WorldWideScience

Sample records for hfq-binding rnas identifies

  1. Identifying and annotating human bifunctional RNAs reveals their versatile functions.

    Science.gov (United States)

    Chen, Geng; Yang, Juan; Chen, Jiwei; Song, Yunjie; Cao, Ruifang; Shi, Tieliu; Shi, Leming

    2016-10-01

    Bifunctional RNAs that possess both protein-coding and noncoding functional properties were less explored and poorly understood. Here we systematically explored the characteristics and functions of such human bifunctional RNAs by integrating tandem mass spectrometry and RNA-seq data. We first constructed a pipeline to identify and annotate bifunctional RNAs, leading to the characterization of 132 high-confidence bifunctional RNAs. Our analyses indicate that bifunctional RNAs may be involved in human embryonic development and can be functional in diverse tissues. Moreover, bifunctional RNAs could interact with multiple miRNAs and RNA-binding proteins to exert their corresponding roles. Bifunctional RNAs may also function as competing endogenous RNAs to regulate the expression of many genes by competing for common targeting miRNAs. Finally, somatic mutations of diverse carcinomas may generate harmful effect on corresponding bifunctional RNAs. Collectively, our study not only provides the pipeline for identifying and annotating bifunctional RNAs but also reveals their important gene-regulatory functions.

  2. Identifying MicroRNAs and Transcript Targets in Jatropha Seeds

    Science.gov (United States)

    Galli, Vanessa; Guzman, Frank; de Oliveira, Luiz F. V.; Loss-Morais, Guilherme; Körbes, Ana P.; Silva, Sérgio D. A.; Margis-Pinheiro, Márcia M. A. N.; Margis, Rogério

    2014-01-01

    MicroRNAs, or miRNAs, are endogenously encoded small RNAs that play a key role in diverse plant biological processes. Jatropha curcas L. has received significant attention as a potential oilseed crop for the production of renewable oil. Here, a sRNA library of mature seeds and three mRNA libraries from three different seed development stages were generated by deep sequencing to identify and characterize the miRNAs and pre-miRNAs of J. curcas. Computational analysis was used for the identification of 180 conserved miRNAs and 41 precursors (pre-miRNAs) as well as 16 novel pre-miRNAs. The predicted miRNA target genes are involved in a broad range of physiological functions, including cellular structure, nuclear function, translation, transport, hormone synthesis, defense, and lipid metabolism. Some pre-miRNA and miRNA targets vary in abundance between the three stages of seed development. A search for sequences that produce siRNA was performed, and the results indicated that J. curcas siRNAs play a role in nuclear functions, transport, catalytic processes and disease resistance. This study presents the first large scale identification of J. curcas miRNAs and their targets in mature seeds based on deep sequencing, and it contributes to a functional understanding of these miRNAs. PMID:24551031

  3. Identifying small RNAs derived from maternal- and somatic-type rRNAs in zebrafish development.

    Science.gov (United States)

    Locati, Mauro D; Pagano, Johanna F B; Abdullah, Farah; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Spaink, Herman P; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M

    2018-02-09

    rRNAs are non-coding RNAs present in all prokaryotes and eukaryotes. In eukaryotes there are four rRNAs: 18S, 5.8S, 28S, originating from a common precursor (45S), and 5S. We have recently discovered the existence of two distinct developmental types of rRNA: a maternal-type, present in eggs and a somatic-type, expressed in adult tissues. Lately, next-generation sequencing has allowed the discovery of new small-RNAs deriving from longer non-coding RNAs, including small-RNAs from rRNAs (srRNAs). Here, we systemically investigated srRNAs of maternal- or somatic-type 18S, 5.8S, 28S, with small-RNAseq from many zebrafish developmental stages. We identified new srRNAs for each rRNA. For 5.8S, we found srRNA consisting of the 5' or 3' halves, with only the latter having different sequence for the maternal- and somatic-types. For 18S, we discovered 21 nt srRNA from the 5' end of the 18S rRNA with a striking resemblance to microRNAs; as it is likely processed from a stem-loop precursor and present in human and mouse Argonaute-complexed small-RNA. For 28S, an abundant 80 nt srRNA from the 3' end of the 28S rRNA was found. The expression levels during embryogenesis of these srRNA indicate they are not generated from rRNA degradation and might have a role in the zebrafish development.

  4. Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and sigmaE-dependent CyaR-ompX regulatory case

    DEFF Research Database (Denmark)

    Johansen, Jesper; Eriksen, Maiken; Kallipolitis, Birgitte

    2008-01-01

    is sufficient to trigger the envelope stress response. Recent work indicates that small Hfq-binding RNAs play a major role in maintaining envelope homeostasis and, so far, two sigma(E)-dependent small noncoding RNAs (sRNAs), MicA and RybB, have been shown to facilitate rapid removal of multiple omp transcripts......The sigma(E) (extracytoplasmic stress response sigma factor in Escherichia coli) signaling system of Gram-negative bacteria plays an essential role in the maintenance of the extracytoplasmic compartment. Upon induction of this system, approximately 100 genes are up-regulated. The majority...... is also up-regulated, directly or indirectly, by sigma(E). In addition, this work identified MicA as a factor that cooperates in the negative control of ompX expression. The conservation of CyaR, MicA, RybB, and their targets suggests that the omp mRNA-sRNA regulatory network is an integral part...

  5. Identifying and characterizing Hfq-RNA interactions.

    Science.gov (United States)

    Faner, M A; Feig, A L

    2013-09-15

    To regulate stress responses and virulence, bacteria use small regulatory RNAs (sRNAs). These RNAs can up or down regulate target mRNAs through base pairing by influencing ribosomal access and RNA decay. A large class of these sRNAs, called trans-encoded sRNAs, requires the RNA binding protein Hfq to facilitate base pairing between the regulatory RNA and its target mRNA. The resulting network of regulation is best characterized in Escherichia coli and Salmonella typhimurium, but the importance of Hfq dependent sRNA regulation is recognized in a diverse population of bacteria. In this review we present the approaches and methods used to discover Hfq binding RNAs, characterize their interactions and elucidate their functions. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. smRNAome profiling to identify conserved and novel microRNAs in Stevia rebaudiana Bertoni

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) constitute a family of small RNA (sRNA) population that regulates the gene expression and plays an important role in plant development, metabolism, signal transduction and stress response. Extensive studies on miRNAs have been performed in different plants such as Arabidopsis thaliana, Oryza sativa etc. and volume of the miRNA database, mirBASE, has been increasing on day to day basis. Stevia rebaudiana Bertoni is an important perennial herb which accumulates high concentrations of diterpene steviol glycosides which contributes to its high indexed sweetening property with no calorific value. Several studies have been carried out for understanding molecular mechanism involved in biosynthesis of these glycosides, however, information about miRNAs has been lacking in S. rebaudiana. Deep sequencing of small RNAs combined with transcriptomic data is a powerful tool for identifying conserved and novel miRNAs irrespective of availability of genome sequence data. Results To identify miRNAs in S. rebaudiana, sRNA library was constructed and sequenced using Illumina genome analyzer II. A total of 30,472,534 reads representing 2,509,190 distinct sequences were obtained from sRNA library. Based on sequence similarity, we identified 100 miRNAs belonging to 34 highly conserved families. Also, we identified 12 novel miRNAs whose precursors were potentially generated from stevia EST and nucleotide sequences. All novel sequences have not been earlier described in other plant species. Putative target genes were predicted for most conserved and novel miRNAs. The predicted targets are mainly mRNA encoding enzymes regulating essential plant metabolic and signaling pathways. Conclusions This study led to the identification of 34 highly conserved miRNA families and 12 novel potential miRNAs indicating that specific miRNAs exist in stevia species. Our results provided information on stevia miRNAs and their targets building a foundation for future studies to

  7. Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response

    Directory of Open Access Journals (Sweden)

    Chong Kang

    2009-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are endogenous small RNAs having large-scale regulatory effects on plant development and stress responses. Extensive studies of miRNAs have only been performed in a few model plants. Although miRNAs are proved to be involved in plant cold stress responses, little is known for winter-habit monocots. Brachypodium distachyon, with close evolutionary relationship to cool-season cereals, has recently emerged as a novel model plant. There are few reports of Brachypodium miRNAs. Results High-throughput sequencing and whole-genome-wide data mining led to the identification of 27 conserved miRNAs, as well as 129 predicted miRNAs in Brachypodium. For multiple-member conserved miRNA families, their sizes in Brachypodium were much smaller than those in rice and Populus. The genome organization of miR395 family in Brachypodium was quite different from that in rice. The expression of 3 conserved miRNAs and 25 predicted miRNAs showed significant changes in response to cold stress. Among these miRNAs, some were cold-induced and some were cold-suppressed, but all the conserved miRNAs were up-regulated under cold stress condition. Conclusion Our results suggest that Brachypodium miRNAs are composed of a set of conserved miRNAs and a large proportion of non-conserved miRNAs with low expression levels. Both kinds of miRNAs were involved in cold stress response, but all the conserved miRNAs were up-regulated, implying an important role for cold-induced miRNAs. The different size and genome organization of miRNA families in Brachypodium and rice suggest that the frequency of duplication events or the selection pressure on duplicated miRNAs are different between these two closely related plant species.

  8. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Directory of Open Access Journals (Sweden)

    Kari A Dilley

    Full Text Available Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV, and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV. Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR activation.

  9. The Ebola virus VP35 protein binds viral immunostimulatory and host RNAs identified through deep sequencing.

    Science.gov (United States)

    Dilley, Kari A; Voorhies, Alexander A; Luthra, Priya; Puri, Vinita; Stockwell, Timothy B; Lorenzi, Hernan; Basler, Christopher F; Shabman, Reed S

    2017-01-01

    Ebola virus and Marburg virus are members of the Filovirdae family and causative agents of hemorrhagic fever with high fatality rates in humans. Filovirus virulence is partially attributed to the VP35 protein, a well-characterized inhibitor of the RIG-I-like receptor pathway that triggers the antiviral interferon (IFN) response. Prior work demonstrates the ability of VP35 to block potent RIG-I activators, such as Sendai virus (SeV), and this IFN-antagonist activity is directly correlated with its ability to bind RNA. Several structural studies demonstrate that VP35 binds short synthetic dsRNAs; yet, there are no data that identify viral immunostimulatory RNAs (isRNA) or host RNAs bound to VP35 in cells. Utilizing a SeV infection model, we demonstrate that both viral isRNA and host RNAs are bound to Ebola and Marburg VP35s in cells. By deep sequencing the purified VP35-bound RNA, we identified the SeV copy-back defective interfering (DI) RNA, previously identified as a robust RIG-I activator, as the isRNA bound by multiple filovirus VP35 proteins, including the VP35 protein from the West African outbreak strain (Makona EBOV). Moreover, RNAs isolated from a VP35 RNA-binding mutant were not immunostimulatory and did not include the SeV DI RNA. Strikingly, an analysis of host RNAs bound by wild-type, but not mutant, VP35 revealed that select host RNAs are preferentially bound by VP35 in cell culture. Taken together, these data support a model in which VP35 sequesters isRNA in virus-infected cells to avert RIG-I like receptor (RLR) activation.

  10. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.

    Science.gov (United States)

    Xie, Junjun; Lei, Bo; Niu, Mengliang; Huang, Yuan; Kong, Qiusheng; Bie, Zhilong

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding miRNA functions in salt tolerance. Cucurbits are sensitive to soil salinity, and the Cucurbita genus is used as the rootstock of other cucurbits to enhance salt tolerance. Several cucurbit crops have been used for miRNA sequencing but salt stress-related miRNAs in cucurbit species have not been reported. In this study, we subjected two Cucurbita germplasm, namely, N12 (Cucurbita. maxima Duch.) and N15 (Cucurbita. moschata Duch.), with different sodium accumulation patterns, to Illumina sequencing to determine small RNA populations in root tissues after 4 h of salt treatment and control. A total of 21,548,326 and 19,394,108 reads were generated from the control and salt-treated N12 root tissues, respectively. By contrast, 19,108,240 and 20,546,052 reads were obtained from the control and salt-treated N15 root tissues, respectively. Fifty-eight conserved miRNA families and 33 novel miRNAs were identified in the two Cucurbita germplasm. Seven miRNAs (six conserved miRNAs and one novel miRNAs) were up-regulated in salt-treated N12 and N15 samples. Most target genes of differentially expressed novel miRNAs were transcription factors and salt stress-responsive proteins, including dehydration-induced protein, cation/H+ antiporter 18, and CBL-interacting serine/threonine-protein kinase. The differential expression of miRNAs between the two Cucurbita germplasm under salt stress conditions and their target genes demonstrated that novel miRNAs play an important role in the response of the two Cucurbita germplasm to salt stress. The present study initially explored small RNAs in the

  11. High Throughput Sequencing of Small RNAs in the Two Cucurbita Germplasm with Different Sodium Accumulation Patterns Identifies Novel MicroRNAs Involved in Salt Stress Response.

    Directory of Open Access Journals (Sweden)

    Junjun Xie

    Full Text Available MicroRNAs (miRNAs, a class of small non-coding RNAs, recognize their mRNA targets based on perfect sequence complementarity. MiRNAs lead to broader changes in gene expression after plants are exposed to stress. High-throughput sequencing is an effective method to identify and profile small RNA populations in non-model plants under salt stresses, significantly improving our knowledge regarding miRNA functions in salt tolerance. Cucurbits are sensitive to soil salinity, and the Cucurbita genus is used as the rootstock of other cucurbits to enhance salt tolerance. Several cucurbit crops have been used for miRNA sequencing but salt stress-related miRNAs in cucurbit species have not been reported. In this study, we subjected two Cucurbita germplasm, namely, N12 (Cucurbita. maxima Duch. and N15 (Cucurbita. moschata Duch., with different sodium accumulation patterns, to Illumina sequencing to determine small RNA populations in root tissues after 4 h of salt treatment and control. A total of 21,548,326 and 19,394,108 reads were generated from the control and salt-treated N12 root tissues, respectively. By contrast, 19,108,240 and 20,546,052 reads were obtained from the control and salt-treated N15 root tissues, respectively. Fifty-eight conserved miRNA families and 33 novel miRNAs were identified in the two Cucurbita germplasm. Seven miRNAs (six conserved miRNAs and one novel miRNAs were up-regulated in salt-treated N12 and N15 samples. Most target genes of differentially expressed novel miRNAs were transcription factors and salt stress-responsive proteins, including dehydration-induced protein, cation/H+ antiporter 18, and CBL-interacting serine/threonine-protein kinase. The differential expression of miRNAs between the two Cucurbita germplasm under salt stress conditions and their target genes demonstrated that novel miRNAs play an important role in the response of the two Cucurbita germplasm to salt stress. The present study initially explored small

  12. Functional screening identifies miRNAs influencing apoptosis and proliferation in colorectal cancer

    DEFF Research Database (Denmark)

    Christensen, Lise Lotte; Holm, Anja; Rantala, Juha

    2014-01-01

    MicroRNAs (miRNAs) play a critical role in many biological processes and are aberrantly expressed in human cancers. Particular miRNAs function either as tumor suppressors or oncogenes and appear to have diagnostic and prognostic significance. Although numerous miRNAs are dys-regulated in colorect...

  13. Application of small RNA sequencing to identify microRNAs in acute kidney injury and fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Pellegrini, Kathryn L. [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Gerlach, Cory V. [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA (United States); Craciun, Florin L.; Ramachandran, Krithika [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Bijol, Vanesa [Department of Pathology, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Kissick, Haydn T. [Department of Surgery, Urology Division, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (United States); Vaidya, Vishal S., E-mail: vvaidya@bwh.harvard.edu [Department of Medicine, Renal Division, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA (United States); Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Sciences, Harvard Medical School, Boston, MA (United States)

    2016-12-01

    Establishing a microRNA (miRNA) expression profile in affected tissues provides an important foundation for the discovery of miRNAs involved in the development or progression of pathologic conditions. We conducted small RNA sequencing to generate a temporal profile of miRNA expression in the kidneys using a mouse model of folic acid-induced (250 mg/kg i.p.) kidney injury and fibrosis. From the 103 miRNAs that were differentially expressed over the time course (> 2-fold, p < 0.05), we chose to further investigate miR-18a-5p, which is expressed during the acute stage of the injury; miR-132-3p, which is upregulated during transition between acute and fibrotic injury; and miR-146b-5p, which is highly expressed at the peak of fibrosis. Using qRT-PCR, we confirmed the increased expression of these candidate miRNAs in the folic acid model as well as in other established mouse models of acute injury (ischemia/reperfusion injury) and fibrosis (unilateral ureteral obstruction). In situ hybridization confirmed high expression of miR-18a-5p, miR-132-3p and miR-146b-5p throughout the kidney cortex in mice and humans with severe kidney injury or fibrosis. When primary human proximal tubular epithelial cells were treated with model nephrotoxicants such as cadmium chloride (CdCl{sub 2}), arsenic trioxide, aristolochic acid (AA), potassium dichromate (K{sub 2}Cr{sub 2}O{sub 7}) and cisplatin, miRNA-132-3p was upregulated 4.3-fold after AA treatment and 1.5-fold after K{sub 2}Cr{sub 2}O{sub 7} and CdCl{sub 2} treatment. These results demonstrate the application of temporal small RNA sequencing to identify miR-18a, miR-132 and miR-146b as differentially expressed miRNAs during distinct phases of kidney injury and fibrosis progression. - Highlights: • We used small RNA sequencing to identify differentially expressed miRNAs in kidney. • Distinct patterns were found for acute injury and fibrotic stages in the kidney. • Upregulation of miR-18a, -132 and -146b was confirmed in mice

  14. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  15. Identifying relevant group of miRNAs in cancer using fuzzy mutual information.

    Science.gov (United States)

    Pal, Jayanta Kumar; Ray, Shubhra Sankar; Pal, Sankar K

    2016-04-01

    MicroRNAs (miRNAs) act as a major biomarker of cancer. All miRNAs in human body are not equally important for cancer identification. We propose a methodology, called FMIMS, which automatically selects the most relevant miRNAs for a particular type of cancer. In FMIMS, miRNAs are initially grouped by using a SVM-based algorithm; then the group with highest relevance is determined and the miRNAs in that group are finally ranked for selection according to their redundancy. Fuzzy mutual information is used in computing the relevance of a group and the redundancy of miRNAs within it. Superiority of the most relevant group to all others, in deciding normal or cancer, is demonstrated on breast, renal, colorectal, lung, melanoma and prostate data. The merit of FMIMS as compared to several existing methods is established. While 12 out of 15 selected miRNAs by FMIMS corroborate with those of biological investigations, three of them viz., "hsa-miR-519," "hsa-miR-431" and "hsa-miR-320c" are possible novel predictions for renal cancer, lung cancer and melanoma, respectively. The selected miRNAs are found to be involved in disease-specific pathways by targeting various genes. The method is also able to detect the responsible miRNAs even at the primary stage of cancer. The related code is available at http://www.jayanta.droppages.com/FMIMS.html .

  16. De novo sequencing of circulating miRNAs identifies novel markers predicting clinical outcome of locally advanced breast cancer

    Directory of Open Access Journals (Sweden)

    Wu Xiwei

    2012-03-01

    Full Text Available Abstract Background MicroRNAs (miRNAs have been recently detected in the circulation of cancer patients, where they are associated with clinical parameters. Discovery profiling of circulating small RNAs has not been reported in breast cancer (BC, and was carried out in this study to identify blood-based small RNA markers of BC clinical outcome. Methods The pre-treatment sera of 42 stage II-III locally advanced and inflammatory BC patients who received neoadjuvant chemotherapy (NCT followed by surgical tumor resection were analyzed for marker identification by deep sequencing all circulating small RNAs. An independent validation cohort of 26 stage II-III BC patients was used to assess the power of identified miRNA markers. Results More than 800 miRNA species were detected in the circulation, and observed patterns showed association with histopathological profiles of BC. Groups of circulating miRNAs differentially associated with ER/PR/HER2 status and inflammatory BC were identified. The relative levels of selected miRNAs measured by PCR showed consistency with their abundance determined by deep sequencing. Two circulating miRNAs, miR-375 and miR-122, exhibited strong correlations with clinical outcomes, including NCT response and relapse with metastatic disease. In the validation cohort, higher levels of circulating miR-122 specifically predicted metastatic recurrence in stage II-III BC patients. Conclusions Our study indicates that certain miRNAs can serve as potential blood-based biomarkers for NCT response, and that miR-122 prevalence in the circulation predicts BC metastasis in early-stage patients. These results may allow optimized chemotherapy treatments and preventive anti-metastasis interventions in future clinical applications.

  17. Laser capture microdissection followed by next-generation sequencing identifies disease-related microRNAs in psoriatic skin that reflect systemic microRNA changes in psoriasis

    DEFF Research Database (Denmark)

    Løvendorf, Marianne B; Mitsui, Hiroshi; Zibert, John R

    2015-01-01

    Psoriasis is a systemic disease with cutaneous manifestations. MicroRNAs (miRNAs) are small non-coding RNA molecules that are differentially expressed in psoriatic skin; however, only few cell- and region-specific miRNAs have been identified in psoriatic lesions. We used laser capture...... microdissection (LCM) and next-generation sequencing (NGS) to study the specific miRNA expression profiles in the epidermis (Epi) and dermal inflammatory infiltrates (RD) of psoriatic skin (N = 6). We identified 24 deregulated miRNAs in the Epi and 37 deregulated miRNAs in the RD of psoriatic plaque compared...... with normal psoriatic skin (FCH > 2, FDR

  18. Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs.

    LENUS (Irish Health Repository)

    Weissenmayer, Barbara A

    2011-01-01

    Second generation sequencing has prompted a number of groups to re-interrogate the transcriptomes of several bacterial and archaeal species. One of the central findings has been the identification of complex networks of small non-coding RNAs that play central roles in transcriptional regulation in all growth conditions and for the pathogen\\'s interaction with and survival within host cells. Legionella pneumophila is a gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila during exponential and post-exponential broth growth and during the replicative and transmissive phase of infection inside A. castellanii. We extend previous microarray based studies as well as uncovering evidence of a complex regulatory architecture underpinned by numerous non-coding RNAs. Over seventy new non-coding RNAs could be identified; many of them appear to be strain specific and in configurations not previously reported. We discover a family of non-coding RNAs preferentially expressed during infection conditions and identify a second copy of 6S RNA in L. pneumophila. We show that the newly discovered putative 6S RNA as well as a number of other non-coding RNAs show evidence for antisense transcription. The nature and extent of the non-coding RNAs and their expression patterns suggests that these may well play central roles in the regulation of Legionella spp. specific traits and offer clues as to how L. pneumophila adapts to its intracellular niche. The expression profiles outlined in the study have been deposited into Genbank\\'s Gene Expression Omnibus (GEO) database under the series accession GSE27232.

  19. Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing

    Science.gov (United States)

    Kannan, Kalpana; Wang, Liguo; Wang, Jianghua; Ittmann, Michael M.; Li, Wei; Yen, Laising

    2011-01-01

    Transcription-induced chimeric RNAs, possessing sequences from different genes, are expected to increase the proteomic diversity through chimeric proteins or altered regulation. Despite their importance, few studies have focused on chimeric RNAs especially regarding their presence/roles in human cancers. By deep sequencing the transcriptome of 20 human prostate cancer and 10 matched benign prostate tissues, we obtained 1.3 billion sequence reads, which led to the identification of 2,369 chimeric RNA candidates. Chimeric RNAs occurred in significantly higher frequency in cancer than in matched benign samples. Experimental investigation of a selected 46 set led to the confirmation of 32 chimeric RNAs, of which 27 were highly recurrent and previously undescribed in prostate cancer. Importantly, a subset of these chimeras was present in prostate cancer cell lines, but not detectable in primary human prostate epithelium cells, implying their associations with cancer. These chimeras contain discernable 5′ and 3′ splice sites at the RNA junction, indicating that their formation is mediated by splicing. Their presence is also largely independent of the expression of parental genes, suggesting that other factors are involved in their production and regulation. One chimera, TMEM79-SMG5, is highly differentially expressed in human cancer samples and therefore a potential biomarker. The prevalence of chimeric RNAs may allow the limited number of human genes to encode a substantially larger number of RNAs and proteins, forming an additional layer of cellular complexity. Together, our results suggest that chimeric RNAs are widespread, and increased chimeric RNA events could represent a unique class of molecular alteration in cancer. PMID:21571633

  20. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition.

    Science.gov (United States)

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.

  1. Detecting new microRNAs in human osteoarthritic chondrocytes identifies miR-3085 as a human, chondrocyte-selective, microRNA

    OpenAIRE

    Crowe, N.; Swingler, T.E.; Le, L.T.T.; Barter, M.J.; Wheeler, G.; Pais, H.; Donell, S.T.; Young, D.A.; Dalmay, T.; Clark, I.M.

    2016-01-01

    Summary Objective To use deep sequencing to identify novel microRNAs (miRNAs) in human osteoarthritic cartilage which have a functional role in chondrocyte phenotype or function. Design A small RNA library was prepared from human osteoarthritic primary chondrocytes using in-house adaptors and analysed by Illumina sequencing. Novel candidate miRNAs were validated by northern blot and qRT-PCR. Expression was measured in cartilage models. Targets of novel candidates were identified by microarray...

  2. CRISPRseek: a bioconductor package to identify target-specific guide RNAs for CRISPR-Cas9 genome-editing systems.

    Directory of Open Access Journals (Sweden)

    Lihua J Zhu

    Full Text Available CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General

  3. Genome-Wide Maps of m6A circRNAs Identify Widespread and Cell-Type-Specific Methylation Patterns that Are Distinct from mRNAs

    Directory of Open Access Journals (Sweden)

    Chan Zhou

    2017-08-01

    Full Text Available N6-methyladenosine (m6A is the most abundant internal modification of mRNAs and is implicated in all aspects of post-transcriptional RNA metabolism. However, little is known about m6A modifications to circular (circ RNAs. We developed a computational pipeline (AutoCirc that, together with depletion of ribosomal RNA and m6A immunoprecipitation, defined thousands of m6A circRNAs with cell-type-specific expression. The presence of m6A circRNAs is corroborated by interaction between circRNAs and YTHDF1/YTHDF2, proteins that read m6A sites in mRNAs, and by reduced m6A levels upon depletion of METTL3, the m6A writer. Despite sharing m6A readers and writers, m6A circRNAs are frequently derived from exons that are not methylated in mRNAs, whereas mRNAs that are methylated on the same exons that compose m6A circRNAs exhibit less stability in a process regulated by YTHDF2. These results expand our understanding of the breadth of m6A modifications and uncover regulation of circRNAs through m6A modification.

  4. Analysis of transcription factor mRNAs in identified oxytocin and vasopressin magnocellular neurons isolated by laser capture microdissection.

    Directory of Open Access Journals (Sweden)

    Madison Humerick

    Full Text Available The oxytocin (Oxt and vasopressin (Avp magnocellular neurons (MCNs in the hypothalamus are the only neuronal phenotypes that are present in the supraoptic nucleus (SON, and are characterized by their robust and selective expression of either the Oxt or Avp genes. In this paper, we take advantage of the differential expression of these neuropeptide genes to identify and isolate these two individual phenotypes from the rat SON by laser capture microdissection (LCM, and to analyze the differential expression of several of their transcription factor mRNAs by qRT-PCR. We identify these neuronal phenotypes by stereotaxically injecting recombinant Adeno-Associated Viral (rAAV vectors which contain cell-type specific Oxt or Avp promoters that drive expression of EGFP selectively in either the Oxt or Avp MCNs into the SON. The fluorescent MCNs are then dissected by LCM using a novel Cap Road Map protocol described in this paper, and the purified MCNs are extracted for their RNAs. qRT-PCR of these RNAs show that some transcription factors (RORA and c-jun are differentially expressed in the Oxt and Avp MCNs.

  5. Deep sequencing of small RNAs identifies canonical and non-canonical miRNA and endogenous siRNAs in mammalian somatic tissues.

    Science.gov (United States)

    Castellano, Leandro; Stebbing, Justin

    2013-03-01

    MicroRNAs (miRNAs) are small RNA molecules that regulate gene expression. They are characterized by specific maturation processes defined by canonical and non-canonical biogenic pathways. Analysis of ∼0.5 billion sequences from mouse data sets derived from different tissues, developmental stages and cell types, partly characterized by either ablation or mutation of the main proteins belonging to miRNA processor complexes, reveals 66 high-confidence new genomic loci coding for miRNAs that could be processed in a canonical or non-canonical manner. A proportion of the newly discovered miRNAs comprises mirtrons, for which we define a new sub-class. Notably, some of these newly discovered miRNAs are generated from untranslated and open reading frames of coding genes, and we experimentally validate these. We also show that many annotated miRNAs do not present miRNA-like features, as they are neither processed by known processing complexes nor loaded on AGO2; this indicates that the current miRNA miRBase database list should be refined and re-defined. Accordingly, a group of them map on ribosomal RNA molecules, whereas others cannot undergo genuine miRNA biogenesis. Notably, a group of annotated miRNAs are Dgcr8 independent and DICER dependent endogenous small interfering RNAs that derive from a unique hairpin formed from a short interspersed nuclear element.

  6. Random small interfering RNA library screen identifies siRNAs that induce human erythroleukemia cell differentiation.

    Science.gov (United States)

    Fan, Cuiqing; Xiong, Yuan; Zhu, Ning; Lu, Yabin; Zhang, Jiewen; Wang, Song; Liang, Zicai; Shen, Yan; Chen, Meihong

    2011-03-01

    Cancers are characterized by poor differentiation. Differentiation therapy is a strategy to alleviate malignant phenotypes by inducing cancer cell differentiation. Here we carried out a combinatorial high-throughput screen with a random siRNA library on human erythroleukemia K-562 cell differentiation. Two siRNAs screened from the library were validated to be able to induce erythroid differentiation to varying degrees, determined by CD235 and globin up-regulation, GATA-2 down-regulation, and cell growth inhibition. The screen we performed here is the first trial of screening cancer differentiation-inducing agents from a random siRNA library, demonstrating that a random siRNA library can be considered as a new resource in efforts to seek new therapeutic agents for cancers. As a random siRNA library has a broad coverage for the entire genome, including known/unknown genes and protein coding/non-coding sequences, screening using a random siRNA library can be expected to greatly augment the repertoire of therapeutic siRNAs for cancers.

  7. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus and Their Response to Intestinal Air-Breathing Inhibition.

    Directory of Open Access Journals (Sweden)

    Songqian Huang

    Full Text Available MicroRNAs (miRNAs exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group. Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish.

  8. miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells

    DEFF Research Database (Denmark)

    Hua, Youjia; Duan, Shiwei; Murmann, Andrea E

    2011-01-01

    have generated custom data sets containing expression information of 54 miRNA families sharing the same seed match. We have developed a novel strategy for correlating miRNAs with individual genes based on a summed Pearson Correlation Coefficient (sPCC) that mimics an in silico titration experiment......micro(mi)RNAs are small non-coding RNAs that negatively regulate expression of most mRNAs. They are powerful regulators of various differentiation stages, and the expression of genes that either negatively or positively correlate with expressed miRNAs is expected to hold information....... By focusing on the genes that correlate with the expression of miRNAs without necessarily being direct targets of miRNAs, we have clustered miRNAs into different functional groups. This has resulted in the identification of three novel miRNAs that are linked to the epithelial-to-mesenchymal transition (EMT...

  9. Microarray-based approach identifies microRNAs and their target functional patterns in polycystic kidney disease

    Directory of Open Access Journals (Sweden)

    Boehn Susanne NE

    2008-12-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play key roles in mammalian gene expression and several cellular processes, including differentiation, development, apoptosis and cancer pathomechanisms. Recently the biological importance of primary cilia has been recognized in a number of human genetic diseases. Numerous disorders are related to cilia dysfunction, including polycystic kidney disease (PKD. Although involvement of certain genes and transcriptional networks in PKD development has been shown, not much is known how they are regulated molecularly. Results Given the emerging role of miRNAs in gene expression, we explored the possibilities of miRNA-based regulations in PKD. Here, we analyzed the simultaneous expression changes of miRNAs and mRNAs by microarrays. 935 genes, classified into 24 functional categories, were differentially regulated between PKD and control animals. In parallel, 30 miRNAs were differentially regulated in PKD rats: our results suggest that several miRNAs might be involved in regulating genetic switches in PKD. Furthermore, we describe some newly detected miRNAs, miR-31 and miR-217, in the kidney which have not been reported previously. We determine functionally related gene sets, or pathways to reveal the functional correlation between differentially expressed mRNAs and miRNAs. Conclusion We find that the functional patterns of predicted miRNA targets and differentially expressed mRNAs are similar. Our results suggest an important role of miRNAs in specific pathways underlying PKD.

  10. NAViGaTing the micronome--using multiple microRNA prediction databases to identify signalling pathway-associated microRNAs.

    Directory of Open Access Journals (Sweden)

    Elize A Shirdel

    2011-02-01

    Full Text Available MicroRNAs are a class of small RNAs known to regulate gene expression at the transcript level, the protein level, or both. Since microRNA binding is sequence-based but possibly structure-specific, work in this area has resulted in multiple databases storing predicted microRNA:target relationships computed using diverse algorithms. We integrate prediction databases, compare predictions to in vitro data, and use cross-database predictions to model the microRNA:transcript interactome--referred to as the micronome--to study microRNA involvement in well-known signalling pathways as well as associations with disease. We make this data freely available with a flexible user interface as our microRNA Data Integration Portal--mirDIP (http://ophid.utoronto.ca/mirDIP.mirDIP integrates prediction databases to elucidate accurate microRNA:target relationships. Using NAViGaTOR to produce interaction networks implicating microRNAs in literature-based, KEGG-based and Reactome-based pathways, we find these signalling pathway networks have significantly more microRNA involvement compared to chance (p<0.05, suggesting microRNAs co-target many genes in a given pathway. Further examination of the micronome shows two distinct classes of microRNAs; universe microRNAs, which are involved in many signalling pathways; and intra-pathway microRNAs, which target multiple genes within one signalling pathway. We find universe microRNAs to have more targets (p<0.0001, to be more studied (p<0.0002, and to have higher degree in the KEGG cancer pathway (p<0.0001, compared to intra-pathway microRNAs.Our pathway-based analysis of mirDIP data suggests microRNAs are involved in intra-pathway signalling. We identify two distinct classes of microRNAs, suggesting a hierarchical organization of microRNAs co-targeting genes both within and between pathways, and implying differential involvement of universe and intra-pathway microRNAs at the disease level.

  11. The potential of circulating extracellular small RNAs (smexRNA) in veterinary diagnostics-Identifying biomarker signatures by multivariate data analysis.

    Science.gov (United States)

    Melanie, Spornraft; Benedikt, Kirchner; Pfaffl, Michael W; Irmgard, Riedmaier

    2015-09-01

    Worldwide growth and performance-enhancing substances are used in cattle husbandry to increase productivity. In certain countries however e.g., in the EU, these practices are forbidden to prevent the consumers from potential health risks of substance residues in food. To maximize economic profit, 'black sheep' among farmers might circumvent the detection methods used in routine controls, which highlights the need for an innovative and reliable detection method. Transcriptomics is a promising new approach in the discovery of veterinary medicine biomarkers and also a missing puzzle piece, as up to date, metabolomics and proteomics are paramount. Due to increased stability and easy sampling, circulating extracellular small RNAs (smexRNAs) in bovine plasma were small RNA-sequenced and their potential to serve as biomarker candidates was evaluated using multivariate data analysis tools. After running the data evaluation pipeline, the proportion of miRNAs (microRNAs) and piRNAs (PIWI-interacting small non-coding RNAs) on the total sequenced reads was calculated. Additionally, top 10 signatures were compared which revealed that the readcount data sets were highly affected by the most abundant miRNA and piRNA profiles. To evaluate the discriminative power of multivariate data analyses to identify animals after veterinary drug application on the basis of smexRNAs, OPLS-DA was performed. In summary, the quality of miRNA models using all mapped reads for both treatment groups (animals treated with steroid hormones or the β-agonist clenbuterol) is predominant to those generated with combined data sets or piRNAs alone. Using multivariate projection methodologies like OPLS-DA have proven the best potential to generate discriminative miRNA models, supported by small RNA-Seq data. Based on the presented comparative OPLS-DA, miRNAs are the favorable smexRNA biomarker candidates in the research field of veterinary drug abuse.

  12. Profiling of microRNAs in tumor interstitial fluid of breast tumors – a novel resource to identify biomarkers for prognostic classification and detection of cancer

    DEFF Research Database (Denmark)

    Halvorsen, Ann Rita; Helland, Åslaug; Gromov, Pavel

    2017-01-01

    and to elucidate the cross-talk that exists among cells in a tumor microenvironment. Matched tumor interstitial fluid samples (TIF, n = 60), normal interstitial fluid samples (NIF, n = 51), corresponding tumor tissue specimens (n = 54), and serum samples (n = 27) were collected from patients with breast cancer......, and detectable microRNAs were analyzed and compared. In addition, serum data from 32 patients with breast cancer and 22 healthy controls were obtained for a validation study. To identify potential serum biomarkers of breast cancer, first the microRNA profiles of TIF and NIF samples were compared. A total of 266...... microRNAs were present at higher level in the TIF samples as compared to normal counterparts. Sixty-one of these microRNAs were present in > 75% of the serum samples and were subsequently tested in a validation set. Seven of the 61 microRNAs were associated with poor survival, while 23 were associated...

  13. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    Science.gov (United States)

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  14. Circular RNAs

    DEFF Research Database (Denmark)

    Han, Yi-Neng; Xia, Shengqiang; Zhang, Yuan-Yuan

    2017-01-01

    Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhi...... and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment....

  15. Expression profiles analysis of long non-coding RNAs identified novel lncRNA biomarkers with predictive value in outcome of cutaneous melanoma.

    Science.gov (United States)

    Ma, Xu; He, Zhijuan; Li, Ling; Yang, Daping; Liu, Guofeng

    2017-09-29

    Recent advancements in cancer biology have identified a large number of lncRNAs that are dysregulated expression in the development and tumorigenesis of cancers, highlighting the importance of lncRNAs as a key player for human cancers. However, the prognostic value of lncRNAs still remains unclear and needs to be further investigated. In the present study, we aim to assess the prognostic value of lncRNAs in cutaneous melanoma by integrated lncRNA expression profiles from TCGA database and matched clinical information from a large cohort of patients with cutaneous melanoma. We finally identified a set of six lncRNAs that are significantly associated with survival of patients with cutaneous melanoma. A linear combination of six lncRNAs ( LINC01260, HCP5, PIGBOS1, RP11-247L20.4, CTA-292E10.6 and CTB-113P19.5 ) was constructed as a six-lncRNA signature which classified patients of training cohort into the high-risk group and low-risk group with significantly different survival time. The prognostic value of the six-lncRNA signature was validated in both the validation cohort and entire TCGA cohort. Moreover, the six-lncRNA signature is independent of known clinic-pathological factors by multivariate Cox regression analysis and demonstrated good performance for predicting three- and five-year overall survival by time-dependent receiver operating characteristic (ROC) analysis. Our study provides novel insights into the molecular heterogeneity of cutaneous melanoma and also shows potentially important implications of lncRNAs for prognosis and therapy for cutaneous melanoma.

  16. Transcriptomic Profiling of Extracellular RNAs Present in Cerebrospinal Fluid Identifies Differentially Expressed Transcripts in Parkinson’s Disease

    Science.gov (United States)

    Hossein-nezhad, Arash; Fatemi, Roya Pedram; Ahmad, Rili; Peskind, Elaine R.; Zabetian, Cyrus P.; Hu, Shu-Ching; Shi, Min; Wahlestedt, Claes; Zhang, Jing; Faghihi, Mohammad Ali

    2016-01-01

    Background: Parkinson’s disease (PD) is a debilitating neurological disorder for which prognostic and diagnostic biomarkers are lacking. Cerebrospinal fluid (CSF) is an accessible body fluid that comes into direct contact with the central nervous system (CNS) and acts as a nuclease-free repository where RNA transcripts shed by brain tissues can reside for extended periods of time. Objective: We studied the RNA species present in the CSF of PD patients to identify novel diagnostic biomarkers. Methods: Small volumes of CSF from 27 PD patients and 30 healthy age- and sex-matched controls were used for RNA extraction followed by next-generation sequencing (RNA-seq) using the Illumina platform. CSF contains a number of fragmented RNA species that were individually sequenced and analyzed. Comparing PD to control subjects, we observed a pool of dysregulated sequencing tags that were further analyzed and validated by quantitative real-time PCR (qRT-PCR). Results: A total of 201 differentially expressed sequencing tags (DETs), including 92 up-regulated and 109 down-regulated DETs were identified. We validated the following DETs by real time PCR in the patient samples: Dnmt1, Ezh2, CCR3, SSTR5,PTPRC, UBC, NDUFV2, BMP7, SCN9, SCN9 antisense (AC010127.3), and long noncoding RNAs AC079630 and UC001lva.4 (close to the LRRK2 gene locus), as potential PD biomarkers. Conclusions: The CSF is a unique environment that contains many species of RNA. Our work demonstrates that CSF can potentially be used to identify biomarkers for the detection and tracking of disease progression and evaluation of therapeutic outcomes. PMID:26889637

  17. Next-generation sequencing identifies deregulation of microRNAs involved in both innate and adaptive immune response in ALK+ ALCL.

    Directory of Open Access Journals (Sweden)

    Julia Steinhilber

    Full Text Available Anaplastic large cell lymphoma (ALCL is divided into two systemic diseases according to the expression of the anaplastic lymphoma kinase (ALK. We investigated the differential expression of miRNAs between ALK+ ALCL, ALK- ALCL cells and normal T-cells using next generation sequencing (NGS. In addition, a C/EBPβ-dependent miRNA profile was generated. The data were validated in primary ALCL cases. NGS identified 106 miRNAs significantly differentially expressed between ALK+ and ALK- ALCL and 228 between ALK+ ALCL and normal T-cells. We identified a signature of 56 miRNAs distinguishing ALK+ ALCL, ALK- ALCL and T-cells. The top candidates significant differentially expressed between ALK+ and ALK- ALCL included 5 upregulated miRNAs: miR-340, miR-203, miR-135b, miR-182, miR-183; and 7 downregulated: miR-196b, miR-155, miR-146a, miR-424, miR-503, miR-424*, miR-542-3p. The miR-17-92 cluster was also upregulated in ALK+ cells. Additionally, we identified a signature of 3 miRNAs significantly regulated by the transcription factor C/EBPβ, which is specifically overexpressed in ALK+ ALCL, including the miR-181 family. Of interest, miR-181a, which regulates T-cell differentiation and modulates TCR signalling strength, was significantly downregulated in ALK+ ALCL cases. In summary, our data reveal a miRNA signature linking ALK+ ALCL to a deregulated immune response and may reflect the abnormal TCR antigen expression known in ALK+ ALCL.

