01

    The efficient synthesis has been disclosed to achieve a new class of ladder-type molecules, B,S-bridged p-terphenyls (BS-TPs). Their properties were fully characterized by UV-vis and fluorescence spectroscopy in both solution and solid state, time-resolved fluorescence spectroscopy, DFT theoretical calculations, and cyclic voltammetry. A detailed comparison between anti-BS-TP and its analogue B,N-bridged p-terphenyl (BN-TP) was made to elucidate the effect of displacement of bridging N with S atom on the properties. The introduction of S rather than N atom as bridging atom leads to increased fluorescence efficiency in both solution and solid state as well as enhanced reduction stability. And thus this new class of ladder-type molecules are highly emissive in both solution and solid state and display reversible reduction wave in cyclic voltammograms, denoting their promising potentials as electron-transporting solid-state emitters. In addition, this new class of molecules are capable of detecting F(-) and Hg(2+) with different fluorescence responses, owing to the high Lewis acidity of the B center to coordinate with F(-) anions and the great mercury-philicity of the S center to complex with Hg(2+) cations.

  6. Glow curves and the emission of flux-grown BaFCl:Na crystals. [X radiation and gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Hari Babu, V. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-08-01

    The thermoluminescence glow curves and the emission spectra of flux-grown BaFCl:Na crystals were recorded. An additional TL peak at 320 K, an optical absorption band at 570nm and an emission peak at 490 nm have been seen in X/..gamma..-irradiated crystals. Bleaching, room-temperature annealing and high-temperature emission results led us to conclude that the sodium impurity is responsible for the additional glow peak optical absorption band and emission peak.

  7. Positron emission tomography for measurement of copper fluxes in live organisms.

    Science.gov (United States)

    Peng, Fangyu

    2014-05-01

    Copper is an essential nutrient for the physiology of live organisms, but excessive copper can be harmful. Copper radioisotopes are used for measurement of copper fluxes in live organisms using a radioactivity assay of body fluids or whole-body positron emission tomography (PET). Hybrid positron emission tomography-computed tomography (PET/CT) is a versatile tool for real-time measurement of copper fluxes combining the high sensitivity and quantification capability of PET and the superior spatial resolution of CT for anatomic localization of radioactive tracer activity. Kinetic analysis of copper metabolism in the liver and extrahepatic tissues of Atp7b(-/-) knockout mice, a mouse model of Wilson's disease, demonstrated the feasibility of measuring copper fluxes in live organisms with PET/CT using copper-64 chloride ((64) CuCl2 ) as a radioactive tracer ((64) CuCl2 -PET/CT). (64) CuCl2 -PET/CT holds potential as a useful tool for the diagnosis of inherited and acquired human copper metabolism disorders and for monitoring the effects of copper-modulating therapy. © 2014 New York Academy of Sciences.

  8. Spatially resolved flux measurements of NOX from London suggest significantly higher emissions than predicted by inventories

    OpenAIRE

    Vaughan, Adam R.; Lee, James D; Misztal, Pawel K.; Metzger, Stefan; Shaw, Marvin D.; Alastair C. Lewis; Purvis, Ruth M.; Carslaw, David C.; Allen H. Goldstein; Hewitt, C. Nicholas; Davison, Brian; Beevers, Sean D.; Karl, Thomas G.

    2016-01-01

    To date, direct validation of city-wide emissions inventories for air pollutants has been difficult or impossible. However, recent technological innovations now allow direct measurement of pollutant fluxes from cities, for comparison with emissions inventories, which are themselves commonly used for prediction of current and future air quality and to help guide abatement strategies. Fluxes of NOx were measured using the eddy-covariance technique from an aircraft flying at low altitude over Lo...

  9. Organically fertilized tea plantation stimulates N2O emissions and lowers NO fluxes in subtropical China

    Directory of Open Access Journals (Sweden)

    Z. Yao

    2015-07-01

    Full Text Available Tea plantations are rapidly expanding in China and other countries in the tropical and subtropical zones, but so far there are very few studies including direct measurements on nitrogenous gases fluxes from tea plantations. On the basis of 2 year field measurements from 2012 to 2014, we provided an insight into the assessment of annual nitrous oxide (N2O and nitric oxide (NO fluxes from Chinese subtropical tea plantations under three practices of conventional urea application, alternative oilcake incorporation and no nitrogen fertilization. Clearly, the N2O and NO fluxes exhibited large intra- and inter-annual variations, and furthermore their temporal variability could be well described by a combination of soil environmental factors including soil mineral N, water-filled pore space and temperature, based on a revised "hole-in-the-pipe" model. Averaged over 2 years, annual background N2O and NO emissions were approximately 4.0 and 1.6 kg N ha−1 yr−1, respectively. Compared to no nitrogen fertilization, both urea and oilcake application significantly stimulated annual N2O and NO emissions, amounting to 14.4–32.7 kg N2O-N ha−1 yr−1 and at least 12.3–19.4 kg NO-N ha−1 yr−1. In comparison with conventional urea treatment, on average, the application of organic fertilizer significantly increased N2O emission by 71 % but decreased NO emission by 22 %. Although the magnitude of N2O and NO fluxes was substantially influenced by N source, the annual direct emission factors of fertilizer N were estimated to be 2.8–5.9, 2.7–4.0 and 6.8–9.1 % for N2O, NO and N2O + NO, respectively, which are significantly higher than those defaults for global upland croplands. This indicated that the rarely determined N2O and NO formation appeared to be a significant pathway in the nitrogen cycle of tea plantations, which are a potential source of national nitrogenous gases inventory.

  10. The Total Solar Irradiance, UV Emission and Magnetic Flux during the Last Solar Cycle Minimum

    Directory of Open Access Journals (Sweden)

    E. E. Benevolenskaya

    2013-01-01

    Full Text Available We have analyzed the total solar irradiance (TSI and the spectral solar irradiance as ultraviolet emission (UV in the wavelength range 115–180 nm, observed with the instruments TIM and SOLSTICE within the framework of SORCE (the solar radiation and climate experiment during the long solar minimum between the 23rd and 24th cycles. The wavelet analysis reveals an increase in the magnetic flux in the latitudinal zone of the sunspot activity, accompanied with an increase in the TSI and UV on the surface rotation timescales of solar activity complexes. In-phase coherent structures between the midlatitude magnetic flux and TSI/UV appear when the long-lived complexes of the solar activity are present. These complexes, which are related to long-lived sources of magnetic fields under the photosphere, are maintained by magnetic fluxes reappearing in the same longitudinal regions. During the deep solar minimum (the period of the absence of sunspots, a coherent structure has been found, in which the phase between the integrated midlatitude magnetic flux is ahead of the total solar irradiance on the timescales of the surface rotation.

  11. First space-based derivation of the global atmospheric methanol emission fluxes

    Science.gov (United States)

    Stavrakou, T.; Guenther, A.; Razavi, A.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; Hurtmans, D.; Karagulian, F.; de Mazière, M.; Vigouroux, C.; Amelynck, C.; Schoon, N.; Laffineur, Q.; Heinesch, B.; Aubinet, M.; Rinsland, C.; Müller, J.-F.

    2011-05-01

    This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005). A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr-1 with a contribution of 100 Tg yr-1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr-1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55 %) and Indonesia (up to 58 %), whereas more moderate reductions are recorded in the Eastern US (20-25 %) and Central Africa (25-35 %). On the other hand, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5) and Western US (factor of 2), probably due to a source of methanol specific to these ecosystems which is unaccounted for in the MEGANv2.1 inventory. The most

  12. Methane emissions from free-ranging cattle: comparison of tracer and integrated horizontal flux techniques.

    Science.gov (United States)

    Griffith, David W T; Bryant, Glenn R; Hsu, David; Reisinger, Andy R

    2008-01-01

    Accurate measurements of methane (CH4) emission rates from livestock in their undisturbed natural environments are required to assess their impacts on radiative forcing (i.e., enhanced greenhouse effect) and the environment. Here we compare results from two nonintrusive techniques for the measurement of CH4 emissions from cattle. The cows were kept in an outdoor feeding strip that allowed them to follow natural behavioral patterns but contained them within a well defined space. In the first technique, nitrous oxide (N2O) was released as a tracer at the upwind edge of the feeding strip, and the downwind concentrations of N2O and CH4 were measured simultaneously using Fourier transform infrared (FTIR) spectroscopy. Average CH4 emission per cow was calculated each half-hour on three separate days from the correlation between the two gases. The second technique was the integrated horizontal flux (IHF) or 1-D mass-balance method, in which we used the measured vertical profiles of CH4 concentration and windspeed downwind of the cows to determine the total CH4 emission. Comparing the IHF results to the known release rate of N2O allowed us to test the IHF technique independently. We found agreement within 10% for all comparisons on all days. The daily CH4 emission rate averaged over all tracer and IHF measurements was 342 g CH4 head(-1) d(-1). This is within the range of previous measurements for mature lactating dairy cattle (200-430 g CH4 head(-1) d(-1)) but higher than expected for yearling cattle. The high CH4 emissions are accompanied by high CO2 emissions determined from the FTIR measurements. The bias is most likely due to the measurements being made during and after supplementary feeding of the cattle.

  13. Emission Flux and Carbon Isotopic Composition of Methane from Rice Paddies in Guizhou Province

    Institute of Scientific and Technical Information of China (English)

    李金华; 曹景蓉; 等

    1997-01-01

    Methane emission flux from rice paddies in Guizhou province shows obvious three stage diurnal variations;It is relatively low from the morning to the noon,then successively increases in the afternoon and at night,and finally follows a gradual decrease.The δ13C values of trace methane emitted from rice paddies in Guizhou Province range from-64.5‰to -54.1‰ with an average of -60.7‰,very close to the reported values from America or Kenya.

  14. 40 CFR 60.45Da - Standard for mercury (Hg).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for mercury (Hg). 60.45Da... for mercury (Hg). (a) For each coal-fired electric utility steam generating unit other than an IGCC... gases that contain mercury (Hg) emissions in excess of each Hg emissions limit in paragraphs...

  15. Nitrous oxide emissions from soils amended by cover-crops and under plastic film mulching: Fluxes, emission factors and yield-scaled emissions

    Science.gov (United States)

    Kim, Gil Won; Das, Suvendu; Hwang, Hyun Young; Kim, Pil Joo

    2017-03-01

    Assessment of nitrous oxide (N2O) emission factor (EF) for N2O emission inventory from arable crops fertilized with different nitrogen sources are under increased scrutiny because of discrepancies between the default IPCC EFs and low EFs reported by many researchers. Mixing ratio of leguminous and non-leguminous cover crop residues incorporation and plastic film mulching (PFM) in upland soil has been recommended as a vital agronomic practice to enhance yield and soil quality. However, how these practices together affect N2O emissions, yield-scaled emissions and the EFs remain uncertain. Field experiments spanning two consecutive years were conducted to evaluate the effects of PFM on N2O emissions, yield-scaled emissions and the seasonal EFs in cover crop residues amended soil during maize cultivation. The mixture of barley (Hordeum vulgare) and hairy vetch (Vicia villosa) seeds with 75% recommended dose (RD 140 kg ha-1) and 25% recommended dose (RD 90 kg ha-1), respectively, were broadcasted during the fallow period and 0, 25, 50 and 100% of the total aboveground harvested biomass that correspond to 0, 76, 152 and 304 kg N ha-1 were incorporated before maize transplanting. It was found that the mean seasonal EFs from cover crop residues amended soil under No-mulching (NM) and PFM were 1.13% (ranging from 0.81 to 1.23%) and 1.49% (ranging from 1.02 to 1.63%), respectively, which are comparable to the IPCC (2006) default EF (1%) for emission inventories of N2O from crop residues. The emission fluxes were greatly influenced by NH4+sbnd N, NO3--N, DOC and DON contents of soil. The cumulative N2O emissions markedly increased with the increase in cover crop residues application rates and it was more prominent under PFM than under NM. However, the yield-scaled emissions markedly decreased under PFM compared to NM due to the improved yield. With relatively low yield-scaled N2O emissions, 25% biomass mixing ratio of barley and hairy vetch (76 kg N ha-1) under PFM could be

  16. [Study on dynamics of hydrogen sulfide and carbonyl sulfide emission fluxes from Suaeda salsa marsh in the Yellow River estuary].

    Science.gov (United States)

    Li, Xin-Hua; Guo, Hong-Hai; Yang, Li-Ping; Zhu, Zhen-Lin; Sun, Xiao-Qing

    2014-02-01

    The H2S and COS emission fluxes from Suaeda salsa marsh in the Yellow River estuary were measured using the static chamber and Chromatogram method during the growth season (May to October), the results showed that the seasonal and diurnal variations of H2S and COS emission fluxes were obvious, and Suaeda salsa marsh in the Yellow River estuary was the sources for both H2S and COS during the growth time, and the mean H2S and COS emission fluxes from Suaeda salsa marsh were 4.97 microg x (m2 x h)(-1) and 0.92 microg x (m2 x h)(-1), respectively. Different environmental factors had different effects on the emission fluxes of H2S and COS from Suaeda salsa marsh, in which the SO4(2-) content and water content in the soil were the main factors that affected the H2S and COS emission fluxes, respectively. Sulfur gases emissions from Suaeda salsa marsh may be affected by many factors, such as plant, tide status and so on, so that should be further studied.

  17. Aircraft-based CH4 flux estimates for validation of emissions from an agriculturally dominated area in Switzerland

    Science.gov (United States)

    Hiller, Rebecca V.; Neininger, Bruno; Brunner, Dominik; Gerbig, Christoph; Bretscher, Daniel; Künzle, Thomas; Buchmann, Nina; Eugster, Werner

    2014-04-01

    For regional-scale investigations of greenhouse gas budgets the spatially explicit information from local emission sources is needed, which then can be compared with flux measurements. Here we present the first validation of a section of a spatially explicit CH4 emission inventory of Switzerland. The validation was done for the agriculturally dominated Reuss Valley using measurements from a low-flying aircraft (50-500 m above ground level). We distributed national emission estimates to a grid with 500 m cell size using available geostatistical data. Validation flux measurements were obtained using the eddy covariance (EC) technique and the boundary layer budgeting (BLB) approach that only uses the mean concentrations of the same aircraft transects. Inventory estimates for the flux footprint of the aircraft measurements were lowest (median 0.40 μg CH4m-2s-1), and BLB fluxes were highest (1.02 μg CH4m-2s-1) for the Reuss Valley, with EC fluxes in between (0.62 μg CH4m-2s-1). Flux estimates from measurements and inventory are within the same order of magnitude, but measured fluxes were significantly larger than the inventory emission estimates. The differences are larger than the uncertainties associated with storage of manure, temperature dependence of emissions, diurnal cycle of enteric fermentation by cattle, and the limitations of the inventory that only covers ≥90% of all expected methane emissions. From this we deduce that it is not unlikely that the Swiss CH4 emission inventory estimates are too low.

  18. Standardization of flux chamber and wind tunnel flux measurements for quantifying emissions from area sources at animal feeding operations

    Science.gov (United States)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and inaccuracy caused by inappropriate air velocity or sweep air flow...

  19. Eddy Covariance Flux Measurements of Pollutant Gases in the Mexico City Urban Area: a Useful Technique to Evaluate Emissions inventories

    Science.gov (United States)

    Velasco, E.; Grivicke, R.; Pressley, S.; Allwine, G.; Jobson, T.; Westberg, H.; Lamb, B.; Ramos, R.; Molina, L.

    2007-12-01

    Direct measurements of emissions of pollutant gases that include all major and minor emissions sources in urban areas are a missing requirement to improve and evaluate emissions inventories. The quality of an urban emissions inventory relies on the accuracy of the information of anthropogenic activities, which in many cases is not available, in particular in urban areas of developing countries. As part of the MCMA-2003 field campaign, we demonstrated the feasibility of using eddy covariance (EC) techniques coupled with fast-response sensors to measure fluxes of volatile organic compounds (VOCs) and CO2 from a residential district of Mexico City. Those flux measurements demonstrated to be also a valuable tool to evaluate the emissions inventory used for air quality modeling. With the objective to confirm the representativeness of the 2003 flux measurements in terms of magnitude, composition and diurnal distribution, as well to evaluate the most recent emissions inventory, a second flux system was deployed in a different district of Mexico City during the 2006 MILAGRO field campaign. This system was located in a busy district surrounded by congested avenues close to the center of the city. In 2003 and 2006 fluxes of olefins and CO2 were measured by the EC technique using a Fast Isoprene Sensor calibrated with a propylene standard and an open path Infrared Gas Analyzer (IRGA), respectively. Fluxes of aromatic and oxygenated VOCs were analyzed by Proton Transfer Reaction-Mass Spectroscopy (PTR-MS) and the disjunct eddy covariance (DEC) technique. In 2006 the number of VOCs was extended using a disjunct eddy accumulation (DEA) system. This system collected whole air samples as function of the direction of the vertical wind component, and the samples were analyzed on site by gas chromatography / flame ionization detection (GC-FID). In both studies we found that the urban surface is a net source of CO2 and VOCs. The diurnal patterns were similar, but the 2006 fluxes

  20. Glow curves and the emission of flux grown BaFCl-Tb crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Moinuddin, S.R.; Nambi, K.S.V.

    1987-09-01

    Flux-grown BaFCl crystals containing 0.5 mol % of terbium were irradiated at room temperature by ..gamma..-rays from a /sup 60/Co source and glow curves and thermoluminescence emission spectra recorded. In addition to glow peaks at 385 and 410/sup 0/ K, which are present for undoped BaFCl, peaks occur at 470, 505, 570 and 665/sup 0/ K. The low temperature peaks are attributed to two types of F centre at F(Cl-bar) and F(F-bar) anion vacancies and the additional peaks to the presence of the terbium impurity in the BaFCl lattice. The thermoluminescence spectra show five emission bands. Those at 420, 435, 490 and 545 nm are attributed to transitions between the 4 f excited levels. A 390 nm emission, previously attributed to radiative recombination centres in undoped BaFCl, may in the light of these results be seen to arise from background terbium impurity in the starting material.

  1. Mercury in stream water at five Czech catchments across a Hg and S deposition gradient

    Science.gov (United States)

    Navrátil, Tomáš; Shanley, James B.; Rohovec, Jan; Oulehle, Filip; Krám, Pavel; Matoušková, Šárka; Tesař, Miroslav; Hojdová, Maria

    2015-01-01

    The Czech Republic was heavily industrialized in the second half of the 20th century but the associated emissions of Hg and S from coal burning were significantly reduced since the 1990s. We studied dissolved (filtered) stream water mercury (Hg) and dissolved organic carbon (DOC) concentrations at five catchments with contrasting Hg and S deposition histories in the Bohemian part of the Czech Republic. The median filtered Hg concentrations of stream water samples collected in hydrological years 2012 and 2013 from the five sites varied by an order of magnitude from 1.3 to 18.0 ng L− 1. The Hg concentrations at individual catchments were strongly correlated with DOC concentrations r from 0.64 to 0.93 and with discharge r from 0.48 to 0.75. Annual export fluxes of filtered Hg from individual catchments ranged from 0.11 to 13.3 μg m− 2 yr− 1 and were highest at sites with the highest DOC export fluxes. However, the amount of Hg exported per unit DOC varied widely; the mean Hg/DOC ratio in stream water at the individual sites ranged from 0.28 to 0.90 ng mg− 1. The highest stream Hg/DOC ratios occurred at sites Pluhův Bor and Jezeří which both are in the heavily polluted Black Triangle area. Stream Hg/DOC was inversely related to mineral and total soil pool Hg/C across the five sites. We explain this pattern by greater soil Hg retention due to inhibition of soil organic matter decomposition at the sites with low stream Hg/DOC and/or by precipitation of a metacinnabar (HgS) phase. Thus mobilization of Hg into streams from forest soils likely depends on combined effects of organic matter decomposition dynamics and HgS-like phase precipitation, which were both affected by Hg and S deposition histories.

  2. First space-based derivation of the global atmospheric methanol emission fluxes

    Directory of Open Access Journals (Sweden)

    T. Stavrakou

    2011-05-01

    Full Text Available This study provides improved methanol emission estimates on the global scale, in particular for the largest methanol source, the terrestrial biosphere, and for biomass burning. To this purpose, one complete year of spaceborne measurements of tropospheric methanol columns retrieved for the first time by the thermal infrared sensor IASI aboard the MetOp satellite are compared with distributions calculated by the IMAGESv2 global chemistry-transport model. Two model simulations are performed using a priori biogenic methanol emissions either from the new MEGANv2.1 emission model, which is fully described in this work and is based on net ecosystem flux measurements, or from a previous parameterization based on net primary production by Jacob et al. (2005. A significantly better model performance in terms of both amplitude and seasonality is achieved through the use of MEGANv2.1 in most world regions, with respect to IASI data, and to surface- and air-based methanol measurements, even though important discrepancies over several regions are still present. As a second step of this study, we combine the MEGANv2.1 and the IASI column abundances over continents in an inverse modelling scheme based on the adjoint of the IMAGESv2 model to generate an improved global methanol emission source. The global optimized source totals 187 Tg yr−1 with a contribution of 100 Tg yr−1 from plants, only slightly lower than the a priori MEGANv2.1 value of 105 Tg yr−1. Large decreases with respect to the MEGANv2.1 biogenic source are inferred over Amazonia (up to 55 % and Indonesia (up to 58 %, whereas more moderate reductions are recorded in the Eastern US (20–25 % and Central Africa (25–35 %. On the other hand, the biogenic source is found to strongly increase in the arid and semi-arid regions of Central Asia (up to a factor of 5 and Western US (factor of 2, probably due to a source of methanol specific to these ecosystems which

  3. Measurement of surface emission flux rates for volatile organic compounds at Technical Area 54

    Energy Technology Data Exchange (ETDEWEB)

    Trujillo, V.; Morgenstern, M.; Krier, D. [Los Alamos National Lab., NM (United States); Gilkeson, R. [Weirich and Associates, Albuquerque, NM (United States)

    1998-06-01

    The survey described in this report was conducted to estimate the mass of volatile organic compounds venting to the atmosphere from active and inactive waste disposal sites at Technical Area 54. A large number of nonintrusive passive sample collection devices were placed on the ground surface for 72 hours to characterize an area of approximately 150 acres. Results provided an indication of the boundary location of the known volatile organic plume, plume constituents, and isolated high concentration areas. The data from this survey enhanced existing data from a limited number of monitor wells currently used for plume surveillance. Results indicate that the estimated mass emission to the atmosphere is orders of magnitude lower than what is considered a small flux rate at a spill site or a Resource Conservation and Recovery Act landfill and is far below the threshold limit established by the State of New Mexico as an air quality concern.

  4. On-site passive flux sampler measurement of emission rates of carbonyls and VOCs from multiple indoor sources

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, Naohide [Research Institute of Science for Safety and Sustainability (RISS), National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba City, Ibaraki 305-8569 (Japan); Kai, Yuya; Mizukoshi, Atsushi; Kumagai, Kazukiyo; Okuizumi, Yumiko; Jona, Miki; Yanagisawa, Yukio [Department of Environment Systems, Institute of Environmental Studies, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8563 (Japan); Fujii, Minoru [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba City, Ibaraki 305-8506 (Japan)

    2009-05-15

    In indoor environments with high levels of air pollution, it is desirable to remove major sources of emissions to improve air quality. In order to identify the emission sources that contribute most to the concentrations of indoor air pollutants, we used passive flux samplers (PFSs) to measure emission rates of carbonyl compounds and volatile organic compounds (VOCs) from many of the building materials and furnishings present in a room in a reinforced concrete building in Tokyo, Japan. The emission flux of formaldehyde from a desk was high (125 {mu}g/m{sup 2}/h), whereas fluxes from a door and flooring were low (21.5 and 16.5 {mu}g/m{sup 2}/h, respectively). The emission fluxes of toluene from the ceiling and the carpet were high (80.0 and 72.3 {mu}g/m{sup 2}/h, respectively), whereas that from the flooring was low (9.09 {mu}g/m{sup 2}/h). The indoor and outdoor concentrations of formaldehyde were 61.5 and 8.64 {mu}g/m{sup 3}, respectively, and those of toluene were 43.2 and 17.5 {mu}g/m{sup 3}, respectively. The air exchange rate of the room as measured by the perfluorocarbon tracer (PFT) method was 1.84/h. Taking into consideration the area of the emission sources, the carpet, ceiling, and walls were identified as the principal emission sources, contributing 24%, 20%, and 22% of the formaldehyde, respectively, and 22%, 27%, and 14% of the toluene, respectively, assuming that the emission rate from every major emission sources could be measured. In contrast, the door, the flooring, and the desk contributed little to the indoor levels of formaldehyde (1.0%, 0.54%, and 4.1%, respectively) and toluene (2.2%, 0.31%, and 0.85%, respectively). (author)

  5. TSP, PM10, and PM2.5 emissions from a beef cattle feedlot using the flux-gradient technique

    Science.gov (United States)

    Bonifacio, Henry F.; Maghirang, Ronaldo G.; Trabue, Steven L.; McConnell, Laura L.; Prueger, John H.; Bonifacio, Edna R.

    2015-01-01

    Emissions data on air pollutants from large open-lot beef cattle feedlots are limited. This research was conducted to determine emissions of total suspended particulates (TSP) and particulate matter (PM10 and PM2.5) from a commercial beef cattle feedlot in Kansas (USA). Vertical particulate concentration profiles at the feedlot were measured using gravimetric samplers, and micrometeorological parameters were monitored with eddy covariance instrumentation during the nine 4- to 5-day intensive sampling campaigns from May 2010 through September 2011. Emission fluxes were determined from the measured concentration gradients and meteorological parameters using the flux-gradient technique. PM ratios based on calculated emission fluxes were 0.28 for PM2.5/PM10, 0.12 for PM2.5/TSP, and 0.24 for PM10/TSP, indicating that a large fraction of the PM emitted at the studied feedlot was in the coarse range of aerodynamic diameter, >10 μm. Median daily emission factors were 57, 21, and 11 kg 1000-head (hd)-1 d-1 for TSP (n = 20 days), PM10 (n = 19 days), and PM2.5 (n = 11 days), respectively. Cattle pen surface moisture contents of at least 20-30% significantly reduced both TSP and PM10 emissions, but moisture's effect on PM2.5 emissions was not established due to difficulty in measuring PM2.5 concentrations under low-PM conditions.

  6. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net

    Institute of Scientific and Technical Information of China (English)

    WANG DongQi; CHEN ZhenLou; SUN WeiWei; HU BeiBei; XU ShiYuan

    2009-01-01

    Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmoI.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura-tion level of CH4 (from 468±49.0% to 11560±235%) and that of N2O (from 175±29.5% to 4914±1304%).Dissolved oxygen (DO) was the primary factor controlling the CH4 concentration in water. N2O concen-tration had significant negative correlation with salinity and a significant positive correlation with ni-trate (NO3-), nitrite (NO2-), chemical oxygen demand (CODcr) concentration and pH of river water. CH4 and N2O of river water were brought about mainly by methanogenesis and denitrification in river bot-tom sediment that diffused through sediment-water interface into the water body and then into at-mosphere through the gas-water interface. The emission flux of CH4 and N2O at river gas-water inter-face reached 778±59.8 and 236±03.6 μmol.m-2.h-1, respectively in summer. The river net was a potential source of atmospheric CH4 and N2O because of eutrophication of the water body.

  7. Methane and nitrous oxide concentration and emission flux of Yangtze Delta plain river net

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Methane (CH4) and nitrous oxide (N2O) saturation concentration and gas-water interface emission flux in surface water of the Yangtze Delta plain river net were investigated in summer at representative sites including the upper reaches of the Huangpu River and the rivers in the Chongming Island. The results show that the CH4 concentration in river water ranged from 0.30±0.03 to 6.66±0.14 μmol.L-1, and N2O concentration ranged from 13.8±2.33 to 435±116 nmol.L-1. River surface water had a very high satura- tion level of CH4 (from 468±49.0% to 11560±235%) and that of N2O (from 175±29.5% to 4914±1304%). Dissolved oxygen (DO) was the primary factor controlling the CH4 concentration in water. N2O concentration had significant negative correlation with salinity and a significant positive correlation with nitrate (NO3-), nitrite (NO2-), chemical oxygen demand (CODcr) concentration and pH of river water. CH4 and N2O of river water were brought about mainly by methanogenesis and denitrification in river bottom sediment that diffused through sediment-water interface into the water body and then into atmosphere through the gas-water interface. The emission flux of CH4 and N2O at river gas-water interface reached 778±59.8 and 236±63.6 μmol.m-2.h-1, respectively in summer. The river net was a potential source of atmospheric CH4 and N2O because of eutrophication of the water body.

  8. The annual ammonia budget of fertilised cut grassland - Part 1: Micrometeorological flux measurements and emissions after slurry application

    Science.gov (United States)

    Spirig, C.; Flechard, C. R.; Ammann, C.; Neftel, A.

    2010-02-01

    Two commercial ammonia (NH3) analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland) by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m-2 s-1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN) varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  9. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2010-02-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method. The measurements from July 2006 to October 2007 covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during unstable and near-neutral conditions was 20% and the detection limit was 10 ng NH3 m−2 s−1. Hence the flux measurements are considered sufficiently accurate for studying typical NH3 deposition rates over growing vegetation. Quantifying the overall emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during broadspreading of liquid manure. The emissions were also calculated with a mass balance method yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is roughly a factor of three lower than the values for broadspreading of liquid manure in emission inventories. The comparatively low emission factors appear to be a consequence of the low dry matter content of the applied slurry and soil properties favouring ammonium adsorption.

  10. Methanol emissions from maize: Ontogenetic dependence to varying light conditions and guttation as an additional factor constraining the flux

    Science.gov (United States)

    Mozaffar, A.; Schoon, N.; Digrado, A.; Bachy, A.; Delaplace, P.; du Jardin, P.; Fauconnier, M.-L.; Aubinet, M.; Heinesch, B.; Amelynck, C.

    2017-03-01

    Because of its high abundance and long lifetime compared to other volatile organic compounds in the atmosphere, methanol (CH3OH) plays an important role in atmospheric chemistry. Even though agricultural crops are believed to be a large source of methanol, emission inventories from those crop ecosystems are still scarce and little information is available concerning the driving mechanisms for methanol production and emission at different developmental stages of the plants/leaves. This study focuses on methanol emissions from Zea mays L. (maize), which is vastly cultivated throughout the world. Flux measurements have been performed on young plants, almost fully grown leaves and fully grown leaves, enclosed in dynamic flow-through enclosures in a temperature and light-controlled environmental chamber. Strong differences in the response of methanol emissions to variations in PPFD (Photosynthetic Photon Flux Density) were noticed between the young plants, almost fully grown and fully grown leaves. Moreover, young maize plants showed strong emission peaks following light/dark transitions, for which guttation can be put forward as a hypothetical pathway. Young plants' average daily methanol fluxes exceeded by a factor of 17 those of almost fully grown and fully grown leaves when expressed per leaf area. Absolute flux values were found to be smaller than those reported in the literature, but in fair agreement with recent ecosystem scale flux measurements above a maize field of the same variety as used in this study. The flux measurements in the current study were used to evaluate the dynamic biogenic volatile organic compound (BVOC) emission model of Niinemets and Reichstein. The modelled and measured fluxes from almost fully grown leaves were found to agree best when a temperature and light dependent methanol production function was applied. However, this production function turned out not to be suitable for modelling the observed emissions from the young plants

  11. Biogenic volatile organic compound emissions during BEARPEX 2009 measured by eddy covariance and flux-gradient similarity methods

    Directory of Open Access Journals (Sweden)

    J.-H. Park

    2012-09-01

    Full Text Available The Biosphere Effects on AeRosols and Photochemistry EXperiment (BEARPEX took place in Blodgett Forest, a Ponderosa pine forest in the Sierra Nevada Mountains of California, during summer 2009. We deployed a Proton Transfer Reaction – Mass Spectrometer (PTR-MS to measure fluxes and concentrations of biogenic volatile organic compounds (BVOCs. Eighteen ion species including the major BVOC expected at the site were measured sequentially at 5 heights to observe their vertical gradient from the forest floor to above the canopy. Fluxes of the 3 dominant BVOCs methanol, 2-Methyl-3-butene-2-ol (MBO, and monoterpenes, were measured above the canopy by the eddy covariance method. Canopy scale fluxes were also determined by the flux-gradient similarity method (K-theory. A universal K (Kuniv was determined as the mean of individual K's calculated from the measured fluxes divided by vertical gradients for methanol, MBO, and monoterpenes. This Kuniv was then multiplied by the gradients of each observed ion species to compute their fluxes. The flux-gradient similarity method showed very good agreement with the Eddy Covariance method. Fluxes are presented for all measured species and compared to historical measurements from the same site, and used to test emission algorithms used to model fluxes at the regional scale. MBO was the dominant emission observed followed by methanol, monoterpenes, acetone, and acetaldehyde. The flux-gradient similarity method is shown to be a useful, and we recommend its use especially in experimental conditions when fast measurement of BVOC species is not available.

  12. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    Science.gov (United States)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  13. DETERMINATION OF AMMONIA MASS EMISSION FLUX FROM HOG WASTE EFFLUENT SPRAYING OPERATION USING OPEN PATH TUNABLE DIODE LASER SPECTROSCOPY WITH VERTICAL RADIAL PLUME MAPPING ANALYSIS

    Science.gov (United States)

    Emission of ammonia from concentrated animal feeding operations represents an increasingly important environmental issue. Determination of total ammonia mass emission flux from extended area sources such as waste lagoons and waste effluent spraying operations can be evaluated usi...

  14. Flux estimation of fugitive particulate matter emissions from loose Calcisols at construction sites

    Science.gov (United States)

    Hassan, Hala A.; Kumar, Prashant; Kakosimos, Konstantinos E.

    2016-09-01

    A major source of airborne pollution in arid and semi-arid environments (i.e. North Africa, Middle East, Central Asia, and Australia) is the fugitive particulate matter (fPM), which is a frequent product of wind erosion. However, accurate determination of fPM is an ongoing scientific challenge. The objective of this study is to examine fPM emissions from the loose Calcisols (i.e. soils with a substantial accumulation of secondary carbonates), owing to construction activities that can be frequently seen nowadays in arid urbanizing regions such as the Middle East. A two months field campaign was conducted at a construction site, at rest, within the city of Doha (Qatar) to measure number concentrations of PM over a size range of 0.25-32 μm using light scattering based monitoring stations. The fPM emission fluxes were calculated using the Fugitive Dust Model (FDM) in an iterative manner and were fitted to a power function, which expresses the wind velocity dependence. The power factors were estimated as 1.87, 1.65, 2.70 and 2.06 for the four different size classes of particles ≤2.5, 2.5-6, 6-10 and ≤10 μm, respectively. Fitted power function was considered acceptable given that adjusted R2 values varied from 0.13 for the smaller particles and up to 0.69 for the larger ones. These power factors are in the same range of those reported in the literature for similar sources. The outcome of this study is expected to contribute to the improvement of PM emission inventories by focusing on an overlooked but significant pollution source, especially in dry and arid regions, and often located very close to residential areas and sensitive population groups. Further campaigns are recommended to reduce the uncertainty and include more fPM sources (e.g. earthworks) and other types of soil.

  15. Neural network analysis on the effect of heat fluxes on greenhouse gas emissions from anaerobic swine waste treatment lagoon

    Science.gov (United States)

    In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes) that potentially affect greenhouse gas (GHG) emissions from swine waste lagoon. GHG concentrations (methane, carbon dioxide, and nitrous oxide) were monitored using a photoacous...

  16. The effect of heat fluxes on ammonia emission from swine waste lagoon based on neural network analyses

    Science.gov (United States)

    Understanding factors that affect ammonia emissions from swine waste lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, solar radiation, and heat fluxes)...

  17. Impact of surface roughness and soil texture on mineral dust emission fluxes modeling

    Science.gov (United States)

    Menut, Laurent; PéRez, Carlos; Haustein, Karsten; Bessagnet, Bertrand; Prigent, Catherine; Alfaro, StéPhane

    2013-06-01

    Dust production models (DPM) used to estimate vertical fluxes of mineral dust aerosols over arid regions need accurate data on soil and surface properties. The Laboratoire Inter-Universitaire des Systemes Atmospheriques (LISA) data set was developed for Northern Africa, the Middle East, and East Asia. This regional data set was built through dedicated field campaigns and include, among others, the aerodynamic roughness length, the smooth roughness length of the erodible fraction of the surface, and the dry (undisturbed) soil size distribution. Recently, satellite-derived roughness length and high-resolution soil texture data sets at the global scale have emerged and provide the opportunity for the use of advanced schemes in global models. This paper analyzes the behavior of the ERS satellite-derived global roughness length and the State Soil Geographic data base-Food and Agriculture Organization of the United Nations (STATSGO-FAO) soil texture data set (based on wet techniques) using an advanced DPM in comparison to the LISA data set over Northern Africa and the Middle East. We explore the sensitivity of the drag partition scheme (a critical component of the DPM) and of the dust vertical fluxes (intensity and spatial patterns) to the roughness length and soil texture data sets. We also compare the use of the drag partition scheme to a widely used preferential source approach in global models. Idealized experiments with prescribed wind speeds show that the ERS and STATSGO-FAO data sets provide realistic spatial patterns of dust emission and friction velocity thresholds in the region. Finally, we evaluate a dust transport model for the period of March to July 2011 with observed aerosol optical depths from Aerosol Robotic Network sites. Results show that ERS and STATSGO-FAO provide realistic simulations in the region.

  18. Fate factors and emission flux estimates for emerging contaminants in surface waters

    Directory of Open Access Journals (Sweden)

    Hoa T. Trinh

    2016-01-01

    Full Text Available Pharmaceuticals, personal care products, hormones, and wastewater products are emerging environmental concerns for manifold reasons, including the potential of some compounds found in these products for endocrine disruption at a very low chronic exposure level. The environmental occurrences and sources of these contaminants in the water, soil, sediment and biota in European nations and the United States are well documented. This work reports a screening-level emission and fate assessment of thirty compounds, listed in the National Reconnaissance of the United States Geological Survey (USGS, 1999–2000 as the most frequently detected organic wastewater contaminants in U.S. streams and rivers. Estimations of the surface water fate factors were based on Level II and Level III multimedia fugacity models for a 1000 km2 model environment, the size of a typical county in the eastern United States. The compounds are categorized into three groups based upon the sensitivity of their predicted surface water fate factors to uncertainties in their physicochemical property values and the landscape parameters. The environmental fate factors, mass distributions, and loss pathways of all of the compounds are strongly affected by their assumed modes of entry into the environment. It is observed that for thirteen of the thirty organic wastewater contaminants most commonly detected in surface waters, conventional treatment strategies may be ineffective for their removal from wastewater effluents. The surface water fate factors predicted by the fugacity models were used in conjunction with the surface water concentrations measured in the USGS reconnaissance to obtain emission flux estimates for the compounds into U.S. streams and rivers. These include estimated fluxes of 6.8 × 10−5 to 0.30 kg/h km2 for the biomarker coprostanol; 1.7 × 10−5 to 6.5 × 10−5 kg/h km2 for the insect repellent N,N-diethyltoluamide; and 4.3 × 10−6 to 3.1 × 10−5 kg/h km2 for

  19. Comparison of mercury emission flux from the land surface to the atmosphere via water column, vegetative, and sediment column pathways

    Science.gov (United States)

    Peters, S. C.; Wollenberg, J.; Bubb, M. L.

    2009-12-01

    The emission of mercury from the land surface can follow three pathways: 1) emission from the water column, 2) emission from exposed wetland sediments, and 3) transpiration through plants. In this poster, we present a comparison of all three emission pathways in Berry’s Creek, a tidal tributary to the Hackensack River, NJ USA. The Berry’s Creek watershed was historically subjected to discharges of mercury from a number of industrial facilities. Emission of mercury from the water column measured using a dynamic flux chamber ranged from -0.64 to 34 ng/m2-h a result of complex biogeochemical reactions between photoreactive dissolved organic carbon, ultraviolet light, and dissolved aqueous mercury. Solar radiation and DOC spectral slope appear to exert the strongest control on mercury emission, with solar radiation alone accounting for up to 98% of the diel changes in mercury emission. Emission of mercury from the common reed Phragmites australis measured using a whole-leaf, low dead-volume chamber ranged from -0.64 to 0.17 ng/m2-h. Solar radiation drives photosynthesis, transpiration, and mercury emission, though decreases in emission late in the day may reflect a more complex process. Mercury emission from mudflat sediments ranged from -0.37 to 11.3 ng/m2-h. Experiments blocking UV wavelengths indicate PAR wavelengths may play a significant role in promoting emission. Disturbance of sediment surface decreased emission, suggesting that the emission pathway is dependent on biological activity at the sediment surface or a chemical gradient established in the upper portion of the sediment column. Annual and diel cycles are considered in an estimation of the magnitude of total mercury emitted through each pathway over the duration of 1 year.

  20. MONDO: A neutron tracker for particle therapy secondary emission fluxes measurements

    Science.gov (United States)

    Marafini, M.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.

    2016-07-01

    Cancer treatment is performed, in Particle Therapy, using accelerated charged particles whose high irradiation precision and conformity allows the tumor destruction while sparing the surrounding healthy tissues. Dose release monitoring devices using photons and charged particles produced by the beam interaction with the patient body have already been proposed, but no attempt based on the detection of the abundant secondary radiation neutron component has been made yet. The reduced attenuation length of neutrons yields a secondary particle sample that is larger in number when compared to photons and charged particles. Furthermore, neutrons allow for a backtracking of the emission point that is not affected by multiple scattering. Since neutrons can release a significant dose far away from the tumor region, a precise measurement of their flux, production energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems (TPS) software, so to predict not only the normal tissue toxicity in the target region but also the risk of late complications in the whole body. All the aforementioned issues underline the importance for an experimental effort devoted to the precise characterization of the neutron production gaining experimental access both to the emission point and production energy. The technical challenges posed by a neutron detector aiming for a high detection efficiency and good backtracking precision will be addressed within the MONDO (MOnitor for Neutron Dose in hadrOntherapy) project. The MONDO's main goal is to develop a tracking detector targeting fast and ultrafast secondary neutrons. The tracker is composed by a scintillating fiber matrix (4 × 4 × 8cm3). The full reconstruction of protons, produced in elastic interactions, will be used to measure energy and direction of the impinging neutron. The neutron tracker will measure the neutron production yields, as a function of production angle and energy, using different

  1. [Volatile organic compounds (VOCs) emitted from wood furniture--estimation of emission rate by passive flux sampler].

    Science.gov (United States)

    Jinno, Hideto; Tanaka-Kagawa, Toshiko; Furuta, Mitsuko; Shibatsuji, Masayoshi; Nishimura, Tetsuji

    2011-01-01

    The aim of this study was to evaluate aldehydes and other volatile organic compounds (VOCs) emission from furniture, which may cause hazardous influence on human being such as sick building/sick house syndrome. In this study, VOCs emitted from six kinds of wood furniture, including three set of dining tables and three beds, were analyzed by large chamber test method (JIS A 1911). Based on the emission rates of total VOCs (TVOC), the impacts on the indoor TVOC was estimated by the simulation model with volume of 20 m3 and ventilation frequency of 0.5 times/h. The estimated increment of formaldehyde were exceeded the guideline value (100 microg/m3) in one set of dining table and one bed. The estimated TVOC increment values were exceeded the provisional target value for indoor air (400 microg/m3) in two sets of dining tables and two beds. These results revealed that VOC emissions from wood furniture may influence significantly indoor air quality. Also, in this study, to establish the alternative method for large chamber test methods, emission rates from representative five areas of furniture unit were evaluated by passive sampling method using flux sampler and emission rate from full-sized furniture was predicted. Emission rates predicted by flux passive sampler were 10-106% (formaldehyde) and 8-141% (TVOC) of the data measured using large chamber test, respectively.

  2. The annual ammonia budget of fertilised cut grassland – Part 1: Micrometeorological flux measurements and emissions after slurry application

    Directory of Open Access Journals (Sweden)

    C. Spirig

    2009-10-01

    Full Text Available Two commercial ammonia (NH3 analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland by application of the aerodynamic gradient method (AGM. The semi-continuous measurements during 1.5 years covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during conditions of well established turbulence was 20% and the detection limit 10 ng NH3 m−2 s−1, hence sufficient for studying the background exchange of NH3. Quantifying emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during manure spreading in some parts of the experiments. The emissions were also calculated with a mass balance method (MBM yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN varied between 4 and 19%, which is lower than typical values for broadspreading of liquid manure. The comparatively low emission factors appear to be a consequence of the rather thin slurry applied here and soil properties favouring ammonium adsorption.

  3. The annual ammonia budget of fertilised cut grassland - Part 1: Micrometeorological flux measurements and emissions after slurry application

    Science.gov (United States)

    Spirig, C.; Flechard, C. R.; Ammann, C.; Neftel, A.

    2009-10-01

    Two commercial ammonia (NH3) analysers were customised to allow continuous measurements of vertical concentration gradients. The gradients were used to derive ammonia exchange fluxes above a managed grassland site at Oensingen (Switzerland) by application of the aerodynamic gradient method (AGM). The semi-continuous measurements during 1.5 years covered five complete growth-cut cycles and included six applications of liquid cattle slurry. The average accuracy of the flux measurements during conditions of well established turbulence was 20% and the detection limit 10 ng NH3 m-2 s-1, hence sufficient for studying the background exchange of NH3. Quantifying emissions after slurry applications required the application of elaborate interpolations because of difficulties capturing the initial emissions during manure spreading in some parts of the experiments. The emissions were also calculated with a mass balance method (MBM) yielding similar fluxes. NH3 losses after slurry application expressed as percentage of emitted nitrogen versus applied total ammoniacal nitrogen (TAN) varied between 4 and 19%, which is lower than typical values for broadspreading of liquid manure. The comparatively low emission factors appear to be a consequence of the rather thin slurry applied here and soil properties favouring ammonium adsorption.

  4. Fossil fuel Carbon Dioxide Emission (FFCO2) uncertainty: An implication for CO2 tracer transport simulation and flux inversion

    Science.gov (United States)

    Oda, Tomohiro; Ott, Lesley; Baker, David; Pawson, Steven

    2017-04-01

    Fossil fuel carbon dioxide (CO2) emissions (FFCO2) are the largest input to the global carbon cycle over decadal time scales. FFCO2 are often used as a reference in carbon budget analyses, such as transport simulations and flux inversions. Thus, inaccuracies in these specified FFCO2 emissions will propagate into those fluxes that are being computed in inverse models. It is thus essential to quantify the uncertainties in FFCO2 estimates. While the FFCO2 estimates from different emission inventories/datasets often agree well at global and national levels, the spatial distributions of emissions at smaller spatial scales are unique, specific to the emission disaggregation methods employed, and subject to uncertainty. The uncertainty associated with the use of spatial proxy data becomes large at fine spatial scales. In this study, an attempt is made to assess the uncertainty associated with spatial distributions of emissions in gridded FFCO2 inventories/datasets. The FFCO2 uncertainty is computed as a combination of the uncertainties associated with (1) emission estimates and (2) emission disaggregation. Emission distributions from four gridded inventories are compared at a 1 × 1 degree resolution and these differences are used as a proxy for the estimate of the disaggregation uncertainty. The calculated uncertainties typically range from 30% to 200% at 1 × 1 degree and are inversely correlated with the emission magnitude. The estimated FFCO2 uncertainty is included in a transport simulation with NASA's GOES model, with the intent of translating the uncertainty estimates in emission magnitude to atmospheric concentration (uncertainty tracer). The FFCO2 uncertainty tracer simulation suggests that the largest uncertainties are confined to the proximity of major source regions at the surface level, and decrease with distance from the source and altitude, where transport and mixing reduce the effect. However, the uncertainty tracer does spread out globally and creates a

  5. A regression approach for estimation of anthropogenic heat flux based on a bottom-up air pollutant emission database

    Science.gov (United States)

    Lee, Sang-Hyun; McKeen, Stuart A.; Sailor, David J.

    2014-10-01

    A statistical regression method is presented for estimating hourly anthropogenic heat flux (AHF) using an anthropogenic pollutant emission inventory for use in mesoscale meteorological and air-quality modeling. Based on bottom-up AHF estimated from detailed energy consumption data and anthropogenic pollutant emissions of carbon monoxide (CO) and nitrogen oxides (NOx) in the US National Emission Inventory year 2005 (NEI-2005), a robust regression relation between the AHF and the pollutant emissions is obtained for Houston. This relation is a combination of two power functions (Y = aXb) relating CO and NOx emissions to AHF, giving a determinant coefficient (R2) of 0.72. The AHF for Houston derived from the regression relation has high temporal (R = 0.91) and spatial (R = 0.83) correlations with the bottom-up AHF. Hourly AHF for the whole US in summer is estimated by applying the regression relation to the NEI-2005 summer pollutant emissions with a high spatial resolution of 4-km. The summer daily mean AHF range 10-40 W m-2 on a 4 × 4 km2 grid scale with maximum heat fluxes of 50-140 W m-2 for major US cities. The AHFs derived from the regression relations between the bottom-up AHF and either CO or NOx emissions show a small difference of less than 5% (4.7 W m-2) in city-scale daily mean AHF, and similar R2 statistics, compared to results from their combination. Thus, emissions of either species can be used to estimate AHF in the US cities. An hourly AHF inventory at 4 × 4 km2 resolution over the entire US based on the combined regression is derived and made publicly available for use in mesoscale numerical modeling.

  6. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past three decades

    Directory of Open Access Journals (Sweden)

    X. Yue

    2015-08-01

    Full Text Available The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs and to identify the key drivers for these changes during 1982–2011. Driven with hourly meteorology from WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data, the model simulates an increasing trend of 297 Tg C a−2 in gross primary productivity (GPP and 185 Tg C a−2 in the net primary productivity (NPP. CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a−1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of LAI at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a−2 globally because of simultaneous increases in soil respiration. In contrast, driven with alternative meteorology from MERRA (Modern Era-Retrospective Analysis, the model predicts significant increases of 59 Tg C a−2 in the land sink due to strengthened uptake in the Amazon. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a−2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN

  7. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past 3 decades

    Science.gov (United States)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-10-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven by hourly meteorology from WFDEI (WATCH forcing data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of leaf area index at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases and Aerosols from Nature) scheme, the YIBs model simulates global reductions of 1.1 Tg C a-2 in isoprene and 0.04 Tg C a-2 in monoterpene emissions in response to the CO2 inhibition effects. Land use

  8. Distinguishing the drivers of trends in land carbon fluxes and plant volatile emissions over the past three decades

    Science.gov (United States)

    Yue, X.; Unger, N.; Zheng, Y.

    2015-08-01

    The terrestrial biosphere has experienced dramatic changes in recent decades. Estimates of historical trends in land carbon fluxes remain uncertain because long-term observations are limited on the global scale. Here, we use the Yale Interactive terrestrial Biosphere (YIBs) model to estimate decadal trends in land carbon fluxes and emissions of biogenic volatile organic compounds (BVOCs) and to identify the key drivers for these changes during 1982-2011. Driven with hourly meteorology from WFDEI (WATCH Forcing Data methodology applied to ERA-Interim data), the model simulates an increasing trend of 297 Tg C a-2 in gross primary productivity (GPP) and 185 Tg C a-2 in the net primary productivity (NPP). CO2 fertilization is the main driver for the flux changes in forest ecosystems, while meteorology dominates the changes in grasslands and shrublands. Warming boosts summer GPP and NPP at high latitudes, while drought dampens carbon uptake in tropical regions. North of 30° N, increasing temperatures induce a substantial extension of 0.22 day a-1 for the growing season; however, this phenological change alone does not promote regional carbon uptake and BVOC emissions. Nevertheless, increases of LAI at peak season accounts for ~ 25 % of the trends in GPP and isoprene emissions at the northern lands. The net land sink shows statistically insignificant increases of only 3 Tg C a-2 globally because of simultaneous increases in soil respiration. In contrast, driven with alternative meteorology from MERRA (Modern Era-Retrospective Analysis), the model predicts significant increases of 59 Tg C a-2 in the land sink due to strengthened uptake in the Amazon. Global BVOC emissions are calculated using two schemes. With the photosynthesis-dependent scheme, the model predicts increases of 0.4 Tg C a-2 in isoprene emissions, which are mainly attributed to warming trends because CO2 fertilization and inhibition effects offset each other. Using the MEGAN (Model of Emissions of Gases

  9. Resolution of the discrepancy between Balmer alpha emission rates, the solar Lyman beta flux, and models of geocoronal hydrogen concentration

    Science.gov (United States)

    Levasseur, A.-C.; Meier, R. R.; Tinsley, B. A.

    1976-01-01

    New satellite Balmer alpha measurements and solar Lyman beta flux and line profile measurements, together with new measurements of the zodiacal light intensity used in correcting both ground and satellite Balmer alpha measurements for the effects of the Fraunhofer line in the zodiacal light, have been used in a reevaluation of the long-standing discrepancy between ground-based Balmer alpha emission rates and other geocoronal hydrogen parameters. The solar Lyman beta line center flux is found to be (4.1 plus or minus 1.3) billion photons per sq cm per sec per angstrom at S(10.7) equals 110 and, together with a current hydrogen model which has 92,000 atoms per cu cm at 650 km for T(inf) equals 950 K, gives good agreement between calculated Balmer alpha emission rates and the ground-based and satellite measurements.

  10. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    De Simone, Francesco; Artaxo, Paulo; Bencardino, Mariantonia; Cinnirella, Sergio; Carbone, Francesco; D'Amore, Francesco; Dommergue, Aurélien; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Landis, Matthew S.; Sprovieri, Francesca; Suzuki, Noriuki; Wängberg, Ingvar; Pirrone, Nicola

    2017-02-01

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, little is known about the fraction of Hg bound to particulate matter (HgP) released from BB, and the factors controlling this fraction are also uncertain. In light of the aims of the Minamata Convention to reduce intentional Hg use and emissions from anthropogenic activities, the relative importance of Hg emissions from BB will have an increasing impact on Hg deposition fluxes. Hg speciation is one of the most important factors determining the redistribution of Hg in the atmosphere and the geographical distribution of Hg deposition. Using the latest version of the Global Fire Emissions Database (GFEDv4.1s) and the global Hg chemistry transport model, ECHMERIT, the impact of Hg speciation in BB emissions, and the factors which influence speciation, on Hg deposition have been investigated for the year 2013. The role of other uncertainties related to physical and chemical atmospheric processes involving Hg and the influence of model parametrisations were also investigated, since their interactions with Hg speciation are complex. The comparison with atmospheric HgP concentrations observed at two remote sites, Amsterdam Island (AMD) and Manaus (MAN), in the Amazon showed a significant improvement when considering a fraction of HgP from BB. The set of sensitivity runs also showed how the quantity and geographical distribution of HgP emitted from BB has a limited impact on a global scale, although the inclusion of increasing fractions HgP does limit Hg0(g) availability to the global atmospheric pool. This reduces the fraction of Hg from BB which deposits to the world's oceans from 71 to 62 %. The impact locally is, however, significant on northern boreal and tropical forests, where fires are

  11. Impact of solar EUV flux on CO Cameron band and CO2+ UV doublet emissions in the dayglow of Mars

    CERN Document Server

    Jain, Sonal Kumar

    2011-01-01

    This study is aimed at making a calculation about the impact of the two most commonly used solar EUV flux models -- SOLAR2000 (S2K) of \\cite{Tobiska04} and EUVAC model of \\cite{Richards94} -- on photoelectron fluxes, volume emission rates, ion densities and CO Cameron and CO$_2^+$ UV doublet band dayglow emissions on Mars in three solar activity conditions: minimum, moderate, and maximum. Calculated limb intensities profiles are compared with SPICAM/Mars Express and Mariner observations. Analytical yield spectrum (AYS) approach has been used to calculate photoelectron fluxes in Martian upper atmosphere. Densities of prominent ions and CO molecule in excited triplet a$^3\\Pi$ state are calculated using major ion-neutral reactions. Volume emission rates of CO Cameron and CO$_2^+$ UV doublet bands have been calculated for dif{}ferent observations (Viking condition, Mariner and Mars Express SPICAM observations) on Mars. For the low solar activity condition, dayglow intensities calculated using the S2K model are $\\...

  12. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  13. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    Energy Technology Data Exchange (ETDEWEB)

    Zanfir, Monica; Solunke, Rahul; Shah, Minish

    2012-06-01

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbon's catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full

  14. Hg0 evasion from boreal mires determined with chamber methods and a novel REA design

    Science.gov (United States)

    Osterwalder, Stefan; Fritsche, Johannes; Åkerblom, Staffan; Nilsson, Mats B.; Alewell, Christine; Bishop, Kevin

    2015-04-01

    Anthropogenic mercury has accumulated in superficial organic soils of boreal mires, hotspots of methylmercury production. We hypothesize that emission from the peat surface is an important factor in regulating the pool of mercury in mires and ultimately the loading of methylmercury to surface waters. To test this hypothesis, we used both dynamic flux chambers (DFCs) and a dual-intake, single analyzer Relaxed Eddy Accumulation (REA) system to quantify the land-atmosphere exchange of elemental mercury (Hg0) from a mixed acid mire system situated near Vindeln in the county of Västerbotten, Sweden. Teflon and polycarbonate DFCs were used to (i) investigate the effect of sulfur and nitrogen addition as well as warming and changed moisture regimes on Hg0 flux and (ii) to quantify typical all-day summertime fluxes. The novel REA design was developed for long-term, all-year flux monitoring and uses twin inlets at the same level for simultaneous accumulation of up and downdrafts on a pair of gold traps which are then analyzed sequentially on the same detector while another pair of gold traps takes over the accumulation. The exchange of Hg0 from the peatland surface was measured continuously with DFC during cloudless conditions in July 2014 and averaged 0.62 ± 1.3 ng m-2 h-1. The flux revealed a significant diurnal pattern and a strong linear relationship with air temperature inside (R2= 0.65, p levels in the soil are too long because up to now the emission of Hg from the mire surface to the atmosphere has been ignored.