  18. MIR@NT@N: a framework integrating transcription factors, microRNAs and their targets to identify sub-network motifs in a meta-regulation network model

    Directory of Open Access Journals (Sweden)

    Wasserman Wyeth W

    2011-03-01

    Full Text Available Abstract Background To understand biological processes and diseases, it is crucial to unravel the concerted interplay of transcription factors (TFs, microRNAs (miRNAs and their targets within regulatory networks and fundamental sub-networks. An integrative computational resource generating a comprehensive view of these regulatory molecular interactions at a genome-wide scale would be of great interest to biologists, but is not available to date. Results To identify and analyze molecular interaction networks, we developed MIR@NT@N, an integrative approach based on a meta-regulation network model and a large-scale database. MIR@NT@N uses a graph-based approach to predict novel molecular actors across multiple regulatory processes (i.e. TFs acting on protein-coding or miRNA genes, or miRNAs acting on messenger RNAs. Exploiting these predictions, the user can generate networks and further analyze them to identify sub-networks, including motifs such as feedback and feedforward loops (FBL and FFL. In addition, networks can be built from lists of molecular actors with an a priori role in a given biological process to predict novel and unanticipated interactions. Analyses can be contextualized and filtered by integrating additional information such as microarray expression data. All results, including generated graphs, can be visualized, saved and exported into various formats. MIR@NT@N performances have been evaluated using published data and then applied to the regulatory program underlying epithelium to mesenchyme transition (EMT, an evolutionary-conserved process which is implicated in embryonic development and disease. Conclusions MIR@NT@N is an effective computational approach to identify novel molecular regulations and to predict gene regulatory networks and sub-networks including conserved motifs within a given biological context. Taking advantage of the M@IA environment, MIR@NT@N is a user-friendly web resource freely available at http

  19. MicroRNAs and Presbycusis.

    Science.gov (United States)

    Hu, Weiming; Wu, Junwu; Jiang, Wenjing; Tang, Jianguo

    2018-02-01

    Presbycusis (age-related hearing loss) is the most universal sensory degenerative disease in elderly people caused by the degeneration of cochlear cells. Non-coding microRNAs (miRNAs) play a fundamental role in gene regulation in almost every multicellular organism, and control the aging processes. It has been identified that various miRNAs are up- or down-regulated during mammalian aging processes in tissue-specific manners. Most miRNAs bind to specific sites on their target messenger-RNAs (mRNAs) and decrease their expression. Germline mutation may lead to dysregulation of potential miRNAs expression, causing progressive hair cell degeneration and age-related hearing loss. Therapeutic innovations could emerge from a better understanding of diverse function of miRNAs in presbycusis. This review summarizes the relationship between miRNAs and presbycusis, and presents novel miRNAs-targeted strategies against presbycusis.

  20. LncSubpathway: a novel approach for identifying dysfunctional subpathways associated with risk lncRNAs by integrating lncRNA and mRNA expression profiles and pathway topologies.

    Science.gov (United States)

    Xu, Yanjun; Li, Feng; Wu, Tan; Xu, Yingqi; Yang, Haixiu; Dong, Qun; Zheng, Meiyu; Shang, Desi; Zhang, Chunlong; Zhang, Yunpeng; Li, Xia

    2017-02-28

    Long non-coding RNAs (lncRNAs) play important roles in various biological processes, including the development of many diseases. Pathway analysis is a valuable aid for understanding the cellular functions of these transcripts. We have developed and characterized LncSubpathway, a novel method that integrates lncRNA and protein coding gene (PCG) expression with interactome data to identify disease risk subpathways that functionally associated with risk lncRNAs. LncSubpathway identifies the most relevance regions which are related with risk lncRNA set and implicated with study conditions through simultaneously considering the dysregulation extent of lncRNAs, PCGs and their correlations. Simulation studies demonstrated that the sensitivity and false positive rates of LncSubpathway were within acceptable ranges, and that LncSubpathway could accurately identify dysregulated regions that related with disease risk lncRNAs within pathways. When LncSubpathway was applied to colorectal carcinoma and breast cancer subtype datasets, it identified cancer type- and breast cancer subtype-related meaningful subpathways. Further, analysis of its robustness and reproducibility indicated that LncSubpathway was a reliable means of identifying subpathways that functionally associated with lncRNAs. LncSubpathway is freely available at http://www.bio-bigdata.com/lncSubpathway/.

  1. An integrative transcriptomic approach to identify depot differences in genes and microRNAs in adipose tissues from high fat fed mice.

    Science.gov (United States)

    Wijayatunga, Nadeeja N; Pahlavani, Mandana; Kalupahana, Nishan S; Kottapalli, Kameswara Rao; Gunaratne, Preethi H; Coarfa, Cristian; Ramalingam, Latha; Moustaid-Moussa, Naima

    2018-02-06

    Obesity contributes to metabolic disorders such as diabetes and cardiovascular disease. Characterization of differences between the main adipose tissue depots, white (WAT) [including subcutaneous (SAT) and visceral adipose tissue (VAT)] and brown adipose tissue (BAT) helps to identify their roles in obesity. Thus, we studied depot-specific differences in whole transcriptome and miRNA profiles of SAT, VAT and BAT from high fat diet (HFD/45% of calories from fat) fed mice using RNA sequencing and small RNA-Seq. Using quantitative real-time polymerase chain reaction, we validated depot-specific differences in endoplasmic reticulum (ER) stress related genes and miRNAs using mice fed a HFD vs. low fat diet (LFD/10% of calories from fat). According to the transcriptomic analysis, lipogenesis, adipogenesis, inflammation, endoplasmic reticulum (ER) stress and unfolded protein response (UPR) were higher in VAT compared to BAT, whereas energy expenditure, fatty acid oxidation and oxidative phosphorylation were higher in BAT than in VAT of the HFD fed mice. In contrast to BAT, ER stress marker genes were significantly upregulated in VAT of HFD fed mice than the LFD fed mice. For the first time, we report depot specific differences in ER stress related miRNAs including; downregulation of miR-125b-5p, upregulation miR-143-3p, and miR-222-3p in VAT following HFD and upregulation of miR-30c-2-3p only in BAT following a HFD in mice than the LFD mice. In conclusion, HFD differentially regulates miRNAs and genes in different adipose depots with significant induction of genes related to lipogenesis, adipogenesis, inflammation, ER stress, and UPR in WAT compared to BAT.

  2. Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia

    Science.gov (United States)

    Chronically altered levels of circulating lipids, termed dyslipidemia, is a significant risk factor for a number of metabolic and cardiovascular morbidities. MicroRNAs (miRNAs) have emerged as important regulators of lipid balance, have been implicated in dyslipidemia, and have been proposed as cand...

  3. miRvestigator: web application to identify miRNAs responsible for co-regulated gene expression patterns discovered through transcriptome profiling.

    Science.gov (United States)

    Plaisier, Christopher L; Bare, J Christopher; Baliga, Nitin S

    2011-07-01

    Transcriptome profiling studies have produced staggering numbers of gene co-expression signatures for a variety of biological systems. A significant fraction of these signatures will be partially or fully explained by miRNA-mediated targeted transcript degradation. miRvestigator takes as input lists of co-expressed genes from Caenorhabditis elegans, Drosophila melanogaster, G. gallus, Homo sapiens, Mus musculus or Rattus norvegicus and identifies the specific miRNAs that are likely to bind to 3' un-translated region (UTR) sequences to mediate the observed co-regulation. The novelty of our approach is the miRvestigator hidden Markov model (HMM) algorithm which systematically computes a similarity P-value for each unique miRNA seed sequence from the miRNA database miRBase to an overrepresented sequence motif identified within the 3'-UTR of the query genes. We have made this miRNA discovery tool accessible to the community by integrating our HMM algorithm with a proven algorithm for de novo discovery of miRNA seed sequences and wrapping these algorithms into a user-friendly interface. Additionally, the miRvestigator web server also produces a list of putative miRNA binding sites within 3'-UTRs of the query transcripts to facilitate the design of validation experiments. The miRvestigator is freely available at http://mirvestigator.systemsbiology.net.

  4. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma.

    Science.gov (United States)

    Yuan, Yang; Jiaoming, Li; Xiang, Wang; Yanhui, Liu; Shu, Jiang; Maling, Gou; Qing, Mao

    2018-05-01

    Cross-talk between competitive endogenous RNAs (ceRNAs) may play a critical role in revealing potential mechanisms of tumor development and physiology. Glioblastoma is the most common type of malignant primary brain tumor, and the mechanisms of tumor genesis and development in glioblastoma are unclear. Here, to investigate the role of non-coding RNAs and the ceRNA network in glioblastoma, we performed paired-end RNA sequencing and microarray analyses to obtain the expression profiles of mRNAs, lncRNAs, circRNAs and miRNAs. We identified that the expression of 501 lncRNAs, 1999 mRNAs, 2038 circRNAs and 143 miRNAs were often altered between glioblastoma and matched normal brain tissue. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed on these differentially expressed mRNAs and miRNA-mediated target genes of lncRNAs and circRNAs. Furthermore, we used a multi-step computational framework and several bioinformatics methods to construct a ceRNA network combining mRNAs, miRNAs, lncRNAs and circRNA, based on co-expression analysis between the differentially expressed RNAs. We identified that plenty of lncRNAs, CircRNAs and their downstream target genes in the ceRNA network are related to glutamatergic synapse, suggesting that glutamate metabolism is involved in glioma biological functions. Our results will accelerate the understanding of tumorigenesis, cancer progression and even therapeutic targeting in glioblastoma.

  5. High-Throughput Sequencing of Small RNA Transcriptomes in Maize Kernel Identifies miRNAs Involved in Embryo and Endosperm Development.

    Science.gov (United States)

    Xing, Lijuan; Zhu, Ming; Zhang, Min; Li, Wenzong; Jiang, Haiyang; Zou, Junjie; Wang, Lei; Xu, Miaoyun

    2017-12-14

    Maize kernel development is a complex biological process that involves the temporal and spatial expression of many genes and fine gene regulation at a transcriptional and post-transcriptional level, and microRNAs (miRNAs) play vital roles during this process. To gain insight into miRNA-mediated regulation of maize kernel development, a deep-sequencing technique was used to investigate the dynamic expression of miRNAs in the embryo and endosperm at three developmental stages in B73. By miRNA transcriptomic analysis, we characterized 132 known miRNAs and six novel miRNAs in developing maize kernel, among which, 15 and 14 miRNAs were commonly differentially expressed between the embryo and endosperm at 9 days after pollination (DAP), 15 DAP and 20 DAP respectively. Conserved miRNA families such as miR159, miR160, miR166, miR390, miR319, miR528 and miR529 were highly expressed in developing embryos; miR164, miR171, miR393 and miR2118 were highly expressed in developing endosperm. Genes targeted by those highly expressed miRNAs were found to be largely related to a regulation category, including the transcription, macromolecule biosynthetic and metabolic process in the embryo as well as the vitamin biosynthetic and metabolic process in the endosperm. Quantitative reverse transcription-PCR (qRT-PCR) analysis showed that these miRNAs displayed a negative correlation with the levels of their corresponding target genes. Importantly, our findings revealed that members of the miR169 family were highly and dynamically expressed in the developing kernel, which will help to exploit new players functioning in maize kernel development.

  6. Transcriptome-wide analysis of the Trypanosoma cruzi proliferative cycle identifies the periodically expressed mRNAs and their multiple levels of control.

    Directory of Open Access Journals (Sweden)

    Santiago Chávez

    Full Text Available Trypanosoma cruzi is the protozoan parasite causing American trypanosomiasis or Chagas disease, a neglected parasitosis with important human health impact in Latin America. The efficacy of current therapy is limited, and its toxicity is high. Since parasite proliferation is a fundamental target for rational drug design, we sought to progress into its understanding by applying a genome-wide approach. Treating a TcI linage strain with hydroxyurea, we isolated epimastigotes in late G1, S and G2/M cell cycle stages at 70% purity. The sequencing of each phase identified 305 stage-specific transcripts (1.5-fold change, p≤0.01, coding for conserved cell cycle regulated proteins and numerous proteins whose cell cycle dependence has not been recognized before. Comparisons with the parasite T. brucei and the human host reveal important differences. The meta-analysis of T. cruzi transcriptomic and ribonomic data indicates that cell cycle regulated mRNAs are subject to sub-cellular compartmentalization. Compositional and structural biases of these genes- including CAI, GC content, UTR length, and polycistron position- may contribute to their regulation. To discover nucleotide motifs responsible for the co-regulation of cell cycle regulated genes, we looked for overrepresented motifs at their UTRs and found a variant of the cell cycle sequence motif at the 3' UTR of most of the S and G2 stage genes. We additionally identified hairpin structures at the 5' UTRs of a high proportion of the transcripts, suggesting that periodic gene expression might also rely on translation initiation in T. cruzi. In summary, we report a comprehensive list of T. cruzi cell cycle regulated genes, including many previously unstudied proteins, we show evidence favoring a multi-step control of their expression, and we identify mRNA motifs that may mediate their regulation. Our results provide novel information of the T. cruzi proliferative proteins and the integrated levels of

  7. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    Directory of Open Access Journals (Sweden)

    Ashish Lal

    2011-11-01

    Full Text Available A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2 as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4. Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  8. Capture of microRNA-bound mRNAs identifies the tumor suppressor miR-34a as a regulator of growth factor signaling.

    Science.gov (United States)

    Lal, Ashish; Thomas, Marshall P; Altschuler, Gabriel; Navarro, Francisco; O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-11-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ~90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a-regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division.

  9. Capture of MicroRNA–Bound mRNAs Identifies the Tumor Suppressor miR-34a as a Regulator of Growth Factor Signaling

    Science.gov (United States)

    O'Day, Elizabeth; Li, Xiao Ling; Concepcion, Carla; Han, Yoon-Chi; Thiery, Jerome; Rajani, Danielle K.; Deutsch, Aaron; Hofmann, Oliver; Ventura, Andrea; Hide, Winston; Lieberman, Judy

    2011-01-01

    A simple biochemical method to isolate mRNAs pulled down with a transfected, biotinylated microRNA was used to identify direct target genes of miR-34a, a tumor suppressor gene. The method reidentified most of the known miR-34a regulated genes expressed in K562 and HCT116 cancer cell lines. Transcripts for 982 genes were enriched in the pull-down with miR-34a in both cell lines. Despite this large number, validation experiments suggested that ∼90% of the genes identified in both cell lines can be directly regulated by miR-34a. Thus miR-34a is capable of regulating hundreds of genes. The transcripts pulled down with miR-34a were highly enriched for their roles in growth factor signaling and cell cycle progression. These genes form a dense network of interacting gene products that regulate multiple signal transduction pathways that orchestrate the proliferative response to external growth stimuli. Multiple candidate miR-34a–regulated genes participate in RAS-RAF-MAPK signaling. Ectopic miR-34a expression reduced basal ERK and AKT phosphorylation and enhanced sensitivity to serum growth factor withdrawal, while cells genetically deficient in miR-34a were less sensitive. Fourteen new direct targets of miR-34a were experimentally validated, including genes that participate in growth factor signaling (ARAF and PIK3R2) as well as genes that regulate cell cycle progression at various phases of the cell cycle (cyclins D3 and G2, MCM2 and MCM5, PLK1 and SMAD4). Thus miR-34a tempers the proliferative and pro-survival effect of growth factor stimulation by interfering with growth factor signal transduction and downstream pathways required for cell division. PMID:22102825

  10. Small silencing RNAs: an expanding universe.

    Science.gov (United States)

    Ghildiyal, Megha; Zamore, Phillip D

    2009-02-01

    Since the discovery in 1993 of the first small silencing RNA, a dizzying number of small RNA classes have been identified, including microRNAs (miRNAs), small interfering RNAs (siRNAs) and Piwi-interacting RNAs (piRNAs). These classes differ in their biogenesis, their modes of target regulation and in the biological pathways they regulate. There is a growing realization that, despite their differences, these distinct small RNA pathways are interconnected, and that small RNA pathways compete and collaborate as they regulate genes and protect the genome from external and internal threats.

  11. Characterization of an Hfq dependent antisense sRNA in the Gram-positive human pathogen Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nielsen, Jesper Sejrup; Lei Kristensen, Lisbeth; Hanghøj Chrisitansen, Mie

    between sRNA and target mRNA rely on the RNA chaperone Hfq. Hfq is a ubiquitous protein found in almost all genres of bacterial life. However, so far its role as an RNA chaperone has only been described in Gram-negative species such as Escherichia coli and Salmonella (Vogel, J. 2009). We previously...... identified several Hfq-binding sRNAs in the Gram-positive human pathogen L. monocytogenes (Christiansen et al 2006). Through bioinformatics, we have identified a number of candidate targets for one of these sRNAs (LhrA). Here, we present the characterization of one of these targets. Our results suggest...

  12. Micro-RNAs

    DEFF Research Database (Denmark)

    Taipaleenmäki, H.; Hokland, L. B.; Chen, Li

    2012-01-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed microRNAs has been identified as playing an important role in the regulation of many aspects of osteoblast biology...... including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of microRNA biology and their role in bone formation...

  13. Global miRNA expression analysis of serous and clear cell ovarian carcinomas identifies differentially expressed miRNAs including miR-200c-3p as a prognostic marker

    International Nuclear Information System (INIS)

    Vilming Elgaaen, Bente; Olstad, Ole Kristoffer; Haug, Kari Bente Foss; Brusletto, Berit; Sandvik, Leiv; Staff, Anne Cathrine; Gautvik, Kaare M; Davidson, Ben

    2014-01-01

    Improved insight into the molecular characteristics of the different ovarian cancer subgroups is needed for developing a more individualized and optimized treatment regimen. The aim of this study was to a) identify differentially expressed miRNAs in high-grade serous ovarian carcinoma (HGSC), clear cell ovarian carcinoma (CCC) and ovarian surface epithelium (OSE), b) evaluate selected miRNAs for association with clinical parameters including survival and c) map miRNA-mRNA interactions. Differences in miRNA expression between HGSC, CCC and OSE were analyzed by global miRNA expression profiling (Affymetrix GeneChip miRNA 2.0 Arrays, n = 12, 9 and 9, respectively), validated by RT-qPCR (n = 35, 19 and 9, respectively), and evaluated for associations with clinical parameters. For HGSC, differentially expressed miRNAs were linked to differentially expressed mRNAs identified previously. Differentially expressed miRNAs (n = 78) between HGSC, CCC and OSE were identified (FDR < 0.01%), of which 18 were validated (p < 0.01) using RT-qPCR in an extended cohort. Compared with OSE, miR-205-5p was the most overexpressed miRNA in HGSC. miR-200 family members and miR-182-5p were the most overexpressed in HGSC and CCC compared with OSE, whereas miR-383 was the most underexpressed. miR-205-5p and miR-200 members target epithelial-mesenchymal transition (EMT) regulators, apparently being important in tumor progression. miR-509-3-5p, miR-509-5p, miR-509-3p and miR-510 were among the strongest differentiators between HGSC and CCC, all being significantly overexpressed in CCC compared with HGSC. High miR-200c-3p expression was associated with poor progression-free (p = 0.031) and overall (p = 0.026) survival in HGSC patients. Interacting miRNA and mRNA targets, including those of a TP53-related pathway presented previously, were identified in HGSC. Several miRNAs differentially expressed between HGSC, CCC and OSE have been identified, suggesting a carcinogenetic role for these miRNAs

  14. Genomic Organization of Zebrafish microRNAs

    Directory of Open Access Journals (Sweden)

    Paydar Ima

    2008-05-01

    Full Text Available Abstract Background microRNAs (miRNAs are small (~22 nt non-coding RNAs that regulate cell movement, specification, and development. Expression of miRNAs is highly regulated, both spatially and temporally. Based on direct cloning, sequence conservation, and predicted secondary structures, a large number of miRNAs have been identified in higher eukaryotic genomes but whether these RNAs are simply a subset of a much larger number of noncoding RNA families is unknown. This is especially true in zebrafish where genome sequencing and annotation is not yet complete. Results We analyzed the zebrafish genome to identify the number and location of proven and predicted miRNAs resulting in the identification of 35 new miRNAs. We then grouped all 415 zebrafish miRNAs into families based on seed sequence identity as a means to identify possible functional redundancy. Based on genomic location and expression analysis, we also identified those miRNAs that are likely to be encoded as part of polycistronic transcripts. Lastly, as a resource, we compiled existing zebrafish miRNA expression data and, where possible, listed all experimentally proven mRNA targets. Conclusion Current analysis indicates the zebrafish genome encodes 415 miRNAs which can be grouped into 44 families. The largest of these families (the miR-430 family contains 72 members largely clustered in two main locations along chromosome 4. Thus far, most zebrafish miRNAs exhibit tissue specific patterns of expression.

  15. Small RNA analysis in Petunia hybrida identifies unusual tissue-specific expression patterns of conserved miRNAs and of a 24mer RNA

    Science.gov (United States)

    Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter

    2009-01-01

    Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427

  16. MicroRNAs regulate T-cell production of interleukin-9 and identify hypoxia-inducible factor-2α as an important regulator of T helper 9 and regulatory T-cell differentiation.

    Science.gov (United States)

    Singh, Yogesh; Garden, Oliver A; Lang, Florian; Cobb, Bradley S

    2016-09-01

    MicroRNAs (miRNAs) regulate many aspects of helper T cell (Th) development and function. Here we found that they are required for the suppression of interleukin-9 (IL-9) expression in Th9 cells and other Th subsets. Two highly related miRNAs (miR-15b and miR-16) that we previously found to play an important role in regulatory T (Treg) cell differentiation were capable of suppressing IL-9 expression when they were over-expressed in Th9 cells. We used these miRNAs as tools to identify novel regulators of IL-9 expression and found that they could regulate the expression of Epas1, which encodes hypoxia-inducible factor (HIF)-2α. HIF proteins regulate metabolic pathway usage that is important in determining appropriate Th differentiation. The related protein, HIF-1α enhances Th17 differentiation and inhibits Treg cell differentiation. Here we found that HIF-2α was required for IL-9 expression in Th9 cells, but its expression was not sufficient in other Th subsets. Furthermore, HIF-2α suppressed Treg cell differentiation like HIF-1α, demonstrating both similar and distinct roles of the HIF proteins in Th differentiation and adding a further dimension to their function. Ironically, even though miR-15b and miR-16 suppressed HIF-2α expression in Treg cells, inhibiting their function in Treg cells did not lead to an increase in IL-9 expression. Therefore, the physiologically relevant miRNAs that regulate IL-9 expression in Treg cells and other subsets remain unknown. Nevertheless, the analysis of miR-15b and miR-16 function led to the discovery of the importance of HIF-2α so this work demonstrated the utility of studying miRNA function to identify novel regulatory pathways in helper T-cell development. © 2016 John Wiley & Sons Ltd.

  17. Noncanonical microRNAs and endogenous siRNAs in lytic infection of murine gammaherpesvirus.

    Directory of Open Access Journals (Sweden)

    Jing Xia

    Full Text Available MicroRNA (miRNA and endogenous small interfering RNA (endo-siRNA are two essential classes of small noncoding RNAs (sncRNAs in eukaryotes. The class of miRNA is diverse and there exist noncanonical miRNAs that bypass the canonical miRNA biogenesis pathway. In order to identify noncanonical miRNAs and endo-siRNAs responding to virus infection and study their potential function, we sequenced small-RNA species from cells lytically infected with murine gammaherpesvirus 68 (MHV68. In addition to three novel canonical miRNAs in mouse, two antisense miRNAs in virus and 25 novel noncanonical miRNAs, including miRNAs derived from transfer RNAs, small nucleolar RNAs and introns, in the host were identified. These noncanonical miRNAs exhibited features distinct from that of canonical miRNAs in lengths of hairpins, base pairings and first nucleotide preference. Many of the novel miRNAs are conserved in mammals. Besides several known murine endo-siRNAs detected by the sequencing profiling, a novel locus in the mouse genome was identified to produce endo-siRNAs. This novel endo-siRNA locus is comprised of two tandem inverted B4 short interspersed nuclear elements (SINEs. Unexpectedly, the SINE-derived endo-siRNAs were found in a variety of sequencing data and virus-infected cells. Moreover, a murine miRNA was up-regulated more than 35 fold in infected than in mock-treated cells. The putative targets of the viral and the up-regulated murine miRNAs were potentially involved in processes of gene transcription and protein phosphorylation, and localized to membranes, suggesting their potential role in manipulating the host basal immune system during lytic infection. Our results extended the number of noncanonical miRNAs in mammals and shed new light on their potential functions of lytic infection of MHV68.

  18. Circulating MiRNAs of 'Asian Indian Phenotype' Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes.

    Directory of Open Access Journals (Sweden)

    Paramasivam Prabu

    Full Text Available Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM. While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians--an ethnic population characterized to represent 'Asian Indian phenotype' known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT, impaired glucose tolerance (IGT and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a 'New Lead' in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes.

  19. Circulating MiRNAs of ‘Asian Indian Phenotype’ Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes

    Science.gov (United States)

    Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-01-01

    Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians—an ethnic population characterized to represent ‘Asian Indian phenotype’ known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a ‘New Lead’ in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes. PMID:26020947

  20. Circulating MiRNAs of 'Asian Indian Phenotype' Identified in Subjects with Impaired Glucose Tolerance and Patients with Type 2 Diabetes.

    Science.gov (United States)

    Prabu, Paramasivam; Rome, Sophie; Sathishkumar, Chandrakumar; Aravind, Sankaramoorthy; Mahalingam, Balakumar; Shanthirani, Coimbatore Subramanian; Gastebois, Caroline; Villard, Audrey; Mohan, Viswanathan; Balasubramanyam, Muthuswamy

    2015-01-01

    Several omics technologies are underway worldwide with an aim to unravel the pathophysiology of a complex phenotype such as type 2 diabetes mellitus (T2DM). While recent studies imply a clinically relevant and potential biomarker role of circulatory miRNAs in the etiology of T2DM, there is lack of data on this aspect in Indians--an ethnic population characterized to represent 'Asian Indian phenotype' known to be more prone to develop T2DM and cardiovascular disease than Europeans. We performed global serum miRNA profiling and the validation of candidate miRNAs by qRT-PCR in a cohort of subjects comprised of normal glucose tolerance (NGT), impaired glucose tolerance (IGT) and patients with T2DM. Our study revealed 4 differentially expressed miRNAs (miR-128, miR-130b-3p, miR-374a-5p, miR-423-5p) in subjects with IGT and T2DM patients compared to control subjects. They were positively or negatively correlated to cholesterol levels, HbA1C, HOMA-IR and fasting insulin. Interestingly, circulating level of miR-128 and miR-130b-3p were also altered in serum of diet-induced diabetic mice compared to control animals. Among the altered circulating miRNAs, miR-128 had never been described in previous studies/populations and appeared to be a 'New Lead' in Indians. It was positively correlated with cholesterol both in prediabetic subjects and in diet-induced diabetic mice, suggesting that its increased level might be associated with the development of dyslipedemia associated with T2DM. Our findings imply directionality towards biomarker potential of miRNAs in the prevention/diagnosis/treatment outcomes of diabetes.

  1. Identification of miRNA Signatures Associated with Epithelial Ovarian Cancer Chemoresistance with Further Biological and Functional Validation of Identified Key miRNAS

    Science.gov (United States)

    2016-04-01

    chemoresistant cancer cells can sensitize chemoresistant ovarian tumors to cisplatin treatment and inhibit ovarian cancer dissemination in a pre...determine the mechanism by which miR-181a was regulating the emergence of these CICs. What opportunities for training and professional development has...also perform data analysis to correlate those miRNAs expression with patient response to cisplatin and other clinicopathological parameters. She

  2. Comprehensive analysis of differential co-expression patterns reveal transcriptional dysregulation mechanism and identify novel prognostic lncRNAs in esophageal squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Li Z

    2017-06-01

    Full Text Available Zhen Li,1 Qianlan Yao,1 Songjian Zhao,1 Yin Wang,2,3 Yixue Li,1,4 Zhen Wang4 1School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 2Shanghai Center for Bioinformation Technology, Shanghai Academy of Science and Technology, 3Collaborative Innovation Center for Genetics and Development, Fudan University, 4Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People’s Republic of China Abstract: Esophageal squamous cell carcinoma (ESCC is one of the most common malignancies worldwide and occurs at a relatively high frequency in People’s Republic of China. However, the molecular mechanism underlying ESCC is still unclear. In this study, the mRNA and long non-coding RNA (lncRNA expression profiles of ESCC were downloaded from the Gene Expression Omnibus database, and then differential co-expression analysis was used to reveal the altered co-expression relationship of gene pairs in ESCC tumors. A total of 3,709 mRNAs and 923 lncRNAs were differentially co-expressed between normal and tumor tissues, and we found that most of the gene pairs lost associations in the tumor tissues. The differential regulatory networking approach deciphered that transcriptional dysregulation was ubiquitous in ESCC, and most of the differentially regulated links were modulated by 37 TFs. Our study also found that two novel lncRNAs (ADAMTS9-AS1 and AP000696.2 might be essential in the development of ectoderm and epithelial cells, which could significantly stratify ESCC patients into high-risk and low-risk groups, and were much better than traditional clinical tumor markers. Further inspection of two risk groups showed that the changes in TF-target regulation in the high-risk patients were significantly higher than those in the low-risk patients. In addition, four signal transduction-related DCmRNAs (ERBB3, ENSA, KCNK7, MFSD5

  3. An expanding universe of noncoding RNAs.

    Science.gov (United States)

    Storz, Gisela

    2002-05-17

    Noncoding RNAs (ncRNAs) have been found to have roles in a great variety of processes, including transcriptional regulation, chromosome replication, RNA processing and modification, messenger RNA stability and translation, and even protein degradation and translocation. Recent studies indicate that ncRNAs are far more abundant and important than initially imagined. These findings raise several fundamental questions: How many ncRNAs are encoded by a genome? Given the absence of a diagnostic open reading frame, how can these genes be identified? How can all the functions of ncRNAs be elucidated?

  4. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic astrocytomas that target the MAPK and NF-κB pathways.

    Science.gov (United States)

    Jones, Tania A; Jeyapalan, Jennie N; Forshew, Tim; Tatevossian, Ruth G; Lawson, Andrew R J; Patel, Sheena N; Doctor, Gabriel T; Mumin, Muhammad A; Picker, Simon R; Phipps, Kim P; Michalski, Antony; Jacques, Thomas S; Sheer, Denise

    2015-12-18

    Pilocytic astrocytomas are slow-growing tumors that usually occur in the cerebellum or in the midline along the hypothalamic/optic pathways. The most common genetic alterations in pilocytic astrocytomas activate the ERK/MAPK signal transduction pathway, which is a major driver of proliferation but is also believed to induce senescence in these tumors. Here, we have conducted a detailed investigation of microRNA and gene expression, together with pathway analysis, to improve our understanding of the regulatory mechanisms in pilocytic astrocytomas. Pilocytic astrocytomas were found to have distinctive microRNA and gene expression profiles compared to normal brain tissue and a selection of other pediatric brain tumors. Several microRNAs found to be up-regulated in pilocytic astrocytomas are predicted to target the ERK/MAPK and NF-κB signaling pathways as well as genes involved in senescence-associated inflammation and cell cycle control. Furthermore, IGFBP7 and CEBPB, which are transcriptional inducers of the senescence-associated secretory phenotype (SASP), were also up-regulated together with the markers of senescence and inflammation, CDKN1A (p21), CDKN2A (p16) and IL1B. These findings provide further evidence of a senescent phenotype in pilocytic astrocytomas. In addition, they suggest that the ERK/MAPK pathway, which is considered the major driver of these tumors, is regulated not only by genetic aberrations but also by microRNAs.

  5. Biomarker MicroRNAs for Diagnosis of Oral Squamous Cell Carcinoma Identified Based on Gene Expression Data and MicroRNA-mRNA Network Analysis

    Science.gov (United States)

    Zhang, Hui; Li, Tangxin; Zheng, Linqing

    2017-01-01

    Oral squamous cell carcinoma is one of the most malignant tumors with high mortality rate worldwide. Biomarker discovery is critical for early diagnosis and precision treatment of this disease. MicroRNAs are small noncoding RNA molecules which often regulate essential biological processes and are good candidates for biomarkers. By integrative analysis of both the cancer-associated gene expression data and microRNA-mRNA network, miR-148b-3p, miR-629-3p, miR-27a-3p, and miR-142-3p were screened as novel diagnostic biomarkers for oral squamous cell carcinoma based on their unique regulatory abilities in the network structure of the conditional microRNA-mRNA network and their important functions. These findings were confirmed by literature verification and functional enrichment analysis. Future experimental validation is expected for the further investigation of their molecular mechanisms. PMID:29098014

  6. Integrative analysis of circRNAs acting as ceRNAs involved in ethylene pathway in tomato.

    Science.gov (United States)

    Wang, Yunxiang; Wang, Qing; Gao, Lipu; Zhu, Benzhong; Luo, Yunbo; Deng, Zhiping; Zuo, Jinhua

    2017-11-01

    Circular RNAs (circRNAs) are a large class of non-coding endogenous RNAs that could act as competing endogenous RNAs (ceRNAs) to terminate the mRNA targets' suppression of miRNAs. To elucidate the intricate regulatory roles of circRNAs in the ethylene pathway in tomato fruit, deep sequencing and bioinformatics methods were performed. After strict screening, a total of 318 circRNAs were identified. Among these circRNAs, 282 were significantly differentially expressed among wild-type and sense-/antisense-LeERF1 transgenic tomato fruits. Besides, 1254 target genes were identified and a large amount of them were found to be involved in ethylene pathway. In addition, a sophisticated regulatory model consisting of circRNAs, target genes and ethylene was set up. Importantly, 61 circRNAs were found to be potential ceRNAs to combine with miRNAs and some of the miRNAs had been revealed to participate in the ethylene signaling pathway. This research further raised the possibility that the ethylene pathway in tomato fruit may be under the regulation of various circRNAs and provided a new perspective of the roles of circRNAs. © 2017 Scandinavian Plant Physiology Society.

  7. A survey of small RNAs in human sperm

    Science.gov (United States)

    Krawetz, Stephen A.; Kruger, Adele; Lalancette, Claudia; Tagett, Rebecca; Anton, Ester; Draghici, Sorin; Diamond, Michael P.

    2011-01-01

    BACKGROUND There has been substantial interest in assessing whether RNAs (mRNAs and sncRNAs, i.e. small non-coding) delivered from mammalian spermatozoa play a functional role in early embryo development. While the cadre of spermatozoal mRNAs has been characterized, comparatively little is known about the distribution or function of the estimated 24 000 sncRNAs within each normal human spermatozoon. METHODS RNAs of libraries for Next Generation Sequencing. Known sncRNAs that uniquely mapped to a single location in the human genome were identified. RESULTS Bioinformatic analysis revealed the presence of multiple classes of small RNAs in human spermatozoa. The primary classes resolved included microRNA (miRNAs) (≈7%), Piwi-interacting piRNAs (≈17%), repeat-associated small RNAs (≈65%). A minor subset of short RNAs within the transcription start site/promoter fraction (≈11%) frames the histone promoter-associated regions enriched in genes of early embryonic development. These have been termed quiescent RNAs. CONCLUSIONS A complex population of male derived sncRNAs that are available for delivery upon fertilization was revealed. Sperm miRNA-targeted enrichment in the human oocyte is consistent with their role as modifiers of early post-fertilization. The relative abundance of piRNAs and repeat-associated RNAs suggests that they may assume a role in confrontation and consolidation. This may ensure the compatibility of the genomes at fertilization. PMID:21989093

  8. Visual screening for localized RNAs in yeast revealed novel RNAs at the bud-tip

    International Nuclear Information System (INIS)

    Andoh, Tomoko; Oshiro, Yukiko; Hayashi, Sachiko; Takeo, Hideki; Tani, Tokio

    2006-01-01

    Several RNAs, including rRNAs, snRNAs, snoRNAs, and some mRNAs, are known to be localized at specific sites in a cell. Although methods have been established to visualize RNAs in a living cell, no large-scale visual screening of localized RNAs has been performed. In this study, we constructed a genomic library in which random genomic fragments were inserted downstream of U1A-tag sequences under a GAL1 promoter. In a living yeast cell, transcribed U1A-tagged RNAs were visualized by U1A-GFP that binds the RNA sequence of the U1A-tag. In this screening, many RNAs showed nuclear signals. Since the nuclear signals of some RNAs were not seen when the U1A-tag was connected to the 3' ends of the RNAs, it is suggested that their nuclear signals correspond to nascent transcripts on GAL1 promoter plasmids. Using this screening method, we successfully identified two novel localized mRNAs, CSR2 and DAL81, which showed bud-tip localization

  9. A comparative study of sequence- and structure-based features of small RNAs and other RNAs of bacteria.

    Science.gov (United States)

    Barik, Amita; Das, Santasabuj

    2018-01-02

    Small RNAs (sRNAs) in bacteria have emerged as key players in transcriptional and post-transcriptional regulation of gene expression. Here, we present a statistical analysis of different sequence- and structure-related features of bacterial sRNAs to identify the descriptors that could discriminate sRNAs from other bacterial RNAs. We investigated a comprehensive and heterogeneous collection of 816 sRNAs, identified by northern blotting across 33 bacterial species and compared their various features with other classes of bacterial RNAs, such as tRNAs, rRNAs and mRNAs. We observed that sRNAs differed significantly from the rest with respect to G+C composition, normalized minimum free energy of folding, motif frequency and several RNA-folding parameters like base-pairing propensity, Shannon entropy and base-pair distance. Based on the selected features, we developed a predictive model using Random Forests (RF) method to classify the above four classes of RNAs. Our model displayed an overall predictive accuracy of 89.5%. These findings would help to differentiate bacterial sRNAs from other RNAs and further promote prediction of novel sRNAs in different bacterial species.

  10. Annotation of mammalian primary microRNAs

    Directory of Open Access Journals (Sweden)

    Enright Anton J

    2008-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are important regulators of gene expression and have been implicated in development, differentiation and pathogenesis. Hundreds of miRNAs have been discovered in mammalian genomes. Approximately 50% of mammalian miRNAs are expressed from introns of protein-coding genes; the primary transcript (pri-miRNA is therefore assumed to be the host transcript. However, very little is known about the structure of pri-miRNAs expressed from intergenic regions. Here we annotate transcript boundaries of miRNAs in human, mouse and rat genomes using various transcription features. The 5' end of the pri-miRNA is predicted from transcription start sites, CpG islands and 5' CAGE tags mapped in the upstream flanking region surrounding the precursor miRNA (pre-miRNA. The 3' end of the pri-miRNA is predicted based on the mapping of polyA signals, and supported by cDNA/EST and ditags data. The predicted pri-miRNAs are also analyzed for promoter and insulator-associated regulatory regions. Results We define sets of conserved and non-conserved human, mouse and rat pre-miRNAs using bidirectional BLAST and synteny analysis. Transcription features in their flanking regions are used to demarcate the 5' and 3' boundaries of the pri-miRNAs. The lengths and boundaries of primary transcripts are highly conserved between orthologous miRNAs. A significant fraction of pri-miRNAs have lengths between 1 and 10 kb, with very few introns. We annotate a total of 59 pri-miRNA structures, which include 82 pre-miRNAs. 36 pri-miRNAs are conserved in all 3 species. In total, 18 of the confidently annotated transcripts express more than one pre-miRNA. The upstream regions of 54% of the predicted pri-miRNAs are found to be associated with promoter and insulator regulatory sequences. Conclusion Little is known about the primary transcripts of intergenic miRNAs. Using comparative data, we are able to identify the boundaries of a significant proportion of

  11. Identification of novel sRNAs in mycobacterial species.

    Directory of Open Access Journals (Sweden)

    Chen-Hsun Tsai

    Full Text Available Bacterial small RNAs (sRNAs are short transcripts that typically do not encode proteins and often act as regulators of gene expression through a variety of mechanisms. Regulatory sRNAs have been identified in many species, including Mycobacterium tuberculosis, the causative agent of tuberculosis. Here, we use a computational algorithm to predict sRNA candidates in the mycobacterial species M. smegmatis and M. bovis BCG and confirmed the expression of many sRNAs using Northern blotting. Thus, we have identified 17 and 23 novel sRNAs in M. smegmatis and M. bovis BCG, respectively. We have also applied a high-throughput technique (Deep-RACE to map the 5' and 3' ends of many of these sRNAs and identified potential regulators of sRNAs by analysis of existing ChIP-seq datasets. The sRNAs identified in this work likely contribute to the unique biology of mycobacteria.

  12. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal; Seridi, Loqmane; Ryu, Tae Woo; Takahashi, Hazuki; Orlando, Valerio; Carninci, Piero; Ravasi, Timothy

    2016-01-01

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  13. Characterization of piRNAs across postnatal development in mouse brain

    KAUST Repository

    Ghosheh, Yanal

    2016-04-26

    PIWI-interacting RNAs (piRNAs) are responsible for maintaining the genome stability by silencing retrotransposons in germline tissues– where piRNAs were first discovered and thought to be restricted. Recently, novel functions were reported for piRNAs in germline and somatic cells. Using deep sequencing of small RNAs and CAGE of postnatal development of mouse brain, we identified piRNAs only in adult mouse brain. These piRNAs have similar sequence length as those of MILI-bound piRNAs. In addition, we predicted novel candidate regulators and putative targets of adult brain piRNAs.

  14. microRNAs in CNS disorders

    DEFF Research Database (Denmark)

    Kocerha, Jannet; Kauppinen, Sakari; Wahlestedt, Claes

    2009-01-01

    RNAs (miRNAs) have been identified in the mammalian central nervous system (CNS) and are reported to mediate pivotal roles in many aspects of neuronal functions. Disruption of miRNA-based post-transcriptional regulation has been implicated in a range of CNS disorders as one miRNA is predicted to impact...

  15. Annotating functional RNAs in genomes using Infernal.

    Science.gov (United States)

    Nawrocki, Eric P

    2014-01-01

    Many different types of functional non-coding RNAs participate in a wide range of important cellular functions but the large majority of these RNAs are not routinely annotated in published genomes. Several programs have been developed for identifying RNAs, including specific tools tailored to a particular RNA family as well as more general ones designed to work for any family. Many of these tools utilize covariance models (CMs), statistical models of the conserved sequence, and structure of an RNA family. In this chapter, as an illustrative example, the Infernal software package and CMs from the Rfam database are used to identify RNAs in the genome of the archaeon Methanobrevibacter ruminantium, uncovering some additional RNAs not present in the genome's initial annotation. Analysis of the results and comparison with family-specific methods demonstrate some important strengths and weaknesses of this general approach.

  16. Dicer-independent processing of short hairpin RNAs

    NARCIS (Netherlands)

    Liu, Ying Poi; Schopman, Nick C. T.; Berkhout, Ben

    2013-01-01

    Short hairpin RNAs (shRNAs) are widely used to induce RNA interference (RNAi). We tested a variety of shRNAs that differed in stem length and terminal loop size and revealed strikingly different RNAi activities and shRNA-processing patterns. Interestingly, we identified a specific shRNA design that

  17. Non-Coding RNAs in Arabidopsis

    DEFF Research Database (Denmark)

    van Wonterghem, Miranda

    This work evolves around elucidating the mechanisms of micro RNAs (miRNAs) in Arabidopsis thaliana. I identified a new class of nuclear non-coding RNAs derived from protein coding genes. The genes are miRNA targets with extensive gene body methylation. The RNA species are nuclear localized and de...

  18. Identification of miRNA Signatures Associated with Epithelial Ovarian Cancer Chemoresistance with Further Biological and Functional Validation of Identified Key miRNAs

    Science.gov (United States)

    2012-08-01

    separated on 12% SDS PAGE gels and transferred to nitrocellulose membranes. After blocking with 5% non- fat milk (Labscientific, Inc) in TBS-Tween buffer... Raw mass spectrometric data were processed and analyzed for variations in the spectral counts of peptides between sample sets and bioinformatics was...accomplished using Ingenuity Pathways Analysis (IPA). Results: The total numbers of proteins and peptides identified are listed in the table

  19. MicroRNAs in Human Placental Development and Pregnancy Complications

    Directory of Open Access Journals (Sweden)

    Chun Peng

    2013-03-01

    Full Text Available MicroRNAs (miRNAs are small non-coding RNAs, which function as critical posttranscriptional regulators of gene expression by promoting mRNA degradation and translational inhibition. Placenta expresses many ubiquitous as well as specific miRNAs. These miRNAs regulate trophoblast cell differentiation, proliferation, apoptosis, invasion/migration, and angiogenesis, suggesting that miRNAs play important roles during placental development. Aberrant miRNAs expression has been linked to pregnancy complications, such as preeclampsia. Recent research of placental miRNAs focuses on identifying placental miRNA species, examining differential expression of miRNAs between placentas from normal and compromised pregnancies, and uncovering the function of miRNAs in the placenta. More studies are required to further understand the functional significance of miRNAs in placental development and to explore the possibility of using miRNAs as biomarkers and therapeutic targets for pregnancy-related disorders. In this paper, we reviewed the current knowledge about the expression and function of miRNAs in placental development, and propose future directions for miRNA studies.

  20. Diverse microRNAs with convergent functions regulate tumorigenesis.

    Science.gov (United States)

    Zhu, Min-Yan; Zhang, Wei; Yang, Tao

    2016-02-01

    MicroRNAs (miRNAs) regulate several biological processes, including tumorigenesis. In order to comprehend the roles of miRNAs in cancer, various screens were performed to investigate the changes in the expression levels of miRNAs that occur in different types of cancer. The present review focuses on the results of five recent screens, whereby a number of overlapping miRNAs were identified to be downregulated or differentially regulated, whereas no miRNAs were observed to be frequently upregulated. Furthermore, the majority of the miRNAs that were common to >1 screen were involved in signaling networks, including wingless-related integration site, receptor tyrosine kinase and transforming growth factor-β, or in cell cycle checkpoint control. The present review will discuss the aforementioned miRNAs implicated in cell cycle checkpoint control and signaling networks.

  1. Regulatory Role of Circular RNAs and Neurological Disorders.

    Science.gov (United States)

    Floris, Gabriele; Zhang, Longbin; Follesa, Paolo; Sun, Tao

    2017-09-01

    Circular RNAs (circRNAs) are a class of long noncoding RNAs that are characterized by the presence of covalently linked ends and have been found in all life kingdoms. Exciting studies in regulatory roles of circRNAs are emerging. Here, we summarize classification, characteristics, biogenesis, and regulatory functions of circRNAs. CircRNAs are found to be preferentially expressed along neural genes and in neural tissues. We thus highlight the association of circRNA dysregulation with neurodegenerative diseases such as Alzheimer's disease. Investigation of regulatory role of circRNAs will shed novel light in gene expression mechanisms during development and under disease conditions and may identify circRNAs as new biomarkers for aging and neurodegenerative disorders.

  2. Micro RNAs in animal development.

    NARCIS (Netherlands)

    Plasterk, R.H.A.

    2006-01-01

    Micro RNAs (miRNAs) are approximately 22 nucleotide single-stranded noncoding RNA molecules that bind to target messenger RNAs (mRNAs) and silence their expression. This Essay explores the importance of miRNAs in animal development and their possible roles in disease and evolution.

  3. Non-Coding RNAs in Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Anna Cordeiro

    2017-05-01

    Full Text Available MicroRNAs (miRNAs, small non-coding RNAs that regulate gene expression by binding to the 3’-UTR of their target genes, can act as oncogenes or tumor suppressors. Recently, other types of non-coding RNAs—piwiRNAs and long non-coding RNAs—have also been identified. Hodgkin lymphoma (HL is a B cell origin disease characterized by the presence of only 1% of tumor cells, known as Hodgkin and Reed-Stenberg (HRS cells, which interact with the microenvironment to evade apoptosis. Several studies have reported specific miRNA signatures that can differentiate HL lymph nodes from reactive lymph nodes, identify histologic groups within classical HL, and distinguish HRS cells from germinal center B cells. Moreover, some signatures are associated with survival or response to chemotherapy. Most of the miRNAs in the signatures regulate genes related to apoptosis, cell cycle arrest, or signaling pathways. Here we review findings on miRNAs in HL, as well as on other non-coding RNAs.

  4. Evaluating the potential of housekeeping genes, rRNAs, snRNAs, microRNAs and circRNAs as reference genes for the estimation of PMI.

    Science.gov (United States)

    Tu, Chunyan; Du, Tieshuai; Shao, Chengchen; Liu, Zengjia; Li, Liliang; Shen, Yiwen

    2018-04-24

    The precise estimation of postmortem interval (PMI) is a critical step in death investigation of forensic cases. Detecting the degradation of RNA in tissues by real time quantitative polymerase chain reaction (RT-qPCR) technology provides a new theoretical basis for estimation of PMI. However, most commonly used reference genes degrade over time, while previous studies seldom consider this when selecting suitable reference genes for the estimation of PMI. Studies have shown microRNAs (miRNAs) are very stable and circular RNAs (circRNAs) have recently emerged as a novel class of RNAs with high stability. We aimed to evaluate the stability of the two kinds of RNAs and normal reference genes using geNorm and NormFinder algorithms to identify tissue-specific reference genes for PMI estimation. The content of candidate RNAs from mouse heart, liver and skeletal muscle tissues were dynamically examined in 8 consecutive days after death. Among the 11 candidate genes (β-actin, Gapdh, Rps18, 5S, 18S, U6, miR-133a, miR-122, circ-AFF1, LC-Ogdh and LC-LRP6), the following genes showed prioritized stability: miR-122, miR-133a and 18S in heart tissues; LC-Ogdh, circ-AFF1 and miR-122 in liver tissues; and miR-133a, circ-AFF1 and LC-LRP6 in skeletal muscle tissues. Our results suggested that miRNAs and circRNAs were more stable as reference genes than other kinds of RNAs regarding PMI estimation. The appropriate internal control genes were not completely the same across tissue types.

  5. MicroRNAs in mantle cell lymphoma

    DEFF Research Database (Denmark)

    Husby, Simon; Geisler, Christian; Grønbæk, Kirsten

    2013-01-01

    Mantle cell lymphoma (MCL) is a rare and aggressive subtype of non-Hodgkin lymphoma. New treatment modalities, including intensive induction regimens with immunochemotherapy and autologous stem cell transplant, have improved survival. However, many patients still relapse, and there is a need...... for novel therapeutic strategies. Recent progress has been made in the understanding of the role of microRNAs (miRNAs) in MCL. Comparisons of tumor samples from patients with MCL with their normal counterparts (naive B-cells) have identified differentially expressed miRNAs with roles in cellular growth...

  6. deepBase v2.0: identification, expression, evolution and function of small RNAs, LncRNAs and circular RNAs from deep-sequencing data.

    Science.gov (United States)

    Zheng, Ling-Ling; Li, Jun-Hao; Wu, Jie; Sun, Wen-Ju; Liu, Shun; Wang, Ze-Lin; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-04

    Small non-coding RNAs (e.g. miRNAs) and long non-coding RNAs (e.g. lincRNAs and circRNAs) are emerging as key regulators of various cellular processes. However, only a very small fraction of these enigmatic RNAs have been well functionally characterized. In this study, we describe deepBase v2.0 (http://biocenter.sysu.edu.cn/deepBase/), an updated platform, to decode evolution, expression patterns and functions of diverse ncRNAs across 19 species. deepBase v2.0 has been updated to provide the most comprehensive collection of ncRNA-derived small RNAs generated from 588 sRNA-Seq datasets. Moreover, we developed a pipeline named lncSeeker to identify 176 680 high-confidence lncRNAs from 14 species. Temporal and spatial expression patterns of various ncRNAs were profiled. We identified approximately 24 280 primate-specific, 5193 rodent-specific lncRNAs, and 55 highly conserved lncRNA orthologs between human and zebrafish. We annotated 14 867 human circRNAs, 1260 of which are orthologous to mouse circRNAs. By combining expression profiles and functional genomic annotations, we developed lncFunction web-server to predict the function of lncRNAs based on protein-lncRNA co-expression networks. This study is expected to provide considerable resources to facilitate future experimental studies and to uncover ncRNA functions. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Integrative analysis of lncRNAs and miRNAs with coding RNAs associated with ceRNA crosstalk network in triple negative breast cancer

    Directory of Open Access Journals (Sweden)

    Yuan NJ

    2017-12-01

    Full Text Available Naijun Yuan,1,* Guijuan Zhang,2,* Fengjie Bie,1 Min Ma,1 Yi Ma,3 Xuefeng Jiang,1 Yurong Wang,1,* Xiaoqian Hao1 1College of Traditional Chinese Medicine of Jinan University, Institute of Integrated Traditional Chinese and Western Medicine of Jinan University, 2The First Affiliated Hospital of Jinan University, 3Department of Cellular Biology, Guangdong Province Key Lab of Bioengineering Medicine, Institute of Biomedicine, Jinan University, Guangdong, China *These authors contributed equally to this work Abstract: Triple negative breast cancer (TNBC is a particular subtype of breast malignant tumor with poorer prognosis than other molecular subtypes. Currently, there is increasing focus on long non-coding RNAs (lncRNAs, which can act as competing endogenous RNAs (ceRNAs and suppress miRNA functions involved in post-transcriptional regulatory networks in the tumor. Therefore, to investigate specific mechanisms of TNBC carcinogenesis and improve treatment efficiency, we comprehensively integrated expression profiles, including data on mRNAs, lncRNAs and miRNAs obtained from 116 TNBC tissues and 11 normal tissues from The Cancer Genome Atlas. As a result, we selected the threshold with |log2FC|>2.0 and an adjusted p-value >0.05 to obtain the differentially expressed mRNAs, miRNAs and lncRNAs. Hereafter, weighted gene co-expression network analysis was performed to identify the expression characteristics of dysregulated genes. We obtained five co-expression modules and related clinical feature. By means of correlating gene modules with protein–protein interaction network analysis that had identified 22 hub mRNAs which could as hub target genes. Eleven key dysregulated differentially expressed micro RNAs (DEmiRNAs were identified that were significantly associated with the 22 hub potential target genes. Moreover, we found that 14 key differentially expressed lncRNAs could interact with the key DEmiRNAs. Then, the ceRNA crosstalk network of TNBC was

  8. Identification of Bacterial Small RNAs by RNA Sequencing

    DEFF Research Database (Denmark)

    Gómez Lozano, María; Marvig, Rasmus Lykke; Molin, Søren

    2014-01-01

    sequencing (RNA-seq) is described that involves the preparation and analysis of three different sequencing libraries. As a signifi cant number of unique sRNAs are identifi ed in each library, the libraries can be used either alone or in combination to increase the number of sRNAs identifi ed. The approach......Small regulatory RNAs (sRNAs) in bacteria are known to modulate gene expression and control a variety of processes including metabolic reactions, stress responses, and pathogenesis in response to environmental signals. A method to identify bacterial sRNAs on a genome-wide scale based on RNA...... may be applied to identify sRNAs in any bacterium under different growth and stress conditions....

  9. MicroRNAs as regulatory elements in psoriasis

    Directory of Open Access Journals (Sweden)

    Liu Yuan

    2016-01-01

    Full Text Available Psoriasis is a chronic, autoimmune, and complex genetic disorder that affects 23% of the European population. The symptoms of Psoriatic skin are inflammation, raised and scaly lesions. microRNA, which is short, nonprotein-coding, regulatory RNAs, plays critical roles in psoriasis. microRNA participates in nearly all biological processes, such as cell differentiation, development and metabolism. Recent researches reveal that multitudinous novel microRNAs have been identified in skin. Some of these substantial novel microRNAs play as a class of posttranscriptional gene regulator in skin disease, such as psoriasis. In order to insight into microRNAs biological functions and verify microRNAs biomarker, we review diverse references about characterization, profiling and subtype of microRNAs. Here we will share our opinions about how and which microRNAs are as regulatory in psoriasis.

  10. Progress and Prospects of Long Noncoding RNAs (lncRNAs in Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Chen Li

    2015-05-01

    Full Text Available Hepatocellular carcinoma (HCC is one of the most frequently occurring cancers with poor prognosis, and novel diagnostic or prognostic biomarkers and therapeutic targets for HCC are urgently required. With the advance of high-resolution microarrays and massively parallel sequencing technology, lncRNAs are suggested to play critical roles in the tumorigenesis and development of human HCC. To date, dysregulation of many HCC-related lncRNAs such as HULC, HOTAIR, MALAT1, and H19 have been identified. From transcriptional “noise” to indispensable elements, lncRNAs may re-write the central dogma. Also, lncRNAs found in body fluids have demonstrated their utility as fluid-based noninvasive markers for clinical use and as therapeutic targets for HCC. Even though several lncRNAs have been characterized, the underlying mechanisms of their contribution to HCC remain unknown, and many important questions about lncRNAs need resolving. A better understanding of the molecular mechanism in HCC-related lncRNAs will provide a rationale for novel effective lncRNA-based targeted therapies. In this review, we highlight the emerging roles of lncRNAs in HCC, and discuss their potential clinical applications as biomarkers for the diagnosis, prognosis, monitoring and treatment of HCC.

  11. Non-Coding RNAs in Muscle Dystrophies

    Directory of Open Access Journals (Sweden)

    Alessandra Ferlini

    2013-09-01

    Full Text Available ncRNAs are the most recently identified class of regulatory RNAs with vital functions in gene expression regulation and cell development. Among the variety of roles they play, their involvement in human diseases has opened new avenues of research towards the discovery and development of novel therapeutic approaches. Important data come from the field of hereditary muscle dystrophies, like Duchenne muscle dystrophy and Myotonic dystrophies, rare diseases affecting 1 in 7000–15,000 newborns and is characterized by severe to mild muscle weakness associated with cardiac involvement. Novel therapeutic approaches are now ongoing for these diseases, also based on splicing modulation. In this review we provide an overview about ncRNAs and their behavior in muscular dystrophy and explore their links with diagnosis, prognosis and treatments, highlighting the role of regulatory RNAs in these pathologies.

  12. Identification of microRNAs and long non-coding RNAs involved in fatty acid biosynthesis in tree peony seeds.

    Science.gov (United States)

    Yin, Dan-Dan; Li, Shan-Shan; Shu, Qing-Yan; Gu, Zhao-Yu; Wu, Qian; Feng, Cheng-Yong; Xu, Wen-Zhong; Wang, Liang-Sheng

    2018-08-05

    MicroRNAs (miRNAs) and long noncoding RNAs (lncRNAs) act as important molecular regulators in a wide range of biological processes during plant development and seed formation, including oil production. Tree peony seeds contain >90% unsaturated fatty acids (UFAs) and high proportions of α-linolenic acid (ALA, > 40%). To dissect the non-coding RNAs (ncRNAs) pathway involved in fatty acids synthesis in tree peony seeds, we construct six small RNA libraries and six transcriptome libraries from developing seeds of two cultivars (J and S) containing different content of fatty acid compositions. After deep sequencing the RNA libraries, the ncRNA expression profiles of tree peony seeds in two cultivars were systematically and comparatively analyzed. A total of 318 known and 153 new miRNAs and 22,430 lncRNAs were identified, among which 106 conserved and 9 novel miRNAs and 2785 lncRNAs were differentially expressed between the two cultivars. In addition, potential target genes of the microRNA and lncRNAs were also predicted and annotated. Among them, 9 miRNAs and 39 lncRNAs were predicted to target lipid related genes. Results showed that all of miR414, miR156b, miR2673b, miR7826, novel-m0027-5p, TR24651|c0_g1, TR24544|c0_g15, and TR27305|c0_g1 were up-regulated and expressed at a higher level in high-ALA cultivar J when compared to low-ALA cultivar S, suggesting that these ncRNAs and target genes are possibly involved in different fatty acid synthesis and lipid metabolism through post-transcriptional regulation. These results provide a better understanding of the roles of ncRNAs during fatty acid biosynthesis and metabolism in tree peony seeds. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Expression Signatures of Long Noncoding RNAs in Adolescent Idiopathic Scoliosis

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu

    2015-01-01

    Full Text Available Purpose. Adolescent idiopathic scoliosis (AIS, the most common pediatric spinal deformity, is considered a complex genetic disease. Causing genes and pathogenesis of AIS are still unclear. This study was designed to identify differentially expressed long noncoding RNAs (lncRNAs involving the pathogenesis of AIS. Methods. We first performed comprehensive screening of lncRNA and mRNA in AIS patients and healthy children using Agilent human lncRNA + mRNA Array V3.0 microarray. LncRNAs expression in different AIS patients was further evaluated using quantitative PCR. Results. A total of 139 lncRNAs and 546 mRNAs were differentially expressed between AIS patients and healthy control. GO and Pathway analysis showed that these mRNAs might be involved in bone mineralization, neuromuscular junction, skeletal system morphogenesis, nucleotide and nucleic acid metabolism, and regulation of signal pathway. Four lncRNAs (ENST00000440778.1, ENST00000602322.1, ENST00000414894.1, and TCONS_00028768 were differentially expressed between different patients when grouped according to age, height, classification, severity of scoliosis, and Risser grade. Conclusions. This study demonstrates the abnormal expression of lncRNAs and mRNAs in AIS, and the expression of some lncRNAs was related to clinical features. This study is helpful for further understanding of lncRNAs in pathogenesis, treatment, and prognosis of AIS.

  14. MicroRNAs in right ventricular remodelling.

    Science.gov (United States)

    Batkai, Sandor; Bär, Christian; Thum, Thomas

    2017-10-01

    Right ventricular (RV) remodelling is a lesser understood process of the chronic, progressive transformation of the RV structure leading to reduced functional capacity and subsequent failure. Besides conditions concerning whole hearts, some pathology selectively affects the RV, leading to a distinct RV-specific clinical phenotype. MicroRNAs have been identified as key regulators of biological processes that drive the progression of chronic diseases. The role of microRNAs in diseases affecting the left ventricle has been studied for many years, however there is still limited information on microRNAs specific to diseases in the right ventricle. Here, we review recently described details on the expression, regulation, and function of microRNAs in the pathological remodelling of the right heart. Recently identified strategies using microRNAs as pharmacological targets or biomarkers will be highlighted. Increasing knowledge of pathogenic microRNAs will finally help improve our understanding of underlying distinct mechanisms and help utilize novel targets or biomarkers to develop treatments for patients suffering from right heart diseases. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  15. Intronic microRNAs

    International Nuclear Information System (INIS)

    Ying, S.-Y.; Lin, S.-L.

    2005-01-01

    MicroRNAs (miRNAs), small single-stranded regulatory RNAs capable of interfering with intracellular mRNAs that contain partial complementarity, are useful for the design of new therapies against cancer polymorphism and viral mutation. MiRNA was originally discovered in the intergenic regions of the Caenorhabditis elegans genome as native RNA fragments that modulate a wide range of genetic regulatory pathways during animal development. However, neither RNA promoter nor polymerase responsible for miRNA biogenesis was determined. Recent findings of intron-derived miRNA in C. elegans, mouse, and human have inevitably led to an alternative pathway for miRNA biogenesis, which relies on the coupled interaction of Pol-II-mediated pre-mRNA transcription and intron excision, occurring in certain nuclear regions proximal to genomic perichromatin fibrils

  16. Prognostic microRNAs in cancer tissue from patients operated for pancreatic cancer--five microRNAs in a prognostic index

    DEFF Research Database (Denmark)

    Schultz, Nicolai A; Andersen, Klaus; Roslind, Anne

    2012-01-01

    The aim of the present study was to identify a panel of microRNAs (miRNAs) that can predict overall survival (OS) in non micro-dissected cancer tissues from patients operated for pancreatic cancer (PC)....

  17. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs.

    Science.gov (United States)

    Miesen, Pascal; Ivens, Alasdair; Buck, Amy H; van Rij, Ronald P

    2016-02-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of the antiviral RNA interference machinery, one of the key pathways that limit virus replication in invertebrates. Besides siRNAs, Aedes mosquitoes and cells derived from these insects produce arbovirus-derived piRNAs, the best studied examples being viruses from the Togaviridae or Bunyaviridae families. Host miRNAs modulate the expression of a large number of genes and their levels may change in response to viral infections. In addition, some viruses, mostly with a DNA genome, express their own miRNAs to regulate host and viral gene expression. Here, we perform a comprehensive analysis of both viral and host-derived small RNAs in Aedes aegypti Aag2 cells infected with dengue virus 2 (DENV), a member of the Flaviviridae family. Aag2 cells are competent in producing all three types of small RNAs and provide a powerful tool to explore the crosstalk between arboviral infection and the distinct RNA silencing pathways. Interestingly, besides the well-characterized DENV-derived siRNAs, a specific population of viral piRNAs was identified in infected Aag2 cells. Knockdown of Piwi5, Ago3 and, to a lesser extent, Piwi6 results in reduction of vpiRNA levels, providing the first genetic evidence that Aedes PIWI proteins produce DENV-derived small RNAs. In contrast, we do not find convincing evidence for the production of virus-derived miRNAs. Neither do we find that host miRNA expression is strongly changed upon DENV2 infection. Finally, our deep-sequencing analyses detect 30 novel Aedes miRNAs, complementing the repertoire of regulatory small RNAs in this important vector species.

  18. RIP-seq of BmAgo2-associated small RNAs reveal various types of small non-coding RNAs in the silkworm, Bombyx mori

    Science.gov (United States)

    2013-01-01

    Background Small non-coding RNAs (ncRNAs) are important regulators of gene expression in eukaryotes. Previously, only microRNAs (miRNAs) and piRNAs have been identified in the silkworm, Bombyx mori. Furthermore, only ncRNAs (50-500nt) of intermediate size have been systematically identified in the silkworm. Results Here, we performed a systematic identification and analysis of small RNAs (18-50nt) associated with the Bombyx mori argonaute2 (BmAgo2) protein. Using RIP-seq, we identified various types of small ncRNAs associated with BmAGO2. These ncRNAs showed a multimodal length distribution, with three peaks at ~20nt, ~27nt and ~33nt, which included tRNA-, transposable element (TE)-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. The tRNA-derived fragments (tRFs) were found at an extremely high abundance and accounted for 69.90% of the BmAgo2-associated small RNAs. Northern blotting confirmed that many tRFs were expressed or up-regulated only in the BmNPV-infected cells, implying that the tRFs play a prominent role by binding to BmAgo2 during BmNPV infection. Additional evidence suggested that there are potential cleavage sites on the D, anti-codon and TψC loops of the tRNAs. TE-derived small RNAs and piRNAs also accounted for a significant proportion of the BmAgo2-associated small RNAs, suggesting that BmAgo2 could be involved in the maintenance of genome stability by suppressing the activities of transposons guided by these small RNAs. Finally, Northern blotting was also used to confirm the Bombyx 5.8 s rRNA-derived small RNAs, demonstrating that various novel small RNAs exist in the silkworm. Conclusions Using an RIP-seq method in combination with Northern blotting, we identified various types of small RNAs associated with the BmAgo2 protein, including tRNA-, TE-, rRNA-, snoRNA- and snRNA-derived small RNAs as well as miRNAs and piRNAs. Our findings provide new clues for future functional studies of the role of small RNAs in insect

  19. Isolation and Identification of miRNAs in Jatropha curcas

    Science.gov (United States)

    Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua

    2012-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887

  20. Identification of microRNA-like RNAs in Ophiocordyceps sinensis.

    Science.gov (United States)

    Zhang, Wen; Li, Xiaona; Ma, Lina; Urrehman, Uzair; Bao, Xilinqiqige; Zhang, Yujing; Zhang, Chen-Yu; Hou, Dongxia; Zhou, Zhen

    2018-03-27

    Ophiocordyceps sinensis is well known as a traditional Chinese medicine and has widely been used for over 2,000 years to stimulate immune system, decrease blood pressure and to inhibit tumor growth. While miRNAs are increasingly recognized for their roles in post-transcriptional regulation of gene expression in animals and plants, miRNAs in fungi were less studied until the discovery of microRNA-like RNA (milRNA). High-throughput sequencing and bioinformatics approaches were used to identify conserved and novel milRNAs in O. sinensis. 40 conserved milRNAs were identified, while 23 pre-miRNA candidates encoding 31 novel milRNAs were predicted. Furthermore, the potential target genes of milRNAs in human were predicted and gene ontology analysis was applied to these genes. Enrichment analysis of GO-represented biological process showed that target genes of both conserved and novel milRNAs are involved in development, metabolic and immune processes, indicating the potential roles of milRNAs of O. sinensis in pharmacological effects as health food and traditional Chinese medicine. This study is the first report on genome-wide analysis of milRNAs in O. sinensis and it provides a useful resource to further study the potential roles of milRNAs as active components of O. sinensis in health food or traditional Chinese medicine.

  1. LncRNAs in vertebrates: advances and challenges.

    Science.gov (United States)

    Mallory, Allison C; Shkumatava, Alena

    2015-10-01

    Beyond the handful of classic and well-characterized long noncoding RNAs (lncRNAs), more recently, hundreds of thousands of lncRNAs have been identified in multiple species including bacteria, plants and vertebrates, and the number of newly annotated lncRNAs continues to increase as more transcriptomes are analyzed. In vertebrates, the expression of many lncRNAs is highly regulated, displaying discrete temporal and spatial expression patterns, suggesting roles in a wide range of developmental processes and setting them apart from classic housekeeping ncRNAs. In addition, the deregulation of a subset of these lncRNAs has been linked to the development of several diseases, including cancers, as well as developmental anomalies. However, the majority of vertebrate lncRNA functions remain enigmatic. As such, a major task at hand is to decipher the biological roles of lncRNAs and uncover the regulatory networks upon which they impinge. This review focuses on our emerging understanding of lncRNAs in vertebrate animals, highlighting some recent advances in their functional analyses across several species and emphasizing the current challenges researchers face to characterize lncRNAs and identify their in vivo functions. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  2. microRNAs and lipid metabolism

    Science.gov (United States)

    Aryal, Binod; Singh, Abhishek K.; Rotllan, Noemi; Price, Nathan; Fernández-Hernando, Carlos

    2017-01-01

    Purpose of review Work over the last decade has identified the important role of microRNAs (miRNAS) in regulating lipoprotein metabolism and associated disorders including metabolic syndrome, obesity and atherosclerosis. This review summarizes the most recent findings in the field, highlighting the contribution of miRNAs in controlling low-density lipoprotein (LDL) and high-density lipoprotein (HDL) metabolism. Recent findings A number of miRNAs have emerged as important regulators of lipid metabolism, including miR-122 and miR-33. Work over the last two years has identified additional functions of miR-33 including the regulation of macrophage activation and mitochondrial metabolism. Moreover, it has recently been shown that miR-33 regulates vascular homeostasis and cardiac adaptation in response to pressure overload. In addition to miR-33 and miR-122, recent GWAS have identified single nucleotide polymorphisms (SNP) in the proximity of miRNAs genes associated with abnormal levels of circulating lipids in humans. Several of these miRNA, such as miR-148a and miR-128-1, target important proteins that regulate cellular cholesterol metabolism, including the low-density lipoprotein receptor (LDLR) and the ATP-binding cassette A1 (ABCA1). Summary microRNAs have emerged as critical regulators of cholesterol metabolism and promising therapeutic targets for treating cardiometabolic disorders including atherosclerosis. Here, we discuss the recent findings in the field highlighting the novel mechanisms by which miR-33 controls lipid metabolism and atherogenesis and the identification of novel miRNAs that regulate LDL metabolism. Finally, we summarize the recent findings that identified miR-33 as an important non-coding RNA that controls cardiovascular homeostasis independent of its role in regulating lipid metabolism. PMID:28333713

  3. Trash or Treasure: extracellular microRNAs and cell-to-cell communication

    Directory of Open Access Journals (Sweden)

    Nobuyoshi eKosaka

    2013-09-01

    Full Text Available Circulating RNAs in human body fluids are promising candidates for diagnostic purposes. However, the biological significance of circulating RNAs remains elusive. Recently, small non-coding RNAs, microRNAs (miRNAs, were isolated from multiple human body fluids, and these circulating miRNAs have been implicated as novel disease biomarkers. Concurrently, miRNAs were also identified in the extracellular space associated with extracellular vesicles (EVs, which are small membrane vesicles secreted from various types of cells. The function of these secreted miRNAs has been revealed in several papers. Circulating miRNAs have been experimentally found to be associated with EVs, however, other types of extracellular miRNAs were also described. This review discusses studies related to extracellular miRNAs, including circulating miRNAs and secreted miRNAs, to highlight the importance of studying not only secreted miRNAs but also circulating miRNAs to determine the contribution of extracellular miRNAs especially in cancer development.

  4. MicroRNAs, Regulatory Networks, and Comorbidities

    DEFF Research Database (Denmark)

    Russo, Francesco; Belling, Kirstine; Jensen, Anders Boeck

    2017-01-01

    MicroRNAs (miRNAs) are small noncoding RNAs involved in the posttranscriptional regulation of messenger RNAs (mRNAs). Each miRNA targets a specific set of mRNAs. Upon binding the miRNA inhibits mRNA translation or facilitate mRNA degradation. miRNAs are frequently deregulated in several pathologies...

  5. Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Wang Heng

    2010-01-01

    Full Text Available Abstract Background Small endogenous non-coding RNAs (sncRNAs such as small interfering RNA (siRNA, microRNA and other small RNA transcripts are derived from distinct loci in the genome and play critical roles in RNA-mediated gene silencing mechanisms in plants and metazoa. They are approximately 22 nucleotides long; regulate mRNA stability through perfect or imperfect match to the targets. The biological activities of sncRNAs have been related to many biological events, from resistance to microbe infections to cellular differentiation. The development of the zoonotic parasite Schistosoma japonicum parasite includes multiple steps of morphological alterations and biological differentiations, which provide a unique model for studies on the functions of small RNAs. Characterization of the genome-wide transcription of the sncRNAs will be a major step in understanding of the parasite biology. The objective of this study is to investigate the transcriptional profile and potential function of the small non-coding RNAs in the development of S. japanicum. Results The endogenous siRNAs were found mainly derived from transposable elements (TE or transposons and the natural antisense transcripts (NAT. In contrast to other organisms, the TE-derived siRNAs in S. japonicum were more predominant than other sncRNAs including microRNAs (miRNAs. Further, there were distinct length and 3'end variations in the sncRNAs, which were associated with the developmental differentiation of the parasite. Among the identified miRNA transcripts, there were 38 unique to S. japonicum and 16 that belonged to 13 miRNA families are common to other metazoan lineages. These miRNAs were either ubiquitously expressed, or they exhibited specific expression patterns related to the developmental stages or sex. Genes that encoded miRNAs are mainly located in clusters within the genome of S. japonicum. However, genes within one cluster could be differentially transcribed, which suggested

  6. Computational Identification of MicroRNAs and Their Targets from Finger Millet (Eleusine coracana).

    Science.gov (United States)

    Usha, S; Jyothi, M N; Suchithra, B; Dixit, Rekha; Rai, D V; Nagesh Babu, R

    2017-03-01

    MicroRNAs are endogenous small RNAs regulating intrinsic normal growth and development of plant. Discovering miRNAs, their targets and further inferring their functions had become routine process to comprehend the normal biological processes of miRNAs and their roles in plant development. In this study, we used homology-based analysis with available expressed sequence tag of finger millet (Eleusine coracana) to predict conserved miRNAs. Three potent miRNAs targeting 88 genes were identified. The newly identified miRNAs were found to be homologous with miR166 and miR1310. The targets recognized were transcription factors and enzymes, and GO analysis showed these miRNAs played varied roles in gene regulation. The identification of miRNAs and their targets is anticipated to hasten the pace of key epigenetic regulators in plant development.

  7. Global alteration of microRNAs and transposon-derived small RNAs in cotton (Gossypium hirsutum) during Cotton leafroll dwarf polerovirus (CLRDV) infection.

    Science.gov (United States)

    Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S

    2012-11-01

    Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.

  8. Network of microRNAs-mRNAs Interactions in Pancreatic Cancer

    Science.gov (United States)

    Naderi, Elnaz; Mostafaei, Mehdi; Pourshams, Akram

    2014-01-01

    Background. MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. Methods. 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA–mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. Results. This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes. The miR-24 was the most significantly powerful miRNA that regulated series of important genes. ACVR2B, GFRA1, and MTHFR were significant target genes were that downregulated. Conclusion. Although the collected previous data seems to be a treasure trove, there was no study simultaneous to analysis of miRNAs and mRNAs interaction. Network of miRNA-mRNA interactions will help to corroborate experimental remarks and could be used to refine miRNA target predictions for developing new therapeutic approaches. PMID:24895587

  9. Network of microRNAs-mRNAs Interactions in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Elnaz Naderi

    2014-01-01

    Full Text Available Background. MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. Methods. 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA–mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. Results. This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes. The miR-24 was the most significantly powerful miRNA that regulated series of important genes. ACVR2B, GFRA1, and MTHFR were significant target genes were that downregulated. Conclusion. Although the collected previous data seems to be a treasure trove, there was no study simultaneous to analysis of miRNAs and mRNAs interaction. Network of miRNA-mRNA interactions will help to corroborate experimental remarks and could be used to refine miRNA target predictions for developing new therapeutic approaches.

  10. Non-Coding RNAs and Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Cristina Vallone

    2018-03-01

    Full Text Available Non-coding RNAs (ncRNAs are involved in the regulation of cell metabolism and neoplastic transformation. Recent studies have tried to clarify the significance of these information carriers in the genesis and progression of various cancers and their use as biomarkers for the disease; possible targets for the inhibition of growth and invasion by the neoplastic cells have been suggested. The significance of ncRNAs in lung cancer, bladder cancer, kidney cancer, and melanoma has been amply investigated with important results. Recently, the role of long non-coding RNAs (lncRNAs has also been included in cancer studies. Studies on the relation between endometrial cancer (EC and ncRNAs, such as small ncRNAs or micro RNAs (miRNAs, transfer RNAs (tRNAs, ribosomal RNAs (rRNAs, antisense RNAs (asRNAs, small nuclear RNAs (snRNAs, Piwi-interacting RNAs (piRNAs, small nucleolar RNAs (snoRNAs, competing endogenous RNAs (ceRNAs, lncRNAs, and long intergenic ncRNAs (lincRNAs have been published. The recent literature produced in the last three years was extracted from PubMed by two independent readers, which was then selected for the possible relation between ncRNAs, oncogenesis in general, and EC in particular.

  11. Identification of phasiRNAs in wild rice (Oryza rufipogon).

    Science.gov (United States)

    Liu, Yang; Wang, Yu; Zhu, Qian-Hao; Fan, Longjiang

    2013-08-01

    Plant miRNAs can trigger the production of phased, secondary siRNAs from either non-coding or protein-coding genes. In this study, at least 864 and 3,961 loci generating 21-nt and 24-nt phased siRNAs (phasiRNAs),respectively, were identified in three tissues from wild rice. Of these phasiRNA-producing loci, or PHAS genes, biogenesis of phasiRNAs in at least 160 of 21-nt and 254 of 24-nt loci could be triggered by interaction with miRNA(s). Developing seeds had more PHAS genes than leaves and roots. Genetic constrain on miRNA-triggered PHAS genes suggests that phasiRNAs might be one of the driving forces contributed to rice domestication.

  12. The application of microRNAs in cancer diagnostics

    DEFF Research Database (Denmark)

    Sørensen, Karina Dalsgaard; Ostenfeld, Marie Stampe; Kristensen, Helle

    2012-01-01

    hallmark of human cancer. Furthermore, miRNAs have been found to be a new class of promising cancer biomarkers with potential to improve the accuracy of diagnosis and prognosis in several hematologic and solid malignancies, as well as to predict response to specific treatments. Recent studies have......MicroRNAs (miRNAs) play important biological roles in cancer development and progression. During the past decade, widespread use of novel high-throughput technologies for miRNA profiling (e.g., microarrays and next-generation sequencing) has revealed deregulation of miRNA expression as a common...... identified exosome-associated tumor-derived miRNAs in, e.g., blood samples from cancer patients, suggesting that miRNAs may be useful as circulation biomarkers for noninvasive diagnostic testing. In this chapter, we review the current state of development of miRNAs as cancer biomarkers with examples from...

  13. MicroRNAs in large herpesvirus DNA genomes: recent advances.

    Science.gov (United States)

    Sorel, Océane; Dewals, Benjamin G

    2016-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.

  14. Dynamic evolution and biogenesis of small RNAs during sex reversal

    OpenAIRE

    Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia

    2015-01-01

    Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis...

  15. Non-coding RNAs in the Ovarian Follicle

    Directory of Open Access Journals (Sweden)

    Rosalia Battaglia

    2017-05-01

    Full Text Available The mammalian ovarian follicle is the complex reproductive unit comprising germ cell, somatic cells (Cumulus and Granulosa cells, and follicular fluid (FF: paracrine communication among the different cell types through FF ensures the development of a mature oocyte ready for fertilization. This paper is focused on non-coding RNAs in ovarian follicles and their predicted role in the pathways involved in oocyte growth and maturation. We determined the expression profiles of microRNAs in human oocytes and FF by high-throughput analysis and identified 267 microRNAs in FF and 176 in oocytes. Most of these were FF microRNAs, while 9 were oocyte specific. By bioinformatic analysis, independently performed on FF and oocyte microRNAs, we identified the most significant Biological Processes and the pathways regulated by their validated targets. We found many pathways shared between the two compartments and some specific for oocyte microRNAs. Moreover, we found 41 long non-coding RNAs able to interact with oocyte microRNAs and potentially involved in the regulation of folliculogenesis. These data are important in basic reproductive research and could also be useful for clinical applications. In fact, the characterization of non-coding RNAs in ovarian follicles could improve reproductive disease diagnosis, provide biomarkers of oocyte quality in Assisted Reproductive Treatment, and allow the development of therapies for infertility disorders.

  16. Dynamic evolution and biogenesis of small RNAs during sex reversal.

    Science.gov (United States)

    Liu, Jie; Luo, Majing; Sheng, Yue; Hong, Qiang; Cheng, Hanhua; Zhou, Rongjia

    2015-05-06

    Understanding origin, evolution and functions of small RNA (sRNA) genes has been a great challenge in the past decade. Molecular mechanisms underlying sexual reversal in vertebrates, particularly sRNAs involved in this process, are largely unknown. By deep-sequencing of small RNA transcriptomes in combination with genomic analysis, we identified a large amount of piRNAs and miRNAs including over 1,000 novel miRNAs, which were differentially expressed during gonad reversal from ovary to testis via ovotesis. Biogenesis and expressions of miRNAs were dynamically changed during the reversal. Notably, phylogenetic analysis revealed dynamic expansions of miRNAs in vertebrates and an evolutionary trajectory of conserved miR-17-92 cluster in the Eukarya. We showed that the miR-17-92 cluster in vertebrates was generated through multiple duplications from ancestor miR-92 in invertebrates Tetranychus urticae and Daphnia pulex from the Chelicerata around 580 Mya. Moreover, we identified the sexual regulator Dmrt1 as a direct target of the members miR-19a and -19b in the cluster. These data suggested dynamic biogenesis and expressions of small RNAs during sex reversal and revealed multiple expansions and evolutionary trajectory of miRNAs from invertebrates to vertebrates, which implicate small RNAs in sexual reversal and provide new insight into evolutionary and molecular mechanisms underlying sexual reversal.