  15. On the Ability of Ascends to Constrain Fossil Fuel, Ocean and High Latitude Emissions: Flux Estimation Experiments

    Science.gov (United States)

    Crowell, S.; Kawa, S. R.; Hammerling, D.; Moore, B., III; Rayner, P. J.

    2014-12-01

    In Hammerling et al., 2014 (H14) the authors demonstrated a geostatistical method for mapping satellite estimates of column integrated CO2 mixing ratio, denoted XCO2, that incorporates the spatial variability in satellite-measured XCO2 as well as measurement precision. The goal of the study was to determine whether the Active Sensing of CO2 over Nights, Days and Seasons (ASCENDS) mission would be able to detect changes in XCO2 given changes in the underlying fluxes for different levels of instrument precision. Three scenarios were proposed: a flux-neutral shift in fossil fuel emissions from Europe to China (shown in the figure); a permafrost melting event; interannual variability in the Southern Oceans. The conclusions of H14 were modest but favorable for detectability in each case by ASCENDS given enough observations and sufficient precision. These signal detection experiments suggest that ASCENDS observations, together with a chemical transport model and data assimilation methodology, would be sufficient to provide quality estimates of the underlying surface fluxes, so long as the ASCENDS observations are precise enough. In this work, we present results that bridge the gap between the previous signal detection work by [Hammerling et al., 2014] and the ability of transport models to recover flux perturbations from ASCENDS observations utilizing the TM5-4DVAR data assimilation system. In particular, we will explore the space of model and observational uncertainties that will yield useful scientific information in each of the flux perturbation scenarios. This work will give a sense of the ability of ASCENDS to answer key questions about some of the foremost questions in carbon cycle science today. References: Hammerling, D., Kawa, S., Schaefer, K., and Michalak, A. (2014). Detectability of CO2 flux signals by a space-based lidar mission. Submitted.

  16. Glow curves and the emission of flux grown BaFCl:Gd crystals

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Hari Babu, V. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-03-16

    Thermoluminescence output of the BaFCl is found to be enhanced enormously when it is doped with gadolinium. An incorporation of gadolinium in BaFCl produces additional glow peaks at 455 and 560 K, an optical absorption band at 660 nm, and glow emission bands at 315 and 450 nm. The 315 nm emission band is the characteristic emission of the gadolinium impurity. Since similar emission spectra are obtained for different glow peaks, they are attributed to the luminescent centers caused by the gadolinium impurity in the lattice. The trap depth and frequency factor of additional glow peaks are calculated employing different methods.

  17. Historical atmospheric mercury emissions and depositions in North America compared to mercury accumulations in sedimentary records

    Science.gov (United States)

    Pirrone, Nicola; Allegrini, Ivo; Keeler, Gerald J.; Nriagu, Jerome O.; Rossmann, Ronald; Robbins, John A.

    Gold and silver production in North America (included United States, Canada and Mexico) released a large amount of mercury to the atmosphere until well into this century when mercury (Hg) amalgamation was replaced by cyanide concentration. Since then, emissions from industries have been the dominant anthropogenic sources of atmospheric Hg in North America as a whole. Past Hg emissions from gold and silver extractions in North America during the 1800s do not show a clear evidence of atmospheric deposition occurred at the coring sites considered in this study. Estimated atmospheric emissions of Hg in North America peaked in 1879 (at about 1708 t yr -1) and 1920 (at about 940 t yr -1), primarily due to Hg emissions from gold and silver mining. After the Great Economic Depression (1929) Hg emissions peaked again in the 1947 (274 t yr -1), in 1970 (325 t yr -1) and in 1989 (330 t yr -1) as result of increased Hg emissions from industrial sources, though improvements in the emissions control technology in United States and Canada have been substantial. Estimates of total atmospheric deposition fluxes of Hg to water and terrestrial receptors were in the range of 14.3-19.8 μg m -2 yr -1 in North America as a whole, and averaged 135 μg m -2 yr -1 (global background + local emissions) in the Great Lakes. These values were in good agreement with recent estimates reported in literature. The comparison of atmospheric Hg deposition fluxes with Hg accumulation rates in sediment cores suggests that atmospheric deposition was the major source of Hg entering the lakes system at coring sites, however, important contributions to Lake Ontario sediment cores sites from 1940 to 1970 were likely originated from local point sources (i.e. direct discharges).

  18. Comparison of horizontal dust fluxes simulated with two dust emission schemes based on field experiments in Xinjiang, China

    Science.gov (United States)

    Yang, Xinghua; Yang, Fan; Liu, Xinchun; Huo, Wen; He, Qing; Mamtimin, Ali; Zhang, Qingyu

    2016-10-01

    Horizontal dust fluxes were simulated with two different dust emission schemes developed by Marticorena and Shao (hereinafter referred to as the M scheme, S scheme, and S scheme corrections), based on field experiments over a bare desert surface and a vegetated desert surface from May 19 to June 18, 2010 in Xinjiang, China. The M scheme produced a much higher dust emission than the S schemes over different surface conditions, with the emission being about 4 times larger than that produced by the S schemes over the bare desert, and 3 to 200 times larger over the vegetated surface. Compared to observations, the missing report rate of wind erosion events was about 30 % for the S schemes and about 10 % for the M scheme over the bare desert surface, while all schemes had a false alarm rate of wind erosion events over the vegetated desert surface. The total dust emission from the bare desert surface during the study period was 674.4, 551.5, 595.2, and 2995.8 kg/m for observation, the S scheme, S scheme correction 2, and M scheme, respectively. Total dust emission from the vegetated desert surface was 1.6, 0, 55.5, 0.9, and 227.7 kg/m for observation, the S scheme, S scheme correction 1, S scheme correction 2, and M scheme, respectively.

  19. Using passive flux samplers to determine the ammonia emission from mechanically ventilated animal houses

    NARCIS (Netherlands)

    Mosquera Losada, J.; Ogink, N.W.M.; Scholtens, R.

    2003-01-01

    Ammonia emissions from animal houses are an important environmental issue in the Netherlands. The current technique in the Netherlands to measure ammonia emissions in mechanically ventilated animal houses is the chemiluminescence method (using a NOx monitor after conversion of NH3 to NO). During cam

  20. The Artificial Sky Luminance And The Emission Angles Of The Upward Light Flux

    CERN Document Server

    Cinzano, P

    1998-01-01

    The direction of the upward light emission has different polluting effects on the sky depending on the distance of the observation site. We studied with detailed models for light pollution propagation the ratio $(b_{H})/(b_{L})$, at given distances from a city, between the artificial sky luminance $b_{H}$ produced by its upward light emission between a given threshold angle by its upward light emission between the horizontal and the threshold angle effects of the emission at high angles above the horizontal decrease relative to the effects of emission at lower angles above the horizontal. Outside some kilometers from cities or towns the light emitted between the horizontal and 10\\deg ~is as important as the light emitted at all the other angles in producing the artificial sky luminance. Therefore the protection of a site requires also a careful control of this emission which needs to be reduced to at most 1/10 of the remaining emission. The emission between the horizontal and 10\\deg ~is mostly produced by spi...

  1. Technical Note: Drifting vs. anchored flux chambers for measuring greenhouse gas emissions from running waters

    Directory of Open Access Journals (Sweden)

    A. Lorke

    2015-09-01

    Full Text Available Stream networks were recently discovered as major but poorly constrained natural greenhouse gas (GHG sources. A fundamental problem is that several measurement approaches have been used without cross comparisons. Flux chambers represent a potentially powerful methodological approach if robust and reliable ways to use chambers on running water can be defined. Here we compare the use of anchored and freely drifting chambers on various streams having different flow velocities. The study clearly shows that (1 drifting chambers have a very small impact on the water turbulence under the chamber and thus generate more reliable fluxes, (2 anchored chambers enhance turbulence under the chambers and thus elevate fluxes, (3 the bias of the anchored chambers greatly depends on chamber design and sampling conditions, and (4 there is a promising method to reduce the bias from anchored chambers by using a flexible plastic foil seal to the water surface rather than having rigid chamber walls penetrating into the water. Altogether, these results provide novel guidance on how to apply flux chambers in running water, which will have important consequences for measurements to constrain the global GHG balances.

  2. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Directory of Open Access Journals (Sweden)

    W. J. F. Acton

    2015-10-01

    Full Text Available This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton transfer reaction-mass spectrometer (PTR-MS and a proton transfer reaction-time of flight-mass spectrometer (PTR-ToF-MS together with the methods of virtual disjunct eddy covariance (PTR-MS and eddy covariance (PTR-ToF-MS. Isoprene was the dominant emitted compound with a mean day-time flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28 day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the MEGAN isoprene emissions algorithms (Guenther et al., 2006. A detailed tree species distribution map for the site enabled the leaf-level emissions of isoprene and monoterpenes recorded using GC-MS to be scaled up to produce a "bottom-up" canopy-scale flux. This was compared with the "top-down" canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  3. Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources

    Energy Technology Data Exchange (ETDEWEB)

    Neirynck, J. [Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen (Belgium)]. E-mail: johan.neirynck@inbo.be; Kowalski, A.S. [Departamento de Fisica Aplicida, Facultad de Ciencias, Universidad de Granada, Calle Fuentenueva, SP-18071 Granada (Spain); Carrara, A. [Fundacion CEAM, Parque Technologico, Calle Charles H. Darwin 14, SP-46980 Paterna (Valencia) (Spain); Genouw, G. [Research Institute for Nature and Forest, Gaverstraat 4, B-9500 Geraardsbergen (Belgium); Berghmans, P. [Flemish Institute for Technological Research, Boeretang 200, B-2400 Mol (Belgium); Ceulemans, R. [Department of Biology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk (Antwerp) (Belgium)

    2007-09-15

    Concentrations of nitrogen gases (NH{sub 3}, NO{sub 2}, NO, HONO and HNO{sub 3}) and particles (pNH{sub 4} and pNO{sub 3}) were measured over a mixed coniferous forest impacted by high nitrogen loads. Nitrogen dioxide (NO{sub 2}) represented the main nitrogen form, followed by nitric oxide (NO) and ammonia (NH{sub 3}). A combination of gradient method (NH{sub 3} and NO {sub x} ) and resistance modelling techniques (HNO{sub 3}, HONO, pNH{sub 4} and pNO{sub 3}) was used to calculate dry deposition of nitrogen compounds. Net flux of NH{sub 3} amounted to -64 ng N m{sup -2} s{sup -1} over the measuring period. Net fluxes of NO {sub x} were upward (8.5 ng N m{sup -2} s{sup -1}) with highest emission in the morning. Fluxes of other gases or aerosols substantially contributed to dry deposition. Total nitrogen deposition was estimated at -48 kg N ha{sup -1} yr{sup -1} and consisted for almost 80% of NH {sub x} . Comparison of throughfall nitrogen with total deposition suggested substantial uptake of reduced N ({+-}15 kg N ha{sup -1} yr{sup -1}) within the canopy. - Reduced nitrogen was found to be the main contributor to total deposition which was predominantly governed by dry deposition.

  4. Daily variation characteristics of CO2 emission fluxes and contributions of environmental factors in semiarid grassland of Inner Mongolia, China

    Institute of Scientific and Technical Information of China (English)

    QI; Yuchun; DONG; Yunshe; LIU; Jiyuan; GENG; Yuanbo; LI; Mi

    2005-01-01

    Fixed field experimental studies are carried out on daily variations of the undisturbed community and soil respiration fluxes in different phenological phases of 2001-2002 in semiarid Aneurolepidium chinense steppe of Inner Mongolia, China using static black chamber method. Corresponding statistical analysis of the contributions of the water-heat factors (air temperature, ground temperature, surface soil water content) and ecological factors (aboveground biomass, underground biomass, litter biomass) to daily variation law of the undisturbed community and soil respiration fluxes as well as differences in daily respiration are also conducted. The results indicate that undisturbed community and soil respiration have apparent daily variation laws, daily variation patterns of respiration fluxes during different phenological phases are basically the same, and the variations of environmental factors only exert effect on CO2 emission intensities, while the effect on daily variation pattern of grassland CO2 emission fluxes is relatively small. The daily total respiration of the undisturbed community in different phenological phases ranges from 1.34-10.13 g·m-2; soil daily total respiration ranges from 0.98-5.17 g·m-2; both daily variations of undisturbed community and soil respiration fluxes are significantly correlated (p < 0.05) or extremely significantly correlated (p < 0.01) with air temperatures and ground surface temperatures, but the correlativity with the soil temperature at 5 and 10 cm depths is relatively weak; multiple regression analysis indicates that about 80% of the difference in daily respiration of the undisturbed community among different phenological phases is induced by the variation of the aboveground biomass, while the variations of the remaining factors can jointly explain around 20% of the daily respiration variations of the whole grassland ecosystem; about 83% of the soil daily respiration variation of the different phenological phases is caused

  5. Evaluation of Greenhouse Gas Emission from Animal Manure Using the Closed Chamber Method for Gas Fluxes

    Directory of Open Access Journals (Sweden)

    Sebastian Călin VAC

    2013-12-01

    Full Text Available Animal manure is an important source of anthropogenic GHG (greenhouse gas: methane (CH4, nitrous oxide (N2O and carbon dioxide (CO2. The livestock contributes with 37% of global CH4 emission. The sources of GHG (CO2 and CH4 are the liquid manure or slurry storage and the compact solid manure. Measurement systems of GHG emission are important for the selection of the appropriate technology. By using the closed chamber method for soil, landfills, volcanoes etc., the present study evaluates the estimation of total emissions of methane and carbon dioxide from an experimental farm in Cluj County, Romania. The investigated area covered with sheep solid manure was about 579 m2 and ~5 cm thick, for cattle was about 12 m2 and 5 m thick and for swine was about 1.5 m5 and 0.5 m thick. The total methane emission measured for sheep manure was 0.83 t CH4/year and for cattle manure was 0.185 t CH4/year. The total carbon dioxide emission measured for sheep manure was 61.3 t CO2/year and for cattle manure was 4.7 t CO2/year. The measurement for pigs manure was high and this could be due to the freshness of the manure. The estimated emissions showed that a considerable amount of CH4 and CO2 is produced also by an experimental farm and an appropriate management of manure is important for reducing greenhouse gas. In this respect, we believe that the future solution for a green economy is to use manure in biogas plants.

  6. Improved passive flux samplers for measuring ammonia emissions from animal houses, part 1: Basic principles

    NARCIS (Netherlands)

    Scholtens, R.; Hol, J.M.G.; Wagemans, M.J.M.; Phillips, V.R.

    2003-01-01

    At present, precise, expensive and laborious methods with a high resolution in time are needed, to determine ammonia emission rates from animal houses. The high costs for equipment, maintenance and labour limit the number of sites that can be measured. This study examines a new, simpler concept for

  7. Impact of D2O/H2O Solvent Exchange on the Emission of HgTe and CdTe Quantum Dots: Polaron and Energy Transfer Effects.

    Science.gov (United States)

    Wen, Qiannan; Kershaw, Stephen V; Kalytchuk, Sergii; Zhovtiuk, Olga; Reckmeier, Claas; Vasilevskiy, Mikhail I; Rogach, Andrey L

    2016-04-26

    We have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent. We conclude that channel (i) is more important than (ii) for HgTe dots in either solution. When some of these modes are removed from the relevant spectral range by the H2O to D2O replacement, the polaron effect becomes weaker and the nonradiative lifetime increases. Comparisons with CdTe quantum dots (QDs) served as a reference where the resonant energy loss (ii) a priori was not a factor, also confirmed by our experiments. The solvent exchange (H2O to D2O), however, is found to slightly increase the overall quantum yield of CdTe samples, probably by increasing the fraction of bright dots in the ensemble. The fundamental study reported here can serve as the foundation for the design and optimization principles of narrow bandgap quantum dots aimed at applications in long wavelength colloidal materials for infrared light emitting diodes and photodetectors.

  8. A Portable, Low-Power Analyzer and Automated Soil Flux Chamber System for Measuring Wetland GHG Emissions

    Science.gov (United States)

    Nickerson, Nick; Kim-Hak, David; McArthur, Gordon

    2017-04-01

    Preservation and restoration of wetlands has the potential to help sequester large amounts of carbon due to the naturally high primary productivity and slow turnover of stored soil carbon. However, the anoxic environmental conditions present in wetland soils are also the largest natural contributor to global methane emissions. While it is well known that wetlands are net carbon sinks over long time scales, given the high global warming potential of methane, the short-term balances between C uptake and storage and loss as CO2 and CH4 need to be carefully considered when evaluating the climate effects of land-use change. It is relatively difficult to measure methane emissions from wetlands with currently available techniques given the temporally and spatially sporadic nature of the processes involved (methanogenesis, methane oxidation, ebullition, etc.). For example, using manual soil flux chambers can often only capture a portion of either the spatial or temporal variability, and often have other disadvantages associated with soil atmosphere disturbance during deployment in these relatively compressible wetland soils. Automated chamber systems offer the advantage of collecting high-resolution time series of gaseous fluxes while reducing some human and method induced biases. Additionally, new laser-based analyzers that can be used in situ alongside automated chambers offer a greater minimum detectable flux than can be achieved using alternative methods such as Gas Chromatography. Until recently these types of automated measurements were limited to areas that had good power coverage, as laser based systems were power intensive and could not easily be supplemented with power from field-available sources such as solar. Recent advances in laser technology has reduced the power needed and made these systems less power intensive and more field portable in the process. Here we present data using an automated chamber system coupled to a portable laser based greenhouse gas

  9. Inverse constraints for emission fluxes of atmospheric tracers estimated from concentration measurements and Lagrangian transport

    Science.gov (United States)

    Pisso, Ignacio; Patra, Prabir; Breivik, Knut

    2015-04-01

    Lagrangian transport models based on times series of Eulerian fields provide a computationally affordable way of achieving very high resolution for limited areas and time periods. This makes them especially suitable for the analysis of point-wise measurements of atmospheric tracers. We present an application illustrated with examples of greenhouse gases from anthropogenic emissions in urban areas and biogenic emissions in Japan and of pollutants in the Arctic. We asses the algorithmic complexity of the numerical implementation as well as the use of non-procedural techniques such as Object-Oriented programming. We discuss aspects related to the quantification of uncertainty from prior information in the presence of model error and limited number of observations. The case of non-linear constraints is explored using direct numerical optimisation methods.

  10. Peak-Flux-Density Spectra of Large Solar Radio Bursts and Proton Emission from Flares.

    Science.gov (United States)

    1985-08-19

    3(d).- 37. Juday, R. D., and Adams, G. W. (1969) Riometer measurements, solar proton intensities and radiation dose rates, Planet. Space Sci. 17:1313...emissions radioelectriques solaires de Type IV et leur relation avec d’autres phenomenes solaires et geophys- iques, Ann.- Astrophys. 24:183. 39. Harvey, G. A...1965) 2800 megacycle per second radiation associated with Type II and Type IV solar radio bursts and the relation with other phen- omena, J

  11. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    Science.gov (United States)

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  12. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    Energy Technology Data Exchange (ETDEWEB)

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  13. Chemical thermodynamics of Hg1201 and Hg1223 phases

    Science.gov (United States)

    Tsuchiya, Tetsuo; Fueki, Kazuo; Koyama, Tadashi

    1998-03-01

    The decomposition equilibrium of Hg1201 and Hg1223 was studied using a thermomicrobalance. A thermodynamic diagram representing the stability domains of Hg1201 and Hg1223 was constructed. Using the diagram, it was shown that Hg1201 is metastable at 800°C and that Hg1223 is stable at 660°C due to the formation of an atmosphere of mercury vapor and oxygen formed by the decomposition of excess HgO. Chemical analysis revealed that the valence of Hg is +2 regardless of the oxygen content. The dependence of Tc on the oxygen content was also studied.

  14. Magmatic gas flux emissions from Gorelyi volcano, Kamchatka, and implications for volatile recycling in the NW Pacific

    Science.gov (United States)

    Aiuppa, A.; Bagnato, E.; Calabrese, S.; Giudice, G.; Liuzzo, M.; Tamburello, G.; Allard, P.; Chaplygin, I.; Taran, Y.

    2012-04-01

    The Kamchatka peninsula, in the north-western part of the Pacific 'Ring of Fire', is one of the most active volcanic realms on Earth, with 29 historically erupting volcanoes along its ~700 km-long Eastern Volcanic Belt (EVB). This notwithstanding, volatile input and output fluxes along this arc sector have remained poorly characterised until very recently. We here report on the very first assessment of volatile flux emissions from Gorelyi, a large (25 km3, 1830 m high) and most active shield-like Holocene volcano located on the southern segment of the Kamchatka EVB. By combing results from a variety of in situ and remote sensing techniques (MultiGAS, filter packs, and UV camera), we determine the bulk plume molar concentrations of major (H2O 93.5%, CO2 2.6%, SO2 2.2%, HCl 1.1%, HF 0.3%, H2 0.2%) to trace-halogens (Br, I) and trace-element volatile species, and we estimate a total gas release of ~11,000 t/day from Gorelyi during ~900°C non-eruptive degassing. Using this observation, we derive new constraints on the abundances and origins of volatiles in the subduction-modified mantle source feeding magmatism in Kamchatka.

  15. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy

    Science.gov (United States)

    Acton, W. Joe F.; Schallhart, Simon; Langford, Ben; Valach, Amy; Rantala, Pekka; Fares, Silvano; Carriero, Giulia; Tillmann, Ralf; Tomlinson, Sam J.; Dragosits, Ulrike; Gianelle, Damiano; Hewitt, C. Nicholas; Nemitz, Eiko

    2016-06-01

    This paper reports the fluxes and mixing ratios of biogenically emitted volatile organic compounds (BVOCs) 4 m above a mixed oak and hornbeam forest in northern Italy. Fluxes of methanol, acetaldehyde, isoprene, methyl vinyl ketone + methacrolein, methyl ethyl ketone and monoterpenes were obtained using both a proton-transfer-reaction mass spectrometer (PTR-MS) and a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) together with the methods of virtual disjunct eddy covariance (using PTR-MS) and eddy covariance (using PTR-ToF-MS). Isoprene was the dominant emitted compound with a mean daytime flux of 1.9 mg m-2 h-1. Mixing ratios, recorded 4 m above the canopy, were dominated by methanol with a mean value of 6.2 ppbv over the 28-day measurement period. Comparison of isoprene fluxes calculated using the PTR-MS and PTR-ToF-MS showed very good agreement while comparison of the monoterpene fluxes suggested a slight over estimation of the flux by the PTR-MS. A basal isoprene emission rate for the forest of 1.7 mg m-2 h-1 was calculated using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) isoprene emission algorithms (Guenther et al., 2006). A detailed tree-species distribution map for the site enabled the leaf-level emission of isoprene and monoterpenes recorded using gas-chromatography mass spectrometry (GC-MS) to be scaled up to produce a bottom-up canopy-scale flux. This was compared with the top-down canopy-scale flux obtained by measurements. For monoterpenes, the two estimates were closely correlated and this correlation improved when the plant-species composition in the individual flux footprint was taken into account. However, the bottom-up approach significantly underestimated the isoprene flux, compared with the top-down measurements, suggesting that the leaf-level measurements were not representative of actual emission rates.

  16. Standardization of flux chamber and wind tunnel flux measurements for quantifying volatile organic compound and ammonia emissions from area sources at animal feeding operations

    Science.gov (United States)

    A variety of wind tunnels and flux chambers have been used to measure fluxes of volatile organic compounds (VOC) and ammonia (NH3) at animal feeding operations (AFO). However, there has been little regard to the extreme variation and potential inaccuracies caused by inappropriate air velocity or sw...

  17. Volcanoes as emission sources of atmospheric mercury in the Mediterranean basin

    Science.gov (United States)

    Ferrara; Mazzolai; Lanzillotta; Nucaro; Pirrone

    2000-10-01

    Emissions from volcanoes, fumaroles and solfataras as well as contributions from widespread geological anomalies could represent an important source of mercury released to the atmosphere in the Mediterranean basin. Volcanoes located in this area (Etna, Stromboli and Vulcano) are the most active in Europe; therefore, it is extremely important to know their mercury contributions to the regional atmospheric budget. Two main methods are used for the evaluation of volcanic mercury flux: a direct determination of the flux (by measuring in the plume) and an indirect one derived from the determination of the Hg/SO2 (or Hg/S) ratio value, as SO2 emissions are constantly monitored by volcanologists. An attempt to estimate mercury flux from the Vulcano volcano and to establish the Hg/S ratio value has been made along three field campaigns carried out in October 1998, in February and May 1999 sampling several fumaroles. Traditional sampling methods were used to collect both total Hg and S. The average Hg/S ratio value resulted to be 1.2 x 10(-7). From the Hg/S value we derived the Hg/SO2 value, and by assuming that all the volcanoes located in this area have the same Hg/SO2 ratio, mercury emissions from Vulcano and Stromboli were estimated to be in the range 1.3-5.5 kg/year and 7.3-76.6 kg/year respectively, while for Etna mercury flux ranged from 61.8 to 536.5 kg/year. Data reported in literature appear to be overestimated (Fitzgerald WF. Mercury emission from volcanos. In: 4th International conference on mercury as a global pollutant, August 4-8 1996, Hamburg, Germany), volcanic mercury emission does not constitute the main natural source of the metal.

  18. Correlation between Balmer {alpha} emission and hydrogen flux through a superpermeable niobium membrane in a low-pressure multicusp plasma source

    Energy Technology Data Exchange (ETDEWEB)

    Bruneteau, A.M.; Notkin, M.E.; Livshits, A.I.; Bacal, M. E-mail: bacal@lptp.polytechnique.fr

    2002-03-01

    The purpose of this paper is to correlate hydrogen or deuterium flux through super permeable membranes with incident hydrogen or deuterium atom flux from the plasma. To this aim a hydrogen or deuterium plasma is created in a hybrid multicusp plasma source. We investigate Balmer {alpha} emission from the multicusp plasma and the output pressure behind a superpermeable niobium membrane immersed in the plasma.The output pressure is proportional to the flux of atoms and ions arriving on the membrane. We find that both output pressure and excited atoms emission satisfy plasma parameters relations. It is thus verified that plasma-driven superpermeation of hydrogen is due essentially to neutral atoms from the plasma incident to the membrane.

  19. Correlation between Balmer /α emission and hydrogen flux through a superpermeable niobium membrane in a low-pressure multicusp plasma source

    Science.gov (United States)

    Bruneteau, A. M.; Notkin, M. E.; Livshits, A. I.; Bacal, M.

    2002-03-01

    The purpose of this paper is to correlate hydrogen or deuterium flux through superpermeable membranes with incident hydrogen or deuterium atom flux from the plasma. To this aim a hydrogen or deuterium plasma is created in a hybrid multicusp plasma source. We investigate Balmer α emission from the multicusp plasma and the output pressure behind a superpermeable niobium membrane immersed in the plasma.The output pressure is proportional to the flux of atoms and ions arriving on the membrane. We find that both output pressure and excited atoms emission satisfy plasma parameters relations. It is thus verified that plasma-driven superpermeation of hydrogen is due essentially to neutral atoms from the plasma incident to the membrane.

  20. Volumetric gas monitoring through a DSA laser network for the estimation of the gas emission flux by surface sources: methods and simulation results

    Science.gov (United States)

    Cuccoli, Fabrizio; Facheris, Luca; Lupo, Roberto; Berna, Tommaso

    2007-10-01

    A measurement approach for estimating the emission flux by a surface-distributed source, based on the use of IR laser measurements over optical links and atmospheric diffusion models is presented. An ad hoc disposition of the optical links close to the emission area allows to measure gas concentration over a closed surface corresponding to an air volume that covers the whole emission area. The real time concentration measurements over this closed surface, associated to suitable diffusion models, allow us to estimate the emission flux of the area under exam. The diffusion model to be applied strictly depends on the current atmospheric conditions, therefore it requires the knowledge of the main atmospheric parameters. In this paper we present some simulation results about a system for the surface flux monitoring assuming the faces of a parallelepiped the surfaces interested by laser measurements. The closed surface is therefore defined by 5 of its sides, while the 6th is the emission surface. We discuss some estimation results using diffusion models where the air diffusion and transportation phenomena are due mainly to the wind strength.

  1. Distribution and production of reactive mercury and dissolved gaseous mercury in surface waters and water/air mercury flux in reservoirs on Wujiang River, Southwest China

    Science.gov (United States)

    Fu, Xuewu; Feng, Xinbin; Guo, Yanna; Meng, Bo; Yin, Runsheng; Yao, Heng

    2013-05-01

    the thin film gas exchange model. An empirical model of water/air Hg flux was developed, and the simulated fluxes were compared well with measurements. The model yields a mean annual Hg emission of 3.2 ± 1.0 kg in the study area.

  2. Sorghum production under future climate in the Southwestern USA: model projections of yield, greenhouse gas emissions and soil C fluxes

    Science.gov (United States)

    Duval, B.; Ghimire, R.; Hartman, M. D.; Marsalis, M.

    2016-12-01

    Large tracts of semi-arid land in the Southwestern USA are relatively less important for food production than the US Corn Belt, and represent a promising area for expansion of biofuel/bioproduct crops. However, high temperatures, low available water and high solar radiation in the SW represent a challenge to suitable feedstock development, and future climate change scenarios predict that portions of the SW will experience increased temperature and temporal shifts in precipitation distribution. Sorghum (Sorghum bicolor) is a valuable forage crop with promise as a biofuel feedstock, given its high biomass under semi-arid conditions, relatively lower N fertilizer requirements compared to corn, and salinity tolerance. To evaluate the environmental impact of expanded sorghum cultivation under future climate in the SW USA, we used the DayCent model in concert with a suite of downscaled future weather projections to predict biogeochemical consequences (greenhouse gas flux and impacts on soil carbon) of sorghum cultivation in New Mexico. The model showed good correspondence with yield data from field trials including both dryland and irrigated sorghum (measured vs. modeled; r2 = 0.75). Simulation experiments tested the effect of dryland production versus irrigation, low N versus high N inputs and delayed fertilizer application. Nitrogen application timing and irrigation impacted yield and N2O emissions less than N rate and climate. Across N and irrigation treatments, future climate simulations resulted in 6% increased yield and 20% lower N2O emissions compared to current climate. Soil C pools declined under future climate. The greatest declines in soil C were from low N input sorghum simulations, regardless of irrigation (>20% declines in SOM in both cases), and requires further evaluation to determine if changing future climate is driving these declines, or if they are a function of prolonged sorghum-fallow rotations in the model. The relatively small gain in yield for

  3. Combined Flux Chamber and Genomics Approach Links Nitrous Acid Emissions to Ammonia Oxidizing Bacteria and Archaea in Urban and Agricultural Soil.

    Science.gov (United States)

    Scharko, Nicole K; Schütte, Ursel M E; Berke, Andrew E; Banina, Lauren; Peel, Hannah R; Donaldson, Melissa A; Hemmerich, Chris; White, Jeffrey R; Raff, Jonathan D

    2015-12-01

    Nitrous acid (HONO) is a photochemical source of hydroxyl radical and nitric oxide in the atmosphere that stems from abiotic and biogenic processes, including the activity of ammonia-oxidizing soil microbes. HONO fluxes were measured from agricultural and urban soil in mesocosm studies aimed at characterizing biogenic sources and linking them to indigenous microbial consortia. Fluxes of HONO from agricultural and urban soil were suppressed by addition of a nitrification inhibitor and enhanced by amendment with ammonium (NH4(+)), with peaks at 19 and 8 ng m(-2) s(-1), respectively. In addition, both agricultural and urban soils were observed to convert (15)NH4(+) to HO(15)NO. Genomic surveys of soil samples revealed that 1.5-6% of total expressed 16S rRNA sequences detected belonged to known ammonia oxidizing bacteria and archaea. Peak fluxes of HONO were directly related to the abundance of ammonia-oxidizer sequences, which in turn depended on soil pH. Peak HONO fluxes under fertilized conditions are comparable in magnitude to fluxes reported during field campaigns. The results suggest that biogenic HONO emissions will be important in soil environments that exhibit high nitrification rates (e.g., agricultural soil) although the widespread occurrence of ammonia oxidizers implies that biogenic HONO emissions are also possible in the urban and remote environment.

  4. Improving estimates of surface carbon fluxes to support emissions monitoring, reporting and verification at local and regional scales: quantifying uncertainty and the effects of spatial scaling.

    Science.gov (United States)

    Gately, C.; Hutyra, L.; Wofsy, S.; Nehrkorn, T.; Sue Wing, I.

    2015-12-01

    Current approaches to quantifying surface-atmosphere fluxes of carbon often combine inventories of fossil fuel carbon emissions (ffCO2) and biosphere flux estimates with atmospheric measurements to drive forward and inverse-atmospheric modeling at high spatial and temporal resolutions (1km grids, hourly time steps have become common). Given that over 70% of total ffCO2 emissions are attributable to urban areas, accurate estimates of ffCO2 at urban scales are critical to support emissions mitigation policies at state and local levels. A successful regional or national carbon monitoring system requires a careful quantification of the uncertainties associated with estimates of both ffCO2 and biogenic carbon fluxes. Errors in the spatial distribution of ffCO2 priors used to inform atmospheric transport models can bias posterior flux estimates, and potentially provide misleading information to decision makers on the impact of policies. Most current ffCO2 priors are either too coarsely resolved in time and space, or suffer from poorly quantified errors in spatial distributions at local scales. Accurately downscaling aggregate activity data requires a careful understanding of the potentially non-linear relationships between source processes and spatial proxies. We report on ongoing work to develop an integrated, high-resolution carbon monitoring system for the Northeastern U.S., and discuss insights into the impact of spatial scaling on model uncertainty. We use a newly developed dataset of hourly surface carbon fluxes for all human and biogenic sources at 1km grid resolution for the years 2013 and 2014. To attain these spatial and temporal resolutions, ffCO2 flux estimates were subject to varying degrees of aggregation and/or downscaling depending on the native source data for each sector. We will discuss several important examples of how the choice of scaling variables and priors influences the spatial distribution CO2 and CH4 retrievals.

  5. Thermodynamics limits the reactivity of BrHg radical with volatile organic compounds

    Science.gov (United States)

    Dibble, Theodore S.; Schwid, Abraham C.

    2016-08-01

    Mercury emissions to the atmosphere primarily consist of Hg(0), which tends not to enter ecosystems until it is oxidized. Atomic bromine initiates oxidation of Hg(0) via the BrHg intermediate, but the further reactions of BrHg are just beginning to be explored. Here we use quantum chemistry to determine that hydrogen abstraction from hydrocarbons by BrHg is so endothermic as to be irrelevant. Bonds between BrHg and carbon atoms are so weak that BrHg addition to carbon-carbon double bonds atoms will be somewhat ineffective in leading to further reactions.

  6. Modelling the contribution of short-range atmospheric and hydrological transfers to nitrogen fluxes, budgets and indirect emissions in rural landscapes

    Directory of Open Access Journals (Sweden)

    J.-L. Drouet

    2012-05-01

    Full Text Available Spatial interactions within a landscape may lead to large inputs of reactive nitrogen (Nr transferred from cultivated areas and farms to oligotrophic ecosystems and induce environmental threats such as acidification, nitric pollution or eutrophication of protected areas. The paper presents a new methodology to estimate Nr fluxes at the landscape scale by taking into account spatial interactions between landscape elements. This methodology includes estimates of indirect Nr emissions due to short-range atmospheric and hydrological transfers. We used the NitroScape model which integrates processes of Nr transformation and short-range transfer in a dynamic and spatially distributed way to simulate Nr fluxes and budgets at the landscape scale. Four configurations of NitroScape were implemented by taking into account or not the atmospheric, hydrological or both pathways of Nr transfer. We simulated Nr fluxes, especially direct and indirect Nr emissions, within a test landscape including pig farms, croplands and unmanaged ecosystems. Simulation results showed the ability of NitroScape to simulate patterns of Nr emissions and recapture for each landscape element and the whole landscape. NitroScape made it possible to quantify the contribution of both atmospheric and hydrological transfers to Nr fluxes, budgets and indirect Nr emissions. For instance, indirect N2O emissions were estimated at around 21% of the total N2O emissions. They varied within the landscape according to land use, meteorological and soil conditions as well as topography. This first attempt proved that the NitroScape model is a useful tool to estimate the effect of spatial interactions on Nr fluxes and budgets as well as indirect Nr emissions within landscapes. Our approach needs to be further tested by applying Nitro

  7. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definition of "emissions from land-use change"

    Directory of Open Access Journals (Sweden)

    T. Gasser

    2013-06-01

    Full Text Available We develop a theoretical framework and analysis of the net land-to-atmosphere CO2 flux in order to discuss possible definitions of "emissions from land-use change". The terrestrial biosphere is affected by two perturbations: the perturbation of the global carbon-climate-nitrogen system (CCN with elevated atmospheric CO2, climate change and nitrogen deposition; and the land-use change perturbation (LUC. Here, we progressively establish mathematical definitions of four generic components of the net land-to-atmosphere CO2 flux. The two first components are the fluxes that would be observed if only one perturbation occurred. The two other components are due to the coupling of the CCN and LUC perturbations, which shows the non-linear response of the terrestrial carbon cycle. Thanks to these four components, we introduce three possible definitions of "emissions from land-use change" that are indeed used in the scientific literature, often without clear distinctions, and we draw conclusions as for their absolute and relative behaviors. Thanks to the OSCAR v2 model, we provide quantitative estimates of the differences between the three definitions, and we find that comparing results from studies that do not use the same definition can lead to a bias of up to 20% between estimates of those emissions. After discussion of the limitations of the framework, we conclude on the three major points of this study that should help the community to reconcile modeling and observation of emissions from land-use change. The appendix mainly provides more detailed mathematical expressions of the four components of the net land-to-atmosphere CO2 flux.

  8. The emission flux and mitigation options for N{sub 2}O and CH{sub 4} under different rotation systems in central China

    Energy Technology Data Exchange (ETDEWEB)

    Guo, L.; Lin, E.; Li, Z. [Chinese Academy of Agricultural Sciences, Beijing (China). Agrometeorology Institute

    2001-07-01

    The seasonal variation of nitrous oxide and methane fluexes and the relative soil indexes such as soil inorganic nitrogen, and soil humidity were studied under typical dryland fields of winter wheat-cotton (WC), winter wheat-summer soybean (WS), and winter wheat-summer maize (WM) rotation patterns in central China. And the fluctuation of N{sub 2}O and CH{sub 4} emission fluxes after top dressing nitrogen fertilizer were investigated too. The results showed that 1) the soil N{sub 2}O emission flux was positively correlated with soil inorganic N content mostly due to application especially under higher temperature and proper soil humidity conditions; 2) the typical cropland was a weak net CH{sub 4} sink with the average flux of -0.003 to 0.025 mg CH{sub 4}/M(sup 2}/h; and the methane consumption intensity of dryland soils decreased with the increase of soil humidity; 3) soil N{sub 2}O emission peak happened within nine days since topdressing and irrigation occurred. Therefore, the mitigation options for N{sub 2}O should be adopted mainly after N fertilizer is used especially under warmer temperature. 12 refs., 1 fig., 2 tabs.

  9. Mass Independent Fractionation of Hg Isotopes Preserved in the Precambrian

    Science.gov (United States)

    Thibodeau, A. M.; Bergquist, B. A.; Kah, L. C.; Ono, S.; Ghosh, S.; Hazen, R. M.

    2013-12-01

    yield positive Hg-MIF signals with Δ199Hg/Δ201Hg ratios > 2. The former signal is consistent with Hg-MIF preserved in late Archean and Paleoproterozoic shales, while the latter has been observed in older Archean black shales and massive sulfide deposits. Explanations for the temporal and spatial variations of the observed Hg-MIF signals remain to be explored, but the signals may record changes in the photochemistry of Hg, the nature of the DOC, or the flux of Hg delivered to oceans via oxidative weathering. The mid-Proterozoic is a crucial period for our understanding of ocean redox history, the timing and tempo of biospheric oxygenation, and the evolution of multi-cellular life. The preservation of Hg-MIF signals in marine shales of mid-Proterozoic age reveals the potential for Hg isotopes to provide clues about photochemical processes and ocean chemistry throughout the entirety of the Precambrian.

  10. Hg-Mask Coronagraph

    Science.gov (United States)

    Bourget, P.; Veiga, C. H.; Vieira Martins, R.; Assus, P.; Colas, F.

    In order to optimize the occulting process of a Lyot coronagraph and to provide a high dynamic range imaging, a new kind of occulting disk has been developed at the National Observatory of Rio de Janeiro. A mercury (Hg) drop glued onto an optical window by molecular cohesion and compressed by a pellicle film is used as the occulting disk. The minimum of the superficial tension potential function provides an optical precision (lambda/100) of the toric free surface of the mercury. This process provides a size control for the adaptation to the seeing conditions and to the apparent diameter of a resolved object, and in the case of adaptive optics, to the Airy diameter fraction needed. The occultation is a three dimensional process near the focal plane on the toric free surface that provides an apodization of the occultation. The Hg-Mask coronagraph has been projected for astrometric observations of faint satellites near to Jovian planets and works since 2000 at the 1.6 m telescope of the Pico dos Dias Observatory (OPD - Brazil).

  11. Quantification of emissions due to the natural gas storage well-casing blowout at Aliso Canyon/SS-25 using tracer flux ratio methods.

    Science.gov (United States)

    Herndon, S. C.; Daube, C.; Jervis, D.; Yacovitch, T. I.; Roscioli, J. R.; Curry, J.; Nelson, D. D.; Knighton, W. B.

    2016-12-01

    The methane emission rate from the well blowout at Aliso Canyon Natural Gas Storage Facility in Porter Ranch, California was quantified using the tracer flux ratio method (TFR). Over 400 tracer plume transects were collected, each lasting 15-300 seconds, using instrumentation aboard a mobile platform on 25 days between December 21, 2015 and March 9, 2016. The leak rate from October 23rd to February 11th has been estimated here using a combination of our leak rate measurements (TFR) and the flight mass balance (FMB) data [Conley et al., 2016]. The TFR approach employed here is assessing only the leaks due to the SS-25 well blowout and excludes other possible emissions at the facility. By "calibrating" the FMB dataset, the leak rate is integrated from Oct 23rd to December 21th. The sum of the inferred inferred and measured meissions suggests a total leak burden of 86,022 ± 8,393 metric tons of CH4. The primary uncertainty in this value is due to the uncertainty in the emission rate prior to the beginning of the TFR quantification. The ethane to methane enhancement ratio observed downwind of the leak site is consistent with the content of ethane in the natural gas at this site and provides definitive evidence that the methane emission rate quantified via tracer flux ratio is not due to a nearby landfill or other potential biogenic sources.

  12. Quantification of Gas Emissions from Refinieries, Gas Stations, Oil Wells and Agriculture using Optical Solar Occultation Flux and Tracer Correlation Methods

    Science.gov (United States)

    Mellqvist, J.; Samuelsson, J.; Marianne, E.; Brohede, S.; Andersson, P.; Johansson, J.; Isoz, O.; Tisopulos, L.; Polidori, A.; Pikelnaya, O.

    2016-12-01

    Industrial volatile organic compound (VOC) emissions may contribute significantly to ozone formation. In order to investigate how much small sources contribute to the VOC concentrations in the Los Angeles metropolitan area a comprehensive emission study has been carried out on behalf of the South Coast Air Quality Management District (SCAQMD). VOC emissions from major sources such as refineries, oil wells, petrol stations oil depots and oil platforms were measured during September and October 2015 using several unique optical methods, including the Solar Occultation Flux method (SOF) and tracer correlation technique based on extractive FTIR and DOAS combined with an open path multi reflection cell. In addition, measurements of ammonia emissions from farming in Chino were demonstrated. The measurements in this study were quality assured by carrying out a controlled source gas release study and side by side measurements with several other techniques. The results from the field campaign show that the emissions from the above mentioned sources are largely underestimated in inventories with potential impact on the air quality in the Los Angeles metropolitan area. The results show that oil and gas production is a very significant VOC emission source. In this presentation the techniques will be discussed together with the main results from the campaign including the quality assurance work.

  13. Isotopic Composition of Gaseous Elemental Mercury (Hg0) at Various Sites in Japan

    Science.gov (United States)

    Yamakawa, A.; Moriya, K.; Yoshinaga, J.

    2015-12-01

    Mercury (Hg) is a toxic heavy metal, which exists in various chemical forms in the environmental system. In the atmosphere, Hg exists in three forms (Hg0(g), Hg+2(g), and Hg(p)). Hg0(g) is the dominant species of atmospheric Hg, accounting for >95% of the total Hg in the atmosphere. Because Hg0(g) is highly volatile and has limited solubility in water, it cannot be easily removed by wet or dry deposition processes. Therefore, the residence time of Hg0(g) in the atmosphere is relatively long (1 to 2 years), allowing long-range transport from mercury emission source(s). Conversely, Hg+2(g) and Hg(p) are effectively removed from the atmosphere through wet and dry depositions. The determination of mercury source attribution using quantitative data is challenging because Hg0(g) may be deposited on an area upon oxidation to Hg+2(g) and associated with aerosols and particulates to form Hg(p) while the global cycling of Hg0(g). Over the last decade, the development of analytical methods of highly precise Hg isotopic measurements demonstrated mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes in environmental samples. For instance, MDF of Hg isotopes is thought to occur during various natural and industrial Hg transformations. MIF of Hg isotopes is observed during abiotic reduction, photochemical and non-photochemical, and physical and chemical processes. Such processes lead to differences in the Hg isotopic composition of different emission sources, both natural and anthropogenic, and atmospheric processes (i.e., transportation, oxidation/reduction, deposition, and reemission). Therefore, Hg isotopic compositions could be used to trace the sources and processes of atmospheric Hg. For securing the reliability and accuracy of atmospheric Hg isotope data, the methods of collection, pretreatment, and isotopic measurement for Hg0(g) were developed to obtain high recovery yield of samples with no Hg isotopic fractionation during each

  14. The relationship between ammonia emissions from a poultry farm and soil NO and N2O fluxes from a downwind source

    Directory of Open Access Journals (Sweden)

    S. Tang

    2005-08-01

    Full Text Available Intensive livestock farms emit large concentrations of NH3, most of which is deposited very close to the source. The presence of trees enhances the deposition. Rates to down wind forests can exceed 40 kg N ha-1. The steep gradient in large NH3 concentration and deposition at the edge of a downwind forest to background concentrations within a few hundred meters provides an ideal site to study the effect of different rates of N deposition on biological and chemical processes under similar environmental conditions. We have investigated the effect of different rates of NH3 deposition (62, 45, 24 and 5 kg NH3-N ha-1 y-1 on the flux of NO and N2O from soil in a mixed woodland downwind of a large poultry farm (160000 birds in Scotland, which has been operating for about 40 years. Measurements were carried out for a 6 month period, with hourly NO flux measurements, daily N2O fluxes close to the farm and monthly at all sites and monthly cumulative wet and dry N deposition. The increased NH3 and NH4+ deposition to the woodland increased emissions of NO and N2O and soil available NH4+ and NO3- concentrations. Average NO and N2O fluxes measured 15, 25 and 45 m downwind of the farm were 111.2±41.1, 123.3±40.7, 38.3±28.8 µg NO-N m-2 h-1 and 9.9±7.5, 34.3±33.3 and 21.2±6.1 µg NO-N m-2 h-1, respectively. At the background site 270 m downwind the N2O flux was reduced to 1.75±2.1 µg N2O-N m-2 h-1. NO emissions were significantly influenced by seasonal and daily changes in soil temperature and followed a diurnal pattern with maximum emissions approximately 3h after noon. For N2O no consistent diurnal pattern was observed. Changes in soil moisture content had a less clear effect on the NO and N2O flux. On average the NO emissions expressed as a fraction of the elevated N deposited were 7.1% (at 15 m, 6% (at 25 m and 2.3% (at 45 m downwind of the farm, whereas for N2O the emissions were only 2.8% (at 15 m, 3% (at 25 m and 3% (at 45 m downwind. These

  15. Inverse Compton X-Ray Emission from TeV Blazar Mrk 421 During a Historical Low-flux State Observed with NuSTAR

    Science.gov (United States)

    Kataoka, Jun; Stawarz, Łukasz

    2016-08-01

    We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk 421 during the historical low-flux state of the source in 2013 January. Nuclear Spectroscopic Telescope Array observations were conducted four times between MJD 56294 and MJD 56312 with a total exposure of 80.9 ks. The source flux in the 3-40 keV range was nearly constant, except for MJD 56307 when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk 421 were well represented by a steep power-law model with a photon index of Γ ≃ 3.1, although a significant excess was noted above 20 keV in the MJD 56302 data when the source was in its faintest state. Moreover, Mrk 421 was detected at more than the 4σ level in the 40-79 keV count maps for both MJD 56307 and MJD 56302 but not during the remaining two observations. The detected excess hard X-ray emission connects smoothly with the extrapolation of the high-energy γ-ray continuum of the blazar constrained by Fermi-LAT during source quiescence. These findings indicate that while the overall X-ray spectrum of Mrk 421 is dominated by the highest-energy tail of the synchrotron continuum, the variable excess hard X-ray emission above 20 keV (on the timescale of a week) is related to the inverse Compton emission component. We discuss the resulting constraints on the variability and spectral properties of the low-energy segment of the electron energy distribution in the source.

  16. Inverse Compton X-ray Emissions from TeV blazar Mrk421 during a Historical Low-Flux State Observed with NuSTAR

    CERN Document Server

    Kataoka, Jun

    2016-01-01

    We report on the detection of excess hard X-ray emission from the TeV BL Lac object Mrk421 during the historical low-flux state of the source in January 2013. NuSTAR observations were conducted four times between MJD56294 and MJD56312 with a total exposure of 80.9 ksec. The source flux in the 3-40 keV range was nearly constant except for MJD56307, when the average flux level increased by a factor of three. Throughout the exposure, the X-ray spectra of Mrk421 were well represented by a steep power-law model with a photon index of 3.1, although a significant excess was noted above 20 keV in the MJD56302 data when the source was in its faintest state. Moreover, Mrk421 was detected at more than the 4-sigma level in the 40-79 keV count maps for both MJD56307 and MJD56302 but not during the remaining two observations. The detected excess hard X-ray emissions connect smoothly with the extrapolation of the high-energy gamma-ray continuum of the blazar constrained by Fermi-LAT during the source quiescence. These findi...

  17. High-Energy X-Ray Detection of G359.89-0.08 (SGR A-E): Magnetic Flux Tube Emission Powered by Cosmic Rays?

    Science.gov (United States)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.; Bauer, Franz E.; Boggs, Steven E.; Craig, William W.; Christensen, Finn E.; Gotthelf, Eric V.; Harrison, Fiona A.; Mori, Kaya; Nynka, Melania; Stern, Daniel; Tomsick, John A; Zhang, Will

    2014-01-01

    We report the first detection of high-energy X-ray (E (is) greater than 10 keV) emission from the Galactic center non-thermal filament G359.89-0.08 (Sgr A-E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to approximately 50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index gamma approximately equals 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F(sub X) = (2.0 +/- 0.1) × 10(exp -12)erg cm(-2) s(-1) , corresponding to an unabsorbed X-ray luminosity L(sub X) = (2.6+/-0.8)×10(exp 34) erg s(-1) assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A-E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to (is) approximately 100 kyr) with low surface brightness and radii up to (is) approximately 30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  18. Spectral variability of the 3C 390.3 nucleus for more than twenty years. I. Variability of the broad and narrow emission-line fluxes

    CERN Document Server

    Sergeev, S G; Borman, G A

    2016-01-01

    We summarize results of the analysis of the optical variability of the continuum and emission-line fluxes in the 3C390.3 nucleus during 1992-2014. The [OIII]5007 flux increases monotonically by $\\approx$30 per cent in 2003-2014. The narrow Balmer lines show similar monotonic increase, while the variability patterns of the [OI]6300 narrow line are completely different from that of [OIII]. The reverberation lags are found to be 88.6$\\pm$8.4, 161$\\pm$15, and 113$\\pm$14d for the H$\\beta$, H$\\alpha$, and H$\\gamma$ broad emission-lines, respectively. The reverberation mass of the central black hole equals to (1.87$\\pm$0.26)$\\times10^9\\,M_\\odot$ and (2.81$\\pm$0.38)$\\times10^9\\,M_\\odot$, for the H$\\beta$ and H$\\alpha$ lines and assuming a scaling factor that converts the virial product to a mass to be f=5.5. A difference between both masses can point to a difference between kinematics of the H$\\alpha$ and H$\\beta$ emission regions. We show that the reverberation mapping can only be applied to the entire period of obs...

  19. Spatial distribution and accumulation of Hg in soil surrounding a Zn/Pb smelter.

    Science.gov (United States)

    Wu, Qingru; Wang, Shuxiao; Wang, Long; Liu, Fang; Lin, Che-Jen; Zhang, Lei; Wang, Fengyang

    2014-10-15

    Nonferrous metal smelting is an important atmospheric mercury (Hg) emission source that has significant local and global impacts. To quantify the impact of Hg emission from non-ferrous metal smelter on the surrounding soil, an integrated model parameterizing the processes of smelter emission, air dispersion, atmospheric deposition and Hg accumulation in soil was developed. The concentrations of gaseous elemental Hg (GEM) around the smelter and the spatial distribution of Hg in the surrounding soil were measured and compared with the model results. Atmospheric deposition of Hg emitted from the smelter was identified as the main source of Hg accumulation in the surrounding soil. From 1960 to 2011, the smelter emitted approximately 105 t of Hg into the atmosphere, of which 15 t deposited locally and resulted in an increase of Hg concentration in soil from 0.12 to 1.77 mg kg(-1). A detailed examination of wind rose and model data suggested that the area within 1.0-1.5 km northwest and southeast of the smelter was most severely impacted. It was estimated that the smelter operation from 1969 to 1990, when large scale emission controls were not implemented, resulted in 6450 μg m(-2)yr(-1) of Hg net deposition and a model simulated increase of 0.40 mg kg(-1) of Hg accumulation in the soil. During the period from 1991 to 2011, atmospheric Hg emission from the smelter alone increased the average concentration in soil from 0.41 mg kg(-1) to 0.45 mg kg(-1). In the past 50 years, over 86% of Hg emitted from this smelter went into the global pool, indicating the importance of controlling Hg emissions from non-ferrous metal smelters.

  20. The relationship between NH3 emissions from a poultry farm and soil NO and N2O fluxes from a downwind forest

    Science.gov (United States)

    Skiba, U.; Dick, J.; Storeton-West, R.; Lopez-Fernandez, S.; Woods, C.; Tang, S.; Vandijk, N.

    2006-08-01

    Intensive livestock farms emit large concentrations of NH3, most of which is deposited very close to the source. The presence of trees enhances the deposition. Rates to downwind forests can exceed 40 kg N ha-1 y-1. The steep gradient in large NH3 concentrations of 34.3±20.4, 47.6±24.9, 21.7±16.8 µg NH3 m3 at the edge of a forest 15, 30 and 45 m downwind of the farm to near background concentrations within 270 m downwind (1.15±0.7 µg NH3 m3) provides an ideal site to study the effect of different rates of atmospheric NH3 concentrations and inferred deposition on biological and chemical processes under similar environmental conditions. We have investigated the effect of different NH3 concentrations and implied deposition rates on the flux of NO and N2O from soil in a mixed woodland downwind of a large poultry farm (160 000 birds) in Scotland, which has been operating for about 40 years. Measurements were carried out for a 6 month period, with hourly NO flux measurements, daily N2O fluxes close to the farm and monthly at all sites, and monthly cumulative wet and dry N deposition. The increased NH3 and NH4+ deposition to the woodland increased emissions of NO and N2O and soil available NH4+ and NO3- concentrations. Average NO and N2O fluxes measured 15, 25 and 45 m downwind of the farm were 111.2±41.1, 123.3±40.7, 38.3±28.8 µg NO-N m-2 h-1 and 9.9±7.5, 34.3±33.3 and 21.2±6.1 µg N2O-N m-2 h-1, respectively. At the background site 270 m downwind the N2O flux was reduced to 1.75±2.1 µg N2O-N m-2 h-1. NO emissions were significantly influenced by seasonal and daily changes in soil temperature and followed a diurnal pattern with maximum emissions approximately 3 h after noon. For N2O no consistent diurnal pattern was observed. Changes in soil moisture content had a less clear effect on the NO and N2O flux. In spite of the large NO and N2O emissions accounting for >3% of the N deposited to the woodland downwind of the farm, extrapolation to the entire British

  1. Long-term modelling of fly ash and radionuclide emissions as well as deposition fluxes due to the operation of large oil shale-fired power plants.

    Science.gov (United States)

    Vaasma, Taavi; Kaasik, Marko; Loosaar, Jüri; Kiisk, Madis; Tkaczyk, Alan H

    2017-09-11

    Two of the world's largest oil shale-fired power plants (PPs) in Estonia have been operational over 40 years, emitting various pollutants, such as fly ash, SOx, NOx, heavy metals, volatile organic compounds as well as radionuclides to the environment. The emissions from these PPs have varied significantly during this period, with the maximum during the 1970s and 1980s. The oil shale burned in the PPs contains naturally occurring radionuclides from the (238)U and (232)Th decay series as well as (40)K. These radionuclides become enriched in fly ash fractions (up to 10 times), especially in the fine fly ash escaping the purification system. Using a validated Gaussian-plume model, atmospheric dispersion modelling was carried out to determine the quantity and a real magnitude of fly ash and radionuclide deposition fluxes during different decades. The maximum deposition fluxes of volatile radionuclides ((210)Pb and (210)Po) were around 70 mBq m(-2) d(-1) nearby the PPs during 1970s and 1980s. Due to the reduction of burned oil shale and significant renovations done on the PPs, the deposition fluxes were reduced to 10 mBq m(-2) d(-1) in the 2000s and down to 1.5 mBq m(-2) d(-1) in 2015. The maximum deposition occurs within couple of kilometers of the PPs, but the impacted area extends to over 50 km from the sources. For many radionuclides, including (210)Po, the PPs have been larger contributors of radionuclides to the environment via atmospheric pathway than natural sources. This is the first time that the emissions and deposition fluxes of radionuclides from the PPs have been quantified, providing the information about their radionuclide deposition load on the surrounding environment during various time periods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. The implications for dust emission modeling of spatial and vertical variations in horizontal dust flux and particle size in the Bodélé Depression, Northern Chad

    Science.gov (United States)

    Chappell, Adrian; Warren, Andrew; O'Donoghue, Alice; Robinson, Andrea; Thomas, Andrew; Bristow, Charlie

    2008-02-01

    The Bodélé Depression has been confirmed as the single largest source of atmospheric mineral dust on Earth. It is a distinctive source because of its large exposure of diatomite and the presence of mega-barchan dunes. Direct measurements of horizontal dust flux and particle size were made to investigate dust emission processes and for comparison with mechanisms of emission assumed in current dust models. More than 50 masts, with traps mounted on each, were located across and downwind of three barchans in 56 km2 study area of the eastern Bodélé. The size-distribution of surface material is bi-modal; there are many fine dust modes and a mixed mineralogy with a particle density three times smaller than quartz. Horizontal fluxes (up to 70 m above the playa) of particles, up to 1000 μm in diameter, are produced frequently from the accelerated flow over and around the barchans, even in below-threshold shear conditions on the diatomite playa. Our data on dust sizes do not conform to retrievals of dust size distributions from radiance measurements made in the same area. Dust emission models for the region may need to be revised to account for: saltators in the Bodélé, which are a mixture of quartz sand and diatomite flakes; the great spatial and vertical variation in the abundance, mass and density of dust and abraders; and the patterns of surface erodibility. All of these have important local effects on the vertical dust flux and its particle sizes.