  17. Individual microRNAs (miRNAs) display distinct mRNA targeting "rules".

    Science.gov (United States)

    Wang, Wang-Xia; Wilfred, Bernard R; Xie, Kevin; Jennings, Mary H; Hu, Yanling Hu; Stromberg, Arnold J; Nelson, Peter T

    2010-01-01

    MicroRNAs (miRNAs) guide Argonaute (AGO)-containing microribonucleoprotein (miRNP) complexes to target mRNAs.It has been assumed that miRNAs behave similarly to each other with regard to mRNA target recognition. The usual assumptions, which are based on prior studies, are that miRNAs target preferentially sequences in the 3'UTR of mRNAs,guided by the 5' "seed" portion of the miRNAs. Here we isolated AGO- and miRNA-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with anti-AGO antibody. Cells were transfected with miR-107, miR-124,miR-128, miR-320, or a negative control miRNA. Co-IPed RNAs were subjected to downstream high-density Affymetrix Human Gene 1.0 ST microarray analyses using an assay we validated previously-a "RIP-Chip" experimental design. RIP-Chip data provided a list of mRNAs recruited into the AGO-miRNP in correlation to each miRNA. These experimentally identified miRNA targets were analyzed for complementary six nucleotide "seed" sequences within the transfected miRNAs. We found that miR-124 targets tended to have sequences in the 3'UTR that would be recognized by the 5' seed of miR-124, as described in previous studies. By contrast, miR-107 targets tended to have 'seed' sequences in the mRNA open reading frame, but not the 3' UTR. Further, mRNA targets of miR-128 and miR-320 are less enriched for 6-mer seed sequences in comparison to miR-107 and miR-124. In sum, our data support the importance of the 5' seed in determining binding characteristics for some miRNAs; however, the "binding rules" are complex, and individual miRNAs can have distinct sequence determinants that lead to mRNA targeting.

  18. microRNAs in hematopoiesis

    NARCIS (Netherlands)

    Lazare, Seka S.; Wojtowicz, Edyta E.; Bystrykh, Leonid V.; de Haan, Gerald

    2014-01-01

    miRNAs have been implicated in all stages of hematopoiesis including maintenance of self-renewal of hematopoietic stem cells (HSCs) and differentiation into mature blood cells. Regulation by miRNAs is markedly intertwined with transcription factors. In this review, we highlight miRNAs shown to be

  19. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer

    Directory of Open Access Journals (Sweden)

    Yiwen Fang

    2016-02-01

    Full Text Available Long non-coding RNAs (lncRNAs play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a variety of chromatin-based mechanisms and via cross-talk with other RNA species. lncRNAs can function as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identifying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides.

  20. Detection and Analysis of Circular RNAs by RT-PCR.

    Science.gov (United States)

    Panda, Amaresh C; Gorospe, Myriam

    2018-03-20

    Gene expression in eukaryotic cells is tightly regulated at the transcriptional and posttranscriptional levels. Posttranscriptional processes, including pre-mRNA splicing, mRNA export, mRNA turnover, and mRNA translation, are controlled by RNA-binding proteins (RBPs) and noncoding (nc)RNAs. The vast family of ncRNAs comprises diverse regulatory RNAs, such as microRNAs and long noncoding (lnc)RNAs, but also the poorly explored class of circular (circ)RNAs. Although first discovered more than three decades ago by electron microscopy, only the advent of high-throughput RNA-sequencing (RNA-seq) and the development of innovative bioinformatic pipelines have begun to allow the systematic identification of circRNAs (Szabo and Salzman, 2016; Panda et al ., 2017b; Panda et al ., 2017c). However, the validation of true circRNAs identified by RNA sequencing requires other molecular biology techniques including reverse transcription (RT) followed by conventional or quantitative (q) polymerase chain reaction (PCR), and Northern blot analysis (Jeck and Sharpless, 2014). RT-qPCR analysis of circular RNAs using divergent primers has been widely used for the detection, validation, and sometimes quantification of circRNAs (Abdelmohsen et al ., 2015 and 2017; Panda et al ., 2017b). As detailed here, divergent primers designed to span the circRNA backsplice junction sequence can specifically amplify the circRNAs and not the counterpart linear RNA. In sum, RT-PCR analysis using divergent primers allows direct detection and quantification of circRNAs.

  1. MicroRNAs Change the Landscape of Cancer Resistance.

    Science.gov (United States)

    Zhu, Jun; Zhu, Wei; Wu, Wei

    2018-01-01

    One of the major challenges in the cancer treatment is the development of drug resistance. It represents a major obstacle to curing cancer with constrained efficacy of both conventional chemotherapy and targeted therapies, even recent immune checkpoint blockade therapy. Deciphering the mechanisms of resistance is critical to further understanding the multifactorial pathways involved, and developing more specific targeted treatments. To date, numerous studies have reported the potential role of microRNAs (miRNAs) in the resistance to various cancer treatments. MicroRNAs are a family of small noncoding RNAs that regulate gene expression by sequence-specific targeting of mRNAs causing translational repression or mRNA degradation. More than 1200 validated human miRNAs have been identified in human genome. While one miRNA can regulate hundreds of targets, a single target can also be affected by multiple miRNAs. Evidence suggests that dysregulation of specific miRNAs may be involved in the acquisition of resistance, thereby modulating the sensitivity of cancer cells to treatment. Therefore, manipulation of miRNAs may be an attractive strategy for more effective individualized therapies through reprograming resistant network in cancer cells.

  2. Repertoire of noncoding RNAs in corpus luteum of early pregnancy in buffalo (Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    A. Jerome

    2017-09-01

    Full Text Available Aim: The present study was designed to identify other noncoding RNAs (ncRNAs in the corpus luteum (CL during early pregnancy in buffalo. Materials and Methods: For this study, CL (n=2 from two buffalo gravid uteri, obtained from the slaughter house, was transported to laboratory after snap freezing in liquid nitrogen (-196°C. The stage of pregnancy was determined by measuring the crown-rump region of the fetus. This was followed by isolation of RNA and deep sequencing. Post-deep sequencing, the obtained reads were checked and aligned against various ncRNA databases (GtRNA, RFAM, and deep guide. Various parameters, namely, frequency of specific ncRNAs, length, mismatch, and genomic location target in several model species were deciphered. Results: Frequency of piwi-interacting RNAs (piwi-RNAs, having target location in rodents and human genomes, were significantly higher compared to other piwi-RNAs and ncRNAs. Ribosomal RNAs (rRNAs deduced had nucleotides (nts ranging from 17 to 50 nts, but the occurrence of small length rRNAs was more than lengthier fragments. The target on 16S rRNA species confirms the conservation of 16S rRNA across species. With respect to transfer RNA (tRNA, the abundantly occurring tRNAs were unique with no duplication. Small nucleolar RNAs (snoRNAs, identified in this study, showed a strong tendency for coding box C/D snoRNAs in comparison to H/ACA snoRNAs. Regulatory and evolutionary implications of these identified ncRNAs are yet to be delineated in many species, including buffaloes. Conclusion: This is the first report of identification of other ncRNAs in CL of early pregnancy in buffalo.

  3. Mammalian small nucleolar RNAs are mobile genetic elements.

    Directory of Open Access Journals (Sweden)

    Michel J Weber

    2006-12-01

    Full Text Available Small nucleolar RNAs (snoRNAs of the H/ACA box and C/D box categories guide the pseudouridylation and the 2'-O-ribose methylation of ribosomal RNAs by forming short duplexes with their target. Similarly, small Cajal body-specific RNAs (scaRNAs guide modifications of spliceosomal RNAs. The vast majority of vertebrate sno/scaRNAs are located in introns of genes transcribed by RNA polymerase II and processed by exonucleolytic trimming after splicing. A bioinformatic search for orthologues of human sno/scaRNAs in sequenced mammalian genomes reveals the presence of species- or lineage-specific sno/scaRNA retroposons (sno/scaRTs characterized by an A-rich tail and an approximately 14-bp target site duplication that corresponds to their insertion site, as determined by interspecific genomic alignments. Three classes of snoRTs are defined based on the extent of intron and exon sequences from the snoRNA parental host gene they contain. SnoRTs frequently insert in gene introns in the sense orientation at genomic hot spots shared with other genetic mobile elements. Previously characterized human snoRNAs are encoded in retroposons whose parental copies can be identified by phylogenic analysis, showing that snoRTs can be faithfully processed. These results identify snoRNAs as a new family of mobile genetic elements. The insertion of new snoRNA copies might constitute a safeguard mechanism by which the biological activity of snoRNAs is maintained in spite of the risk of mutations in the parental copy. I furthermore propose that retroposition followed by genetic drift is a mechanism that increased snoRNA diversity during vertebrate evolution to eventually acquire new RNA-modification functions.

  4. Profiling micro rnas and their targets in radish (raphanus sativus l.)

    International Nuclear Information System (INIS)

    Barozai, M.Y.; Din, M.

    2015-01-01

    MicroRNAs (miRNAs) are tiny, non-protein coding and negative regulatory RNAs approximately 21 nucleotides in length. The comparative genomic methodology due to their conserved nature is a reasonable approach for the novel miRNAs discovery. In this research, total 25 novel miRNAs from 18 families (ras-miR-156, 160, 162, 163, 164, 167, 168, 319, 399, 408, 413, 414, 841, 1310, 2936, 5030 and 5661) are identified in an important vegetable radish (Raphanus sativus L.). The 25 miRNA precursor sequences showed secondary structures with the mature miRNAs in the stem region. Total 42 putative targets are also identified for the novel 25 radish miRNAs. These findings suggest that more thorough understanding of the function of such miRNAs will help to unravel the mysteries role in plant biology. (author)

  5. High-throughput sequencing, characterization and detection of new and conserved cucumber miRNAs.

    Directory of Open Access Journals (Sweden)

    Germán Martínez

    Full Text Available Micro RNAS (miRNAs are a class of endogenous small non coding RNAs involved in the post-transcriptional regulation of gene expression. In plants, a great number of conserved and specific miRNAs, mainly arising from model species, have been identified to date. However less is known about the diversity of these regulatory RNAs in vegetal species with agricultural and/or horticultural importance. Here we report a combined approach of bioinformatics prediction, high-throughput sequencing data and molecular methods to analyze miRNAs populations in cucumber (Cucumis sativus plants. A set of 19 conserved and 6 known but non-conserved miRNA families were found in our cucumber small RNA dataset. We also identified 7 (3 with their miRNA* strand not previously described miRNAs, candidates to be cucumber-specific. To validate their description these new C. sativus miRNAs were detected by northern blot hybridization. Additionally, potential targets for most conserved and new miRNAs were identified in cucumber genome.In summary, in this study we have identified, by first time, conserved, known non-conserved and new miRNAs arising from an agronomically important species such as C. sativus. The detection of this complex population of regulatory small RNAs suggests that similarly to that observe in other plant species, cucumber miRNAs may possibly play an important role in diverse biological and metabolic processes.

  6. Microarray profiling of microRNAs expressed in testis tissues of developing primates

    DEFF Research Database (Denmark)

    Yan, Naihong; Lu, Yilu; Sun, Huaqin

    2009-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that have been identified as potent regulators of gene expression. Recent studies indicate that miRNAs are involved in mammalian spermatogenesis but the mechanism of regulation is largely unknown....

  7. Urinary microRNAs as potential biomarkers of pesticide exposure

    International Nuclear Information System (INIS)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C.; Thompson, Beti; Faustman, Elaine M.

    2016-01-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  8. Urinary microRNAs as potential biomarkers of pesticide exposure

    Energy Technology Data Exchange (ETDEWEB)

    Weldon, Brittany A.; Shubin, Sara Pacheco; Smith, Marissa N.; Workman, Tomomi; Artemenko, Alexander; Griffith, William C. [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Thompson, Beti [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Faustman, Elaine M., E-mail: faustman@uw.edu [Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA (United States); Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States)

    2016-12-01

    MicroRNAs (miRNAs) are post-transcriptional regulators that silence messenger RNAs. Because miRNAs are stable at room temperature and long-lived, they have been proposed as molecular biomarkers to monitor disease and exposure status. While urinary miRNAs have been used clinically as potential diagnostic markers for kidney and bladder cancers and other diseases, their utility in non-clinical settings has yet to be fully developed. Our goal was to investigate the potential for urinary miRNAs to act as biomarkers of pesticide exposure and early biological response by identifying the miRNAs present in urine from 27 parent/child, farmworker/non-farmworker pairs (16FW/11NFW) collected during two agricultural seasons (thinning and post-harvest) and characterizing the between- and within-individual variability of these miRNA epigenetic regulators. MiRNAs were isolated from archived urine samples and identified using PCR arrays. Comparisons were made between age, households, season, and occupation. Of 384 miRNAs investigated, 297 (77%) were detectable in at least one sample. Seven miRNAs were detected in at least 50% of the samples, and one miRNA was present in 96% of the samples. Principal components and hierarchical clustering analyses indicate significant differences in miRNA profiles between farmworker and non-farmworker adults as well as between seasons. Six miRNAs were observed to be positively associated with farmworkers status during the post-harvest season. Expression of five of these miRNA trended towards a positive dose response relationship with organophosphate pesticide metabolites in farmworkers. These results suggest that miRNAs may be novel biomarkers of pesticide exposure and early biological response. - Highlights: • A novel method to identify microRNA biomarkers in urinary samples is proposed. • Six miRNAs have been identified as associated with occupational farm work and pesticide exposure. • An observed seasonal difference suggests transient

  9. HIV-1 RNAs are Not Part of the Argonaute 2 Associated RNA Interference Pathway in Macrophages.

    Directory of Open Access Journals (Sweden)

    Valentina Vongrad

    Full Text Available MiRNAs and other small noncoding RNAs (sncRNAs are key players in post-transcriptional gene regulation. HIV-1 derived small noncoding RNAs (sncRNAs have been described in HIV-1 infected cells, but their biological functions still remain to be elucidated. Here, we approached the question whether viral sncRNAs may play a role in the RNA interference (RNAi pathway or whether viral mRNAs are targeted by cellular miRNAs in human monocyte derived macrophages (MDM.The incorporation of viral sncRNAs and/or their target RNAs into RNA-induced silencing complex was investigated using photoactivatable ribonucleoside-induced cross-linking and immunoprecipitation (PAR-CLIP as well as high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP, which capture Argonaute2-bound miRNAs and their target RNAs. HIV-1 infected monocyte-derived macrophages (MDM were chosen as target cells, as they have previously been shown to express HIV-1 sncRNAs. In addition, we applied small RNA deep sequencing to study differential cellular miRNA expression in HIV-1 infected versus non-infected MDMs.PAR-CLIP and HITS-CLIP data demonstrated the absence of HIV-1 RNAs in Ago2-RISC, although the presence of a multitude of HIV-1 sncRNAs in HIV-1 infected MDMs was confirmed by small RNA sequencing. Small RNA sequencing revealed that 1.4% of all sncRNAs were of HIV-1 origin. However, neither HIV-1 derived sncRNAs nor putative HIV-1 target sequences incorporated into Ago2-RISC were identified suggesting that HIV-1 sncRNAs are not involved in the canonical RNAi pathway nor is HIV-1 targeted by this pathway in HIV-1 infected macrophages.

  10. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Hongbo Wang

    2017-09-01

    Full Text Available Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs and circular RNAs (circRNAs may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16 mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN tissues from three patients with high-throughput RNA sequencing (RNA-seq. In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer.

  11. Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer

    Science.gov (United States)

    Wang, Hongbo; Zhao, Yingchao; Chen, Mingyue; Cui, Jie

    2017-01-01

    Cervical cancer is the third most common cancer worldwide and the fourth leading cause of cancer-associated mortality in women. Accumulating evidence indicates that long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) may play key roles in the carcinogenesis of different cancers; however, little is known about the mechanisms of lncRNAs and circRNAs in the progression and metastasis of cervical cancer. In this study, we explored the expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs in HPV16 (human papillomavirus genotype 16) mediated cervical squamous cell carcinoma and matched adjacent non-tumor (ATN) tissues from three patients with high-throughput RNA sequencing (RNA-seq). In total, we identified 19 lncRNAs, 99 circRNAs, 28 miRNAs, and 304 mRNAs that were commonly differentially expressed (DE) in different patients. Among the non-coding RNAs, 3 lncRNAs and 44 circRNAs are novel to our knowledge. Functional enrichment analysis showed that DE lncRNAs, miRNAs, and mRNAs were enriched in pathways crucial to cancer as well as other gene ontology (GO) terms. Furthermore, the co-expression network and function prediction suggested that all 19 DE lncRNAs could play different roles in the carcinogenesis and development of cervical cancer. The competing endogenous RNA (ceRNA) network based on DE coding and non-coding RNAs showed that each miRNA targeted a number of lncRNAs and circRNAs. The link between part of the miRNAs in the network and cervical cancer has been validated in previous studies, and these miRNAs targeted the majority of the novel non-coding RNAs, thus suggesting that these novel non-coding RNAs may be involved in cervical cancer. Taken together, our study shows that DE non-coding RNAs could be further developed as diagnostic and therapeutic biomarkers of cervical cancer. The complex ceRNA network also lays the foundation for future research of the roles of coding and non-coding RNAs in cervical cancer. PMID:28970820

  12. Microarray profiling and co-expression network analysis of circulating lncRNAs and mRNAs associated with major depressive disorder.

    Directory of Open Access Journals (Sweden)

    Zhifen Liu

    Full Text Available LncRNAs, which represent one of the most highly expressed classes of ncRNAs in the brain, are becoming increasingly interesting with regard to brain functions and disorders. However, changes in the expression of regulatory lncRNAs in Major Depressive Disorder (MDD have not yet been reported. Using microarrays, we profiled the expression of 34834 lncRNAs and 39224 mRNAs in peripheral blood sampled from MDD patients as well as demographically-matched controls. Among these, we found that 2007 lncRNAs and 1667 mRNAs were differentially expressed, 17 of which were documented as depression-related gene in previous studies. Gene Ontology (GO and pathway analyses indicated that the biological functions of differentially expressed mRNAs were related to fundamental metabolic processes and neurodevelopment diseases. To investigate the potential regulatory roles of the differentially expressed lncRNAs on the mRNAs, we also constructed co-expression networks composed of the lncRNAs and mRNAs, which shows significant correlated patterns of expression. In the MDD-derived network, there were a greater number of nodes and connections than that in the control-derived network. The lncRNAs located at chr10:874695-874794, chr10:75873456-75873642, and chr3:47048304-47048512 may be important factors regulating the expression of mRNAs as they have previously been reported associations with MDD. This study is the first to explore genome-wide lncRNA expression and co-expression with mRNA patterns in MDD using microarray technology. We identified circulating lncRNAs that are aberrantly expressed in MDD and the results suggest that lncRNAs may contribute to the molecular pathogenesis of MDD.

  13. Frontotemporal Lobar Degeneration and microRNAs

    Directory of Open Access Journals (Sweden)

    Paola ePiscopo

    2016-02-01

    Full Text Available Frontotemporal lobar degeneration (FTLD includes a spectrum of disorders characterized by changes of personality and social behaviour and, often, a gradual and progressive language dysfunction. In the last years, several efforts have been fulfilled in identifying both genetic mutations and pathological proteins associated with FTLD. The molecular bases undergoing the onset and progression of the disease remain still unknown. Recent literature prompts an involvement of RNA metabolism in FTLD, particularly miRNAs. Dysregulation of miRNAs in several disorders, including neurodegenerative diseases, and increasing importance of circulating miRNAs in different pathologies has suggested to implement the study of their possible application as biological markers and new therapeutic targets; moreover, miRNA-based therapy is becoming a powerful tool to deepen the function of a gene, the mechanism of a disease, and validate therapeutic targets. Regarding FTLD, different studies showed that miRNAs are playing an important role. For example, several reports have evaluated miRNA regulation of the progranulin gene suggesting that it is under their control, as described for miR-29b, miR-107 and miR-659. More recently, it has been demonstrated that TMEM106B gene, which protein is elevated in FTLD-TDP brains, is repressed by miR-132/212 cluster; this post-transcriptional mechanism increases intracellular levels of progranulin, affecting its pathways. These findings if confirmed could suggest that these microRNAs have a role as potential targets for some related-FTLD genes. In this review, we focus on the emerging roles of the miRNAs in the pathogenesis of FTLD.

  14. Long non-coding RNAs and mRNAs profiling during spleen development in pig.

    Science.gov (United States)

    Che, Tiandong; Li, Diyan; Jin, Long; Fu, Yuhua; Liu, Yingkai; Liu, Pengliang; Wang, Yixin; Tang, Qianzi; Ma, Jideng; Wang, Xun; Jiang, Anan; Li, Xuewei; Li, Mingzhou

    2018-01-01

    Genome-wide transcriptomic studies in humans and mice have become extensive and mature. However, a comprehensive and systematic understanding of protein-coding genes and long non-coding RNAs (lncRNAs) expressed during pig spleen development has not been achieved. LncRNAs are known to participate in regulatory networks for an array of biological processes. Here, we constructed 18 RNA libraries from developing fetal pig spleen (55 days before birth), postnatal pig spleens (0, 30, 180 days and 2 years after birth), and the samples from the 2-year-old Wild Boar. A total of 15,040 lncRNA transcripts were identified among these samples. We found that the temporal expression pattern of lncRNAs was more restricted than observed for protein-coding genes. Time-series analysis showed two large modules for protein-coding genes and lncRNAs. The up-regulated module was enriched for genes related to immune and inflammatory function, while the down-regulated module was enriched for cell proliferation processes such as cell division and DNA replication. Co-expression networks indicated the functional relatedness between protein-coding genes and lncRNAs, which were enriched for similar functions over the series of time points examined. We identified numerous differentially expressed protein-coding genes and lncRNAs in all five developmental stages. Notably, ceruloplasmin precursor (CP), a protein-coding gene participating in antioxidant and iron transport processes, was differentially expressed in all stages. This study provides the first catalog of the developing pig spleen, and contributes to a fuller understanding of the molecular mechanisms underpinning mammalian spleen development.

  15. MicroRNAs in Experimental Models of Movement Disorders

    Directory of Open Access Journals (Sweden)

    Soon-Tae Lee

    2011-10-01

    Full Text Available MicroRNAs (miRNAs are small RNAs comprised of 20–25 nucleotides that regulates gene expression by inducing translational repression or degradation of target mRNA. The importance of miRNAs as a mediator of disease pathogenesis and therapeutic targets is rapidly emerging in neuroscience, as well as oncology, immunology, and cardiovascular diseases. In Parkinson’s disease and related disorders, multiple studies have identified the implications of specific miRNAs and the polymorphisms of miRNA target genes during the disease pathogenesis. With a focus on Parkinson’s disease, spinocerebellar ataxia, hereditary spastic paraplegia, and Huntington’s disease, this review summarizes and interprets the observations, and proposes future research topics in this field.

  16. miRNAs as therapeutic targets in ischemic heart disease.

    Science.gov (United States)

    Frost, Robert J A; van Rooij, Eva

    2010-06-01

    Ischemic heart disease is a form of congestive heart failure that is caused by insufficient blood supply to the heart, resulting in a loss of viable tissue. In response to the injury, the non-ischemic myocardium displays signs of secondary remodeling, like interstitial fibrosis and hypertrophy of cardiac myocytes. This remodeling process further deteriorates pump function and increases susceptibility to arrhythmias. MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression in a sequence-dependent manner. Recently, several groups identified miRNAs as crucial gene regulators in response to myocardial infarction (MI) and during post-MI remodeling. In this review, we discuss how modulation of these miRNAs represents a promising new therapeutic strategy to improve the clinical outcome in ischemic heart disease.

  17. Circular RNAs: Biogenesis, Function and Role in Human Diseases

    Directory of Open Access Journals (Sweden)

    John Greene

    2017-06-01

    Full Text Available Circular RNAs (circRNAs are currently classed as non-coding RNA (ncRNA that, unlike linear RNAs, form covalently closed continuous loops and act as gene regulators in mammals. They were originally thought to represent errors in splicing and considered to be of low abundance, however, there is now an increased appreciation of their important function in gene regulation. circRNAs are differentially generated by backsplicing of exons or from lariat introns. Unlike linear RNA, the 3′ and 5′ ends normally present in an RNA molecule have been joined together by covalent bonds leading to circularization. Interestingly, they have been found to be abundant, evolutionally conserved and relatively stable in the cytoplasm. These features confer numerous potential functions to circRNAs, such as acting as miRNA sponges, or binding to RNA-associated proteins to form RNA-protein complexes that regulate gene transcription. It has been proposed that circRNA regulate gene expression at the transcriptional or post-transcriptional level by interacting with miRNAs and that circRNAs may have a role in regulating miRNA function in cancer initiation and progression. circRNAs appear to be more often downregulated in tumor tissue compared to normal tissue and this may be due to (i errors in the back-splice machinery in malignant tissues, (ii degradation of circRNAs by deregulated miRNAs in tumor tissue, or (iii increasing cell proliferation leading to a reduction of circRNAs. circRNAs have been identified in exosomes and more recently, chromosomal translocations in cancer have been shown to generate aberrant fusion-circRNAs associated with resistance to drug treatments. In addition, though originally thought to be non-coding, there is now increasing evidence to suggest that select circRNAs can be translated into functional proteins. Although much remains to be elucidated about circRNA biology and mechanisms of gene regulation, these ncRNAs are quickly emerging as

  18. Identification and characteristics of microRNAs from army worm, Spodoptera frugiperda cell line Sf21.

    Science.gov (United States)

    Kakumani, Pavan Kumar; Chinnappan, Mahendran; Singh, Ashok K; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2015-01-01

    microRNAs play important regulatory role in all intrinsic cellular functions. Amongst lepidopteran insects, miRNAs from only Bombyx mori have been studied extensively with a little focus on Spodoptera sp. In the present study, we identified a total of 226 miRNAs from Spodoptera frugiperda cell line Sf21. Of the total, 116 miRNAs were well conserved within other insects, like B. mori, Drosophila melanogaster and Tribolium castenum while the remaining 110 miRNAs were identified as novel based on comparative analysis with the insect miRNA data set. Landscape distribution analysis based on Sf21 genome assembly revealed clustering of few novel miRNAs. A total of 5 miRNA clusters were identified and the largest one encodes 5 miRNA genes. In addition, 12 miRNAs were validated using northern blot analysis and putative functional role assignment for 6 Sf miRNAs was investigated by examining their relative abundance at different developmental stages of Spodoptera litura and body parts of 6th instar larvae. Further, we identified a total of 809 potential target genes with GO terms for selected miRNAs, involved in different metabolic and signalling pathways of the insect. The newly identified miRNAs greatly enrich the repertoire of insect miRNAs and analysis of expression profiles reveal their involvement at various steps of biochemical pathways of the army worm.

  19. The role of microRNAs in stemness of cancer stem cells

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Ali Hosseini Rad

    2013-12-01

    Full Text Available Cancer is one of the most important diseases of humans, for which no cure has been found so far. Understanding the causes of cancer can pave the way for its treatment. Alteration in genetic elements such as oncogenes and tumor suppressor genes results in cancer. The most recent theory for the origin of cancer has been provided by cancer stem cells (CSCs. Tumor-initiating cells (T-ICs or CSCs are a small population isolated from tumors and hematologic malignancies. Since CSCs are similar to embryonic stem cells (ESCs in many aspects (such as pluripotency and self-renewal, recognizing the signaling pathways through which ESCs maintain their stemness can also help identify CSC signaling. One component of these signaling pathways is non-coding RNAs (ncRNAs. ncRNAs are classified in two groups: microRNAs (miRNAs and long non-coding RNAs (lncRNAs. miRNAs undergo altered expression in cancer. In this regard, they are classified as Onco-miRNAs or tumor suppressor miRNAs. Some miRNAs play similar roles in ESCs and CSCs, such as let-7 and miR-302. This review focuses on the miRNAs involved in stemness of ESCs and CSCs by presenting a summary of the role of miRNAs in other tumor cells.

  20. MicroRNAs in inflammatory bowel disease--pathogenesis, diagnostics and therapeutics

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Bjerrum, Jacob Tveiten; Seidelin, Jakob Benedict

    2012-01-01

    insights have been generated from studies describing an association between an altered expression of a specific class of non-coding RNAs, called microRNAs (miRs or miRNAs) and IBD. The short (approximately 22 nucleotides), endogenous, single-stranded RNAs are evolutionary conserved in animals and plants......-third of the genes in the human genome. Thus, miRNA deregulation often results in an impaired cellular function, and a disturbance of downstream gene regulation and signaling cascades, suggesting their implication in disease etiology. Despite the identification of more than 1900 mature human miRNAs, very little...... is known about their biological functions and functional targets. Recent studies have identified dysregulated miRNAs in tissue samples of IBD patients and have demonstrated similar differences in circulating miRNAs in the serum of IBD patients. Thus, there is great promise that miRNAs will aid in the early...

  1. The silkworm (Bombyx mori microRNAs and their expressions in multiple developmental stages.

    Directory of Open Access Journals (Sweden)

    Xiaomin Yu

    Full Text Available BACKGROUND: MicroRNAs (miRNAs play crucial roles in various physiological processes through post-transcriptional regulation of gene expressions and are involved in development, metabolism, and many other important molecular mechanisms and cellular processes. The Bombyx mori genome sequence provides opportunities for a thorough survey for miRNAs as well as comparative analyses with other sequenced insect species. METHODOLOGY/PRINCIPAL FINDINGS: We identified 114 non-redundant conserved miRNAs and 148 novel putative miRNAs from the B. mori genome with an elaborate computational protocol. We also sequenced 6,720 clones from 14 developmental stage-specific small RNA libraries in which we identified 35 unique miRNAs containing 21 conserved miRNAs (including 17 predicted miRNAs and 14 novel miRNAs (including 11 predicted novel miRNAs. Among the 114 conserved miRNAs, we found six pairs of clusters evolutionarily conserved cross insect lineages. Our observations on length heterogeneity at 5' and/or 3' ends of nine miRNAs between cloned and predicted sequences, and three mature forms deriving from the same arm of putative pre-miRNAs suggest a mechanism by which miRNAs gain new functions. Analyzing development-related miRNAs expression at 14 developmental stages based on clone-sampling and stem-loop RT PCR, we discovered an unusual abundance of 33 sequences representing 12 different miRNAs and sharply fluctuated expression of miRNAs at larva-molting stage. The potential functions of several stage-biased miRNAs were also analyzed in combination with predicted target genes and silkworm's phenotypic traits; our results indicated that miRNAs may play key regulatory roles in specific developmental stages in the silkworm, such as ecdysis. CONCLUSIONS/SIGNIFICANCE: Taking a combined approach, we identified 118 conserved miRNAs and 151 novel miRNA candidates from the B. mori genome sequence. Our expression analyses by sampling miRNAs and real-time PCR over

  2. Identification of Conserved and Novel MicroRNAs in Blueberry

    Directory of Open Access Journals (Sweden)

    Junyang Yue

    2017-06-01

    Full Text Available MicroRNAs (miRNAs are a class of small endogenous RNAs that play important regulatory roles in cells by negatively affecting gene expression at both transcriptional and post-transcriptional levels. There have been extensive studies aiming to identify miRNAs and to elucidate their functions in various plant species. In the present study, we employed the high-throughput sequencing technology to profile miRNAs in blueberry fruits. A total of 9,992,446 small RNA tags with sizes ranged from 18 to 30 nt were obtained, indicating that blueberry fruits have a large and diverse small RNA population. Bioinformatic analysis identified 412 conserved miRNAs belonging to 29 families, and 35 predicted novel miRNAs that are likely to be unique to blueberries. Among them, expression profiles of five conserved miRNAs were validated by stem loop qRT-PCR. Furthermore, the potential target genes of conserved and novel miRNAs were predicted and subjected to Gene Ontology (GO annotation. Enrichment analysis of the GO-represented biological processes and molecular functions revealed that these target genes were potentially involved in a wide range of metabolic pathways and developmental processes. Particularly, anthocyanin biosynthesis has been predicted to be directly or indirectly regulated by diverse miRNA families. This study is the first report on genome-wide miRNA profile analysis in blueberry and it provides a useful resource for further elucidation of the functional roles of miRNAs during fruit development and ripening.

  3. Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.

    Science.gov (United States)

    Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang

    2014-10-01

    MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.

  4. Circular RNAs in cancer

    DEFF Research Database (Denmark)

    Kristensen, L S; Hansen, T B; Venø, M T

    2018-01-01

    Circular RNA (circRNA) is a novel member of the noncoding cancer genome with distinct properties and diverse cellular functions, which is being explored at a steadily increasing pace. The list of endogenous circRNAs involved in cancer continues to grow; however, the functional relevance of the vast...... for circRNA cancer research and current caveats, which must be addressed to facilitate the translation of basic circRNA research into clinical use.Oncogene advance online publication, 9 October 2017; doi:10.1038/onc.2017.361....

  5. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Directory of Open Access Journals (Sweden)

    Hongtao Hu

    Full Text Available MicroRNAs (miRNAs and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs are two distinct subfamilies of small RNAs (sRNAs that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs are processed from longer RNA precursors by DICER-LIKE proteins (DCLs. Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs and 108 novel lineage-specific miRNAs (ls-miRNAs. Along with miRNAs, 2,033 miRNA variants (isomiRNAs were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers

  6. The Complexity of Posttranscriptional Small RNA Regulatory Networks Revealed by In Silico Analysis of Gossypium arboreum L. Leaf, Flower and Boll Small Regulatory RNAs.

    Science.gov (United States)

    Hu, Hongtao; Rashotte, Aaron M; Singh, Narendra K; Weaver, David B; Goertzen, Leslie R; Singh, Shree R; Locy, Robert D

    2015-01-01

    MicroRNAs (miRNAs) and secondary small interfering RNAs (principally phased siRNAs or trans-acting siRNAs) are two distinct subfamilies of small RNAs (sRNAs) that are emerging as key regulators of posttranscriptional gene expression in plants. Both miRNAs and secondary-siRNAs (sec-siRNAs) are processed from longer RNA precursors by DICER-LIKE proteins (DCLs). Gossypium arboreum L., also known as tree cotton or Asian cotton, is a diploid, possibly ancestral relative of tetraploid Gossypium hirsutum L., the predominant type of commercially grown cotton worldwide known as upland cotton. To understand the biological significance of these gene regulators in G. arboreum, a bioinformatics analysis was performed on G. arboreum small RNAs produced from G. arboreum leaf, flower, and boll tissues. Consequently, 263 miRNAs derived from 353 precursors, including 155 conserved miRNAs (cs-miRNAs) and 108 novel lineage-specific miRNAs (ls-miRNAs). Along with miRNAs, 2,033 miRNA variants (isomiRNAs) were identified as well. Those isomiRNAs with variation at the 3'-miRNA end were expressed at the highest levels, compared to other types of variants. In addition, 755 pha-siRNAs derived 319 pha-siRNA gene transcripts (PGTs) were identified, and the potential pha-siRNA initiators were predicted. Also, 2,251 non-phased siRNAs were found as well, of which 1,088 appeared to be produced by so-called cis- or trans-cleavage of the PGTs observed at positions differing from pha-siRNAs. Of those sRNAs, 148 miRNAs/isomiRNAs and 274 phased/non-phased siRNAs were differentially expressed in one or more pairs of tissues examined. Target analysis revealed that target genes for both miRNAs and pha-siRNAs are involved a broad range of metabolic and enzymatic activities. We demonstrate that secondary siRNA production could result from initial cleavage of precursors by both miRNAs or isomiRNAs, and that subsequently produced phased and unphased siRNAs could result that also serve as triggers of a second

  7. Targeting of microRNAs for therapeutics

    DEFF Research Database (Denmark)

    Stenvang, Jan; Lindow, Morten; Kauppinen, Sakari

    2008-01-01

    miRNAs (microRNAs) comprise a class of small endogenous non-coding RNAs that post-transcriptionally repress gene expression by base-pairing with their target mRNAs. Recent evidence has shown that miRNAs play important roles in a wide variety of human diseases, such as viral infections, cancer...

  8. MicroRNAs horizon in retinoblastoma.

    Directory of Open Access Journals (Sweden)

    Mojgan Mirakholi

    2013-12-01

    Full Text Available In the retinoblastoma research, it is of great interest to identify molecular markers associated with the genetics of tumorigenesis. microRNAs (miRNAs are small non-coding RNA molecules that play a regulatory role in many crucial cellular pathways such as differentiation, cell cycle progression, and apoptosis. A body of evidences showed dysregulation of miRNAs in tumor biology and many diseases. They potentially play a significant role in tumorigenesis processes and have been the subject of research in many types of cancers including retinal tumorigenesis. miRNA expression profiling was found to be associated with tumor development, progression and treatment. These associations demonstrate the putative applications of miRNAs in monitoring of different aspect of tumors consisting diagnostic, prognostic and therapeutic. Herein, we review the current literature concerning to the study of miRNA target recognition, function to tumorigenesis and treatment in retinoblastoma. Identification the specific miRNA biomarkers associated with retinoblastoma cancer may help to establish new therapeutic approaches for salvage affected eyes in patients.

  9. Cloning, characterization and expression analysis of porcine microRNAs

    Directory of Open Access Journals (Sweden)

    Desilva Udaya

    2009-02-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small ~22-nt regulatory RNAs that can silence target genes, by blocking their protein production or degrading the mRNAs. Pig is an important animal in the agriculture industry because of its utility in the meat production. Besides, pig has tremendous biomedical importance as a model organism because of its closer proximity to humans than the mouse model. Several hundreds of miRNAs have been identified from mammals, humans, mice and rats, but little is known about the miRNA component in the pig genome. Here, we adopted an experimental approach to identify conserved and unique miRNAs and characterize their expression patterns in diverse tissues of pig. Results By sequencing a small RNA library generated using pooled RNA from the pig heart, liver and thymus; we identified a total of 120 conserved miRNA homologs in pig. Expression analysis of conserved miRNAs in 14 different tissue types revealed heart-specific expression of miR-499 and miR-208 and liver-specific expression of miR-122. Additionally, miR-1 and miR-133 in the heart, miR-181a and miR-142-3p in the thymus, miR-194 in the liver, and miR-143 in the stomach showed the highest levels of expression. miR-22, miR-26b, miR-29c and miR-30c showed ubiquitous expression in diverse tissues. The expression patterns of pig-specific miRNAs also varied among the tissues examined. Conclusion Identification of 120 miRNAs and determination of the spatial expression patterns of a sub-set of these in the pig is a valuable resource for molecular biologists, breeders, and biomedical investigators interested in post-transcriptional gene regulation in pig and in related mammals, including humans.

  10. Characterisation of microRNAs from apple (Malus domestica 'Royal Gala') vascular tissue and phloem sap.

    Science.gov (United States)

    Varkonyi-Gasic, Erika; Gould, Nick; Sandanayaka, Manoharie; Sutherland, Paul; MacDiarmid, Robin M

    2010-08-04

    Plant microRNAs (miRNAs) are a class of small, non-coding RNAs that play an important role in development and environmental responses. Hundreds of plant miRNAs have been identified to date, mainly from the model species for which there are available genome sequences. The current challenge is to characterise miRNAs from plant species with agricultural and horticultural importance, to aid our understanding of important regulatory mechanisms in crop species and enable improvement of crops and rootstocks. Based on the knowledge that many miRNAs occur in large gene families and are highly conserved among distantly related species, we analysed expression of twenty-one miRNA sequences in different tissues of apple (Malus x domestica 'Royal Gala'). We identified eighteen sequences that are expressed in at least one of the tissues tested. Some, but not all, miRNAs expressed in apple tissues including the phloem tissue were also detected in the phloem sap sample derived from the stylets of woolly apple aphids. Most of the miRNAs detected in apple phloem sap were also abundant in the phloem sap of herbaceous species. Potential targets for apple miRNAs were identified that encode putative proteins shown to be targets of corresponding miRNAs in a number of plant species. Expression patterns of potential targets were analysed and correlated with expression of corresponding miRNAs. This study validated tissue-specific expression of apple miRNAs that target genes responsible for plant growth, development, and stress response. A subset of characterised miRNAs was also present in the apple phloem translocation stream. A comparative analysis of phloem miRNAs in herbaceous species and woody perennials will aid our understanding of non-cell autonomous roles of miRNAs in plants.

  11. Diversity of small RNAs expressed in Pseudomonas species

    DEFF Research Database (Denmark)

    Gomez-Lozano, Mara; Marvig, Rasmus Lykke; Molina-Santiago, Carlos

    2015-01-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation...... of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P.putidaDOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P.extremaustralis and the second strain of P.putida to have their transcriptomes analysed for sRNAs, and we identify...... the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited...

  12. Identification of microRNAs in the coral Stylophora pistillata.

    KAUST Repository

    Liew, Yi Jin

    2014-03-21

    Coral reefs are major contributors to marine biodiversity. However, they are in rapid decline due to global environmental changes such as rising sea surface temperatures, ocean acidification, and pollution. Genomic and transcriptomic analyses have broadened our understanding of coral biology, but a study of the microRNA (miRNA) repertoire of corals is missing. miRNAs constitute a class of small non-coding RNAs of ∼22 nt in size that play crucial roles in development, metabolism, and stress response in plants and animals alike. In this study, we examined the coral Stylophora pistillata for the presence of miRNAs and the corresponding core protein machinery required for their processing and function. Based on small RNA sequencing, we present evidence for 31 bona fide microRNAs, 5 of which (miR-100, miR-2022, miR-2023, miR-2030, and miR-2036) are conserved in other metazoans. Homologues of Argonaute, Piwi, Dicer, Drosha, Pasha, and HEN1 were identified in the transcriptome of S. pistillata based on strong sequence conservation with known RNAi proteins, with additional support derived from phylogenetic trees. Examination of putative miRNA gene targets indicates potential roles in development, metabolism, immunity, and biomineralisation for several of the microRNAs. Here, we present first evidence of a functional RNAi machinery and five conserved miRNAs in S. pistillata, implying that miRNAs play a role in organismal biology of scleractinian corals. Analysis of predicted miRNA target genes in S. pistillata suggests potential roles of miRNAs in symbiosis and coral calcification. Given the importance of miRNAs in regulating gene expression in other metazoans, further expression analyses of small non-coding RNAs in transcriptional studies of corals should be informative about miRNA-affected processes and pathways.

  13. Identification of novel non-coding RNAs as potential antisense regulators in the archaeon Sulfolobus solfataricus

    DEFF Research Database (Denmark)

    tang, T. H.; Polacek, N.; Zywicki, M.

    2005-01-01

    By generating a specialized cDNA library from the archaeon Sulfolobus solfataricus, we have identified 57 novel small non-coding RNA (ncRNA) candidates and confirmed their expression by Northern blot analysis. The majority was found to belong to one of two classes, either antisense or antisense...... elements by inhibiting expression of the transposase mRNA. Surprisingly, the class of antisense RNAs also contained RNAs complementary to tRNAs or sRNAs (small-nucleolar-like RNAs). For the antisense-box ncRNAs, the majority could be assigned to the class of C/D sRNAs, which specify 2'-O-methylation sites...... on rRNAs or tRNAs. Five C/D sRNAs of this group are predicted to target methylation at six sites in 13 different tRNAs, thus pointing to the widespread role of these sRNA species in tRNA modification in Archaea. Another group of antisense-box RNAs, lacking typical C/D sRNA motifs, was predicted...

  14. Genome-wide characterization of long intergenic non-coding RNAs (lincRNAs) provides new insight into viral diseases in honey bees Apis cerana and Apis mellifera.

    Science.gov (United States)

    Jayakodi, Murukarthick; Jung, Je Won; Park, Doori; Ahn, Young-Joon; Lee, Sang-Choon; Shin, Sang-Yoon; Shin, Chanseok; Yang, Tae-Jin; Kwon, Hyung Wook

    2015-09-04

    Long non-coding RNAs (lncRNAs) are a class of RNAs that do not encode proteins. Recently, lncRNAs have gained special attention for their roles in various biological process and diseases. In an attempt to identify long intergenic non-coding RNAs (lincRNAs) and their possible involvement in honey bee development and diseases, we analyzed RNA-seq datasets generated from Asian honey bee (Apis cerana) and western honey bee (Apis mellifera). We identified 2470 lincRNAs with an average length of 1011 bp from A. cerana and 1514 lincRNAs with an average length of 790 bp in A. mellifera. Comparative analysis revealed that 5 % of the total lincRNAs derived from both species are unique in each species. Our comparative digital gene expression analysis revealed a high degree of tissue-specific expression among the seven major tissues of honey bee, different from mRNA expression patterns. A total of 863 (57 %) and 464 (18 %) lincRNAs showed tissue-dependent expression in A. mellifera and A. cerana, respectively, most preferentially in ovary and fat body tissues. Importantly, we identified 11 lincRNAs that are specifically regulated upon viral infection in honey bees, and 10 of them appear to play roles during infection with various viruses. This study provides the first comprehensive set of lincRNAs for honey bees and opens the door to discover lincRNAs associated with biological and hormone signaling pathways as well as various diseases of honey bee.

  15. Non-Protein Coding RNAs

    CERN Document Server

    Walter, Nils G; Batey, Robert T

    2009-01-01

    This book assembles chapters from experts in the Biophysics of RNA to provide a broadly accessible snapshot of the current status of this rapidly expanding field. The 2006 Nobel Prize in Physiology or Medicine was awarded to the discoverers of RNA interference, highlighting just one example of a large number of non-protein coding RNAs. Because non-protein coding RNAs outnumber protein coding genes in mammals and other higher eukaryotes, it is now thought that the complexity of organisms is correlated with the fraction of their genome that encodes non-protein coding RNAs. Essential biological processes as diverse as cell differentiation, suppression of infecting viruses and parasitic transposons, higher-level organization of eukaryotic chromosomes, and gene expression itself are found to largely be directed by non-protein coding RNAs. The biophysical study of these RNAs employs X-ray crystallography, NMR, ensemble and single molecule fluorescence spectroscopy, optical tweezers, cryo-electron microscopy, and ot...

  16. MicroRNAs and drug addiction

    Directory of Open Access Journals (Sweden)

    Paul J Kenny

    2013-05-01

    Full Text Available Drug addiction is considered a disorder of neuroplasticity in brain reward and cognition systems resulting from aberrant activation of gene expression programs in response to prolonged drug consumption. Noncoding RNAs are key regulators of almost all aspects of cellular physiology. MicroRNAs (miRNAs are small (~21–23 nucleotides noncoding RNA transcripts that regulate gene expression at the post-transcriptional level. Recently, microRNAs were shown to play key roles in the drug-induced remodeling of brain reward systems that likely drives the emergence of addiction. Here, we review evidence suggesting that one particular miRNA, miR-212, plays a particularly prominent role in vulnerability to cocaine addiction. We review evidence showing that miR-212 expression is increased in the dorsal striatum of rats that show compulsive-like cocaine-taking behaviors. Increases in miR-212 expression appear to protect against cocaine addiction, as virus-mediated striatal miR-212 over-expression decreases cocaine consumption in rats. Conversely, disruption of striatal miR-212 signaling using an antisense oligonucleotide increases cocaine intake. We also review data that identify two mechanisms by which miR-212 may regulate cocaine intake. First, miR-212 has been shown to amplify striatal CREB signaling through a mechanism involving activation of Raf1 kinase. Second, miR-212 was also shown to regulate cocaine intake by repressing striatal expression of methyl CpG binding protein 2 (MeCP2, consequently decreasing protein levels of brain-derived neurotrophic factor (BDNF. The concerted actions of miR-212 on striatal CREB and MeCP2/BDNF activity greatly attenuate the motivational effects of cocaine. These findings highlight the unique role for miRNAs in simultaneously controlling multiple signaling cascades implicated in addiction.

  17. Genome-wide identification of lncRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.).

    Science.gov (United States)

    Zhu, Bin; Xu, Manyu; Shi, Haiyan; Gao, Xiwu; Liang, Pei

    2017-05-15

    Long noncoding RNAs (lncRNAs) are now considered important regulatory factors, with a variety of biological functions in many species including insects. Some lncRNAs have the ability to show rapid responses to diverse stimuli or stress factors and are involved in responses to insecticide. However, there are no reports to date on the characterization of lncRNAs associated with chlorantraniliprole resistance in Plutella xylostella. Nine RNA libraries constructed from one susceptible (CHS) and two chlorantraniliprole-resistant P. xylostella strains (CHR, ZZ) were sequenced, and 1309 lncRNAs were identified, including 877 intergenic lncRNAs, 190 intronic lncRNAs, 76 anti-sense lncRNAs and 166 sense-overlapping lncRNAs. Of the identified lncRNAs, 1059 were novel. Furthermore, we found that 64 lncRNAs were differentially expressed between CHR and CHS and 83 were differentially expressed between ZZ and CHS, of which 22 were differentially expressed in both CHR and ZZ. Most of the differentially expressed lncRNAs were hypothesized to be associated with chlorantraniliprole resistance in P. xylostella. The targets of lncRNAs via cis- ( 0.9 or xylostella. These results will facilitate future studies of the regulatory mechanisms of lncRNAs in chlorantraniliprole and other insecticide resistance and in other biological processes in P. xylostella.

  18. Molecular Network-Based Identification of Competing Endogenous RNAs in Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Minjia Lu

    2018-01-01

    Full Text Available RNAs may act as competing endogenous RNAs (ceRNAs, a critical mechanism in determining gene expression regulations in many cancers. However, the roles of ceRNAs in thyroid carcinoma remains elusive. In this study, we have developed a novel pipeline called Molecular Network-based Identification of ceRNA (MNIceRNA to identify ceRNAs in thyroid carcinoma. MNIceRNA first constructs micro RNA (miRNA–messenger RNA (mRNAlong non-coding RNA (lncRNA networks from miRcode database and weighted correlation network analysis (WGCNA, based on which to identify key drivers of differentially expressed RNAs between normal and tumor samples. It then infers ceRNAs of the identified key drivers using the long non-coding competing endogenous database (lnCeDB. We applied the pipeline into The Cancer Genome Atlas (TCGA thyroid carcinoma data. As a result, 598 lncRNAs, 1025 mRNAs, and 90 microRNA (miRNAs were inferred to be differentially expressed between normal and thyroid cancer samples. We then obtained eight key driver miRNAs, among which hsa-mir-221 and hsa-mir-222 were key driver RNAs identified by both miRNA–mRNA–lncRNA and WGCNA network. In addition, hsa-mir-375 was inferred to be significant for patients’ survival with 34 associated ceRNAs, among which RUNX2, DUSP6 and SEMA3D are known oncogenes regulating cellular proliferation and differentiation in thyroid cancer. These ceRNAs are critical in revealing the secrets behind thyroid cancer progression and may serve as future therapeutic biomarkers.

  19. Evaluation of circulating miRNAs during late pregnancy in the mare.

    Directory of Open Access Journals (Sweden)

    Shavahn C Loux

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs which are produced throughout the body. Individual tissues tend to have a specific expression profile and excrete many of these miRNAs into circulation. These circulating miRNAs may be diagnostically valuable biomarkers for assessing the presence of disease while minimizing invasive testing. In women, numerous circulating miRNAs have been identified which change significantly during pregnancy-related complications (e.g. chorioamnionitis, eclampsia, recurrent pregnancy loss; however, no prior work has been done in this area in the horse. To identify pregnancy-specific miRNAs, we collected serial whole blood samples in pregnant mares at 8, 9, 10 m of gestation and post-partum, as well as from non-pregnant (diestrous mares. In total, we evaluated a panel of 178 miRNAs using qPCR, eventually identifying five miRNAs of interest. One miRNA (miR-374b was differentially regulated through late gestation and four miRNAs (miR-454, miR-133b, miR-486-5p and miR-204b were differentially regulated between the pregnant and non-pregnant samples. We were able to identify putative targets for the differentially regulated miRNAs using two separate target prediction programs, miRDB and Ingenuity Pathway Analysis. The targets for the miRNAs differentially regulated during pregnancy were predicted to be involved in signaling pathways such as the STAT3 pathway and PI3/AKT signaling pathway, as well as more endocrine-based pathways, including the GnRH, prolactin and insulin signaling pathways. In summary, this study provides novel information about the changes occurring in circulating miRNAs during normal pregnancy, as well as attempting to predict the biological effects induced by these miRNAs.

  20. Identification of microRNAs from Eugenia uniflora by high-throughput sequencing and bioinformatics analysis.

    Science.gov (United States)

    Guzman, Frank; Almerão, Mauricio P; Körbes, Ana P; Loss-Morais, Guilherme; Margis, Rogerio

    2012-01-01

    microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation. Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae species. Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing 45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature miRNAs in the identified pre-miRNAs based on sequence homology. This study is the first large scale identification of miRNAs and their potential targets from a species of the Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.

  1. Dissection of functional lncRNAs in Alzheimer's disease by construction and analysis of lncRNA-mRNA networks based on competitive endogenous RNAs.

    Science.gov (United States)

    Wang, Lian-Kun; Chen, Xiao-Feng; He, Dan-Dan; Li, You; Fu, Jin

    2017-04-08

    Alzheimer's disease (AD) is a neurodegenerative disorder that is the most common cause of dementia in the elderly, and intracellular neurofibrillary tangles (NFTs) are one of the pathological features of AD. Recent studies have suggested long noncoding RNAs (lncRNAs) play important roles in AD. Competing endogenous RNAs (ceRNAs) is a mechanism that has recently been proposed, in which lncRNAs compete for common miRNA-binding sites with mRNAs. However, the roles of lncRNAs and ceRNA in AD NFTs is limited. In this study, we constructed a global triple network based on ceRNA theory, then an AD NFT lncRNA-mRNA network (NFTLMN) was generated. By analyzing the NFTLMN, three lncRNAs (AP000265.1, KB-1460A1.5 and RP11-145M9.4), which are highly related with AD NFTs were identified. To further explore the cross-talk between mRNAs and lncRNAs, a clustering module analysis was performed on the NFTLMN and two AD NFT related modules were identified. Our study provides a better understanding of the molecular basis of AD NFTs and may offer novel treatment strategies for AD. Copyright © 2016. Published by Elsevier Inc.

  2. Transcriptomic landscape of lncRNAs in inflammatory bowel disease

    DEFF Research Database (Denmark)

    Mirza, Aashiq Hussain; Bang-Berthelsen, Claus Heiner; Seemann, Ernst Stefan

    2015-01-01

    -coding genes and microRNAs in modulating the immune responses in IBD. METHODS: In the present study, we performed a genome-wide transcriptome profiling of lncRNAs and protein-coding genes in 96 colon pinch biopsies (inflamed and non-inflamed) extracted from multiple colonic locations from 45 patients (CD = 13...... differentially expressed lncRNAs, respectively, while in cases of the non-inflamed CD and UC, we identified 12 and 19 differentially expressed lncRNAs, respectively. We also observed significant enrichment (P-value ... their involvement in the immune response, pro-inflammatory cytokine activity and MHC protein complex. CONCLUSIONS: The lncRNA expression profiling in both inflamed and non-inflamed CD and UC successfully stratified IBD patients from the healthy controls. Taken together, the identified lncRNA transcriptional...

  3. C. elegans microRNAs.

    Science.gov (United States)

    Vella, Monica C; Slack, Frank J

    2005-09-21

    MicroRNAs (miRNAs) are small, non-coding regulatory RNAs found in many phyla that control such diverse events as development, metabolism, cell fate and cell death. They have also been implicated in human cancers. The C. elegans genome encodes hundreds of miRNAs, including the founding members of the miRNA family lin-4 and let-7. Despite the abundance of C. elegans miRNAs, few miRNA targets are known and little is known about the mechanism by which they function. However, C. elegans research continues to push the boundaries of discovery in this area. lin-4 and let-7 are the best understood miRNAs. They control the timing of adult cell fate determination in hypodermal cells by binding to partially complementary sites in the mRNA of key developmental regulators to repress protein expression. For example, lin-4 is predicted to bind to seven sites in the lin-14 3' untranslated region (UTR) to repress LIN-14, while let-7 is predicted to bind two let-7 complementary sites in the lin-41 3' UTR to down-regulate LIN-41. Two other miRNAs, lsy-6 and mir-273, control left-right asymmetry in neural development, and also target key developmental regulators for repression. Approximately one third of the C. elegans miRNAs are differentially expressed during development indicating a major role for miRNAs in C. elegans development. Given the remarkable conservation of developmental mechanism across phylogeny, many of the principles of miRNAs discovered in C. elegans are likely to be applicable to higher animals.

  4. Circulating MicroRNAs as Potential Biomarkers of Exercise Response

    Directory of Open Access Journals (Sweden)

    Mája Polakovičová

    2016-10-01

    Full Text Available Systematic physical activity increases physical fitness and exercise capacity that lead to the improvement of health status and athletic performance. Considerable effort is devoted to identifying new biomarkers capable of evaluating exercise performance capacity and progress in training, early detection of overtraining, and monitoring health-related adaptation changes. Recent advances in OMICS technologies have opened new opportunities in the detection of genetic, epigenetic and transcriptomic biomarkers. Very promising are mainly small non-coding microRNAs (miRNAs. miRNAs post-transcriptionally regulate gene expression by binding to mRNA and causing its degradation or inhibiting translation. A growing body of evidence suggests that miRNAs affect many processes and play a crucial role not only in cell differentiation, proliferation and apoptosis, but also affect extracellular matrix composition and maintaining processes of homeostasis. A number of studies have shown changes in distribution profiles of circulating miRNAs (c-miRNAs associated with various diseases and disorders as well as in samples taken under physiological conditions such as pregnancy or physical exercise. This overview aims to summarize the current knowledge related to the response of blood c-miRNAs profiles to different modes of exercise and to highlight their potential application as a novel class of biomarkers of physical performance capacity and training adaptation.

  5. Non-coding RNAs in endometriosis: a narrative review.

    Science.gov (United States)

    Panir, Kavita; Schjenken, John E; Robertson, Sarah A; Hull, M Louise

    2018-04-25

    extant literature justifies the conclusion that dysregulated ncRNAs are a significant element of the endometriosis condition. There is a compelling case that microRNAs, long non-coding RNAs and short inhibitory RNAs have the potential to influence endometriosis development and persistence through modulating inflammation, proliferation, angiogenesis and tissue remodelling. Rapid advances in ncRNA biomarker discovery and therapeutics relevant to endometriosis are emerging. Unravelling the significance of ncRNAs in endometriosis will pave the way for new diagnostic tests and identify new therapeutic targets and treatment approaches that have the potential to improve clinical options for women with this disabling condition.

  6. Identification and characterization of microRNAs in Asiatic cotton (Gossypium arboreum L..

    Directory of Open Access Journals (Sweden)

    Min Wang

    Full Text Available To date, no miRNAs have been identified in the important diploid cotton species although there are several reports on miRNAs in upland cotton. In this study, we identified 73 miRNAs, belonging to 49 families, from Asiatic cotton using a well-developed comparative genome-based homologue search. Several of the predicted miRNAs were validated using quantitative real time PCR (qRT-PCR. The length of miRNAs varied from 18 to 22 nt with an average of 20 nt. The length of miRNA precursors also varied from 46 to 684 nt with an average of 138 ±120 nt. For a majority of Asiatic cotton miRNAs, there is only one member per family; however, multiple members were identified for miRNA 156, 414, 837, 838, 1044, 1533, 2902, 2868, 5021 and 5142 families. Nucleotides A and U were dominant, accounted for 62.95%, in the Asiatic cotton pre-miRNAs. The Asiatic cotton pre-miRNAs had high negative minimal folding free energy (MFE and adjusted MFE (AMFE and high MFE index (MFEI. Many miRNAs identified in Asiatic cotton suggest that miRNAs also play a similar regulatory mechanism in diploid cotton.

  7. miRNAs and other non-coding RNAs in posttraumatic stress disorder: A systematic review of clinical and animal studies.

    Science.gov (United States)

    Schmidt, Ulrike; Keck, Martin E; Buell, Dominik R

    2015-06-01

    In the last couple of years, non-coding (nc) RNAs like micro-RNAs (miRNAs), small interference RNAs (siRNAs) and long ncRNAs (lncRNAs) have emerged as promising candidates for biomarkers and drug-targets in a variety of psychiatric disorders. In contrast to reports on ncRNAs in affective disorders, schizophrenia and anxiety disorders, manuscripts on ncRNAs in posttraumatic stress disorder (PTSD) and associated animal models are scarce. Aiming to stimulate ncRNA research in PTSD and to identify the hitherto most promising ncRNA candidates and associated pathways for psychotrauma research, we conducted the first review on ncRNAs in PTSD. We aimed to identify studies reporting on the expression, function and regulation of ncRNAs in PTSD patients and in animals exhibiting a PTSD-like syndrome. Following the PRISMA guidelines for systematic reviews, we systematically screened the PubMed database for clinical and animal studies on ncRNAs in PTSD, animal models for PTSD and animal models employing a classical fear conditioning paradigm. Using 112 different combinations of search terms, we retrieved 523 articles of which we finally included and evaluated three clinical and 12 animal studies. In addition, using the web-based tool DIANA miRPath v2.0, we searched for molecular pathways shared by the predicted targets of the here-evaluated miRNA candidates. Our findings suggest that mir-132, which has been found to be regulated in three of the here included studies, as well as miRNAs with an already established role in Alzheimer's disease (AD) seem to be particularly promising candidates for future miRNA studies in PTSD. These results are limited by the low number of human trials and by the heterogeneity of included animal studies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Identification of microRNAs as potential prognostic markers in ependymoma.

    Directory of Open Access Journals (Sweden)

    Fabricio F Costa

    Full Text Available INTRODUCTION: We have examined expression of microRNAs (miRNAs in ependymomas to identify molecular markers of value for clinical management. miRNAs are non-coding RNAs that can block mRNA translation and affect mRNA stability. Changes in the expression of miRNAs have been correlated with many human cancers. MATERIALS AND METHODS: We have utilized TaqMan Low Density Arrays to evaluate the expression of 365 miRNAs in ependymomas and normal brain tissue. We first demonstrated the similarity of expression profiles of paired frozen tissue (FT and paraffin-embedded specimens (FFPE. We compared the miRNA expression profiles of 34 FFPE ependymoma samples with 8 microdissected normal brain tissue specimens enriched for ependymal cells. miRNA expression profiles were then correlated with tumor location, histology and other clinicopathological features. RESULTS: We have identified miRNAs that are over-expressed in ependymomas, such as miR-135a and miR-17-5p, and down-regulated, such as miR-383 and miR-485-5p. We have also uncovered associations between expression of specific miRNAs which portend a worse prognosis. For example, we have identified a cluster of miRNAs on human chromosome 14q32 that is associated with time to relapse. We also found that miR-203 is an independent marker for relapse compared to the parameters that are currently used. Additionally, we have identified three miRNAs (let-7d, miR-596 and miR-367 that strongly correlate to overall survival. CONCLUSION: We have identified miRNAs that are differentially expressed in ependymomas compared with normal ependymal tissue. We have also uncovered significant associations of miRNAs with clinical behavior. This is the first report of clinically relevant miRNAs in ependymomas.

  9. Identification and characteristics of microRNAs from Bombyx mori

    Directory of Open Access Journals (Sweden)

    Gao Xiaolian

    2008-05-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNA molecules that regulate gene expression by targeting messenger RNAs (mRNAs and causing mRNA cleavage or translation blockage. Of the 355 Arthropod miRNAs that have been identified, only 21 are B. mori miRNAs that were predicted computationally; of these, only let-7 has been confirmed by Northern blotting. Results Combining a computational method based on sequence homology searches with experimental identification based on microarray assays and Northern blotting, we identified 46 miRNAs, an additional 21 plausible miRNAs, and a novel small RNA in B. mori. The latter, bmo-miR-100-like, was identified using the known miRNA aga-miR-100 as a probe; bmo-miR-100-like was detected by microarray assay and Northern blotting, but its precursor sequences did not fold into a hairpin structure. Among these identified miRNAs, we found 12 pairs of miRNAs and miRNA*s. Northern blotting revealed that some B. mori miRNA genes were expressed only during specific stages, indicating that B. mori miRNA genes (e.g., bmo-miR-277 have developmentally regulated patterns of expression. We identified two miRNA gene clusters in the B. mori genome. bmo-miR-2b, which is found in the gene cluster bmo-miR-2a-1/bmo-miR-2a-1*/bmo-miR-2a-2/bmo-miR-2b/bmo-miR-13a*/bmo-miR-13b, encodes a newly identified member of the mir-2 family. Moreover, we found that methylation can increase the sensitivity of a DNA probe used to detect a miRNA by Northern blotting. Functional analysis revealed that 11 miRNAs may regulate 13 B. mori orthologs of the 25 known Drosophila miRNA-targeted genes according to the functional conservation. We predicted the binding sites on the 1671 3'UTR of B. mori genes; 547 targeted genes, including 986 target sites, were predicted. Of these target sites, 338 had perfect base pairing to the seed region of 43 miRNAs. From the predicted genes, 61 genes, each of them with multiple predicted target sites, should be

  10. Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer.

    Science.gov (United States)

    Koduru, Srinivas V; Tiwari, Amit K; Hazard, Sprague W; Mahajan, Milind; Ravnic, Dino J

    2017-01-01

    Background: Improved healthcare and recent breakthroughs in technology have substantially reduced cancer mortality rates worldwide. Recent advancements in next-generation sequencing (NGS) have allowed genomic analysis of the human transcriptome. Now, using NGS we can further look into small non-coding regions of RNAs (sncRNAs) such as microRNAs (miRNAs), Piwi-interacting-RNAs (piRNAs), long non-coding RNAs (lncRNAs), and small nuclear/nucleolar RNAs (sn/snoRNAs) among others. Recent studies looking at sncRNAs indicate their role in important biological processes such as cancer progression and predict their role as biomarkers for disease diagnosis, prognosis, and therapy. Results: In the present study, we data mined publically available small RNA sequencing data from colorectal tissue samples of eight matched patients (benign, tumor, and metastasis) and remapped the data for various small RNA annotations. We identified aberrant expression of 13 miRNAs in tumor and metastasis specimens [tumor vs benign group (19 miRNAs) and metastasis vs benign group (38 miRNAs)] of which five were upregulated, and eight were downregulated, during disease progression. Pathway analysis of aberrantly expressed miRNAs showed that the majority of miRNAs involved in colon cancer were also involved in other cancers. Analysis of piRNAs revealed six to be over-expressed in the tumor vs benign cohort and 24 in the metastasis vs benign group. Only two piRNAs were shared between the two cohorts. Examining other types of small RNAs [sn/snoRNAs, mt_rRNA, miscRNA, nonsense mediated decay (NMD), and rRNAs] identified 15 sncRNAs in the tumor vs benign group and 104 in the metastasis vs benign group, with only four others being commonly expressed. Conclusion: In summary, our comprehensive analysis on publicly available small RNA-seq data identified multiple differentially expressed sncRNAs during colorectal cancer progression at different stages compared to normal colon tissue. We speculate that

  11. Long Non-Coding RNAs: A Novel Paradigm for Toxicology.

    Science.gov (United States)

    Dempsey, Joseph L; Cui, Julia Yue

    2017-01-01

    Long non-coding RNAs (lncRNAs) are over 200 nucleotides in length and are transcribed from the mammalian genome in a tissue-specific and developmentally regulated pattern. There is growing recognition that lncRNAs are novel biomarkers and/or key regulators of toxicological responses in humans and animal models. Lacking protein-coding capacity, the numerous types of lncRNAs possess a myriad of transcriptional regulatory functions that include cis and trans gene expression, transcription factor activity, chromatin remodeling, imprinting, and enhancer up-regulation. LncRNAs also influence mRNA processing, post-transcriptional regulation, and protein trafficking. Dysregulation of lncRNAs has been implicated in various human health outcomes such as various cancers, Alzheimer's disease, cardiovascular disease, autoimmune diseases, as well as intermediary metabolism such as glucose, lipid, and bile acid homeostasis. Interestingly, emerging evidence in the literature over the past five years has shown that lncRNA regulation is impacted by exposures to various chemicals such as polycyclic aromatic hydrocarbons, benzene, cadmium, chlorpyrifos-methyl, bisphenol A, phthalates, phenols, and bile acids. Recent technological advancements, including next-generation sequencing technologies and novel computational algorithms, have enabled the profiling and functional characterizations of lncRNAs on a genomic scale. In this review, we summarize the biogenesis and general biological functions of lncRNAs, highlight the important roles of lncRNAs in human diseases and especially during the toxicological responses to various xenobiotics, evaluate current methods for identifying aberrant lncRNA expression and molecular target interactions, and discuss the potential to implement these tools to address fundamental questions in toxicology. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e

  12. Transcriptome-wide analysis of microRNAs in Branchiostoma belcheri upon Vibrio parahemolyticus infection.

    Science.gov (United States)

    Jin, Ping; Li, Shengjie; Sun, Lianjie; Lv, Caiyun; Ma, Fei

    2017-09-01

    MicroRNAs (miRNAs) are endogenous small non-coding RNAs that participate in diverse biological processes via regulating expressions of target genes at post-transcriptional level. Amphioxus, as modern survivor of an ancient chordate lineage, is a model organism for comparative genomics study. However, miRNAs involved in regulating immune responses in Branchiostoma belcheri are largely unclear. Here, we systematically investigated the microRNAs (miRNAs) involved in regulating immune responses in the cephalochordate amphioxus (Branchiostoma belcheri) through next-generation deep sequencing of amphioxus samples infected with Vibrio parahemolyticus. We identified 198 novel amphioxus miRNAs, consisting of 12 conserved miRNAs, 33 candidate star miRNAs and 153 potential amphioxus-specific-miRNAs. Using microarray profiling, 14 miRNAs were differentially expressed post infection, suggesting they are immune-related miRNAs. Eight miRNAs (bbe-miR-92a-3p, bbe-miR-92c-3p, bbe-miR-210-5p, bbe-miR-22-3p, bbe-miR-1∼bbe-miR-133 and bbe-miR-217∼bbe-miR-216 clusters) were significantly increased at 12 h post-infection, while bbe-miR-2072-5p was downregulated at 6 h and 12 h. Three miRNAs, bbe-miR-1-3p, bbe-miR-22-3p and bbe-miR-92a-3p, were confirmed to be involved in immune responses to infection by qRT-PCR. Our findings further clarify important regulatory roles of miRNAs in the innate immune response to bacterial infection in amphioxus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Genome-wide identification of potato long intergenic noncoding RNAs responsive to Pectobacterium carotovorum subspecies brasiliense infection.

    Science.gov (United States)

    Kwenda, Stanford; Birch, Paul R J; Moleleki, Lucy N

    2016-08-11

    Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.

  14. Circular RNAs and systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Li, Lian-Ju; Huang, Qing; Pan, Hai-Feng; Ye, Dong-Qing, E-mail: ydqahmu@gmail.com

    2016-08-15

    Circular RNAs (circRNAs) are a large class of noncoding RNAs that form covalently closed RNA circles. The discovery of circRNAs discloses a new layer of gene regulation occurred post-transcriptionally. Identification of endogenous circRNAs benefits from the advance in high-throughput RNA sequencing and remains challenging. Many studies probing into the mechanisms of circRNAs formation occurred cotranscriptionally or posttranscriptionally emerge and conclude that canonical splicing mechanism, sequence properties, and certain regulatory factors are at play in the process. Although our knowledge on functions of circRNAs is rather limited, a few circRNAs are shown to sponge miRNA and regulate gene transcription. The clearest case is one circRNA CDR1as that serves as sponge of miR-7. Researches on circRNAs in human diseases such as cancers highlight the function and physical relevance of circRNAs. Given the implication of miRNAs in the initiation and progression of systemic lupus erythematosus (SLE) and the roles of circRNAs in sponging miRNA and gene regulation, it is appealing to speculate that circRNAs may associate with SLE and may be potential therapeutic targets for treatment of SLE. Future studies should attach more importance to the relationship between circRNAs and SLE. This review will concern identification, biogenesis, and function of circRNAs, introduce reports exploring the association of circRNAs with human diseases, and conjecture the potential roles of circRNAs in SLE. - Highlights: • Studies have discovered thousands of circRNAs and interpreted their biogenesis. • Cytoplasmic circRNAs sponge miRNA and nuclear circRNAs modulate gene transcription. • Aberrant expression of circRNAs has been observed in various cancers. • CircRNAs may partake in the pathogenesis of systemic lupus erythematosus.

  15. Circular RNAs and systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Li, Lian-Ju; Huang, Qing; Pan, Hai-Feng; Ye, Dong-Qing

    2016-01-01

    Circular RNAs (circRNAs) are a large class of noncoding RNAs that form covalently closed RNA circles. The discovery of circRNAs discloses a new layer of gene regulation occurred post-transcriptionally. Identification of endogenous circRNAs benefits from the advance in high-throughput RNA sequencing and remains challenging. Many studies probing into the mechanisms of circRNAs formation occurred cotranscriptionally or posttranscriptionally emerge and conclude that canonical splicing mechanism, sequence properties, and certain regulatory factors are at play in the process. Although our knowledge on functions of circRNAs is rather limited, a few circRNAs are shown to sponge miRNA and regulate gene transcription. The clearest case is one circRNA CDR1as that serves as sponge of miR-7. Researches on circRNAs in human diseases such as cancers highlight the function and physical relevance of circRNAs. Given the implication of miRNAs in the initiation and progression of systemic lupus erythematosus (SLE) and the roles of circRNAs in sponging miRNA and gene regulation, it is appealing to speculate that circRNAs may associate with SLE and may be potential therapeutic targets for treatment of SLE. Future studies should attach more importance to the relationship between circRNAs and SLE. This review will concern identification, biogenesis, and function of circRNAs, introduce reports exploring the association of circRNAs with human diseases, and conjecture the potential roles of circRNAs in SLE. - Highlights: • Studies have discovered thousands of circRNAs and interpreted their biogenesis. • Cytoplasmic circRNAs sponge miRNA and nuclear circRNAs modulate gene transcription. • Aberrant expression of circRNAs has been observed in various cancers. • CircRNAs may partake in the pathogenesis of systemic lupus erythematosus.

  16. Genome-wide discovery of novel and conserved microRNAs in white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Xi, Qian-Yun; Xiong, Yuan-Yan; Wang, Yuan-Mei; Cheng, Xiao; Qi, Qi-En; Shu, Gang; Wang, Song-Bo; Wang, Li-Na; Gao, Ping; Zhu, Xiao-Tong; Jiang, Qing-Yan; Zhang, Yong-Liang; Liu, Li

    2015-01-01

    Of late years, a large amount of conserved and species-specific microRNAs (miRNAs) have been performed on identification from species which are economically important but lack a full genome sequence. In this study, Solexa deep sequencing and cross-species miRNA microarray were used to detect miRNAs in white shrimp. We identified 239 conserved miRNAs, 14 miRNA* sequences and 20 novel miRNAs by bioinformatics analysis from 7,561,406 high-quality reads representing 325,370 distinct sequences. The all 20 novel miRNAs were species-specific in white shrimp and not homologous in other species. Using the conserved miRNAs from the miRBase database as a query set to search for homologs from shrimp expressed sequence tags (ESTs), 32 conserved computationally predicted miRNAs were discovered in shrimp. In addition, using microarray analysis in the shrimp fed with Panax ginseng polysaccharide complex, 151 conserved miRNAs were identified, 18 of which were significant up-expression, while 49 miRNAs were significant down-expression. In particular, qRT-PCR analysis was also performed for nine miRNAs in three shrimp tissues such as muscle, gill and hepatopancreas. Results showed that these miRNAs expression are tissue specific. Combining results of the three methods, we detected 20 novel and 394 conserved miRNAs. Verification with quantitative reverse transcription (qRT-PCR) and Northern blot showed a high confidentiality of data. The study provides the first comprehensive specific miRNA profile of white shrimp, which includes useful information for future investigations into the function of miRNAs in regulation of shrimp development and immunology.

  17. LncRNAWiki: harnessing community knowledge in collaborative curation of human long non-coding RNAs

    KAUST Repository

    Ma, L.

    2014-11-15

    Long non-coding RNAs (lncRNAs) perform a diversity of functions in numerous important biological processes and are implicated in many human diseases. In this report we present lncRNAWiki (http://lncrna.big.ac.cn), a wiki-based platform that is open-content and publicly editable and aimed at community-based curation and collection of information on human lncRNAs. Current related databases are dependent primarily on curation by experts, making it laborious to annotate the exponentially accumulated information on lncRNAs, which inevitably requires collective efforts in community-based curation of lncRNAs. Unlike existing databases, lncRNAWiki features comprehensive integration of information on human lncRNAs obtained from multiple different resources and allows not only existing lncRNAs to be edited, updated and curated by different users but also the addition of newly identified lncRNAs by any user. It harnesses community collective knowledge in collecting, editing and annotating human lncRNAs and rewards community-curated efforts by providing explicit authorship based on quantified contributions. LncRNAWiki relies on the underling knowledge of scientific community for collective and collaborative curation of human lncRNAs and thus has the potential to serve as an up-to-date and comprehensive knowledgebase for human lncRNAs.

  18. The roles of non-coding RNAs in cardiac regenerative medicine

    Directory of Open Access Journals (Sweden)

    Oi Kuan Choong

    2017-06-01

    Full Text Available The emergence of non-coding RNAs (ncRNAs has challenged the central dogma of molecular biology that dictates that the decryption of genetic information starts from transcription of DNA to RNA, with subsequent translation into a protein. Large numbers of ncRNAs with biological significance have now been identified, suggesting that ncRNAs are important in their own right and their roles extend far beyond what was originally envisaged. ncRNAs do not only regulate gene expression, but are also involved in chromatin architecture and structural conformation. Several studies have pointed out that ncRNAs participate in heart disease; however, the functions of ncRNAs still remain unclear. ncRNAs are involved in cellular fate, differentiation, proliferation and tissue regeneration, hinting at their potential therapeutic applications. Here, we review the current understanding of both the biological functions and molecular mechanisms of ncRNAs in heart disease and describe some of the ncRNAs that have potential heart regeneration effects. Keywords: Non-coding RNAs, Cardiac regeneration, Cardiac fate, Proliferation, Differentiation, Reprograming

  19. Identification of microRNA-Like RNAs in the filamentous fungus Trichoderma reesei by solexa sequencing.

    Directory of Open Access Journals (Sweden)

    Kang Kang

    Full Text Available microRNAs (miRNAs are non-coding small RNAs (sRNAs capable of negatively regulating gene expression. Recently, microRNA-like small RNAs (milRNAs were discovered in several filamentous fungi but not yet in Trichoderma reesei, an industrial filamentous fungus that can secrete abundant hydrolases. To explore the presence of milRNA in T. reesei and evaluate their expression under induction of cellulose, two T. reesei sRNA libraries of cellulose induction (IN and non-induction (CON were generated and sequenced using Solexa sequencing technology. A total of 726 and 631 sRNAs were obtained from the IN and CON samples, respectively. Global expression analysis showed an extensively differential expression of sRNAs in T. reesei under the two conditions. Thirteen predicted milRNAs were identified in T. reesei based on the short hairpin structure analysis. The milRNA profiles obtained in deep sequencing were further validated by RT-qPCR assay. Computational analysis predicted a number of potential targets relating to many processes including regulation of enzyme expression. The presence and differential expression of T. reesei milRNAs imply that milRNA might play a role in T. reesei growth and cellulase induction. This work lays foundation for further functional study of fungal milRNAs and their industrial application.

  20. Sibling rivalry: related bacterial small RNAs and their redundant and non-redundant roles.

    Science.gov (United States)

    Caswell, Clayton C; Oglesby-Sherrouse, Amanda G; Murphy, Erin R

    2014-01-01

    Small RNA molecules (sRNAs) are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.

  1. Sibling rivalry: Related bacterial small RNAs and their redundant and non-redundant roles

    Directory of Open Access Journals (Sweden)

    Clayton eCaswell

    2014-10-01

    Full Text Available Small RNA molecules (sRNAs are now recognized as key regulators controlling bacterial gene expression, as sRNAs provide a quick and efficient means of positively or negatively altering the expression of specific genes. To date, numerous sRNAs have been identified and characterized in a myriad of bacterial species, but more recently, a theme in bacterial sRNAs has emerged: the presence of more than one highly related sRNAs produced by a given bacterium, here termed sibling sRNAs. Sibling sRNAs are those that are highly similar at the nucleotide level, and while it might be expected that sibling sRNAs exert identical regulatory functions on the expression of target genes based on their high degree of relatedness, emerging evidence is demonstrating that this is not always the case. Indeed, there are several examples of bacterial sibling sRNAs with non-redundant regulatory functions, but there are also instances of apparent regulatory redundancy between sibling sRNAs. This review provides a comprehensive overview of the current knowledge of bacterial sibling sRNAs, and also discusses important questions about the significance and evolutionary implications of this emerging class of regulators.

  2. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  3. Retrotransposons and non-protein coding RNAs

    DEFF Research Database (Denmark)

    Mourier, Tobias; Willerslev, Eske

    2009-01-01

    does not merely represent spurious transcription. We review examples of functional RNAs transcribed from retrotransposons, and address the collection of non-protein coding RNAs derived from transposable element sequences, including numerous human microRNAs and the neuronal BC RNAs. Finally, we review...

  4. Panning for Long Noncoding RNAs

    Directory of Open Access Journals (Sweden)

    Li Yang

    2013-02-01

    Full Text Available The recent advent of high-throughput approaches has revealed widespread transcription of the human genome, leading to a new appreciation of transcription regulation, especially from noncoding regions. Distinct from most coding and small noncoding RNAs, long noncoding RNAs (lncRNAs are generally expressed at low levels, are less conserved and lack protein-coding capacity. These intrinsic features of lncRNAs have not only hampered their full annotation in the past several years, but have also generated controversy concerning whether many or most of these lncRNAs are simply the result of transcriptional noise. Here, we assess these intrinsic features that have challenged lncRNA discovery and further summarize recent progress in lncRNA discovery with integrated methodologies, from which new lessons and insights can be derived to achieve better characterization of lncRNA expression regulation. Full annotation of lncRNA repertoires and the implications of such annotation will provide a fundamental basis for comprehensive understanding of pervasive functions of lncRNAs in biological regulation.

  5. Diverse alternative back-splicing and alternative splicing landscape of circular RNAs

    Science.gov (United States)

    Zhang, Xiao-Ou; Dong, Rui; Zhang, Yang; Zhang, Jia-Lin; Luo, Zheng; Zhang, Jun; Chen, Ling-Ling; Yang, Li

    2016-01-01

    Circular RNAs (circRNAs) derived from back-spliced exons have been widely identified as being co-expressed with their linear counterparts. A single gene locus can produce multiple circRNAs through alternative back-splice site selection and/or alternative splice site selection; however, a detailed map of alternative back-splicing/splicing in circRNAs is lacking. Here, with the upgraded CIRCexplorer2 pipeline, we systematically annotated different types of alternative back-splicing and alternative splicing events in circRNAs from various cell lines. Compared with their linear cognate RNAs, circRNAs exhibited distinct patterns of alternative back-splicing and alternative splicing. Alternative back-splice site selection was correlated with the competition of putative RNA pairs across introns that bracket alternative back-splice sites. In addition, all four basic types of alternative splicing that have been identified in the (linear) mRNA process were found within circRNAs, and many exons were predominantly spliced in circRNAs. Unexpectedly, thousands of previously unannotated exons were detected in circRNAs from the examined cell lines. Although these novel exons had similar splice site strength, they were much less conserved than known exons in sequences. Finally, both alternative back-splicing and circRNA-predominant alternative splicing were highly diverse among the examined cell lines. All of the identified alternative back-splicing and alternative splicing in circRNAs are available in the CIRCpedia database (http://www.picb.ac.cn/rnomics/circpedia). Collectively, the annotation of alternative back-splicing and alternative splicing in circRNAs provides a valuable resource for depicting the complexity of circRNA biogenesis and for studying the potential functions of circRNAs in different cells. PMID:27365365

  6. RNA-Seq of the nucleolus reveals abundant SNORD44-derived small RNAs.

    Directory of Open Access Journals (Sweden)

    Baoyan Bai

    Full Text Available Small non-coding RNAs represent RNA species that are not translated to proteins, but which have diverse and broad functional activities in physiological and pathophysiological states. The knowledge of these small RNAs is rapidly expanding in part through the use of massive parallel (deep sequencing efforts. We present here the first deep sequencing of small RNomes in subcellular compartments with particular emphasis on small RNAs (sRNA associated with the nucleolus. The vast majority of the cellular, cytoplasmic and nuclear sRNAs were identified as miRNAs. In contrast, the nucleolar sRNAs had a unique size distribution consisting of 19-20 and 25 nt RNAs, which were predominantly composed of small snoRNA-derived box C/D RNAs (termed as sdRNA. Sequences from 47 sdRNAs were identified, which mapped to both 5' and 3' ends of the snoRNAs, and retained conserved box C or D motifs. SdRNA reads mapping to SNORD44 comprised 74% of all nucleolar sdRNAs, and were confirmed by Northern blotting as comprising both 20 and 25 nt RNAs. A novel 120 nt SNORD44 form was also identified. The expression of the SNORD44 sdRNA and 120 nt form was independent of Dicer/Drosha-mediated processing pathways but was dependent on the box C/D snoRNP proteins/sno-ribonucleoproteins fibrillarin and NOP58. The 120 nt SNORD44-derived RNA bound to fibrillarin suggesting that C/D sno-ribonucleoproteins are involved in regulating the stability or processing of SNORD44. This study reveals sRNA cell-compartment specific expression and the distinctive unique composition of the nucleolar sRNAs.