  3. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX)

    Science.gov (United States)

    Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh; Song, Yang; Karion, Anna; Oda, Tomohiro; Patarasuk, Risa; Razlivanov, Igor; Sarmiento, Daniel; Shepson, Paul; Sweeney, Colm; Turnbull, Jocelyn; Wu, Kai

    2016-05-01

    Based on a uniquely dense network of surface towers measuring continuously the atmospheric concentrations of greenhouse gases (GHGs), we developed the first comprehensive monitoring systems of CO2 emissions at high resolution over the city of Indianapolis. The urban inversion evaluated over the 2012-2013 dormant season showed a statistically significant increase of about 20% (from 4.5 to 5.7 MtC ± 0.23 MtC) compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product. Spatial structures in prior emission errors, mostly undetermined, appeared to affect the spatial pattern in the inverse solution and the total carbon budget over the entire area by up to 15%, while the inverse solution remains fairly insensitive to the CO2 boundary inflow and to the different prior emissions (i.e., ODIAC). Preceding the surface emission optimization, we improved the atmospheric simulations using a meteorological data assimilation system also informing our Bayesian inversion system through updated observations error variances. Finally, we estimated the uncertainties associated with undetermined parameters using an ensemble of inversions. The total CO2 emissions based on the ensemble mean and quartiles (5.26-5.91 MtC) were statistically different compared to the prior total emissions (4.1 to 4.5 MtC). Considering the relatively small sensitivity to the different parameters, we conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emission error structures are required to determine the spatial structures of urban emissions at high resolution.

  4. A nearby GRB host galaxy: VLT/X-shooter observations of HG 031203

    CERN Document Server

    Guseva, N G; Fricke, K J; Henkel, C; 10.1051/0004-6361/201116765

    2011-01-01

    (abridged) Long-duration gamma-ray bursts (LGRBs) occur in galaxies of generally low metallicity. We aim at a spectroscopic analysis of HG 031203, the host galaxy of a LRGB burst, to obtain its properties. Based on VLT/X-shooter spectroscopic observations in the wavelength range 3200-24000A, we use standard direct methods to evaluate physical conditions and element abundances. The resolving power of the instrument also allowed us to trace the kinematics of the ionised gas. We derive an interstellar oxygen abundance of 12+logO/H=8.20+/-0.03. The observed fluxes of hydrogen lines correspond to the theoretical recombination values after correction for extinction with a single value C(Hbeta)=1.67. We produce the CLOUDY photoionisation HII region model that reproduces observed emission-line fluxes of different ions in the optical range. This model also predicts emission-line fluxes in the near-infrared (NIR) and mid-infrared (MIR) ranges that agree well with the observed ones. This implies that the star-forming re...

  5. The CU mobile Solar Occultation Flux instrument: structure functions and emission rates of NH3, NO2 and C2H6

    Science.gov (United States)

    Kille, Natalie; Baidar, Sunil; Handley, Philip; Ortega, Ivan; Sinreich, Roman; Cooper, Owen R.; Hase, Frank; Hannigan, James W.; Pfister, Gabriele; Volkamer, Rainer

    2017-02-01

    We describe the University of Colorado mobile Solar Occultation Flux instrument (CU mobile SOF). The instrument consists of a digital mobile solar tracker that is coupled to a Fourier transform spectrometer (FTS) of 0.5 cm-1 resolution and a UV-visible spectrometer (UV-vis) of 0.55 nm resolution. The instrument is used to simultaneously measure the absorption of ammonia (NH3), ethane (C2H6) and nitrogen dioxide (NO2) along the direct solar beam from a moving laboratory. These direct-sun observations provide high photon flux and enable measurements of vertical column densities (VCDs) with geometric air mass factors, high temporal resolution of 2 s and spatial resolution of 5-19 m. It is shown that the instrument line shape (ILS) of the FTS is independent of the azimuth and elevation angle pointing of the solar tracker. Further, collocated measurements next to a high-resolution FTS at the National Center for Atmospheric Research (HR-NCAR-FTS) show that the CU mobile SOF measurements of NH3 and C2H6 are precise and accurate; the VCD error at high signal to noise ratio is 2-7 %. During the Front Range Air Pollution and Photochemistry Experiment (FRAPPE) from 21 July to 3 September 2014 in Colorado, the CU mobile SOF instrument measured median (minimum, maximum) VCDs of 4.3 (0.5, 45) × 1016 molecules cm-2 NH3, 0.30 (0.06, 2.23) × 1016 molecules cm-2 NO2 and 3.5 (1.5, 7.7) × 1016 molecules cm-2 C2H6. All gases were detected in larger 95 % of the spectra recorded in urban, semi-polluted rural and remote rural areas of the Colorado Front Range. We calculate structure functions based on VCDs, which describe the variability of a gas column over distance, and find the largest variability for NH3. The structure functions suggest that currently available satellites resolve about 10 % of the observed NH3 and NO2 VCD variability in the study area. We further quantify the trace gas emission fluxes of NH3 and C2H6 and production rates of NO2 from concentrated animal feeding

  6. Prevention of La3+ on DNA Damage Caused by Hg2+ from Fish Intestines

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The aim of this study was to investigate the effects of rare earth elements (REEs) in preventing Hg2+ pollution, using fish intestinal DNA in vitro and study the mechanism of the interactions between Hg2+, La3+, the mixture of La3+ and Hg2+ and DNA by spectroscopy. The interactions between Hg2+, La3+, the mixture of La3+ and Hg2+ and DNA from fish intestine in vitro was investigate by using absorption spectrum and fluorescence emission spectrum. Ultraviolet absorption spectra indicated that the addition of Hg2+, La3+, and the mixture of La3+ and Hg2+ to DNA generated obvious hypochromic effect. Meanwhile, the 205.2 nm peak of DNA blue and the 258.2 nm peak of DNA red shifted. The hypochromic effect and peak shift was caused by these ions in an order of Hg2+>Hg2++La3+>La3+. The fluorescence emission spectra showed that as the addition of Hg2+, La3+, and the mixture of La3+ and Hg2+, the emission peak at about 416.2 nm of DNA did not obviously change, but the fluorescence intensity reduced gradually with the order in treatment was Hg2+>Hg2+ + La3+>La3+. Hg2+, La3+, and the mixture of La3+ and Hg2+ had 1.12, 0.58, and 0.81 binding sites to DNA, the fluorescence quenching of DNA caused by them all attributed to static quenching. The binding constants KA of binding sites were 3.82×104 and 4.22×102 L·mol-1;2.50×104 and 2.95×103 L·mol-1;3.05×104 and 1.00×103 L·mol-1. The results showed that La3+ could relieve destruction caused by Hg2+ on the DNA structure.

  7. Increases in mercury emissions from desert soils in response to rainfall and irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Lindberg, S.E.; Zhang, H.; Gustin, M.; Vette, A.; Marsik, F.; Owens, J.; Casimir, A.; Ebinghaus, R.; Edwards, G.; Fitzgerald, C.; Kemp, J.; Kock, H.H.; London, J.; Majewski, M.; Poissant, L.; Pilote, M.; Rasmussen, P.; Schaedlich, F.; Schneeberger, D.; Sommar, J.; Turner, R.; Wallschlaeger, D.; Xiao, Z. [Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee (United States)

    1999-09-01

    As part of an international Hg flux intercomparison at the Steamboat Springs, Nevada, geothermal area, several dynamic soil flux chambers and micrometeorological gradient systems were operated over desert soils in early September 1997. A series of unanticipated convective rain cells impacted the site with the first rainfall in {approximately}90 days, and the initial 4-cm rainfall increased soil moisture from {approximately}0.01 to 0.06{percent} (vol/vol). Several chambers were operating prior to the events, and two were deployed over wet soils following rainfall. Rainfall resulted in an immediate and steep rise in ambient air Hg concentrations and soil Hg emissions which persisted for 12{endash}24 hours. Fluxes increased most quickly and to a greater degree over the wettest soils, and the rate of increase was related to chamber design and flushing rate. The flux response was also apparent in the micrometeorological data. In general, soil emissions increased by an order of magnitude following the rain, and reached levels {approximately}6 times above those at the same time the previous day. These fluxes were significantly correlated with temperature, radiation, humidity, wind speed, and soil moisture. After drying for {approximately}40 hours, selected soil plots were manually irrigated with low-Hg-distilled water. Mercury emissions responded similarly across the three treated sites, uniformly increasing from {approximately}60 ng m{sup {minus}2} h{sup {minus}1} pretreatment to {approximately}650 ng m{sup {minus}2} h{sup {minus}1} posttreatment, which was a factor of {approximately}6 higher than adjacent control soils. Possible causes of the increases in flux include soil gas displacement, desorption of Hg{degree} by water molecules, and desorption of Hg(II) and subsequent reduction in solution. The kinetics of the flux response, combined with local soil and climatic conditions, suggest that Hg emissions were responding primarily to soil moisture and solar radiation

  8. Mercury methylation in paddy soil: source and distribution of mercury species at a Hg mining area, Guizhou Province, China

    Science.gov (United States)

    Zhao, Lei; Anderson, Christopher W. N.; Qiu, Guangle; Meng, Bo; Wang, Dingyong; Feng, Xinbin

    2016-04-01

    Rice paddy plantation is the dominant agricultural land use throughout Asia. Rice paddy fields have been identified as important sites for methylmercury (MeHg) production in the terrestrial ecosystem and a primary pathway of MeHg exposure to humans in mercury (Hg) mining areas. We compared the source and distribution of Hg species in different compartments of the rice paddy during a complete rice-growing season at two different typical Hg-contaminated mining sites in Guizhou province, China: an abandoned site with a high Hg concentration in soil but a low concentration in the atmosphere and a current-day artisanal site with a low concentration in soil but a high concentration in the atmosphere. Our results showed that the flux of new Hg to the ecosystem from irrigation and atmospheric deposition was insignificant relative to the pool of old Hg in soil; the dominant source of MeHg to paddy soil is in situ methylation of inorganic Hg (IHg). Elevated MeHg concentrations and the high proportion of Hg as MeHg in paddy water and the surface soil layer at the artisanal site demonstrated active Hg methylation at this site only. We propose that the in situ production of MeHg in paddy water and surface soil is dependent on elevated Hg in the atmosphere and the consequential deposition of new Hg into a low-pH anoxic geochemical system. The absence of depth-dependent variability in the MeHg concentration in soil cores collected from the abandoned Hg mining site, consistent with the low concentration of Hg in the atmosphere and high pH of the paddy water and irrigation water, suggested that net production of MeHg at this site was limited. We propose that the concentration of Hg in ambient air is an indicator for the risk of MeHg accumulation in paddy rice.

  9. Spectral variability of the 3C 390.3 nucleus for more than 20 yr - I. Variability of the broad and narrow emission line fluxes

    Science.gov (United States)

    Sergeev, S. G.; Nazarov, S. V.; Borman, G. A.

    2017-02-01

    We summarize results of the analysis of the optical variability of the continuum and emission-line fluxes in the 3C 390.3 nucleus during 1992-2014. The [O III] λ5007 flux increases monotonically by ≈30 per cent in 2003-2014. The narrow Balmer lines show similar monotonic increase, while the variability patterns of the [O I] λ6300 narrow line are completely different from that of [O III]. The reverberation lags are found to be 88.6 ± 8.4, 161 ± 15, and 113 ± 14 d for the Hβ, Hα, and Hγ broad emission lines, respectively. The reverberation mass of the central black hole equals to (1.87 ± 0.26) × 109 M⊙ and (2.81 ± 0.38) × 109 M⊙, for the Hβ and Hα lines and assuming a scaling factor which converts the virial product to a mass to be f = 5.5. A difference between both masses can point to a difference between kinematics of the Hα and Hβ emission regions. We show that the reverberation mapping can only be applied to the entire period of observations of the 3C 390.3 nucleus after removing a long-term trend. This trend has been expressed by a slowly varying scalefactor c(t) in the power-law relationship between the line and continuum fluxes: F_{line}∝ c(t) F_{cont}^a. We find that the power-law index a equals to 0.77 and 0.54 for the Hβ and Hα lines, respectively. The observed relationship between the Balmer decrement and the optical continuum flux is as follows: F(Hα)/F(H β ) ∝ F_{cont}^{-0.20} and F(Hβ)/F(H γ ) ∝ F_{cont}^{-0.18}. The 3C 390.3 nucleus is an 'outsider' in the relationship between optical luminosity and black hole mass. Its Eddington ratio is Ebol/EEdd = 0.0037.

  10. Contribution of winter fluxes to the annual CH4, CO2 and N2O emissions from freshwater marshes in the Sanjiang Plain

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Wetlands at the interface of the terrestrial and aquatic ecosystems are intensive sites for mineralization of organic matter,but the contribution of winter season fluxes of CH4, CO2 and N2O from wetland ecosystems to annual budgets is poorly known. By using the static opaque chamber and GC techniques, fluxes of CH4, CO2 and N2O at two freshwater marshes in the Sanjiang Plain were measured during the winter seasons of 2002/2003 and 2003/2004 with contrasting snow conditions and flooding regimes. The results showed that there were significant interannual and spatial differences in CH4, CO2 and N2O fluxes. The Carex lasiocarpa marsh emitted more CH4 and CO2 while absorbed less N2O than the Deyeuxia angustifolia marsh during the winter seasons. Over the winter season,emissions of CH4, CO2 and N2O ranged from 0.42 to 2.41 gC/m2, from 24.13 to 50.16 gC/m2, and from -25.20 to -148.96 mgN/m2,respectively. The contributions of winter season CH4 and CO2 emission to the annual budgets were 2.32%-4.62% and 22.17%-27.97%, respectively. Marshes uptake N2O during the freezing period, while release N2O during the thawing period. The winter uptake equaled to 13.70%-86.69% of the growing-season loss. We conclude that gas exchange between soil/snow and the atmosphere in the winter season contributed greatly to the annual budgets and cannot be ignored in a cool temperate freshwater marsh in Northeast China.

  11. Diminished Mercury Emission From Water Surfaces by Duckweed (Lemna minor)

    Science.gov (United States)

    Wollenberg, J. L.; Peters, S. C.

    2007-12-01

    Aquatic plants of the family Lemnaceae (generally referred to as duckweeds) are a widely distributed type of floating vegetation in freshwater systems. Under suitable conditions, duckweeds form a dense vegetative mat on the water surface, which reduces light penetration into the water column and decreases the amount of exposed water surface. These two factors would be expected to reduce mercury emission by limiting a) direct photoreduction of Hg(II), b) indirect reduction via coupled DOC photooxidation-Hg(II) reduction, and c) gas diffusion across the water-air interface. Conversely, previous studies have demonstrated transpiration of Hg(0) by plants, so it is therefore possible that the floating vegetative mat would enhance emission via transpiration of mercury vapor. The purpose of this experiment was to determine whether duckweed limits mercury flux to the atmosphere by shading and the formation of a physical barrier to diffusion, or whether it enhances emission from aquatic systems via transpiration of Hg(0). Deionized water was amended with mercury to achieve a final concentration of approximately 35 ng/L and allowed to equilibrate prior to the experiment. Experiments were conducted in rectangular polystyrene flux chambers with measured UV-B transmittance greater than 60% (spectral cutoff approximately 290 nm). Light was able to penetrate the flux chamber from the sides as well as the top throughout the experiment, limiting the effect of shading by duckweed on the water surface. Flux chambers contained 8L of water with varying percent duckweed cover, and perforated plastic sheeting was used as an abiotic control. Exposures were conducted outside on days with little to no cloud cover. Real time mercury flux was measured using atomic absorption (Mercury Instruments UT-3000). Total solar and ultraviolet radiation, as well as a suite of meteorological parameters, were also measured. Results indicate that duckweed diminishes mercury emission from the water surface

  12. A Deep HST Search for Escaping Lyman Continuum Flux at z~1.3: Evidence for an Evolving Ionizing Emissivity

    CERN Document Server

    Siana, Brian; Ferguson, Henry C; Brown, Thomas M; Giavalisco, Mauro; Dickinson, Mark; Chary, Ranga-Ram; de Mello, Duilia F; Conselice, Christopher J; Bridge, Carrie R; Gardner, Jonathan P; Colbert, James W; Scarlata, Claudia

    2010-01-01

    We have obtained deep Hubble Space Telescope far-UV images of 15 starburst galaxies at z~1.3 in the GOODS fields to search for escaping Lyman continuum photons. These are the deepest far-UV images m_{AB}=28.7, 3\\sigma, 1" diameter) over this large an area (4.83 arcmin^2) and provide the best escape fraction constraints for any galaxy at any redshift. We do not detect any individual galaxies, with 3\\sigma limits to the Lyman Continuum (~700 \\AA) flux 50--149 times fainter (in f_nu) than the rest-frame UV (1500 \\AA) continuum fluxes. Correcting for the mean IGM attenuation (factor ~2), as well as an intrinsic stellar Lyman Break (~3), these limits translate to relative escape fraction limits of f_{esc,rel}4 and reionization of the intergalactic medium at z>6. [Abridged

  13. High-energy X-ray detection of G359.89–0.08 (SGR A–E): Magnetic flux tube emission powered by cosmic rays?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shuo; Hailey, Charles J.; Gotthelf, Eric V.; Mori, Kaya; Nynka, Melania [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Bauer, Franz E. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile 306, Santiago 22 (Chile); Boggs, Steven E.; Craig, William W.; Tomsick, John A. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, Finn E. [DTU Space-National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Harrison, Fiona A. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Stern, Daniel [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Zhang, William W., E-mail: shuo@astro.columbia.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-03-20

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center monitoring campaign. The featureless power-law spectrum with a photon index Γ ≈ 2.3 confirms a non-thermal emission mechanism. The observed flux in the 3-79 keV band is F{sub X} = (2.0 ± 0.1) × 10{sup –12} erg cm{sup –2} s{sup –1}, corresponding to an unabsorbed X-ray luminosity L{sub X} = (2.6 ± 0.8) × 10{sup 34} erg s{sup –1} assuming a distance of 8.0 kpc. Based on theoretical predictions and observations, we conclude that Sgr A–E is unlikely to be a pulsar wind nebula (PWN) or supernova remnant-molecular cloud (SNR-MC) interaction, as previously hypothesized. Instead, the emission could be due to a magnetic flux tube which traps TeV electrons. We propose two possible TeV electron sources: old PWNe (up to ∼100 kyr) with low surface brightness and radii up to ∼30 pc or MCs illuminated by cosmic rays (CRs) from CR accelerators such as SNRs or Sgr A*.

  14. Limiting nutrient emission from a cut rose closed system by high-flux irrigation and low nutrient concentrations?

    NARCIS (Netherlands)

    Baas, R.; Berg, van der D.

    2004-01-01

    A two-year project was aimed at decreasing nutrient emission from closed nutrient systems by using high irrigation rates in order to allow lower EC levels in the presence of accumulated Na and Cl. Experimental variables were growing media, irrigation frequencies, EC and NaCl concentrations for cut r

  15. Integration of remote lidar and in-situ measured data to estimate particulate flux and emission from tillage operations

    Science.gov (United States)

    Zavyalov, Vladimir V.; Bingham, Gail E.; Wojcik, Michael; Hatfield, Jerry L.; Wilkerson, Thomas D.; Martin, Randal S.; Marchant, Christian; Moore, Kori; Bradford, Bill

    2010-10-01

    Agriculture, through wind erosion, tillage and harvest operations, burning, diesel-powered machinery and animal production operations, is a source of particulate matter emissions. Agricultural sources vary both temporally and spatially due to daily and seasonal activities and inhomogeneous area sources. Conventional point sampling methods originally designed for regional, well mixed aerosols are challenged by the disrupted wind flow and by the small mobile source of the emission encountered in this study. Atmospheric lidar (LIght Detection And Ranging) technology provides a means to derive quantitative information of particulate spatial and temporal distribution. In situ point measurements of particulate physical and chemical properties are used to characterize aerosol physical parameters and calibrate lidar data for unambiguous lidar data processing. Atmospheric profiling with scanning lidar allows estimation of temporal and 2D/3D spatial variations of mass concentration fields for different particulate fractions (PM1, PM2.5, PM10, and TSP) applicable for USEPA regulations. This study used this advanced measurement technology to map PM emissions at high spatial and temporal resolutions, allowing for accurate comparisons of the Conservation Management Practice (CMP) under test. The purpose of this field study was to determine whether and how much particulate emission differs from the conventional method of agricultural fall tillage and combined CMP operations.

  16. Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: implications for long-range dispersal of volcanic clouds

    Directory of Open Access Journals (Sweden)

    M. Boichu

    2015-02-01

    Full Text Available Sulfur-rich degassing, which is mostly composed of sulfur dioxide (SO2, plays a major role in the overall impact of volcanism on the atmosphere and climate. The accurate assessment of this impact is currently hampered by the poor knowledge of volcanic SO2 emissions. Here, using an inversion procedure, we show how assimilating snapshots of the volcanic SO2 load derived from the Infrared Atmospheric Sounding Interferometer (IASI allows for reconstructing both the flux and altitude of the SO2 emissions with an hourly resolution. For this purpose, the regional chemistry-transport model CHIMERE is used to describe the dispersion of SO2 when released in the atmosphere. As proof of concept, we study the 10 April 2011 eruption of the Etna volcano (Italy, which represents one of the few volcanoes instrumented on the ground for the continuous monitoring of SO2 degassing. We find that the SO2 flux time-series retrieved from satellite imagery using the inverse scheme is in agreement with ground observations during ash-poor phases of the eruption. However, large discrepancies are observed during the ash-rich paroxysmal phase as a result of enhanced plume opacity affecting ground-based ultraviolet (UV spectroscopic retrievals. As a consequence, the SO2 emission rate derived from the ground is underestimated by almost one order of magnitude. Altitudes of the SO2 emissions predicted by the inverse scheme are validated against a RGB MODIS image capturing the near-source atmospheric pathways followed by Etna plumes, in combination with forward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model. At large distance from the source, modeled SO2 altitudes are confronted with independent information on the volcanic cloud height. We find that the altitude predicted by the inverse scheme is in agreement with snapshots of the SO2 height retrieved from recent algorithms exploiting the high spectral resolution of IASI. The validity

  17. Temporal variations of flux and altitude of sulfur dioxide emissions during volcanic eruptions: implications for long-range dispersal of volcanic clouds

    Directory of Open Access Journals (Sweden)

    M. Boichu

    2015-07-01

    Full Text Available Sulfur-rich degassing, which is mostly composed of sulfur dioxide (SO2, plays a major role in the overall impact of volcanism on the atmosphere and climate. The accurate assessment of this impact is currently hampered by the poor knowledge of volcanic SO2 emissions. Here, using an inversion procedure, we show how assimilating snapshots of the volcanic SO2 load derived from the Infrared Atmospheric Sounding Interferometer (IASI allows for reconstructing both the flux and altitude of the SO2 emissions with an hourly resolution. For this purpose, the regional chemistry-transport model CHIMERE is used to describe the dispersion of SO2 when released in the atmosphere. As proof of concept, we study the 10 April 2011 eruption of the Etna volcano (Italy, which represents one of the few volcanoes instrumented on the ground for the continuous monitoring of SO2 degassing. We find that the SO2 flux time-series retrieved from satellite imagery using the inverse scheme is in agreement with ground observations during ash-poor phases of the eruption. However, large discrepancies are observed during the ash-rich paroxysmal phase as a result of enhanced plume opacity affecting ground-based ultraviolet (UV spectroscopic retrievals. As a consequence, the SO2 emission rate derived from the ground is underestimated by almost one order of magnitude. Altitudes of the SO2 emissions predicted by the inverse scheme are validated against an RGB image of the Moderate Resolution Imaging Spectroradiometer (MODIS capturing the near-source atmospheric pathways followed by Etna plumes, in combination with forward trajectories from the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model. At a large distance from the source, modelled SO2 altitudes are compared with independent information on the volcanic cloud height. We find that the altitude predicted by the inverse scheme is in agreement with snapshots of the SO2 height retrieved from recent algorithms

  18. Accounting for representativeness errors in the inversion of atmospheric constituent emissions: application to the retrieval of regional carbon monoxide fluxes

    Directory of Open Access Journals (Sweden)

    Mohammad Reza Koohkan

    2012-07-01

    Full Text Available A four-dimensional variational data assimilation system (4D-Var is developed to retrieve carbon monoxide (CO fluxes at regional scale, using an air quality network. The air quality stations that monitor CO are proximity stations located close to industrial, urban or traffic sources. The mismatch between the coarsely discretised Eulerian transport model and the observations, inferred to be mainly due to representativeness errors in this context, lead to a bias (average simulated concentrations minus observed concentrations of the same order of magnitude as the concentrations. 4D-Var leads to a mild improvement in the bias because it does not adequately handle the representativeness issue. For this reason, a simple statistical subgrid model is introduced and is coupled to 4D-Var. In addition to CO fluxes, the optimisation seeks to jointly retrieve influence coefficients, which quantify each station's representativeness. The method leads to a much better representation of the CO concentration variability, with a significant improvement of statistical indicators. The resulting increase in the total inventory estimate is close to the one obtained from remote sensing data assimilation. This methodology and experiments suggest that information useful at coarse scales can be better extracted from atmospheric constituent observations strongly impacted by representativeness errors.

  19. Mercury emissions from flooded soils and sediments in Germany are an underestimated problem: challenges for reliable risk assessments and management strategies

    Directory of Open Access Journals (Sweden)

    Rinklebe J.

    2013-04-01

    Full Text Available Environmental pollution by mercury is a world-wide problem. Particularly floodplain ecosystems are frequently affected. One example is the Elbe River in Germany and its catchment areas; large amounts of Hg from a range of anthropogenic and geogenic sources have been accumulated in the soils of these floodplains. They serve as sink for Hg originating from the surface water of adjacent river. Today, the vastly elevated Hg contents of the floodplain soils at the Elbe River often exceed even the action values of the German Soil Conservation Law. This is especially important as Hg polluted areas at the Elbe River achieve several hundred square kilometres. Thus, authorities are coerced by law to conduct an appropriate risk assessment and to implement practical actions to eliminate or reduce environmental problems. A reliable risk assessment particularly with view to organisms (vegetation as green fodder and hay production, grazing and wild animals to avoid the transfer of Hg into the human food chain, requires an authentic determination of Hg fluxes and their dynamics since gaseous emissions from soil to atmosphere are an important pathway of Hg. However, reliable estimates of Hg fluxes from the highly polluted floodplain soils at the Elbe River and its tributaries, and its influencing factors are scarce. For this purpose, we have developed a new method to determine mercury emissions from soils at various sites. Our objectives were i to quantify seasonal variations of total gaseous mercury (TGM fluxes for floodplain soils at the Elbe River, ii to provide insights into physico-chemical processes regulating these TGM fluxes, and iii to quantify the impacts of the controlling factors soil temperature and soil water content on Hg volatilization from a typical contaminated floodplain soil within soil microcosm experiments under various controlled temperature and moisture conditions. Our study provides insight into TGM emissions from highly Hg

  20. Exchange flux of total gaseous mercury between air and natural water surfaces in summer season

    Institute of Scientific and Technical Information of China (English)

    FENG; Xinbin; (冯新斌); Jonas; Sommar; Katarina; Gordfeldt; Oliver; Lindqvist

    2002-01-01

    The exchanges of mercury between surface and air are of significance in the biogeochemical cycling of Hg in the environment, but there are still few reliable data on air/surface exchange in aquatic systems. Field measurement campaigns over seawater surface at Kristineberg Marine Research Station (KMRS) and over Hovg?rds?n River surface at Knobesholm in southwestern Sweden were conducted to measure mercury flux using a dynamic flux chamber technique coupled with automatic mercury vapor-phase analyzers. Both sites show net emissions during summer time. Mercury fluxes measured over both river and seawater surfaces exhibit a consistently diurnal pattern with maximum fluxes during the daytime period and minimum fluxes during the nighttime period. At freshwater site, mercury flux is strongly correlated with the intensity of net solar radiation, and negatively correlated with relative humidity. A typical exponential relationship between mercury flux and water temperature was observed at freshwater measurement site. At seawater site, a strong correlation between mercury flux and intensity of solar radiation was obtained. The driving force of mercury emission from water surface to air is the super-saturation of dissolved gaseous mercury in aqueous phase.

  1. Distribution and air-sea exchange of mercury (Hg) in polluted marine environments

    Science.gov (United States)

    Bagnato, E.; Sprovieri, M.; Bitetto, M.; Bonsignore, M.; Calabrese, S.; Di Stefano, V.; Oliveri, E.; Parello, F.; Mazzola, S.

    2012-04-01

    Mercury (Hg) is emitted in the atmosphere by anthropogenic and natural sources, these last accounting for one third of the total emissions. Since the pre-industrial age, the atmospheric deposition of mercury have increased notably, while ocean emissions have doubled owing to the re-emission of anthropogenic mercury. Exchange between the atmosphere and ocean plays an important role in cycling and transport of mercury. We present the preliminary results from a study on the distribution and evasion flux of mercury at the atmosphere/sea interface in the Augusta basin (SE Sicily, southern Italy), a semi-enclosed marine area affected by a high degree of contamination (heavy metals and PHA) due to the oil refineries placed inside its commercial harbor. It seems that the intense industrial activity of the past have lead to an high Hg pollution in the bottom sediments of the basin, whose concentrations are far from the background mercury value found in most of the Sicily Strait sediments. The release of mercury into the harbor seawater and its dispersion by diffusion from sediments to the surface, make the Augusta basin a potential supplier of mercury both to the Mediterranean Sea and the atmosphere. Based on these considerations, mercury concentration and flux at the air-sea interface of the Bay have been estimated using a real-time atomic adsorption spectrometer (LUMEX - RA915+) and an home-made accumulation chamber, respectively. Estimated Total Atmospheric Mercury (TGM) concentrations during the cruise on the bay were in the range of 1-3 ng · m-3, with a mean value of about 1.4 ng · m-3. These data well fit with the background Hgatm concentration values detected on the land (1-2 ng · m-3, this work), and, more in general, with the background atmospheric TGM levels found in the North Hemisphere (1.5-1.7 ng · m-3)a. Besides, our measurements are in the range of those reported for other important polluted marine areas. The mercury evasion flux at the air-sea interface

  2. Mercury in the Lot-Garonne River system (France): Sources, fluxes and anthropogenic component

    OpenAIRE

    Schafer, Jörg; Blanc, Gerard; Audry, S; Cossa, Daniel; Bossy, C.

    2006-01-01

    Dissolved and particulate Hg fluxes in the Lot-Garonne-Gironde fluvial-estuarine system were obtained from observation of daily discharge and suspended particulate matter (SPM) concentrations. In addition to the measurements of the total dissolved ( 0.45 gm), called HgTD and HgTp respectively, the dissolved inorganic Hg species (HgRD) were determined monthly. Geochemical background values for HgTp in sediments and SPM were similar to crustal values and to typic...

  3. Biosorption of Hg(II) onto goethite with extracellular polymeric substances.

    Science.gov (United States)

    Song, Wenjuan; Pan, Xiangliang; Mu, Shuyong; Zhang, Daoyong; Yang, Xue; Lee, Duu-Jong

    2014-05-01

    This study characterized the interactions of goethite, EPS from cyanobacterium Chroococcus sp. and Hg(II) using excitation emission matrix (EEM) spectra and adsorption isotherms. Three protein-like fluorescence peaks were noted to quench in the presence of Hg(II). The estimated conditional stability constant (logKa) and the binding constant (logKb) of the studied EPS-Hg(II) systems ranged 3.84-4.24 and 6.99-7.69, respectively. The proteins in EPS formed stable complex with Hg(II). The presence of proteins of Chroococcus sp. enhanced the adsorption capacity of Hg(II) on goethite; therefore, the goethite-EPS soil is a larger Hg(II) sink than goethite alone soil. Biosorption significantly affects the mobility of Hg(II) in goethite soils.

  4. Mapping 1995 global anthropogenic emissions of mercury

    NARCIS (Netherlands)

    Pacyna, Jozef M.; Pacyna, Elisabeth G.; Steenhuisen, Frits; Wilson, Simon

    2003-01-01

    This paper presents maps of anthropogenic Hg emissions worldwide within a 1degrees x 1degrees latitude/longitude grid system in 1995. As such, the paper is designed for modelers simulating the Hg transport within air masses and Hg deposition to aquatic and terrestrial ecosystems. Maps of total Hg

  5. Sediment-water fluxes of mercury in Lavaca Bay, Texas

    Energy Technology Data Exchange (ETDEWEB)

    Gill, G.A. [Texas A and M Univ., Galveston, TX (United States); Bloom, N.S. [Frontier Geosciences Inc., Seattle, WA (United States); Cappellino, S. [Parametrix, Inc., Houston, TX (United States); Driscoll, C.T. [Syracuse Univ., NY (United States). Dept. of Civil and Environmental Engineering; Dobbs, C.; McShea, L. [Aluminum Co. of America, Point Comfort, TX (United States); Mason, R. [Univ. of Maryland, Solomons, MD (United States). Chesapeake Biological Lab.; Rudd, J.W.M. [Dept. of Fisheries and Oceans, Winnipeg, Manitoba (Canada). Freshwater Inst.

    1999-03-01

    The aqueous flux of inorganic Hg and monomethyl Hg from sediments to the water column was determined at several sites in Lavaca Bay, an estuary along the Texas Coast, historically impacted by Hg discharges. Diffusive fluxes were calculated at 15 sites using interstitial pore water gradients and compared to direct flux measurements obtained at two sites using benthic flux chambers. The diffusive flux of monomethyl mercury (MMHg), when modeled as a chloride species, varied over 3 orders /of magnitude from 0.2 to 1500 ng m{sup {minus}2} day{sup {minus}1}. Diffusive fluxes determined at a single site revealed that MMHg fluxes varied seasonally; maximal fluxes occurred in late winter to early spring. Flux chamber deployments at an impacted site revealed t hat MMHg was the Hg species entering the water column from sediments and the flux was not in steady-state; there was a strong diurnal signal with most of the MMHg flux occurring during dark periods. The flux of inorganic Hg was smaller and not as easily discernible by this method. The MMHg flux during the dark period was about 6 times greater than the estimated diffusional flux for MMHgCl, suggesting that biological and/or chemical processes near the sediment-water interface were strongly mediating the sediment-water exchange of MMHg.

  6. Particulate-phase mercury emissions from biomass burning and impact on resulting deposition: a modelling assessment

    Science.gov (United States)

    Mercury (Hg) emissions from biomass burning (BB) are an important source of atmospheric Hg and a major factor driving the interannual variation of Hg concentrations in the troposphere. The greatest fraction of Hg from BB is released in the form of elemental Hg (Hg0(g)). However, ...

  7. Gaseous mercury fluxes from forest soils in response to forest harvesting intensity: A field manipulation experiment

    Science.gov (United States)

    M. Mazur; C.P.J. Mitchell; C.S. Eckley; S.L. Eggert; R.K. Kolka; S.D. Sebestyen; E.B. Swain

    2014-01-01

    Forest harvesting leads to changes in soil moisture, temperature and incident solar radiation, all strong environmental drivers of soil-air mercury (Hg) fluxes. Whether different forest harvesting practices significantly alter Hg fluxes from forest soils is unknown.We conducted a field-scale experiment in a northern Minnesota deciduous forest wherein gaseous Hg...

  8. Using Simple Science to Influence Corporate Responsibility—A Lesson from Mercury (Hg)

    Science.gov (United States)

    Filippelli, G. M.

    2016-12-01

    Mercury (Hg) is a powerful neurotoxin with wide environmental distribution. Typical population exposure to Hg comes from fish consumption, with fish being the final ecological endpoint of Hg magnification after a series of biogeochemical processes. The emission of Hg from coal-fired power plants has been strongly implicated as a key source of environmental Hg, and thus the target for various public policy initiatives in the US and abroad. We conducted a study of Hg distribution in surface soils over a broad area of central Indiana (US) to understand the major sources of Hg to local fish, and to assess the potential role of policy compliance in reducing Hg. We found a plume-like distribution pattern for soil Hg, with values exceeding 400 ppb Hg in the heart of the plume, and reducing to background concentration of about 30 ppb outside of the plume. The plume covered hundreds of square kilometers, was centered directly over the downtown area of Indianapolis (a city of roughly 1 million inhabitants), and could be roughly backtracked to a source in the southwest corner of the city, coincident with a large coal-fired utility plant that has the highest reported emissions of Hg in the area. Evidence of this link between a local source of Hg and net Hg deposition, with related implications for Hg runoff to local stream, biomagnification to fish, and fish consumption advisories was reported in regional newspapers and eventually published in scientific journals. But importantly, these findings were used by an NGO (the Beyond Coal campaign by Indiana branch of the Sierra Club) at a critical time to influence a decision by the owner of the power plant of whether to comply with the Hg policy rule by either adding higher technology scrubbing technologies to the plant or simply to convert the plant over to natural gas as the fuel source (a costlier choice upfront). The utility chose the latter option, and with the permanent elimination of Hg emissions, the net measurable effects

  9. Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China

    Science.gov (United States)

    Wang, Xun; Lin, Che-Jen; Yuan, Wei; Sommar, Jonas; Zhu, Wei; Feng, Xinbin

    2016-09-01

    Mercury (Hg) emission from natural surfaces plays an important role in global Hg cycling. The present estimate of global natural emission has large uncertainty and remains unverified against field data, particularly for terrestrial surfaces. In this study, a mechanistic model is developed for estimating the emission of elemental mercury vapor (Hg0) from natural surfaces in China. The development implements recent advancements in the understanding of air-soil and air-foliage exchange of Hg0 and redox chemistry in soil and on surfaces, incorporates the effects of soil characteristics and land use changes by agricultural activities, and is examined through a systematic set of sensitivity simulations. Using the model, the net exchange of Hg0 between the atmosphere and natural surfaces of mainland China is estimated to be 465.1 Mg yr-1, including 565.5 Mg yr-1 from soil surfaces, 9.0 Mg yr-1 from water bodies, and -100.4 Mg yr-1 from vegetation. The air-surface exchange is strongly dependent on the land use and meteorology, with 9 % of net emission from forest ecosystems; 50 % from shrubland, savanna, and grassland; 33 % from cropland; and 8 % from other land uses. Given the large agricultural land area in China, farming activities play an important role on the air-surface exchange over farmland. Particularly, rice field shift from a net sink (3.3 Mg uptake) during April-October (rice planting) to a net source when the farmland is not flooded (November-March). Summing up the emission from each land use, more than half of the total emission occurs in summer (51 %), followed by spring (28 %), autumn (13 %), and winter (8 %). Model verification is accomplished using observational data of air-soil/air-water fluxes and Hg deposition through litterfall for forest ecosystems in China and Monte Carlo simulations. In contrast to the earlier estimate by Shetty et al. (2008) that reported large emission from vegetative surfaces using an evapotranspiration approach, the estimate in

  10. Transcriptional activities of methanogens and methanotrophs vary with methane emission flux in rice soils under chronic nutrient constraints of phosphorus and potassium

    Science.gov (United States)

    Sheng, Rong; Chen, Anlei; Zhang, Miaomiao; Whiteley, Andrew S.; Kumaresan, Deepak; Wei, Wenxue

    2016-12-01

    Nutrient status in soil is crucial for the growth and development of plants which indirectly or directly affect the ecophysiological functions of resident soil microorganisms. Soil methanogens and methanotrophs can be affected by soil nutrient availabilities and plant growth, which in turn modulate methane (CH4) emissions. Here, we assessed whether deficits in soil-available phosphorus (P) and potassium (K) modulated the activities of methanogens and methanotrophs in a long-term (20 year) experimental system involving limitation in either one or both nutrients. Results showed that a large amount of CH4 was emitted from paddy soil at rice tillering stage (flooding) while CH4 flux was minimum at ripening stage (drying). Compared to soils amended with NPK fertiliser treatment, the soils without P input significantly reduced methane flux rates, whereas those without K input did not. Under P limitation, methanotroph transcript copy number significantly increased in tandem with a decrease in methanogen transcript abundance, suggesting that P-deficiency-induced changes in soil physio-chemical properties, in tandem with rice plant growth, might constrain the activity of methanogens, whereas the methanotrophs might be adaptive to this soil environment. In contrast, lower transcript abundance of both methanogen and methanotrophs were observed in K-deficient soils. Assessments of community structures based upon transcripts indicated that soils deficient in P induced greater shifts in the active methanotrophic community than K-deficient soils, while similar community structures of active methanogens were observed in both treatments. These results suggested that the population dynamics of methanogens and methanotrophs could vary along with the changes in plant growth states and soil properties induced by nutrient deficiency.

  11. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    Science.gov (United States)

    Brioude, Jerome; Angevine, Wayne; Ahmadov, Ravan; Kim, Si Wan; Evan, Stephanie; McKeen, Stuart; Hsie, Eirh Yu; Frost, Greg; Neuman, Andy; Pollack, Ilana; Peischl, Jeff; Ryerson, Tom; Holloway, John; Brown, Steeve; Nowak, John; Roberts, Jim; Wofsy, Steeve; Santoni, Greg; Trainer, Michael

    2013-04-01

    We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May-June 2010. The US EPA National Emission Inventory 2005 (NEI 2005) was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA) County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB). NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr-1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB) inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior inventories derived in

  12. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    Directory of Open Access Journals (Sweden)

    S. C. Wofsy

    2012-12-01

    Full Text Available We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May–June 2010. The US EPA National Emission Inventory 2005 (NEI 2005 was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% ± 6% in LA County and by 37% ± 10% in the South Coast Air Basin (SoCAB. NOx posterior emissions were lower by 32% ± 10% in LA County and by 27% ± 15% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 ± 18 Tg yr−1 in SoCAB. A flight during ITCT in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% ± 14% in LA County but decreased by 4% ± 10% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, CARB 2010 and the posterior

  13. Top-down estimate of surface flux in the Los Angeles Basin using a mesoscale inverse modeling technique: assessing anthropogenic emissions of CO, NOx and CO2 and their impacts

    Directory of Open Access Journals (Sweden)

    J. Brioude

    2013-04-01

    Full Text Available We present top-down estimates of anthropogenic CO, NOx and CO2 surface fluxes at mesoscale using a Lagrangian model in combination with three different WRF model configurations, driven by data from aircraft flights during the CALNEX campaign in southern California in May–June 2010. The US EPA National Emission Inventory 2005 (NEI 2005 was the prior in the CO and NOx inversion calculations. The flux ratio inversion method, based on linear relationships between chemical species, was used to calculate the CO2 inventory without prior knowledge of CO2 surface fluxes. The inversion was applied to each flight to estimate the variability of single-flight-based flux estimates. In Los Angeles (LA County, the uncertainties on CO and NOx fluxes were 10% and 15%, respectively. Compared with NEI 2005, the CO posterior emissions were lower by 43% in LA County and by 37% in the South Coast Air Basin (SoCAB. NOx posterior emissions were lower by 32% in LA County and by 27% in the SoCAB. NOx posterior emissions were 40% lower on weekends relative to weekdays. The CO2 posterior estimates were 183 Tg yr−1 in SoCAB. A flight during ITCT (Intercontinental Transport and Chemical Transformation in 2002 was used to estimate emissions in the LA Basin in 2002. From 2002 to 2010, the CO and NOx posterior emissions decreased by 41% and 37%, respectively, in agreement with previous studies. Over the same time period, CO2 emissions increased by 10% in LA County but decreased by 4% in the SoCAB, a statistically insignificant change. Overall, the posterior estimates were in good agreement with the California Air Resources Board (CARB inventory, with differences of 15% or less. However, the posterior spatial distribution in the basin was significantly different from CARB for NOx emissions. WRF-Chem mesoscale chemical-transport model simulations allowed an evaluation of differences in chemistry using different inventory assumptions, including NEI 2005, a gridded CARB

  14. Flux Emissions of SO2 and NO2 Measured at the Tula Industrial Complex (Mexico) during MCMA 2006 Field Campaign using a Mini-DOAS System

    Science.gov (United States)

    Sosa, G.; Rivera, C.; Wöhrnschimmel, H.; de Foy, B.; Johansson, M.; Molina, L. T.

    2007-05-01

    The Tula industrial zone is located 60 km northeast from the Mexico City Metropolitan Area (MCMA), in the Hidalgo State in México. This region is known as the Tula-Vito-Apasco industrial corridor, where a number of industries are located. According to the latest information from the environmental authority, about 313,000 ton/year of SO2 and 40,000 ton/year of NOx are released in this region. The Miguel Hidalgo refinery (MHR) and the Francisco Pérez Ríos power plant (FPRPP) are the main emitters, contributing almost 90% of SO2 and 80% of NOx from the total emission inside the Hidalgo State. Other industries such as cement plants, open-sky mines and agricultural activities are also responsible for important emissions of particulat matter (PM) into the atmosphere and soil erosion. This highly industrialized region is thought to influence the air quality in the MCMA, where in some occasions SO2 concentrations in the north part of the city have exceeded the Mexican air quality standard (130 ppb as a 24 hour average), which could not be attributed to irregular operations of industries located in the surrounding area. To address the question of emissions from the refinery and the power plant, the total fluxes of SO2 and NO2 were determined by measurements of their respective integrated vertical column in the neighborhood of the Tula industrial zone, using a Mini-DOAS system. These measurements were carried out as part of the MCMA-2006/MILAGRO Field Campaign, from March 24th to April 18th 2006. Meteorological measurements at the height of the plume dispersion were also determined using pilot balloons and radiosondes techniques. The experimental data were complemented by model simulations. Forward Lagrangian stochastic trajectories were calculated to simulate the plume using FLEXPART in combination with meso-scale meteorological simulations with MM5. The experimental data set was used to evaluate model performance. The simulations were used as an additional estimate of

  15. [AuHg(o-C6H4PPh22I]: A Dinuclear Heterometallic Blue Emitter

    Directory of Open Access Journals (Sweden)

    José M. López-de-Luzuriaga

    2015-02-01

    Full Text Available The heteronuclear AuI/HgII complex [AuHg(o-C6H4PPh22I] (1 was prepared by reacting of [Hg(2-C6H4PPh22] with [Au(tht2]ClO4 (1:1 and NaI in excess. The heterometallic compound 1 has been structurally characterized and shows an unusual blue luminescent emission in the solid state. Theoretical calculations suggest that that the origin of the emission arises from the iodide ligand arriving at metal-based orbitals in a Ligand to Metal-Metal Charge Transfer transition.

  16. Chemical thermodynamics of the Hg1212 phase

    Science.gov (United States)

    Tsuchiya, Tetsuo; Fueki, Kazuo

    1997-02-01

    The single phase of Hg1212 was synthesized by the simple oxide method using starting materials containing HgO 16% in excess. Stability regions of Hg1212 and pure HgO were determined by measuring the decomposition temperature as a function of oxygen partial pressure, and thermodynamic diagrams showing the stability domains of HgO and Hg1212 were constructed. The thermodynamical condition of formation of Hg1212 was discussed using the diagrams. It was found by chemical analysis that the valence of Hg is always 2 + and the valence of Ce changes with the oxygen content. TC (zero) changed from 122 to 118 K when the oxygen content was increased from 6.10 to 6.22.

  17. Stability studies of Hg implanted YBa$_{2}$Cu$_{3}$O$_{6+x}$

    CERN Document Server

    Araújo, J P; Wahl, U; Marques, J G; Alves, E; Amaral, V S; Lourenço, A A; Galindo, V; Von Papen, T; Senateur, J P; Weiss, F; Vantomme, A; Langouche, G; Melo, A A; Da Silva, M F A; Soares, J C; Sousa, J B

    1999-01-01

    High quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ (YBCO) superconducting thin films were implanted with the radioactive $^{197m}$Hg (T$_{1/2}$ = 24 h) isotope to low fluences of 10$^{13}$ atoms/cm$^{2}$ and 60 keV energy. The lattice location and stability of the implanted Hg were studied combining the Perturbed Angular Correlation (PAC) and Emission Channeling (EC) techniques. We show that Hg can be introduced into the YBCO lattice by ion implantation into unique regular sites. The EC data show that Hg is located on a highly symmetric site on the YBCO lattice, while the PAC data suggests that Hg occupies the Cu(1) site. Annealing studies were performed under vacuum and O$_{2}$ atmosphere and show that Hg starts to diffuse only above 653 K.

  18. Emission inventory; Inventaire des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Fontelle, J.P. [CITEPA, Centre Interprofessionnel Technique d`Etudes de la Pollution Atmospherique, 75 - Paris (France)

    1997-12-31

    Statistics on air pollutant (sulfur dioxide, nitrogen oxides and ammonium) emissions, acid equivalent emissions and their evolution since 1990 in the various countries of Europe and the USA, are presented. Emission data from the industrial, agricultural, transportation and power sectors are given, and comparisons are carried out between countries based on Gnp and population, pollution import/export fluxes and compliance to the previous emission reduction objectives

  19. A dual, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    Directory of Open Access Journals (Sweden)

    S. Osterwalder

    2015-08-01

    Full Text Available The fate of anthropogenic emissions of mercury (Hg to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange which holds the key to a better understanding of Hg cycling from local to global scales has been difficult to quantify. To advance and facilitate research about land–atmosphere Hg interactions, we developed a dual-intake, single analyzer Relaxed Eddy Accumulation (REA system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM fluxes has proven difficult to technical challenges presented by extremely small concentration differences (typically −3 between updrafts and downdrafts. To address this we present an advanced REA design that uses two inlets and two pair of gold cartridges for semi-continuous monitoring of GEM fluxes. They are then analyzed sequentially on the same detector while another pair of gold cartridges takes over the sample collection. We also added a reference gas module for repeated quality-control measurements. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal mire during snow-melt. The observed emission rates were 15 and 3 ng m−2 h−1. We claim that this dual-inlet, single detector approach is a significant development of the REA system for ultra-trace gases and can help to advance our understanding of long-term land–atmosphere GEM exchange.

  20. Real-Time Monitoring and Control of HgCdTe MBE Using an Integrated Multi-Sensor System

    Science.gov (United States)

    1998-08-01

    layer composition, and effusion cell flux during MBE growth of HgCdTe epilayers for advanced IR detectors. Substrate temperature is measured and...HgCdTe MBE growth of high performance IR detector structures over a wide range of compositions, layer thickness and substrate temperature.

  1. Hg removal and the effects of coexisting metals in forward osmosis and membrane distillation.

    Science.gov (United States)

    Wu, Chia-Yu; Chen, Shiao-Shing; Zhang, Dai-Zhou; Kobayashi, Jun

    2017-06-01

    In this study, we investigate the rejection of Hg, Cd, and Pb and the effect of coexisting metals on Hg removal through forward osmosis (FO) and membrane distillation (MD) in order to establish a more effective water treatment process. The results of our laboratory experiment indicate that more than 97% of the rejection for each metal is achieved through the FO system, and this rejection is the highest among previous studies using membrane filtrations. Moreover, we examine the matrix effect of the coexisting Cd and Pb on the rejection of Hg in the FO system. Hg(2+) rejection increases with increase in the concentration of the coexisting metals. Furthermore, we study the effect of the Hg concentration and the water temperature on rejection of Hg(2+). Indeed, the rejection of Hg(2+) is achieved above 95% under any condition. However, approximately 1-10 ppb Hg from the feed solution remains in the draw solution due to permeation. Therefore, we use a FO-MD hybrid system. Approximately 100% rejection of Hg(2+) and a stable water flux are achieved. Thus, the FO-MD hybrid system is considered an important alternative to previous studies using membrane filtration for heavy metals removal.

  2. Magnetic properties of fluorinated Pb-doped Hg-1223 high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hamdan, N.M.; Sastry, P.V.P.S.S.; Schwartz, J.

    2001-09-23

    Fluorination of Pb-doped HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub y} (Hg-1223) system was investigated. Structural and magnetic measurements reveal that fluorine addition promotes the phase formation, optimize the charge carrier concentration, and enhance flux pinning. We report an increase in both the transition temperature and the critical current density through controlled fluorine incorporation. Even a possible change in the pinning mechanism in this technologically important system is suggested.

  3. Gaseous mercury flux from salt marshes is mediated by solar radiation and temperature

    Science.gov (United States)

    Sizmur, Tom; McArthur, Gordon; Risk, David; Tordon, Robert; O'Driscoll, Nelson J.

    2017-03-01

    Salt marshes are ecologically sensitive ecosystems where mercury (Hg) methylation and biomagnification can occur. Understanding the mechanisms controlling gaseous Hg flux from salt marshes is important to predict the retention of Hg in coastal wetlands and project the impact of environmental change on the global Hg cycle. We monitored Hg flux from a remote salt marsh over 9 days which included three cloudless days and a 4 mm rainfall event. We observed a cyclical diel relationship between Hg flux and solar radiation. When measurements at the same irradiance intensity are considered, Hg flux was greater in the evening when the sediment was warm than in the morning when the sediment was cool. This is evidence to suggest that both solar radiation and sediment temperature directly influence the rate of Hg(II) photoreduction in salt marshes. Hg flux could be predicted from solar radiation and sediment temperature in sub-datasets collected during cloudless days (R2 = 0.99), and before (R2 = 0.97) and after (R2 = 0.95) the rainfall event, but the combined dataset could not account for the lower Hg flux after the rainfall event that is in contrast to greater Hg flux observed from soils after rainfall events.

  4. A dual-inlet, single detector relaxed eddy accumulation system for long-term measurement of mercury flux

    Science.gov (United States)

    Osterwalder, S.; Fritsche, J.; Alewell, C.; Schmutz, M.; Nilsson, M. B.; Jocher, G.; Sommar, J.; Rinne, J.; Bishop, K.

    2016-02-01

    The fate of anthropogenic emissions of mercury (Hg) to the atmosphere is influenced by the exchange of elemental Hg with the earth surface. This exchange holds the key to a better understanding of Hg cycling from local to global scales, which has been difficult to quantify. To advance research about land-atmosphere Hg interactions, we developed a dual-inlet, single detector relaxed eddy accumulation (REA) system. REA is an established technique for measuring turbulent fluxes of trace gases and aerosol particles in the atmospheric surface layer. Accurate determination of gaseous elemental mercury (GEM) fluxes has proven difficult due to technical challenges presented by extremely small concentration differences (typically < 0.5 ng m-3) between updrafts and downdrafts. We present an advanced REA design that uses two inlets and two pairs of gold cartridges for continuous monitoring of GEM fluxes. This setup reduces the major uncertainty created by the sequential sampling in many previous designs. Additionally, the instrument is equipped with a GEM reference gas generator that monitors drift and recovery rates. These innovations facilitate continuous, autonomous measurement of GEM flux. To demonstrate the system performance, we present results from field campaigns in two contrasting environments: an urban setting with a heterogeneous fetch and a boreal peatland during snowmelt. The observed average emission rates were 15 and 3 ng m-2 h-1, respectively. We believe that this dual-inlet, single detector approach is a significant improvement of the REA system for ultra-trace gases and can help to advance our understanding of long-term land-atmosphere GEM exchange.

  5. Oxazine-thione-based Colorimetric Fluorescent OFF-ON Probes for Hg2+ Recognition%Oxazine-thione-based Colorimetric Fluorescent OFF-ON Probes for Hg2+ Recognition

    Institute of Scientific and Technical Information of China (English)

    张欠欠; 孙如; 葛健锋; 徐庆锋; 李娜君; 路建美

    2011-01-01

    Two colorimetric probes based on oxazine-thione la and lb for the detection of Hg2+ were designed and synthesized. The probe la exhibits about a 70-fold enhancement in fluorescence and a color change alter the addition of Hg2+ in acetonitrile/wate solvent, la was also highly selective to Hg2+ over other metal ions. Furthermore, DFT/TDDFT calculations were taken to explain the OFF-ON emission response.

  6. A laboratory based experimental study of mercury emission from contaminated soils in the River Idrijca catchment

    Directory of Open Access Journals (Sweden)

    D. Kocman

    2010-02-01

    Full Text Available Results obtained by a laboratory flux measurement system (LFMS focused on investigating the kinetics of the mercury emission flux (MEF from contaminated soils of the Idrija Hg-mine region, Slovenia are presented. Representative soil samples with respect to total Hg concentrations (4–417 μg g−1 and land cover (forest, meadow and alluvial soil alongside the River Idrijca were analysed to determine the variation in MEF versus distance from the source, regulating three major environmental parameters comprising soil temperature, soil moisture and solar radiation. MEFs ranged from less than 2 to 530 ng m−2 h−1, with the highest emissions from contaminated alluvial soils and soils near the mining district in the town of Idrija. A significant decrease of MEF was then observed with increasing distance from these sites. The results revealed a strong positive effect of all three parameters investigated on momentum MEF. The light-induced flux was shown to be independent of the soil temperature, while the soil aqueous phase seems to be responsible for recharging the pool of mercury in the soil available for both the light- and thermally-induced flux. The overall flux response to simulated environmental conditions depends greatly on the form of Hg in the soil. Higher activation energies are required for the overall process to occur in soils where insoluble cinnabar prevails compared to soils where more mobile Hg forms and forms available for transformation processes are dominant.