  7. Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs

    DEFF Research Database (Denmark)

    Khan, Aly A; Betel, Doron; Miller, Martin L

    2009-01-01

    Transfection of small RNAs (such as small interfering RNAs (siRNAs) and microRNAs (miRNAs)) into cells typically lowers expression of many genes. Unexpectedly, increased expression of genes also occurs. We investigated whether this upregulation results from a saturation effect--that is, competiti...

  8. Global identification of microRNAs associated with chlorantraniliprole resistance in diamondback moth Plutella xylostella (L.)

    Science.gov (United States)

    Zhu, Bin; Li, Xiuxia; Liu, Ying; Gao, Xiwu; Liang, Pei

    2017-01-01

    The diamondback moth (DBM), Plutella xylostella (L.), is one of the most serious cruciferous pests and has developed high resistance to most insecticides, including chlorantraniliprole. Previous studies have reported several protein-coding genes that involved in chlorantraniliprole resistance, but research on resistance mechanisms at the post-transcription level is still limited. In this study, a global screen of microRNAs (miRNAs) associated with chlorantraniliprole resistance in P. xylostella was performed. The small RNA libraries for a susceptible (CHS) and two chlorantraniliprole resistant strains (CHR, ZZ) were constructed and sequenced, and a total of 199 known and 30 novel miRNAs were identified. Among them, 23 miRNAs were differentially expressed between CHR and CHS, and 90 miRNAs were differentially expressed between ZZ and CHS, of which 11 differentially expressed miRNAs were identified in both CHR and ZZ. Using miRanda and RNAhybrid, a total of 1,411 target mRNAs from 102 differentially expressed miRNAs were predicted, including mRNAs in several groups of detoxification enzymes. The expression of several differentially expressed miRNAs and their potential targets was validated by qRT-PCR. The results may provide important clues for further study of the mechanisms of miRNA-mediated chlorantraniliprole resistance in DBM and other target insects. PMID:28098189

  9. Characterization and Profiling of Liver microRNAs by RNA-sequencing in Cattle Divergently Selected for Residual Feed Intake

    Directory of Open Access Journals (Sweden)

    Wijdan Al-Husseini

    2016-10-01

    Full Text Available MicroRNAs (miRNAs are short non-coding RNAs that post-transcriptionally regulate expression of mRNAs in many biological pathways. Liver plays an important role in the feed efficiency of animals and high and low efficient cattle demonstrated different gene expression profiles by microarray. Here we report comprehensive miRNAs profiles by next-gen deep sequencing in Angus cattle divergently selected for residual feed intake (RFI and identify miRNAs related to feed efficiency in beef cattle. Two microRNA libraries were constructed from pooled RNA extracted from livers of low and high RFI cattle, and sequenced by Illumina genome analyser. In total, 23,628,103 high quality short sequence reads were obtained and more than half of these reads were matched to the bovine genome (UMD 3.1. We identified 305 known bovine miRNAs. Bta-miR-143, bta-miR-30, bta-miR-122, bta-miR-378, and bta-let-7 were the top five most abundant miRNAs families expressed in liver, representing more than 63% of expressed miRNAs. We also identified 52 homologous miRNAs and 10 novel putative bovine-specific miRNAs, based on precursor sequence and the secondary structure and utilizing the miRBase (v. 21. We compared the miRNAs profile between high and low RFI animals and ranked the most differentially expressed bovine known miRNAs. Bovine miR-143 was the most abundant miRNA in the bovine liver and comprised 20% of total expressed mapped miRNAs. The most highly expressed miRNA in liver of mice and humans, miR-122, was the third most abundant in our cattle liver samples. We also identified 10 putative novel bovine-specific miRNA candidates. Differentially expressed miRNAs between high and low RFI cattle were identified with 18 miRNAs being up-regulated and 7 other miRNAs down-regulated in low RFI cattle. Our study has identified comprehensive miRNAs expressed in bovine liver. Some of the expressed miRNAs are novel in cattle. The differentially expressed miRNAs between high and low RFI

  10. One Step Forward, Two Steps Back; Xeno-MicroRNAs Reported in Breast Milk Are Artifacts.

    Directory of Open Access Journals (Sweden)

    Caner Bağcı

    Full Text Available MicroRNAs (miRNAs are short RNA sequences that guide post-transcriptional regulation of gene expression via complementarity to their target mRNAs. Discovered only recently, miRNAs have drawn a lot of attention. Multiple protein complexes interact to first cleave a hairpin from nascent RNA, export it into the cytosol, trim its loop, and incorporate it into the RISC complex which is important for binding its target mRNA. This process works within one cell, but circulating miRNAs have been described suggesting a role in cell-cell communication.Viruses and intracellular parasites like Toxoplasma gondii use miRNAs to manipulate host gene expression from within the cellular environment. However, recent research has claimed that a rice miRNA may regulate human gene expression. Despite ongoing debates about these findings and general reluctance to accept them, a recent report claimed that foodborne plant miRNAs pass through the digestive tract, travel through blood to be incorporated by alveolar cells excreting milk. The miRNAs are then said to have some immune-related function in the newborn.We acquired the data that supports their claim and performed further analyses. In addition to the reported miRNAs, we were able to detect almost complete mRNAs and found that the foreign RNA expression profiles among samples are exceedingly similar. Inspecting the source of the data helped understand how RNAs could contaminate the samples.Viewing these findings in context with the difficulties foreign RNAs face on their route into breast milk and the fact that many identified foodborne miRNAs are not from actual food sources, we can conclude beyond reasonable doubt that the original claims and evidence presented may be due to artifacts. We report that the study claiming their existence is more likely to have detected RNA contamination than miRNAs.

  11. Survey of High Throughput RNA-Seq Data Reveals Potential Roles for lncRNAs during Development and Stress Response in Bread Wheat

    Directory of Open Access Journals (Sweden)

    Shumayla

    2017-06-01

    Full Text Available Long non-coding RNAs (lncRNAs are a family of regulatory RNAs that play essential role in the various developmental processes and stress responses. Recent advances in sequencing technology and computational methods enabled identification and characterization of lncRNAs in certain plant species, but they are less known in Triticum aestivum (bread wheat. Herein, we analyzed 52 RNA seq data (>30 billion reads and identified 44,698 lncRNAs in T. aestivum genome, which were characterized in comparison to the coding sequences (mRNAs. Similar to the mRNAs, lncRNAs were also derived from each sub-genome and chromosome, and showed tissue developmental stage specific and differential expression, as well. The modulated expression of lncRNAs during abiotic stresses like heat, drought, and salt indicated their putative role in stress response. The co-expression of lncRNAs with vital mRNAs including various transcription factors and enzymes involved in Abscisic acid (ABA biosynthesis, and gene ontology mapping inferred their regulatory roles in numerous biological processes. A few lncRNAs were predicted as precursor (19 lncRNAs, while some as target mimics (1,047 lncRNAs of known miRNAs involved in various regulatory functions. The results suggested numerous functions of lncRNAs in T. aestivum, and unfolded the opportunities for functional characterization of individual lncRNA in future studies.

  12. Bioinformatic identification and experimental validation of miRNAs from foxtail millet (Setaria italica).

    Science.gov (United States)

    Han, Jun; Xie, Hao; Sun, Qingpeng; Wang, Jun; Lu, Min; Wang, Weixiang; Guo, Erhu; Pan, Jinbao

    2014-08-10

    MiRNAs are a novel group of non-coding small RNAs that negatively regulate gene expression. Many miRNAs have been identified and investigated extensively in plant species with sequenced genomes. However, few miRNAs have been identified in foxtail millet (Setaria italica), which is an ancient cereal crop of great importance for dry land agriculture. In this study, 271 foxtail millet miRNAs belonging to 44 families were identified using a bioinformatics approach. Twenty-three pairs of sense/antisense miRNAs belonging to 13 families, and 18 miRNA clusters containing members of 8 families were discovered in foxtail millet. We identified 432 potential targets for 38 miRNA families, most of which were predicted to be involved in plant development, signal transduction, metabolic pathways, disease resistance, and environmental stress responses. Gene ontology (GO) analysis revealed that 101, 56, and 23 target genes were involved in molecular functions, biological processes, and cellular components, respectively. We investigated the expression patterns of 43 selected miRNAs using qRT-PCR analysis. All of the miRNAs were expressed ubiquitously with many exhibiting different expression levels in different tissues. We validated five predicted targets of four miRNAs using the RNA ligase mediated rapid amplification of cDNA end (5'-RLM-RACE) method. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. MicroRNAs in Post-traumatic Stress Disorder.

    Science.gov (United States)

    Snijders, Clara; de Nijs, Laurence; Baker, Dewleen G; Hauger, Richard L; van den Hove, Daniel; Kenis, Gunter; Nievergelt, Caroline M; Boks, Marco P; Vermetten, Eric; Gage, Fred H; Rutten, Bart P F

    2017-10-21

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that can develop following exposure to or witnessing of a (potentially) threatening event. A critical issue is to pinpoint the (neuro)biological mechanisms underlying the susceptibility to stress-related disorder such as PTSD, which develops in the minority of ~15% of individuals exposed to trauma. Over the last few years, a first wave of epigenetic studies has been performed in an attempt to identify the molecular underpinnings of the long-lasting behavioral and mental effects of trauma exposure. The potential roles of non-coding RNAs (ncRNAs) such as microRNAs (miRNAs) in moderating or mediating the impact of severe stress and trauma are increasingly gaining attention. To date, most studies focusing on the roles of miRNAs in PTSD have, however, been completed in animals, using cross-sectional study designs and focusing almost exclusively on subjects with susceptible phenotypes. Therefore, there is a strong need for new research comprising translational and cross-species approaches that use longitudinal designs for studying trajectories of change contrasting susceptible and resilient subjects. The present review offers a comprehensive overview of available studies of miRNAs in PTSD and discusses the current challenges, pitfalls, and future perspectives of this field.

  14. Nanotechnology-Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-15-1-0157 TITLE: Nanotechnology -Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer PRINCIPAL...TITLE AND SUBTITLE Nanotechnology -Based Detection of Novel microRNAs for Early Diagnosis of Prostate Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER...identify novel differentially expressed miRNAs in the body fluids (blood, urine, etc.) for an early detection of PCa. Advances in nanotechnology and

  15. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell.

    Science.gov (United States)

    Tang, Xing; Hou, Mei; Ding, Yang; Li, Zhaohui; Ren, Lichen; Gao, Ge

    2013-01-01

    While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians.

  16. Investigation of miRNA Biology by Bioinformatic Tools and Impact of miRNAs in Colorectal Cancer: Regulatory Relationship of c-Myc and p53 with miRNAs

    Directory of Open Access Journals (Sweden)

    Yaguang Xi

    2007-01-01

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs that mediate gene expression at the posttranscriptional and translational levels and have been demonstrated to be involved in diverse biological functions. Mounting evidence in recent years has shown that miRNAs play key roles in tumorigenesis due to abnormal expression of and mutations in miRNAs. High throughput miRNA expression profiling of several major tumor types has identified miRNAs associated with clinical diagnosis and prognosis of cancer treatment. Previously our group has discovered a novel regulatory relationship between tumor suppressor gene p53 with miRNAs expression and a number of miRNA promoters contain putative p53 binding sites. In addition, others have reported that c-myc can mediate a large number of miRNAs expression. In this review, we will emphasize algorithms to identify mRNA targets of miRNAs and the roles of miRNAs in colorectal cancer. In particular, we will discuss a novel regulatory relationship of miRNAs with tumor suppressor p53 and c-myc. miRNAs are becoming promising novel targets and biomarkers for future cancer therapeutic development and clinical molecular diagnosis.

  17. Circulating exosomal microRNAs as biomarkers of colon cancer.

    Directory of Open Access Journals (Sweden)

    Hiroko Ogata-Kawata

    Full Text Available PURPOSE: Exosomal microRNAs (miRNAs have been attracting major interest as potential diagnostic biomarkers of cancer. The aim of this study was to characterize the miRNA profiles of serum exosomes and to identify those that are altered in colorectal cancer (CRC. To evaluate their use as diagnostic biomarkers, the relationship between specific exosomal miRNA levels and pathological changes of patients, including disease stage and tumor resection, was examined. EXPERIMENTAL DESIGN: Microarray analyses of miRNAs in exosome-enriched fractions of serum samples from 88 primary CRC patients and 11 healthy controls were performed. The expression levels of miRNAs in the culture medium of five colon cancer cell lines were also compared with those in the culture medium of a normal colon-derived cell line. The expression profiles of miRNAs that were differentially expressed between CRC and control sample sets were verified using 29 paired samples from post-tumor resection patients. The sensitivities of selected miRNAs as biomarkers of CRC were evaluated and compared with those of known tumor markers (CA19-9 and CEA using a receiver operating characteristic analysis. The expression levels of selected miRNAs were also validated by quantitative real-time RT-PCR analyses of an independent set of 13 CRC patients. RESULTS: The serum exosomal levels of seven miRNAs (let-7a, miR-1229, miR-1246, miR-150, miR-21, miR-223, and miR-23a were significantly higher in primary CRC patients, even those with early stage disease, than in healthy controls, and were significantly down-regulated after surgical resection of tumors. These miRNAs were also secreted at significantly higher levels by colon cancer cell lines than by a normal colon-derived cell line. The high sensitivities of the seven selected exosomal miRNAs were confirmed by a receiver operating characteristic analysis. CONCLUSION: Exosomal miRNA signatures appear to mirror pathological changes of CRC patients and

  18. Identification of protoplast-isolation responsive microRNAs in Citrus reticulata Blanco by high-throughput sequencing.

    Science.gov (United States)

    Xu, Xiaoyong; Xu, Xiaoling; Zhou, Yipeng; Zeng, Shaohua; Kong, Weiwen

    2017-01-01

    Protoplast isolation is a stress-inducing process, during which a variety of physiological and molecular alterations take place. Such stress response affects the expression of totipotency of cultured protoplasts. MicroRNAs (miRNAs) play important roles in plant growth, development and stress responses. However, the underlying mechanism of miRNAs involved in the protoplast totipotency remains unclear. In this study, high-throughput sequencing technology was used to sequence two populations of small RNA from calli and callus-derived protoplasts in Citrus reticulata Blanco. A total of 67 known miRNAs from 35 families and 277 novel miRNAs were identified. Among these miRNAs, 18 known miRNAs and 64 novel miRNAs were identified by differentially expressed miRNAs (DEMs) analysis. The expression patterns of the eight DEMs were verified by qRT-PCR. Target prediction showed most targets of the miRNAs were transcription factors. The expression levels of half targets showed a negative correlation to those of the miRNAs. Furthermore, the physiological analysis showed high levels of antioxidant activities in isolated protoplasts. In short, our results indicated that miRNAs may play important roles in protoplast-isolation response.

  19. Noncoding RNAs in Cancer Medicine

    Directory of Open Access Journals (Sweden)

    Laura Cerchia

    2006-01-01

    Full Text Available Several signalling proteins involved in cell growth and differentiation represent attractive candidate targets for cancer diagnosis and/or therapy since they can act as oncogenes. Because of their high specificity and low immunogeneicity, using artificial small noncoding RNA (ncRNAs as therapeutics has recently become a highly promising and rapidly expanding field of interest. Indeed, ncRNAs may either interfere with RNA transcription, stability, translation or directly hamper the function of the targets by binding to their surface. The recent finding that the expression of several genes is under the control of small single-stranded regulatory RNAs, including miRNAs, makes these genes as appropriate targets for ncRNA gene silencing. Furthermore, another class of small ncRNA, aptamers, act as high-affinity ligands and potential antagonists of disease-associated proteins. We will review here the recent and innovative methods that have been developed and the possible applications of ncRNAs as inhibitors or tracers in cancer medicine.

  20. Identification and characterization of microRNAs from peanut (Arachis hypogaea L. by high-throughput sequencing.

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Chi

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are noncoding RNAs of approximately 21 nt that regulate gene expression in plants post-transcriptionally by endonucleolytic cleavage or translational inhibition. miRNAs play essential roles in numerous developmental and physiological processes and many of them are conserved across species. Extensive studies of miRNAs have been done in a few model plants; however, less is known about the diversity of these regulatory RNAs in peanut (Arachis hypogaea L., one of the most important oilseed crops cultivated worldwide. RESULTS: A library of small RNA from peanut was constructed for deep sequencing. In addition to 126 known miRNAs from 33 families, 25 novel peanut miRNAs were identified. The miRNA* sequences of four novel miRNAs were discovered, providing additional evidence for the existence of miRNAs. Twenty of the novel miRNAs were considered to be species-specific because no homolog has been found for other plant species. qRT-PCR was used to analyze the expression of seven miRNAs in different tissues and in seed at different developmental stages and some showed tissue- and/or growth stage-specific expression. Furthermore, potential targets of these putative miRNAs were predicted on the basis of the sequence homology search. CONCLUSIONS: We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library. This study of the identification and characterization of miRNAs in peanut can initiate further study on peanut miRNA regulation mechanisms, and help toward a greater understanding of the important roles of miRNAs in peanut.

  1. Profile of cerebrospinal microRNAs in fibromyalgia.

    Directory of Open Access Journals (Sweden)

    Jan L Bjersing

    Full Text Available Fibromyalgia (FM is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue.The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ. Levels of fatigue (FIQ fatigue were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20 general fatigue (MFIGF.Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10 and with FIQ fatigue (r=0.687, p=0.028, n=10.To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  2. Profile of cerebrospinal microRNAs in fibromyalgia.

    Science.gov (United States)

    Bjersing, Jan L; Lundborg, Christopher; Bokarewa, Maria I; Mannerkorpi, Kaisa

    2013-01-01

    Fibromyalgia (FM) is characterized by chronic pain and reduced pain threshold. The pathophysiology involves disturbed neuroendocrine function, including impaired function of the growth hormone/insulin-like growth factor-1 axis. Recently, microRNAs have been shown to be important regulatory factors in a number of diseases. The aim of this study was to try to identify cerebrospinal microRNAs with expression specific for FM and to determine their correlation to pain and fatigue. The genome-wide profile of microRNAs in cerebrospinal fluid was assessed in ten women with FM and eight healthy controls using real-time quantitative PCR. Pain thresholds were examined by algometry. Levels of pain (FIQ pain) were rated on a 0-100 mm scale (fibromyalgia impact questionnaire, FIQ). Levels of fatigue (FIQ fatigue) were rated on a 0-100 mm scale using FIQ and by multidimensional fatigue inventory (MFI-20) general fatigue (MFIGF). Expression levels of nine microRNAs were significantly lower in patients with FM patients compared to healthy controls. The microRNAs identified were miR-21-5p, miR-145-5p, miR-29a-3p, miR-99b-5p, miR-125b-5p, miR-23a-3p, 23b-3p, miR-195-5p, miR-223-3p. The identified microRNAs with significantly lower expression in FM were assessed with regard to pain and fatigue. miR-145-5p correlated positively with FIQ pain (r=0.709, p=0.022, n=10) and with FIQ fatigue (r=0.687, p=0.028, n=10). To our knowledge, this is the first study to show a disease-specific pattern of cerebrospinal microRNAs in FM. We have identified nine microRNAs in cerebrospinal fluid that differed between FM patients and healthy controls. One of the identified microRNAs, miR-145 was associated with the cardinal symptoms of FM, pain and fatigue.

  3. Regulation of microRNAs miR-30a and miR-143 in cerebral vasculature after experimental subarachnoid hemorrhage in rats

    DEFF Research Database (Denmark)

    Müller, Anne Holt; Povlsen, Gro Klitgaard; Edvinsson, Lars

    2015-01-01

    BACKGROUND: microRNAs (miRNAs) are important regulators of translation and have been implicated in the pathogenesis of a number of cardiovascular diseases, including stroke, and suggested as possible prognostic biomarkers. Our aim was to identify miRNAs that are differentially regulated in cerebral...... arteries after subarachnoid hemorrhage (SAH), using a rat injection model of SAH and a qPCR-based screen of 728 rat miRNAs. Additionally, serum was analyzed for a possible spill-over to the circulation of regulated miRNAs from the vessel walls. RESULTS: We identified 482 different miRNAs expressed...

  4. Identification of microRNAs and their targets in Finger millet by high throughput sequencing.

    Science.gov (United States)

    Usha, S; Jyothi, M N; Sharadamma, N; Dixit, Rekha; Devaraj, V R; Nagesh Babu, R

    2015-12-15

    MicroRNAs are short non-coding RNAs which play an important role in regulating gene expression by mRNA cleavage or by translational repression. The majority of identified miRNAs were evolutionarily conserved; however, others expressed in a species-specific manner. Finger millet is an important cereal crop; nonetheless, no practical information is available on microRNAs to date. In this study, we have identified 95 conserved microRNAs belonging to 39 families and 3 novel microRNAs by high throughput sequencing. For the identified conserved and novel miRNAs a total of 507 targets were predicted. 11 miRNAs were validated and tissue specificity was determined by stem loop RT-qPCR, Northern blot. GO analyses revealed targets of miRNA were involved in wide range of regulatory functions. This study implies large number of known and novel miRNAs found in Finger millet which may play important role in growth and development. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. microRNAs and the mammary gland: a new understanding of gene expression

    Directory of Open Access Journals (Sweden)

    Isabel Gigli

    2013-01-01

    Full Text Available MicroRNAs (miRNAs have been identified in cells as well as in exosomes in biological fluids such as milk. In mammary gland, most of the miRNAs studied have functions related to immunity and show alterations in their pattern of expression during lactation. In mastitis, the inflammatory response caused by Streptococcus uberis alters the expression of miRNAs that may regulate the innate immune system. These small RNAs are stable at room temperature and are resistant to repeated freeze/thaw cycles, acidic conditions and degradation by RNAse, making them resistant to industrial procedures. These properties mean that miRNAs could have multiple applications in veterinary medicine and biotechnology. Indeed, lactoglobulin-free milk has been produced in transgenic cows expressing specific miRNAs. Although plant and animal miRNAs have undergone independent evolutionary adaptation recent studies have demonstrated a cross-kingdom passage in which rice miRNA was isolated from human serum. This finding raises questions about the possible effect that miRNAs present in foods consumed by humans could have on human gene regulation. Further studies are needed before applying miRNA biotechnology to the milk industry. New discoveries and a greater knowledge of gene expression will lead to a better understanding of the role of miRNAs in physiology, nutrition and evolution.

  6. On the presence and immunoregulatory functions of extracellular microRNAs in the trematode Fasciola hepatica.

    Science.gov (United States)

    Fromm, B; Ovchinnikov, V; Høye, E; Bernal, D; Hackenberg, M; Marcilla, A

    2017-02-01

    Liver flukes represent a paraphyletic group of endoparasitic flatworms that significantly affect man either indirectly due to economic damage on livestock or directly as pathogens. A range of studies have focussed on how these macroscopic organisms can evade the immune system and live inside a hostile environment such as the mammalian liver and bile ducts. Recently, microRNAs, a class of short noncoding gene regulators, have been proposed as likely candidates to play roles in this scenario. MicroRNAs (miRNAs) are key players in development and pathogenicity and are highly conserved between metazoans: identical miRNAs can be found in flatworms and mammalians. Interestingly, miRNAs are enriched in extracellular vesicles (EVs) which are secreted by most cells. EVs constitute an important mode of parasite/host interaction, and recent data illustrate that miRNAs play a vital part. We have demonstrated the presence of miRNAs in the EVs of the trematode species Dicrocoelium dendriticum and Fasciola hepatica (Fhe) and identified potential immune-regulatory miRNAs with targets in the host. After our initial identification of miRNAs expressed by F. hepatica, an assembled genome and additional miRNA data became available. This has enabled us to update the known complement of miRNAs in EVs and speculate on potential immune-regulatory functions that we review here. © 2016 John Wiley & Sons Ltd.

  7. An atlas of human long non-coding RNAs with accurate 5′ ends

    KAUST Repository

    Hon, Chung-Chau

    2017-02-28

    Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5′ ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.

  8. The interplay of long non-coding RNAs and MYC in cancer

    Directory of Open Access Journals (Sweden)

    Michael J. Hamilton

    2015-12-01

    Full Text Available Long non-coding RNAs (lncRNAs are a class of RNA molecules that are changing how researchers view eukaryotic gene regulation. Once considered to be non-functional products of low-level aberrant transcription from non-coding regions of the genome, lncRNAs are now viewed as important epigenetic regulators and several lncRNAs have now been demonstrated to be critical players in the development and/or maintenance of cancer. Similarly, the emerging variety of interactions between lncRNAs and MYC, a well-known oncogenic transcription factor linked to most types of cancer, have caught the attention of many biomedical researchers. Investigations exploring the dynamic interactions between lncRNAs and MYC, referred to as the lncRNA-MYC network, have proven to be especially complex. Genome-wide studies have shown that MYC transcriptionally regulates many lncRNA genes. Conversely, recent reports identified lncRNAs that regulate MYC expression both at the transcriptional and post-transcriptional levels. These findings are of particular interest because they suggest roles of lncRNAs as regulators of MYC oncogenic functions and the possibility that targeting lncRNAs could represent a novel avenue to cancer treatment. Here, we briefly review the current understanding of how lncRNAs regulate chromatin structure and gene transcription, and then focus on the new developments in the emerging field exploring the lncRNA-MYC network in cancer.

  9. Identification of microRNAs in Caragana intermedia by high-throughput sequencing and expression analysis of 12 microRNAs and their targets under salt stress.

    Science.gov (United States)

    Zhu, Jianfeng; Li, Wanfeng; Yang, Wenhua; Qi, Liwang; Han, Suying

    2013-09-01

    142 miRNAs were identified and 38 miRNA targets were predicted, 4 of which were validated, in C. intermedia . The expression of 12 miRNAs in salt-stressed leaves was assessed by qRT-PCR. MicroRNAs (miRNAs) are endogenous small RNAs that play important roles in various biological and metabolic processes in plants. Caragana intermedia is an important ecological and economic tree species prominent in the desert environment of west and northwest China. To date, no investigation into C. intermedia miRNAs has been reported. In this study, high-throughput sequencing of small RNAs and analysis of transcriptome data were performed to identify both conserved and novel miRNAs, and also their target mRNA genes in C. intermedia. Based on sequence similarity and hairpin structure prediction, 132 putative conserved miRNAs (12 of which were confirmed to form hairpin precursors) belonging to 31 known miRNA families were identified. Ten novel miRNAs (including the miRNA* sequences of three novel miRNAs) were also discovered. Furthermore, 36 potential target genes of 17 known miRNA families and 2 potential target genes of 1 novel miRNA were predicted; 4 of these were validated by 5' RACE. The expression of 12 miRNAs was validated in different tissues, and these and five target mRNAs were assessed by qRT-PCR after salt treatment. The expression levels of seven miRNAs (cin-miR157a, cin-miR159a, cin-miR165a, cin-miR167b, cin-miR172b, cin-miR390a and cin-miR396a) were upregulated, while cin-miR398a expression was downregulated after salt treatment. The targets of cin-miR157a, cin-miR165a, cin-miR172b and cin-miR396a were downregulated and showed an approximately negative correlation with their corresponding miRNAs under salt treatment. These results would help further understanding of miRNA regulation in response to abiotic stress in C. intermedia.

  10. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus

    Directory of Open Access Journals (Sweden)

    Chaoqun Li

    2018-01-01

    Full Text Available Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice. Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to

  11. Profiling and Co-expression Network Analysis of Learned Helplessness Regulated mRNAs and lncRNAs in the Mouse Hippocampus.

    Science.gov (United States)

    Li, Chaoqun; Cao, Feifei; Li, Shengli; Huang, Shenglin; Li, Wei; Abumaria, Nashat

    2017-01-01

    Although studies provide insights into the neurobiology of stress and depression, the exact molecular mechanisms underlying their pathologies remain largely unknown. Long non-coding RNA (lncRNA) has been implicated in brain functions and behavior. A potential link between lncRNA and psychiatric disorders has been proposed. However, it remains undetermined whether IncRNA regulation, in the brain, contributes to stress or depression pathologies. In this study, we used a valid animal model of depression-like symptoms; namely learned helplessness, RNA-seq, Gene Ontology and co-expression network analyses to profile the expression pattern of lncRNA and mRNA in the hippocampus of mice. We identified 6346 differentially expressed transcripts. Among them, 340 lncRNAs and 3559 protein coding mRNAs were differentially expressed in helpless mice in comparison with control and/or non-helpless mice (inescapable stress resilient mice). Gene Ontology and pathway enrichment analyses indicated that induction of helplessness altered expression of mRNAs enriched in fundamental biological functions implicated in stress/depression neurobiology such as synaptic, metabolic, cell survival and proliferation, developmental and chromatin modification functions. To explore the possible regulatory roles of the altered lncRNAs, we constructed co-expression networks composed of the lncRNAs and mRNAs. Among our differentially expressed lncRNAs, 17% showed significant correlation with genes. Functional co-expression analysis linked the identified lncRNAs to several cellular mechanisms implicated in stress/depression neurobiology. Importantly, 57% of the identified regulatory lncRNAs significantly correlated with 18 different synapse-related functions. Thus, the current study identifies for the first time distinct groups of lncRNAs regulated by induction of learned helplessness in the mouse brain. Our results suggest that lncRNA-directed regulatory mechanisms might contribute to stress

  12. Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis.

    Science.gov (United States)

    Monavar Feshani, Aboozar; Mohammadi, Saeed; Frazier, Taylor P; Abbasi, Abbas; Abedini, Raha; Karimi Farsad, Laleh; Ehya, Farveh; Salekdeh, Ghasem Hosseini; Mardi, Mohsen

    2012-02-10

    MicroRNAs (miRNAs) are small non-coding RNA molecules that play a vital role in the regulation of gene expression. Despite their identification in hundreds of plant species, few miRNAs have been identified in the Asteraceae, a large family that comprises approximately one tenth of all flowering plants. In this study, we used the expressed sequence tag (EST) analysis to identify potential conserved miRNAs and their putative target genes in the Asteraceae. We applied quantitative Real-Time PCR (qRT-PCR) to confirm the expression of eight potential miRNAs in Carthamus tinctorius and Helianthus annuus. We also performed qRT-PCR analysis to investigate the differential expression pattern of five newly identified miRNAs during five different cotyledon growth stages in safflower. Using these methods, we successfully identified and characterized 151 potentially conserved miRNAs, belonging to 26 miRNA families, in 11 genus of Asteraceae. EST analysis predicted that the newly identified conserved Asteraceae miRNAs target 130 total protein-coding ESTs in sunflower and safflower, as well as 433 additional target genes in other plant species. We experimentally confirmed the existence of seven predicted miRNAs, (miR156, miR159, miR160, miR162, miR166, miR396, and miR398) in safflower and sunflower seedlings. We also observed that five out of eight miRNAs are differentially expressed during cotyledon development. Our results indicate that miRNAs may be involved in the regulation of gene expression during seed germination and the formation of the cotyledons in the Asteraceae. The findings of this study might ultimately help in the understanding of miRNA-mediated gene regulation in important crop species. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Circulating microRNAs as novel biomarkers for the early diagnosis of acute coronary syndrome.

    Science.gov (United States)

    Deddens, J C; Colijn, J M; Oerlemans, M I F J; Pasterkamp, G; Chamuleau, S A; Doevendans, P A; Sluijter, J P G

    2013-12-01

    Small non-coding microRNAs (miRNAs) are important physiological regulators of post-transcriptional gene expression. miRNAs not only reside in the cytoplasm but are also stably present in several extracellular compartments, including the circulation. For that reason, miRNAs are proposed as diagnostic biomarkers for various diseases. Early diagnosis of acute coronary syndrome (ACS), especially non-ST elevated myocardial infarction and unstable angina pectoris, is essential for optimal treatment outcome, and due to the ongoing need for additional identifiers, miRNAs are of special interest as biomarkers for ACS. This review highlights the nature and cellular release mechanisms of circulating miRNAs and therefore their potential role in the diagnosis of myocardial infarction. We will give an update of clinical studies addressing the role of circulating miRNA expression after myocardial infarction and explore the diagnostic value of this potential biomarker.

  14. MicroRNAs as growth regulators, their function and biomarker status in colorectal cancer

    Science.gov (United States)

    Cekaite, Lina; Eide, Peter W.; Lind, Guro E.; Skotheim, Rolf I.; Lothe, Ragnhild A.

    2016-01-01

    Gene expression is in part regulated by microRNAs (miRNAs). This review summarizes the current knowledge of miRNAs in colorectal cancer (CRC); their role as growth regulators, the mechanisms that regulate the miRNAs themselves and the potential of miRNAs as biomarkers. Although thousands of tissue samples and bodily fluids from CRC patients have been investigated for biomarker potential of miRNAs (>160 papers presented in a comprehensive tables), none single miRNA nor miRNA expression signatures are in clinical use for this disease. More than 500 miRNA-target pairs have been identified in CRC and we discuss how these regulatory nodes interconnect and affect signaling pathways in CRC progression. PMID:26623728

  15. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    Science.gov (United States)

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  16. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease

    International Nuclear Information System (INIS)

    Akiyama, Benjamin M.; Laurence, Hannah M.; University of Colorado, Aurora, CO; University of California, Davis, CA; Massey, Aaron R.

    2016-01-01

    The outbreak of Zika virus (ZIKV) and associated fetal microcephaly mandates efforts to understand the molecular processes of infection. Related flaviviruses produce noncoding subgenomic flaviviral RNAs (sfRNAs) that are linked to pathogenicity in fetal mice. These viruses make sfRNAs by co-opting a cellular exonuclease via structured RNAs called xrRNAs. We found that ZIKV-infected monkey and human epithelial cells, mouse neurons, and mosquito cells produce sfRNAs. The RNA structure that is responsible for ZIKV sfRNA production forms a complex fold that is likely found in many pathogenic flaviviruses. Mutations that disrupt the structure affect exonuclease resistance in vitro and sfRNA formation during infection. The complete ZIKV xrRNA structure clarifies the mechanism of exonuclease resistance and identifies features that may modulate function in diverse flaviviruses.

  17. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription

    OpenAIRE

    Lai, Fan; Orom, Ulf A; Cesaroni, Matteo; Beringer, Malte; Taatjes, Dylan J; Blobel, Gerd A.; Shiekhattar, Ramin

    2013-01-01

    Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms 1-8 . While the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X inactivation and imprinting, different classes of lncRNAs may have varied biological functions 8-13 . We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their n...

  18. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce.

    Science.gov (United States)

    Yakovlev, Igor A; Fossdal, Carl G

    2017-01-01

    Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI) temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs) and other small non-coding RNAs (sRNAs) play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C). We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21-22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21-22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM) depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be involved in epigenetic

  19. In Silico Analysis of Small RNAs Suggest Roles for Novel and Conserved miRNAs in the Formation of Epigenetic Memory in Somatic Embryos of Norway Spruce

    Directory of Open Access Journals (Sweden)

    Igor A. Yakovlev

    2017-09-01

    Full Text Available Epigenetic memory in Norway spruce affects the timing of bud burst and bud set, vitally important adaptive traits for this long-lived forest species. Epigenetic memory is established in response to the temperature conditions during embryogenesis. Somatic embryogenesis at different epitype inducing (EpI temperatures closely mimics the natural processes of epigenetic memory formation in seeds, giving rise to epigenetically different clonal plants in a reproducible and predictable manner, with respect to altered bud phenology. MicroRNAs (miRNAs and other small non-coding RNAs (sRNAs play an essential role in the regulation of plant gene expression and may affect this epigenetic mechanism. We used NGS sequencing and computational in silico methods to identify and profile conserved and novel miRNAs among small RNAs in embryogenic tissues of Norway spruce at three EpI temperatures (18, 23 and 28°C. We detected three predominant classes of sRNAs related to a length of 24 nt, followed by a 21–22 nt class and a third 31 nt class of sRNAs. More than 2100 different miRNAs within the prevailing length 21–22 nt were identified. Profiling these putative miRNAs allowed identification of 1053 highly expressed miRNAs, including 523 conserved and 530 novels. 654 of these miRNAs were found to be differentially expressed (DEM depending on EpI temperature. For most DEMs, we defined their putative mRNA targets. The targets represented mostly by transcripts of multiple-repeats proteins, like TIR, NBS-LRR, PPR and TPR repeat, Clathrin/VPS proteins, Myb-like, AP2, etc. Notably, 124 DE miRNAs targeted 203 differentially expressed epigenetic regulators. Developing Norway spruce embryos possess a more complex sRNA structure than that reported for somatic tissues. A variety of the predicted miRNAs showed distinct EpI temperature dependent expression patterns. These putative EpI miRNAs target spruce genes with a wide range of functions, including genes known to be

  20. Identification, characterization and expression analysis of pigeonpea miRNAs in response to Fusarium wilt.

    Science.gov (United States)

    Hussain, Khalid; Mungikar, Kanak; Kulkarni, Abhijeet; Kamble, Avinash

    2018-05-05

    Upon confrontation with unfavourable conditions, plants invoke a very complex set of biochemical and physiological reactions and alter gene expression patterns to combat the situations. MicroRNAs (miRNAs), a class of small non-coding RNA, contribute extensively in regulation of gene expression through translation inhibition or degradation of their target mRNAs during such conditions. Therefore, identification of miRNAs and their targets holds importance in understanding the regulatory networks triggered during stress. Structure and sequence similarity based in silico prediction of miRNAs in Cajanus cajan L. (Pigeonpea) draft genome sequence has been carried out earlier. These annotations also appear in related GenBank genome sequence entries. However, there are no reports available on context dependent miRNA expression and their targets in pigeonpea. Therefore, in the present study we addressed these questions computationally, using pigeonpea EST sequence information. We identified five novel pigeonpea miRNA precursors, their mature forms and targets. Interestingly, only one of these miRNAs (miR169i-3p) was identified earlier in draft genome sequence. We then validated expression of these miRNAs, experimentally. It was also observed that these miRNAs show differential expression patterns in response to Fusarium inoculation indicating their biotic stress responsive nature. Overall these results will help towards better understanding the regulatory network of defense during pigeonpea -pathogen interactions and role of miRNAs in the process. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Identification of microRNAs differentially expressed involved in male flower development.

    Science.gov (United States)

    Wang, Zhengjia; Huang, Jianqin; Sun, Zhichao; Zheng, Bingsong

    2015-03-01

    Hickory (Carya cathayensis Sarg.) is one of the most economically important woody trees in eastern China, but its long flowering phase delays yield. Our understanding of the regulatory roles of microRNAs (miRNAs) in male flower development in hickory remains poor. Using high-throughput sequencing technology, we have pyrosequenced two small RNA libraries from two male flower differentiation stages in hickory. Analysis of the sequencing data identified 114 conserved miRNAs that belonged to 23 miRNA families, five novel miRNAs including their corresponding miRNA*s, and 22 plausible miRNA candidates. Differential expression analysis revealed 12 miRNA sequences that were upregulated in the later (reproductive) stage of male flower development. Quantitative real-time PCR showed similar expression trends as that of the deep sequencing. Novel miRNAs and plausible miRNA candidates were predicted using bioinformatic analysis methods. The miRNAs newly identified in this study have increased the number of known miRNAs in hickory, and the identification of differentially expressed miRNAs will provide new avenues for studies into miRNAs involved in the process of male flower development in hickory and other related trees.

  2. Identification and characterization of long intergenic noncoding RNAs in bovine mammary glands.

    Science.gov (United States)

    Tong, Chao; Chen, Qiaoling; Zhao, Lili; Ma, Junfei; Ibeagha-Awemu, Eveline M; Zhao, Xin

    2017-06-19

    Mammary glands of dairy cattle produce milk for the newborn offspring and for human consumption. Long intergenic noncoding RNAs (lincRNAs) play various functions in eukaryotic cells. However, types and roles of lincRNAs in bovine mammary glands are still poorly understood. Using computational methods, 886 unknown intergenic transcripts (UITs) were identified from five RNA-seq datasets from bovine mammary glands. Their non-coding potentials were predicted by using the combination of four software programs (CPAT, CNCI, CPC and hmmscan), with 184 lincRNAs identified. By comparison to the NONCODE2016 database and a domestic-animal long noncoding RNA database (ALDB), 112 novel lincRNAs were revealed in bovine mammary glands. Many lincRNAs were found to be located in quantitative trait loci (QTL). In particular, 36 lincRNAs were found in 172 milk related QTLs, whereas one lincRNA was within clinical mastitis QTL region. In addition, targeted genes for 10 lincRNAs with the highest fragments per kilobase of transcript per million fragments mapped (FPKM) were predicted by LncTar for forecasting potential biological functions of these lincRNAs. Further analyses indicate involvement of lincRNAs in several biological functions and different pathways. Our study has provided a panoramic view of lincRNAs in bovine mammary glands and suggested their involvement in many biological functions including susceptibility to clinical mastitis as well as milk quality and production. This integrative annotation of mammary gland lincRNAs broadens and deepens our understanding of bovine mammary gland biology.