  7. Seasonal and diurnal variations of Hg° over New England

    Directory of Open Access Journals (Sweden)

    J. D. Hegarty

    2007-11-01

    Full Text Available Factors influencing diurnal to interannual variability in Hg° over New England were investigated using multi-year measurements conducted by the AIRMAP program at the Thompson Farm (TF coastal site, an inland elevated site at Pac Monadnock (PM, and one summer of measurements on Appledore Island (AI in the Gulf of Maine. Mixing ratios of Hg° at TF showed distinct seasonality with maxima in March and minima in October. In comparison, Hg° at AI tracked the trend at TF but with higher minima, while at PM the diurnal and annual cycles were dampened. In winter, Hg° was correlated most strongly with CO and NOy, indicative of anthropogenic emissions as their primary source. Our analysis indicates that Hg° had a regional background level of ~160 fmol/mol, a summertime dry deposition velocity of ~0.20 cm s−1, and a ~16 day lifetime in the coastal boundary layer. The influence of oceanic emissions on ambient Hg° levels was identified using the Hg°-CHBr3 correlation at both TF and AI. Moreover, the lower Hg° levels and steeper decreasing warm season trend at TF (0.5–0.6 fmol/mol d−1 compared to PM (0.2–0.3 fmol/mol d−1 likely reflected the impact of marine halogen chemistry. Large interannual variability in warm season Hg° levels in 2004 versus 2005/2006 may be due to the role of precipitation patterns in influencing surface evasion of Hg°. In contrast, changes in wintertime maximum levels of Hg° were small compared to drastic reductions in CO, CO2, NOy, and SO2 from 2004/2005 to 2006/2007. These trends could be explained by a homogeneous surface distribution of Hg° over the North American continent in winter and/or rapid removal of mercury released from anthropogenic sources. We caution that during warmer winters, the Hg°-CO slope possibly reflects the ratio of Hg° loss relative to changes in CO more than their emission ratio.

  8. Seasonal and diurnal variations of Hg° over New England

    Directory of Open Access Journals (Sweden)

    J. D. Hegarty

    2008-03-01

    Full Text Available Factors influencing diurnal to interannual variability in Hg° over New England were investigated using multi-year measurements conducted by AIRMAP at the Thompson Farm (TF coastal site, an inland elevated site at Pac Monadnock (PM, and two month measurements on Appledore Island (AI in the Gulf of Maine. Mixing ratios of Hg° at TF showed distinct seasonality with maxima in March and minima in October. Hg° at AI tracked the trend at TF but with higher minima, while at PM the diurnal and annual cycles were dampened. In winter, Hg° was correlated most strongly with CO and NOy, indicative of anthropogenic emissions as their primary source. Our analysis indicates that Hg° had a regional background level of ~160 fmol/mol in winter, a dry deposition velocity of ~0.20 cm s−1 with a ~16 day lifetime in the coastal boundary layer in summer. The influence of oceanic emissions on ambient Hg° levels was identified using the Hg°-CHBr3 correlation at both TF and AI. Moreover, the lower Hg° levels and steeper decreasing warm season trend at TF (0.5–0.6 fmol/mol d−1 compared to PM (0.2–0.3 fmol/mol d−1 likely reflected the impact of marine halogen chemistry. Large interannual variability in warm season Hg° levels in 2004 versus 2005/2006 may be due to the role of precipitation patterns in influencing surface evasion of Hg°. In contrast, changes in wintertime maximum levels of Hg° were small compared to drastic reductions in CO, CO2, NOy, and SO2 from 2004/2005 to 2006/2007. These trends could be explained by a homogeneous distribution of Hg° over North American in winter due to its long lifetime and/or rapid removal of reactive mercury from anthropogenic sources. We caution that during warmer winters, the Hg°-CO slope possibly reflects Hg° loss relative to changes in CO more than their emission ratio.

  9. Quantifying natural source mercury emissions from the Ivanhoe Mining District, north-central Nevada, USA

    Science.gov (United States)

    Engle, Mark A.; Gustin, Mae Sexauer; Zhang, Hong

    In order to assess the importance of mercury emissions from naturally enriched sources relative to anthropogenic point sources, data must be collected that characterizes mercury emissions from representative areas and quantifies the influence of various environmental parameters that control emissions. With this information, we will be able to scale up natural source emissions to regional areas. In this study in situ mercury emission measurements were used, along with data from laboratory studies and statistical analysis, to scale up mercury emissions for the naturally enriched Ivanhoe Mining District, Nevada. Results from stepwise multi-variate regression analysis indicated that lithology, soil mercury concentration, and distance from the nearest fault were the most important factors controlling mercury flux. Field and lab experiments demonstrated that light and precipitation enhanced mercury emissions from alluvium with background mercury concentrations. Diel mercury emissions followed a Gaussian distribution. The Gaussian distribution was used to calculate an average daily emission for each lithologic unit, which were then used to calculate an average flux for the entire area of 17.1 ng Hg m -2 h -1. An annual emission of ˜8.7×10 4 g of mercury to the atmosphere was calculated for the 586 km 2 area. The bulk of the Hg released into the atmosphere from the district (˜89%) is from naturally enriched non-point sources and ˜11% is emitted from areas of anthropogenic disturbance where mercury was mined. Mercury emissions from this area exceed the natural emission factor applied to mercury rich belts of the world (1.5 ng m -2 h -1) by an order of magnitude.

  10. Hg transfer from contaminated soils to plants and animals

    NARCIS (Netherlands)

    Rodrigues, S.M.; Henriques, B.; Reis, A.T.; Duarte, A.C.; Pereira, E.; Romkens, P.F.A.M.

    2012-01-01

    Understanding the transfer of mercury (Hg) from soil to crops is crucial due to Hg toxicity and Hg occurrence in terrestrial systems. Previous research has shown that available Hg in soils contributes to plant Hg levels. Plant Hg concentrations are related to soil conditions and plant characteristic

  11. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    Mercury (Hg) associated with mixed waste generated by nuclear weapons manufacturing has contaminated vast areas of the Oak Ridge Reservation (ORR). Neurotoxic methylmercury (MeHg) has been formed from the inorganic Hg wastes discharged into headwaters of East Fork Poplar Creek (EFPC). Thus, understanding the processes and mechanisms that lead to Hg methylation along the flow path of EFPC is critical to predicting the impacts of the contamination and the design of remedial action at the ORR. In part I of our project, we investigated Hg(0) oxidation and methylation by anaerobic bacteria. We discovered that the anaerobic bacterium Desulfovibrio desulfuricans ND132 can oxidize elemental mercury [Hg(0)]. When provided with dissolved elemental mercury, D. desulfuricans ND132 converts Hg(0) to Hg(II) and neurotoxic methylmercury [MeHg]. We also demonstrated that diverse species of subsurface bacteria oxidizes dissolved elemental mercury under anoxic conditions. The obligate anaerobic bacterium Geothrix fermentans H5, and the facultative anaerobic bacteria Shewanella oneidensis MR-1 and Cupriavidus metallidurans AE104 can oxidize Hg(0) to Hg(II) under anaerobic conditions. In part II of our project, we established anaerobic enrichment cultures and obtained new bacterial strains from the DOE Oak Ridge site. We isolated three new bacterial strains from subsurface sediments collected from Oak Ridge. These isolates are Bradyrhizobium sp. strain FRC01, Clostridium sp. strain FGH, and a novel Negativicutes strain RU4. Strain RU4 is a completely new genus and species of bacteria. We also demonstrated that syntrophic interactions between fermentative bacteria and sulfate-reducing bacteria in Oak Ridge saprolite mediate iron reduction via multiple mechanisms. Finally, we tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge site, where nitrate is a major contaminant. We showed that there is an inverse

  12. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    Mercury (Hg) associated with mixed waste generated by nuclear weapons manufacturing has contaminated vast areas of the Oak Ridge Reservation (ORR). Neurotoxic methylmercury (MeHg) has been formed from the inorganic Hg wastes discharged into headwaters of East Fork Poplar Creek (EFPC). Thus, understanding the processes and mechanisms that lead to Hg methylation along the flow path of EFPC is critical to predicting the impacts of the contamination and the design of remedial action at the ORR. In part I of our project, we investigated Hg(0) oxidation and methylation by anaerobic bacteria. We discovered that the anaerobic bacterium Desulfovibrio desulfuricans ND132 can oxidize elemental mercury [Hg(0)]. When provided with dissolved elemental mercury, D. desulfuricans ND132 converts Hg(0) to Hg(II) and neurotoxic methylmercury [MeHg]. We also demonstrated that diverse species of subsurface bacteria oxidizes dissolved elemental mercury under anoxic conditions. The obligate anaerobic bacterium Geothrix fermentans H5, and the facultative anaerobic bacteria Shewanella oneidensis MR-1 and Cupriavidus metallidurans AE104 can oxidize Hg(0) to Hg(II) under anaerobic conditions. In part II of our project, we established anaerobic enrichment cultures and obtained new bacterial strains from the DOE Oak Ridge site. We isolated three new bacterial strains from subsurface sediments collected from Oak Ridge. These isolates are Bradyrhizobium sp. strain FRC01, Clostridium sp. strain FGH, and a novel Negativicutes strain RU4. Strain RU4 is a completely new genus and species of bacteria. We also demonstrated that syntrophic interactions between fermentative bacteria and sulfate-reducing bacteria in Oak Ridge saprolite mediate iron reduction via multiple mechanisms. Finally, we tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge site, where nitrate is a major contaminant. We showed that there is an inverse

  13. Source fingerprint monitoring of air pollutants from petrochemical industry and the determination of their annual emission flux using open path Fourier transform infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yih-Shiaw Huang; Shih-Yi Chang; Tai-Ly Tso [National Tsing Hua Univ., Hsinchu (China)

    1996-12-31

    Toxic air pollutants were investigated in several petrochemical industrial park in Taiwan using a movable open-path Fourier-transform infrared spectroscopy (FTIR). The results show the qualitative and quantitative analysis of emission gases from plants, and also provide the emission rates of various compounds. More than twenty compounds under usual operation were found from these industrial park. The concentration variation with time could be correlated exactly with the distances from the emission source along the wind direction. This means that by changing the measuring points the source of emission could be unambiguously identified. The point, area and line source (PAL) plume dispersion model has been applied to estimate the emission rate of either a point or an area source. The local atmospheric stability was determined by releasing an SF{sub 6} tracer. The origin of errors came mainly from the uncertainty of the source configuration and the variation of the meteorological condition. Through continuous measurement using a portable open-path Fourier transform infrared (POP-FTIR) spectrometer, the maximum value of the emission rate and the annual amount of emission could be derived. The emission rate of the measured toxic gases was derived by the model technique, and the results show that the emission amount is on the order of ten to hundred tons per year.

  14. Influence of Ga and Hg on microstructure and electrochemical corrosion behavior of Mg alloy anode materials

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The effects of Hg and Ga on the electrochemical corrosion behavior of Mg-5%Hg (molar fraction) alloys were investigated by the measurement of polarization curves and galvanostatic test. The microstructure of the alloys and the corroded surface of the specimens were investigated by scanning electron microscopy, X-ray diffractometry and emission spectrum analysis. It can be concluded that the addition of 1%Ga (molar fraction) reduces corrosion current density from 26.98 mA/cm2 to 2.34 mA/cm2;while the addition of 1%Hg (molar fraction) increases corrosion current density. The addition of Ga and Hg both promotes the electrochemical activity of the alloys and the influence of Ga is more effective than Hg. Mg-5%Hg-1%Ga alloy has the best electrochemical activity, showing mean potential of-1.992 V. The activation mechanism of the magnesium alloy produced by Hg and Ga was put forward. Magnesium atoms are dissolved in liquid Hg and Ga to form amalgam and undergo severe oxidation at the amalgam/electrolyte interface.

  15. Investigation of the kinetic of air-surface exchange of mercury by means of elected enviromental variables; Aufklaerung der Kinetik des Boden-Luft-Transfers von Hg anhand ausgewaehlter Umweltparameter

    Energy Technology Data Exchange (ETDEWEB)

    Bahlmann, E.

    2004-10-12

    The overall objective of this study was to elucidate the kinetics of mercury soil-atmosphere exchange and to clarify the effect of major environmental variables on the emission of mercury from soils. For this study a laboratory flux chamber system was developed, which allows for simulation and precise control of soil temperature, soil moisture light radiation and atmospheric turbulence which are known to have an overall strong effect on mercury emissions from soils. The emission of mercury from soils is controlled both by thermal and a photochemical mechanism. The results of this work reinforce the hypothesis that the thermal controlled emission of mercury is driven by the interfacial equilibrium of Hg between the soil matrix and the soil gas phase. The effect of soil temperature, soil texture and total mercury concentration in the soils can be expressed in terms of the Arrhenius equation, which is in agreement with the underlying assumptions of the Freundlich Isotherm. Soil moisture has an overall strong effect on the emission of mercury from soils, which is explained in terms of the soil moisture tension. This provides the first well founded hypothesis for the observed decrease of mercury emission fluxes over dry soils. The light induced emission of mercury from soils shows a strong spectral response in the UV-B and is independent of the soil temperature. This reveal clear evidence for photolytical reduction of divalent mercury species at the soil surface. The most probable mechanism includes the reduction of humic bound mercury species. The results of this work have been incorporated into a one-dimensional simulation model, which may provide a cornerstone in up scaling fluxes derived from field measurements and thus in improving estimations of emissions from naturally surfaces on local, global and regional scales. (orig.)

  16. Influence of precursor oxygen stoichiometry on the formation of Hg, Re-1223 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sin, A.; Calleja, A.; Pinol, S.; Obradors, X. [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, Bellaterra E-08193, Barcelona (Spain); Cunha, A.G.; Orlando, M.T.D. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Siguad 150-Urca, 22290-180 Rio de Janeiro-RJ (Brazil); Emmerich, F.G. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Siguad 150-Urca, 22290-180 Rio de Janeiro-RJ (Brazil); Segarra, M. [Departament d' Enginyeria Quimica i Metallurgia, Facultat de Quimica, Universitat de Barcelona, Diagonal 647, E-08028, Barcelona (Spain)

    1999-03-01

    Thanks to a novel technique (thermobaric analyser or TBA) for measuring the in situ pressure in quartz tubes, we have investigated the precursor quality for the synthesis of the superconductor Hg-1223 which is an essential parameter to control. We have made this study on the Hg{sub 0.82}Re{sub 0.18}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} samples and we can conclude that this superconductor phase requires a ceramic precursor sintered in a low P{sub o{sub 2}} mixture gas flux. An excessively oxygenated precursor leads to overdoped superconducting phases, presence of other members with lower n, HgCaO{sub 2} and some unreacted precursor. The precursor oxygenation degree also modifies the kinetics of formation of HgCaO{sub 2} and the partial melting of the superconductor material may be affected. (author)

  17. A comparison study between CMAQ-simulated and OMI-retrieved NO2 columns over East Asia for evaluation of NOx emission fluxes of INTEX-B, CAPSS, and REAS inventories

    Science.gov (United States)

    Han, K. M.; Lee, S.; Chang, L. S.; Song, C. H.

    2015-02-01

    Comparison between the CMAQ (Community Multi-scale Air Quality Model)-calculated and OMI (Ozone Monitoring Instrument)-retrieved tropospheric NO2 columns was carried out for 2006 over East Asia (100-150° E; 20-50° N) to evaluate the bottom-up NOx emission fluxes of INTEX-B, CAPSS, and REAS v1.11 inventories. The three emission inventories were applied to the CMAQ model simulations for the countries of China, South Korea, and Japan, respectively. For the direct comparison between the two NO2 columns, the averaging kernels (AKs) obtained from the Royal Netherlands Meteorological Institute (KNMI)/DOMINO v2.0 daily product were applied to the CMAQ-simulated data. The analysis showed that the two tropospheric NO2 columns from the CMAQ model simulations and OMI observations (ΩCMAQ,AK and ΩOMI) had good spatial and seasonal correlation, with correlation coefficients ranging from 0.71 to 0.96. In addition, the normalized mean errors (NMEs) between the ΩCMAQ,AK and ΩOMI were found to range from ~ 40 to ~ 63%. The ΩCMAQ,AK were, on annual average, ~ 28% smaller (in terms of the NMEs) than the ΩOMI, indicating that the NOx emissions used were possibly underestimated in East Asia. Large absolute differences between the ΩCMAQ,AK and ΩOMI were found, particularly over central eastern China (CEC) during winter (annual averaged mean error of ~ 4.51 × 1015 molecules cm-2). Although such differences between the ΩCMAQ,AK and ΩOMI are likely caused by the errors and biases in the NOx emissions used in the CMAQ model simulations, it can be rather difficult to quantitatively relate the differences to the accuracy of the NOx emissions, because there are also several uncertain factors in the CMAQ model, satellite-retrieved NO2 columns and AK products, and NOx and other trace gas emissions. In this context, three uncertain factors were selected and analyzed with sensitivity runs (monthly variations in NOx emissions; influences of different NOx emission fluxes; and reaction

  18. The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets

    Directory of Open Access Journals (Sweden)

    M. C. Zatko

    2013-04-01

    Full Text Available We use observations of the absorption properties of black carbon and non-black carbon impurities in near-surface snow collected near the research stations at South Pole and Dome C, Antarctica, and Summit, Greenland, combined with a snowpack actinic flux parameterization to estimate the vertical profile and e-folding depth of ultraviolet/near-visible (UV/near-vis actinic flux in the snowpack at each location. We have developed a simple and broadly applicable parameterization to calculate depth and wavelength dependent snowpack actinic flux that can be easily integrated into large-scale (e.g., 3-D models of the atmosphere. The calculated e-folding depths of actinic flux at 305 nm, the peak wavelength of nitrate photolysis in the snowpack, are 8–12 cm near the stations and 15–31 cm away (>11 km from the stations. We find that the e-folding depth is strongly dependent on impurity content and wavelength in the UV/near-vis region, which explains the relatively shallow e-folding depths near stations where local activities lead to higher snow impurity levels. We calculate the lifetime of NOx in the snowpack interstitial air produced by photolysis of snowpack nitrate against wind pumping (τwind pumping from the snowpack, and compare this to the calculated lifetime of NOx against chemical conversion to HNO3 (τchemical to determine whether the NOx produced at a given depth can escape from the snowpack to the overlying atmosphere. Comparison of τwind pumping and τchemical suggests efficient escape of photoproduced NOx in the snowpack to the overlying atmosphere throughout most of the photochemically active zone. Calculated vertical actinic flux profiles and observed snowpack nitrate concentrations are used to estimate the potential flux of NOx from the snowpack. Calculated NOx fluxes of 4.4 × 108–3.8 × 109 molecules cm−2 s−1 in remote polar locations and 3.2–8.2 × 108 molecules cm−2 s−1 near polar stations for January at Dome C and

  19. The influence of snow grain size and impurities on the vertical profiles of actinic flux and associated NOx emissions on the Antarctic and Greenland ice sheets

    Directory of Open Access Journals (Sweden)

    X. Yang

    2012-06-01

    Full Text Available We use observations of the absorption properties of black carbon and non-black-carbon impurities in near-surface snow collected near the research stations at South Pole and Dome C, Antarctica and Summit, Greenland combined with a snowpack actinic flux parameterization to estimate the vertical profile and e-folding depth of ultraviolet/near-visible (UV/near-vis actinic flux in the snowpack at each location. We have developed a simple and broadly applicable parameterization to calculate depth and wavelength dependent snowpack actinic flux that can be easily integrated into large scale (e.g. 3-D models of the atmosphere. The calculated e-folding depths of actinic flux at 305 nm, the peak wavelength of nitrate photolysis in the snowpack, are 8–12 cm near the stations and 15–31 cm away (>11 km from the stations. We find that the e-folding depth is strongly dependent on impurity content and wavelength in the UV/near-vis region, which explains the relatively shallow e-folding depths near stations where local activities lead to higher impurity levels. We calculate the lifetime of NOx in the snowpack interstitial air produced by photolysis of snowpack nitrate against escape (τescape from the snowpack via diffusion and windpumping and compare this to the calculated lifetime of NOx against chemical conversion to HNO3 (τchemical to determine whether the NOx produced at a given depth can escape from the snowpack to the overlying atmosphere. Comparison of τescape and τchemical suggests efficient escape of photoproduced NOx in the snowpack to the overlying atmosphere. Calculated vertical actinic flux profiles and observed snowpack nitrate concentrations are used to determine the flux of NOx from the snowpack. Calculated NOx fluxes of 4.4 × 108–2.8 × 109 molecules cm−2 s7−1 in remote polar locations and 3.2–8.2 × 108 molecules cm−2 s−1 near polar stations for January at Dome C and South Pole and June at Summit suggest that NOx flux

  20. Sensing Hg(II) in vitro and in vivo using a benzimidazole substituted BODIPY.

    Science.gov (United States)

    Madhu, Sheri; Sharma, Dharmendar Kumar; Basu, Santanu Kumar; Jadhav, Sameer; Chowdhury, Arindam; Ravikanth, Mangalampalli

    2013-10-07

    A multisignaling Hg(II) sensor based on a benzimidazole substituted BODIPY framework was designed, which displays excellent selectively toward Hg(II) in vitro and in vivo. Optical and fluorogenic measurements in solution reveal that the sensor can detect mercury ions at submicromolar concentrations, with high specificity. The detection of Hg(II) is associated with a blue-shift in optical spectra and a simultaneous increase in the fluorescence quantum yield of the sensor, which is attributed to a decrease in charge delocalization and inhibition of photoinduced electron transfer upon binding to Hg(II). Using several spectroscopic measurements, it is shown that the binding mechanism involves two sensor molecules, where lone pairs of the benzimidazole nitrogen coordinate to a single mercury ion. The utility of this BODIPY sensor to detect Hg(II) in vivo was demonstrated by fluorescence imaging and spectroscopy of labeled human breast adenocarcinoma cells. While average emission intensity of the sensor over a large number of cells increases with incubated mercury concentrations, spatially resolved fluorescence spectroscopy performed on individual cells reveals clear spectral blue-shifts from a subensemble of sensors, corroborating the detection of Hg(II). Interestingly, the emission spectra at various submicrometer locations within cells exhibited considerable inhomogeneity in the extent of blue-shift, which demonstrates the potential of this sensor to monitor the local (effective) concentration of mercury ions within various subcellular environments.

  1. HgTe-CdTe SUPERLATTICES

    OpenAIRE

    Smith, D; Mcgill, T.

    1984-01-01

    We report on a theoretical study of the electronic properties of HgTe-CdTe superlattices. The band gap as a function of layer thickness, effective masses normal to the layer plane and tunneling length are compared to the corresponding (Hg, Cd)Te alloys. We find that the superlattice possesses a number of properties that may make it superior to the corresponding alloy as an infrared material.

  2. Hg0 absorption in potassium persulfate solution

    Institute of Scientific and Technical Information of China (English)

    YE Qun-feng; WANG Cheng-yun; WANG Da-hui; SUN Guan; XU Xin-hua

    2006-01-01

    The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed.

  3. A potential lag between the open solar magnetic source flux and solar EUV and X-ray emissions as measured by the Earth's ionosphere during total solar eclipses

    Directory of Open Access Journals (Sweden)

    C. J. Davis

    2009-06-01

    Full Text Available Measurements of the ionospheric E-region during total solar eclipses have been used to provide information about the evolution of the solar magnetic field and EUV and X-ray emissions from the solar corona and chromosphere. By measuring levels of ionisation during an eclipse and comparing these measurements with an estimate of the unperturbed ionisation levels (such as those made during a control day, where available it is possible to estimate the percentage of ionising radiation being emitted by the solar corona and chromosphere. Previously unpublished data from the two eclipses presented here are particularly valuable as they provide information that supplements the data published to date. The eclipse of 23 October 1976 over Australia provides information in a data gap that would otherwise have spanned the years 1966 to 1991. The eclipse of 4 December 2002 over Southern Africa is important as it extends the published sequence of measurements. Comparing measurements from eclipses between 1932 and 2002 with the solar magnetic source flux reveals that changes in the solar EUV and X-ray flux lag the open source flux measurements by approximately 1.5 years. We suggest that this unexpected result comes about from changes to the relative size of the limb corona between eclipses, with the lag representing the time taken to populate the coronal field with plasma hot enough to emit the EUV and X-rays ionising our atmosphere.

  4. Long-term modulations of Saturn's auroral radio emissions by the solar wind and seasonal variations controlled by the solar ultraviolet flux

    Science.gov (United States)

    Kimura, T.; Lamy, L.; Tao, C.; Badman, S. V.; Kasahara, S.; Cecconi, B.; Zarka, P.; Morioka, A.; Miyoshi, Y.; Maruno, D.; Kasaba, Y.; Fujimoto, M.

    2013-11-01

    Saturn's auroral activities have been suggested to be controlled by the seasonal variations of the polar ionospheric conductivities and atmospheric conditions associated with the solar extreme ultraviolet (EUV) flux. However, they have not yet been explained self-consistently by only the seasonal solar EUV effects. This study investigates the long-term variations of Saturnian Kilometric Radiation (SKR) as a proxy of the auroral activities, which were observed by Cassini's Radio and Plasma Wave Science experiment mostly during the southern summer (DOY (day of year) 001 2004 to DOY 193 2010). We deduced the height distribution of the SKR source region in the Northern (winter) and Southern (summer) Hemispheres from the remote sensing of SKR spectra. The peak spectral density of the southern (summer) SKR was found to be up to 100 times greater than that of the northern (winter) SKR, and the altitude of the peak flux was similar (˜ 0.8 Rs) in the Northern and Southern Hemispheres. The spectral densities in both hemispheres became comparable with each other around equinox in August 2009. These results suggest a stronger SKR source region during the summer than the winter related to the seasonal EUV effect, which is opposite to the trend observed in the Earth's kilometric radiation. A long-term correlation analysis was performed for the SKR, solar EUV flux, and solar wind parameters extrapolated from Earth's orbit by an magnetohydrodynamical simulation focusing on variations on timescales longer than several weeks. We confirmed clear positive correlations between the solar wind dynamic pressure and peak flux density in both the Southern and Northern Hemispheres during the declining phase of the solar cycle. We conclude that the solar wind variations on the timescale of the solar cycle control the SKR source region. In addition, it was also confirmed that the south-to-north ratios of SKR power flux and source altitudes are positively correlated with the solar EUV flux

  5. 46 CFR 53.05-1 - Safety valve requirements for steam boilers (modifies HG-400 and HG-401).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Safety valve requirements for steam boilers (modifies HG... requirements for steam boilers (modifies HG-400 and HG-401). (a) The pressure relief valve requirements and the safety valve requirements for steam boilers must be as indicated in HG-400 and HG-401 of section IV...

  6. Investigation of Hg uptake and transport between paddy soil and rice seeds combining Hg isotopic composition and speciation

    Directory of Open Access Journals (Sweden)

    C. Feng

    2016-02-01

    Full Text Available Abstract Human consumption of rice constitutes a potential toxicological risk in mercury (Hg polluted areas such as Hg mining regions in China. It is recognized to be an important source of Hg for the local human diet considering the efficient bioaccumulation of methylmercury (MeHg in rice seed. To assess Hg sources and uptake pathways to the rice plants, Hg speciation and isotopic composition were investigated in rice seeds and their corresponding paddy soils from different locations within the Wanshan Hg mining area (Guizhou Province, China. A large variation of Hg speciation is observed in rice seeds and paddy soils irrespective of the sampling location. Mass dependent fractionation (MDF of Hg in rice seeds differs by up to ∼4.0 ‰ in δ202Hg values, while mass independent fractionation (MIF of Hg isotopes remains constant (Δ199Hg ∼ 0‰. Hg isotopic composition in rice seeds covaries with that of paddy soils but exhibits lighter isotopic signature (δ202Hg. Such isotopic offset is mainly attributed to plant uptake and translocation processes. Also, seeds containing higher MeHg (MeHg/total Hg > 50% have significantly heavier Hg isotopes suggesting that MeHg uptake and transport to the seed in such rice plants is facilitated compared to inorganic Hg.

  7. Mercury stable isotope signatures of world coal deposits and historical coal combustion emissions.

    Science.gov (United States)

    Sun, Ruoyu; Sonke, Jeroen E; Heimbürger, Lars-Eric; Belkin, Harvey E; Liu, Guijian; Shome, Debasish; Cukrowska, Ewa; Liousse, Catherine; Pokrovsky, Oleg S; Streets, David G

    2014-07-01

    Mercury (Hg) emissions from coal combustion contribute approximately half of anthropogenic Hg emissions to the atmosphere. With the implementation of the first legally binding UNEP treaty aimed at reducing anthropogenic Hg emissions, the identification and traceability of Hg emissions from different countries/regions are critically important. Here, we present a comprehensive world coal Hg stable isotope database including 108 new coal samples from major coal-producing deposits in South Africa, China, Europe, India, Indonesia, Mongolia, former USSR, and the U.S. A 4.7‰ range in δ(202)Hg (-3.9 to 0.8‰) and a 1‰ range in Δ(199)Hg (-0.6 to 0.4‰) are observed. Fourteen (p coal Hg emissions tracing. A revised coal combustion Hg isotope fractionation model is presented, and suggests that gaseous elemental coal Hg emissions are enriched in the heavier Hg isotopes relative to oxidized forms of emitted Hg. The model explains to first order the published δ(202)Hg observations on near-field Hg deposition from a power plant and global scale atmospheric gaseous Hg. Yet, model uncertainties appear too large at present to permit straightforward Hg isotope source identification of atmospheric forms of Hg. Finally, global historical (1850-2008) coal Hg isotope emission curves were modeled and indicate modern-day mean δ(202)Hg and Δ(199)Hg values for bulk coal emissions of -1.2 ± 0.5‰ (1SD) and 0.05 ± 0.06‰ (1SD).

  8. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea).

    Science.gov (United States)

    Lapanje, A; Drobne, D; Nolde, N; Valant, J; Muscet, B; Leser, V; Rupnik, M

    2008-06-01

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10microg Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed.

  9. Zuotai and HgS differ from HgCl2 and methyl mercury in Hg accumulation and toxicity in weanling and aged rats.

    Science.gov (United States)

    Zhang, Bin-Bin; Li, Wen-Kai; Hou, Wei-Yu; Luo, Ya; Shi, Jing-Zhen; Li, Cen; Wei, Li-Xin; Liu, Jie

    2017-09-15

    Mercury sulfides are used in Ayurvedic medicines, Tibetan medicines, and Chinese medicines for thousands of years and are still used today. Cinnabar (α-HgS) and metacinnabar (β-HgS) are different from mercury chloride (HgCl2) and methylmercury (MeHg) in their disposition and toxicity. Whether such scenario applies to weanling and aged animals is not known. To address this question, weanling (21d) and aged (450d) rats were orally given Zuotai (54% β-HgS, 30mg/kg), HgS (α-HgS, 30mg/kg), HgCl2 (34.6mg/kg), or MeHg (MeHgCl, 3.2mg/kg) for 7days. Accumulation of Hg in kidney and liver, and the toxicity-sensitive gene expressions were examined. Animal body weight gain was decreased by HgCl2 and to a lesser extent by MeHg, but unaltered after Zuotai and HgS. HgCl2 and MeHg produced dramatic tissue Hg accumulation, increased kidney (kim-1 and Ngal) and liver (Ho-1) injury-sensitive gene expressions, but such changes are absent or mild after Zuotai and HgS. Aged rats were more susceptible than weanling rats to Hg toxicity. To examine roles of transporters in Hg accumulation, transporter gene expressions were examined. The expression of renal uptake transporters Oat1, Oct2, and Oatp4c1 and hepatic Oatp2 was decreased, while the expression of renal efflux transporter Mrp2, Mrp4 and Mdr1b was increased following HgCl2 and MeHg, but unaffected by Zuotai and HgS. Thus, Zuotai and HgS differ from HgCl2 and MeHg in producing tissue Hg accumulation and toxicity, and aged rats are more susceptible than weanling rats. Transporter expression could be adaptive means to reduce tissue Hg burden. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Trend analysis from 1970 to 2008 and model evaluation of EDGARv4 global gridded anthropogenic mercury emissions

    Energy Technology Data Exchange (ETDEWEB)

    Muntean, Marilena, E-mail: marilena.muntean@jrc.ec.europa.eu [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Janssens-Maenhout, Greet [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Song, Shaojie; Selin, Noelle E. [Massachusetts Institute of Technology, Cambridge, MA (United States); Olivier, Jos G.J. [PBL Netherlands Environment Assessment Agency, Bilthoven (Netherlands); Guizzardi, Diego [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy); Maas, Rob [RIVM National Institute for Public Health and Environment, Bilthoven (Netherlands); Dentener, Frank [European Commission, Joint Research Centre, Institute for Environment and Sustainability, Ispra (Italy)

    2014-10-01

    The Emission Database for Global Atmospheric Research (EDGAR) provides a time-series of man-made emissions of greenhouse gases and short-lived atmospheric pollutants from 1970 to 2008. Mercury is included in EDGARv4.tox1, thereby enriching the spectrum of multi-pollutant sources in the database. With an average annual growth rate of 1.3% since 1970, EDGARv4 estimates that the global mercury emissions reached 1287 tonnes in 2008. Specifically, gaseous elemental mercury (GEM) (Hg{sup 0}) accounted for 72% of the global total emissions, while gaseous oxidised mercury (GOM) (Hg{sup 2+}) and particle bound mercury (PBM) (Hg-P) accounted for only 22% and 6%, respectively. The less reactive form, i.e., Hg{sup 0}, has a long atmospheric residence time and can be transported long distances from the emission sources. The artisanal and small-scale gold production, accounted for approximately half of the global Hg{sup 0} emissions in 2008 followed by combustion (29%), cement production (12%) and other metal industry (10%). Given the local-scale impacts of mercury, special attention was given to the spatial distribution showing the emission hot-spots on gridded 0.1° × 0.1° resolution maps using detailed proxy data. The comprehensive ex-post analysis of the mitigation of mercury emissions by end-of-pipe abatement measures in the power generation sector and technology changes in the chlor-alkali industry over four decades indicates reductions of 46% and 93%, respectively. Combined, the improved technologies and mitigation measures in these sectors accounted for 401.7 tonnes of avoided mercury emissions in 2008. A comparison shows that EDGARv4 anthropogenic emissions are nearly equivalent to the lower estimates of the United Nations Environment Programme (UNEP)'s mercury emissions inventory for 2005 for most sectors. An evaluation of the EDGARv4 global mercury emission inventory, including mercury speciation, was performed using the GEOS-Chem global 3-D mercury model. The

  11. Volatile organic compound emission fluxes from a temperate forest in Changbai Mountain%长白山温带森林挥发性有机物的排放通量

    Institute of Scientific and Technical Information of China (English)

    白建辉; 林凤友; 万晓伟; Guenther Alex; Turnipseed Andrew; Duhl Tiffany

    2012-01-01

    Measurements of volatile organic compound (VOC) emission fluxes, meteorological parameters, solar global radiation and photosynthetically active radiation (PAR) were carried out in a temperate forest, Changbai Moutain, China during the summer season in 2010. VOC flux measurements were made by using relaxed eddy accumulation (REA) technique on an above canopy tower. It was found that the dominate monoterpenes emitted from this mixed forest were ot-pinene, fl-piaene, campbene, sabinene, myreene, earene, limonen, ocimene, terpinene, cymene, terpinolene, and tricyelene. VOC emission and air temperature were correlated and there were evident diurnal variations, i. e. , lower emissions in the morning and late evening, and the highest emissions around the noon. During the summer of 2010, the mean monoterpene emission flux was 0. 242 mg· m -2·h -1 , and ranged from 0. 005 to 1.668 mg·m-2·h-l. The average and maximum of emission fluxes (mg.m-2·h-1) were 0.072 and 0.234 for α-pinene, 0.028 and 0.356 for camphene, 0.027 and 0.433 for myrceue, 0.023 and 0. 173 for camphene, 0.037 and 0. 197 for limonene, 0.016 and 0. 168 for ocimcne, 0.053 and 0. 320 for terpinolene, and 0. 067 and 0. 755 for cymene, respectively.%2010年夏季,在长白山温带森林开展了挥发性有机物(VOC)排放通量以及气象参数、PAR的综合测量.VOC排放通量采用松弛涡度积累(RelaxedEddyAccumulation)技术在森林冠层上进行测量.初步发现长白山阔叶林主要排放α-蒎烯、β-蒎烯、莰烯、香桧烯、月桂烯、蒈烯、柠檬烯、罗勒烯、松油烯、繖花烃、萜品油烯、三环烯等.研究表明,长白山阔叶混交林VOC排放有明显的日变化——早晚较低和中午前后较高.2010年夏季,单萜烯总排放通量的平均值为0.242mg·m·h-2-1,其变化范围为0.005~1.668mg·m·h-2-1;各成分排放通量的平均值(和最大值)分别为α-蒎烯0.072(0.234)、莰烯0.028(0.356)、月

  12. Local probing of Hg neighboorhood in HgBa$_{2}$CuO$_{4+\\delta}$

    CERN Document Server

    Correia, J G; Loureiro, S M; Toulemonde, P; Le Floc'h, S; Bordet, P; Capponi, J J; Gatt, R; Tröger, W; Ctortecka, B; Butz, T; Haas, H; Marques, J G; Soares, J C

    2000-01-01

    Electric field gradients (EFG) on mercury sites of the Hg1201 high-TC superconductors were measured with the perturbed angular correlation (PAC) technique. In Hg1201 samples where PAC detects higher oxygen content the EFGs have decreased to lower values indicating an elongation of the Hg-apical oxygen dumb-bell. On the same samples the asymmetry parameter of the EFG becomes non-zero below 100 K, showing that the charge distribution near the Hg-apical oxygen chain becomes non-axially symmetric at low temperature.

  13. Complexation of Hg with phytochelatins is important for plant Hg tolerance.

    Science.gov (United States)

    Carrasco-Gil, Sandra; Alvarez-Fernández, Ana; Sobrino-Plata, Juan; Millán, Rocío; Carpena-Ruiz, Ramón O; Leduc, Danika L; Andrews, Joy C; Abadía, Javier; Hernández, Luís E

    2011-05-01

    Three-week-old alfalfa (Medicago sativa), barley (Hordeum vulgare) and maize (Zea mays) were exposed for 7 d to 30 µm of mercury (HgCl(2) ) to characterize the Hg speciation in root, with no symptoms of being poisoned. The largest pool (99%) was associated with the particulate fraction, whereas the soluble fraction (SF) accounted for a minor proportion (phytochelatins (PCs) in root SF, which was particularly varied in alfalfa (eight ligands and five stoichiometries), a species that also accumulated homophytochelatins. Spatial localization of Hg in alfalfa roots by microprobe synchrotron X-ray fluorescence spectroscopy showed that most of the Hg co-localized with sulphur in the vascular cylinder. Extended X-ray Absorption Fine Structure (EXAFS) fingerprint fitting revealed that Hg was bound in vivo to organic-S compounds, i.e. biomolecules containing cysteine. Albeit a minor proportion of total Hg, Hg-PCs complexes in the SF might be important for tolerance to Hg, as was found with Arabidopsis thaliana mutants cad2-1 (with low glutathione content) and cad1-3 (unable to synthesize PCs) in comparison with wild type plants. Interestingly, high-performance liquid chromatography-electrospray ionization-time of flight analysis showed that none of these mutants accumulated Hg-biothiol complexes.

  14. Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The Beijing free electron laser (BFEL) has been employed for the first time to study the nonlinear photoconductivity characteristics of the typical infrared photoelectronic material Hg1-xCdxTe. Taking advantage of the high photon flux density of BFEL, we have investigated the photoconductivity characteristics in Hg1-xCdxTe induced by two-photon absorption by means of the photoconductivity technique, observed the photoconductivity signals saturation, and studied the two-photon photoconductivity characteristics on different bias voltages across the sample.

  15. Laser Applications and Other Topics in Quantum Electronics: Coaxial HgI excimer lamps

    Science.gov (United States)

    Malinin, A. N.; Polyak, A. V.; Guivan, N. N.; Zubrilin, N. G.; Shimon, Lyudvik L.

    2002-02-01

    The emission of coaxial HgI excimer lamps pumped by a repetitively pulsed barrier discharge is experimentally studied. The stable operation of the excimer lamps was demonstrated at pump-pulse repetition rates from 0.5 to 12 kHz, and the average emission power attained of 0.6 W at 444 nm. It was found that upon an addition of 0.8% of xenon to the mixture of helium and mercury diiodide, the pulse and average emission powers increased by 30%. The emission power reduced by 5% after 2.5 × 106 pulses. An interpretation of the results of optimising the excimer lamp characteristics is given.

  16. Review of carbon flux estimates and other greenhouse gas emissions from oil palm cultivation on Tropical peatlands - Identifying the gaps in Knowledge

    NARCIS (Netherlands)

    Verwer, C.C.; Meer, van der P.J.; Nabuurs, G.J.

    2008-01-01

    This report provides an independent review that clarifies current confusion on carbon dioxide emissions resulting from oil palm cultivation on tropical peatlands in Malaysia, that was brought about by two recent publications. It describes the processes of carbon flow in forests, degraded forests and

  17. Modeling the effect of heat fluxes on ammonia and nitrous oxide emissions from an anaerobic swine waste treatment lagoon using artificial neural network

    Science.gov (United States)

    Understanding factors that affect ammonia and nitrous emissions from anaerobic swine waste treatment lagoons or any animal waste receptacles is a necessary first step in deploying potential remediation options. In this study, we examined the various meteorological factors (i.e., air temperatures, s...

  18. Hg concentrations in fish from coastal waters of California and Western North America

    Science.gov (United States)

    Davis, Jay; Ross, John; Bezalel, Shira; Sim, Lawrence; Bonnema, Autumn; Ichikawa, Gary; Heim, Wes; Schiff, Kenneth C; Eagles-Smith, Collin A.; Ackerman, Josh

    2016-01-01

    The State of California conducted an extensive and systematic survey of mercury (Hg) in fish from the California coast in 2009 and 2010. The California survey sampled 3483 fish representing 46 species at 68 locations, and demonstrated that methylHg in fish presents a widespread exposure risk to fish consumers. Most of the locations sampled (37 of 68) had a species with an average concentration above 0.3 μg/g wet weight (ww), and 10 locations an average above 1.0 μg/g ww. The recent and robust dataset from California provided a basis for a broader examination of spatial and temporal patterns in fish Hg in coastal waters of Western North America. There is a striking lack of data in publicly accessible databases on Hg and other contaminants in coastal fish. An assessment of the raw data from these databases suggested the presence of relatively high concentrations along the California coast and in Puget Sound, and relatively low concentrations along the coasts of Alaska and Oregon, and the outer coast of Washington. The dataset suggests that Hg concentrations of public health concern can be observed at any location on the coast of Western North America where long-lived predator species are sampled. Output from a linear mixed-effects model resembled the spatial pattern observed for the raw data and suggested, based on the limited dataset, a lack of trend in fish Hg over the nearly 30-year period covered by the dataset. Expanded and continued monitoring, accompanied by rigorous data management procedures, would be of great value in characterizing methylHg exposure, and tracking changes in contamination of coastal fish in response to possible increases in atmospheric Hg emissions in Asia, climate change, and terrestrial Hg control efforts in coastal watersheds.

  19. Chemical substitution of Cd ions by Hg in CdSe nanorods and nanodots: Spectroscopic and structural examination

    Energy Technology Data Exchange (ETDEWEB)

    Prudnikau, Anatol [Institute for Physico-Chemical Problems, Belarussian State University, 220030 Minsk (Belarus); Artemyev, Mikhail, E-mail: m_artemyev@yahoo.com [Institute for Physico-Chemical Problems, Belarussian State University, 220030 Minsk (Belarus); Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, 31 Kashirskoe sh., 115409 Moscow (Russian Federation); Molinari, Michael; Troyon, Michel [Universite de Reims Champagne-Ardenne, 51100 Reims (France); Sukhanova, Alyona; Nabiev, Igor [Universite de Reims Champagne-Ardenne, 51100 Reims (France); Laboratory of Nano-Bioengineering, Moscow Engineering Physics Institute, 31 Kashirskoe sh., 115409 Moscow (Russian Federation); Baranov, Alexandr V.; Cherevkov, Sergey A.; Fedorov, Anatoly V. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, St.-Petersburg 197101 (Russian Federation)

    2012-06-05

    Highlights: Black-Right-Pointing-Pointer We studied cadmium-by-mercury chemical substitution in CdSe nanocrystals. Black-Right-Pointing-Pointer Zinc blende CdSe quantum dots can be easily converted to isostructural Cd{sub x}Hg{sub 1-x}Se. Black-Right-Pointing-Pointer Wurtzite CdSe QDs require longer time to convert to a zinc blende Cd{sub x}Hg{sub 1-x}Se. Black-Right-Pointing-Pointer Wurtzite CdSe nanorods transform to nanoheterogeneous luminescent Cd{sub x}Hg{sub 1-x}Se rods. - Abstract: The chemical substitution of cadmium by mercury in colloidal CdSe quantum dots (QDs) and nanorods has been examined by absorption, photoluminescence and Raman spectroscopy. The crystalline structure of original CdSe QDs used for Cd/Hg substitution (zinc blende versus wurtzite) shows a strong impact on the optical and structural properties of resultant Cd{sub x}Hg{sub 1-x}Se nanocrystals. Substitution of Cd by Hg in isostructural zinc blende CdSe QDs converts them to ternary Cd{sub x}Hg{sub 1-x}Se zinc blende nanocrystals with significant NIR emission. Whereas, the wurtzite CdSe QDs transformed first to ternary nanocrystals with almost no emission followed by slow structural reorganization to a NIR-emitting zinc blende Cd{sub x}Hg{sub 1-x}Se QDs. CdSe nanorods with intrinsic wurtzite structure show unexpectedly intense NIR emission even at early Cd/Hg substitution stage with PL active zinc blende Cd{sub x}Hg{sub 1-x}Se regions.

  20. Magnetic fields of HgMn stars

    CERN Document Server

    Hubrig, S; Ilyin, I; Korhonen, H; Schoeller, M; Savanov, I; Arlt, R; Castelli, F; Curto, G Lo; Briquet, M; Dall, T H

    2012-01-01

    The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. We re-analyse available spectropolarimetric material by applying the moment technique on spectral lines of inhomogeneously distributed elements separately. Furthermore, we present new determinations of the mean longitudinal magnetic field for the HgMn star HD65949 and the hotter analog of HgMn stars, the PGa star HD19400, using FORS2 installed at the VLT. We also give new measurements of the eclipsing system AR Aur with a primary star of HgMn peculiarity which were obtained with the SOFIN spectropolarimeter installed at the Nordic Optical Telescope. We downloaded from the ESO archive the publically available HARPS spectra for eight HgMn stars and one normal and one superficially normal B-type star obtained in 2010. The application of the moment technique to the HARPS and SOFIN spectra allowed us to study the presence of the longitudina...

  1. HgCdTe barrier infrared detectors

    Science.gov (United States)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  2. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  3. Landfill is an important atmospheric mercury emission source

    Institute of Scientific and Technical Information of China (English)

    FENG Xinbin; TANG Shunlin; LI Zhonggen; WANG Shaofeng; LIANG Lian

    2004-01-01

    Since municipal wastes contain refuses with high mercury contents, incineration of municipal wastes becomes the major anthropogenic atmospheric mercury emission source. In China, landfills are however the main way to dispose of municipal wastes. Total gaseous mercury (TGM) concentrations in landfill gas of Gaoyan sanitary landfill located in suburb of Guiyang City were monitored using a high temporal resolved automated mercury analyzer, and mono-methylmercury (MMHg) and dimethylmercury (DMHg) concentrations in landfill gas were also measured using GC coupled with the cold vapor atomic fluorescence (CVAFS) method. Meanwhile, the TGM exchange fluxes between exposed waste and air and the soil surface of the landfill and air, were measured using low Hg blank quartz flux chamber coupled with high temporal resolved automated mercury analyzer technique. TGM concentrations in landfill gas from half year filling area averaged out at 665.52±291.25 ng/m3, which is comparable with TGM concentrations from flue gas of a small coal combustion boiler in Guiyang. The average MMHg and DMHg concentrations averaged out at 2.06±1.82 ng/m3 and 9.50±5.18 ng/m3, respectively. It is proven that mercury emission is the predominant process at the surfaces of both exposed wastes and soil of landfill. Landfills are not only TGM emission source, but also methylmercury emission source to the ambient air. There are two ways to emit mercury to the air from landfills, one is with the landfill gas through landfill gas duct, and the other through soil/air exchange. The Hg emission processes from landfills are controlled by meteorological parameters.

  4. Complexation of Hg with phytochelatins is important for plant Hg tolerance

    National Research Council Canada - National Science Library

    CARRASCO‐GIL, SANDRA; ÁLVAREZ‐FERNÁNDEZ, ANA; SOBRINO‐PLATA, JUAN; MILLÁN, ROCÍO; CARPENA‐RUIZ, RAMÓN O; LEDUC, DANIKA L; ANDREWS, JOY C; ABADÍA, JAVIER; HERNÁNDEZ, LUÍS E

    2011-01-01

    Three‐week‐old alfalfa ( Medicago sativa ), barley ( Hordeum vulgare ) and maize ( Zea mays ) were exposed for 7 d to 30  µ m of mercury (HgCl 2 ) to characterize the Hg speciation in root, with no symptoms of being poisoned...

  5. Ground-state potential energy curves of LiHg, NaHg, and KHg revisited

    Science.gov (United States)

    Thiel, Linda; Hotop, Hartmut; Meyer, Wilfried

    2003-11-01

    We present the results of large-scale CCSD(T) calculations on the potential energy curves for the ground states of LiHg, NaHg, and KHg. In these calculations, the Hg20+ core is simulated by a pseudopotential which has been adjusted to reproduce experimental excitation and ionization energies of the Hg atom at the coupled-cluster level. Moreover, we apply a weighted multiproperty fitting procedure to determine reliable potentials for LiHg, NaHg, and KHg which reproduce the available experimental results. In the case of LiHg, this best-fit potential is based solely on experimental data and its agreement with our calculated potential supports our computational procedure. For NaHg and KHg the experimental data had to be complemented by theoretical results in order to fix a best-fit potential. Our potentials and those proposed previously are evaluated by comparing calculated scattering cross sections and vibrational energy levels with the available experimental data.

  6. Review of carbon flux estimates and other greenhouse gas emissions from oil palm cultivation on Tropical peatlands - Identifying the gaps in Knowledge

    OpenAIRE

    Verwer, C.C.; Meer, van der, D; Nabuurs, G.J.

    2008-01-01

    This report provides an independent review that clarifies current confusion on carbon dioxide emissions resulting from oil palm cultivation on tropical peatlands in Malaysia, that was brought about by two recent publications. It describes the processes of carbon flow in forests, degraded forests and oil palm plantations on peat and depicts uncertainties in existing datasets. The report identifies the gaps of knowledge and offers recommendations for further research to be commissioned by the J...

  7. High-energy x-ray detection of G359.89–0.08 (SGR A–E): magnetic flux tube emission powered by cosmic rays?

    DEFF Research Database (Denmark)

    Zhang, Shuo; Hailey, Charles J.; Baganoff, Frederick K.

    2014-01-01

    We report the first detection of high-energy X-ray (E > 10 keV) emission from the Galactic center non-thermal filament G359.89–0.08 (Sgr A–E) using data acquired with the Nuclear Spectroscopic Telescope Array (NuSTAR). The bright filament was detected up to ∼50 keV during a NuSTAR Galactic center...

  8. Aircraft trace gas measurements during the London 2012 Olympics: Air quality and emission fluxes derived from sampling upwind and downwind of a megacity

    Science.gov (United States)

    Allen, G.; O'Shea, S.; Muller, J.; Jones, B.; O'Sullivan, D.; Lee, J. D.; Bauguitte, S.; Gallagher, M. W.; Percival, C.; Barratt, B.; McQuaid, J. B.; Illingworth, S.

    2013-12-01

    This study presents airborne in situ and remote sensing measurements recorded during July and August 2012, across the period of the London 2012 Summer Olympics and simultaneous with the Clear air for London (ClearfLo) ground-based measurement and modelling campaign. Through long-term (2-year) and intensive observation periods (Winter 2011 and Summer 2012), the ClearfLo programme aims to better understand emissions, as well as the chemical, dynamical and micro-meteorological processes which modulate air quality in the London urban environment - an important risk factor for both acute and chronic health effects. The work presented here focuses on two contrasting case studies within the summer ClearfLo period: 30 July 2012 and 9 August 2012, representing relatively clean background and polluted background cases, respectively, and characterised by well-mixed Atlantic westerly maritime inflow in the former and stagnant air (high pressure) in the latter. Measurements of CO, CO2, CH4, N2O, O3, HCN, and other gases measured on board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 aircraft will be presented and interpreted, with emphasis on observed concentration gradients and tracer-tracer correlations as well as airmass vertical structure and airmass history upwind and downwind of central London in each case. By applying a simple advective model and making use of vertically resolved thermodynamic and composition data, we are able to derive emission strengths for these gases that are representative of the total enclosed surface area. Example emissions for these two cases range between 6x105 kg(C)/hr and 9x105 kg(C)/hr for CO2, and ~0.6x105 kg(C)/hr for CH4. This airborne sampling methodology highlights the unique utility of aircraft measurements to routinely and climatologically characterise emissions from area sources such as cities, and points to future missions to target localised hotspots and distributed point sources.

  9. Quasiparticle excitations in superdeformed {sup 192}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Carpenter, M.P.; Janssens, R.V.F. [and others

    1995-08-01

    The nucleus {sup 192}Hg plays a pivotal role for superdeformation in the mass 190 region, since calculations of single-particle levels show large shell-gaps for the superdeformed (SD) shape at N = 112 and Z = 80. As a result, {sup 192}Hg is referred to as the doubly magic SD nucleus for the A = 190 region. In previous studies, only one superdeformed band was observed in this nucleus, and this fact was cited as indirect evidence that large shell gaps do indeed exist at the proposed particle numbers.

  10. Electric field gradients in Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved by compar......We examine the performance of Density Functional Theory (DFT) approaches based on the Zeroth-Order Regular Approximation (ZORA) Hamiltonian (with and without inclusion of spinorbit coupling) for predictions of electric ¿eld gradients (EFGs) at the heavy atom Hg nucleus. This is achieved...

  11. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg.

    Science.gov (United States)

    Wang, Xun; Ye, Zhihong; Li, Bing; Huang, Linan; Meng, Mei; Shi, Jianbo; Jiang, Guibin

    2014-01-01

    Rice consumption represents a major route of mercury (Hg) and methylmercury (MeHg) exposure for those living in certain areas of inland China. In this study we investigated the effects of water management on bioavailable Hg, MeHg, and sulfate-reducing bacteria (SRB, abundance and community composition) in rhizosphere soil, and total Hg (THg) and MeHg in rice plants grown under glasshouse and paddy field conditions. Aerobic conditions greatly decreased the amount of THg and MeHg taken up by rice plants and affected their distribution in different plant tissues. There were positive correlations between bioavailable Hg and THg in brown rice and roots and between numbers of SRB and MeHg in brown rice, roots, and rhizosphere soil. Furthermore, the community composition of SRB was dramatically influenced by the water management regimes. Our results demonstrate that the greatly reduced bioavailability of Hg and production of MeHg are due to decreased SRB numbers and proportion of Hg methylators in the rhizosphere under aerobic conditions. These are the main reasons for the reduced Hg and MeHg accumulation in aerobically grown rice. Water management is indicated as an effective measure that can be used to reduce Hg and MeHg uptake by rice plants from Hg-contaminated paddy fields.

  12. MBE Growth and Characterization of Hg Based Compounds and Heterostructures

    Science.gov (United States)

    2002-06-03

    The molecular beam epitaxy ( MBE ) growth of Mercury Cadmium Telluride (Hg(1-x)Cd(x)Te) alloys and type III HgTe/Hg(1-x)Cd(x)Te heterostructures has...been discussed, including similarities and differences between the (0 0 1) and (1 1 2)Beta orientations. Furthermore, the MBE growth of HgTe-based

  13. Phenylselenolate Mercury Alkyl Compounds, PhSeHgMe and PhSeHgEt: Molecular Structures, Protolytic Hg-C Bond Cleavage and Phenylselenolate Exchange.

    Science.gov (United States)

    Yurkerwich, Kevin; Quinlivan, Patrick J; Rong, Yi; Parkin, Gerard

    2016-01-08

    The phenylselenolate mercury alkyl compounds, PhSeHgMe and PhSeHgEt, have been structurally characterized by X-ray diffraction, thereby demonstrating that both compounds are monomeric with approximately linear coordination geometries; the mercury centers do, nevertheless, exhibit secondary Hg•••Se intermolecular interactions that serve to increase the coordination number in the solid state. The ethyl derivative, PhSeHgEt, undergoes facile protolytic cleavage of the Hg-C bond to release ethane at room temperature, whereas PhSeHgMe exhibits little reactivity under similar conditions. Interestingly, the cleavage of the Hg-C bond of PhSeHgEt is also more facile than that of the thiolate analogue, PhSHgEt, which demonstrates that coordination by selenium promotes protolytic cleavage of the mercury-carbon bond. The phenylselenolate compounds PhSeHgR (R = Me, Et) also undergo degenerate exchange reactions with, for example, PhSHgR and RHgCl. In each case, the alkyl groups preserve coupling to the (199)Hg nuclei, thereby indicating that the exchange process involves metathesis of the Hg-SePh/Hg-X groups rather than metathesis of the Hg-R/Hg-R groups.

  14. The application of 199Hg NMR and 199mHg perturbed angular correlation (PAC) spectroscopy to define the biological chemistry of HgII

    DEFF Research Database (Denmark)

    Iranzo, Olga; Thulstrup, Peter Waaben; Ryu, Seung-baek;

    2007-01-01

    H values and at peptide/HgII ratios of 3:1 with an unusual trigonal thiolate coordination mode. The resulting HgII complexes are good water-soluble models for HgII binding to the protein MerR. We have carried out a parallel study using 199Hg NMR and 199mHg perturbed angular correlation (PAC) spectroscopy...... to characterize the distinct species that are generated under different pH conditions and peptide TRI L9C/HgII ratios. These studies prove for the first time the formation of [Hg{(TRI L9C)2-(TRI L9C H)}], a dithiolate-HgII complex in the hydrophobic interior of the three-stranded coiled coil (TRI L9C)3. 199Hg NMR...... and 199mHg PAC data demonstrate that this dithiolate-HgII complex is different from the dithiolate [Hg(TRI L9C)2], and that the presence of third -helix, containing a protonated cysteine, breaks the symmetry of the coordination environment present in the complex [Hg(TRI L9C)2]. As the pH is raised...

  15. A fluorescent probe based upon anthrancene-dopamine thioether for imaging Hg(2+) ions in living cells.

    Science.gov (United States)

    Feng, Wenjie; Xia, Qing; Zhou, Haiyan; Ni, Yun; Wang, Liulin; Jing, Su; Li, Lin; Ji, Wei

    2017-05-15

    A novel anthrancene-dopamine thioether L compound was designed as fluorescent probe for detecting Hg(2+) in living cells sample. L exhibits a good sensitive and selective recognition towards Hg(2+) ions in the presence of other important relevant metal ions and amino acids in HEPES solution. The addition of Hg(2+) causes a marked enhancement in the fluorescence emission intensity with the detection limit as low as 1.1×10(-6)M, combining with obvious colormetric change from colorless to pale brown. Mechanistic studies show that catechol group and sulfur atom in L all participate in the coordination with Hg(2+), though catechol group contributes mainly to chelation-enhanced fluorescence enhancement and sulfur atom to selectivity. Furthermore, L demonstrates good cell permeability and compatibility for sensitive fluorescent detection of Hg(2+) in HepG2 cells. This present probe will have broad applications in biological imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Photodegradation of petroleum under Na and Hg lamps by EPR

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Eduardo di; Melo, Fernando Alves de; Turini, Marilene; Campos, Ariana de [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. of Physics; Guedes, Carmen Luisa Barbosa [Universidade Estadual de Londrina (UEL), PR (Brazil). Dept. of Chemistry; Mangrich, Antonio Salvio [Universidade Federal do Parana (UFPR), PR (Brazil). Dept. of Chemistry

    2002-07-01

    Full text: The environment has become frequent victim of the action of pollutants. This situation has been stimulating several scientific works in the attempt to monitor the self-defence of the environment and minimise the effects caused by these pollutants. The petroleum and its derived, among the several substances that attack the environment, occupy a distinction place in the pollution picture. In the present work, we studied the photodegradation of the Arabian Light and Brazilian (Campos Basin- RJ) oils. Sample of theses oils were irradiated by different time periods in a reactor equipped with Na and Hg vapour lamps, whose emission spectra have different features. The irradiated and non-irradiated samples were subjected to Electron Paramagnetic Resonance (EPR) analysis in a BRUKER (ESP-300) equipment, which operates in the X band (9 GHz) at room temperature. The EPR spectra showed similar features to the two oils. The EPR spectra are composed of a intense signal (one line) with g (spectroscopic factor) about two relative to free radicals and groups of eight lines correspondent to vanadyl porphyrinic compounds (VO{sup 2+}). The parameters of spin Hamiltonian were determined to the two detected paramagnetic species. The two oils irradiated by Na and Hg lamps showed variations in the values of g and {delta}H (linewidth) of the paramagnetic species. The changes in the parameters are the most significant in Brazilian petroleum samples irradiated by Hg lamp. The modifications in the linewidth of free radicals of the Arabian Light petroleum have the same tendency to the two utilised lamps. (author)

  17. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; Gonzalez, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have fai...

  18. Volcanic emissions of metals and halogens from White Island (New Zealand) and Erebus volcano (Antarctica) determined with chemical traps

    Science.gov (United States)

    Wardell, L. J.; Kyle, P. R.; Counce, D.

    2008-11-01

    Volcanic emission rates of As, Sb, Pb, Hg, Se, Cl, and F were determined at Erebus volcano, Antarctica and White Island, New Zealand, using chemical traps. The trace metal fluxes were determined by combining the species to S ratios in the solutions with SO 2 emission rates measured by correlation spectrometry at the two volcanoes. At Erebus volcano, fluxes for the metals Pb and Hg were 2.0 × 10 - 4 and 8.1 × 10 - 6 kg s - 11 , respectively. Fluxes for Cl, F, As, Sb and Se (0.35, 0.15, 2.5 × 10 - 4 , 1.2 × 10 - 5 , and 4.5 × 10 - 6 kg s - 1 , respectively) agreed within error limits for values determined previously by the LiOH impregnated filter method [Zreda-Gostynska, G., Kyle, P., Finnegan, D., Prestbo, K., 1997. Volcanic gas emissions from Mount Erebus and their impact on the Antarctic environment. Journal of Geophysical Research, 102(B7): 15039-15055.], demonstrating the utility of the chemical trap method. A fall in the As/S ratio from 7 × 10 - 4 in 1997/1999 to 3 × 10 - 4 in 2000 at Erebus coincided with a change in the frequency and style of eruptive activity that may have been due to injection of magma into the system. At White Island, chemical trap data indicated fluxes of Cl = 0.90, F = 0.0079, Pb = 2.7 × 10 - 4 , Hg = 1.1 × 10 - 5 , As = 1.3 × 10 - 4 , Sb = 1.9 × 10 - 5 and Se = 1.5 × 10 - 5 kg s - 1 . Samples collected 600 m downwind of the active crater were comparable to samples collected adjacent to the main gas vent, showing that this method can still be used at some distance from a degassing vent.

  19. DEVELOPMENT AND EVALUATION OF MERCURY CEMS FOR COMBUSTION EMISSIONS MONITORING

    Science.gov (United States)

    Continuous emission montiroing systems (CEMS) for mercury (Hg) are receiving increased attention and focus. Their potential use as a compiance assurance tool is of particular interest. While Hg CEMS are currently used in Europe for compliance purposes, use of Hg CEMS in the Unite...

  20. 全球森林土壤N2O排放通量的影响因子%Factors affecting global forest soil N2O emission flux

    Institute of Scientific and Technical Information of China (English)

    韩琳; 王鸽; 王伟; 赵熙

    2012-01-01

    森林生态系统在全球变暖格局下的地位和作用,尤其是土壤氮库对大气氮沉降增加的响应逐渐成为全球变化研究的热点.本文通过对已有文献资料的调研和整理,分析了1984-2009年间全球38个森林土壤N2O排放通量的野外原位观测结果的分布特征,评估了森林土壤N2O年排放累积通量对大气氮素沉降量和水热条件等因子变化的响应.结果表明,全球森林土壤N2O排放通量的平均值为0.47 kg N·hm-2·a-1,而且土壤N2O释放通量随着纬度增加逐渐降低.作为一个复杂的生态过程,土壤N2O累积释放量同样受到年均温、年降水量以及土壤属性的显著影响.其中全球森林土壤N2O释放温度敏感性系数(Q10值)约为1.5.另外,森林土壤N2O排放通量也随着氮沉降量的增加而显著增大,大气氮沉降量可解释土壤N2O排放通量在不同区域之间53%的差异;土壤pH、年均温和大气氮沉降量可以解释区域森林土壤N2O排放通量变化的55%.%The role of forest ecosystem under global warming, especially the response of forest soil nitrogen ( N) pool to increased atmospheric N deposition, has become one of the hotspots in global change study. Through investigating and systematizing published data, this paper analyzed the distribution patterns of forest soil N2 0 emission fluxes from 38 in situ observations at global scale in 1984-2009, and assessed the response of forest soil annual cumulative N2O flux to atmospheric N deposition and to the variations in water and heat conditions. In global scale, forest soil N2O flux was averagely 0.47 kg N ? Hm-2 ? A-1, and declined gradually from low to high latitude. As a complex ecological process, forest soil cumulative N2O flux was also significantly affected by mean annual temperature, annual precipitation, and soil properties. The temperature sensitivity index of soil N2O flux ( Q10 value) in global forest ecosystem was about 1.5. Moreover, forest soil

  1. Relationship Between Soil Properties and Different Fractions of Soil Hg

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing, China. Results showed that clay (< 2 m) could increase water-soluble Hg (r = 0.700*). Soil organic matter (OM) could enhance the increase of elemental Hg (r = 0.674*). The higher the base saturation percentage (BSP), the more the residual Hg (r = 0.684*). Organic Hg, the sum of acid-soluble organic Hg. and alkali-soluble Hg, was positively affected by silt (2~20μm) but negatively affected by pH, with the direct path coefficients amounting to 1.0487 and 0.5121, respectively. The positive effect of OM and negative effect of BSP on organic Hg were the most significant, with the direct path coefficients being 0.7614 and -0.8527, respectively. The indirect effect of clay (< 2 μm) via BSP (path coefficient = 0.4186) was the highest, showing that the real influencing factor in the effect of clay (< 2 μm) on acid-soluble organic Hg was BSP. Since the available Hg fraction, water-soluble Hg, was positively affected by soil clay content, and the quite immobile and not bioavailable residual Hg by soil BSP, suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  2. Thermal treatment of hair for the synthesis of sustainable carbon quantum dots and the applications for sensing Hg2+

    Science.gov (United States)

    Guo, Yongming; Zhang, Lianfeng; Cao, Fengpu; Leng, Yumin

    2016-10-01

    A facile, simple and low-cost approach for synthesizing highly fluorescent carbon quantum dots (CQDs) from thermal treatment of sustainable hair has been developed. The resultant CQDs exhibited strong blue emission with a quantum yield of 10.75%, excellent photostability and high stability in high salt conditions. As the fluorescence of CQDs can be efficiently quenched by Hg2+, the CQDs can be constructed as a nanosensor for Hg2+ with good sensitivity and selectivity. And as low as 10 nM Hg2+ can be successfully detected.

  3. Mercury emission and dispersion models from soils contaminated by cinnabar mining and metallurgy.

    Science.gov (United States)

    Llanos, Willians; Kocman, David; Higueras, Pablo; Horvat, Milena

    2011-12-01

    The laboratory flux measurement system (LFMS) and dispersion models were used to investigate the kinetics of mercury emission flux (MEF) from contaminated soils. Representative soil samples with respect to total Hg concentration (26-9770 μg g(-1)) surrounding a decommissioned mercury-mining area (Las Cuevas Mine), and a former mercury smelter (Cerco Metalúrgico de Almadenejos), in the Almadén mercury mining district (South Central Spain), were collected. Altogether, 14 samples were analyzed to determine the variation in mercury emission flux (MEF) versus distance from the sources, regulating two major environmental parameters comprising soil temperature and solar radiation. In addition, the fraction of the water-soluble mercury in these samples was determined in order to assess how MEF from soil is related to the mercury in the aqueous soil phase. Measured MEFs ranged from less than 140 to over 10,000 ng m(-2) h(-1), with the highest emissions from contaminated soils adjacent to point sources. A significant decrease of MEF was then observed with increasing distance from these sites. Strong positive effects of both temperature and solar radiation on MEF was observed. Moreover, MEF was found to occur more easily in soils with higher proportions of soluble mercury compared to soils where cinnabar prevails. Based on the calculated Hg emission rates and with the support of geographical information system (GIS) tools and ISC AERMOD software, dispersion models for atmospheric mercury were implemented. In this way, the gaseous mercury plume generated by the soil-originated emissions at different seasons was modeled. Modeling efforts revealed that much higher emissions and larger mercury plumes are generated in dry and warm periods (summer), while the plume is smaller and associated with lower concentrations of atmospheric mercury during colder periods with higher wind activity (fall). Based on the calculated emissions and the model implementation, yearly emissions from

  4. Addition of ash in drained peatland forests in southern Sweden - Forest yield and fluxes of greenhouse gases; Tillfoersel av aska i skog paa dikad torvmark i soedra Sverige - Skogsproduktion och emission av vaexthusgaser

    Energy Technology Data Exchange (ETDEWEB)

    Sikstroem Ulf (Skogforsk, Uppsala (Sweden)); Bjoerk, Robert G; Klemedtsson, Leif (Goeteborgs universitet (Sweden))

    2012-02-15

    The objective of the present study was to evaluate effects of wood-ash application (3.3 and 6.6 tonnes d.w. self-harden crushed wood ash ha-1) in forests on drained peatlands in southern Sweden. Tree growth (three sites) and fluxes of greenhouse gases (one site) were measured in field experiments. In the two experiments (Anderstorp and Bredaryd) in Scots pine stands (Pinus sylvestris L.) on oligotrophic mires, tree growth increased significantly during the seven-eight year long effect periods after ash application. In an earlier study in Anderstorp, the annual emissions of CO{sub 2}, CH{sub 4} and N{sub 2}O from the peat were shown to be unaffected by the ash application. In Skogaryd, a Norway spruce stand (Picea abies L. Karst.) on a minerotrophic mire, the growth was indicated to increase during the five-year effect period. In the same experiment, the previously found reduction in emissions of both CO{sub 2} and N{sub 2}O during the first two years after ash application were no longer significant, although the emissions where lower, for N{sub 2}O only in the high dose ash treatment. CH{sub 4} was unaffected during the whole observed period. During the first five years, application of 3-6 tonnes d.w. crushed wood ash ha-1 in the two studied forests on drained peatlands did not render in an increased Global Warming Potential (GWP), but rather a reduction

  5. Monitoring the Near-infrared Volcanic Flux from Io's Jupiter-facing Hemisphere from Fan Mountain Observatory

    Science.gov (United States)

    Skrutskie, Michael F.; Nelson, Matthew J.; Schmidt, Carl

    2016-10-01

    Fan Mountain Observatory, near Charlottesville, Virginia, is a dark-sky site that supports a number of telescopes including a 31-inch reflecting telescope equipped with a 1024x1024 HgCdTe 1-2.5 um (YJHK) imager. Reflected sunlight ordinarily overwhelms Io's comparatively weak K-band (2.0-2.4 um) volcanic emission in unresolved observations, however when Io is eclipsed in Jupiter's shadow even a small infrared-equipped telescope can detect Io's volcanic emission. The Fan Mountain Infrared Camera observed Io in eclipse at regular intervals, typically weekly, during the few months before and after Jupiter's March 2016 opposition. When in eclipse Io's Jupiter-facing hemisphere is oriented toward Earth with sub-Earth longitudes at the time of observation ranging from 345 - 360 degrees (pre-opposition) to 0 - 15 degrees (post-opposition). A K-band filter (2.04-2.42 um) provided a bulk measurement of Io's volcanic flux weighted largely toward the 2.4 um end of this filter given the typical 500K color temperature of the volcanic emission. Most epochs also included observation in a narrowband filter centered at 2.12 um that, when combined with the broadband "long" wavelength measurement, provided a proxy for color temperature. The K-band flux of Io varied by more than 2 magnitudes during the 7 month observation interval. The [2.12 um - K-band] color of the emission strongly correlated with the K-band flux in the expected sense that the color temperature of the emission increased when Io's broadband volcanic flux was the greatest. One epoch of TripleSpec near-IR Io eclipse spectroscopy (0.90 - 2.45 um; R~3000) from the Apache Point Observatory 3.5-meter telescope provided ground truth for transforming the filter photometry into quantitative temperatures.

  6. Quantificação de fluxos de mercúrio gasoso na interface solo/atmosfera utilizando câmara de fluxo dinâmica: aplicação na bacia do Rio Negro Quantification of atmosphere - soil mercury fluxes by using a dynamic flux chamber: application at the Negro River basin, Amazon

    Directory of Open Access Journals (Sweden)

    Gabriella Magarelli

    2005-12-01

    Full Text Available Gaseous mercury sampling conditions were optimized and a dynamic flux chamber was used to measure the air/surface exchange of mercury in some areas of the Negro river basin with different vegetal coverings. At the two forest sites (flooding and non-flooding, low mercury fluxes were observed: maximum of 3 pmol m-2 h-1 - day and minimum of -1 pmol m-2 h-1 - night. At the deforested site, the mercury fluxes were higher and always positive: maximum of 26 pmol m-2 h-1 - day and 17 pmol m-2 h-1 - night. Our results showed that deforestation could be responsible for significantly increasing soil Hg emissions, mainly because of the high soil temperatures reached at deforested sites.

  7. Gaseous elemental mercury (GEM) emissions from snow surfaces in northern New York.

    Science.gov (United States)

    Maxwell, J Alexander; Holsen, Thomas M; Mondal, Sumona

    2013-01-01

    Snow surface-to-air exchange of gaseous elemental mercury (GEM) was measured using a modified Teflon fluorinated ethylene propylene (FEP) dynamic flux chamber (DFC) in a remote, open site in Potsdam, New York. Sampling was conducted during the winter months of 2011. The inlet and outlet of the DFC were coupled with a Tekran Model 2537A mercury (Hg) vapor analyzer using a Tekran Model 1110 two port synchronized sampler. The surface GEM flux ranged from -4.47 ng m(-2) hr(-1) to 9.89 ng m(-2) hr(-1). For most sample periods, daytime GEM flux was strongly correlated with solar radiation. The average nighttime GEM flux was slightly negative and was not well correlated with any of the measured meteorological variables. Preliminary, empirical models were developed to estimate GEM emissions from snow surfaces in northern New York. These models suggest that most, if not all, of the Hg deposited with and to snow is reemitted to the atmosphere.

  8. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J. [Center for Microfibrous Materials Manufacturing, Department of Chemical Engineering, 230 Ross Hall, Auburn University, Auburn, AL 36849 (United States)

    2006-10-27

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90{sup o}C and at concentrations of 0.100-12.8mol kg{sub H{sub 2}O}{sup -1}. The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25{sup o}C and 1atm are 0.1634V for 0.100m, 0.1077V for 1.00m, and 0.0976V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751V versus NHE and hydrogen evolution potential changes to -0.9916V versus NHE in a solution of 30.0wt.% NaOH at 80{sup o}C. The calculated values are compared with the measured data at 25 and 75{sup o}C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations. (author)

  9. Hg/HgO electrode and hydrogen evolution potentials in aqueous sodium hydroxide

    Science.gov (United States)

    Nickell, Ryan A.; Zhu, Wenhua H.; Payne, Robert U.; Cahela, Donald R.; Tatarchuk, Bruce J.

    The Hg/HgO electrode is usually utilized as a reference electrode in alkaline solution such as for development of an alkaline hydrogen electrode. The reference electrode provides a suitable reference point but is available from few commercial vendors and suffers from inadequate documentation on potential in varying electrolytes. A new numerical method uses activity, activity coefficients, and a few correlated empirical equations to determine the potential values in both dilute and concentrated sodium hydroxide solutions at temperatures of 0-90 °C and at concentrations of 0.100-12.8 mol k gH2O-1 . The computed potentials of the Hg/HgO electrodes versus a normal hydrogen electrode (NHE) at 25 °C and 1 atm are 0.1634 V for 0.100m, 0.1077 V for 1.00m, and 0.0976 V for 1.45m NaOH solutions. The Hg/HgO reduction potential further changes to -0.0751 V versus NHE and hydrogen evolution potential changes to -0.9916 V versus NHE in a solution of 30.0 wt.% NaOH at 80 °C. The calculated values are compared with the measured data at 25 and 75 °C. The experimental data agree well with the numerical values computed from the theoretical and empirical equations.

  10. Long-term Hg pollution induced Hg tolerance in the terrestrial isopod Porcellio scaber (Isopoda, Crustacea)

    Energy Technology Data Exchange (ETDEWEB)

    Lapanje, A. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Institute of Physical Biology, Veliko Mlacevo 59, 1290 Grosuplje (Slovenia)], E-mail: ales.lapanje@bf.uni-lj.si; Drobne, D. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Nolde, N. [Institute Jozef Stefan, Department of Environmental Sciences, Jamova 39, 1000 Ljubljana (Slovenia); Valant, J. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Muscet, B. [Institute of Physical Biology, Veliko Mlacevo 59, 1290 Grosuplje (Slovenia); Leser, V. [University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecna pot 111, 1000 Ljubljana (Slovenia); Rupnik, M. [Institute of Public Health, Prvomajska 1, 2000 Maribor (Slovenia); Faculty of Medicine, University of Maribor, Slomskov trg 15, 2000 Maribor (Slovenia)

    2008-06-15

    The aim of our work was to assess the pollution-induced community tolerance (PICT) of isopod gut microbiota and pollution-induced isopod population tolerance (PIPT). Animals collected from a chronically Hg polluted and an unpolluted location were exposed for 14 days to 10 {mu}g Hg/g dry food under laboratory conditions. The lysosomal membrane stability, hepatopancreas epithelium thickness, feeding activity and animal bacterial gut microbiota composition were determined. The results confirm the hypothesis that the response to short-term Hg exposure differs for animals from the Hg polluted and the unpolluted field locations. The animals and their gut microbiota from the Hg polluted location were less affected by Hg in a short-term feeding experiment than those from the unpolluted environment. We discuss the pollution-induced population tolerance of isopods and their gut microbiota as a measure of effects of long-term environmental pollution. The ecological consequences of such phenomena are also discussed. - Isopods (Porcellio scaber) as well as their bacterial gut community from a mercury-polluted site are mercury tolerant.

  11. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  12. Investigation of Hg/sub 2/ as a discharge pumped optical storage medium

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlich, D J; Osgood, Jr, R M

    1978-12-01

    The report describes work performed in the period 1 October 1977 to 30 September 1978 on the extraction of energy from metastable Hg/sub 2/ by optical techniques. The major accomplishments have included: (1) assessment of optical extraction techniques for laser fusion applications; (2) demonstration of 20X enhancements in the population of the UV-radiating level by optical pumping with mid-IR lasers; (3) analysis of the IR optical pumping process through the induced emission spectrum; (4) parametric studies of the excitation wavelength, temperature and pressure dependences of extraction by optical pumping; (5) studies of the saturation of mid-IR optical pumping; (6) modeling of large-scale extraction for laser fusion applications; (7) studies of optical pumping of Hg/sub 2/ by high power ArF laser (193 nm) radiation; and (8) studies of Hg/sub 2/ excimer structure and collisional destruction rates.

  13. Investigation of possibility of VLWIR lasing in HgCdTe based heterostructures

    Science.gov (United States)

    Morozov, S. V.; Rumyantsev, V. V.; Kadykov, A. M.; Dubinov, A. A.; Antonov, A. V.; Kudryavtsev, K. E.; Kuritsin, D. I.; Mikhailov, N. N.; Dvoretskii, S. A.; Teppe, F.; Gavrilenko, V. I.

    2015-10-01

    The optical properties of a number of Hg1-xCdxTe bulk epilayers (x = 0.152 - 0.23) and heterostructures with quantum wells (QW) based on narrow gap HgCdTe are examined aiming to reveal the prospects of such structures for laser development in long wave infrared and very long wave infrared ranges. Experimental evidence of long wavelength superluminescence, i.e. amplification of spontaneous emission, at 8.4 μm in narrow gap HgCdTe bulk epitaxial film at 100 K is reported. Employing heterostructures with QW is demonstrated to be promissory for furthering the radiation wavelength to 10 - 30 μm range.

  14. Textured α-HgI2 ceramics for sensitive X-ray detection

    Science.gov (United States)

    Rault, Mathieu; Binet, Laurent; Gourier, Didier; Wallez, Gilles; Ponpon, Jean-Pierre; Biava, Dominique; Inglese, Jean-Marc; Barboux, Philippe

    2016-02-01

    In the prospect of manufacturing ionizing radiation detectors, dense ceramics of α-HgI2 with a strong preferred orientation were elaborated. X-ray diffraction showed that most crystallites exhibited their crystal c-axis perpendicular to the ceramic plane, which should be favorable for optimum electrical transport properties. Dark current densities about 2 nA mm-2 (under 0.2 V μm-1 bias) were measured and were shown to arise mostly from the release of carriers from trap defects (Poole-Frenkel emission). The X-ray sensitivity ≈1600 nC mGy-1 cm-2 and the μτ value ≈ 3 × 10-5 cm2 V-1 were comparable to those of other forms of polycrystalline HgI2. The HgI2 ceramics also exhibited a perfectly linear response as a function of the X-ray dose.

  15. MBE HgCdTe heterostructure detectors

    Science.gov (United States)

    Schulman, Joel N.; Wu, Owen K.

    1990-01-01

    HgCdTe has been the mainstay for medium (3 to 5 micron) and long (10 to 14 micron) wavelength infrared detectors in recent years. Conventional growth and processing techniques are continuing to improve the material. However, the additional ability to tailor composition and placement of doped layers on the tens of angstroms scale using molecular beam epitaxy (MBE) provides the opportunity for new device physics and concepts to be utilized. MBE-based device structures to be discussed here can be grouped into two categories: tailored conventional structures and quantum structures. The tailored conventional structures are improvements on familiar devices, but make use of the ability to create layers of varying composition, and thus band gap, at will. The heterostructure junction can be positioned independently of doping p-n junctions. This allows the small band gap region in which the absorption occurs to be separated from a larger band gap region in which the electric field is large and where unwanted tunneling can occur. Data from hybrid MBE/liquid phase epitaxy (LPE)/bulk structures are given. Quantum structures include the HgTe-CdTe superlattice, in which the band gap and transport can be controlled by alternating thin layers (tens of angstroms thick) of HgTe and CdTe. The superlattice has been shown to exhibit behavior which is non-alloy like, including very high hole mobilities, two-dimensional structure in the absorption coefficient, resonant tunneling, and anisotropic transport.

  16. Mercury speciation, fluxes, and fate in the volcanically acidified fluids of Copahue volcano, Argentina

    Science.gov (United States)

    Kading, T.; Varekamp, J. C.; Andersson, M.; Balcom, P.; Mason, R. P.

    2010-12-01

    The behavior of mercury in volcanic acid springs and acidified rivers is poorly known, despite the potential impact this vector of contamination has on local surface and ground water quality. Mercury was measured in a volcanically acidified river system (pHNeuquen province of Argentina, which discharges into a large glacial lake (Lake Caviahue, pH 2.2-3.0). The Hg concentration ranged from 2 - 600 pM throughout the fluvial system. Mercury in the hot, hyperacidic source fluids was dominated by dissolved ionic species, with only 2% of total mercury as dissolved elemental mercury, and 11% being particulate bound. The Hg flux from the volcano, determined from river water flux measurements and Hg concentrations, was modest and varied between the 3/2008 and 3/2009 sampling campaigns resp. from 0.7 to 1.1 moles/year. The Hg:S ratio of the acid fluids was ~10-8, several orders of magnitude lower than that typically found in volcanic plumes and fumaroles. The small Hg flux and low Hg:S values suggest that the system is either inherently Hg-poor or has lost Hg through vapor loss deeper in the hydrothermal system. Support for the latter comes from high Hg concentrations in geothermal vents and mudpots on the flank of the mountain (24 - 55 ppm Hg). Mercury concentrations decreased conservatively downstream in the river as based on Hg/Cl and Hg/SO4. Non-conservative depletion occurs in the less acidic Lake Caviahue, suggesting that mercury is removed from the water column by sorption to organic matter or other phases. Mercury analyses of a short lake sediment core confirm this (Hg = 0.01 to 0.70 ppm). No evidence was found for preferential uptake of mercury by jarosite, schwertmannite, or goethite, although the latter two phases precipitate in the most distal and Hg-depleted section of the fluvial system.

  17. The role of water treatment abstraction in the flux and greenhouse gas emissions from organic carbon and nitrogen within UK rivers

    Science.gov (United States)

    Finlay, N. C.; Johnson, K.; Worrall, F.

    2016-10-01

    The fate of organic matter through watersheds has been shown to be an important component of the global carbon cycle and processes in rivers can rapidly transfer carbon from the terrestrial biosphere to the atmosphere. However, the role of water abstraction in diverting organic matter from freshwater has not been considered. This study used two methods to estimate the amount of organic carbon removed by water treatment processes, first, by estimating the amount of carbon that has to be removed given the abstracted volumes and the freshwater composition; and, second, estimated from reports of the production and composition of water treatment residuals from water companies. For the UK, the median total organic carbon removed by water abstraction was 46 ktonnes C/yr, this equates to a median per capita value of 0.76 kg C/ca/yr. The median total organic nitrogen removed was 4.0 ktonnes N/yr, equivalent to 0.07 kg N/ca/yr. The removal of TOC by water abstraction represents 1.5% of the total removal rate across UK watersheds. The release of greenhouse gases from UK rivers is now estimated to be between 12,754 and 32,332 ktonnes CO2eq/yr equivalent to between 55 and 127 tonnes CO2eq/km2/yr with fluvial organic matter between 8800 and 15,116 ktonnes CO2eq/yr in the proportion 6:86:8 N2O:CO2:CH4. The emissions factor for 1 tonne of organic carbon entering the UK fluvial network has a median value of 2.95 tonnes CO2eq/yr with a 5th to 95th percentile range of 2.55 to 3.59 tonnes CO2eq/yr. Globally, a per capita values for countries with municipal treated water supply would be 0.8 to 0.86 kg C/ca/yr.

  18. Long-distance transport of Hg, Sb, and As from a mined area, conversion of Hg to methyl-Hg, and uptake of Hg by fish on the Tiber River basin, west-central Italy

    Science.gov (United States)

    Gray, John E.; Rimondi, Valentina; Costagliola, Pilario; Vaselli, Orlando; Lattanzi, Pierfranco

    2014-01-01

    Stream sediment, stream water, and fish were collected from a broad region to evaluate downstream transport and dispersion of mercury (Hg) from inactive mines in the Monte Amiata Hg District (MAMD), Tuscany, Italy. Stream sediment samples ranged in Hg concentration from 20 to 1,900 ng/g, and only 5 of the 17 collected samples exceeded the probable effect concentration for Hg of 1,060 ng/g, above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in Tiber River sediment varied from 0.12 to 0.52 ng/g, and although there is no established guideline for sediment methyl-Hg, these concentrations exceeded methyl-Hg in a regional baseline site (Sb (Sb) and for protection against chronic effects to aquatic wildlife (150 μg/L for As and 5.6 μg/L for Sb). Concentrations of Hg in freshwater fish muscle ranged from 0.052–0.56 μg/g (wet weight), mean of 0.17 μg/g, but only 17 % (9 of 54) exceeded the 0.30 μg/g (wet weight) USEPA fish muscle guideline recommended to protect human health. Concentrations of Hg in freshwater fish in this region generally decreased with increasing distance from the MAMD, where fish with the highest Hg concentrations were collected more proximal to the MAMD, whereas all fish collected most distal from Hg mines contained Hg below the 0.30 μg/g fish muscle guideline. Data in this study indicate some conversion of inorganic Hg to methyl-Hg and uptake of Hg in fish on the Paglia River, but less methylation of Hg and Hg uptake by freshwater fish in the larger Tiber River.

  19. Hg Vetical Transference in Soil—Water System

    Institute of Scientific and Technical Information of China (English)

    GUOYIJUN; MOUSUSEN; 等

    1998-01-01

    Hg vertial transference in soil-water system was studied by analyzing Hg vertical ditribution in soil column after adding Hg and one of the two leacheates,deionzied water or acid rain,into soil column.The results indicated that Hg was hardly transferable in puple soil.About 86%-88% of the total soil Hg was distributed in the top layer (0-2cm) and to Hg was detected in the leakage when the purple soil column was leached by deionized water and simulated acid rain.But Hg was more movalbe in yellow soil with only about 20%-22% of the total soil Hg distributed in the top layer (0-2cm),and about 17%-25% washed out from the soil column by deionized water and simulted acid rain,Incremant in soil bulk density colud reduce Hg leaching,thus the more the Hg kept in soil,the less the Hg leached into underground water,Deionized water and acid rain almost played the same role in leaching Hg.Bentioint was most effecient in preventing Hg from vertcal transferring in the soil coulumn.

  20. Hg(II Coordination Polymers Based on N,N’-bis(pyridine-4-ylformamidine

    Directory of Open Access Journals (Sweden)

    Wayne Hsu

    2016-04-01

    Full Text Available Reactions of N,N’-bis(pyridine-4-ylformamidine (4-Hpyf with HgX2 (X = Cl, Br, and I afforded the formamidinate complex {[Hg(4-pyf2]·(THF}n, 1, and the formamidine complexes {[HgX2(4-Hpyf]·(MeCN}n (X = Br, 2; I, 3, which have been structurally characterized by X-ray crystallography. Complex 1 is a 2D layer with the {44·62}-sql topology and complexes 2 and 3 are helical chains. While the helical chains of 2 are linked through N–H···Br hydrogen bonds, those of 3 are linked through self-complementary double N–H···N hydrogen bonds, resulting in 2D supramolecular structures. The 4-pyf- ligands of 1 coordinate to the Hg(II ions through one pyridyl and one adjacent amine nitrogen atoms and the 4-Hpyf ligands of 2 and 3 coordinate to the Hg(II ions through two pyridyl nitrogen atoms, resulting in new bidentate binding modes. Complexes 1–3 provide a unique opportunity to envisage the effect of the halide anions of the starting Hg(II salts on folding and unfolding the Hg(II coordination polymers. Density function theory (DFT calculation indicates that the emission of 1 is due to intraligand π→π * charge transfer between two different 4-pyf- ligands, whereas those of 2 and 3 can be ascribed to the charge transfer from non-bonding p-type orbitals of the halide anions to π * orbitals of the 4-pyf- ligands (n→π *. The gas sorption properties of the desolvated product of 1 are compared with the Cu analogues to show that the nature of the counteranion and the solvent-accessible volume are important in determining their adsorption capability.

  1. BVOC fluxes above mountain grassland

    Directory of Open Access Journals (Sweden)

    I. Bamberger

    2010-05-01

    Full Text Available Grasslands comprise natural tropical savannah over managed temperate fields to tundra and cover one quarter of the Earth's land surface. Plant growth, maintenance and decay result in volatile organic compound (VOCs emissions to the atmosphere. Furthermore, biogenic VOCs (BVOCs are emitted as a consequence of various environmental stresses including cutting and drying during harvesting. Fluxes of BVOCs were measured with a proton-transfer-reaction-mass-spectrometer (PTR-MS over temperate mountain grassland in Stubai Valley (Tyrol, Austria over one growing season (2008. VOC fluxes were calculated from the disjunct PTR-MS data using the virtual disjunct eddy covariance method and the gap filling method. Methanol fluxes obtained with the two independent flux calculation methods were highly correlated (y = 0.95×−0.12, R2 = 0.92. Methanol showed strong daytime emissions throughout the growing season – with maximal values of 9.7 nmol m−2 s−1, methanol fluxes from the growing grassland were considerably higher at the beginning of the growing season in June compared to those measured during October (2.5 nmol m−2 s−1. Methanol was the only component that exhibited consistent fluxes during the entire growing periods of the grass. The cutting and drying of the grass increased the emissions of methanol to up to 78.4 nmol m−2 s−1. In addition, emissions of acetaldehyde (up to 11.0 nmol m−2 s−1, and hexenal (leaf aldehyde, up to 8.6 nmol m−2 s−1 were detected during/after harvesting.

  2. Characterizing mercury concentrations and fluxes in a Coastal Plain watershed: Insights from dynamic modeling and data

    Science.gov (United States)

    Golden, H.E.; Knightes, C.D.; Conrads, P.A.; Davis, G.M.; Feaster, T.D.; Journey, C.A.; Benedict, S.T.; Brigham, M.E.; Bradley, P.M.

    2012-01-01

    Mercury (Hg) is one of the leading water quality concerns in surface waters of the United States. Although watershed-scale Hg cycling research has increased in the past two decades, advances in modeling watershed Hg processes in diverse physiographic regions, spatial scales, and land cover types are needed. The goal of this study was to assess Hg cycling in a Coastal Plain system using concentrations and fluxes estimated by multiple watershed-scale models with distinct mathematical frameworks reflecting different system dynamics. We simulated total mercury (HgT, the sum of filtered and particulate forms) concentrations and fluxes from a Coastal Plain watershed (McTier Creek) using three watershed Hg models and an empirical load model. Model output was compared with observed in-stream HgT. We found that shallow subsurface flow is a potentially important transport mechanism of particulate HgT during periods when connectivity between the uplands and surface waters is maximized. Other processes (e.g., stream bank erosion, sediment re-suspension) may increase particulate HgT in the water column. Simulations and data suggest that variable source area (VSA) flow and lack of rainfall interactions with surface soil horizons result in increased dissolved HgT concentrations unrelated to DOC mobilization following precipitation events. Although flushing of DOC-HgT complexes from surface soils can also occur during this period, DOC-complexed HgT becomes more important during base flow conditions. TOPLOAD simulations highlight saturated subsurface flow as a primary driver of daily HgT loadings, but shallow subsurface flow is important for HgT loads during high-flow events. Results suggest limited seasonal trends in HgT dynamics.

  3. Mercury in soil near a long-term air emission source in southeastern Idaho

    Science.gov (United States)

    Abbott, M.L.; Susong, D.D.; Olson, M.; Krabbenhoft, D.P.

    2003-01-01

    At the Idaho National Engineering and Environmental Laboratory in southeastern Idaho, a 500??C fluidized bed calciner was intermittently operated for 37 years, with measured Hg emission rates of 9-11 g/h. Surface soil was sampled at 57 locations around the facility to determine the spatial distribution of Hg fallout and surface Hg variability, and to predict the total residual Hg mass in the soil from historical emissions. Measured soil concentrations were slightly higher (pcalciner operating history. These results suggest that much of the Hg deposited from calciner operations may have been reduced in the soil and re-emitted as Hg(0) to the global atmospheric pool.

  4. Critical flux determination by flux-stepping

    DEFF Research Database (Denmark)

    Beier, Søren; Jonsson, Gunnar Eigil

    2010-01-01

    In membrane filtration related scientific literature, often step-by-step determined critical fluxes are reported. Using a dynamic microfiltration device, it is shown that critical fluxes determined from two different flux-stepping methods are dependent upon operational parameters such as step......, such values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...

  5. Estimates of mercury flux into the United States from non-local and global sources: results from a 3-D CTM simulation

    Directory of Open Access Journals (Sweden)

    B. A. Drewniak

    2008-11-01

    Full Text Available The sensitivity of Hg concentration and deposition in the United States to emissions in China was investigated by using a global chemical transport model: Model for Ozone and Related Chemical Tracers (MOZART. Two forms of gaseous Hg were included in the model: elemental Hg (HG(0 and oxidized or reactive Hg (HGO. We simulated three different emission scenarios to evaluate the model's sensitivity. One scenario included no emissions from China, while the others were based on different estimates of Hg emissions in China. The results indicated, in general, that when Hg emissions were included, HG(0 concentrations increased both locally and globally. Increases in Hg concentrations in the United States were greatest during spring and summer, by as much as 7%. Ratios of calculated concentrations of Hg and CO near the source region in eastern Asia agreed well with ratios based on measurements. Increases similar to those observed for HG(0 were also calculated for deposition of HGO. Calculated increases in wet and dry deposition in the United States were 5–7% and 5–9%, respectively. The results indicate that long-range transcontinental transport of Hg has a non-negligible impact on Hg deposition levels in the United States.

  6. Estimates of mercury flux into the United States from non-local and global sources : results from a 3-D CTM simulation.

    Energy Technology Data Exchange (ETDEWEB)

    Drewniak, B. A.; Kotamarthi, V. R.; Streets, D.; Kim, M.; Crist, K.; Ohio Univ.

    2008-11-01

    The sensitivity of Hg concentration and deposition in the United States to emissions in China was investigated by using a global chemical transport model: Model for Ozone and Related Chemical Tracers (MOZART). Two forms of gaseous Hg were included in the model: elemental Hg (HG(0)) and oxidized or reactive Hg (HGO). We simulated three different emission scenarios to evaluate the model's sensitivity. One scenario included no emissions from China, while the others were based on different estimates of Hg emissions in China. The results indicated, in general, that when Hg emissions were included, HG(0) concentrations increased both locally and globally. Increases in Hg concentrations in the United States were greatest during spring and summer, by as much as 7%. Ratios of calculated concentrations of Hg and CO near the source region in eastern Asia agreed well with ratios based on measurements. Increases similar to those observed for HG(0) were also calculated for deposition of HGO. Calculated increases in wet and dry deposition in the United States were 5-7% and 5-9%, respectively. The results indicate that long-range transcontinental transport of Hg has a non-negligible impact on Hg deposition levels in the United States.

  7. Updated atmospheric speciated mercury emissions from iron and steel production in China during 2000–2015

    Directory of Open Access Journals (Sweden)

    Q. Wu

    2017-09-01

    Full Text Available Iron and steel production (ISP is one of the significant atmospheric Hg emission sources in China. Atmospheric mercury (Hg emissions from ISP during 2000–2015 were estimated by using a technology-based emission factor method. To support the application of this method, databases of Hg concentrations in raw materials, technology development trends, and Hg removal efficiencies of air pollution control devices (APCDs were constructed through national sampling and literature review. Hg input to ISP increased from 21.6 t in 2000 to 94.5 t in 2015. In the various types of raw materials, coking coal and iron concentrates contributed 35–46 and 25–32 % of the total Hg input. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.7 t in 2015 with a peak of 35.6 t in 2013. Pollution control promoted the increase in average Hg removal efficiency, from 47 % in 2000 to 65 % in 2015. During the study period, sinter/pellet plants and blast furnaces were the largest two emission processes. However, emissions from roasting plants and coke ovens cannot be ignored, which accounted for 22–34 % of ISP's emissions. Overall, Hg speciation shifted from 50/44/6 (gaseous elemental Hg (Hg0/gaseous oxidized Hg (HgII/particulate-bound Hg (Hgp in 2000 to 40/59/1 in 2015, which indicated a higher proportion of Hg deposition around the emission points. Future emissions of ISP were expected to decrease based on the comprehensive consideration crude-steel production, steel scrap utilization, energy saving, and pollution control measures.

  8. Process of [sup 196]Hg enrichment

    Science.gov (United States)

    Grossman, M.W.; Mellor, C.E.

    1993-04-27

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of [sup 196]Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  9. Process of .sup.196 Hg enrichment

    Science.gov (United States)

    Grossman, Mark W.; Mellor, Charles E.

    1993-01-01

    A simple rate equation model shows that by increasing the length of the photochemical reactor and/or by increasing the photon intensity in said reactor, the feedstock utilization of .sup.196 Hg will be increased. Two preferred embodiments of the present invention are described, namely (1) long reactors using long photochemical lamps and vapor filters; and (2) quartz reactors with external UV reflecting films. These embodiments have each been constructed and operated, demonstrating the enhanced utilization process dictated by the mathematical model (also provided).

  10. Magnetic fields of HgMn stars

    DEFF Research Database (Denmark)

    Hubrig, S.; González, J. F.; Ilyin, I.

    2012-01-01

    Context. The frequent presence of weak magnetic fields on the surface of spotted late-B stars with HgMn peculiarity in binary systems has been controversial during the two last decades. Recent studies of magnetic fields in these stars using the least-squares deconvolution (LSD) technique have...... failed to detect magnetic fields, indicating an upper limit on the longitudinal field between 8 and 15G. In these LSD studies, assumptions were made that all spectral lines are identical in shape and can be described by a scaled mean profile. Aims. We re-analyse the available spectropolarimetric material...

  11. Of Variability, or its Absence, in HgMn Stars

    CERN Document Server

    Turcotte, S

    2003-01-01

    Current models and observations of variability in HgMn stars disagree. We present here the models that argue for pulsating HgMn stars with properties similar to those of Slowly Pulsating B Stars. The lack of observed variable HgMn stars suggests that some physical process is missing from the models. Some possibilities are discussed.

  12. Micromagnetic sensors and Dirac fermions in HgTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Bastian

    2012-08-06

    Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ''Experimentelle Physik'' of the University of Wuerzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te-heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-{mu}m magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T=4.2 K for a (200.200) nm{sup 2} Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely {delta}B{approx}100 {mu}T, the nanoscale sensor size yields an outstanding flux resolution of {delta}{Phi}=2.10{sup -3} {Phi}{sub 0}, where {Phi}{sub 0}=h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as {delta}M{approx}10{sup 2} {mu}{sub B}, with the magnetic moment of a single electron {mu}{sub B}, the Bohr magneton. The further examination of a permalloy

  13. Micromagnetic sensors and Dirac fermions in HgTe heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Buettner, Bastian

    2012-08-06

    Within the scope of this thesis two main topics have been investigated: the examination of micromagnetic sensors and transport of massive and massless Dirac fermions in HgTe quantum wells. For the investigation of localized, inhomogeneous magnetic fields, the fabrication and characterization of two different non-invasive and ultra sensitive sensors has been established at the chair ''Experimentelle Physik'' of the University of Wuerzburg. The first sensor is based on the young technique named micro-Hall magnetometry. The necessary semiconductor devices (Hall cross structures) were fabricated by high-resolution electron beam lithography based on two different two dimensional electron gases (2DEGs), namely InAs/(Al,Ga)Sb- and HgTe/(Hg,Cd)Te-heterostructures. The characteristics have been examined in two different ways. Measurements in homogeneous magnetic fields served for characterization of the sensors, whereas the investigation of artificially produced sub-{mu}m magnets substantiates the suitability of the devices for the study of novel nanoscale magnetic materials (e.g. nanowires). Systematic experiments with various magnets are in accordance with the theory of single-domain particles and anisotropic behavior due to shapes with high aspect ratio. The highest sensitivity for strongly localized fields was obtained at T=4.2 K for a (200.200) nm{sup 2} Hall cross - made from shallow, high mobility HgTe 2DEG. Although the field resolution was merely {delta}B{approx}100 {mu}T, the nanoscale sensor size yields an outstanding flux resolution of {delta}{Phi}=2.10{sup -3} {Phi}{sub 0}, where {Phi}{sub 0}=h/2e is the flux quantum. Translating this result in terms of magnetic moment, the sensitivity allows for the detection of magnetization changes of a particle centered on top of the sensor as low as {delta}M{approx}10{sup 2} {mu}{sub B}, with the magnetic moment of a single electron {mu}{sub B}, the Bohr magneton. The further examination of a permalloy

  14. HgZnTe-based detectors for LWIR NASA applications

    Science.gov (United States)

    Patten, Elizabeth A.; Kalisher, Murray H.

    1990-01-01

    The initial goal was to grow and characterize HgZnTe and determine if it indeed had the advantageous properties that were predicted. Researchers grew both bulk and liquid phase epitaxial HgZnTe. It was determined that HgZnTe had the following properties: (1) microhardness at least 50 percent greater than HgCdTe of equivalent bandgap; (2) Hg annealing rates of at least 2 to 4 times longer than HgCdTe; and (3) higher Hg vacancy formation energies. This early work did not focus on one specific composition (x-value) of HgZnTe since NASA was interested in HgZnTe's potential for a variety of applications. Since the beginning of 1989, researchers have been concentrating, however, on the liquid phase growth of very long wavelength infrared (VLWIR) HgZnTe (cutoff approx. equals 17 microns at 65K) to address the requirements of the Earth Observing System (EOS). Since there are no device models to predict the advantages in reliability one can gain with increased microhardness, surface stability, etc., one must fabricate HgZnTe detectors and assess their relative bake stability (accelerated life test behavior) compared with HgCdTe devices fabricated in the same manner. Researchers chose to fabricate HIT detectors as a development vehicle for this program because high performance in the VLWIR has been demonstrated with HgCdTe HIT detectors and the HgCdTe HIT process should be applicable to HgZnTe. HIT detectors have a significant advantage for satellite applications since these devices dissipate much less power than conventional photoconductors to achieve the same responsivity.

  15. A novel fluorescence "on-off-on" chemosensor for Hg(2+)via a water-assistant blocking heavy atom effect.

    Science.gov (United States)

    Wu, Chong; Zhao, Jiang-Lin; Jiang, Xue-Kai; Wang, Chuan-Zeng; Ni, Xin-Long; Zeng, Xi; Redshaw, Carl; Yamato, Takehiko

    2016-10-14

    Upper rim pyrene-functionalized hexahomotrioxacalix[3]arene L was synthesized via Click chemistry, and its fluorescence behaviors toward several common metal cations were investigated. L exhibited a significant fluorescence quenching response to Hg(2+) in CH3CN solution, which was unaffected by the coexistence of other competitive metal cations. Thus, L can be utilized as a highly selective and sensitive fluorescent chemosensor for Hg(2+) with a detection limit in the nM level. Interestingly, the quenched fluorescence emission can be successfully revived upon the addition of water. In this process, the heavy atom effect of Hg(2+) can be blocked by further coordination of a water molecule and resulted in the revival of the fluorescence emission of L/Hg(2+) complex. Particularly, other polar solvents such as CH3OH and CH3CH2OH also have the ability to revive the fluorescence emission of the L/Hg(2+) complex, but on a much smaller scale than observed for H2O. The heavy atom effect and blocking thereof were demonstrated within the same system by the use of a C3-symmetric homooxacalix[3]arene scaffold. The present studies provided further evidence for the blocking heavy atom effect.

  16. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL2 (L=CH3, Cl, Br, I) and trigonal planar [HgCl3]- complexes using four-component relativistic Dirac-Coulomb (DC) and non...

  17. The Chevrel phase HgMo6S8

    Directory of Open Access Journals (Sweden)

    Michel Potel

    2009-05-01

    Full Text Available The crystal structure of HgMo6S8, mercury(II hexamolybdenum octasulfide, is based on (Mo6S8S6 cluster units (overline{3} symmetry interconnected through interunit Mo—S bonds. The Hg2+ cations occupy large voids between the different cluster units and are covalently bonded to two S atoms. The Hg atoms and one S atom lie on sites with crystallographic overline{3} and 3 symmetry, respectively. Refinement of the occupancy factor of the Hg atom led to the composition Hg0.973 (3Mo6S8.

  18. Bioindication of volcanic mercury (Hg) deposition around Mt Etna (Sicily)

    Science.gov (United States)

    Martin, R.; Witt, M. L.; Sawyer, G. M.; Watt, S.; Bagnato, E.; Calabrese, S.; Aiuppa, A.; Delmelle, P.; Pyle, D. M.; Mather, T. A.

    2012-12-01

    Mt. Etna is a major natural source of Hg to the Mediterranean region. Total mercury concentrations, [Hg]tot, in Castanea sativa (sweet chestnut) leaves sampled 7-13 km from Etna's vents (during six campaigns in 2005-2011) were determined using atomic absorption spectroscopy. [Hg]tot in C. sativa was greatest on Etna's SE flank reflecting Hg deposition from the typically overhead volcanic plume. When adjusted for leaf age, [Hg]tot in C. sativa also increased with recent eruptive activity. [Hg]tot in C. sativa was not controlled by [Hg]tot in soils, which instead was greatest on the (upwind) NW flank and correlated strongly with soil organic matter (% Org). Our results suggest that at least ~1% of Hg emitted from Etna is deposited proximally, supporting recent measurement and model results which indicate that GEM (Hg0; the dominant form of Hg in high temperature magmatic gases) is oxidised rapidly to RGM and Hgp in ambient temperature volcanic plumes. Samples of C. sativa and soils were also collected in July and September 2012 alongside SO2 and acid gas diffusion tube samples. These new samples will enable us to investigate Hg accumulation over a single growth season with reference to the exposure of vegetation to volcanic gases and particles.

  19. Superdeformation studies in {sup 191}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Crowell, B. [and others

    1995-08-01

    Superdeformation in the A {approximately} 190 region was first observed in {sup 191}Hg from an experiment performed at ATLAS using the Argonne Notre Dame {gamma}-ray facility. We recently revisited the study of superdeformation in this nucleus using Gammasphere and the {sup 160}Gd({sup 36}S,5n) and {sup 174}Yb({sup 22}Ne,5n) reactions at 172 and 120 MeV in order to populate and measure states in the second well. The goal of the experiment was to identify new bands in the data, and thus allow us to gain understanding on the relative placement of single particle orbitals near the N = 112 SD shell gap. From an analysis of the data, the three previously identified SD bands were extended, and their feeding into the yrast states delineated. Two new SD bands were observed and preliminary evidence for a third new band was obtained as well.

  20. Note: Simple means for selective removal of the 365 nm line from the Hg spectrum using Dy

    DEFF Research Database (Denmark)

    Vesborg, Peter Christian Kjærgaard; Chorkendorff, Ib; Brock-Nannestad, T.

    2011-01-01

    The emission spectrum of mercury has a notable line at about 365 nm under both low and medium-high pressure conditions. A simple filter based on a solution of dysprosium ions, Dy3+, is shown to be very useful for applications of Hg-light sources where this line is unwanted. The presented filter i...

  1. Relationship Between Soil Properties and Different Fractions of Soil Hg

    Institute of Scientific and Technical Information of China (English)

    WUHONGTAO; YUGUIFEN; 等

    2001-01-01

    Correlation and path analysis methods were used to study the relationship between soil properties and the distribution of different soil Hg fractions with nine representative soils from Chongqing,China,Results showed that clay(<2m) could increase water-soluble Hg(r=0.700*).Soil organic matter (OM) could enhance the increase of elemental Hg(r=0.674*),The higher the base saturation percentage (BSP) ,the more the residual Hg(R=0.684*) .Organic Hg,the sum of said-soluble organic He and alkali-soluble Hg,was positively affected by silt(2-20μm)but negatively affected by pH,with the direct path coefficients amounting to 1.0487 and 0.5121,respectively .The positive effect of OM and negative effect of BSP on organic Hg were the most significant ,with the direct path coefficients being 0.7614 and -0.8527,respectively. The indirect effect of clay(<2μm) iva BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) via BSP (path coefficient=0.4186) was the highest,showing that the real influencing factor in the effect of clay(<2μm) on acid-soluble organic Hw was BSP.since the available Hg fraction,water-soluble Hg,was positively affected by soil clay content,and the quite immobile and not bioavailable residual Hg by soil BSP,suitable reduction of clay content and increase of BSP would be of much help to reduce the Hg availability and Hg activity in Hg-contaminated soils.

  2. Silole-infiltrated photonic crystal films as effective fluorescence sensor for Fe3+ and Hg2+.

    Science.gov (United States)

    Zhang, Yuqi; Li, Xiangdong; Gao, Loujun; Qiu, Jianhua; Heng, Liping; Tang, Ben Zhong; Jiang, Lei

    2014-02-24

    We develop a highly effective silole-infiltrated photonic crystal (PC) film fluorescence sensor with high sensitivity, good selectivity and excellent reproducibility for Fe(3+) and Hg(2+) ions. Hexaphenylsilole (HPS) infiltrated PCs show amplified fluorescence due to the slow photon effect of PC because the emission wavelength of HPS is at the blue band edge of the selected PC's stopband. The fluorescence can be quenched significantly by Fe(3+)/Hg(2+) ions owing to electron transfer between HPS and metal ions. The amplified fluorescence enhances the sensitivity of detection, with a detection limit of 5 nM for Fe(3+)/Hg(2+) ions. The sensor is negligibly responsive to other metal ions and can easily be reproduced by rinsing with pure water due to the special surface wettability of PC. As a result, a highly effective Fe(3+)/Hg(2+) ions sensor based on HPS-infiltrated PC film has been achieved, which will be important for effective and practical detection of heavy metal ions.

  3. Annual particle flux observations over a heterogeneous urban area

    DEFF Research Database (Denmark)

    Järvi, L.; Rannik, Ü.; Mammarella, I.;

    2009-01-01

    in different wind directions on the measured fluxes. The particle number fluxes were highest in the direction of a local road on weekdays, with a daytime median flux of 0.8×109 m−2 s−1. The particle fluxes showed a clear dependence on traffic rates and on the mixing conditions of the boundary layer....... The measurement footprint was estimated by the use of both numerical and analytical models. Using the crosswind integrated form of the footprint function, we estimated the emission factor for the mixed vehicle fleet, yielding a median particle number emission factor per vehicle of 3.0×1014 # km−1. Particle fluxes...... stationary combustion sources are also highest. Particle number fluxes were compared with the simultaneously measured CO2 fluxes and similarity in their sources was distinguishable. For CO2, the median emission factor of vehicles was estimated to be 370 g km−1....

  4. Fluxes and the mass balance of mercury in Augusta Bay (Sicily, southern Italy)

    Science.gov (United States)

    Salvagio Manta, Daniela; Bonsignore, Maria; Oliveri, Elvira; Barra, Marco; Tranchida, Giorgio; Giaramita, Luigi; Mazzola, Salvatore; Sprovieri, Mario

    2016-11-01

    The flux (Φ) of mercury (Hg) at the sediment-seawater interface was investigated in Augusta Bay (southern Italy) where uncontrolled industrial discharge from one of the most important chlor-alkali plant in Europe has caused significant negative effects on the environment. Hg fluxes were measured by the deployment of in-situ benthic chamber. The obtained value of 1.3 kmol y-1 clearly emphasizes the role of the sediments as source of Hg for the overlying water column. Moreover, Hg concentrations in the outflowing bottom waters were measured to estimate the export of this pollutant from Augusta Bay to the open sea. The calculated value of 0.54 kmol y-1, corresponding to ∼4% of the anthropogenic input of Hg from coastal point/diffuse sources to the Mediterranean Sea (12.5 kmol y-1; Rajar et al., 2007; UNEP-MAP, 2001), assigns this area a crucial role in the Hg inventory of the entire Mediterranean basin. Finally, a consistent and robust mass balance for Hg in Augusta Bay was provided by combining the obtained data with Hg fluxes at seawater-atmosphere interface.