  3. Roles of small RNAs in soybean defense against Phytophthora sojae infection.

    Science.gov (United States)

    Wong, James; Gao, Lei; Yang, Yang; Zhai, Jixian; Arikit, Siwaret; Yu, Yu; Duan, Shuyi; Chan, Vicky; Xiong, Qin; Yan, Jun; Li, Shengben; Liu, Renyi; Wang, Yuanchao; Tang, Guiliang; Meyers, Blake C; Chen, Xuemei; Ma, Wenbo

    2014-09-01

    The genus Phytophthora consists of many notorious pathogens of crops and forestry trees. At present, battling Phytophthora diseases is challenging due to a lack of understanding of their pathogenesis. We investigated the role of small RNAs in regulating soybean defense in response to infection by Phytophthora sojae, the second most destructive pathogen of soybean. Small RNAs, including microRNAs (miRNAs) and small interfering RNAs (siRNAs), are universal regulators that repress target gene expression in eukaryotes. We identified known and novel small RNAs that differentially accumulated during P. sojae infection in soybean roots. Among them, miR393 and miR166 were induced by heat-inactivated P. sojae hyphae, indicating that they may be involved in soybean basal defense. Indeed, knocking down the level of mature miR393 led to enhanced susceptibility of soybean to P. sojae; furthermore, the expression of isoflavonoid biosynthetic genes was drastically reduced in miR393 knockdown roots. These data suggest that miR393 promotes soybean defense against P. sojae. In addition to miRNAs, P. sojae infection also resulted in increased accumulation of phased siRNAs (phasiRNAs) that are predominantly generated from canonical resistance genes encoding nucleotide binding-leucine rich repeat proteins and genes encoding pentatricopeptide repeat-containing proteins. This work identifies specific miRNAs and phasiRNAs that regulate defense-associated genes in soybean during Phytophthora infection. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  4. Identification of Viscum album L. miRNAs and prediction of their medicinal values.

    Directory of Open Access Journals (Sweden)

    Wenyan Xie

    Full Text Available MicroRNAs (miRNAs are a class of approximately 22 nucleotides single-stranded non-coding RNA molecules that play crucial roles in gene expression. It has been reported that the plant miRNAs might enter mammalian bloodstream and have a functional role in human metabolism, indicating that miRNAs might be one of the hidden bioactive ingredients in medicinal plants. Viscum album L. (Loranthaceae, European mistletoe has been widely used for the treatment of cancer and cardiovascular diseases, but its functional compounds have not been well characterized. We considered that miRNAs might be involved in the pharmacological activities of V. album. High-throughput Illumina sequencing was performed to identify the novel and conserved miRNAs of V. album. The putative human targets were predicted. In total, 699 conserved miRNAs and 1373 novel miRNAs have been identified from V. album. Based on the combined use of TargetScan, miRanda, PITA, and RNAhybrid methods, the intersection of 30697 potential human genes have been predicted as putative targets of 29 novel miRNAs, while 14559 putative targets were highly enriched in 33 KEGG pathways. Interestingly, these highly enriched KEGG pathways were associated with some human diseases, especially cancer, cardiovascular diseases and neurological disorders, which might explain the clinical use as well as folk medicine use of mistletoe. However, further experimental validation is necessary to confirm these human targets of mistletoe miRNAs. Additionally, target genes involved in bioactive components synthesis in V. album were predicted as well. A total of 68 miRNAs were predicted to be involved in terpenoid biosynthesis, while two miRNAs including val-miR152 and miR9738 were predicted to target viscotoxins and lectins, respectively, which increased the knowledge regarding miRNA-based regulation of terpenoid biosynthesis, lectin and viscotoxin expressions in V. album.

  5. A comparative study of small RNAs in Toxoplasma gondii of distinct genotypes

    Directory of Open Access Journals (Sweden)

    Wang Jielin

    2012-09-01

    Full Text Available Abstract Background Toxoplasma gondii is an intracellular parasite with a significant impact on human health. Inside the mammalian and avian hosts, the parasite can undergo rapid development or remain inactive in the cysts. The mechanism that regulates parasite proliferation has not been fully understood. Small noncoding RNAs (sncRNA such as microRNAs (miRNAs are endogenous regulatory factors that can modulate cell differentiation and development. It is anticipated that hundreds of miRNAs regulate the expression of thousands of genes in a single organism. SncRNAs have been identified in T. gondii, however the profiles of sncRNAs expression and their potential regulatory function in parasites of distinct genotypes has largely been unknown. Methods The transcription profiles of miRNAs in the two genetically distinct strains, RH and ME49, of T. gondii were investigated and compared by a high-through-put RNA sequencing technique and systematic bioinformatics analysis. The expression of some of the miRNAs was confirmed by Northern blot analysis. Results 1,083,320 unique sequences were obtained. Of which, 17 conserved miRNAs related to 2 metazoan miRNA families and 339 novel miRNAs were identified. A total of 175 miRNAs showed strain-specific expression, of which 155 miRNAs were up-regulated in RH strain and 20 miRNAs were up-regulated in ME49 strain. Strain-specific expression of miRNAs in T. gondii could be due to activation of specific genes at different genomic loci or due to arm-switching of the same pre-miRNA duplex. Conclusions Evidence for the differential expression of miRNAs in the two genetically distinct strains of T. gondii has been identified and defined. MiRNAs of T. gondii are more species-specific as compared to other organisms, which can be developed as diagnostic biomarkers for toxoplasmosis. The data also provide a framework for future studies on RNAi-dependent regulatory mechanisms in the zoonotic parasite.

  6. Circulating microRNAs in serum from cattle challenged with Bovine Viral Diarrhea Virus

    Science.gov (United States)

    Bovine viral diarrhea virus (BVDV) is an RNA virus that is often associated with respiratory disease in cattle. MicroRNAs have been proposed as indicators of exposure to respiratory pathogens. The objective of this study was to identify microRNAs in cattle that had been challenged with a non-cytopat...

  7. MicroRNAs in Metabolism

    DEFF Research Database (Denmark)

    Vienberg, Sara; Geiger, Julian; Madsen, Søren

    2017-01-01

    roles in cholesterol and lipid metabolism, whereas miR-103 and -107 regulates hepatic insulin sensitivity. In muscle tissue a defined number of miRNAs (miR-1, miR-133, mir-206) control myofiber type switch and induce myogenic differentiation programs. Similarly, in adipose tissue a defined number of mi...

  8. Regulation of neutrophil senescence by microRNAs.

    Directory of Open Access Journals (Sweden)

    Jon R Ward

    2011-01-01

    Full Text Available Neutrophils are rapidly recruited to sites of tissue injury or infection, where they protect against invading pathogens. Neutrophil functions are limited by a process of neutrophil senescence, which renders the cells unable to respond to chemoattractants, carry out respiratory burst, or degranulate. In parallel, aged neutrophils also undergo spontaneous apoptosis, which can be delayed by factors such as GMCSF. This is then followed by their subsequent removal by phagocytic cells such as macrophages, thereby preventing unwanted inflammation and tissue damage. Neutrophils translate mRNA to make new proteins that are important in maintaining functional longevity. We therefore hypothesised that neutrophil functions and lifespan might be regulated by microRNAs expressed within human neutrophils. Total RNA from highly purified neutrophils was prepared and subjected to microarray analysis using the Agilent human miRNA microarray V3. We found human neutrophils expressed a selected repertoire of 148 microRNAs and that 6 of these were significantly upregulated after a period of 4 hours in culture, at a time when the contribution of apoptosis is negligible. A list of predicted targets for these 6 microRNAs was generated from http://mirecords.biolead.org and compared to mRNA species downregulated over time, revealing 83 genes targeted by at least 2 out of the 6 regulated microRNAs. Pathway analysis of genes containing binding sites for these microRNAs identified the following pathways: chemokine and cytokine signalling, Ras pathway, and regulation of the actin cytoskeleton. Our data suggest that microRNAs may play a role in the regulation of neutrophil senescence and further suggest that manipulation of microRNAs might represent an area of future therapeutic interest for the treatment of inflammatory disease.

  9. Small RNA Sequencing Uncovers New miRNAs and moRNAs Differentially Expressed in Normal and Primary Myelofibrosis CD34+ Cells.

    Directory of Open Access Journals (Sweden)

    Paola Guglielmelli

    Full Text Available Myeloproliferative neoplasms (MPN are chronic myeloid cancers thought to arise at the level of CD34+ hematopoietic stem/progenitor cells. They include essential thrombocythemia (ET, polycythemia vera (PV and primary myelofibrosis (PMF. All can progress to acute leukemia, but PMF carries the worst prognosis. Increasing evidences indicate that deregulation of microRNAs (miRNAs might plays an important role in hematologic malignancies, including MPN. To attain deeper knowledge of short RNAs (sRNAs expression pattern in CD34+ cells and of their possible role in mediating post-transcriptional regulation in PMF, we sequenced with Illumina HiSeq2000 technology CD34+ cells from healthy subjects and PMF patients. We detected the expression of 784 known miRNAs, with a prevalence of miRNA up-regulation in PMF samples, and discovered 34 new miRNAs and 99 new miRNA-offset RNAs (moRNAs, in CD34+ cells. Thirty-seven small RNAs were differentially expressed in PMF patients compared with healthy subjects, according to microRNA sequencing data. Five miRNAs (miR-10b-5p, miR-19b-3p, miR-29a-3p, miR-379-5p, and miR-543 were deregulated also in PMF granulocytes. Moreover, 3'-moR-128-2 resulted consistently downregulated in PMF according to RNA-seq and qRT-PCR data both in CD34+ cells and granulocytes. Target predictions of these validated small RNAs de-regulated in PMF and functional enrichment analyses highlighted many interesting pathways involved in tumor development and progression, such as signaling by FGFR and DAP12 and Oncogene Induced Senescence. As a whole, data obtained in this study deepened the knowledge of miRNAs and moRNAs altered expression in PMF CD34+ cells and allowed to identify and validate a specific small RNA profile that distinguishes PMF granulocytes from those of normal subjects. We thus provided new information regarding the possible role of miRNAs and, specifically, of new moRNAs in this disease.

  10. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries.

    Science.gov (United States)

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-12-16

    Small Tail Han sheep, including the FecB B FecB B (Han BB) and FecB + FecB + (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs.

  11. PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants.

    Science.gov (United States)

    Vieira, Lucas Maciel; Grativol, Clicia; Thiebaut, Flavia; Carvalho, Thais G; Hardoim, Pablo R; Hemerly, Adriana; Lifschitz, Sergio; Ferreira, Paulo Cavalcanti Gomes; Walter, Maria Emilia M T

    2017-03-04

    Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane ( Saccharum spp.) and in maize ( Zea mays ). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.

  12. Genome-wide identification and characterization of putative lncRNAs in the diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Wang, Yue; Xu, Tingting; He, Weiyi; Shen, Xiujing; Zhao, Qian; Bai, Jianlin; You, Minsheng

    2018-01-01

    Long non-coding RNAs (lncRNAs) are of particular interest because of their contributions to many biological processes. Here, we present the genome-wide identification and characterization of putative lncRNAs in a global insect pest, Plutella xylostella. A total of 8096 lncRNAs were identified and classified into three groups. The average length of exons in lncRNAs was longer than that in coding genes and the GC content was lower than that in mRNAs. Most lncRNAs were flanked by canonical splice sites, similar to mRNAs. Expression profiling identified 114 differentially expressed lncRNAs during the DBM development and found that majority were temporally specific. While the biological functions of lncRNAs remain uncharacterized, many are microRNA precursors or competing endogenous RNAs involved in micro-RNA regulatory pathways. This work provides a valuable resource for further studies on molecular bases for development of DBM and lay the foundation for discovery of lncRNA functions in P. xylostella. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants

    Directory of Open Access Journals (Sweden)

    Lucas Maciel Vieira

    2017-03-01

    Full Text Available Non-coding RNAs (ncRNAs constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs, which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM. We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane (Saccharum spp. and in maize (Zea mays. From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.

  14. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  15. High-Throughput Sequencing Reveals Diverse Sets of Conserved, Nonconserved, and Species-Specific miRNAs in Jute

    Directory of Open Access Journals (Sweden)

    Md. Tariqul Islam

    2015-01-01

    Full Text Available MicroRNAs play a pivotal role in regulating a broad range of biological processes, acting by cleaving mRNAs or by translational repression. A group of plant microRNAs are evolutionarily conserved; however, others are expressed in a species-specific manner. Jute is an agroeconomically important fibre crop; nonetheless, no practical information is available for microRNAs in jute to date. In this study, Illumina sequencing revealed a total of 227 known microRNAs and 17 potential novel microRNA candidates in jute, of which 164 belong to 23 conserved families and the remaining 63 belong to 58 nonconserved families. Among a total of 81 identified microRNA families, 116 potential target genes were predicted for 39 families and 11 targets were predicted for 4 among the 17 identified novel microRNAs. For understanding better the functions of microRNAs, target genes were analyzed by Gene Ontology and their pathways illustrated by KEGG pathway analyses. The presence of microRNAs identified in jute was validated by stem-loop RT-PCR followed by end point PCR and qPCR for randomly selected 20 known and novel microRNAs. This study exhaustively identifies microRNAs and their target genes in jute which will ultimately pave the way for understanding their role in this crop and other crops.

  16. MicroRNAs as potential therapeutic targets in kidney disease

    Science.gov (United States)

    Gomez, Ivan G; Grafals, Monica; Portilla, Didier; Duffield, Jeremy S

    2014-01-01

    One cornerstone of Chronic Kidney Disease (CKD) is fibrosis, as kidneys are susceptible due to their high vascularity and predisposition to ischemia. Presently, only therapies targeting the angiotensin receptor are used in clinical practice to retard the progression of CKD. Thus, there is a pressing need for new therapies designed to treat the damaged kidney. Several independent laboratories have identified a number of microRNAs that are dysregulated in human and animal models of CKD. We will explore the evidence suggesting that by blocking the activity of such dysregulated microRNAs, new therapeutics could be developed to treat the progression of CKD. PMID:23660218

  17. MicroRNAs associated with exercise and diet: a systematic review.

    Science.gov (United States)

    Flowers, Elena; Won, Gloria Y; Fukuoka, Yoshimi

    2015-01-01

    MicroRNAs are posttranscriptional regulators of gene expression. MicroRNAs reflect individual biologic adaptation to exposures in the environment. As such, measurement of circulating microRNAs presents an opportunity to evaluate biologic changes associated with behavioral interventions (i.e., exercise, diet) for weight loss. The aim of this study was to perform a systematic review of the literature to summarize what is known about circulating microRNAs associated with exercise, diet, and weight loss. We performed a systematic review of three scientific databases. We included studies reporting on circulating microRNAs associated with exercise, diet, and weight loss in humans. Of 1,219 studies identified in our comprehensive database search, 14 were selected for inclusion. Twelve reported on microRNAs associated with exercise, and two reported on microRNAs associated with diet and weight loss. The majority of studies used a quasiexperimental, cross-sectional design. There were numerous differences in the type and intensity of exercise and dietary interventions, the biologic source of microRNAs, and the methodological approaches used quantitate microRNAs. Data from several studies support an association between circulating microRNAs and exercise. The evidence for an association between circulating microRNAs and diet is weaker because of a small number of studies. Additional research is needed to validate previous observations using methodologically rigorous approaches to microRNA quantitation to determine the specific circulating microRNA signatures associated with behavioral approaches to weight loss. Future directions include longitudinal studies to determine if circulating microRNAs are predictive of response to behavioral interventions. Copyright © 2015 the American Physiological Society.

  18. Evolutionary Dynamics of Small RNAs in 27 Escherichia coli and Shigella Genomes

    Science.gov (United States)

    Skippington, Elizabeth; Ragan, Mark A.

    2012-01-01

    Small RNAs (sRNAs) are widespread in bacteria and play critical roles in regulating physiological processes. They are best characterized in Escherichia coli K-12 MG1655, where 83 sRNAs constitute nearly 2% of the gene complement. Most sRNAs act by base pairing with a target mRNA, modulating its translation and/or stability; many of these RNAs share only limited complementarity to their mRNA target, and require the chaperone Hfq to facilitate base pairing. Little is known about the evolutionary dynamics of bacterial sRNAs. Here, we apply phylogenetic and network analyses to investigate the evolutionary processes and principles that govern sRNA gene distribution in 27 E. coli and Shigella genomes. We identify core (encoded in all 27 genomes) and variable sRNAs; more than two-thirds of the E. coli K-12 MG1655 sRNAs are core, whereas the others show patterns of presence and absence that are principally due to genetic loss, not duplication or lateral genetic transfer. We present evidence that variable sRNAs are less tightly integrated into cellular genetic regulatory networks than are the core sRNAs, and that Hfq facilitates posttranscriptional cross talk between the E. coli–Shigella core and variable genomes. Finally, we present evidence that more than 80% of genes targeted by Hfq-associated core sRNAs have been transferred within the E. coli–Shigella clade, and that most of these genes have been transferred intact. These results suggest that Hfq and sRNAs help integrate laterally acquired genes into established regulatory networks. PMID:22223756

  19. MicroRNAs and the regulation of intestinal homeostasis.

    Science.gov (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M

    2014-01-01

    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  20. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Science.gov (United States)

    Li, Zhou Fang; Liang, Yi Min; Lau, Pui Ngan; Shen, Wei; Wang, Dai Kui; Cheung, Wing Tai; Xue, Chun Jason; Poon, Lit Man; Lam, Yun Wah

    2013-01-01

    Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  1. Circulating exosomes and exosomal microRNAs as biomarkers in gastrointestinal cancer.

    Science.gov (United States)

    Nedaeinia, R; Manian, M; Jazayeri, M H; Ranjbar, M; Salehi, R; Sharifi, M; Mohaghegh, F; Goli, M; Jahednia, S H; Avan, A; Ghayour-Mobarhan, M

    2017-02-01

    The most important biological function of exosomes is their possible use as biomarkers in clinical diagnosis. Compared with biomarkers identified in conventional specimens such as serum or urine, exosomal biomarkers provide the highest amount of sensitivity and specificity, which can be attributed to their excellent stability. Exosomes, which harbor different types of proteins, nucleic acids and lipids, are present in almost all bodily fluids. The molecular constituents of exosomes, especially exosomal proteins and microRNAs (miRNAs), are promising as biomarkers in clinical diagnosis. This discovery that exosomes also contain messenger RNAs and miRNAs shows that they could be carriers of genetic information. Although the majority of RNAs found in exosomes are degraded RNA fragments with a length of exosomal miRNAs have been found to be associated with certain diseases. Several studies have pointed out miRNA contents of circulating exosomes that are similar to those of originating cancer cells. In this review, the recent advances in circulating exosomal miRNAs as biomarkers in gastrointestinal cancers are discussed. These studies indicated that miRNAs can be detected in exosomes isolated from body fluids such as saliva, which suggests potential advantages of using exosomal miRNAs as noninvasive novel biomarkers.

  2. Dynamic localisation of mature microRNAs in Human nucleoli is influenced by exogenous genetic materials.

    Directory of Open Access Journals (Sweden)

    Zhou Fang Li

    Full Text Available Although microRNAs are commonly known to function as a component of RNA-induced silencing complexes in the cytoplasm, they have been detected in other organelles, notably the nucleus and the nucleolus, of mammalian cells. We have conducted a systematic search for miRNAs in HeLa cell nucleoli, and identified 11 abundant miRNAs with a high level of nucleolar accumulation. Through in situ hybridisation, we have localised these miRNAs, including miR-191 and miR-484, in the nucleolus of a diversity of human and rodent cell lines. The nucleolar association of these miRNAs is resistant to various cellular stresses, but highly sensitive to the presence of exogenous nucleic acids. Introduction of both single- and double-stranded DNA as well as double stranded RNA rapidly induce the redistribution of nucleolar miRNAs to the cytoplasm. A similar change in subcellular distribution is also observed in cells infected with the influenza A virus. The partition of miRNAs between the nucleolus and the cytoplasm is affected by Leptomycin B, suggesting a role of Exportin-1 in the intracellular shuttling of miRNAs. This study reveals a previously unknown aspect of miRNA biology, and suggests a possible link between these small noncoding RNAs and the cellular management of foreign genetic materials.

  3. Identification and developmental profiling of microRNAs in diamondback moth, Plutellaxylostella (L..

    Directory of Open Access Journals (Sweden)

    Pei Liang

    Full Text Available MicroRNAs (miRNAs are a group of small RNAs involved in various biological processes through negative regulation of mRNAs at the post-transcriptional level. Although miRNA profiles have been documented in over two dozen insect species, few are agricultural pests. In this study, both conserved and novel miRNAs in the diamondback moth, Plutella xylostella L., a devastating insect pest of cruciferous crops worldwide, were documented. High-throughput sequencing of a small RNA library constructed from a mixed life stages of P. xylostella, including eggs, 1st to 4th (last instar larvae, pupae and adults, identified 384 miRNAs, of which 174 were P. xylostella specific. In addition, temporal expressions of 234 miRNAs at various developmental stages were investigated using a customized microarray analysis. Among the 91 differentially expressed miRNAs, qRT-PCR analysis was used to validate highly expressed miRNAs at each stage. The combined results not only systematically document miRNA profiles in an agriculturally important insect pest, but also provide molecular targets for future functional analysis and, ultimately, genetic-based pest control practice.

  4. Identification and Characterization of microRNAs during Maize Grain Filling.

    Science.gov (United States)

    Jin, Xining; Fu, Zhiyuan; Lv, Panqing; Peng, Qian; Ding, Dong; Li, Weihua; Tang, Jihua

    2015-01-01

    The grain filling rate is closely associated with final grain yield of maize during the period of maize grain filling. To identify the key microRNAs (miRNAs) and miRNA-dependent gene regulation networks of grain filling in maize, a deep-sequencing technique was used to research the dynamic expression patterns of miRNAs at four distinct developmental grain filling stages in Zhengdan 958, which is an elite hybrid and cultivated widely in China. The sequencing result showed that the expression amount of almost all miRNAs was changing with the development of the grain filling and formed in seven groups. After normalization, 77 conserved miRNAs and 74 novel miRNAs were co-detected in these four samples. Eighty-one out of 162 targets of the conserved miRNAs belonged to transcriptional regulation (81, 50%), followed by oxidoreductase activity (18, 11%), signal transduction (16, 10%) and development (15, 9%). The result showed that miRNA 156, 393, 396 and 397, with their respective targets, might play key roles in the grain filling rate by regulating maize growth, development and environment stress response. The result also offered novel insights into the dynamic change of miRNAs during the developing process of maize kernels and assisted in the understanding of how miRNAs are functioning about the grain filling rate.

  5. Long Noncoding RNAs in Digestive System Malignancies: A Novel Class of Cancer Biomarkers and Therapeutic Targets?

    Directory of Open Access Journals (Sweden)

    Athina Kladi-Skandali

    2015-01-01

    Full Text Available High throughput methodologies have revealed the existence of an unexpectedly large number of long noncoding RNAs (lncRNAs. The unconventional role of lncRNAs in gene expression regulation and their broad implication in oncogenic and tumor suppressive pathways have introduced lncRNAs as novel biological tumor markers. The most prominent example of lncRNAs application in routine clinical practice is PCA3, a FDA-approved biomarker for prostate cancer. Regarding digestive system malignancies, the oncogenic HOTAIR is one of the most widely studied lncRNAs in the preclinical level and has already been identified as a potent prognostic marker for major malignancies of the gastrointestinal tract. Here, we provide an overview of recent findings regarding the emerging role of lncRNAs not only as key regulators of cancer initiation and progression in colon, stomach, pancreatic, liver, and esophageal cancers, but also as reliable tumor markers and therapeutic tools. lncRNAs can be easily, rapidly, and cost-effectively determined in tissues, serum, and gastric juice, making them highly versatile analytes. Taking also into consideration the largely unmet clinical need for early diagnosis and more accurate prognostic/predictive markers for gastrointestinal cancer patients, we comment upon the perspectives of lncRNAs as efficient molecular tools that could aid in the clinical management.

  6. Identification and conformational analysis of putative microRNAs in Maruca vitrata (Lepidoptera: Pyralidae

    Directory of Open Access Journals (Sweden)

    C. Shruthi Sureshan

    2015-12-01

    Full Text Available MicroRNAs (miRNAs are a class of small RNAs, evolutionarily conserved endogenous non-coding RNAs that regulate their target mRNA expression by either inactivating or degrading mRNA genes; thus playing an important role in the growth and development of an organism. Maruca vitrata is an insect pest of leguminous plants like pigeon pea, cowpea and mung bean and is pantropical. In this study, we perform BLAST on all known miRNAs against the transcriptome data of M. vitrata and thirteen miRNAs were identified. These miRNAs were characterised and their target genes were identified using TargetScan and were functionally annotated using FlyBase. The importance of the structure of pre-miRNA in the Drosha activity led to study the backbone torsion angles of predicted pre-miRNAs (mvi-miR-9751, mvi-miR-649-3p, mvi-miR-4057 and mvi-miR-1271 to identify various nucleotide triplets that contribute to the variation of torsion angle values at various structural motifs of a pre-miRNA.

  7. Selective expression of long non-coding RNAs in a breast cancer cell progression model.

    Science.gov (United States)

    Tracy, Kirsten M; Tye, Coralee E; Page, Natalie A; Fritz, Andrew J; Stein, Janet L; Lian, Jane B; Stein, Gary S

    2018-02-01

    Long non-coding RNAs (lncRNAs) are acknowledged as regulators of cancer biology and pathology. Our goal was to perform a stringent profiling of breast cancer cell lines that represent disease progression. We used the MCF-10 series, which includes the normal-like MCF-10A, HRAS-transformed MCF-10AT1 (pre-malignant), and MCF-10CA1a (malignant) cells, to perform transcriptome wide sequencing. From these data, we have identified 346 lncRNAs with dysregulated expression across the progression series. By comparing lncRNAs from these datasets to those from an additional set of cell lines that represent different disease stages and subtypes, MCF-7 (early stage, luminal), and MDA-MB-231 (late stage, basal), 61 lncRNAs that are associated with breast cancer progression were identified. Querying breast cancer patient data from The Cancer Genome Atlas, we selected a lncRNA, IGF-like family member 2 antisense RNA 1 (IGFL2-AS1), of potential clinical relevance for functional characterization. Among the 61 lncRNAs, IGFL2-AS1 was the most significantly decreased. Our results indicate that this lncRNA plays a role in downregulating its nearest neighbor, IGFL1, and affects migration of breast cancer cells. Furthermore, the lncRNAs we identified provide a valuable resource to mechanistically and clinically understand the contribution of lncRNAs in breast cancer progression. © 2017 Wiley Periodicals, Inc.

  8. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Wanzhong; Wang, Ping; Wang, Xin [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China); Song, Wenzhi [Department of Stomatology, China-Japan Friendship Hospital, Jilin University, Changchun (China); Cui, Xiangyan; Yu, Hong; Zhu, Wei [Department of Otorhinolaryngology, Head and Neck Surgery, The First Clinical Hospital, Norman Bethune College of Medicine, Jilin University, Changchun (China)

    2013-06-12

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.

  9. Identification of microRNAs and mRNAs associated with multidrug resistance of human laryngeal cancer Hep-2 cells

    International Nuclear Information System (INIS)

    Yin, Wanzhong; Wang, Ping; Wang, Xin; Song, Wenzhi; Cui, Xiangyan; Yu, Hong; Zhu, Wei

    2013-01-01

    Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs 69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer

  10. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus)

    Science.gov (United States)

    Wu, Zhenyang; Fu, Yuhua; Cao, Jianhua; Yu, Mei; Tang, Xiaohui; Zhao, Shuhong

    2014-01-01

    MicroRNAs (miRNAs) play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black) using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%). MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats. PMID:24879525

  11. Identification of Differentially Expressed miRNAs between White and Black Hair Follicles by RNA-Sequencing in the Goat (Capra hircus

    Directory of Open Access Journals (Sweden)

    Zhenyang Wu

    2014-05-01

    Full Text Available MicroRNAs (miRNAs play a key role in many biological processes by regulating gene expression at the post-transcriptional level. A number of miRNAs have been identified from livestock species. However, compared with other animals, such as pigs and cows, the number of miRNAs identified in goats is quite low, particularly in hair follicles. In this study, to investigate the functional roles of miRNAs in goat hair follicles of goats with different coat colors, we sequenced miRNAs from two hair follicles samples (white and black using Solexa sequencing. A total of 35,604,016 reads were obtained, which included 30,878,637 clean reads (86.73%. MiRDeep2 software identified 214 miRNAs. Among them, 205 were conserved among species and nine were novel miRNAs. Furthermore, DESeq software identified six differentially expressed miRNAs. Quantitative PCR confirmed differential expression of two miRNAs, miR-10b and miR-211. KEGG pathways were analyzed using the DAVID website for the predicted target genes of the differentially expressed miRNAs. Several signaling pathways including Notch and MAPK pathways may affect the process of coat color formation. Our study showed that the identified miRNAs might play an essential role in black and white follicle formation in goats.

  12. Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development

    Directory of Open Access Journals (Sweden)

    Ming Zhu

    2017-10-01

    Full Text Available Long non-coding RNAs (lncRNAs have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on “ceRNA hypothesis”. The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.

  13. Genome-Wide Search for Competing Endogenous RNAs Responsible for the Effects Induced by Ebola Virus Replication and Transcription Using a trVLP System

    Directory of Open Access Journals (Sweden)

    Zhong-Yi Wang

    2017-11-01

    Full Text Available Understanding how infected cells respond to Ebola virus (EBOV and how this response changes during the process of viral replication and transcription are very important for establishing effective antiviral strategies. In this study, we conducted a genome-wide screen to identify long non-coding RNAs (lncRNAs, circular RNAs (circRNAs, micro RNAs (miRNAs, and mRNAs differentially expressed during replication and transcription using a tetracistronic transcription and replication-competent virus-like particle (trVLP system that models the life cycle of EBOV in 293T cells. To characterize the expression patterns of these differentially expressed RNAs, we performed a series cluster analysis, and up- or down-regulated genes were selected to establish a gene co-expression network. Competing endogenous RNA (ceRNA networks based on the RNAs responsible for the effects induced by EBOV replication and transcription in human cells, including circRNAs, lncRNAs, miRNAs, and mRNAs, were constructed for the first time. Based on these networks, the interaction details of circRNA-chr19 were explored. Our results demonstrated that circRNA-chr19 targeting miR-30b-3p regulated CLDN18 expression by functioning as a ceRNA. These findings may have important implications for further studies of the mechanisms of EBOV replication and transcription. These RNAs potentially have important functions and may be promising targets for EBOV therapy.

  14. Long noncoding RNAs: Undeciphered cellular codes encrypting keys of colorectal cancer pathogenesis

    Science.gov (United States)

    Kim, Taewan; Croce, Carlo M.

    2018-01-01

    Long noncoding RNAs are non-protein coding transcripts longer than 200 nucleotides in length. By the advance in genetic and bioinformatic technologies, the new genomic landscape including noncoding transcripts has been revealed. Despite their non-capacity to be translated into proteins, lncRNAs have a versatile functions through various mechanisms interacting with other cellular molecules including DNA, protein, and RNA. Recent research interest and endeavor have identified the functional role of lncRNAs in various diseases including cancer. Colorectal cancer (CRC) is not only one of the most frequent cancer but also one of the cancer types with remarkable achievements in lncRNA research. Of the numerous notable lncRNAs identified and characterized in CRC, we will focus on key lncRNAs with the high potential as CRC-specific biomarkers in this review. PMID:29306015

  15. Identification of conserved microRNAs and their targets in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Hu, Jihong; Sun, Lulu; Ding, Yi

    2013-04-01

    The microRNAs (miRNAs) are a new class of non-protein coding small RNAs that regulate gene expression at the post-transcriptional level in plants. Although thousands of miRNAs have been identified in many plant species, little studies have been reported about chickpea microRNAs. In this study, 28 potential miRNA candidates belonging to 20 families were identified from 16 ESTs and 12 GSSs in chickpea using a comparative genome-based computational analysis. A total of 664 miRNA targets were predicted and some of them encoded transcription factors as well as genes that function in stress response, signal transduction, methylation and a variety of other metabolic processes. These findings lay the foundation for further understanding of miRNA function in the development of chickpea.

  16. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    Science.gov (United States)

    2015-10-01

    in Figure 3D -G, comparing to the control cells, more cells treated with miR-449a mimic or RA are negative for BrDU staining, which indicates that...predicted as miR-449a tar- gets decrease and increase in expression. The empiri- cal density curves in Fig- ure 3D further show the difference in the...Sang N, Druck T, Veron- ese ML, Allen SL, Chiorazzi N, Koff A, Heubner K, Croce CM, et al. Chromosomal mapping of members of the cdc2 family of

  17. Computational identification and analysis of novel sugarcane microRNAs

    Directory of Open Access Journals (Sweden)

    Thiebaut Flávia

    2012-07-01

    Full Text Available Abstract Background MicroRNA-regulation of gene expression plays a key role in the development and response to biotic and abiotic stresses. Deep sequencing analyses accelerate the process of small RNA discovery in many plants and expand our understanding of miRNA-regulated processes. We therefore undertook small RNA sequencing of sugarcane miRNAs in order to understand their complexity and to explore their role in sugarcane biology. Results A bioinformatics search was carried out to discover novel miRNAs that can be regulated in sugarcane plants submitted to drought and salt stresses, and under pathogen infection. By means of the presence of miRNA precursors in the related sorghum genome, we identified 623 candidates of new mature miRNAs in sugarcane. Of these, 44 were classified as high confidence miRNAs. The biological function of the new miRNAs candidates was assessed by analyzing their putative targets. The set of bona fide sugarcane miRNA includes those likely targeting serine/threonine kinases, Myb and zinc finger proteins. Additionally, a MADS-box transcription factor and an RPP2B protein, which act in development and disease resistant processes, could be regulated by cleavage (21-nt-species and DNA methylation (24-nt-species, respectively. Conclusions A large scale investigation of sRNA in sugarcane using a computational approach has identified a substantial number of new miRNAs and provides detailed genotype-tissue-culture miRNA expression profiles. Comparative analysis between monocots was valuable to clarify aspects about conservation of miRNA and their targets in a plant whose genome has not yet been sequenced. Our findings contribute to knowledge of miRNA roles in regulatory pathways in the complex, polyploidy sugarcane genome.

  18. Detection of plant microRNAs in honey.

    Directory of Open Access Journals (Sweden)

    Angelo Gismondi

    Full Text Available For the first time in the literature, our group has managed to demonstrate the existence of plant RNAs in honey samples. In particular, in our work, different RNA extraction procedures were performed in order to identify a purification method for nucleic acids from honey. Purity, stability and integrity of the RNA samples were evaluated by spectrophotometric, PCR and electrophoretic analyses. Among all honey RNAs, we specifically revealed the presence of both plastidial and nuclear plant transcripts: RuBisCO large subunit mRNA, maturase K messenger and 18S ribosomal RNA. Surprisingly, nine plant microRNAs (miR482b, miR156a, miR396c, miR171a, miR858, miR162a, miR159c, miR395a and miR2118a were also detected and quantified by qPCR. In this context, a comparison between microRNA content in plant samples (i.e. flowers, nectars and their derivative honeys was carried out. In addition, peculiar microRNA profiles were also identified in six different monofloral honeys. Finally, the same plant microRNAs were investigated in other plant food products: tea, cocoa and coffee. Since plant microRNAs introduced by diet have been recently recognized as being able to modulate the consumer's gene expression, our research suggests that honey's benefits for human health may be strongly correlated to the bioactivity of plant microRNAs contained in this matrix.

  19. Transcriptome-wide identification of Rauvolfia serpentina microRNAs and prediction of their potential targets.

    Science.gov (United States)

    Prakash, Pravin; Rajakani, Raja; Gupta, Vikrant

    2016-04-01

    MicroRNAs (miRNAs) are small non-coding RNAs of ∼ 19-24 nucleotides (nt) in length and considered as potent regulators of gene expression at transcriptional and post-transcriptional levels. Here we report the identification and characterization of 15 conserved miRNAs belonging to 13 families from Rauvolfia serpentina through in silico analysis of available nucleotide dataset. The identified mature R. serpentina miRNAs (rse-miRNAs) ranged between 20 and 22nt in length, and the average minimal folding free energy index (MFEI) value of rse-miRNA precursor sequences was found to be -0.815 kcal/mol. Using the identified rse-miRNAs as query, their potential targets were predicted in R. serpentina and other plant species. Gene Ontology (GO) annotation showed that predicted targets of rse-miRNAs include transcription factors as well as genes involved in diverse biological processes such as primary and secondary metabolism, stress response, disease resistance, growth, and development. Few rse-miRNAs were predicted to target genes of pharmaceutically important secondary metabolic pathways such as alkaloids and anthocyanin biosynthesis. Phylogenetic analysis showed the evolutionary relationship of rse-miRNAs and their precursor sequences to homologous pre-miRNA sequences from other plant species. The findings under present study besides giving first hand information about R. serpentina miRNAs and their targets, also contributes towards the better understanding of miRNA-mediated gene regulatory processes in plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Identification of Conserved and Potentially Regulatory Small RNAs in Heterocystous Cyanobacteria

    Directory of Open Access Journals (Sweden)

    Manuel eBrenes-Álvarez

    2016-02-01

    Full Text Available Small RNAs (sRNAs are a growing class of non-protein-coding transcripts that participate in the regulation of virtually every aspect of bacterial physiology. Heterocystous cyanobacteria are a group of photosynthetic organisms that exhibit multicellular behaviour and developmental alternatives involving specific transcriptomes exclusive of a given physiological condition or even a cell type. In the context of our ongoing effort to understand developmental decisions in these organisms we have undertaken an approach to the global identification of sRNAs. Using differential RNA-Seq we have previously identified transcriptional start sites for the model heterocystous cyanobacterium Nostoc sp. PCC 7120. Here we combine this dataset with a prediction of Rho-independent transcriptional terminators and an analysis of phylogenetic conservation of potential sRNAs among 89 available cyanobacterial genomes. In contrast to predictive genome-wide approaches, the use of an experimental dataset comprising all active transcriptional start sites (differential RNA-Seq facilitates the identification of bona fide sRNAs. The output of our approach is a dataset of predicted potential sRNAs in Nostoc sp. PCC 7120, with different degrees of phylogenetic conservation across the 89 cyanobacterial genomes analyzed. Previously described sRNAs appear among the predicted sRNAs, demonstrating the performance of the algorithm. In addition, new predicted sRNAs are now identified that can be involved in regulation of different aspects of cyanobacterial physiology, including adaptation to nitrogen stress, the condition that triggers differentiation of heterocysts (specialized nitrogen-fixing cells. Transcription of several predicted sRNAs that appear exclusively in the genomes of heterocystous cyanobacteria is experimentally verified by Northern blot. Cell-specific transcription of one of these sRNAs, NsiR8 (nitrogen stress-induced RNA 8, in developing heterocysts is also

  1. Expression profiling of microRNAs in human bone tissue from postmenopausal women.

    Science.gov (United States)

    De-Ugarte, Laura; Serra-Vinardell, Jenny; Nonell, Lara; Balcells, Susana; Arnal, Magdalena; Nogues, Xavier; Mellibovsky, Leonardo; Grinberg, Daniel; Diez-Perez, Adolfo; Garcia-Giralt, Natalia

    2018-01-01

    Bone tissue is composed of several cell types, which express their own microRNAs (miRNAs) that will play a role in cell function. The set of total miRNAs expressed in all cell types configures the specific signature of the bone tissue in one physiological condition. The aim of this study was to explore the miRNA expression profile of bone tissue from postmenopausal women. Tissue was obtained from trabecular bone and was analyzed in fresh conditions (n = 6). Primary osteoblasts were also obtained from trabecular bone (n = 4) and human osteoclasts were obtained from monocyte precursors after in vitro differentiation (n = 5). MicroRNA expression profiling was obtained for each sample by microarray and a global miRNA analysis was performed combining the data acquired in all the microarray experiments. From the 641 miRNAs detected in bone tissue samples, 346 (54%) were present in osteoblasts and/or osteoclasts. The other 46% were not identified in any of the bone cells analyzed. Intersection of osteoblast and osteoclast arrays identified 101 miRNAs shared by both cell types, which accounts for 30-40% of miRNAs detected in these cells. In osteoblasts, 266 miRNAs were detected, of which 243 (91%) were also present in the total bone array, representing 38% of all bone miRNAs. In osteoclasts, 340 miRNAs were detected, of which 196 (58%) were also present in the bone tissue array, representing 31% of all miRNAs detected in total bone. These analyses provide an overview of miRNAs expressed in bone tissue, broadening our knowledge in the microRNA field.