  5. Oxidative stress in MeHg-induced neurotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Farina, Marcelo, E-mail: farina@ccb.ufsc.br [Departamento de Bioquimica, Centro de Ciencias Biologicas, Universidade Federal de Santa Catarina, Florianopolis, SC (Brazil); Aschner, Michael [Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN (United States); Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN (United States); Rocha, Joao B.T., E-mail: jbtrocha@yahoo.com.br [Departamento de Quimica, Centro de Ciencias Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS (Brazil)

    2011-11-15

    Methylmercury (MeHg) is an environmental toxicant that leads to long-lasting neurological and developmental deficits in animals and humans. Although the molecular mechanisms mediating MeHg-induced neurotoxicity are not completely understood, several lines of evidence indicate that oxidative stress represents a critical event related to the neurotoxic effects elicited by this toxicant. The objective of this review is to summarize and discuss data from experimental and epidemiological studies that have been important in clarifying the molecular events which mediate MeHg-induced oxidative damage and, consequently, toxicity. Although unanswered questions remain, the electrophilic properties of MeHg and its ability to oxidize thiols have been reported to play decisive roles to the oxidative consequences observed after MeHg exposure. However, a close examination of the relationship between low levels of MeHg necessary to induce oxidative stress and the high amounts of sulfhydryl-containing antioxidants in mammalian cells (e.g., glutathione) have led to the hypothesis that nucleophilic groups with extremely high affinities for MeHg (e.g., selenols) might represent primary targets in MeHg-induced oxidative stress. Indeed, the inhibition of antioxidant selenoproteins during MeHg poisoning in experimental animals has corroborated this hypothesis. The levels of different reactive species (superoxide anion, hydrogen peroxide and nitric oxide) have been reported to be increased in MeHg-exposed systems, and the mechanisms concerning these increments seem to involve a complex sequence of cascading molecular events, such as mitochondrial dysfunction, excitotoxicity, intracellular calcium dyshomeostasis and decreased antioxidant capacity. This review also discusses potential therapeutic strategies to counteract MeHg-induced toxicity and oxidative stress, emphasizing the use of organic selenocompounds, which generally present higher affinity for MeHg when compared to the classically

  6. Modeling interactions of Hg(II) and bauxitic soils.

    Science.gov (United States)

    Weerasooriya, Rohan; Tobschall, Heinz J; Bandara, Atula

    2007-11-01

    The adsorptive interactions of Hg(II) with gibbsite-rich soils (hereafter SOIL-g) were modeled by 1-pK surface complexation theory using charge distribution multi-site ion competition model (CD MUSIC) incorporating basic Stern layer model (BSM) to account for electrostatic effects. The model calibrations were performed for the experimental data of synthetic gibbsite-Hg(II) adsorption. When [NaNO(3)] > or = 0.01M, the Hg(II) adsorption density values, of gibbsite, Gamma(Hg(II)), showed a negligible variation with ionic strength. However, Gamma(Hg(II)) values show a marked variation with the [Cl(-)]. When [Cl(-)] > or = 0.01M, the Gamma(Hg(II)) values showed a significant reduction with the pH. The Hg(II) adsorption behavior in NaNO(3) was modeled assuming homogeneous solid surface. The introduction of high affinity sites, i.e., >Al(s)OH at a low concentration (typically about 0.045 sites nm(-2)) is required to model Hg(II) adsorption in NaCl. According to IR spectroscopic data, the bauxitic soil (SOIL-g) is characterized by gibbsite and bayerite. These mineral phases were not treated discretely in modeling of Hg(II) and soil interactions. The CD MUSIC/BSM model combination can be used to model Hg(II) adsorption on bauxitic soil. The role of organic matter seems to play a role on Hg(II) binding when pH>8. The Hg(II) adsorption in the presence of excess Cl(-) ions required the selection of high affinity sites in modeling.

  7. Lithography process for patterning HgI2 photonic devices

    Science.gov (United States)

    Mescher, Mark J.; James, Ralph B.; Hermon, Haim

    2004-11-23

    A photolithographic process forms patterns on HgI.sub.2 surfaces and defines metal sublimation masks and electrodes to substantially improve device performance by increasing the realizable design space. Techniques for smoothing HgI.sub.2 surfaces and for producing trenches in HgI.sub.2 are provided. A sublimation process is described which produces etched-trench devices with enhanced electron-transport-only behavior.

  8. Epitaxial growth of HgTe by a MOVPE process

    Energy Technology Data Exchange (ETDEWEB)

    Irvine, S.J.C.; Mullin, J.B.; Royle, A. (Royal Signals and Radar Establishment, Malvern (UK))

    1982-03-01

    Epitaxial layers of HgTe have been grown onto insulating CdTe substrates by the pyrolysis of (C/sub 2/H/sub 5/)/sub 2/Te in the presence of Hg vapour using a H/sub 2/ flow system. Temperature-dependent Hall effect and conductivity measurements have shown that the electrical properties of the layers are comparable with good quality bulk HgTe.

  9. Experiments with a New 201Hg+ Ion Clock

    Science.gov (United States)

    Burt, E. A.; Taghavi-Larigani, S.; Lea, S. N.; Prestage, J. D.; Tjoelker, R. L.

    2009-04-01

    In this paper we describe a new clock based on 201Hg+. All previous mercury ion clocks have been based on 199Hg+. We have recently completed construction of the 201Hg+ clock and will describe modifications to the design of our existing 199Hg+ clocks to accommodate the new isotope. We will also describe initial spectroscopic measurements of the hyperfine manifold, and possible future experiments. One experiment could place a limit on variations in the strong interaction fundamental constant ratio mq/ΛQCD.REFID="9789812838223_0043FN001">

  10. Flux-P: Automating Metabolic Flux Analysis

    OpenAIRE

    Ebert, Birgitta E.; Anna-Lena Lamprecht; Bernhard Steffen; Blank, Lars M.

    2012-01-01

    Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in ...

  11. PENCEMARAN LOGAM BERAT MERKURI (Hg PADA AIRTANAH

    Directory of Open Access Journals (Sweden)

    Thomas Triadi Putranto

    2012-02-01

    Full Text Available The earth consists largely of water because the land area is smaller than the ocean. Human beings on this earthcan not escape the need for water. Water is the main requirement for the process of life on the earth.Relatively clean water that is coveted by men, whether for purposes of daily life, for industrial purposes, for thecleanliness of city sanitation, as well as for agricultural purposes and so forth. Heavy metal pollution is a veryserious issue to be handled, because of adverse environmental and ecosystem in general. Heavy metallic elementis the element which has a density of more than 5 gr/cm3. Hg has a density of 13.55 gr/cm3. Disaster is anoutbreak of Minamata mercury poisoning in people who eat fish contaminated by mercury in Minamata Japan,and this event is known as Minamata Disease. Efforts to tackle the heavy metal pollution can actually be doneusing a chemical process or by microorganism such as microbes and bacteria.

  12. The use of Pb, Sr, and Hg isotopes in Great Lakes precipitation as a tool for pollution source attribution

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Laura S., E-mail: lsaylors@umich.edu [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Blum, Joel D. [University of Michigan, Department of Earth and Environmental Sciences, 1100 N. University Ave., Ann Arbor, MI 48109 (United States); Dvonch, J. Timothy [University of Michigan, Air Quality Laboratory, 1415 Washington Heights, Ann Arbor, MI 48109 (United States); Gratz, Lynne E. [University of Washington-Bothell, 18115 Campus Way NE, Bothell, WA 98011 (United States); Landis, Matthew S. [U.S. EPA, Office of Research and Development, Research Triangle Park, NC 27709 (United States)

    2015-01-01

    The anthropogenic emission and subsequent deposition of heavy metals including mercury (Hg) and lead (Pb) present human health and environmental concerns. Although it is known that local and regional sources of these metals contribute to deposition in the Great Lakes region, it is difficult to trace emissions from point sources to impacted sites. Recent studies suggest that metal isotope ratios may be useful for distinguishing between and tracing source emissions. We measured Pb, strontium (Sr), and Hg isotope ratios in daily precipitation samples that were collected at seven sites across the Great Lakes region between 2003 and 2007. Lead isotope ratios ({sup 207}Pb/{sup 206}Pb = 0.8062 to 0.8554) suggest that Pb deposition was influenced by coal combustion and processing of Mississippi Valley-Type Pb ore deposits. Regional differences in Sr isotope ratios ({sup 87}Sr/{sup 86}Sr = 0.70859 to 0.71155) are likely related to coal fly ash and soil dust. Mercury isotope ratios (δ{sup 202}Hg = − 1.13 to 0.13‰) also varied among the sites, likely due to regional differences in coal isotopic composition, and fractionation occurring within industrial facilities and in the atmosphere. These data represent the first combined characterization of Pb, Sr, and Hg isotope ratios in precipitation collected across the Great Lakes region. We demonstrate the utility of multiple metal isotope ratios in parallel with traditional trace element multivariate statistical modeling to enable more complete pollution source attribution. - Highlights: • We measured Pb, Sr, and Hg isotopes in precipitation from the Great Lakes region. • Pb isotopes suggest that deposition was impacted by coal combustion and metal production. • Sr isotope ratios vary regionally, likely due to soil dust and coal fly ash. • Hg isotopes vary due to fractionation occurring within facilities and the atmosphere. • Isotope results support conclusions of previous trace element receptor modeling.

  13. Hg-coordination studies of oligopeptides containing cysteine, histidine and tyrosine by $^{199m}$Hg-TDPAC

    CERN Document Server

    Ctortecka, B; Mallion, S; Butz, T; Hoffmann, R

    1999-01-01

    In order to study the interaction of histidine- and tyrosine- containing peptide chains with Hg(II), the nuclear quadrupole interaction (NQI) of /sup 199m/Hg in the Hg complexes of the oligopeptides alanyl-alanyl-histidyl-alanyl-alanine-amid (AAHAA-NH /sub 2/) and alanyl-alanyl-tyrosyl-alanyl-alanine-amid (AAYAA-NH/sub 2/) was determined by time differential perturbed angular correlation and is compared with previous data on alanyl-alanyl-cysteyl-alanyl- alanyl (AACAA-OH). The /sup 199m/Hg-NQIs depend on the oligopeptide to Hg(II) stoichiometry and indicate that two-fold and four-fold coordinations occur for the bound Hg(II). (12 refs).

  14. Benthic fluxes of mercury during redox changes in pristine coastal marine sediments from the Gulf of Trieste (northern Adriatic Sea)

    Energy Technology Data Exchange (ETDEWEB)

    Koron, Neza [National Institute of Biology, Piran (Slovenia). Marine Biological Section; Faganeli, Jadran [National Institute of Biology, Piran (Slovenia). Marine Biological Section; Jozef Stefan Institute, Ljubljana (Slovenia). Dept. of Environmental Sciences

    2012-12-15

    Purpose: The Gulf of Trieste (northern Adriatic Sea) is an example of a coastal environment contaminated with mercury (Hg). Contamination is a consequence of nearly 500 years of activity at the Idrija Mine (western Slovenia), which is the second largest Hg mine in the world. Oxygen depletion can be common in the Gulf of Trieste due to late summer stratification of the water column and accumulation of labile organic matter. Since changing redox conditions can have an impact on Hg transformations, we studied the effect of oxygen depletion, in parallel with sulphide, iron (Fe), manganese (Mn), fluorescent dissolved organic matter (FDOM) and nitrogen (N) and phosphorus (P) availability, on total Hg and methylmercury (MeHg) fluxes from sediments. Materials and methods: Pore water concentrations and benthic fluxes of total dissolved Hg and MeHg were studied in situ and in microcosm laboratory experiments using flux chambers encompassing three different stages: oxic, anoxic and reoxidation. Results and discussion: Our experiments showed that in the oxic stage there were small effluxes of MeHg to the water column, which increased in the anoxic stage and dropped rapidly in a subsequent reoxic stage, showing influx. Our results support the hypothesis that MeHg desorption from reduced metal hydroxides under anoxic conditions, and co-precipitation with Fe-oxides and MeHg demethylation in the reoxidation stage, may play a major role in determining MeHg benthic fluxes. For Hg and MeHg, it appears that there is little relationship between their pore water distribution and flux and that of FDOM, i.e. humics. Conclusions: The results indicate that there was no significant difference in Hg and MeHg pore water levels and their benthic fluxes between the contaminated northern and central parts of the Gulf of Trieste and the pristine southern part. This suggests that shallow and stratified coastal marine environments, in general, represent areas with a risk of high benthic release of

  15. PARADIGMA KEJAIDAN PENYAKIT PAJANAN MERKURI (Hg)

    OpenAIRE

    Inswiasri Inswiasri

    2012-01-01

    Sequence of Diseases of Mercury Poison.This review conducted in order to know sequence of diseases of mercury poison. Using four nodes paradigm is very helpfull to identify agent sources up to occuring diseases. Many activities and mercury compound as an emission, path way of mercury compound from environment to human, inditators of human exposures and symptom of poison or diseases can identify from this paradigm. Many studies have been conducted to identify what happen in every nodes. Enviro...

  16. Testing and modeling the influence of reclamation and control methods for reducing nonpoint mercury emissions associated with industrial open pit gold mines.

    Science.gov (United States)

    Miller, Matthieu B; Gustin, Mae S

    2013-06-01

    Industrial gold mining is a significant source of mercury (Hg) emission to the atmosphere. To investigate ways to reduce these emissions, reclamation and dust and mercury control methods used at open pit gold mining operations in Nevada were studied in a laboratory setting. Using this information along with field data, and building off previous work, total annual Hg emissions were estimated for two active gold mines in northern Nevada. Results showed that capping mining waste materials with a low-Hg substrate can reduce Hg emissions from 50 to nearly 100%. The spraying of typical dust control solutions often results in higher Hg emissions, especially as materials dry after application. The concentrated application of a dithiocarbamate Hg control reagent appears to reduce Hg emissions, but further testing mimicking the actual distribution of this chemical within an active leach solution is needed to make a more definitive assessment.

  17. Thiazole derivative-modified upconversion nanoparticles for Hg2+ detection in living cells

    Science.gov (United States)

    Gu, Bin; Zhou, Yi; Zhang, Xiao; Liu, Xiaowang; Zhang, Yuhai; Marks, Robert; Zhang, Hua; Liu, Xiaogang; Zhang, Qichun

    2015-12-01

    Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by confocal microscopy. Our results demonstrated that organic-dye-functionalized UCNPs should be a good strategy for detecting toxic metal ions when studying cellular biosystems.Mercury ion (Hg2+) is an extremely toxic ion, which will accumulate in human bodies and cause severe nervous system damage. Therefore, the sensitive and efficient monitoring of Hg2+ in human bodies is of great importance. Upconversion nanoparticle (UCNPs) based nano probes exhibit no autofluorescence, deep penetration depth and chemical stability in biological samples, as well as a large anti-stokes shift. In this study, we have developed thiazole-derivative-functionalized UCNPs, and employed an upconversion emission intensity ratio of 540 nm to 803 nm (I540/I803) as a ratiometric signal to detect Hg2+ in living cells showing excellent photo stability and high selectivity. Our nano probe was characterized using transmission electron microscopy (TEM) and powder X-ray diffraction (PXRD). The low cytotoxicity of our probe was confirmed by an MTT assay and the UCL test in HeLa cells was carried out by

  18. Proton irradiation results for long-wave HgCdTe infrared detector arrays for NEOCam

    CERN Document Server

    Dorn, M; McMurtry, C; Hartman, S; Mainzer, A; McKelvey, M; McMurray, R; Chevara, D; Rosser, J

    2016-01-01

    HgCdTe detector arrays with a cutoff wavelength of ~10 ${\\mu}$m intended for the NEOCam space mission were subjected to proton beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested - one with 800 $\\mu$m substrate intact, one with 30 $\\mu$m substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes elevated signal in non-hit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in non-hit pixels during proton testing for both the substrate-removed detector array and the array with 30 ${\\mu}$m substrate. The detector array with full 800 ${\\mu}$m substrate exhibited substantial photocurrent for a flux of 103 protons/cm$^2$-s at a beam energy of 18.1 MeV (~ 750 e$^-$/s) and 34.4 MeV ($\\sim$ 6...

  19. SO2/Hg removal from flue gas by dry FGD

    Institute of Scientific and Technical Information of China (English)

    Wang Fan; Wang Hongmei; Zhang Fan; Zhu Jinwei; Tian Gang; Liu Yu; Mao Jixian

    2012-01-01

    To study the mechanism of SO2 and Hg removal from flue gas,an experimental packed bed reactor was designed to simulate the dry FGD,where a mixture of lime and fly ash in ratio 1∶3 w/w was used as the SO2 and Hg sorbent,and steam at temperature of 100 ℃ was applied for activation of the sorbent,while the activation time set to 20 min.The experimental factors including the SO2/Hg sorbent characteristics,50% breakthrough time for SO2/Hg removal,sorbent packed bed depth and reaction temperature were investigated.The experimental results show that after steam activation,the BET specific surface area and specific pore volume increased from 37.8 to 45.5 m2/g and from 0.42 to 0.51 cm3/g,respectively.With activation of the sorbent by steam,the 50% breakthrough times of SO2 and Hg removal increased from 34 to 42 min and from 23 to 45 min,respectively.When the packed bed depth was increased from 5 to 25 mm,the 50% breakthrough times for Hg and SO2 removal increased from 12 to 52 min and from 6 to 47 min,respectively.With the increase of the reaction temperature,the 50% breakthrough of SO2/Hg removal decreased accordingly.Steam activation can efficiently improve SO2/Hg removal simultaneously.

  20. Distribution of Hg, As and Se in material and flue gas streams from preheater-precalciner cement kilns and vertical shaft cement kilns in China.

    Science.gov (United States)

    Yan, Dahai; Peng, Zheng; Ding, Qiong; Karstensen, Kåre Helge; Engelsen, Christian J; Li, Li; Ren, Yong; Jiang, Chen

    2015-08-01

    The aim of this study was to evaluate the behavior of Hg, As, and Se in cement production. Two types of cement plants were studied, including the vertical shaft kiln (VSK) and preheater-precalciner kiln (PPK) processes. Determination of Hg, As, and Se in the main material and gas streams were performed. It was found that recycling of particulate matter captured by an air pollution control device caused a significant enrichment of Hg and As inside both processes. The total quantity of Hg entering the process and the quantity emitted to the atmosphere were found to be 10-109 and 6.3-38 mg, respectively, per ton of clinker produced. The average Hg emission was calculated to be around 41% of the total mercury input. The emissions found complied with the European Union (EU) limit and exceeded partly the U.S. limit. Furthermore, it was found that oxidized mercury was the dominant species in the PPK process, whereas the reduced form was dominant in the VSK process, due to the oxidizing and reducing gas conditions, respectively. Regarding the distribution of As and Se, the major amounts were bound to the solid materials, that is, cement clinker and particulate matter. Based on cement production data in China in 2013, the annual emissions of Hg and As were estimated to be in the range of 8.6-52 and 4.1-9.5 tons, respectively.

  1. Mercury flux measurements in a naturally enriched area: Correlation with environmental conditions during the Nevada Study and Tests of the Release of Mercury From Soils (STORMS)

    Science.gov (United States)

    Poissant, Laurier; Pilote, Martin; Casimir, Alain

    1999-09-01

    An international intercomparison of micrometerological techniques and dynamic flux chamber methods applied to measure mercury fluxes was conducted from September 1 to 4, 1997, during the Nevada Study and Tests of the Release of Mercury From Soils (STORMS) in Reno, Nevada. Nine research groups from four countries met in the Steamboat Springs, Nevada Geothermal Area, to participate in the first international flux intercomparison ever attempted for mercury. The highly heterogeneous soil Hg concentrations and complex landscape within the study area (4 ha) were unfavorable for spatial intercomparison of Hg fluxes between the research groups. However, reliable and correlated Hg fluxes were measured between our micrometerological technique and a dynamic flux chamber method (r2 = 0.29), run side by side (5 m). Hg fluxes and their relationships with environmental factors were complex. After ˜90 days of dry condition, a series of storm events impacted the site and increased the soil moisture from <0.5 to 6.6%. This appeared to promote strong Hg evasion during the transition period from dry to wet soil conditions. However, the subsequent relationship between soil moisture and Hg flux was significantly negatively correlated. Multivariate analysis was applied to extract the principal components (principal component analysis). Three principal components were extracted (explained up to 79% of the total variance) and discussed with respect to their environmental signification. Environmental conditions under southern wind sectors were optimal to promote Hg fluxes. Turbulence rather than Hg air concentrations seemed to be the main factor promoting the determined Hg fluxes during this study.

  2. A new fluorescent pyrene–pyridine dithiocarbamate probe: A chemodosimeter to detect Hg{sup 2+} in pure aqueous medium and in live cells

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Vikram; Srivastava, Priyanka [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); PrakashVerma, Shiv [Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); Misra, Arvind [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); Das, Parimal [Centre for Genetic Disorders, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India); Singh, Nanhai, E-mail: nsinghbhu@gmail.com [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (India)

    2014-10-15

    A new pyrene–pyridine dithiocarbamate based fluorescent chemodosimeter, potassium (pyren-1-ylmethyl)(pyridin-2-ylmethyl)dithiocarbamate (L1) has been designed and synthesized. The chemodosimeter shows high selectivity and sensitivity (5.2 ppb) for Hg{sup 2+} in pure aqueous medium in which emission intensity was quenched by ≈80% due to the formation of new cyclized species, 1. The probe behaves as a chemodosimeter for Hg{sup 2+} ions and forms Hg{sup 2+} triggered cyclised imidazoline species with approximate detection time of 50 s and exhibits both colorimetric and fluorometric changes on detection of Hg{sup 2+} ion. Color of the probe (L1) changed from green to colorless visible to the naked eye and from green to dark blue upon the addition of Hg{sup 2+} ions under UV light. The Hg{sup 2+} triggered cyclization reaction was confirmed by spectral data analysis and a single crystal structure determination of the cyclised entity 2 obtained from the model compound potassium benzyl(pyridin-2-ylmethyl) dithiocarbamate (L2). L1 finds its application for detection of Hg{sup 2+} ions on paper strips, and in BSA (bovine serum albumin) medium. L1 is also applicable for the monitoring of Hg{sup 2+} ion in NIH3T3 live cells. - Highlights: • Efficient chemodosimeter to detect Hg{sup 2+} ions in pure aqueous medium. • Hg{sup 2+} triggered cyclisation and formation of imidazoline species. • Probe exhibit both colorimetric and fluorometric changes • Probe is applicable to detect Hg{sup 2+} in live cells and on cellulose paper strips.

  3. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: effects of pH, EDTA, Ca(II) and temperature shocks.

    Science.gov (United States)

    Zhang, Daoyong; Lee, Duu-Jong; Pan, Xiangliang

    2013-01-01

    Extracellular polymeric substances (EPS) existed ubiquitously in biological systems affect the mobility and availability of heavy metals in the environments. The adsorption-desorption behaviors of Hg(II) and Sb(V) on EPS were investigated. The sorption rates follow Sb(V) > Hg(II), and the desorption rates follow reverse order. Applications of ethylene diamine tetraacetic acid (EDTA), Ca(II) and pH shocks affect desorption rates and desorbed quantities of Hg(II) from EPS-Hg complex. Temperature shock minimally affects the desorption rate of Hg(II). Conversely, the EPS-Sb complex is stable subjected to EDTA, Ca(II), temperature or pH shocks. The excitation-emission matrix (EEM) fluorescence spectroscopy and fast-Fourier (FT-IR) analysis showed that Hg(II) and Sb(V) principally interacted with polysaccharides and protein-like compounds in the EPS, respectively. The EPS-Hg complex presents a time bomb that may release high levels of Hg(II) in short time period under environmental shocks.

  4. Biogeochemical factors affecting the distribution, speciation, and transport of Hg species in the Deûle and Lys Rivers (Northern France).

    Science.gov (United States)

    Daye, Mirna; Kadlecova, Milada; Ouddane, Baghdad

    2015-02-01

    in all sites is produced in situ rather than exported from other potential sources confirmed by significant relations of % MeHg with %Corg and AVS. Hg pollution is transported from the Deûle River to the Lys River (L-C and L-D) through suspended particles leached or remobilized from the River catchment. The dominance of reducing conditions in the Deûle River attributed to higher sulfide concentration has contributed to higher HgTPW than the Lys sites. Diffusive fluxes of HgT from sediment to water column for the Deûle and Lys River sites (L-C and L-D) were estimated to be 224, 53, and 2 ng/cm(2) year, respectively.

  5. Determination of MeHg sources to fish in the St. Louis River, MN, USA, using Hg stable isotopes

    Science.gov (United States)

    Mercury contamination in the Great Lakes region has become a prevalent concern due to elevated methylmercury (MeHg) levels in fish. While atmospheric deposition of Hg is ubiquitous, releases from legacy point-sources give rise to numerous Areas of Concern (AOCs) across the Great ...

  6. Tracing anthropogenic Hg and Pb input using stable Hg and Pb isotope ratios in sediments of the central Portuguese Margin

    NARCIS (Netherlands)

    Mil-Holmens, M.; Blum, J.; Canário, J.; Caetano, M.; Costa, A.M.; Lebreiro, S.M.; Trancoso, M.; Richter, T.O.; de Stigter, H.; Johnson, M.; Branco, V.; Cesário, R.; Mouro, F.; Mateus, M.; Boer, W.; Melo, Z.

    2013-01-01

    Three short marine sediment cores from the Cascais Submarine Canyon (CSC; cores 252-32 and 252-35) and the Estremadura Spur (core 252-16) on the central Portuguese Margin were analysed for Hg, Pb, Al, and Mn concentrations, and both Pb and Hg stable isotope compositions, in order to reconstruct tren

  7. T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of Hg2+.

    Science.gov (United States)

    Wang, Ruoyu; Zhou, Xiaohong; Shi, Hanchang; Luo, Yi

    2016-04-15

    We report herein a T-T mismatch-driven biosensor using triple functional DNA-protein conjugates for facile detection of mercury ions (Hg(2+)) based on evanescent wave fluorescence excitation. Fluorescein-labeled DNA strands and streptavidin molecules were conjugated using heterobifunctional crosslinkers, and the obtained conjugates were named as "Hg(2+) dependent conjugates, HDCs". Initially hybridized with quencher-labeled DNA (Q-DNA) strands, HDCs showed low evanescent wave-induced fluorescence emission signals; however, in the presence of Hg(2+), the DNA moieties of HDCs tended to form hairpin structures stabilized by T-T mismatches, releasing Q-DNA strands, which was accompanied by increases in the fluorescent signals. The novel detection strategy enables the fluorescent detection of mercury ions with high specificity and a low detection limit of 1.06 nM in a facile way.

  8. Hg localisation in Tillandsia usneoides L. (Bromeliaceae), an atmospheric biomonitor

    Energy Technology Data Exchange (ETDEWEB)

    Filho, G.M.A. [Instituto de Pesquisas Jardim Botanico do Rio de Janeiro (Brazil). Programa Zona Costeira; Andrade, L.R.; Farina, M. [Cidade Universitaria, Rio de Janeiro (Brazil). Instituto de Ciencias Biomedicas, Departamento de Anatomia; Malm, O. [Cidade Universitaria, Rio de Janeiro (Brazil). Instituto de Biofisica Carlos Chagas Filho, Laboratorio de Radioisotopos Eduardo Penna Franca

    2002-07-01

    The Spanish moss, Tillandsia usneoides, has been applied as an atmospheric biomonitor of Hg contamination, although the mechanism of metal plant accumulation has not been understood until now. In the present work, analytical scanning electron microscopy (SEM) was used to localize Hg in T. usneoides exposed to a Hg-air-contaminated area during 15 days. After this period, Hg was determined by the flow injection mercury system, and plants were prepared for SEM observation and energy-dispersive X-ray analysis. A concentration of 2702{+-}318{mu}g Hgg{sup -1} was determined in exposed plants. The presented microanalytical results demonstrated that Hg was partly associated with atmospheric particles deposited upon the plant surface, but it was highly absorbed by the scales, stem and leaves surfaces and less absorbed by epidermal cells of T. usneoides. No Hg was detected in mesophyll parenchyma or in vascular system cells. The great surface adsorption area provided by the scales, in addition to the characteristics of T. usneoides morphology, especially of the node region, are suggested to confer the great capability of T. usneoides in Hg holding. (author)

  9. Anthropogenic methane ebullition and continuous flux measurement

    Science.gov (United States)

    Alshboul, Zeyad

    2017-04-01

    Keywords: Methane, Wastewater, Effluent, Anaerobic treatment. Municipal wastewater treatment plants (WWTPs) have shown to emit significant amount of methane during treatment processes. While most of studies cover only in-plant diffusive methane flux, magnitude and sources of methane ebullition have not well assessed. Moreover, the reported results of methane emissions from WWTPs are based on low spatial and temporal resolution. Using a continuous measurement approach of methane flux rate for effluent system and secondary clarifier treatment process at one WWTP in Southwest Germany, our results show that high percentage of methane is emitted by ebullition during the anaerobic treatment (clarification pond) with high spatial and temporal variability. Our measurements revealed that no ebullition is occur at the effluent system. The observed high contribution of methane ebullition to the total in-plant methane emission, emphasizes the need for considering in-plant methane emission by ebullition as well as the spatial and temporal variability of these emissions.

  10. Where is the Open Flux?

    Science.gov (United States)

    Linker, Jon A.; Downs, Cooper; Caplan, Ronald M.; Lionello, Roberto; Mikic, Zoran; Riley, Pete; Henney, Carl John; Arge, Charles; Owens, Matthew

    2017-08-01

    The Sun’s magnetic field has been observed in the photosphere from ground- and space-based observatories for many years. Global maps of the solar magnetic field based on full disk magnetograms (either built up over a solar rotation, or evolved using flux transport models) are commonly used as boundary conditions for coronal and solar wind models. Maps from different observatories typically agree qualitatively but often disagree quantitatively. Estimation of the coronal/solar wind physics can range from potential field source surface (PFSS) models with empirical prescriptions to magnetohydrodynamic (MHD) models with realistic energy transport and sub-grid scale descriptions of heating and acceleration. Two primary observational constraints on the models are (1) The open field regions in the model should approximately correspond to coronal holes observed in emission, and (2) the magnitude of the open magnetic flux in the model should match that inferred from in situ spacecraft measurements. We have investigated the July 2010 time period, using PFSS and MHD models computed using several available magnetic maps, coronal hole boundaries detected from STEREO and SDO EUV observations, and estimates of the interplanetary magnetic flux from in situ ACE measurements. We show that for all the model/map combinations, models that agree for (1) underestimate the interplanetary magnetic flux, or, conversely, for models to match (2), the modeled open field regions are larger than observed coronal holes. Alternatively, we estimate the open magnetic flux entirely from solar observations by combining detected coronal hole boundaries with observatory synoptic magnetic maps, and show that this method also underestimates the interplanetary magnetic flux. We discuss possible resolutions.Research supported by NASA, AFOSR, and NSF.

  11. Atmospheric mercury emissions from polluted gold mining areas (Venezuela).

    Science.gov (United States)

    García-Sánchez, A; Contreras, F; Adams, M; Santos, F

    2006-12-01

    Soil, waste rock and mud from mercury-gold amalgamation mining areas of El Callao (Venezuela) are highly enriched in Hg (0.5-500 microg g(-1)) relative to natural background concentrations (mining districts (>100,000 ng m(-2) h(-1)). The results from this study also show that Hg emissions from the soil are influenced by solar radiation, soil temperature and soil Hg concentration. Our data suggest that solar radiation may be the dominant factor affecting Hg degrees emission since the major species of mercury in polluted soil is Hg degrees (85-97% of total Hg). The simple release of Hg degrees vapor is probably the dominant process occurring with incident light in the field. The apparent activation energy for mercury emission indicates that the volatilization of mercury mainly occurred as a result of the vaporization of elemental mercury in soil. The degree of Hg emission differed significantly among the soil sites studied, which may be due to variations in soil texture, organic matter content and soil compaction.

  12. An investigation for the HgCdTe cleaning process

    Science.gov (United States)

    Lan, Tian-Yi; Wang, Nili; Zhao, Shuiping; Liu, Shi-Jia; Li, Xiang-Yang

    2014-11-01

    A new cleaning process for HgCdTe was designed - which used the improved SC-1,SC-2 and Br2- C2H5OH solutions as the main cleaning fluid and applied mega sound waves in the cleaning process. By analyzing the test results carried out on the HgCdTe surface, it was found that the material of HgCdTe for the application of new cleaning process was better than the one for the application of conventional cleaning process in the minority carrier lifetime, residual organic contamination, responsivity and specific detectivity.

  13. Doping and Diffusion in HgCdTe

    Science.gov (United States)

    1991-01-28

    In’i, -InT. Te - 1.8 ( - 3 .5 )h ( + 2.9 - 6/) TeT1’- Tej . 4 Hg rich HgCdTe Hg - 1.8 + 1.2 + 1.4 - 2p H - ’g, - H g j.. ’TI - tetrahedral position...A. Anderson, Appl. Phys. Lett. 53, 11.81 (1988). B. D. Patterson, Rev. Mod. Phys. 60, 69 (1988). 60 V. A. Singh , C. Weigel, J. W. Corbett, and L. M

  14. Growth, structure and optical properties of Tl{sub 4}HgBr{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Khyzhun, O.Y., E-mail: khyzhun@ipms.kiev.ua [Frantsevych Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, 3 Krzhyzhanivsky Street, 03142 Kyiv (Ukraine); Kityk, I.V. [Electrical Engineering Department, Częstochowa University of Technology, Armii Krajowej 17, PL-42-217 Częstochowa (Poland); Piasecki, M. [Institute of Physics, J. Dlugosz University Częstochowa, Armii Krajowej 13/15, Częstochowa (Poland); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, 50 Pekarska Street, 79010 Lviv (Ukraine); Levkovets, S.I. [Department of Inorganic and Physical Chemistry, Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine); Fochuk, P.M. [Yuriy Fed’kovych Chernivtsi National University, 2 Kotziubynskoho Street, 58012 Chernivtsi (Ukraine); Myronchuk, G.L. [Department of Solid State Physics, Lesya Ukrainka Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine); Parasyuk, O.V. [Department of Inorganic and Physical Chemistry, Eastern European National University, 13 Voli Avenue, 43025 Lutsk (Ukraine)

    2015-12-15

    Tl{sub 4}HgBr{sub 6} single crystals were grown using solution-fusion method. The crystal structure of the ternary bromide was refined. Tl{sub 4}HgBr{sub 6} crystallizes in the non-centrosymmetric space group P4nc with the lattice parameters a=8.9539(8) Å and c=8.7884(8) Å and it is isostructural to the Tl{sub 4}HgI{sub 6} compound. The non-centrosymmetric structure of the Tl{sub 4}HgBr{sub 6} compound was also confirmed by the existence of a modest second harmonic generation effect (0.4–0.5 pm/V) and by the value of piezoelectric coefficient (0.9 pm/V). The electronic structure of Tl{sub 4}HgBr{sub 6} was explored using X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, for the Tl{sub 4}HgBr{sub 6} crystal, we have measured XPS core-level and valence-band spectra for both pristine and Ar{sup +} ion-bombarded surfaces. The XPS data reveal low hygroscopicity of Tl{sub 4}HgBr{sub 6}, the property that is very important when handling this material in optoelectronic devices working at ambient conditions. The present XPS data indicate that the Tl{sub 4}HgBr{sub 6} single crystal surface is rather sensitive with respect to Ar{sup +} ion-bombardment: such a treatment reduces significantly mercury content in the topmost surface layers. Comparison on a common energy scale of the XPS valence-band spectrum of Tl{sub 4}HgBr{sub 6} and the XE Br Kβ{sub 2} band, representing peculiarities of the energy distribution of the Br 4 p states, reveals that the main contribution of the valence Br p states occurs in the upper portion of the valence band, with also their significant contributions in other valence band regions. The measurements of spectral distribution of the absorption coefficient indicate that the Tl{sub 4}HgBr{sub 6} compound is a semiconductor with the bandgap energy value of 2.43 eV at 300 K, and the bandgap energy increases up to 2.48 eV when temperature decreases to 100 K.

  15. Observations of atmospheric Hg species and depositions in remote areas of China

    Directory of Open Access Journals (Sweden)

    Feng X.

    2013-04-01

    Full Text Available From September 2007, we conducted continuous measurements of speciated atmospheric mercury (Hg and atmospheric mercury depositions at five remote sites in China. Four of these sites were involved in the Global Mercury Observation System (GMOS as ground-based stations. These stations were located in the northwest, southwest, northeast, and east part of China, respectively, which represent the regional atmospheric Hg budgets in different areas of China. The preliminary results showed that mean TGM concentrations were in the range of 1.60 – 2.88 ng m-3, with relatively higher levels observed at sites in Eastern China and Southwestern China and lower levels at sites in Northeastern and Northwestern China. TGM concentrations at remote sites of China were also higher than those reported from background sites in North America and Europe, and this is corresponding very well with the Chinese great anthropogenic Hg emissions. Gaseous oxidized mercury (GOM and particulate bounded mercury (PBM were in the ranges of 3.2 – 7.4 pg m−3 and 19.4 – 43.5 pg m-3, respectively. The preliminary result on precipitation showed mean precipitation THg concentrations were in the range of 2.7 – 18.0 ng L-1.

  16. Homogeneous and Heterogeneous Reaction and Transformation of Hg and Trace Metals in Combustion Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. Helble; Clara Smith; David Miller

    2009-08-31

    The overall goal of this project was to produce a working dynamic model to predict the transformation and partitioning of trace metals resulting from combustion of a broad range of fuels. The information provided from this model will be instrumental in efforts to identify fuels and conditions that can be varied to reduce metal emissions. Through the course of this project, it was determined that mercury (Hg) and arsenic (As) would be the focus of the experimental investigation. Experiments were therefore conducted to examine homogeneous and heterogeneous mercury oxidation pathways, and to assess potential interactions between arsenic and calcium. As described in this report, results indicated that the role of SO{sub 2} on Hg oxidation was complex and depended upon overall gas phase chemistry, that iron oxide (hematite) particles contributed directly to heterogeneous Hg oxidation, and that As-Ca interactions occurred through both gas-solid and within-char reaction pathways. Modeling based on this study indicated that, depending upon coal type and fly ash particle size, vaporization-condensation, vaporization-surface reaction, and As-CaO in-char reaction all play a role in arsenic transformations under combustion conditions.

  17. Flux-P: Automating Metabolic Flux Analysis

    Directory of Open Access Journals (Sweden)

    Birgitta E. Ebert

    2012-11-01

    Full Text Available Quantitative knowledge of intracellular fluxes in metabolic networks is invaluable for inferring metabolic system behavior and the design principles of biological systems. However, intracellular reaction rates can not often be calculated directly but have to be estimated; for instance, via 13C-based metabolic flux analysis, a model-based interpretation of stable carbon isotope patterns in intermediates of metabolism. Existing software such as FiatFlux, OpenFLUX or 13CFLUX supports experts in this complex analysis, but requires several steps that have to be carried out manually, hence restricting the use of this software for data interpretation to a rather small number of experiments. In this paper, we present Flux-P as an approach to automate and standardize 13C-based metabolic flux analysis, using the Bio-jETI workflow framework. Exemplarily based on the FiatFlux software, it demonstrates how services can be created that carry out the different analysis steps autonomously and how these can subsequently be assembled into software workflows that perform automated, high-throughput intracellular flux analysis of high quality and reproducibility. Besides significant acceleration and standardization of the data analysis, the agile workflow-based realization supports flexible changes of the analysis workflows on the user level, making it easy to perform custom analyses.

  18. Comparison of mercury and zinc profiles in peat and lake sediment archives with historical changes in emissions from the Flin Flon metal smelter, Manitoba, Canada.

    Science.gov (United States)

    Outridge, P M; Rausch, N; Percival, J B; Shotyk, W; McNeely, R

    2011-01-01

    The copper-zinc smelter at Flin Flon, Manitoba, was historically the largest single Hg point-source in Canada, as well as a major source of Zn. Although emissions were reported by industry to have declined significantly since the late 1980s, these reductions have never been independently verified. Here, the histories of Hg and Zn deposition over the past century or more were determined at five lake sediment and three peat study sites in the surrounding region. At sites spanning the range from heavy to minor pollution, lake sediment Hg and Zn concentration and flux profiles increased significantly in the early 1930s after the smelter opened. Two of the three peat archives were wholly or partially compromised by either physical disturbances or biogeochemical transitions which reduced their effectiveness as atmospheric metal deposition recorders. But the remaining peat records, including a detailed recent 20 yr record at a moderately polluted site, appeared to show that substantive reductions in metal levels had occurred after the late 1980s, coincident with the reported emission reductions. However, the lake sediment results, taken at face value, contradicted the peat results in that no major declines in metal concentrations or fluxes occurred over recent decades. Mercury and Zn fluxes have in fact increased substantially since 1988 in most lakes. We suggest that this discrepancy may be explained by catchment soil saturation by historically deposited metals which are now mobilizing and leaching into lakes, as has been reported from other smelter polluted systems in Canada, whereas the upper sections of the peat cores reflected recent declines in atmospheric deposition. However, further research including instrumented wet and dry deposition measurements and catchment/lake mass balance studies is recommended to test this hypothesis, and to provide definitive data on current atmospheric metal deposition rates in the area.

  19. Hubungan Paparan Merkuri (Hg Dengan Kejadian Gangguan Fungsi HatiPada Pekerja Tambang Emas di Wonogiri

    Directory of Open Access Journals (Sweden)

    Nikie Astorina Yunita Dewanti

    2013-12-01

    Full Text Available Background: Traditional gold mining activities that using WOA/ amalgamation can cause Hg emissions to the environment. The emissions could raise mercury poisoning in the environment and human. Liver as a major part of the metabolism and accumulation of Hg in the human body, so that Hg could lead to liver damage. In the previous research, Hg exposure in male rats caused hepatotoxicosis. Average blood mercury levels of workers was 53.5 μg/m3. Objective: To determine the association between mercury (Hg exposure and theoccurance of liver dysfunction on gold mine workers at Jendi Village, sub-district Selogiri, Wonogiri District. Methods: It was a cross-sectional study, total sample were 41 workers. The data obtained from the results of laboratory tests of blood samples and the results of the interview respondents.Data would be analyzed using biavariate and multivariate statstic test. Results:There was 41.16% of respondents were miners, processors as well as grates, the average of working period was 10 years, work duration 6 hours a  day and 6 days a week. 97.56% of respondents have blood mercury levels above normal (U.S. EPA: 5.8 ppb. Elevated levels of SGOT experienced by 24.4% of respondents , SGPT 17.1% of  respondents and ALP 58.8% of  respondents or as much as 68.3% of respondents having liver disfunction. There was no difference incidence of liver dysfunction seen from the type of work (p value = 0.459, There was no assossiation between  work duration, work period and blood mercury  levels with the incidence of liver disfunction in workers (p value = 0.148; 0.408 and 0.608. There was a relationship between blood mercury levels with SGPT as an indicator of liver dysfunction (p value = 0.042 Conclusion: Overall, the data did not provide strong evidence that mercury exposure associated with incidence of liver disfunction.   Keywords: mercury exposure, liver disfunction, SGOT, SGPT, ALP

  20. PARADIGMA KEJAIDAN PENYAKIT PAJANAN MERKURI (Hg

    Directory of Open Access Journals (Sweden)

    Inswiasri Inswiasri

    2012-11-01

    Full Text Available Sequence of Diseases of Mercury Poison.This review conducted in order to know sequence of diseases of mercury poison. Using four nodes paradigm is very helpfull to identify agent sources up to occuring diseases. Many activities and mercury compound as an emission, path way of mercury compound from environment to human, inditators of human exposures and symptom of poison or diseases can identify from this paradigm. Many studies have been conducted to identify what happen in every nodes. Environmental pollution by Mercury and mercury compound caused by human activities or naturally. Mercury metal or vapor can enter to human mostly by inhalation, mercury in urine and blood can use as indicator of exposure. Health impact is on central nerveous system. In organic mercury entered to human by inhalation, ingestion or contact to skin. Mercury in urine and blood can use as an indicator of exposure. Health impact is on central nerveous system. Organic mercury especially methyl mercury entered to human mostly by ingestion. Mercury in blood and hair can use as indicator of exposure. Health impact is on central nerveous system and probably cancer. This review can help the researcher further more to study the diseases or symptoms and bioindicator of mercury poison.Keywords: Sequence of disease, poison, mercury

  1. Uptake of HgCl{sub 2} and MeHgCl in an insect cell line (Aedes albopictus C6/36)

    Energy Technology Data Exchange (ETDEWEB)

    Braeckman, B.; Cornelis, R.; Rzeznik, U.; Raes, H. [Univ. of Ghent (Belgium)

    1998-10-01

    The authors studied the uptake mechanism of mercuric chloride (Hg) and methylmercuric chloride (MeHg) in Aedes albopictus C6/36 cells. The uptake kinetics, together with the effect of temperature and a metabolic inhibitor (2,4-dinitrophenol) on the mercury accumulation, were examined. Both amounts of internalized Hg and MeHg increased linearly with the extracellular concentration. Initially, the influx rate was high for both metal species but MeHg was found to accumulate seven times faster than Hg. At longer exposure times it leveled off for Hg, while for MeHg, the intracellular concentration decreased. Hg toxicity was not significantly influenced by elevated temperatures; in contrast there was a marked decrease of the LC{sub 50/24 h} value for MeHg. On the other hand, Hg accumulation was temperature dependent but MeHg was not. The different toxicity and uptake rate of both mercury compounds can be explained in terms of membrane permeability and target site. For Hg the main target seems to be the plasma membrane, while MeHg readily crosses this barrier and reacts with intracellular targets. 2,4-Dinitrophenol had no effect on the accumulation of Hg but that of MeHg was doubled.

  2. Results Of Hg Speciation Testing On DWPF SMECT-1, SMECT-3, And SMECT-5 Samples

    Energy Technology Data Exchange (ETDEWEB)

    Bannochie, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-01-07

    The Savannah River National Laboratory (SRNL) was tasked with preparing and shipping samples for Hg speciation by Eurofins Frontier Global Sciences, Inc. in Seattle, WA on behalf of the Savannah River Remediation (SRR) Mercury Task Team. The thirteenth shipment of samples was designated to include Defense Waste Processing Facility (DWPF) Slurry Mix Evaporator Condensate Tank (SMECT) from Sludge Receipt and Adjustment Tank (SRAT) Batch 736 and 738 samples. Triplicate samples of each material were prepared for this shipment. Each replicate was analyzed for seven Hg species: total Hg, total soluble (dissolved) Hg, elemental Hg [Hg(0)], ionic (inorganic) Hg [Hg(I) and Hg(II)], methyl Hg [CH3Hg-X, where X is a counter anion], ethyl Hg [CH3CH2-Hg-X, where X is a counter anion], and dimethyl Hg [(CH3)2Hg]. The difference between the total Hg and total soluble Hg measurements gives the particulate Hg concentration, i.e. Hg adsorbed to the surface of particulate matter in the sample but without resolution of the specific adsorbed species. The average concentrations of Hg species in the aqueous samples derived from Eurofins reported data corrected for dilutions performed by SRNL are tabulated.

  3. Quantum Calorimeters Based on HgCdTe Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's next generation of x-ray observation missions require x-ray calorimeters with superior energy resolution. Semimetallic HgTe has already proven itself as an...

  4. Enrichment of Pb, Hg and Cr in cultured carp otolith

    African Journals Online (AJOL)

    AJL

    2012-01-26

    Jan 26, 2012 ... record the pollution condition at the sampling time. ... aquatic organisms are aquatic algae, zooplankton .... element cannot show that Hg concentration in otolith ..... from Atlantic croaker along an estuarine pollution gradient.

  5. Quantum Calorimeters Based on HgCdTe Alloys Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's next generation of x-ray observation missions require x-ray calorimeters with superior energy resolution. Semimetallic HgTe has already proven itself as an...

  6. Properties of Light Hg, Pb and Po Isotopes

    CERN Document Server

    Muntian, I

    2003-01-01

    Quality of mass description for three different theoretical mass models is studied. Masses and deformations for Po, Pb and Hg isotopes are compared with experimental data. Gap in the proton single particle energy spectrum is discussed.

  7. Horizontal Branch stars as AmFm/HgMn stars

    CERN Document Server

    Michaud, G

    2008-01-01

    Recent observations and models for horizontal branch stars are briefly described and compared to models for AmFm stars. The limitations of those models are emphasized by a comparison to observations and models for HgMn stars.

  8. Interaction of Hg Atom with Bare Si(111) Surface

    Institute of Scientific and Technical Information of China (English)

    LIU Yong-Jun; LIU Ying

    2006-01-01

    To evaluate the interaction between Hg atom and bare Si(111) surface, three types of silicon cluster models of Si4H7, Si7H10 and Si16H20 together with their Hg complexes were studied by using hybrid (U)B3LYP density functional theory method. Optimized geometries and energies for Hg atom on different adsorption sites indicate that: 1) the binding energies at different adsorption sites are small (ranging from ~3 to 8 kJ/mol dependent on the adsorption sites), suggesting a weak interaction between Hg atom and silicon surface; 2) the most favorable adsorption site is the on top (T) site. By analyzing their natural bonding orbitals, the possible reason of this difference is suggested.

  9. Cardiac dysfunction in HgCl2-induced nephrotic syndrome.

    Science.gov (United States)

    Moreira-Rodrigues, Mónica; Henriques-Coelho, Tiago; Moura, Cláudia; Vasques-Nóvoa, Francisco; Sampaio-Maia, Benedita; Pestana, Manuel; Leite-Moreira, Adelino F

    2010-03-01

    The experimental model of HgCl(2) injection is characterized by a systemic autoimmune disease which leads to the development of nephrotic syndrome (NS). NS seems to be accompanied by cardiovascular alterations, since patients with NS present an increased incidence in cardiac disease. The aim of our work was to study the effects of HgCl(2)-induced NS on myocardial function and morphometry. Normotensive Brown-Norway rats were injected with HgCl(2) (1 mg/kg, HgCl(2) group; n = 6, subcutaneous) or the vehicle (control group; n = 6, subcutaneous) on days 0, 2, 4, 7, 9 and 11. The animals were placed in metabolic cages for evaluation of urinary excretion of noradrenaline, sodium, total proteins, albumin and creatinine. Fourteen and 21 days after the first HgCl(2) injection, left ventricle (LV) hemodynamics was evaluated through pressure micromanometers in basal and isovolumetric heartbeats. The heart and gastrocnemius muscle weights and tibial length were also examined. In an additional group of animals cardiac dimensions and ejection fraction were assessed by echocardiography and LV apoptosis and fibrosis were studied. HgCl(2)-injected rats presented proteinuria, albuminuria, hyperlipidemia, anemia, sodium retention and ascites at day 14. These alterations were accompanied by LV hemodynamic changes only in isovolumetric heartbeats. Similarly, on day 21, HgCl(2)-injected rats presented proteinuria, albuminuria, hyperlipidemia, anemia, but no sodium retention or ascites. These animals presented LV systolic and diastolic dysfunction in both basal and isovolumetric heartbeats, as well as cardiac atrophy, LV fibrosis and an increase in myocyte apoptosis. In conclusion, HgCl(2)-induced NS is accompanied by LV dysfunction and can be a promising model for studying the link between NS and cardiac disease.

  10. Searching for Line Profile Variability in HgMn Stars

    CERN Document Server

    Turcotte, S; Knoglinger, P

    2002-01-01

    Spectra of four non-magnetic chemically peculiar late B type stars (HgMn) stars are analysed to detect periodic spectral line variations (LPVs). A procedure developed to study LPVs in Slowly Pulsating B stars has been adopted as pulsational properties of HgMn stars should be expected to be similar. In the preliminary results discussed here no conclusive evidence for periodic LPVs was uncovered. A more sensitive re-analysis of the data is under way.

  11. First observation of excited states in 173Hg93

    CERN Document Server

    O'Donnell, D; Scholey, C; Bianco, L; Capponi, L; Carroll, R J; Darby, I G; Donosa, L; Drummond, M; Ertugral, F; Greenlees, P T; Grahn, T; Hauschild, K; Herzan, A; Jakobsson, U; Jones, P; Joss, D T; Julin, R; Juutinen, S; Ketelhut, S; Labiche, M; Leino, M; Lopez-Martens, A; Mullholland, K; Nieminen, P; Peura, P; Rahkila, P; Rinta-Antila, S; Ruotsalainen, P; Sandzelius, M; Saren, J; Saygi, B; Simpson, J; Sorri, J; Thornthwaite, A; Uusitalo, J

    2012-01-01

    The neutron-deficient nucleus 173Hg has been studied following fusion-evaporation reactions. The observation of gamma rays decaying from excited states are reported for the first time and a tentative level scheme is proposed. The proposed level scheme is discussed within the context of the systematics of neighbouring neutron-deficient Hg nuclei. In addition to the gamma-ray spectroscopy, the alpha decay of this nucleus has been measured yielding superior precision to earlier measurements.

  12. Crystal structure of K[Hg(SCN)3] - a redetermination.

    Science.gov (United States)

    Weil, Matthias; Häusler, Thomas

    2014-09-01

    The crystal structure of the room-temperature modification of K[Hg(SCN)3], potassium tri-thio-cyanato-mercurate(II), was redetermined based on modern CCD data. In comparison with the previous report [Zhdanov & Sanadze (1952 ▶). Zh. Fiz. Khim. 26, 469-478], reliability factors, standard deviations of lattice parameters and atomic coordinates, as well as anisotropic displacement parameters, were revealed for all atoms. The higher precision and accuracy of the model is, for example, reflected by the Hg-S bond lengths of 2.3954 (11), 2.4481 (8) and 2.7653 (6) Å in comparison with values of 2.24, 2.43 and 2.77 Å. All atoms in the crystal structure are located on mirror planes. The Hg(2+) cation is surrounded by four S atoms in a seesaw shape [S-Hg-S angles range from 94.65 (2) to 154.06 (3)°]. The HgS4 polyhedra share a common S atom, building up chains extending parallel to [010]. All S atoms of the resulting (1) ∞[HgS2/1S2/2] chains are also part of SCN(-) anions that link these chains with the K(+) cations into a three-dimensional network. The K-N bond lengths of the distorted KN7 polyhedra lie between 2.926 (2) and 3.051 (3) Å.

  13. Self-powered sensor for trace Hg2+ detection.

    Science.gov (United States)

    Wen, Dan; Deng, Liu; Guo, Shaojun; Dong, Shaojun

    2011-05-15

    A self-powered electrochemical sensor has been facilely designed for sensitive detection of Hg(2+) based on the inhibition of biocatalysis process of enzymatic biofuel cell (BFC) for the first time. The as-prepared one-compartment BFC, which was consisted of alcohol dehydrogenase supported on single-walled carbon nanohorns-based mediator system as the anode and bilirubin oxidase as the cathodic biocatalyst, generated an open circuit potential (V(oc)) of 636 mV and a maximum power density of 137 μW cm(-2). It was interestingly found that the presence of Hg(2+) would affect the performance of the constructed BFC (e.g., V(oc)). Taking advantage of the inhibitive effect of Hg(2+), a novel self-powered Hg(2+) sensor has been developed, which showed a linear range of 1-500 nM (R(2) = 0.999) with a detection limit of 1 nM at room temperature. In addition, this BFC-type sensor exhibited good selectivity for Hg(2+) against other common environmental metal ions, and the feasibility of the method for Hg(2+) detection in actual water samples (i.e., tap, ground, and lake water) was demonstrated with satisfactory results.

  14. Eddy covariance based methane flux in Sundarbans mangroves, India

    Indian Academy of Sciences (India)

    Chandra Shekhar Jha; Suraj Reddy Rodda; Kiran Chand Thumaty; A K Raha; V K Dadhwal

    2014-07-01

    We report the initial results of the methane flux measured using eddy covariance method during summer months from the world’s largest mangrove ecosystem, Sundarbans of India. Mangrove ecosystems are known sources for methane (CH4) having very high global warming potential. In order to quantify the methane flux in mangroves, an eddy covariance flux tower was recently erected in the largest unpolluted and undisturbed mangrove ecosystem in Sundarbans (India). The tower is equipped with eddy covariance flux tower instruments to continuously measure methane fluxes besides the mass and energy fluxes. This paper presents the preliminary results of methane flux variations during summer months (i.e., April and May 2012) in Sundarbans mangrove ecosystem. The mean concentrations of CH4 emission over the study period was 1682 ± 956 ppb. The measured CH4 fluxes computed from eddy covariance technique showed that the study area acts as a net source for CH4 with daily mean flux of 150.22 ± 248.87 mg m−2 day−1. The methane emission as well as its flux showed very high variability diurnally. Though the environmental conditions controlling methane emission is not yet fully understood, an attempt has been made in the present study to analyse the relationships of methane efflux with tidal activity. This present study is part of Indian Space Research Organisation–Geosphere Biosphere Program (ISRO–GBP) initiative under ‘National Carbon Project’.

  15. Methane Fluxes from Subtropical Wetlands

    Science.gov (United States)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  16. Measurement of total site mercury emissions from a chlor-alkali plant using ultraviolet differential optical absorption spectroscopy and cell room roof-vent monitoring

    Science.gov (United States)

    Thoma, Eben D.; Secrest, Cary; Hall, Eric S.; Lee Jones, Donna; Shores, Richard C.; Modrak, Mark; Hashmonay, Ram; Norwood, Phil

    This technical note describes a United States Environmental Protection Agency (U.S. EPA) measurement project to determine elemental mercury (Hg 0) emissions from a mercury cell chlor-alkali (MCCA) facility in the southeastern U.S. during a 53-day monitoring campaign in the fall of 2006. The optical remote sensing (ORS) area source measurement method EPA OTM 10 was used to provide Hg 0 flux data for the site. These results are reported and compared with cell room roof-vent monitoring data acquired by the facility for similar time periods. The 24-h extrapolated mercury emission rate estimates determined by the two monitoring approaches are shown to be similar with overall averages in the 400 g day -1 range with maximum values around 1200 g day -1. Results from the OTM 10 measurements, which include both cell room emissions and potential fugitive sources outside the cell room, are shown to be approximately 10% higher than cell room monitoring results indicating that fugitive emissions from outside the cell room produce a small but measurable effect for this site.

  17. Clustering of Emerging Flux

    Science.gov (United States)

    Ruzmaikin, A.

    1997-01-01

    Observations show that newly emerging flux tends to appear on the Solar surface at sites where there is flux already. This results in clustering of solar activity. Standard dynamo theories do not predict this effect.

  18. Fine fuel heating by radiant flux

    Science.gov (United States)

    David Frankman; Brent W. Webb; Bret W. Butler; Don J. Latham

    2010-01-01

    Experiments were conducted wherein wood shavings and Ponderosa pine needles in quiescent air were subjected to a steady radiation heat flux from a planar ceramic burner. The internal temperature of these particles was measured using fine diameter (0.076mm diameter) type K thermocouples. A narrow angle radiometer was used to determine the emissive power generated by the...

  19. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    Science.gov (United States)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  20. Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc

    Science.gov (United States)

    Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.

    2007-09-01

    The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.

  1. Persistent Hg contamination and occurrence of Hg-methylating transcript (hgcA) downstream of a chlor-alkali plant in the Olt River (Romania).

    Science.gov (United States)

    Bravo, Andrea G; Loizeau, Jean-Luc; Dranguet, Perrine; Makri, Stamatina; Björn, Erik; Ungureanu, Viorel Gh; Slaveykova, Vera I; Cosio, Claudia

    2016-06-01

    Chlor-alkali plants using mercury (Hg) cell technology are acute point sources of Hg pollution in the aquatic environment. While there have been recent efforts to reduce the use of Hg cells, some of the emitted Hg can be transformed to neurotoxic methylmercury (MeHg). Here, we aimed (i) to study the dispersion of Hg in four reservoirs located downstream of a chlor-alkali plant along the Olt River (Romania) and (ii) to track the activity of bacterial functional genes involved in Hg methylation. Total Hg (THg) concentrations in water and sediments decreased successively from the initial reservoir to downstream reservoirs. Suspended fine size particles and seston appeared to be responsible for the transport of THg into downstream reservoirs, while macrophytes reflected the local bioavailability of Hg. The concentration and proportion of MeHg were correlated with THg, but were not correlated with bacterial activity in sediments, while the abundance of hgcA transcript correlated with organic matter and Cl(-) concentration, indicating the importance of Hg bioavailability in sediments for Hg methylation. Our data clearly highlights the importance of considering Hg contamination as a legacy pollutant since there is a high risk of continued Hg accumulation in food webs long after Hg-cell phase out.

  2. Mercury speciation and emissions from coal combustion in Guiyang, Southwest China.

    Science.gov (United States)

    Tang, Shunlin; Feng, Xinbin; Qiu, Jianrong; Yin, Guoxun; Yang, Zaichan

    2007-10-01

    Although China has been regarded as one of the largest anthropogenic mercury emission source with coal combustion, so far the actual measurements of Hg species and Hg emissions from the combustion and the capture of Hg in Chinese emission control devices were very limited. Aiming at Hg mercury species measurements in Guiyang, the capital city of Guizhou province in Southwest China, we studied flue gases of medium-to-small-sized industrial steam coal-firing boiler (10-30 t/h) with no control devices, medium-to-small-sized industrial steam coal-firing boiler with WFGD and large-scale coal combustion with ESPs using Ontario Hytro method. We obtained mercury emission factors of the three representative coal combustion and estimated mercury emissions in Guiyang in 2003, as well as the whole province from 1986 to 2002. Coal combustion in Guiyang emitted 1898 kg mercury to the atmosphere, of which 36% Hg is released from power plants, 41% from industrial coal combustion, and 23% from domestic users, and 267 kg is Hg(p), 813 kg is Hg(2+) and 817 kg is Hg0. Mercury emission in Guizhou province increased sharply from 5.8 t in 1986 to 16.4 t in 2002. With the implementation of national economic strategy of China's Western Development, the annual mercury emission from coal combustion in the province is estimated to be about 32 t in 2015.

  3. Hg $L_{3}$ edge absorption study of the $HgBa_{2}CuO_{4}\\delta$ superconductor

    CERN Document Server

    Ziyu, Wu; Bianconi, A

    2001-01-01

    The HgBa/sub 2/CuO/sub 4+ delta / superconductor has been studied by high resolution Hg L/sub 3/ X-ray absorption near-edge structure (XANES) spectroscopy. The XANES spectrum has been simulated by full multiple-scattering calculations in order to explore the origin of different features in the experimental spectrum. The experimental Hg L/sub 3/-edge spectrum could be well reproduced by considering a cluster of 85 atoms, containing 10 shells, within a radius of about 7 AA from the central Hg atom. The low energy spectral feature in the XANES spectrum is found to be due to a transition from the Hg p states to the electronic states hybridized with higher shell Ba atoms. This implies that the transition features in the Hg L/sub 3/- edge XANES are strongly influenced by medium range order effects unlike the case of L/sub 3/ edge of 3d transition metals where short- range order is enough to describe the main transition features. (25 refs).

  4. Hg SOIL GAS AND Hg SOIL DISTRIBUTION AROUND FORMER „ZRINSKI“ MINE ON MT. MEDVEDNICA, CROATIA

    Directory of Open Access Journals (Sweden)

    Nataša Jug

    2008-12-01

    Full Text Available The purpose of this study is to present the field and laboratory researches, statistical analyses and graphical displays of the results of Hg soil gas and Hg soil distribution in the area around former mining site „Zrinski“ on Mt. Medvednica. The values of overall Hg concentrations in the soil gas show lognormal distribution, and their spatial distribution outlines the connection with the present Pb-Ag-Zn mineralization and confirms anthropogenic origin of uneven landscape relief (waste rock clusters. Regression analysis of the dependence between Hg contents in the soil gas and the distance from the mine entrance (correlation coefficient r also points to the considerable spatial dependence. Hg soil contents show as well distribution similar to lognormal, and there is a slight correlation when compared with Hg soil gas content. Concentrations are mostly within background values, except in the immediate vicinity of the mine entrance where the values are significantly higher due to the mineralization influence concentrated in the waste-rock clusters. Soil pollution caused by mercury is of local character with the spreading tendency to the south-west because of the dominant relief influence. Mercury found in the soil of the research location derives from the present mineral body and former mining activities, while possible anthropogenic atmospheric inputs from remote sources can not be proven on the basic of conducted research studies (the paper is published in Croatian.

  5. Superconducting Hg-Based Mixed Oxides and Oxyfluorides

    Science.gov (United States)

    Antipov, E. V.

    2000-09-01

    Syntheses under high pressure and under controlled mercury and oxygen partial pressures of different members of the HgBa2Can-1CunO2n+2+δ series have been developed. There are two main parameters influencing Tc in this family: width of a perovskite slab (n) and concentration (δ) of the extra oxygen located in the Hg layer. The increase of Tc with n occurs until the third member, while after that it decreases. All the members of the series exhibit similar cupola shaped dependencies of Tc vs. δ. Strongly overdoped high members of the series with n = 3-5 were prepared only using high pressure technique and BaO2 as an internal oxidizer. Neutron powder diffraction experiments were carried out for monophase oxygenated HgBa2CuO4F4+δ and fluorinated HgBa2CuO4Fδ samples with different extra oxygen or fluorine content and Tc values. Fluorinated series also exhibits the cupola -like behavior for the Tc vs. δ dependence. NPD showed twice the amount of extra fluorine in comparison with those for the oxygenated Hg-1201 phases with close Tc's. The exchange of the extra oxygen by double amount of fluorine causes shortening of the apical Cu-O distances, while the in-plane ones, as well as Tc, do not vary. The influence of the external pressure on the structure and Tc of Hg-1201 strongly depends on the doping level. The increase of the extra oxygen content on going from underdoped to overdoped state results in the larger compression of the apical Cu-O and Ba-OHg distances while the HgO2 dumbbell as well as the distance between Ba and O from the (CuO2) layers becomes practically pressure independent. These results together with the data for fluorinated materials allow to elucidate the crucial structural features responsible for the Tc variation under high pressure.

  6. Nitric oxide fluxes from an agricultural soil using a flux-gradient method

    Science.gov (United States)

    Taylor, N. M.; Wagner-Riddle, C.; Thurtell, G. W.; Beauchamp, E. G.

    1999-05-01

    Soil emission of nitric oxide may be a significant source of NOx in rural areas. Agricultural practices may enhance these emissions by addition of nitrogen fertilizers. A system that enables continuous measurement of NO fluxes from agricultural surfaces using the flux-gradient method was developed. Hourly differences in NO concentrations in air sampled at two intake heights (0.6 and 1 m) were determined using a chemiluminescence analyzer. Eddy diffusivities were determined using wind profiles (cup anemometers), and stability corrections calculated using a 5 cm path sonic anemometer. Fast switching of sampling between air intake heights (every 30 s) and determination of concentration values at a frequency of 2 Hz minimized the errors due to fluctuations in background concentration. Low travel times for air samples in the tubing (˜8 s) were estimated to result in small errors in flux values (10 ng N m-2 s-1). Monthly NO fluxes estimated were similar to those observed in previous studies. The designed system could be easily modified to measure NOx and NO fluxes by using an additional chemiluminescence analyzer. The system also could be adapted to measure fluxes sequentially from various plots, enabling testing of agricultural practices on NO emissions.

  7. FLUXES FOR MECHANIZED ELECTRIC WELDING,

    Science.gov (United States)

    WELDING FLUXES, WELDING ), (* WELDING , WELDING FLUXES), ARC WELDING , WELDS, STABILITY, POROSITY, WELDING RODS, STEEL, CERAMIC MATERIALS, FLUXES(FUSION), TITANIUM ALLOYS, ALUMINUM ALLOYS, COPPER ALLOYS, ELECTRODEPOSITION

  8. BENTHIC FLUXES MEASUREMENT OF MERCURY AND METHYLMERCURY IN PIALASSA BAIONA (RAVENNA, ITALY

    Directory of Open Access Journals (Sweden)

    Stefano Covelli

    2010-04-01

    Full Text Available Previous research on mercury (Hg showed strong contamination of the Piallassa Baiona (P.B. lagoon, near Ravenna. The lagoon received between 100 and 200 tons of Hg generated by an acetaldehyde factory in 1957-1977. In this study, the Hg cycling at the sediment-water interface in the P.B. lagoon was investigated by means of an in situ benthic chamber. The 8-h integrated flux of the methylated form was extremely low and estimated to be only 7% of the result obtained for a summer experiment performed in a similar Hg-contaminated environment (Grado lagoon. Conversely, the in situ flux of Hg accounted for a comparable amount to that observed in the Grado lagoon, although Hg contents in its sediments are almost 50% lower than in P.B. lagoon. Hg mobilization and sequestration in the system, limiting its bioavailability despite the high contents of metal buried in the bottom sediments, seem related to extremely anoxic conditions.

  9. Patterns of mercury dispersion from local and regional emission sources, rural Central Wisconsin, USA

    Directory of Open Access Journals (Sweden)

    A. Kolker

    2010-01-01

    Full Text Available Simultaneous real-time changes in mercury (Hg speciation – reactive gaseous Hg (RGM, elemental Hg (Hg°, and fine particulate Hg (Hg-PM2.5, were determined from June to November 2007, in ambient air at three locations in rural Central Wisconsin. Known Hg emission sources within the airshed of the monitoring sites include: 1 a 1114 megawatt (MW coal-fired electric utility generating station; 2 a Hg-bed chlor-alkali plant; and 3 a smaller (465 MW coal-burning electric utility. Monitoring sites, showing sporadic elevation of RGM, Hg° and Hg-PM2.5, were positioned at distances of 25, 50 and 100 km northward of the larger electric utility. A series of RGM events were recorded at each site. The largest, on 23 September, occurred under prevailing southerly winds, with a maximum RGM value (56.8 pg m−3 measured at the 100 km site, and corresponding elevated SO2 (10.41 ppbv; measured at 50 km site. The finding that RGM, Hg°, and Hg-PM2.5 are not always highest at the 25 km site, closest to the large generating station, contradicts the idea that RGM decreases with distance from a large point source. This may be explained if: 1 the 100 km site was influenced by emissions from the chlor-alkali facility or by RGM from regional urban sources; 2 the emission stack height of the larger power plant promoted plume transport at an elevation where the Hg is carried over the closest site; or 3 RGM was being generated in the plume through oxidation of Hg°. Operational changes at each emitter since 2007 should reduce their Hg output, potentially allowing quantification of the environmental benefit in future studies.

  10. Patterns of Flux Emergence

    Science.gov (United States)

    Title, A.; Cheung, M.

    2008-05-01

    The high spatial resolution and high cadence of the Solar Optical Telescope on the JAXA Hinode spacecraft have allowed capturing many examples of magnetic flux emergence from the scale of granulation to active regions. The observed patterns of emergence are quite similar. Flux emerges as a array of small bipoles on scales from 1 to 5 arc seconds throughout the region that the flux eventually condenses. Because the fields emerging from the underlying flux rope my appear many in small segments and the total flux (absolute sum) is not a conserved quantity the amount of total flux on the surface may vary significantly during the emergence process. Numerical simulations of flux emergence exhibit patterns similar to observations. Movies of both observations and numerical simulations will be presented.

  11. Mercury (Hg) burden in children: The impact of dental amalgam

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, Iman, E-mail: iman@kfshrc.edu.sa [Biological and Medical Research Department, King Faisal Specialist Hospital and Research Centre, PO Box: 3354, Riyadh 11211 (Saudi Arabia); Al-Sedairi, Al anoud [Department of Zoology, College of Science, King Saud University, PO Box: 24452, Riyadh 11495 (Saudi Arabia)

    2011-07-15

    The risks and benefits of using mercury (Hg) in dental amalgam have long been debated. This study was designed to estimate Hg body burden and its association with dental amalgam fillings in 182 children (ages: 5-15 years) living in Taif City. Hg was measured in urine (UHg), hair (HHg) and toenails (NHg) by the Atomic Absorption Spectrophotometer with Vapor Generator Accessory system. Urinary Hg levels were calculated as both micrograms per gram creatinine ({mu}g/g creatinine) and micrograms per liter ({mu}g/L). We found that children with amalgam fillings (N = 106) had significantly higher UHg-C levels than children without (N = 76), with means of 3.763 {mu}g/g creatinine versus 3.457 {mu}g/g creatinine, respectively (P = 0.019). The results were similar for UHg (P = 0.01). A similar pattern was also seen for HHg, with means of 0.614 {mu}g/g (N = 97) for children with amalgam versus 0.242 {mu}g/g (N = 74) for those without amalgam fillings (P = 0). Although the mean NHg was higher in children without amalgam (0.222 {mu}g/g, N = 61) versus those with (0.163 {mu}g/g, N = 101), the relationship was not significant (P = 0.069). After adjusting for many confounders, the multiple logistic regression model revealed that the levels of UHg-C and HHg were 2.047 and 5.396 times higher, respectively, in children with dental amalgam compared to those without (P < 0.01). In contrast, a significant inverse relationship was seen between NHg levels and dental amalgam fillings (P = 0.003). Despite the controversy surrounding the health impact of dental amalgam, this study showed some evidence that amalgam-associated Hg exposure might be related with symptoms of oral health, such as aphthous ulcer, white patches, and a burning-mouth sensation. Further studies are needed to reproduce these findings. The present study showed that significant numbers of children with or without amalgam had Hg levels exceeding the acceptable reference limits. The detrimental neurobehavioral and

  12. Overcoming phytoremediation limitations. A case study of Hg contaminated soil

    Science.gov (United States)

    Barbafieri, Meri

    2013-04-01

    Phytoremediation is a broad term that comprises several technologies to clean up water and soil. Despite the numerous articles appearing in scientific journals, very few field applications of phytoextraction have been successfully realized. The research here reported on Phytoextraction, the use the plant to "extract" metals from contaminated soil, is focused on implementations to overcome two main drawbacks: the survival of plants in unfavorable environmental conditions (contaminant toxicity, low fertility, etc.) and the often lengthy time it takes to reduce contaminants to the requested level. Moreover, to overcome the imbalance between the technology's potential and its drawbacks, there is growing interest in the use of plants to reduce only the fraction that is the most hazardous to the environment and human health, that is to target the bioavailable fractions of metals in soil. Bioavailable Contaminant Stripping (BCS) would be a remediation approach focused to remove the bioavailable metal fractions. BCS have been used in a mercury contaminated soil from Italian industrial site. Bioavailable fractions were determined by sequential extraction with H2O and NH4Cl.Combined treatments of plant hormone and thioligand to strength Hg uptake by crop plants (Brassica juncea and Helianthus annuus) were tested. Plant biomass, evapotranspiration, Hg uptake and distribution following treatments were compared. Results indicate the plant hormone, cytokinine (CK) foliar treatment, increased evapotranspiration rate in both tested plants. The Hg uptake and translocation in both tested plants increased with simultaneous addition of CK and TS treatments. B. juncea was the most effective in Hg uptake. Application of CK to plants grown in TS-treated soil lead to an increase in Hg concentration of 232% in shoots and 39% in roots with respect to control. While H. annuus gave a better response in plant biomass production, the application of CK to plants grown in TS-treated soil lead to

  13. Spectroscopic variability and magnetic fields of HgMn stars

    CERN Document Server

    Hubrig, S; Ilyin, I; Korhonen, H; Savanov, I S; Dall, T; Schoeller, M; Cowley, C R; Briquet, M; Arlt, R

    2011-01-01

    The discovery of exotic abundances, chemical inhomogeneities, and weak magnetic fields on the surface of late B-type primaries in spectroscopic binaries has important implications not only for our understanding of the formation mechanisms of stars with Hg and Mn peculiarities themselves, but also for the general understanding of B-type star formation in binary systems. The origin of the abundance anomalies observed in late B-type stars with HgMn peculiarity is still poorly understood. The connection between HgMn peculiarity and membership in binary and multiple systems is supported by our observations during the last decade. The important result achieved in our studies of a large sample of HgMn stars is the finding that most HgMn stars exhibit spectral variability of various chemical elements, proving that the presence of an inhomogeneous distribution on the surface of these stars is a rather common characteristic and not a rare phenomenon. Further, in the studied systems, we found that all components are che...

  14. Bioaccumulation of Hg in the mushroom Pleurotus ostreatus

    Energy Technology Data Exchange (ETDEWEB)

    Bressa, G.; Cima, L.; Costa, P.

    1988-10-01

    The possibility of utilizing industrial, urban, and other wastes for the growth of a product which is directly edible by humans is fascinating. However, it is possible that many wastes containing toxic substances, for example, heavy metals, could reach the food chain and produce adverse effects on human health. To this end, we studied the possibility of bioaccumulation of Hg by a mushroom, Pleurotus ostreatus, grown on an artificial compost containing this element. Concentrations of 0.05, 0.1, and 0.2 mg/kg of Hg as Hg(NO/sub 3/)/sub 2/.H/sub 2/O were added to three groups of the same compost, successively inoculated with the mycelia of the mushroom. Higher concentrations strongly reduced the growth of the mycelia and therefore were not utilized. The concentrations of Hg in the substrate and in the mushroom were evaluated by AAS. The range of the accumulation factor was found to be 65-140, i.e., very marked. This finding suggests that the cultivation of P. ostreatus on substrates containing Hg from industrial and urban wastes could involve possible risks to human health.

  15. Are there tangled magnetic fields on HgMn stars?

    CERN Document Server

    Kochukhov, O; Piskunov, N; Jeffers, S V; Johns-Krull, C M; Keller, C U; Rodenhuis, M; Snik, F; Stempels, H C; Valenti, J A

    2013-01-01

    Several recent spectrophotometric studies failed to detect significant global magnetic fields in late-B HgMn chemically peculiar stars, but some investigations have suggested the presence of strong unstructured or tangled fields in these objects. We used detailed spectrum synthesis analysis to search for evidence of tangled magnetic fields in high-quality observed spectra of 8 slowly rotating HgMn stars and one normal late-B star. We also evaluated recent sporadic detections of weak longitudinal magnetic fields in HgMn stars based on the moment technique. Our analysis of the Zeeman broadening of magnetically sensitive spectral lines reveals no evidence of tangled magnetic fields in any of the studied HgMn or normal stars. We infer upper limits of 200-700 G for the mean magnetic field modulus -- much smaller than the field strengths implied by studies based on differential magnetic line intensification and quadratic field diagnostics. The new HARPSpol longitudinal field measurements for the extreme HgMn star H...

  16. Airborne flux measurements of biogenic volatile organic compounds over California

    Science.gov (United States)

    Misztal, P. K.; Karl, T.; Weber, R.; Jonsson, H. H.; Guenther, A. B.; Goldstein, A. H.

    2014-03-01

    Biogenic Volatile Organic Compound (BVOC) fluxes were measured onboard the CIRPAS Twin Otter aircraft as part of the California Airborne BVOC Emission Research in Natural Ecosystem Transects (CABERNET) campaign during June 2011. The airborne virtual disjunct eddy covariance (AvDEC) approach used measurements from a PTR-MS and a wind radome probe to directly determine fluxes of isoprene, MVK + MAC, methanol, monoterpenes, and MBO over ∼10 000 km of flight paths focusing on areas of California predicted to have the largest emissions of isoprene. The Fast Fourier Transform (FFT) approach was used to calculate fluxes over long transects of more than 15 km, most commonly between 50 and 150 km. The Continuous Wavelet Transformation (CWT) approach was used over the same transects to also calculate "instantaneous" fluxes with localization of both frequency and time independent of non-stationarities. Vertical flux divergence of isoprene is expected due to its relatively short lifetime and was measured directly using "racetrack" profiles at multiple altitudes. It was found to be linear and in the range 5% to 30% depending on the ratio of aircraft altitude to PBL height (z / zi). Fluxes were generally measured by flying consistently at 400 ± 50 m (a.g.l.) altitude, and extrapolated to the surface according to the determined flux divergence. The wavelet-derived surface fluxes of isoprene averaged to 2 km spatial resolution showed good correspondence to Basal Emission Factor (BEF) landcover datasets used to drive biogenic VOC (BVOC) emission models. The surface flux of isoprene was close to zero over Central Valley crops and desert shrublands, but was very high (up to 15 mg m-2 h-1) above oak woodlands, with clear dependence of emissions on temperature and oak density. Isoprene concentrations of up to 8 ppb were observed at aircraft height on the hottest days and over the dominant source regions. While isoprene emissions from agricultural crop regions, shrublands, and

  17. The construction, characterization, Hg(II)-sensing and removal behavior of magnetic core-shell nanospheres loaded with fluorescence "Off-On" probe.

    Science.gov (United States)

    Tan, Jun; Wei, Xiaoyan; Chen, Jie; Sun, Ping; Ouyang, Yuxia; Fan, Juhong; Liu, Rui

    2014-12-10

    The present paper constructed and discussed core-shell structured nanospheres grafted with rhodamine based probe for Hg(II) sensing and removal. Electron microscopy images, XRD curves, thermogravimetric analysis and N2 adsorption/desorption isotherms were used to identify the core-shell structure. The inner core consisted of superparamagnetic Fe3O4 nanoparticles, which made the nanocomposite magnetically removable. The outer shell was constructed with silica molecular sieve which provided large surface area and ordered tunnels for the sensing probe, accelerating analyte adsorption and transportation. The rhodamine based sensing probe emission increased with the increasing Hg(II) concentration, showing emission "Off-On" effect, which could be explained by the structural transformation from a non-emissive one to a highly emissive one. The influence from various metal ions and pH values was also investigated, which suggested this structural transformation could only be triggered by Hg(II), showing high selectivity and linear response. The Hg(II) sensing nanocomposite could be regenerated after usage. The response time was slightly compromised and could be further improved.

  18. Mercury emissions of a coal-fired power plant in Germany

    Science.gov (United States)

    Weigelt, Andreas; Slemr, Franz; Ebinghaus, Ralf; Pirrone, Nicola; Bieser, Johannes; Bödewadt, Jan; Esposito, Giulio; van Velthoven, Peter F. J.

    2016-11-01

    Hg / SO2, Hg / CO, NOx / SO2 (NOx being the sum of NO and NO2) emission ratios (ERs) in the plume of the coal-fired power plant (CFPP), Lippendorf, near Leipzig, Germany, were determined within the European Tropospheric Mercury Experiment (ETMEP) aircraft campaign in August 2013. The gaseous oxidized mercury (GOM) fraction of mercury emissions was also assessed. Measured Hg / SO2 and Hg / CO ERs were within the measurement uncertainties consistent with the ratios calculated from annual emissions in 2013 reported by the CFPP operator, while the NOx / SO2 ER was somewhat lower. The GOM fraction of total mercury emissions, estimated using three independent methods, was below ˜ 25 %. This result is consistent with other findings and suggests that GOM fractions of ˜ 40 % of CFPP mercury emissions in current emission inventories are overestimated.

  19. Crystal structure of Hg2SO4 – a redetermination

    Directory of Open Access Journals (Sweden)

    Matthias Weil

    2014-09-01

    Full Text Available The crystal structure of mercury(I sulfate (or mercurous sulfate, Hg2SO4, was re-determined based on modern CCD data. In comparison with the previous determination from Weissenberg film data [Dorm (1969. Acta Chem. Scand. 23, 1607–1615], all atoms were refined with anisotropic displacement parameters, leading to higher precision in terms of bond lengths and angles [e.g. Hg—Hg = 2.5031 (7 compared to 2.500 (3Å]. The structure consists of alternating rows along [001] of Hg22+ dumbbells (generated by inversion symmetry and SO42− tetrahedra (symmetry 2. The dumbbells are linked via short O—Hg—Hg—O bonds to the sulfate tetrahedra into chains extending parallel to [20-1]. More remote O—Hg—Hg—O bonds connect these chains into a three-dimensional framework.

  20. Characterization studies of purified HgI{sub 2} precursors

    Energy Technology Data Exchange (ETDEWEB)

    Schieber, M. E-mail: Schieber@vms.huji.ac.il; Zuck, A.; Sanguinetti, S.; Montalti, M.; Braiman, M.; Melekhov, L.; Nissenbaum, J.; Grilli, E.; Guzzi, M.; Turchetta, R.; Dulinski, W.; Husson, D.; Riester, J.L

    1999-06-01

    The ability of HgI{sub 2} powders, used as precursors in mercuric iodide crystal growth, to produce high-quality detectors may be predicted by non-destructive methods like photoluminescence. In fact, it is possible to correlate the presence and the intensity ratio of specific bands in the photoluminescence spectrum of a HgI{sub 2} crystal to its impurity content and stoichiometry. These quantities determine the detector grade that may be achieved using that starting material. Nine different HgI{sub 2} precursors, obtained by different purification methods, have been characterized. The lowest impurity content is achieved via poly-ethylene treatment, which gives also a powder of relatively good stoichiometric quality.

  1. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2014-10-01

    Full Text Available China's atmospheric mercury (Hg emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD and selective catalyst reduction (SCR systems for power sector, precalciners with fabric filter (FF for cement production, machinery coking with electrostatic precipitator (ESP for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an

  2. Evaluating the effects of China's pollution control on inter-annual trends and uncertainties of atmospheric mercury emissions

    Science.gov (United States)

    Zhao, Y.; Zhong, H.; Zhang, J.; Nielsen, C. P.

    2014-10-01

    China's atmospheric mercury (Hg) emissions of anthropogenic origin have been effectively restrained through the national policy of air pollution control. Improved methods based on available field measurements are developed to quantify the benefits of Hg abatement through various emission control measures. Those measures include increased use of flue gas desulfurization (FGD) and selective catalyst reduction (SCR) systems for power sector, precalciners with fabric filter (FF) for cement production, machinery coking with electrostatic precipitator (ESP) for iron and steel production, and advanced manufacturing technologies for nonferrous metal smelting. Declining trends in emissions factors for those sources are revealed, leading to a much slower growth of national total Hg emissions than that of energy and economy, from 679 in 2005 to 750 metric tons (t) in 2012. In particular, nearly half of emissions from the above-mentioned four types of sources are expected to be reduced in 2012, attributed to expansion of technologies with high energy efficiencies and air pollutant removal rates after 2005. The speciation of Hg emissions keeps stable for recent years, with the mass fractions of around 55, 39 and 6% for Hg0, Hg2+ and Hgp, respectively. The lower estimate of Hg emissions than previous inventories is supported by limited chemistry simulation work, but middle-to-long term observation on ambient Hg levels is further needed to justify the inter-annual trends of estimated Hg emissions. With improved implementation of emission controls and energy saving, 23% reduction in annual Hg emissions for the most optimistic case in 2030 is expected compared to 2012, with total emissions below 600 t. While Hg emissions are evaluated to be gradually constrained, increased uncertainties are quantified with Monte-Carlo simulation for recent years, particularly for power and certain industrial sources. The uncertainty of Hg emissions from coal-fired power plants, as an example

  3. [Experimental Research of Hg (II) Removal from Aqueous Solutions of HgCl2 with Nano-TiO2].

    Science.gov (United States)

    Zhou, Xiong; Zhang, Jin-yang; Wang, Ding-yong; Qin, Cai-qing; Xu, Feng; Luo Cheng-zhong; Yang, Xi

    2016-01-15

    Mercury removal from aqueous solutions of HgCl2 was studied by indoor simulation experiments, and the effects of three different diameter of particles of Nano-TiO2 ( Nano-Titanium Dioxide) at different dosage, pH, adsorption time and the initial concentration of Hg2+ on the mercury adsorption from simulated wastewater were investigated. The single factor experiments showed that the optimal conditions were: 7.5 g x L(-1) of 5 nm TiO2 or 2.0 g x L(-1) of 100 nm TiO2, pH 8.0, initial concentration of Hg2+ 15 x mg x L(-1) adsorption time 5 min, and under these conditions the adsorption rates reached 99.5% and 99.3%, relatively. When the content of 25 nm TiO2 was 10 g x L(-1), and the other conditions were pH 8.0, initial concentration of Hg2+ 15 mg x L(-1), adsorption time 60 min, the adsorption rate was 62.8%. The Hg(II) removal effects of the TiO2 particles with different diameters followed the order of 100 nm TiO2 > 5 nm TiO2 > 25 nm TiO2. Component adsorption results showed that the 5 nm TiO2 component adsorption effect was superior to its single adsorption effect, while there was little difference between 100 nm TiO2 component adsorption effect and its single adsorption effect. The results of orthogonal experiments indicated that the influencing factors of the adsorption rate followed the order of pH > the initial concentration of Hg2+ > time > dosage. The optimal experiment scheme was: pH 8.0, a dosage of 100 nm Nano-TiO2 of 2.0 g x L(-1) an initial Hg2+ concentration of 25 mg x L(-1) and adsorption time of 10 min. Under the experimental conditions, the maximum adsorption rate reached 99.9%, at the same time, the equilibrium concentration of Hg(II) was 0.033 mg x L(-1) adsorptive capacity was 26.95 mg x g(-1). The adsorption isotherm was in line with the Langmuir isotherm equation, indicating that the Hg(II) uptake by 100 nm Nano-TiO2 was typical monolayer adsorption.

  4. Hydrothermal synthesis of alpha- and beta-HgS nanostructures

    Science.gov (United States)

    Galain, Isabel; María, Pérez Barthaburu; Ivana, Aguiar; Laura, Fornaro

    2017-01-01

    We synthesized HgS nanostructures by the hydrothermal method in order to use them as electron acceptors in hybrid organic-inorganic solar cells. We employed different mercury sources (HgO and Hg(CH3COO)2) and polyvinylpyrrolidone (PVP) or hexadecanethiol (HDT) as stabilizing/capping agent for controlling size, crystallinity, morphology and stability of the obtained nanostructures. We also used thiourea as sulfur source, and a temperature of 180 °C during 6 h. Synthesized nanostructures were characterized by powder X-Ray Diffraction, Diffuse Reflectance Infrared Fourier Transform and Transmission Electron Microscopy. When PVP acts as stabilizing agent, the mercury source has influence on the size -but not in morphology- of the beta-HgS obtained nansostructures. HDT has control over nanostructures' size and depending on the relation Hg:HDT, we obtained a mixture of alpha and beta HgS which can be advantageous in the application in solar cells, due their absorption in different spectral regions. The smallest nanostructures obtained have a mean diameter of 20 nm when using HDT as capping agent. Also, we deposited the aforementioned nanostructures onto flat glass substrates by the spin coating technique as a first approach of an active layer of a solar cell. The depositions were characterized by atomic force microscopy. We obtained smaller particle deposition and higher particle density -but a lower area coverage (5%) - in samples with HDT as capping agent. This work presents promising results on nanostructures for future application on hybrid solar cells. Further efforts will be focused on the deposition of organic-inorganic layers.

  5. HgCdTe Detectors for Space and Science Imaging: General Issues and Latest Achievements

    Science.gov (United States)

    Gravrand, O.; Rothman, J.; Cervera, C.; Baier, N.; Lobre, C.; Zanatta, J. P.; Boulade, O.; Moreau, V.; Fieque, B.

    2016-09-01

    HgCdTe (MCT) is a very versatile material system for infrared (IR) detection, suitable for high performance detection in a wide range of applications and spectral ranges. Indeed, the ability to tailor the cutoff frequency as close as possible to the needs makes it a perfect candidate for high performance detection. Moreover, the high quality material available today, grown either by molecular beam epitaxy or liquid phase epitaxy, allows for very low dark currents at low temperatures, suitable for low flux detection applications such as science imaging. MCT has also demonstrated robustness to the aggressive environment of space and faces, therefore, a large demand for space applications. A satellite may stare at the earth, in which case detection usually involves a lot of photons, called a high flux scenario. Alternatively, a satellite may stare at outer space for science purposes, in which case the detected photon number is very low, leading to low flux scenarios. This latter case induces very strong constraints onto the detector: low dark current, low noise, (very) large focal plane arrays. The classical structure used to fulfill those requirements are usually p/ n MCT photodiodes. This type of structure has been deeply investigated in our laboratory for different spectral bands, in collaboration with the CEA Astrophysics lab. However, another alternative may also be investigated with low excess noise: MCT n/ p avalanche photodiodes (APD). This paper reviews the latest achievements obtained on this matter at DEFIR (LETI and Sofradir common laboratory) from the short wave infrared (SWIR) band detection for classical astronomical needs, to long wave infrared (LWIR) band for exoplanet transit spectroscopy, up to very long wave infrared (VLWIR) bands. The different available diode architectures ( n/ p VHg or p/ n, or even APDs) are reviewed, including different available ROIC architectures for low flux detection.

  6. Mercury (Hg) burden in children: the impact of dental amalgam.

    Science.gov (United States)

    Al-Saleh, Iman; Al-Sedairi, Al Anoud

    2011-07-15

    The risks and benefits of using mercury (Hg) in dental amalgam have long been debated. This study was designed to estimate Hg body burden and its association with dental amalgam fillings in 182 children (ages: 5-15 years) living in Taif City. Hg was measured in urine (UHg), hair (HHg) and toenails (NHg) by the Atomic Absorption Spectrophotometer with Vapor Generator Accessory system. Urinary Hg levels were calculated as both micrograms per gram creatinine (μg/g creatinine) and micrograms per liter (μg/L). We found that children with amalgam fillings (N=106) had significantly higher UHg-C levels than children without (N=76), with means of 3.763 μg/g creatinine versus 3.457 μg/g creatinine, respectively (P=0.019). The results were similar for UHg (P=0.01). A similar pattern was also seen for HHg, with means of 0.614 μg/g (N=97) for children with amalgam versus 0.242 μg/g (N=74) for those without amalgam fillings (P=0). Although the mean NHg was higher in children without amalgam (0.222 μg/g, N=61) versus those with (0.163 μg/g, N=101), the relationship was not significant (P=0.069). After adjusting for many confounders, the multiple logistic regression model revealed that the levels of UHg-C and HHg were 2.047 and 5.396 times higher, respectively, in children with dental amalgam compared to those without (Pdental amalgam fillings (P=0.003). Despite the controversy surrounding the health impact of dental amalgam, this study showed some evidence that amalgam-associated Hg exposure might be related with symptoms of oral health, such as aphthous ulcer, white patches, and a burning-mouth sensation. Further studies are needed to reproduce these findings. The present study showed that significant numbers of children with or without amalgam had Hg levels exceeding the acceptable reference limits. The detrimental neurobehavioral and/or nephrotoxic effects of such an increased Hg on children should be a cause of concern, and further investigation is warranted. Our

  7. Crystal Growth of Solid Solution HgCdTe Alloys

    Science.gov (United States)

    Lehoczky, Sandor L.

    1997-01-01

    The growth of homogenous crystals of HgCdTe alloys is complicated by the large separation between their liquidus and solidus temperatures. Hg(1-x)Cd(x)Te is representative of several alloys which have electrical and optical properties that can be compositionally tuned for a number of applications. Limitations imposed by gravity during growth and results from growth under reduced conditions are described. The importance of residual accelerations was demonstrated by dramatic differences in compositional distribution observed for different attitudes of the space shuttle that resulted in different steady acceleration components.

  8. Natural Hg isotopic composition of different Hg compounds in mammal tissues as a proxy for in vivo breakdown of toxic methylmercury.

    Science.gov (United States)

    Perrot, Vincent; Masbou, Jeremy; Pastukhov, Mikhail V; Epov, Vladimir N; Point, David; Bérail, Sylvain; Becker, Paul R; Sonke, Jeroen E; Amouroux, David

    2016-02-01

    In the last decade, specific attention has been paid to total mercury (HgT) stable isotopic composition, especially in natural samples such as aquatic organisms, due to its potential to track the cycle of this toxic element in the environment. Here, we investigated Hg Compound Specific stable Isotopic Composition (CSIC) of natural inorganic Hg (iHg) and methylmercury (MMHg) in various tissues of aquatic mammals (Beluga whale from the Arctic marine environment and seals from the freshwater lake Baikal, Russia). In seals' organs the variation in mass dependent fractionation (MDF, δ(202)Hg) for total Hg was significantly correlated to the respective fraction of iHg and MMHg compounds, with MMHg being enriched by ∼ 3‰ in heavier isotopes relative to iHg. On the other hand, we observe insignificant variation in Hg mass independent isotope fractionation (MIF, Δ(199)Hg) among iHg and MMHg in all organs for the same mammal species and MMHg in prey items. MIF signatures suggest that both MMHg and iHg in aquatic mammals have the same origin (i.e., MMHg from food), and are representative of Hg photochemistry in the water column of the mammal ecosystem. MDF signatures of Hg compounds indicate that MMHg is demethylated in vivo before being stored in the muscle, and the iHg formed is stored in the liver, and to a lesser extent in the kidney, before excretion. Thus, Hg CSIC analysis in mammals can be a powerful tool for tracing the metabolic response to Hg exposure.

  9. Quantifying the effects of China's pollution control on atmospheric mercury emissions

    Science.gov (United States)

    Zhong, H.

    2014-12-01

    China has conducted series of air pollution control policies to reduce the pollutant emissions. Although not specifically for mercury (Hg), those policies are believed to have co-benefits on atmospheric Hg emission control. On the basis of field-tests data and updated information of energy conservation and emission control, we have developed multiple-year inventories of anthropogenic mercury emissions in China from 2005 to 2012. Three scenarios (scenario 0(S0), scenario 1(S1), scenario 2(S2)) with different emission controls and energy path are designed for prediction of the future Hg emissions for the country. In particular, comprehensive assessments has been conducted to evaluate the evolution of emission factors, recent emission trends, effects of control measures as well as the reliability of our results. The national total emissions of anthropogenic Hg are estimated to increase from 679.0 metric tons (t) in 2005 to 749.8 t in 2012, with the peak at 770.6 t in 2011. The annual growth rate of emissions can then be calculated at 2.1% during 2005-2011, much lower than that of energy consumption or economy of the country. Coal combustion, gold metallurgy and nonferrous metal smelting are the most significant Hg sources of anthropogenic origin, accounting together for 85% of national total emissions. Tightened air pollution controls in China should be important reasons for the smooth emission trends. Compared with 2005, 299 t Hg were reduced in 2010 from power plants, iron and steel smelting, nonferrous-smelting and cement production, benefiting from the improvement of control measures for those sectors. The speciation of Hg emissions is relatively stable for recent years, with the mass fractions of around 55%, 9% and 6% for Hg0, Hg2+ and Hgp respectively. Integrating the policy commitments on energy saving, different from the most conservative case S0, S2 shares the same energy path with S1, but includes more stringent emission control. Under those scenarios, we

  10. External trabeculectomy with T-Flux implant.

    LENUS (Irish Health Repository)

    Jungkim, S

    2012-02-03

    PURPOSE: To evaluate the efficacy and safety of T-Flux implant in nonpenetrating glaucoma surgery. METHODS: This clinical interventional case series study included 35 eyes of 35 patients with medically uncontrolled primary open angle glaucoma. External trabeculectomy with T-Flux (ETTF) is a technique of nonpenetrating glaucoma surgery, in which after removing deep scleral tissue and un-roofing the canal of Schlemn (CS) the external trabecular tissue is peeled off to enhance the aqueous drainage without opening the anterior chamber. A non-absorbable T-Flux implant (IOL TECH Laboratories, France) was sutured in deep intrascleral space to keep it patent. Snellen\\'s best-corrected visual acuity, slit lamp biomicroscopy, intraocular pressure (IOP), gonioscopy, funduscopy, and optic disc assessment were performed preoperatively and postoperatively at 1 day, 1 week, and 1, 3 , 6, and 12 months. Visual field testing was performed preoperatively and at 6 and 12 months postoperatively. RESULTS: For three eyes, surgery was converted to standard trabeculectomy owing to the perforation of trabeculo-Descemet\\'s membrane and iris prolapse and excluded from the study. The results of the remaining 32 eyes were included in the study. Preoperative IOP (mean +\\/- SD) of 32.88 +\\/- 5.7 mmHg decreased to 15.44 +\\/- 1.6 mmHg after 12 months. Ten eyes (28.6%) had microhyphema that resolved spontaneously; 3 eyes (8.6%) had microperforation without iris prolapse so ETTF was proceeded routinely. The preoperative number of antiglaucoma medications per patient reduced from (mean +\\/- SD) 2.74 +\\/- 0.61 to 0.11 +\\/- 0.32 postoperatively at 12 months. Visual acuity and visual fields remained stable. CONCLUSIONS: ETTF appears to provide significant control of IOP and have low incidence of complications.

  11. Prompt atmospheric neutrino flux

    CERN Document Server

    Jeong, Yu Seon; Enberg, Rikard; Kim, C S; Reno, Mary Hall; Sarcevic, Ina; Stasto, Anna

    2016-01-01

    We evaluate the prompt atmospheric neutrino flux including nuclear correction and $B$ hadron contribution in the different frameworks: NLO perturbative QCD and dipole models. The nuclear effect is larger in the prompt neutrino flux than in the total charm production cross section, and it reduces the fluxes by $10\\% - 30\\%$ depending on the model. We also investigate the uncertainty using the QCD scales allowed by the charm cross section data from RHIC and LHC experiments.

  12. Predicting radio fluxes of extrasolar planets (Griessmeier+, 2007)

    NARCIS (Netherlands)

    Griessmeier, J.M.; Zarka, P.; Spreeuw, H.

    2007-01-01

    Expected radio emission from presently known exoplanets. For each of the currently known exoplanets, we list its estimated magnetic moment, maximum radio emission frequency, plasma frequency in the ambient stellar wind, and radio fluxes according to three different models. (1 data file).

  13. Predicting radio fluxes of extrasolar planets (Griessmeier+, 2007)

    NARCIS (Netherlands)

    Griessmeier, J.M.; Zarka, P.; Spreeuw, H.

    2007-01-01

    Expected radio emission from presently known exoplanets. For each of the currently known exoplanets, we list its estimated magnetic moment, maximum radio emission frequency, plasma frequency in the ambient stellar wind, and radio fluxes according to three different models. (1 data file).

  14. Methionine-pyrene hybrid based fluorescent probe for trace level detection and estimation of Hg(II) in aqueous environmental samples: experimental and computational studies.

    Science.gov (United States)

    Banerjee, Arnab; Karak, Debasis; Sahana, Animesh; Guha, Subarna; Lohar, Sisir; Das, Debasis

    2011-02-15

    A new fluorescent, Hg(2+) selective chemosensor, 4-methylsulfanyl-2-[(pyren-4-ylmethylene)-amino] butyric acid methyl ester (L, MP) was synthesized by blending methionine with pyrene. It was well characterized by different analytical techniques, viz. (1)H NMR, (13)C NMR, QTOF mass spectra, elemental analysis, FTIR and UV-vis spectroscopy. The reaction of this ligand with Hg(2+) was studied by steady state and time-resolved fluorescence spectroscopy. The Hg(2+) complexation process was confirmed by comparing FTIR, UV-vis, thermal, QTOF mass spectra and (1)H NMR data of the product with that of the free ligand values. The composition (Hg(2+):L=1:1) of the Hg(2+) complex in solution was evaluated by fluorescence titration method. Based on the chelation assisted fluorescence quenching, a highly sensitive spectrofluorometric method was developed for the determination of trace amounts of Hg(2+) in water. The ligand had an excitation and emission maxima at 360 nm and 455 nm, respectively. The fluorescence life times of the ligand and its Hg(2+) complex were 1.54 ns and 0.72 ns respectively. The binding constant of the ligand, L with Hg(2+) was calculated using Benesi-Hildebrand equation and was found to be 7.5630×10(4). The linear range of the method was from 0 to 16 μg L(-1) with a detection limit of 0.056 μg L(-1) for Hg(2+). The quantum yields of the ligand and its Hg(2+) complex were found to be 0.1206 and 0.0757 respectively. Both the ligand and its Hg(2+) complex have been studied computationally (Ab-initio, Hartree Fock method) to get their optimized structure and other related physical parameters, including bond lengths, bond angles, dipole moments, orbital interactions etc. The binding sites of the ligand to the Hg(2+) ion as obtained from the theoretical calculations were well supported by (1)H NMR titration. The interference of foreign ions was negligible. This method has been successfully applied to the determination of mercury(II) in industrial waste water

  15. Variations in stable isotope fractionation of Hg in food webs of Arctic lakes.

    Science.gov (United States)

    Gantner, Nikolaus; Hintelmann, Holger; Zheng, Wang; Muir, Derek C

    2009-12-15

    Biotic and abiotic fractionation of mercury (Hg) isotopes has recently been shown to occur in aquatic environments. We determined isotope ratios (IRs) of Hg in food webs (zooplankton, chironomids, Arctic char) and sediments of 10 Arctic lakes from four regions and investigated the extent of Hg isotope fractionation. Hg IRs were analyzed by multicollector inductively coupled plasma mass spectrometry (MC-ICP/MS). Hg mass independent fractionation (MIF; Delta(199)Hg) and mass dependent fractionation (MDF; delta(202)Hg) were calculated and compared among samples. IRs of Hg in sediment were characterized mainly by MDF and low MIF (Delta(199)Hg -0.37 to 0.74 per thousand). However, all biota showed evidence of MIF, most pronounced in zooplankton (Delta(199)Hg up to 3.40 per thousand) and char (Delta(199)Hg up to 4.87 per thousand). Zooplankton takes up highly fractionated MeHg directly from the water column, while benthic organisms are exposed to sedimentary Hg, which contains less fractionated Hg. As evidenced by delta(13)C measurements, benthic chironomids make up a large proportion of char diet, explaining in part why MIF(char) meteor impact crater lake (Pingualuk) reflects a "pure" atmospheric Hg signature, which is modified only by aqueous in-lake processes. All other lakes are also affected by terrestrial Hg inputs and sediment processes.

  16. Long term BVOC fluxes above mountain grassland

    Directory of Open Access Journals (Sweden)

    I. Bamberger

    2010-01-01

    Full Text Available Grasslands comprise natural tropical savannah over managed temperate fields to tundra and cover over a quarter of the Earth's land surface. Plant growth, maintenance and decay result in volatile organic compound (VOCs emissions to the atmosphere. Furthermore, biogenic VOCs (BVOCs are emitted due to various environmental stresses including cutting and drying during harvesting. Fluxes of BVOCs were measured with a proton-transfer-reaction – mass-spectrometer (PTR-MS over temperate mountain grassland in Stubai Valley (Tyrol, Austria over one growing season (2008. VOC fluxes were calculated from the disjunct PTR-MS data using the virtual disjunct eddy covariance method and the gap filling method. The two independent methods obtained methanol fluxes following a regression line of y=0.94x−0.06 (correlation factor: R2=0.94. Methanol showed strong daytime emissions throughout the growing season. With maximal values of 9.7 nmol m−2 s−1 the methanol fluxes from growing grassland were considerably higher at the beginning of the growing season in June compared to those measured during October (2.5 nmol m−2 s−1. During the growth only methanol emissions were observed. The cutting and drying of the grass increased the emissions of methanol, up to 30 nmol m−2 s−2. In addition, emissions of acetaldehyde, up to 10 nmol m−2 s−1, and hexenal (leaf aldehyde were detected during harvesting.

  17. THE DETERMINATION OF MERCURY SPECIES AND MULTIPLE METALS IN COAL COMBUSTION EMISSIONS USING IODINE-BASED IMPINGERS AND DIRECT INJECTION NEBULIZATION - INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY ANALYSIS

    Science.gov (United States)

    Mercury (Hg) emissions from coal utilities are difficult to control. Hg eludes capture by most air pollution control devices (APCDs). To determine the gaseous Hg species in stack gases, U.S. EPA Method 5 type sampling is used. In this type of sampling a hole is drilled into th...

  18. Gaseous mercury fluxes in peatlands and the potential influence of climate change

    Science.gov (United States)

    Haynes, Kristine M.; Kane, Evan S.; Potvin, Lynette; Lilleskov, Erik A.; Kolka, Randall K.; Mitchell, Carl P. J.

    2017-04-01

    Climate change has the potential to significantly impact the stability of large stocks of mercury (Hg) stored in peatland systems due to increasing temperatures, altered water table regimes and subsequent shifts in vascular plant communities. However, the Hg exchange dynamics between the atmosphere and peatlands are not well understood. At the PEATcosm Mesocosm Facility in Houghton, Michigan, total gaseous Hg (TGM) fluxes were monitored in a subset of 1-m3 peat monoliths with altered water table positions (high and low) and vascular plant functional groups (sedge only, Ericaceae only or unmanipulated control) above the Sphagnum moss layer. At the SPRUCE bog in north-central Minnesota, TGM fluxes were measured from plots subjected to deep peat soil warming (up to +9 °C above ambient at a depth of 2 m). At PEATcosm, the strongest depositional trend was observed with the Low WT - sedge only treatment mesocosms with a mean TGM flux of -73.7 ± 6.3 ng m-2 d-1, likely due to shuttling of Hg to the peat at depth by aerenchymous tissues. The highest total leaf surface and tissue Hg concentrations were observed with the Ericaceae shrubs. A negative correlation between TGM flux and Ericaceae total leaf surface area suggests an influence of shrubs in controlling Hg exchange through stomatal uptake, surface sorption and potentially, peat shading. Surface peat total Hg concentrations are highest in treatments with greatest deposition suggesting deposition controls Hg accumulation in surface peat. Fluxes in the SPRUCE plots ranged from -45.9 ± 93.8 ng m-2 d-1 prior to the implementation of the deep warming treatments to -1.41 ± 27.1 ng m-2 d-1 once warming targets were achieved at depth and +10.2 ± 44.6 ng m-2 d-1 following prolonged deep soil warming. While these intervals did not differ significantly, a significant positive increase in the slope of the regression between flux and surface temperature was observed across the pre-treatment and warming periods. Shifts in

  19. 46 CFR 53.01-5 - Scope (modifies HG-100).

    Science.gov (United States)

    2010-10-01

    ... Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS General Requirements § 53.01-5 Scope (modifies HG-100). (a) The regulations in this part apply to steam heating boilers, hot water boilers (which include hot water heating boilers and hot water supply...

  20. Decay from the superdeformed bands in {sup 194}Hg

    Energy Technology Data Exchange (ETDEWEB)

    Henry, R.G.; Khoo, T.L.; Carpenter, M.P. [and others

    1995-08-01

    Superdeformed bands in {sup 194}H g were studied using the early implementation of Gammasphere. The response functions for the Ge detectors were measured for the first time as part of this experiment. Experiments were performed with both a backed target (where the residue stopped in the Au backing) and a thin target (where the residue recoiled into vacuum). This will permit measurements of the decay times of the quasicontinuum {gamma}rays. The spectrum in coincidence with the yrast SD band in {sup 194}Hg reveals the same features as found in the quasicontinuum structure in {sup 192}Hg. These features include: statistical {gamma}rays feeding the SD band, a pronounced E2 peak from transitions feeding the SD band, a Ml/E2 bump at low energies that is associated with the last stages of feeding of the superdeformed band, and a quasicontinuous distribution from {gamma}rays linking SD and normal states, including a sizable clustering of strength around 1.7 MeV. The remarkable similarity of the spectra coincident with SD bands in {sup 192,194}Hg provides additional support for a statistical process for decay out of the SD states. This similarity contrasts with differences observed in the spectrum coincident with the SD band in the odd-even {sup 191}Hg, confirming the predictions about the role of pairing (in normal states) in influencing the shape of the decay-out spectrum.

  1. Hypotension is 100 mm Hg on the Battlefield

    Science.gov (United States)

    2011-10-01

    corroborate the predictive value of admission metabolic acidosis on patient survival. We also were able to show that an SBP of 110 mm Hg after injury was... metabolic acidosis , complications, length of stay, intensive care unit days, and ventilator days all increased. The implication of our result suggested

  2. Experimental study of 199Hg spin anti-relaxation coatings

    CERN Document Server

    Chowdhuri, Z; Horras, M; Kirch, K; Krempel, J; Lauss, B; Mtchedlishvili, A; Rebreyend, D; Roccia, S; Schmidt-Wellenburg, P; Zsigmond, G

    2013-01-01

    We report on a comparison of spin relaxation rates in a $^{199}$Hg magnetometer using different wall coatings. A compact mercury magnetometer was built for this purpose. Glass cells coated with fluorinated materials show longer spin coherence times than if coated with their hydrogenated homologues. The longest spin relaxation time of the mercury vapor was measured with a fluorinated paraffin wall coating.

  3. Ion Beam Nanostructuring of HgCdTe Ternary Compound

    Science.gov (United States)

    Smirnov, Aleksey B.; Savkina, Rada K.; Udovytska, Ruslana S.; Gudymenko, Oleksandr I.; Kladko, Vasyl P.; Korchovyi, Andrii A.

    2017-05-01

    Systematic study of mercury cadmium telluride thin films subjected to the ion beam bombardment was carried out. The evolution of surface morphology of (111) Hg1 - x Cd x Te ( x 0.223) epilayers due to 100 keV B+ and Ag+ ion irradiation was studied by AFM and SEM methods. X-ray photoelectron spectroscopy and X-ray diffraction methods were used for the investigation of the chemical compound and structural properties of the surface and subsurface region. It was found that in the range of nanoscale, arrays of holes and mounds on Hg0.777Cd0.223Te (111) surface as well as the polycrystalline Hg1 - x Cd x Te cubic phase with alternative compound ( x 0.20) have been fabricated using 100 keV ion beam irradiation of the basic material. Charge transport investigation with non-stationary impedance spectroscopy method has shown that boron-implanted structures are characterized by capacity-type impedance whereas for silver-implanted structures, an inductive-type impedance (or "negative capacitance") is observed. A hybrid system, which integrates the nanostructured ternary compound (HgCdTe) with metal-oxide (Ag2O) inclusions, was fabricated by Ag+ ion bombardment. The sensitivity of such metal-oxide-semiconductor hybrid structure for sub-THz radiation was detected with NEP 4.5 × 10-8 W/Hz1/2at ν ≈ 140 GHz and 296 K without amplification.

  4. Synthetic radio views on simulated solar flux ropes

    CERN Document Server

    Kuznetsov, Alexey; Xia, Chun

    2016-01-01

    In this paper, we produce synthetic radio views on simulated flux ropes in the solar corona, where finite-beta magnetohydrodynamic (MHD) simulations serve to mimic the flux rope formation stages, as well as their stable endstates. These endstates represent twisted flux ropes where balancing Lorentz forces, gravity and pressure gradients determine the full thermodynamic variation throughout the flux rope. The obtained models are needed to quantify radiative transfer in radio bands, and allow us to contrast weak to strong magnetic field conditions. Field strengths of up to 100 G in the flux rope yield the radio views dominated by optically thin free-free emission. The forming flux rope shows clear morphological changes in its emission structure as it deforms from an arcade to a flux rope, both on disk and at the limb. For an active region filament channel with a field strength of up to 680 G in the flux rope, gyroresonance emission (from the third-fourth gyrolayers) can be detected and even dominates over free-...

  5. Video Meteor Fluxes

    Science.gov (United States)

    Campbell-Brown, M. D.; Braid, D.

    2011-01-01

    The flux of meteoroids, or number of meteoroids per unit area per unit time, is critical for calibrating models of meteoroid stream formation and for estimating the hazard to spacecraft from shower and sporadic meteors. Although observations of meteors in the millimetre to centimetre size range are common, flux measurements (particularly for sporadic meteors, which make up the majority of meteoroid flux) are less so. It is necessary to know the collecting area and collection time for a given set of observations, and to correct for observing biases and the sensitivity of the system. Previous measurements of sporadic fluxes are summarized in Figure 1; the values are given as a total number of meteoroids striking the earth in one year to a given limiting mass. The Gr n et al. (1985) flux model is included in the figure for reference. Fluxes for sporadic meteoroids impacting the Earth have been calculated for objects in the centimeter size range using Super-Schmidt observations (Hawkins & Upton, 1958); this study used about 300 meteors, and used only the physical area of overlap of the cameras at 90 km to calculate the flux, corrected for angular speed of meteors, since a large angular speed reduces the maximum brightness of the meteor on the film, and radiant elevation, which takes into account the geometric reduction in flux when the meteors are not perpendicular to the horizontal. They bring up corrections for both partial trails (which tends to increase the collecting area) and incomplete overlap at heights other than 90 km (which tends to decrease it) as effects that will affect the flux, but estimated that the two effects cancelled one another. Halliday et al. (1984) calculated the flux of meteorite-dropping fireballs with fragment masses greater than 50 g, over the physical area of sky accessible to the MORP fireball cameras, counting only observations in clear weather. In the micron size range, LDEF measurements of small craters on spacecraft have been used to

  6. Importance of Dissolved Neutral Hg-Sulfides, Energy Rich Organic Matter and total Hg Concentrations for Methyl Mercury Production in Sediments

    Science.gov (United States)

    Drott, A.; Skyllberg, U.

    2007-12-01

    Methyl mercury (MeHg) is the mercury form that biomagnifies to the greatest extent in aquatic food webs. Therefore information about factors determining MeHg concentrations is critical for accurate risk assessment of contaminated environments. The concentration of MeHg in wetlands and sediments is the net result of: 1) methylation rates, 2) demethylation rates, and 3) input/output processes. In this study, the main controls on Hg methylation rates and total concentrations of MeHg, were investigated at eight sites in Sweden with sediments that had been subjected to local Hg contamination either as Hg(0), or as phenyl-Hg. Sediments were selected to represent a gradient in total Hg concentration, temperature climate, salinity, primary productivity, and organic C content and quality. Most sediments were high in organic matter content due to wood fibre efflux from pulp and paper industry. The pore water was analysed for total Hg, MeHg, DOC, H2S(aq), pH, DOC, Cl and Br. The chemical speciation of Hg(II) and MeHg in pore water was calculated using equilibrium models. Potential methylation and demethylation rates in sediments were determined in incubation experiments at 23° C under N2(g) for 48 h, after addition of isotopically enriched 201Hg(II) and Me204Hg. In all surface (0-20 cm) sediments there was a significant (pproduction overruled degradation and input/output processes of MeHg in surface sediments, and that % MeHg in surface sediments may be used as a proxy for net production of MeHg. To our knowledge, these are the first data showing significant positive relationships between short term (48 h) MeHg production and longer term accumulation of MeHg, across a range of sites with different properties (1). If MeHg was not normalized to total Hg, the relationship was not significant. For sub-sets of brackish waters (pproductivity freshwaters (pproductivity freshwater (p=0.048, n=6), the sum of neutral Hg-sulfides [Hg(SH)20 (aq)] and [HgS0 (aq)] in the sediment pore

  7. Growth, properties and applications of HgCdTe

    Science.gov (United States)

    Schmit, J. L.

    1983-12-01

    This paper provides primarily a review of the methods used to grow HgCdTe with a summary of some of its basic properties and applications. Methods of crystal growth fall generally into three classes: growth from the melt, from solution and from the vapor phase. All three methods have been and are being used to grow HgCdTe. The high vapor pressure of HgCdTe at the melting point, combined with a large segregation coefficient, have effectively limited the use of Czochralski or zone melting techniques, but two melt growth techniques have survived: (1) a variation of Bridgman growth called quench-anneal wherein a dendritic crystal is formed by quenching the melt and is homogenized by solid state recrystallization below the melting point, (2) a variation of freezing from a large volume called slush-growth wherein a melt is held in a temperature gradient for several weeks while a crystal grows. Growth from solution has taken the form of liquid phase epitaxy (LPE) on CdTe with the LPE systems including growth from Hg-rich, HgTe-rich and Te-rich solutions and using tipping, vertical dipping, vertical sliding and horizontal sliding. Vapor phase growth is very promising but is not yet in production. Techniques include growth by isothermal close spaced epitaxy in which HgTe is transported isothermally by chemical potential onto CdTe, molecular beam epitaxy (MBE) in which elements are evaporated in a high vacuum, and metal organic chemical vapor deposition (MOCVD) in which some of the metal atoms are carried to the substrate bound to organic radicals before being freed by pyrolysis. In all these methods, control of Hg pressure is a major concern. The fundamental properties discussed briefly are those of prime interest to detector manufacturers: energy gap ( Eg), intrinsic carrier concentration ( ni), and electrical activity of dopants. A reasonable fit to the Eg data from ˜ 20 papers is given by Eg = -0.302+1.93x+5.35×10 -4T(1-2x)-0.810x 2+0.832x 3. This gap, combined with k

  8. Temporal Dynamics of Methane Fluxes in Temperate Urban Wetlands

    Science.gov (United States)

    Schafer, K. V.; Bohrer, G.; Naor, L.; Mouser, P. J.; Mitsch, W. J.; Wu, M.

    2011-12-01

    Recent concerns about wetland restoration have highlighted the potential conflict of the hydrological and ecological benefits of wetlands and greenhouse gas emissions particularly methane. Therefore it is pivotal to quantify emission rates and effects of meteorological, hydrological and ecological drivers of methane fluxes in wetlands. Novel fast methane (CH4) gas analyzers are now enabling continuous ecosystem scale measurements and assessment. We have set up two eddy flux stations - one in a constructed freshwater wetland in the Olentangy River Wetland Research Park (ORWRP) Ohio and one in a restored tidal salt marsh in the Meadowlands of New Jersey (MNJ). Continuous methane fluxes were measured with the LI7700 over one growing season and additional measurements with chambers were conducted at several locations in each site. Methane emissions were highly variable in space and time. The mean daily dynamics of methane emission are related to major drivers of methane production. In ORWRP a late afternoon peak of methane emission is correlated to soil temperature and no other meteorological or hydrological driver seem to explain the pattern observed. In MNJ a correlation of methane fluxes to night time CO2 fluxes was observed. At both sites methane production and emission is increasing at the beginning of the growing season.

  9. Formation of PdHg by reaction of palladium thin film contacts deposited onto mercuric iodide ({alpha}-HgI{sub 2}) radiation detector crystals

    Energy Technology Data Exchange (ETDEWEB)

    Medlin, D.L. [Sandia National Labs., Livermore, CA (United States); Van Scyoc, J.M. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Gilbert, T.S. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Schlesinger, T.E. [Carnegie-Mellon Univ., Pittsburgh, PA (United States). Dept. of Electrical and Computer Engineering; Boehme, D. [Sandia National Labs., Livermore, CA (United States); Schieber, M. [Sandia National Labs., Livermore, CA (United States); Natarajan, M. [TN Technologies, Inc., Round Rock, TX (United States); James, R.B. [Sandia National Labs., Livermore, CA (United States)

    1996-10-01

    The microstructure and phase distribution of palladium thin films sputter deposited onto {alpha}-HgI{sub 2} for use as electrical contacts in radiation detectors are investigated using electron microscopy. Our results show a limited reaction to form palladium mercuride (PdHg). It is shown that the formation of PdHg via several reaction pathways is thermodynamically feasible. (orig.).

  10. Effect of flux on thermoluminescence in flux-grown BaFCl crystals. [X-and gamma-irradiation effects

    Energy Technology Data Exchange (ETDEWEB)

    Somaiah, K.; Babu, V.H. (Osmania Univ., Hyderabad (India). Dept. of Physics)

    1984-07-01

    BaFCl crystals have been grown using BaF/sub 2/ and BaCl/sub 2/ by flux technique. Glow curves, optical absorption, and TL emission spectra of X- or gamma irradiated crystals are studied. The results have been compared with those BaFCl crystals grown from NaF flux so as to study the effects of flux on these properties. It is found that crystals grown from BaF/sub 2/ flux are relatively purer. An additional TL glow peak at 460 K, an optical absorption band at 775 nm and TL emission band at 485 nm have been obtained in the presently grown crystals. The additional glow peak, optical absorption band have been attributed to F(F-bar) aggregate centers, whereas the 485 nm TL emission band to impurity centers.

  11. Atmospheric emission of mercury due to combustion of steam coal and domestic coal in China

    Science.gov (United States)

    Wang, Shaobin; Luo, Kunli

    2017-08-01

    To study the mercury emission due to the combustion of steam coal and domestic coal in China, we analyzed the mercury contents of coal, fly ash, bottom ash and sluicing water in thermal power plants, steam boilers as well as domestic coal-stoves, in Shaanxi, Shanxi, Shandong and Yunnan Provinces. This study conduct an estimate of the Hg emission rates from steam coal and domestic coal combustion based on the method of mass distribution ratio of fly ash and bottom ash. The results show that the Hg emission rate of coal combustion in thermal power plants is about 50.21% (electrostatic precipitators + wet flue gas desulfurization), and that in heating boilers is about 67.23%, and 92.28% in industrial boilers without flue gas desulphurisation equipment. Furthermore, Hg emission rate is 83.61% due to domestic coal combustion in coal-stoves. The Hg emission amount into the atmosphere from power and heat generation, industrial boilers, domestic coal-stoves and spontaneous combustion of coal gangue is roughly estimated to be 133 ± 4, 100 ± 17, 11 ± 0.1 and 47 ± 26 tons in China in 2014, respectively, and the total Hg emission amount from this paper is estimated at 292 tons. The trends of Hg emission in China from 1991 to 2014 show an accelerating growth after 2002. The proportion of mercury emission due to thermal power, heating generation and industrial energy utilization continuously increased. The atmospheric emission of mercury due to combustion of steam coal, domestic coal and coal gangue accounts nearly 50% in total anthropogenic Hg emissions in China, indicating one of the largest sources of Hg emission in China which should draw more public and scientific attention in the future.

  12. Electron heat flux instability

    Science.gov (United States)

    Saeed, Sundas; Sarfraz, M.; Yoon, P. H.; Lazar, M.; Qureshi, M. N. S.

    2017-02-01

    The heat flux instability is an electromagnetic mode excited by a relative drift between the protons and two-component core-halo electrons. The most prominent application may be in association with the solar wind where drifting electron velocity distributions are observed. The heat flux instability is somewhat analogous to the electrostatic Buneman or ion-acoustic instability driven by the net drift between the protons and bulk electrons, except that the heat flux instability operates in magnetized plasmas and possesses transverse electromagnetic polarization. The heat flux instability is also distinct from the electrostatic counterpart in that it requires two electron species with relative drifts with each other. In the literature, the heat flux instability is often called the 'whistler' heat flux instability, but it is actually polarized in the opposite sense to the whistler wave. This paper elucidates all of these fundamental plasma physical properties associated with the heat flux instability starting from a simple model, and gradually building up more complexity towards a solar wind-like distribution functions. It is found that the essential properties of the instability are already present in the cold counter-streaming electron model, and that the instability is absent if the protons are ignored. These instability characteristics are highly reminiscent of the electron firehose instability driven by excessive parallel temperature anisotropy, propagating in parallel direction with respect to the ambient magnetic field, except that the free energy source for the heat flux instability resides in the effective parallel pressure provided by the counter-streaming electrons.

  13. Ultra-Low Dark Current HgCdTe Detector in SWIR for Space Applications

    Science.gov (United States)

    Cervera, C.; Boulade, O.; Gravrand, O.; Lobre, C.; Guellec, F.; Sanson, E.; Ballet, P.; Santailler, J. L.; Moreau, V.; Zanatta, J. P.; Fieque, B.; Castelein, P.

    2016-09-01

    This paper presents recent developments at Commissariat à l'Energie atomique, Laboratoire d'Electronique et de Technologie de l'Information infrared laboratory on processing and characterization of p-on-n HgCdTe (MCT) planar infrared focal plane arrays (FPAs) in short-wave infrared (SWIR) spectral band for the astrophysics applications. These FPAs have been grown using both liquid phase epitaxy and molecular beam epitaxy on a lattice-matched CdZnTe substrate. This technology exhibits lower dark current and lower series resistance in comparison with n-on-p vacancy-doped architecture and is well adapted for low flux detection or high operating temperature. This architecture has been evaluated for space applications in long-wave infrared and very-long-wave infrared spectral bands with cut-off wavelengths from 10 μm up to 17 μm at 78 K and is now evaluated for the SWIR range. The metallurgical nature of the absorbing layer is also examined and both molecular beam epitaxy and liquid phase epitaxy have been investigated. Electro-optical characterizations have been performed on individual photodiodes from test arrays, whereas dark current investigation has been performed with a fully functional readout integrated circuit dedicated to low flux operations.

  14. Comparison of the characteristics and mechanisms of Hg(II) sorption by biochars and activated carbon.

    Science.gov (United States)

    Xu, Xiaoyun; Schierz, Ariette; Xu, Nan; Cao, Xinde

    2016-02-01

    Two biochars were produced from bagasse and hickory chips (referred to as BB and HCB, respectively) and evaluated for their sorption ability of Hg(II) in aqueous solution. A commercial activated carbon (AC) which is commonly used for Hg(II) removal was included for comparison. Both biochars showed higher sorption capacities than AC, following the trend of BB>HCB>AC. The sorption of Hg(II) by BB and AC was mainly attributed to the formation of (COO)2Hg(II) and (O)2Hg(II). As a result, the adsorption capacity of Hg(II) by BB decreased 17.6% and 37.6% after COOH and OH were blocked, respectively and that of Hg(II) by AC decreased 6.63% and 62.2% for COOH and OH hindered, respectively. However, blocking the function groups had little effect on the Hg removal by HCB since sorption of Hg(II) by HCB was mainly resulted from the π electrons of CC and CO induced Hg-π binding. Further X-ray photoelectron spectroscopy analysis indicated the possibility of reduction of the Hg(II) to Hg(I) by phenol groups or π electrons during the removal of Hg(II) by both biochars. In conclusion, biochar is more effective than activated carbon in removing Hg(II) and there exists a high potential that biochar can be a substitute of activated carbon for removal of Hg(II) from wastewater.

  15. Beer Law Constants and Vapor Pressures of HgI2 over HgI2(s,l)

    Science.gov (United States)

    Su, Ching-Hua; Zhu, Shen; Ramachandran, N.; Burger, A.

    2002-01-01

    Optical absorption spectra of the vapor phase over HgI2(s,l) were measured at sample temperatures between 349 and 610 K for wavelengths between 200 and 600 nm. The spectra show the samples sublimed congruently into HGI2 without any observed Hg or I2 absorption spectra. The Beer's Law constants for 15 wavelengths between 200 and 440 nm were derived. From these constants the vapor pressure of HgI2, P, was found to be a function of temperature for the liquid and the solid beta-phases: ln P(atm) = -7700/T(K) + 12.462 (liquid phase) and ln P(atm) = -10150/T(K) + 17.026 (beta-phase). The expressions match the enthalpies of vaporization and sublimation of 15.30 and 20.17 kcal/mole respectively, for the liquid and the beta-phase HgI2. The difference in the enthalpies gives an enthalpy of fusion of 4.87 kcal/mole, and the intersection of the two expressions gives a melting point of 537 K.

  16. Capture of air particulate matter and gaseous Hg{sup 0} by ionic liquids analyzed by PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, M. A.; Solis, C.; Andrade, E. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Mondragon, M. A. [UNAM, Centro de Fisica Aplicada y Tecnologia Avanzada, Boulevard Juriquilla No. 3001, 76230 Juriquilla, Queretaro (Mexico); Murillo, G.; Mendez, B. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-06-15

    Particle induced X-ray emission (PIXE) has been extensively employed to study the elements associated to air particulate matter (Pm). However, the atmosphere is a very complex system and inorganic pollutants may be also in gaseous phases. Aerosol monitoring does not allow the determination of all the volatile inorganic compounds, since they are not retained in the filters, or if they are trapped, the analysis under vacuum results in a partial or total loss of them. In order to extend the applications of PIXE there is a need to develop new methods to simultaneously capture particulate matter and volatile substances. Ionic liquids (Il) result from combinations of organic cations and anions that may be liquid at room temperature. The physicochemical characteristics of Il s allow them to absorb atmospheric trace metals present in solid and gaseous phases, a task normally performed with independent sampling methods. In this work we explored this capability of Il s as monitors of chemical species which can be found in the gas phase and as particulate matter. The tested Il s included 1-Butyl-3-Methyl-Imidazolium-Hexafluorophosphate (BMIM) (PF{sub 6}) for Pm and Hg capture; and 1-Butyl-3-methylimidazolium thiocyanate (BMIM) (Scn) only for Hg capture. Elemental analysis of both experiments was performed by particle induced X-ray emission (PIXE). Changes in the molecular structure on BMIM PF{sub 6} due to the Hg binding were followed by infrared spectroscopy. (BMIM((PF{sub 6}) proved to be successful as passive collector of Pm. However when both were used for Hg capture, (BMIM) (Scn) showed better selectivity. These preliminary results showed the potential of Il s for simultaneous uptake of Pm and volatile inorganic compounds. (Author)

  17. Fabrication and characteristics of Hg/n-bulk GaN schottky diode

    Directory of Open Access Journals (Sweden)

    Belkadi NABIL

    2015-05-01

    Full Text Available In this work, the electrical characteristics of bulk gallium nitride doped n have been investigated by the current–voltage (I–V and capacitance-voltage (C-V at 300 K temperature. Using the thermionic emission theory, the saturation current, IS (2.45×10-7 A, the ideality factor n (1.13, the barrier height ϕbn (0.65 and the serial resistance RS (670 are determined for our structure (Hg/n-GaN. It has also been calculated the barrier height from C–V experimental data. The determined value is higher (1.24 eV compared with the value obtained from I–V (0.65 eV characteristics, it was found the following electrical parameters, doping concentration (ND = 1.68×1016 cm-3, diffusion voltage (Vd = 1.11 V and density of interface states (Nss.

  18. Correction of the Influence of Multiple Scattering on NO2 Emission Flux during the Pollutants Source Measurement by Mobile Differential Optical Absorption Spectroscopy%利用O4测量去除车载差分吸收光谱测量污染源NO2排放通量计算中多次散射的影响

    Institute of Scientific and Technical Information of China (English)

    吴丰成; 谢品华; 李昂; 司福祺; 王杨; 刘文清

    2011-01-01

    基于被动差分光学吸收光谱(DOAS)算法,使用车载被动DOAS技术在测量污染源排放通量时,由于云的多次散射影响,导致污染源排放通量的计算误差.特别对于像NO2这样的整层分布气体,由于低层云的出现造成多次散射增强使得NO2浓度显著升高,造成在计算污染源排放通量时产生较大误差.针对此问题,提出在车载DOAS污染源排放通量监测中利用O4及SO2的垂直柱浓度信息,在通量计算中对由于多次散射造成的NO2柱浓度增加进行修正.利用此方法反演了2010年10月9日上海某工业区的实验数据,修正后及修正前通量计算值分别为0.50 t/h和1.49 t/h.结果表明利用此方法能够修正污染源排放通量测量中多次散射引起的柱浓度显著升高影响,进一步促进了此技术在准确获取污染源排放通量上的发展及应用.%A large calculation error of pollutant emission flux occurs due to the influence of multiple scattering when we utilize the mobile differential optical absorption spectroscopy (DOAS), which is based on the passive differential optical absorption spectroscopy, to measure the pollutant source. The concentration of N0z that lies in the total layer increases significantly because of multi scattering in the lower atmospheric cloud. This results in large computing error of NO2 emission flux. To solve this problem, a new method is proposed. The information of O4 and SO2 vertical column density is employed during the measurement and then used to adjust the enhancement of NO2 due to multi scattering in the process of calculating flux. The experimental data from a certain Shanghai industrial district on Oct. 9th, 2010 is retrieved using this method. The flux value is 1. 49 t/h and 0. 5 t/h before and after correction, respectively. The results indicate that this method could effectively eliminate the influence of column density rise caused by multi scattering during the measurement. This novel method

  19. [Study on mercury re-emissions during fly ash utilization].

    Science.gov (United States)

    Meng, Yang; Wang, Shu-Xiao

    2012-09-01

    The amount of fly ash produced during coal combustion is around 400 million tons per year in China. About 65%-68% of fly ash is used in building material production, road construction, architecture and agriculture. Some of these utilization processes include high temperature procedures, which may lead to mercury re-emissions. In this study, experiments were designed to simulate the key process in cement production and steam-cured brick production. A temperature programmed desorption (TPD) method was used to study the mercury transformation in the major utilization processes. Mercury re-emission during the fly ash utilization in China was estimated based on the experimental results. It was found that mercury existed as HgCl2 (Hg2 Cl2), HgS and HgO in the fly ash. During the cement production process, more than 98% of the mercury in fly ash was re-emitted. In the steam-curing brick manufacturing process, the average mercury re-emission percentage was about 28%, which was dominated by the percentage of HgCl2 (Hg2 Cl2). It is estimated that the mercury re-emission during the fly ash utilization have increased from 4.07 t in 2002 to 9.18 t in 2008, of which cement industry contributes about 96.6%.

  20. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  1. High removal efficacy of Hg(II) and MeHg(II) ions from aqueous solution by organoalkoxysilane-grafted lignocellulosic waste biomass.

    Science.gov (United States)

    Saman, Norasikin; Johari, Khairiraihanna; Song, Shiow-Tien; Kong, Helen; Cheu, Siew-Chin; Mat, Hanapi

    2017-03-01

    An effective organoalkoxysilanes-grafted lignocellulosic waste biomass (OS-LWB) adsorbent aiming for high removal towards inorganic and organic mercury (Hg(II) and MeHg(II)) ions was prepared. Organoalkoxysilanes (OS) namely mercaptoproyltriethoxylsilane (MPTES), aminopropyltriethoxylsilane (APTES), aminoethylaminopropyltriethoxylsilane (AEPTES), bis(triethoxysilylpropyl) tetrasulfide (BTESPT), methacrylopropyltrimethoxylsilane (MPS) and ureidopropyltriethoxylsilane (URS) were grafted onto the LWB using the same conditions. The MPTES grafted lignocellulosic waste biomass (MPTES-LWB) showed the highest adsorption capacity towards both mercury ions. The adsorption behavior of inorganic and organic mercury ions (Hg(II) and MeHg(II)) in batch adsorption studies shows that it was independent with pH of the solutions and dependent on initial concentration, temperature and contact time. The maximum adsorption capacity of Hg(II) was greater than MeHg(II) which respectively followed the Temkin and Langmuir models. The kinetic data analysis showed that the adsorptions of Hg(II) and MeHg(II) onto MPTES-LWB were respectively controlled by the physical process of film diffusion and the chemical process of physisorption interactions. The overall mechanism of Hg(II) and MeHg(II) adsorption was a combination of diffusion and chemical interaction mechanisms. Regeneration results were very encouraging especially for the Hg(II); this therefore further demonstrated the potential application of organosilane-grafted lignocellulosic waste biomass as low-cost adsorbents for mercury removal process.

  2. Environmental impact of CO2, Rn, Hg degassing from the rupture zones produced by Wenchuan M s 8.0 earthquake in western Sichuan, China.

    Science.gov (United States)

    Zhou, Xiaocheng; Chen, Zhi; Cui, Yueju

    2016-10-01

    The concentrations and flux of CO2, (222)Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean [Formula: see text] of -20.4 ‰ and by a mean CO2 flux of 88.1 g m(-2) day(-1), which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m(-2) day(-1) in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m(-2) s(-1); (3) the soil Hg flux was lower, ranging from -2.5 to 18.7 n g m(-2) h(-1) and increased from south to north. The mean flux over the all profiles was 4.2 n g m(-2) h(-1). The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km(2) were approximately 0.57 Mt year(-1) and 688.19 g year(-1). It is recommended that land-use planners should

  3. Emission Trading

    OpenAIRE

    2009-01-01

    The work concerns Emission Trading Scheme from perspektive of taxes and accounting. I should show problems with emission trading. The work concerns practical example of trading with emission allowance.

  4. The Upside to Hg-DOM Associations for Water Quality: Removal of Hg from Solution Using Coagulaion with Metal-Based Salts

    Science.gov (United States)

    Henneberry, Y.; Kraus, T. E.; Fleck, J.; Krabbenhoft, D. P.; Horwath, W. R.

    2011-12-01

    This study assessed the potential use of metal-based coagulants to remove dissolved mercury (Hg) from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however those studies used high concentrations of Hg, which did not reflect naturally occurring concentrations of Hg. Filtered water collected from an agricultural drain in the Sacramento-San Joaquin Delta (Delta) was treated with three industrial-grade coagulants (ferric chloride, ferric sulfate, and polyaluminum chloride) to determine their efficacy in removing both inroganic (IHg) and methylmercury (MeHg) from the water column. The Delta suffers from elevated surface water Hg concentrations and as a result is listed as an imparied water body. Coagulants removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant concentrations. Research using isotopically labeled Hg is providing insight into whether coagulation can remove recently added Hg (e.g. atmospheric deposition) from solution and whether once formed, the floc can remove additional Hg from the water column.

  5. Study of atomic structure of liquid Hg-In alloys using ab-initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nalini; Ahluwalia, P. K. [Department of Physics, Himachal Pradesh University, Shimla(HP)-171005 (India); Thakur, Anil [Department of Physics, Govt. P. G. College Solan (HP)-173212 (India)

    2015-05-15

    Ab-initio molecular dynamics simulations are performed to study the structural properties of liquid Hg-In alloys. The interatomic interactions are described by ab-initio pseudopotentials given by Troullier and Martins. Five liquid Hg-In mixtures (Hg{sub 10}In{sub 90}, Hg{sub 30}In{sub 70}, Hg{sub 50}In{sub 50}, Hg{sub 70}In{sub 30} and Hg{sub 90}In{sub 10}) at 299K are considered. The radial distribution function g(r) and structure factor S(q) of considered alloys are compared with respective experimental results for liquid Hg (l-Hg) and (l-In). The radial distribution function g(r) shows the presence of short range order in the systems considered. Smooth curves of Bhatia-Thornton partial structure factors factor shows the presence of liquid state in the considered alloys.

  6. Removal of Hg~0 with sodium chlorite solution and mass transfer reaction kinetics

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The absorption behavior of Hg0 was studied experimentally by using sodium chlorite solution(NaClO2) as the absorbent in a bubble reactor.Primary influencing factors on removal efficiency of Hg0 such as NaClO2 concentration,pH,reaction temperature and the concentration of Hg0 were investigated.The results indicated that 72.91% of Hg0 removal efficiency could be achieved in acidic NaClO2 solution.The removal mechanism of Hg0 was proposed by analyzing of Hg2+ concentration in ab-sorption solution after reaction and comparing the electrode potentials between NaClO2 species and Hg2+/Hg0.The experimental results of mass transfer-reaction kinetics on oxidation of Hg0 by NaClO2 solution showed that with the increase of NaClO2 concentration and the decrease of pH value,the enhancement factor(E) and ratio of KG(Hg0)/kG(Hg0) increased and the liquid phase mass transfer resistance decreased,which is benefit to the mass transfer adsorption reaction.Although the increase of reaction temperature could improve the enhancement factor(E),but the ratio of KG(Hg0)/kG(Hg0) decreased;as a result,the liquid phase mass transfer resistance increased,therefore,the reaction rate for removal of Hg0 decreased.

  7. 640 X 480 Pace HgCdTe FPA

    Science.gov (United States)

    Kozlowski, Lester J.; Bailey, Robert B.; Cabelli, Scott A.; Cooper, Donald E.; McComas, Gail D.; Vural, Kadri; Tennant, William E.

    1992-12-01

    A hybrid HgCdTe 640 X 480 infrared (IR) focal plane array (FPA) that meets the sensitivity, resolution, and field-of-view requirements of high-performance medium wavelength infrared (MWIR) imaging systems has been developed. The key technology making this large, high sensitivity device producible is the epitaxial growth of HgCdTe on a CdTe-buffered, sapphire substrate (referred to as PACE, for Producible Alternative to CdTe for Epitaxy; PACE-I refers to sapphire). The device offers TV resolution with excellent sensitivity at temperatures below 120 K. Mean NE(Delta) T as low as 13 mK has been achieved at operating temperatures nonuniformity compensation.

  8. Electrical Conductivity of HgTe at High Temperatures

    Science.gov (United States)

    Li, C.; Lehoczky, S. L.; Su, C.-H.; Scripa, R. N.

    2004-01-01

    The electrical conductivity of HgTe was measured using a rotating magnetic field method from 300 K to the melting point (943 K). A microscopic theory for electrical conduction was used to calculate the expected temperature dependence of the HgTe conductivity. A comparison between the measured and calculated conductivities was used to obtain the estimates of the temperature dependence of Gamma(sub 6)-Gamma(sub 8) energy gap from 300 K to 943 K. The estimated temperature coefficient for the energy gap was comparable to the previous results at lower temperatures (less than or equal to 300 K). A rapid increase in the conductivity just above 300 K and a subsequent decrease at 500 K is attributed to band crossover effects. This paper describes the experimental approach and some of the theoretical calculation details.

  9. Electronic structure of rectangular HgTe quantum dots

    Science.gov (United States)

    Li, Jian; Zhang, Dong; Zhu, Jia-Ji

    2017-09-01

    We theoretically investigate the single- and few-electron ground-states properties of HgTe topological insulator quantum dots with rectangular hard-wall confining potential using configuration interaction method. For the case of single electron, the edge states is robust against the deformation from a square quantum dot to a rectangular ones, in contrast to the bulk states, the energy gap of the QDs increased due to the coupling of the opposite edge states; for the case of few electrons, the electrons first fill the edge states in the bulk band gap and the addition energy exhibit universal even-odd oscillation due to the shape-independent two-fold degeneracy of the edge states. The size of this edge shell can be controlled by tuning the dot size, shape or the bulk band gap via lateral or vertical electric gating respectively of the HgTe quantum dot.

  10. Hvordan understøttes hg-elevers kompetenceudvikling

    DEFF Research Database (Denmark)

    Svejgaard, Karin Løvenskjold; Hansen, Jens Ager; Karmark, Ole

    Publikationen handler om, hvordan hg-elever arbejder og dermed lærer og udvikler kvalifikationer og kompetencer i de undervisnings- og arbejdsformer, de indgår i. Indholdet er baseret på observationer af elever i klasseundervisning, gruppearbejde eller individuel arbejde i forlængelse af...... klasseundervisning og af elever i projektarbejde. Observationerne er gennemført på tre jyske handelsskoler....

  11. Nitrous oxide fluxes from upland soils in central Hokkaido, Japan

    Institute of Scientific and Technical Information of China (English)

    MU Zhijian; Sonoko D. KIMURA; Yo TOMA; Ryusuke HATANO

    2008-01-01

    Nitrous oxide (N2O) fluxes from soils were measured using the closed chamber method during the snow-free seasons (middle April to early November), for three years, in a total of 11 upland crop fields in central Hokkaido, Japan. The annual mean N2O fluxes ranged fluxes showed a large temporal variation with peak emissions generally occurring following fertilization and heavy rainfall events around harvesting in autumn. No clear common factor regulating instantaneous N2O fluxes was found at any of the study sites. Instead,instantaneous N2O fluxes at different sites were affected by different soil variables. The cumulative N2O emissions during the study period within each year varied from 0.15 to 7.05 kgN/hm2 for different sites, which accounted for 0.33% to 5.09% of the applied fertilizer N. No obvious relationship was observed between cumulative N2O emission and applied fertilizer N rate (P>0.4). However,the cumulative N2O emission was significantly correlated with gross mineralized N as estimated by CO2 emissions from bare soils divided by C/N ratios of each soil, and with soil mineral N pool (I.e., the sum of gross mineralized N and fertilizer N) (P<0.001).

  12. A highly selective chemodosimeter for fast detection and intracellular imaging of Hg2+ ions based on a dithiocarbamate-isothiocyanate conversion in aqueous ethanol.

    Science.gov (United States)

    Pal, Suman; Hatai, Joydev; Samanta, Mousumi; Shaurya, Alok; Bandyopadhyay, Subhajit

    2014-02-21

    A new naphthalene diimide-dithiocarbamate based fluorescence probe was synthesized and its fluorogenic behavior towards various metal ions was studied. Upon addition of various metal ions, the probe afforded an irreversible change only with Hg(2+) ions in aqueous-ethanol media (4 : 1 v/v) with a fourfold enhancement of the fluorescence (Φ = 0.03 → 0.11) along with a distinct 43 nm blue shift of the emission maxima. The mechanism of the chemodosimetric behavior of the probe has been attributed to a Hg(2+) induced transformation of a weakly fluorescent dithiocarbamate to a highly fluorescent isothiocyanate which has been characterized by a number of spectroscopic techniques and a crystal structure. Intracellular detection of Hg(2+) ions was achieved using the probe.

  13. Quantifying the "chamber effect" in CO2 flux measurements

    Science.gov (United States)

    Vihermaa, Leena; Childs, Amy; Long, Hazel; Waldron, Susan

    2014-05-01

    The significance of aquatic CO2 emissions has received attention in recent years. For example annual aquatic emissions in the Amazon basin have been estimated as 500 Mt of carbon1. Methods for determining the flux rates include eddy covariance flux tower measurements, flux estimates calculated from partial pressure of CO2 (pCO2) in water and the use floating flux chambers connected to an infra-red gas analyser. The flux chamber method is often used because it is portable, cheaper and allows smaller scale measurements. It is also a direct method and hence avoids problems related to the estimation of the gas transfer coefficient that is required when fluxes are calculated from pCO2. However, the use of a floating chamber may influence the flux measurements obtained. The chamber shields the water underneath from effects of wind which could lead to lower flux estimates. Wind increases the flux rate by i) causing waves which increase the surface area for efflux, and ii) removing CO2 build up above the water surface, hence maintaining a higher concentration gradient. Many floating chambers have an underwater extension of the chamber below the float to ensure better seal to water surface and to prevent any ingress of atmospheric air when waves rock the chamber. This extension may cause additional turbulence in flowing water and hence lead to overestimation of flux rates. Some groups have also used a small fan in the chamber headspace to ensure thorough mixing of air in the chamber. This may create turbulence inside the chamber which could increase the flux rate. Here we present results on the effects of different chamber designs on the detected flux rates. 1Richey et al. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617-620.

  14. EDTA and urease effects on Hg accumulation by Lepidium sativum.

    Science.gov (United States)

    Smolińska, Beata; Cedzyńska, Krystyna

    2007-11-01

    The phytoextraction process was conducted under laboratory conditions with the use of garden cress plants (Lepidium sativum). The experiment was carried out in a model soil, which was characterized before conducting the process. Inorganic forms of mercury (HgCl(2), HgSO(4), Hg(NO(3))(2)) were used for contamination of the soil. The phytoextraction process was conducted after EDTA application to the soil and after urease application. Also the influence of simultaneous addition of ethylenediaminetetraacetic acid (EDTA) and urease into the soil on phytoextraction process was measured. In all variants of phytoextraction process the total mercury concentrations in roots, stems and leaves of garden cress were determined. The result showed that garden cress accumulated mercury from soil. The overall maximum concentration of mercury in its compounds was found in roots of the plant. In all cases, before addition of urease and EDTA, the translocation process and distribution of mercury in the plant tissues were limited. The addition of urease caused an increase of enzyme activity in the soil and at the same time caused an increase of mercury concentration in plant tissues. Application of EDTA increased solubility of mercury and caused an increase of metal accumulation by plants. After simultaneous addition of EDTA and urease into the soil garden cress accumulated about 20% of total mercury concentration in the soil. Most of mercury compounds were accumulated in leaves and stems of the plants (46.0-56.9% of total mercury concentration in the plant tissues).

  15. Barrier formation at graded HgTe/CdTe heterojunctions

    Science.gov (United States)

    Goren, D.; Asa, G.; Nemirovsky, Y.

    1996-11-01

    Numerical calculations of graded HgTe/CdTe heterojunction (HJ) band diagrams at equilibrium are presented and discussed. The calculations are performed in the entire compositional range (0HJs are examined as a function of the graded region width and the graded region doping profiles. The graded region width and doping profiles were found to be the two main factors that determine whether barriers are formed as well as their shape and magnitude. The calculated results indicate that epitaxial ohmic HgTe contacts to extrinsic CdTe are possible, provided that the graded region is wider than one micron, and that it has the same doping type as the doping of the substrate with equal or higher absolute value. Further numerical calculations take into consideration the possible existence of distributed interface charges in the graded region of the HJ. It is shown that by assuming a classical transport over the potential barrier, the effective graded interface charge can be determined from the zero bias differential resistance of the HJ. Experimental transport measurements of metalorganic chemical vapor deposition (MOCVD) grown HgTe/p-CdTe graded HJs show a varying degree of rectification, indicating variations in the graded interface charge distributions which result from different MOCVD growth conditions.

  16. Cooling and trapping of neutral mercury atoms; Kuehlen und Fangen von neutralen Hg-Atomen

    Energy Technology Data Exchange (ETDEWEB)

    Villwock, Patrick

    2010-01-15

    Mercury offers numerous opportunities for experiments in cold atomic and molecular physics. Due to the particular energy level structure of the Hg-dimer it should be possible to efficiently populate the rovibrational ground state by employing a particular absorption-emission scheme after the dimers have been formed via photo association. Cold {sup 199}Hg-atoms in the ground state are very well suited for testing the Bell equations with atoms, because they are ideal spin-1/2-particles. Hg-dimers would be optimal for the search of a permanent electrical dipole moment, due to their mass. An optical lattice clock based on neutral mercury atoms using the {sup 1}S{sub 0}-{sup 3}P{sub 0} clock transition at 265.6 nm with a natural linewidth of about 100 mHz is predicted to reach an accuracy better than 10{sup -18}. The frequency ratio of two optical clocks exhibits the opportunity to test the temporal variation of the fine-structure constant. Laser-cooled neutral Hg-atoms in a magneto-optical trap (MOT) represent a high quality source for a focused ion beam. The isotope selectivity of a MOT offers the potential of producing pure Hg-Isotopes. Mercury has two stable fermionic and five stable bosonic isotopes. The {sup 1}S{sub 0}-{sup 3}P{sub 1} intercombination line at 253.7 nm has a saturation intensity of 10.2 {sup mW}/{sub cm{sup 2}}, with a natural linewidth of 1.27 MHz. This cooling transition is closed since the ground state is free of fine- and hyperfine structure. Consequently no additional repumping is required. Due to the relatively long lifetime of this trapping transition the Doppler limited temperature is 30 μK. This thesis presents the development and experimental setup of a magneto-optical trap for neutral mercury atoms. This undertaking required the development of a commercially unavailable laser source in order to cool and trap Hg-atoms. The cooling transition sets high demands on such a cutting-edge laser, due to its relatively high saturation intensity

  17. Net Ecosystem Carbon Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Net Ecosystem Carbon Flux is defined as the year-over-year change in Total Ecosystem Carbon Stock, or the net rate of carbon exchange between an ecosystem and the...

  18. Aeronet Solar Flux

    Data.gov (United States)

    National Aeronautics and Space Administration — SolRad-Net (Solar Radiation Network) is an established network of ground-based sensors providing high-frequency solar flux measurements in quasi-realtime to the...

  19. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  20. Flux in Tallinn

    Index Scriptorium Estoniae

    2004-01-01

    Rahvusvahelise elektroonilise kunsti sümpoosioni ISEA2004 klubiõhtu "Flux in Tallinn" klubis Bon Bon. Eestit esindasid Ropotator, Ars Intel Inc., Urmas Puhkan, Joel Tammik, Taavi Tulev (pseud. Wochtzchee). Klubiõhtu koordinaator Andres Lõo

  1. Nitrous Oxide Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Nitrous Oxide (N20) flux is the net rate of nitrous oxide exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS...

  2. MEASUREMENT OF CATTLE METHANE EMISSIONS USING THE EDDY-COVARIANCE TECHNIQUE

    OpenAIRE

    2014-01-01

    Methane emissions account for 8% of the EU-15 GHG emissions and livestock generates approximately half of these emissions [1]. Recent technological advances in spectroscopy now permit methane flux measurement using eddy covariance. Methane fluxes exchanged by a pasture were measured continuously since June 2012 at the Dorinne Terrestrial Observatory in Belgium. During grazing periods, fluxes are dominated by enteric fermentation. Methane emissions were found strongly related to cattle sto...

  3. Carbon Dioxide Flux Measurement Systems

    Data.gov (United States)

    Oak Ridge National Laboratory — The Southern Great Plains (SGP) carbon dioxide flux (CO2 flux) measurement systems provide half-hour average fluxes of CO2, H2O (latent heat), and sensible heat. The...

  4. Flux Emergence (Theory)

    Science.gov (United States)

    Cheung, Mark C. M.; Isobe, Hiroaki

    2014-12-01

    Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field) in models impact the evolution of the emerging field and plasma.

  5. Theoretical magnetic flux emergence

    OpenAIRE

    MacTaggart, David

    2011-01-01

    Magnetic flux emergence is the subject of how magnetic fields from the solar interior can rise and expand into the atmosphere to produce active regions. It is the link that joins dynamics in the convection zone with dynamics in the atmosphere. In this thesis, we study many aspects of magnetic flux emergence through mathematical modelling and computer simulations. Our primary aim is to understand the key physical processes that lie behind emergence. The first chapter intro...

  6. Flux Emergence (Theory

    Directory of Open Access Journals (Sweden)

    Mark C. M. Cheung

    2014-07-01

    Full Text Available Magnetic flux emergence from the solar convection zone into the overlying atmosphere is the driver of a diverse range of phenomena associated with solar activity. In this article, we introduce theoretical concepts central to the study of flux emergence and discuss how the inclusion of different physical effects (e.g., magnetic buoyancy, magnetoconvection, reconnection, magnetic twist, interaction with ambient field in models impact the evolution of the emerging field and plasma.

  7. Subharmonic microbubble emissions for noninvasively tracking right ventricular pressures.

    Science.gov (United States)

    Dave, Jaydev K; Halldorsdottir, Valgerdur G; Eisenbrey, John R; Raichlen, Joel S; Liu, Ji-Bin; McDonald, Maureen E; Dickie, Kris; Wang, Shumin; Leung, Corina; Forsberg, Flemming

    2012-07-01

    Right heart catheterization is often required to monitor intra-cardiac pressures in a number of disease states. Ultrasound contrast agents can produce pressure modulated subharmonic emissions that may be used to estimate right ventricular (RV) pressures. A technique based on subharmonic acoustic emissions from ultrasound contrast agents to track RV pressures noninvasively has been developed and its clinical potential evaluated. The subharmonic signals were obtained from the aorta, RV, and right atrium (RA) of five anesthetized closed-chest mongrel dogs using a SonixRP ultrasound scanner and PA4-2 phased array. Simultaneous pressure measurements were obtained using a 5-French solid state micromanometer tipped catheter. Initially, aortic subharmonic signals and systemic blood pressures were used to obtain a calibration factor in units of millimeters of mercury per decibel. This factor was combined with RA pressures (that can be obtained noninvasively) and the acoustic data from the RV to obtain RV pressure values. The individual calibration factors ranged from -2.0 to -4.0 mmHg/dB. The subharmonic signals tracked transient changes in the RV pressures within an error of 0.6 mmHg. Relative to the catheter pressures, the mean errors in estimating RV peak systolic and minimum diastolic pressures, and RV relaxation [isovolumic negative derivative of change in pressure over time (-dP/dt)] by use of the subharmonic signals, were -2.3 mmHg, -0.8 mmHg, and 2.9 mmHg/s, respectively. Overall, acoustic estimates of RV peak systolic and minimum diastolic pressures and RV relaxation were within 3.4 mmHg, 1.8 mmHg, and 5.9 mmHg/s, respectively, of the measured pressures. This pilot study demonstrates that subharmonic emissions from ultrasound contrast agents have the potential to noninvasively track in vivo RV pressures with errors below 3.5 mmHg.

  8. Trends in anthropogenic mercury emissions estimated for South Africa during 2000-2006

    CSIR Research Space (South Africa)

    Masekoameng, KE

    2010-08-01

    Full Text Available y1 in air, and 5.8 to 7.4 tonnes y1 in waste. Cement production was estimated to be the second largest atmospheric Hg emission contributor (2.2e3.9 tonnes y1), while coal gasification was estimated to be the second largest Hg contributor in terms...

  9. EVALUATION OF THE EFFECT OF SCR ON MERCURY SPECIATION AND EMISSIONS

    Science.gov (United States)

    The paper presents the results of an investigation on the impact that selective catalytic reduction (SCR) has on both the total emissions and the speciation of mercury (Hg). SCR systems can be used as multipollutant technologies if they enhance Hg conversion/capture. Previous pil...

  10. Phase diagrams and microscopic structures of (Hg,Cd)Te, (Hg,Zn)Te, and (Cd,Zn)Te alloys

    Science.gov (United States)

    Patrick, R. S.; Chen, A.-B.; Sher, A.; Berding, M. A.

    1988-01-01

    A cluster theory based on the quasi-chemical approximation has been applied to study the local correlation bond-length distribution, and phase diagrams of the II-VI pseudobinary alloys Hg(1 - x)Cd(x)Te, Hg(1 - x)Zn(x)Te, and Cd(1 - x)Zn(x)Te. The cluster energy is calculated by letting it relax in some effective alloy medium and then considering the contributions from the strain and chemical energies. Two different models are presented to simulate the alloy medium. While both models show that all three alloys have nearly random distributions, the signs of the local correlation prove to be sensitive to the alloy medium chosen for the energy calculation. Good agreement is found between experiment and the bond lengths and phase diagrams in both models.

  11. Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) by hydrolyzed acrylamide-grafted PET films.

    Science.gov (United States)

    Rahman, Nazia; Sato, Nobuhiro; Sugiyama, Masaaki; Hidaka, Yoshiki; Okabe, Hirotaka; Hara, Kazuhiro

    2014-01-01

    Selective Hg(II) adsorption from aqueous solutions of Hg(II) and Pb(II) using hydrolyzed acrylamide (AAm)-grafted polyethylene terephthalate (PET) films was examined to explore the potential reuse of waste PET materials. Selective recovery of Hg(II) from a mixture of soft acids with similar structure, such as Hg(II) and Pb(II), is important to allow the reuse of recovered Hg(II). An adsorbent for selective Hg(II) adsorption was prepared by γ-ray-induced grafting of AAm onto PET films followed by partial hydrolysis through KOH treatment. The adsorption capacity of the AAm-grafted PET films for Hg(II) ions increased from 15 to 70 mg/g after partial hydrolysis because of the reduction of hydrogen bonding between -CONH2 groups and the corresponding improved access of metal ions to the amide groups. The prepared adsorbent was characterized by Fourier transform infrared spectroscopy and scanning electron microscopy. The absorbent film showed high selectivity for the adsorption of Hg(II) over Pb(II) throughout the entire initial metal concentration range (100-500 mg/L) and pH range (2.2-5.6) studied. The high selectivity is attributed to the ability of Hg(II) ions to form covalent bonds with the amide groups. The calculated selectivity coefficient for the adsorbent binding Hg(II) over Pb(II) was 19.2 at pH 4.5 with an initial metal concentration of 100 mg/L. Selective Hg(II) adsorption equilibrium data followed the Langmuir model and kinetic data were well fitted by a pseudo-second-order equation. The adsorbed Hg(II) and Pb(II) ions were effectively desorbed from the adsorbent film by acid treatment, and the regenerated film showed no marked loss of adsorption capacity upon reuse for selective Hg(II) adsorption.

  12. On the vertical distribution of boundary layer halogens over coastal Antarctica: implications for O3, HOx, NOx and the Hg lifetime

    Directory of Open Access Journals (Sweden)

    W. J. Bloss

    2008-02-01

    Full Text Available A one-dimensional chemical transport model has been developed to investigate the vertical gradients of bromine and iodine compounds in the Antarctic coastal boundary layer (BL. The model has been applied to interpret recent year-round observations of iodine and bromine monoxides (IO and BrO at Halley Station, Antarctica. The model requires an equivalent I atom flux of ~1010 molecule cm−2 s−1 from the snowpack in order to account for the measured IO levels, which are up to 20 ppt during spring. Using the current knowledge of gas-phase iodine chemistry, the model predicts significant gradients in the vertical distribution of iodine species. However, recent ground-based and satellite observations of IO imply that the radical is well-mixed in the Antarctic boundary layer, indicating a longer than expected atmospheric lifetime for the radical. This can be modelled by including photolysis of the higher iodine oxides (I2O2, I2O3, I2O4 and I2O5, and rapid recycling of HOI and INO3 through sea-salt aerosol. The model also predicts significant concentrations (up to 25 ppt of I2O5 in the lowest 10 m of the boundary layer. Heterogeneous chemistry involving sea-salt aerosol is also necessary to account for the vertical profile of BrO. Iodine chemistry causes a large increase (typically more than 3-fold in the rate of O3 depletion in the BL, compared with bromine chemistry alone. Rapid entrainment of O3 from the free troposphere appears to be required to account for the observation that on occasion there is little O3 depletion at the surface in the presence of high concentrations of IO and BrO. The halogens also cause significant changes to the vertical profiles of OH and HO2 and the NO2/NO ratio. The average Hg0 lifetime against oxidation is also predicted to be about 10 h during springtime. An important result from the model is that very large fluxes of iodine precursors into the boundary layer are required to account for the observed levels of IO. The

  13. Characterization of HgCdTe and HgCdSe Materials for Third Generation Infrared Detectors

    Science.gov (United States)

    2011-12-01

    etched HgCdTe photodiode .................................. 13 1.6 (a) Hybrid IR FPA, (b) cross section of structure, (c) indium bumps on Si...to areas of approximately 30 cm2. At this size, the wafers used for growth are unable to accommodate more than two 1024 × 1024 FPAs.3 For more...clear advantages over the other substrates because of its low cost, large wafer size, and a thermal-expansion coefficient that perfectly matches

  14. Maternal-fetal distribution of mercury ( sup 203 Hg) released from dental amalgam fillings

    Energy Technology Data Exchange (ETDEWEB)

    Vimy, M.J.; Takahashi, Y.; Lorscheider, F.L. (Univ. of Calgary, Alberta (Canada))

    1990-04-01

    In humans, the continuous release of Hg vapor from dental amalgam tooth restorations is markedly increased for prolonged periods after chewing. The present study establishes a time-course distribution for amalgam Hg in body tissues of adult and fetal sheep. Under general anesthesia, five pregnant ewes had twelve occlusal amalgam fillings containing radioactive 203Hg placed in teeth at 112 days gestation. Blood, amniotic fluid, feces, and urine specimens were collected at 1- to 3-day intervals for 16 days. From days 16-140 after amalgam placement (16-41 days for fetal lambs), tissue specimens were analyzed for radioactivity, and total Hg concentrations were calculated. Results demonstrate that Hg from dental amalgam will appear in maternal and fetal blood and amniotic fluid within 2 days after placement of amalgam tooth restorations. Excretion of some of this Hg will also commence within 2 days. All tissues examined displayed Hg accumulation. Highest concentrations of Hg from amalgam in the adult occurred in kidney and liver, whereas in the fetus the highest amalgam Hg concentrations appeared in liver and pituitary gland. The placenta progressively concentrated Hg as gestation advanced to term, and milk concentration of amalgam Hg postpartum provides a potential source of Hg exposure to the newborn. It is concluded that accumulation of amalgam Hg progresses in maternal and fetal tissues to a steady state with advancing gestation and is maintained. Dental amalgam usage as a tooth restorative material in pregnant women and children should be reconsidered.

  15. CO2 fluxes from a tropical neighborhood: sources and sinks

    Science.gov (United States)

    Velasco, E.; Roth, M.; Tan, S.; Quak, M.; Britter, R.; Norford, L.

    2011-12-01

    Cities are the main contributors to the CO2 rise in the atmosphere. The CO2 released from the various emission sources is typically quantified by a bottom-up aggregation process that accounts for emission factors and fossil fuel consumption data. This approach does not consider the heterogeneity and variability of the urban emission sources, and error propagation can result in large uncertainties. In this context, direct measurements of CO2 fluxes that include all major and minor anthropogenic and natural sources and sinks from a specific district can be used to evaluate emission inventories. This study reports and compares CO2 fluxes measured directly using the eddy covariance method with emissions estimated by emissions factors and activity data for a residential neighborhood of Singapore, a highly populated and urbanized tropical city. The flux measurements were conducted during one year. No seasonal variability was found as a consequence of the constant climate conditions of tropical places; but a clear diurnal pattern with morning and late afternoon peaks in phase with the rush-hour traffic was observed. The magnitude of the fluxes throughout daylight hours is modulated by the urban vegetation, which is abundant in terms of biomass but not of land-cover (15%). Even though the carbon uptake by vegetation is significant, it does not exceed the anthropogenic emissions and the monitored district is a net CO2 source of 20.3 ton km-2 day-1 on average. The carbon uptake by vegetation is investigated as the difference between the estimated emissions and the measured fluxes during daytime.

  16. HONO emissions from snow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Beine, Harry; Colussi, AgustIn J; Hoffmann, Michael R [California Institute of Technology, Environmental Science and Engineering, Pasadena, CA (United States); Amoroso, Antonio; Esposito, Giulio; Montagnoli, Mauro [Consiglio Nazionale delle Ricerche-Istituto Inquinamento Atmosferico (CNR-IIA), Roma (Italy)], E-mail: hbeine@ucdavis.edu

    2008-10-15

    Photochemical production of NO{sub x} and HONO from surface snow can significantly impact the NO{sub x}, OH, and O{sub 3} budgets in the overlying atmosphere. NO{sub x} production is driven by the solar photolysis of NO{sub 3}{sup -} within or at the surface of snowpacks. HONO, however, is a secondary species that involves H-atom transfer between natural donors and photogenerated NO{sub 2}. Here we investigate the mechanism of HONO generation in snowpacks by exploring how its emissions respond to on-and-off illumination and temperature cycles, and to the addition of various snow dopants. The presence of humic substances within or at the surface of the snowpack significantly enhances, and may be an essential requisite for HONO production. Emission fluxes of NO, NO{sub 2}, and HONO from snow surfaces were measured under controlled temperature, ozone mixing ratio and actinic flux conditions. We used natural mid-latitude surface snow as the snow substrate. Their combined peak emission fluxes reached up to {approx}3 x 10{sup 10} molecules cm{sup -2} s{sup -1}, {approx}10{sup 3} times larger than typical emissions from polar snowpacks. Less than 1% of available N was released in these experiments. We report significant post-irradiation HONO emissions from the snow. Present results indicate a strong, direct correlation between HONO emissions and the HULIS (humic-like substances) content of the snow surface.

  17. Heavy metal emissions for Danish road transport

    Energy Technology Data Exchange (ETDEWEB)

    Winther, M.; Slentoe, E.

    2010-04-15

    This report presents new heavy metal emission factors for cars, vans, trucks, buses, mopeds and motorcycles for each of the emission sources fuel consumption, engine oil, tyre wear, brake wear and road abrasion. The emission components covered are Arsenic (As), Cadmium (Cd), Chromium (Cr), Copper (Cu), Mercury (Hg), Nickel (Ni), Lead (Pb), Selenium (Se) and Zinc (Zn), all of them relevant for emission reporting to the UNECE CLRTAP (United Nations Economic Commission for Europe Convention on Long Range Transboundary Pollutants) convention. The report also presents a new Danish inventory for the year 2007. The following emissions in total TSP (in brackets) are calculated for the year 2007: As (8 kg), Cd (48 kg), Cr (197 kg), Cu (51 779 kg), Hg (28 kg), Ni (158 kg), Pb (6 989 kg), Se (33 kg) and Zn (28 556 kg). Per vehicle type cars are the most important source of emission for all heavy metal species, followed by vans, trucks, buses and 2-wheelers. By using the detailed emission factors and inventory calculation methods established in the present project, estimates of heavy metal emissions can be made for other years than 2007. (author)

  18. A highly selective chemosensor for colorimetric detection of Hg{sup 2+} and fluorescence detection of pH changes in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, Ramasamy; Stalin, Thambusamy, E-mail: drstalin76@gmail.com

    2014-05-01

    A naturally existing and unmodified simple chemosensor, 2-hydroxy-1,4-naphthoquinone (2HNQ), was identified and used for both the colorimetric detection of Hg{sup 2+} and the fluorescent (on-off) detection of pH. The distinct color change and quenching of fluorescence emission was visible to the naked eye. More importantly, the chemosensor was used in combination with β-cyclodextrin (β-CD), which enabled the sensor to be solubilized and stabilized in aqueous solutions. The sensor selectively detected Hg{sup 2+} via the stable 1:1 complexation of the CåO and OH groups with Hg{sup 2+} and reflected pH changes in the range from 6 to 12 via a fluorescence on–off response resulting from the deprotonation of the hydroxyl group in 2HNQ. - Highlights: • The 2-Hydroxy-1,4-Naphthoquinone (2HNQ) chemosensor is capable of both colorimetric detection of Hg{sup 2+} and a fluorescence on-off response to pH. • The distinct color change and quenching of fluorescence emission are detectable with the naked eye. • The on– off fluorescence response in the pH range from 6– to 12 is due to the deprotonation of the hydroxyl group in 2HNQ.

  19. Manila clams from Hg polluted sediments of Marano and Grado lagoons (Italy) harbor detoxifying Hg resistant bacteria in soft tissues

    Energy Technology Data Exchange (ETDEWEB)

    Baldi, Franco, E-mail: baldi@unive.it [Dipartimento di Scienze Molecolari e Nanosistemi, Cà Foscari University of Venice, Dorsoduro 2137, 30123 Venice (Italy); Gallo, Michele; Marchetto, Davide [Dipartimento di Scienze Molecolari e Nanosistemi, Cà Foscari University of Venice, Dorsoduro 2137, 30123 Venice (Italy); Faleri, Claudia [Department of Environmental Science ‘G. Sarfatti’, University of Siena, 53100 Siena (Italy); Maida, Isabel; Fani, Renato [Dipartimento di Biologia Evoluzionistica, Via Romana, 17, University of Florence, 50125 Florence (Italy)

    2013-08-15

    A mechanism of mercury detoxification has been suggested by a previous study on Hg bioaccumulation in Manila clams (Ruditapes philippinarum) in the polluted Marano and Grado lagoons and in this study we demonstrate that this event could be partly related to the detoxifying activities of Hg-resistant bacteria (MRB) harbored in clam soft tissues. Therefore, natural clams were collected in six stations during two different periods (winter and spring) from Marano and Grado Lagoons. Siphons, gills and hepatopancreas from acclimatized clams were sterile dissected to isolate MRB. These anatomical parts were glass homogenized or used for whole, and they were lying on a solid medium containing 5 mg l{sup −1} HgCl{sub 2} and incubated at 30 °C. A total of fourteen bacterial strains were isolated and were identified by 16S rDNA sequencing and analysis, revealing that strains were representative of eight bacterial genera, four of which were Gram-positive (Enterococcus, Bacillus, Jeotgalicoccus and Staphylococcus) and other four were Gram-negative (Stenotrophomonas, Vibrio, Raoultella and Enterobacter). Plasmids and merA genes were found and their sequences determined. Fluorescence in situ hybridization (FISH) technique shows the presence of Firmicutes, Actinobacteria and Gammaproteobacteria by using different molecular probes in siphon and gills. Bacterial clumps inside clam flesh were observed and even a Gram-negative endosymbiont was disclosed by transmission electronic microscope inside clam cells. Bacteria harbored in cavities of soft tissue have mercury detoxifying activity. This feature was confirmed by the determination of mercuric reductase in glass-homogenized siphons and gills. -- Highlights: ► We isolated Gram-positive and Gram-negative Hg resistant strains from soft tissues of Ruditapes philippinarum. ► We identify 1