  2. History, Discovery, and Classification of lncRNAs.

    Science.gov (United States)

    Jarroux, Julien; Morillon, Antonin; Pinskaya, Marina

    2017-01-01

    The RNA World Hypothesis suggests that prebiotic life revolved around RNA instead of DNA and proteins. Although modern cells have changed significantly in 4 billion years, RNA has maintained its central role in cell biology. Since the discovery of DNA at the end of the nineteenth century, RNA has been extensively studied. Many discoveries such as housekeeping RNAs (rRNA, tRNA, etc.) supported the messenger RNA model that is the pillar of the central dogma of molecular biology, which was first devised in the late 1950s. Thirty years later, the first regulatory non-coding RNAs (ncRNAs) were initially identified in bacteria and then in most eukaryotic organisms. A few long ncRNAs (lncRNAs) such as H19 and Xist were characterized in the pre-genomic era but remained exceptions until the early 2000s. Indeed, when the sequence of the human genome was published in 2001, studies showed that only about 1.2% encodes proteins, the rest being deemed "non-coding." It was later shown that the genome is pervasively transcribed into many ncRNAs, but their functionality remained controversial. Since then, regulatory lncRNAs have been characterized in many species and were shown to be involved in processes such as development and pathologies, revealing a new layer of regulation in eukaryotic cells. This newly found focus on lncRNAs, together with the advent of high-throughput sequencing, was accompanied by the rapid discovery of many novel transcripts which were further characterized and classified according to specific transcript traits.In this review, we will discuss the many discoveries that led to the study of lncRNAs, from Friedrich Miescher's "nuclein" in 1869 to the elucidation of the human genome and transcriptome in the early 2000s. We will then focus on the biological relevance during lncRNA evolution and describe their basic features as genes and transcripts. Finally, we will present a non-exhaustive catalogue of lncRNA classes, thus illustrating the vast complexity of

  3. Role of Small RNAs in Trypanosomatid Infections

    Science.gov (United States)

    Linhares-Lacerda, Leandra; Morrot, Alexandre

    2016-01-01

    Trypanosomatid parasites survive and replicate in the host by using mechanisms that aim to establish a successful infection and ensure parasite survival. Evidence points to microRNAs as new players in the host-parasite interplay. MicroRNAs are small non-coding RNAs that control proteins levels via post-transcriptional gene down-regulation, either within the cells where they were produced or in other cells via intercellular transfer. These microRNAs can be modulated in host cells during infection and are among the growing group of small regulatory RNAs, for which many classes have been described, including the transfer RNA-derived small RNAs. Parasites can either manipulate microRNAs to evade host-driven damage and/or transfer small RNAs to host cells. In this mini-review, we present evidence for the involvement of small RNAs, such as microRNAs, in trypanosomatid infections which lack RNA interference. We highlight both microRNA profile alterations in host cells during those infections and the horizontal transfer of small RNAs and proteins from parasites to the host by membrane-derived extracellular vesicles in a cell communication mechanism. PMID:27065454

  4. Association of RNAs with Bacillus subtilis Hfq.

    Directory of Open Access Journals (Sweden)

    Michael Dambach

    Full Text Available The prevalence and characteristics of small regulatory RNAs (sRNAs have not been well characterized for Bacillus subtilis, an important model system for Gram-positive bacteria. However, B. subtilis was recently found to synthesize many candidate sRNAs during stationary phase. In the current study, we performed deep sequencing on Hfq-associated RNAs and found that a small subset of sRNAs associates with Hfq, an enigmatic RNA-binding protein that stabilizes sRNAs in Gram-negatives, but whose role is largely unknown in Gram-positive bacteria. We also found that Hfq associated with antisense RNAs, antitoxin transcripts, and many mRNA leaders. Several new candidate sRNAs and mRNA leader regions were also discovered by this analysis. Additionally, mRNA fragments overlapping with start or stop codons associated with Hfq, while, in contrast, relatively few full-length mRNAs were recovered. Deletion of hfq reduced the intracellular abundance of several representative sRNAs, suggesting that B. subtilis Hfq-sRNA interactions may be functionally significant in vivo. In general, we anticipate this catalog of Hfq-associated RNAs to serve as a resource in the functional characterization of Hfq in B. subtilis.

  5. A bioinformatics-based update on microRNAs and their targets in rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Yang, Liandong; He, Shunping

    2014-01-01

    MicroRNAs (miRNAs) participate in various vitally biological processes via controlling target genes activity and thousands of miRNAs have been identified in many species to date, including 18,698 known animal miRNA in miRBase. However, there are only limited studies reported in rainbow trout (Oncorhynchus mykiss) especially via the computational-based approaches. In present study, we systematically investigated the miRNAs in rainbow trout using a well-developed comparative genome-based homologue search. A total of 196 potential miRNAs, belonging to 124 miRNA families, were identified, most of which were firstly reported in rainbow trout. The length of miRNAs ranged from 17 to 24 nt with an average of 20 nt while the length of their precursors varied from 47 to 152 nt with an average of 85 nt. The identified miRNAs were not evenly distributed in each miRNA family, with only one member per family for a majority, and multiple members were also identified for several families. Nucleotide U was dominant in the pre-miRNAs with a percentage of 30.04%. The rainbow trout pre-miRNAs had relatively high negative minimal folding free energy (MFE) and adjusted MFE (AMFE). Not only the mature miRNAs but their precursor sequences are conserved among the living organisms. About 2466 O. mykiss genes were predicted as potential targets for 189 miRNAs. Gene Ontology (GO) analysis showed that nearly 2093, 2107, and 2081 target genes are involved in cellular component, molecular function, and biological processes respectively. KEGG pathway enrichment analysis illuminated that these miRNAs targets might regulate 105 metabolic pathways, including those of purine metabolism, nitrogen metabolism, and oxidative phosphorylation. This study has provided an update on rainbow trout miRNAs and their targets, which represents a foundation for future studies. © 2013.

  6. Profilings of MicroRNAs in the Liver of Common Carp (Cyprinus carpio) Infected with Flavobacterium columnare

    Science.gov (United States)

    Zhao, Lijuan; Lu, Hong; Meng, Qinglei; Wang, Jinfu; Wang, Weimin; Yang, Ling; Lin, Li

    2016-01-01

    MicroRNAs (miRNAs) play important roles in regulation of many biological processes in eukaryotes, including pathogen infection and host interactions. Flavobacterium columnare (FC) infection can cause great economic loss of common carp (Cyprinus carpio) which is one of the most important cultured fish in the world. However, miRNAs in response to FC infection in common carp has not been characterized. To identify specific miRNAs involved in common carp infected with FC, we performed microRNA sequencing using livers of common carp infected with and without FC. A total of 698 miRNAs were identified, including 142 which were identified and deposited in the miRbase database (Available online: http://www.mirbase.org/) and 556 had only predicted miRNAs. Among the deposited miRNAs, eight miRNAs were first identified in common carp. Thirty of the 698 miRNAs were differentially expressed miRNAs (DIE-miRNAs) between the FC infected and control samples. From the DIE-miRNAs, seven were selected randomly and their expression profiles were confirmed to be consistent with the microRNA sequencing results using RT-PCR and qRT-PCR. In addition, a total of 27,363 target genes of the 30 DIE-miRNAs were predicted. The target genes were enriched in five Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, including focal adhesion, extracellular matrix (ECM)-receptor interaction, erythroblastic leukemia viral oncogene homolog (ErbB) signaling pathway, regulation of actin cytoskeleton, and adherent junction. The miRNA expression profile of the liver of common carp infected with FC will pave the way for the development of effective strategies to fight against FC infection. PMID:27092486

  7. Identification of novel miRNAs and miRNA dependent developmental shifts of gene expression in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Shuhua Zhan

    Full Text Available microRNAs (miRNAs are small, endogenous RNAs of 20 approximately 25 nucleotides, processed from stem-loop regions of longer RNA precursors. Plant miRNAs act as negative regulators of target mRNAs predominately by slicing target transcripts, and a number of miRNAs play important roles in development. We analyzed a number of published datasets from Arabidopsis thaliana to characterize novel miRNAs, novel miRNA targets, and miRNA-regulated developmental changes in gene expression. These data include microarray profiling data and small RNA (sRNA deep sequencing data derived from miRNA biogenesis/transport mutants, microarray profiling data of mRNAs in a developmental series, and computational predictions of conserved genomic stem-loop structures. Our conservative analyses identified five novel mature miRNAs and seven miRNA targets, including one novel target gene. Two complementary miRNAs that target distinct mRNAs were encoded by one gene. We found that genes targeted by known miRNAs, and genes up-regulated or down-regulated in miRNA mutant inflorescences, are highly expressed in the wild type inflorescence. In addition, transcripts upregulated within the mutant inflorescences were abundant in wild type leaves and shoot meristems and low in pollen and seed. Downregulated transcripts were abundant in wild type pollen and seed and low in shoot meristems, roots and leaves. Thus, disrupting miRNA function causes the inflorescence transcriptome to resemble the leaf and meristem and to differ from pollen and seed. Applications of our computational approach to other species and the use of more liberal criteria than reported here will further expand the number of identified miRNAs and miRNA targets. Our findings suggest that miRNAs have a global role in promoting vegetative to reproductive transitions in A. thaliana.

  8. Expression profiles of miRNAs from bovine mammary glands in response to Streptococcus agalactiae-induced mastitis.

    Science.gov (United States)

    Pu, Junhua; Li, Rui; Zhang, Chenglong; Chen, Dan; Liao, Xiangxiang; Zhu, Yihui; Geng, Xiaohan; Ji, Dejun; Mao, Yongjiang; Gong, Yunchen; Yang, Zhangping

    2017-08-01

    This study aimed to describe the expression profiles of microRNAs (miRNAs) from mammary gland tissues collected from dairy cows with Streptococcus agalactiae-induced mastitis and to identify differentially expressed miRNAs related to mastitis. The mammary glands of Chinese Holstein cows were challenged with Streptococcus agalactiae to induce mastitis. Small RNAs were isolated from the mammary tissues of the test and control groups and then sequenced using the Solexa sequencing technology to construct two small RNA libraries. Potential target genes of these differentially expressed miRNAs were predicted using the RNAhybrid software, and KEGG pathways associated with these genes were analysed. A total of 18 555 913 and 20 847 000 effective reads were obtained from the test and control groups, respectively. In total, 373 known and 399 novel miRNAs were detected in the test group, and 358 known and 232 novel miRNAs were uncovered in the control group. A total of 35 differentially expressed miRNAs were identified in the test group compared to the control group, including 10 up-regulated miRNAs and 25 down-regulated miRNAs. Of these miRNAs, miR-223 exhibited the highest degree of up-regulation with an approximately 3-fold increase in expression, whereas miR-26a exhibited the most decreased expression level (more than 2-fold). The RNAhybrid software predicted 18 801 genes as potential targets of these 35 miRNAs. Furthermore, several immune response and signal transduction pathways, including the RIG-I-like receptor signalling pathway, cytosolic DNA sensing pathway and Notch signal pathway, were enriched in these predicted targets. In summary, this study provided experimental evidence for the mechanism underlying the regulation of bovine mastitis by miRNAs and showed that miRNAs might be involved in signal pathways during S. agalactiae-induced mastitis.

  9. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing.

    Science.gov (United States)

    Jain, Mukesh; Chevala, V V S Narayana; Garg, Rohini

    2014-11-01

    MicroRNAs (miRNAs) are essential components of complex gene regulatory networks that orchestrate plant development. Although several genomic resources have been developed for the legume crop chickpea, miRNAs have not been discovered until now. For genome-wide discovery of miRNAs in chickpea (Cicer arietinum), we sequenced the small RNA content from seven major tissues/organs employing Illumina technology. About 154 million reads were generated, which represented more than 20 million distinct small RNA sequences. We identified a total of 440 conserved miRNAs in chickpea based on sequence similarity with known miRNAs in other plants. In addition, 178 novel miRNAs were identified using a miRDeep pipeline with plant-specific scoring. Some of the conserved and novel miRNAs with significant sequence similarity were grouped into families. The chickpea miRNAs targeted a wide range of mRNAs involved in diverse cellular processes, including transcriptional regulation (transcription factors), protein modification and turnover, signal transduction, and metabolism. Our analysis revealed several miRNAs with differential spatial expression. Many of the chickpea miRNAs were expressed in a tissue-specific manner. The conserved and differential expression of members of the same miRNA family in different tissues was also observed. Some of the same family members were predicted to target different chickpea mRNAs, which suggested the specificity and complexity of miRNA-mediated developmental regulation. This study, for the first time, reveals a comprehensive set of conserved and novel miRNAs along with their expression patterns and putative targets in chickpea, and provides a framework for understanding regulation of developmental processes in legumes. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  10. Identification and characterization of novel microRNAs for fruit development and quality in hot pepper (Capsicum annuum L.).

    Science.gov (United States)

    Liu, Zhoubin; Zhang, Yuping; Ou, Lijun; Kang, Linyu; Liu, Yuhua; Lv, Junheng; Wei, Ge; Yang, Bozhi; Yang, Sha; Chen, Wenchao; Dai, Xiongze; Li, Xuefeng; Zhou, Shudong; Zhang, Zhuqing; Ma, Yanqing; Zou, Xuexiao

    2017-04-15

    MicroRNAs (miRNAs) are non-coding small RNAs which play an important regulatory role in various biological processes. Previous studies have reported that miRNAs are involved in fruit development in model plants. However, the miRNAs related to fruit development and quality in hot pepper (Capsicum annuum L.) remains unknown. In this study, small RNA populations from different fruit ripening stages and different varieties were compared using next-generation sequencing technology. Totally, 59 known miRNAs and 310 novel miRNAs were identified from four libraries using miRDeep2 software. For these novel miRNAs, 656 targets were predicted and 402 of them were annotated. GO analysis and KEGG pathways suggested that some of the predicted miRNAs targeted genes involved in starch sucrose metabolism and amino sugar as well as nucleotide sugar metabolism. Quantitative RT-PCR validated the contrasting expression patterns between several miRNAs and their target genes. These results will provide an important foundation for future studies on the regulation of miRNAs involved in fruit development and quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  12. Identification of long non-coding RNAs in two anthozoan species and their possible implications for coral bleaching.

    Science.gov (United States)

    Huang, Chen; Morlighem, Jean-Étienne R L; Cai, Jing; Liao, Qiwen; Perez, Carlos Daniel; Gomes, Paula Braga; Guo, Min; Rádis-Baptista, Gandhi; Lee, Simon Ming-Yuen

    2017-07-13

    Long non-coding RNAs (lncRNAs) have been shown to play regulatory roles in a diverse range of biological processes and are associated with the outcomes of various diseases. The majority of studies about lncRNAs focus on model organisms, with lessened investigation in non-model organisms to date. Herein, we have undertaken an investigation on lncRNA in two zoanthids (cnidarian): Protolpalythoa varibilis and Palythoa caribaeorum. A total of 11,206 and 13,240 lncRNAs were detected in P. variabilis and P. caribaeorum transcriptome, respectively. Comparison using NONCODE database indicated that the majority of these lncRNAs is taxonomically species-restricted with no identifiable orthologs. Even so, we found cases in which short regions of P. caribaeorum's lncRNAs were similar to vertebrate species' lncRNAs, and could be associated with lncRNA conserved regulatory functions. Consequently, some high-confidence lncRNA-mRNA interactions were predicted based on such conserved regions, therefore revealing possible involvement of lncRNAs in posttranscriptional processing and regulation in anthozoans. Moreover, investigation of differentially expressed lncRNAs, in healthy colonies and colonial individuals undergoing natural bleaching, indicated that some up-regulated lncRNAs in P. caribaeorum could posttranscriptionally regulate the mRNAs encoding proteins of Ras-mediated signal transduction pathway and components of innate immune-system, which could contribute to the molecular response of coral bleaching.

  13. miRNAs in brain development

    International Nuclear Information System (INIS)

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function

  14. Synergic Functions of miRNAs Determine Neuronal Fate of Adult Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Meritxell Pons-Espinal

    2017-04-01

    Full Text Available Summary: Adult neurogenesis requires the precise control of neuronal versus astrocyte lineage determination in neural stem cells. While microRNAs (miRNAs are critically involved in this step during development, their actions in adult hippocampal neural stem cells (aNSCs has been unclear. As entry point to address that question we chose DICER, an endoribonuclease essential for miRNA biogenesis and other RNAi-related processes. By specific ablation of Dicer in aNSCs in vivo and in vitro, we demonstrate that miRNAs are required for the generation of new neurons, but not astrocytes, in the adult murine hippocampus. Moreover, we identify 11 miRNAs, of which 9 have not been previously characterized in neurogenesis, that determine neurogenic lineage fate choice of aNSCs at the expense of astrogliogenesis. Finally, we propose that the 11 miRNAs sustain adult hippocampal neurogenesis through synergistic modulation of 26 putative targets from different pathways. : In this article, the authors demonstrate that Dicer-dependent miRNAs are required for the generation of new neurons, but not astrocytes, in the adult hippocampus in vivo and in vitro. The authors identify a new set of 11 miRNAs that synergistically converge on multiple targets in different pathways to sustain neurogenic lineage fate commitment in aNSCs. Keywords: mouse, hippocampus, neural stem cells, fate choice, adult neurogenesis, astrogliogenesis, DICER, microRNAs, synergy

  15. Annotating long intergenic non-coding RNAs under artificial selection during chicken domestication.

    Science.gov (United States)

    Wang, Yun-Mei; Xu, Hai-Bo; Wang, Ming-Shan; Otecko, Newton Otieno; Ye, Ling-Qun; Wu, Dong-Dong; Zhang, Ya-Ping

    2017-08-15

    Numerous biological functions of long intergenic non-coding RNAs (lincRNAs) have been identified. However, the contribution of lincRNAs to the domestication process has remained elusive. Following domestication from their wild ancestors, animals display substantial changes in many phenotypic traits. Therefore, it is possible that diverse molecular drivers play important roles in this process. We analyzed 821 transcriptomes in this study and annotated 4754 lincRNA genes in the chicken genome. Our population genomic analysis indicates that 419 lincRNAs potentially evolved during artificial selection related to the domestication of chicken, while a comparative transcriptomic analysis identified 68 lincRNAs that were differentially expressed under different conditions. We also found 47 lincRNAs linked to special phenotypes. Our study provides a comprehensive view of the genome-wide landscape of lincRNAs in chicken. This will promote a better understanding of the roles of lincRNAs in domestication, and the genetic mechanisms associated with the artificial selection of domestic animals.

  16. The miRNAome of globe artichoke: conserved and novel micro RNAs and target analysis

    Directory of Open Access Journals (Sweden)

    De Paola Domenico

    2012-01-01

    Full Text Available Abstract Background Plant microRNAs (miRNAs are involved in post-transcriptional regulatory mechanisms of several processes, including the response to biotic and abiotic stress, often contributing to the adaptive response of the plant to adverse conditions. In addition to conserved miRNAs, found in a wide range of plant species a number of novel species-specific miRNAs, displaying lower levels of expression can be found. Due to low abundance, non conserved miRNAs are difficult to identify and isolate using conventional approaches. Conversely, deep-sequencing of small RNA (sRNA libraries can detect even poorly expressed miRNAs. No miRNAs from globe artichoke have been described to date. We analyzed the miRNAome from artichoke by deep sequencing four sRNA libraries obtained from NaCl stressed and control leaves and roots. Results Conserved and novel miRNAs were discovered using accepted criteria. The expression level of selected miRNAs was monitored by quantitative real-time PCR. Targets were predicted and validated for their cleavage site. A total of 122 artichoke miRNAs were identified, 98 (25 families of which were conserved with other plant species, and 24 were novel. Some miRNAs were differentially expressed according to tissue or condition, magnitude of variation after salt stress being more pronounced in roots. Target function was predicted by comparison to Arabidopsis proteins; the 43 targets (23 for novel miRNAs identified included transcription factors and other genes, most of which involved in the response to various stresses. An unusual cleaved transcript was detected for miR393 target, transport inhibitor response 1. Conclusions The miRNAome from artichoke, including novel miRNAs, was unveiled, providing useful information on the expression in different organs and conditions. New target genes were identified. We suggest that the generation of secondary short-interfering RNAs from miR393 target can be a general rule in the plant

  17. Differential Expression of Circular RNAs in Glioblastoma Multiforme and Its Correlation with Prognosis

    Directory of Open Access Journals (Sweden)

    Junle Zhu

    2017-04-01

    Full Text Available OBJECTIVE: The present study aimed to explore the expression profiles of circular RNAs (circRNAs in glioblastoma multiforme (GBM in an attempt to identify potential core genes in the pathogenesis of this tumor. METHODS: Differentially expressed circRNAs were screened between tumor tissues from five GBM patients and five normal brain samples using Illumina Hiseq. Bioinformatics analysis was used to analyze their potential function. CircBRAF was further detected in different WHO grades glioma tissues and normal brain tissues. Kaplan-Meier curves and multivariate Cox's analysis were used to analyze the association between circBRAF expression level and prognosis of glioma patients. RESULTS: A total of 1411 differentially expressed circRNAs were identified in GBM patients including 206 upregulated circRNAs and 1205 downregulated circRNAs. Differential expression of circRNAs was closely associated with the biological process and molecular function. The downregulated circRNAs were mainly associated with ErbB and Neurotrophin signaling pathways. Moreover, the expression level of circBRAF in normal brain tissues was significantly higher than that in glioma tissues (P < .001. CircBRAF was significantly lower in glioma patients with high pathological grade (WHO III & IV than those with low grade (WHO I & II (P < .001. Cox analysis revealed that high circBRAF expression was an independent biomarker for predicting good progression-free survival and overall survival in glioma patients (HR = 0.413, 95% CI 0.201-0.849; HR = 0.299, 95% CI 0.135-0.661; respectively. CONCLUSION: The present study identified a profile of dysregulated circRNAs in GBM. Bioinformatics analysis showed that dysregulated circRNAs might be associated with tumorigenesis and development of GBM. In addition, circBRAF could severe as a biomarker for predicting pathological grade and prognosis in glioma patients.

  18. Identification and allelic dissection uncover roles of lncRNAs in secondary growth of Populus tomentosa.

    Science.gov (United States)

    Zhou, Daling; Du, Qingzhang; Chen, Jinhui; Wang, Qingshi; Zhang, Deqiang

    2017-10-01

    Long non-coding RNAs (lncRNAs) function in various biological processes. However, their roles in secondary growth of plants remain poorly understood. Here, 15,691 lncRNAs were identified from vascular cambium, developing xylem, and mature xylem of Populus tomentosa with high and low biomass using RNA-seq, including 1,994 lncRNAs that were differentially expressed (DE) among the six libraries. 3,569 cis-regulated and 3,297 trans-regulated protein-coding genes were predicted as potential target genes (PTGs) of the DE lncRNAs to participate in biological regulation. Then, 476 and 28 lncRNAs were identified as putative targets and endogenous target mimics (eTMs) of Populus known microRNAs (miRNAs), respectively. Genome re-sequencing of 435 individuals from a natural population of P. tomentosa found 34,015 single nucleotide polymorphisms (SNPs) within 178 lncRNA loci and 522 PTGs. Single-SNP associations analysis detected 2,993 associations with 10 growth and wood-property traits under additive and dominance model. Epistasis analysis identified 17,656 epistatic SNP pairs, providing evidence for potential regulatory interactions between lncRNAs and their PTGs. Furthermore, a reconstructed epistatic network, representing interactions of 8 lncRNAs and 15 PTGs, might enrich regulation roles of genes in the phenylpropanoid pathway. These findings may enhance our understanding of non-coding genes in plants. © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  19. From Oxidative Stress Damage to Pathways, Networks, and Autophagy via MicroRNAs

    Directory of Open Access Journals (Sweden)

    Nikolai Engedal

    2018-01-01

    Full Text Available Oxidative stress can alter the expression level of many microRNAs (miRNAs, but how these changes are integrated and related to oxidative stress responses is poorly understood. In this article, we addressed this question by using in silico tools. We reviewed the literature for miRNAs whose expression is altered upon oxidative stress damage and used them in combination with various databases and software to predict common gene targets of oxidative stress-modulated miRNAs and affected pathways. Furthermore, we identified miRNAs that simultaneously target the predicted oxidative stress-modulated miRNA gene targets. This generated a list of novel candidate miRNAs potentially involved in oxidative stress responses. By literature search and grouping of pathways and cellular responses, we could classify these candidate miRNAs and their targets into a larger scheme related to oxidative stress responses. To further exemplify the potential of our approach in free radical research, we used our explorative tools in combination with ingenuity pathway analysis to successfully identify new candidate miRNAs involved in the ubiquitination process, a master regulator of cellular responses to oxidative stress and proteostasis. Lastly, we demonstrate that our approach may also be useful to identify novel candidate connections between oxidative stress-related miRNAs and autophagy. In summary, our results indicate novel and important aspects with regard to the integrated biological roles of oxidative stress-modulated miRNAs and demonstrate how this type of in silico approach can be useful as a starting point to generate hypotheses and guide further research on the interrelation between miRNA-based gene regulation, oxidative stress signaling pathways, and autophagy.

  20. Identification and profiling of microRNAs and their target genes from developing caprine skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    Full Text Available Goat is an important agricultural animal for meat production. Functional studies have demonstrated that microRNAs (miRNAs regulate gene expression at the post-transcriptional level and play an important role in various biological processes. Although studies on miRNAs expression profiles have been performed in various animals, relatively limited information about goat muscle miRNAs has been reported. To investigate the miRNAs involved in regulating different periods of skeletal muscle development, we herein performed a comprehensive research for expression profiles of caprine miRNAs during two developmental stages of skeletal muscles: fetal stage and six month-old stage. As a result, 15,627,457 and 15,593,721 clean reads were obtained from the fetal goat library (FC and the six month old goat library (SMC, respectively. 464 known miRNAs and 83 novel miRNA candidates were identified. Furthermore, by comparing the miRNA profile, 336 differentially expressed miRNAs were identified and then the potential targets of the differentially expressed miRNAs were predicted. To understand the regulatory network of miRNAs during muscle development, the mRNA expression profiles for the two development stages were characterized and 7322 differentially expressed genes (DEGs were identified. Then the potential targets of miRNAs were compared to the DEGs, the intersection of the two gene sets were screened out and called differentially expressed targets (DE-targets, which were involved in 231 pathways. Ten of the 231 pathways that have smallest P-value were shown as network figures. Based on the analysis of pathways and networks, we found that miR-424-5p and miR-29a might have important regulatory effect on muscle development, which needed to be further studied. This study provided the first global view of the miRNAs in caprine muscle tissues. Our results help elucidation of complex regulatory networks between miRNAs and mRNAs and for the study of muscle

  1. Regulatory RNAs in the Less Studied Streptococcal Species: from Nomenclature to Identification

    Directory of Open Access Journals (Sweden)

    Mohamed Amine Zorgani

    2016-07-01

    Full Text Available Streptococcal species are Gram-positive bacteria involved in severe and invasive diseases in humans and animals. Although this group includes different pathogenic species involved in life-threatening infections for humans, it also includes beneficial species, such as Streptococcus thermophilus, which is used in yogurt production. In bacteria virulence factors are controlled by various regulatory networks including regulatory RNAs. For clearness and to develop logical thinking, we start this review with a revision of regulatory RNAs nomenclature. Previous reviews are mostly dealing with Streptococcus pyogenes and Streptococcus pneumoniae regulatory RNAs. We especially focused our analysis on regulatory RNAs in Streptococcus agalactiae, Streptococcus mutans, Streptococcus thermophilus and other less studied Streptococcus species. Although S. agalactiae RNome remains largely unknown, sRNAs (small RNAs are supposed to mediate regulation during environmental adaptation and host infection. In the case of S. mutans, sRNAs are suggested to be involved in competence regulation, carbohydrate metabolism and Toxin-Antitoxin systems. A new category of miRNA-size small RNAs (msRNAs was also identified for the first time in this species. The analysis of S. thermophilus sRNome shows that many sRNAs are associated to the bacterial immune system known as CRISPR-Cas system. Only few of the other different Streptococcus species have been the subject of studies pointed toward the characterization of regulatory RNAs. Finally, understanding bacterial sRNome can constitute one step forward to the elaboration of new strategies in therapy such as substitution of antibiotics in the management of S. agalactiae neonatal infections, prevention of S. mutans dental caries or use of S. thermophilus CRISPR-Cas system in genome editing applications.

  2. Identification of arbuscular mycorrhiza (AM-responsive microRNAs in tomato

    Directory of Open Access Journals (Sweden)

    Ping eWu

    2016-03-01

    Full Text Available A majority of land plants can form symbiosis with arbuscular mycorrhizal (AM fungi. MicroRNAs (miRNAs have been implicated to regulate this process in legumes, but their involvement in non-legume species is largely unknown. In this study, by performing deep sequencing of sRNA libraries in tomato roots and comparing with tomato genome, a total of 700 potential miRNAs were predicted, among them, 187 are known plant miRNAs that have been previously deposited in miRBase. Unlike the profiles in other plants such as rice and Arabidopsis, a large proportion of predicted tomato miRNAs was 24 nt in length. A similar pattern was observed in the potato genome but not in tobacco, indicating a Solanum genus-specific expansion of 24-nt miRNAs. About 40% identified tomato miRNAs showed significantly altered expressions upon Rhizophagus irregularis inoculation, suggesting the potential roles of these novel miRNAs in AM symbiosis. The differential expression of five known and six novel miRNAs were further validated using qPCR analysis. Interestingly, three up-regulated known tomato miRNAs belong to a known miR171 family, a member of which has been reported in Medicago truncatula to regulate AM symbiosis. Thus, the miR171 family likely regulates AM symbiosis conservatively across different plant lineages. More than 1000 genes targeted by potential AM-responsive miRNAs were provided and their roles in AM symbiosis are worth further exploring.

  3. Identification of evolutionarily conserved Momordica charantia microRNAs using computational approach and its utility in phylogeny analysis.

    Science.gov (United States)

    Thirugnanasambantham, Krishnaraj; Saravanan, Subramanian; Karikalan, Kulandaivelu; Bharanidharan, Rajaraman; Lalitha, Perumal; Ilango, S; HairulIslam, Villianur Ibrahim

    2015-10-01

    Momordica charantia (bitter gourd, bitter melon) is a monoecious Cucurbitaceae with anti-oxidant, anti-microbial, anti-viral and anti-diabetic potential. Molecular studies on this economically valuable plant are very essential to understand its phylogeny and evolution. MicroRNAs (miRNAs) are conserved, small, non-coding RNA with ability to regulate gene expression by bind the 3' UTR region of target mRNA and are evolved at different rates in different plant species. In this study we have utilized homology based computational approach and identified 27 mature miRNAs for the first time from this bio-medically important plant. The phylogenetic tree developed from binary data derived from the data on presence/absence of the identified miRNAs were noticed to be uncertain and biased. Most of the identified miRNAs were highly conserved among the plant species and sequence based phylogeny analysis of miRNAs resolved the above difficulties in phylogeny approach using miRNA. Predicted gene targets of the identified miRNAs revealed their importance in regulation of plant developmental process. Reported miRNAs held sequence conservation in mature miRNAs and the detailed phylogeny analysis of pre-miRNA sequences revealed genus specific segregation of clusters. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension

    Science.gov (United States)

    Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Liang, Yan; Zhai, Zhenguo; Yang, Yuanhua

    2017-01-01

    Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but debilitating and life-threatening complication of acute pulmonary embolism. Circular RNAs (circRNAs), presenting as covalently closed continuous loops, are RNA molecules with covalently joined 3′- and 5′-ends formed by back-splicing events. circRNAs may be significant biological molecules to understand disease mechanisms and to identify biomarkers for disease diagnosis and therapy. The aim of this study was to investigate the potential roles of circRNAs in CTEPH. Methods: Ten human blood samples (5 each from CTEPH and control groups) were included in the Agilent circRNA chip. The differentially expressed circRNAs were evaluated using t test, with significance set at a P value of < .05. A functional enrichment analysis for differentially expressed circRNAs was performed using DAVID online tools, and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for target genes of miRNAs was performed using the R package clusterProfiler. Furthermore, miRNAs that interacted with differentially expressed circRNAs were predicted using the miRanda package. mRNAs that had clear biological functions and were regulated by miRNAs were predicted using miRWalk2.0 and then combined into a circRNA–miRNA–mRNA network. Results: In total, 351 differentially expressed circRNAs (122 upregulated and 229 downregulated) between CTEPH and control groups were obtained; among these circRNAs, hsa_circ_0002062 and hsa_circ_0022342 might be important because they can regulate 761 (e.g., hsa-miR-942–5p) and 453 (e.g., hsa-miR-940) miRNAs, respectively. Target genes (e.g., cyclin-dependent kinase 6) of hsa-miR-942–5p were mainly enriched in cancer-related pathways, whereas target genes (e.g., CRK-Like Proto-Oncogene, Adaptor Protein) of hsa-miR-940 were enriched in the ErbB signaling pathway. Therefore, these pathways are potentially important in CTEPH. Conclusions: Our findings

  5. Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough

    International Nuclear Information System (INIS)

    Burns, Andrew; Joachimiak, Marcin; Deutschbauer, Adam; Arkin, Adam; Bender, Kelly

    2010-01-01

    Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possess an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ∼87 intergenic, while ∼140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ∼54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.

  6. MicroRNAs in Breast Cancer: One More Turn in Regulation.

    Science.gov (United States)

    Eroles, Pilar; Asensio, Pilar E; Tormo, Eduardo; Martin, Eduardo T; Pineda, Begoña; Merlo, Begoña P; Espin, Estefanía; Armas, Estefanía E; Lluch, Ana; Hernández, Ana L

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNA molecules that critically regulate the expression of genes. MiRNAs are involved in physiological cellular processes; however, their deregulation has been associated with several pathologies, including cancer. In human breast cancer, differently expressed levels of miRNAs have been identified from those in normal breast tissues. Moreover, several miRNAs have been correlated with pathological phenotype, cancer subtype and therapy response in breast cancer. The resistance to therapy is increasingly a problem in patient management, and miRNAs are emerging as novel therapeutic targets and potential predictive biomarkers for treatment. This review provides an overview of the current situation of miRNAs in breast cancer, focusing on their involvement in resistance and the circulating miRNA. The mechanisms of therapeutic resistance regulated by miRNAs, such as the regulation of receptors, the modification of enzymes of drug metabolism, the inhibition of cell cycle control or pro-apoptotic proteins, the alteration of histone activity and the regulation of DNA repair machinery among others, are discussed for breast cancer clinical subtypes. Additionally, in this review, we summarize the recent knowledge that has established miRNA detection in peripheral body fluids as a suitable biomarker. We review the detection of miRNA in liquid biopsies and its implications for the diagnosis and monitoring of breast cancer. This new generation of cancer biomarkers may lead to a significant improvement in patient management.

  7. Long noncoding RNAs related to the odontogenic potential of dental mesenchymal cells in mice.

    Science.gov (United States)

    Zheng, Yunfei; Jia, Lingfei

    2016-07-01

    The purpose of this study is to identify the lncRNAs that are associated with the odontogenic potential in mouse dental mesenchymal cells. The odontogenic potential of dental mesenchymal cells was found to be lost in the course of in vitro culture, so the lncRNA profiles were subsequently compared between freshly-isolated and cultured dental mesenchymal cells using RNA-sequencing. A co-expression analysis of differentially expressed lncRNAs and coding RNAs was performed to understand their potential functions. The expression of several selected lncRNAs was also examined in developing tooth germs. Compared with cultured dental mesenchymal cells, 108 lncRNAs were upregulated and 36 lncRNAs were downregulated in freshly-isolated dental mesenchymal cells. Coding genes correlated with the lncRNAs were mainly associated with DNA and protein metabolic processes and cytoskeletal anchorage. Meg3, Malat1, Xist, and Dlx1as were significantly downregulated in cultured dental mesenchymal cells but were upregulated in odontogenic dental mesenchymal tissues. Moreover, the levels of Dlx1as were negatively correlated with that of Dlx1 in dental mesenchymal cells and dental mesenchymal tissues. The lncRNA profiles of dental mesenchymal cells are significantly changed during culturing, and the dysregulation of lncRNAs is associated with the loss of odontogenic potential. Copyright © 2016. Published by Elsevier Ltd.

  8. MicroRNAs in the host response to viral infections of veterinary importance

    Directory of Open Access Journals (Sweden)

    Mohamed Samir Ahmed

    2016-10-01

    Full Text Available The discovery of small regulatory non-coding RNAs has been an exciting advance in the field of genomics. MicroRNAs (miRNAs are endogenous RNA molecules, approximately 22 nucleotides in length that regulate gene expression, mostly at the post-transcriptional level. MiRNA profiling technologies have made it possible to identify and quantify novel miRNAs and to study their regulation and potential roles in disease pathogenesis. Although miRNAs have been extensively investigated in viral infections of humans, their implications in viral diseases affecting animals of veterinary importance are much less understood. The number of annotated miRNAs in different animal species is growing continuously, and novel roles in regulating host-pathogen interactions are being discovered, for instance miRNA-mediated augmentation of viral transcription and replication. In this review, we present an overview of synthesis and function of miRNAs and an update on the current state of research on host-encoded miRNAs in the genesis of viral infectious diseases in their natural animal host as well as in selected in vivo and in vitro laboratory models.

  9. Expanding the action of duplex RNAs into the nucleus: redirecting alternative splicing

    Science.gov (United States)

    Liu, Jing; Hu, Jiaxin; Corey, David R.

    2012-01-01

    Double-stranded RNAs are powerful agents for silencing gene expression in the cytoplasm of mammalian cells. The potential for duplex RNAs to control expression in the nucleus has received less attention. Here, we investigate the ability of small RNAs to redirect splicing. We identify RNAs targeting an aberrant splice site that restore splicing and production of functional protein. RNAs can target sequences within exons or introns and affect the inclusion of exons within SMN2 and dystrophin, genes responsible for spinal muscular atrophy and Duchenne muscular dystrophy, respectively. Duplex RNAs recruit argonaute 2 (AGO2) to pre-mRNA transcripts and altered splicing requires AGO2 expression. AGO2 promotes transcript cleavage in the cytoplasm, but recruitment of AGO2 to pre-mRNAs does not reduce transcript levels, exposing a difference between cytoplasmic and nuclear pathways. Involvement of AGO2 in splicing, a classical nuclear process, reinforces the conclusion from studies of RNA-mediated transcriptional silencing that RNAi pathways can be adapted to function in the mammalian nucleus. These data provide a new strategy for controlling splicing and expand the reach of small RNAs within the nucleus of mammalian cells. PMID:21948593

  10. Non-coding RNAs as epigenetic regulator of glioma stem-like cell differentiation

    Directory of Open Access Journals (Sweden)

    Keisuke eKatsushima

    2014-02-01

    Full Text Available Glioblastomas show heterogeneous histological features. These distinct phenotypic states are thought to be associated with the presence of glioma stem cells (GSCs, which are highly tumorigenic and self-renewing sub-population of tumor cells that have different functional characteristics. Differentiation of GSCs may be regulated by multi-tiered epigenetic mechanisms that orchestrate the expression of thousands of genes. One such regulatory mechanism involves functional non-coding RNAs (ncRNAs, such as microRNAs (miRNAs; a large number of ncRNAs have been identified and shown to regulate the expression of genes associated with cell differentiation programs. Given the roles of miRNAs in cell differentiation, it is possible they are involved in the regulation of gene expression networks in GSCs that are important for the maintenance of the pluripotent state and for directing differentiation. Here, we review recent findings on ncRNAs associated with GSC differentiation and discuss how these ncRNAs contribute to the establishment of tissue heterogeneity during glioblastoma tumor formation.

  11. Aberrantly expressed microRNAs in the context of bladder tumorigenesis

    Directory of Open Access Journals (Sweden)

    Jong-Young Lee

    2016-06-01

    Full Text Available MicroRNAs (miRNAs, small noncoding RNAs 19–22 nucleotides in length, play a major role in negative regulation of gene expression at the posttranscriptional level. Several miRNAs act as tumor suppressors or oncogenes that control cell differentiation, proliferation, apoptosis, or angiogenesis during tumorigenesis. To date, 19 research groups have published large-scale expression profiles that identified 261 miRNAs differentially expressed in bladder cancer, of which 76 were confirmed to have consistent expression patterns by two or more groups. These consistently expressed miRNAs participated in regulation of multiple biological processes and factors, including axon guidance, cancer-associated proteoglycans, and the ErbB and transforming growth factorbeta signaling pathways. Because miRNAs can be released from cancer cells into urine via secreted particles, we propose that miRNAs differentially expressed between tissue and urine could serve as predictors of bladder cancer, and could thus be exploited for noninvasive diagnosis.

  12. Mycoplasma non-coding RNA: identification of small RNAs and targets

    Directory of Open Access Journals (Sweden)

    Franciele Maboni Siqueira

    2016-10-01

    Full Text Available Abstract Background Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. Results A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. Conclusion This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms.

  13. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff.).

    Science.gov (United States)

    Chen, Zongxiang; Li, Fuli; Yang, Songnan; Dong, Yibo; Yuan, Qianhua; Wang, Feng; Li, Weimin; Jiang, Ying; Jia, Shirong; Pei, Xinwu

    2013-01-01

    MicroRNAs (miRNAs) is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing) to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2) and one flowering stage (CWR-F2) were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and lays a foundation for further study of phase change

  14. Identification and functional analysis of flowering related microRNAs in common wild rice (Oryza rufipogon Griff..

    Directory of Open Access Journals (Sweden)

    Zongxiang Chen

    Full Text Available BACKGROUND: MicroRNAs (miRNAs is a class of non-coding RNAs involved in post- transcriptional control of gene expression, via degradation and/or translational inhibition. Six-hundred sixty-one rice miRNAs are known that are important in plant development. However, flowering-related miRNAs have not been characterized in Oryza rufipogon Griff. It was approved by supervision department of Guangdong wild rice protection. We analyzed flowering-related miRNAs in O. rufipogon using high-throughput sequencing (deep sequencing to understand the changes that occurred during rice domestication, and to elucidate their functions in flowering. RESULTS: Three O. rufipogon sRNA libraries, two vegetative stage (CWR-V1 and CWR-V2 and one flowering stage (CWR-F2 were sequenced using Illumina deep sequencing. A total of 20,156,098, 21,531,511 and 20,995,942 high quality sRNA reads were obtained from CWR-V1, CWR-V2 and CWR-F2, respectively, of which 3,448,185, 4,265,048 and 2,833,527 reads matched known miRNAs. We identified 512 known rice miRNAs in 214 miRNA families and predicted 290 new miRNAs. Targeted functional annotation, GO and KEGG pathway analyses predicted that 187 miRNAs regulate expression of flowering-related genes. Differential expression analysis of flowering-related miRNAs showed that: expression of 95 miRNAs varied significantly between the libraries, 66 are flowering-related miRNAs, such as oru-miR97, oru-miR117, oru-miR135, oru-miR137, et al. 17 are early-flowering -related miRNAs, including osa-miR160f, osa-miR164d, osa-miR167d, osa-miR169a, osa-miR172b, oru-miR4, et al., induced during the floral transition. Real-time PCR revealed the same expression patterns as deep sequencing. miRNAs targets were confirmed for cleavage by 5'-RACE in vivo, and were negatively regulated by miRNAs. CONCLUSIONS: This is the first investigation of flowering miRNAs in wild rice. The result indicates that variation in miRNAs occurred during rice domestication and

  15. Identification and Characterization of MicroRNAs in Small Brown Planthopper (Laodephax striatellus) by Next-Generation Sequencing

    Science.gov (United States)

    Lou, Yonggen; Cheng, Jia'an; Zhang, Hengmu; Xu, Jian-Hong

    2014-01-01

    MicroRNAs (miRNAs) are endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level and are thought to play critical roles in many metabolic activities in eukaryotes. The small brown planthopper (Laodephax striatellus Fallén), one of the most destructive agricultural pests, causes great damage to crops including rice, wheat, and maize. However, information about the genome of L. striatellus is limited. In this study, a small RNA library was constructed from a mixed L. striatellus population and sequenced by Solexa sequencing technology. A total of 501 mature miRNAs were identified, including 227 conserved and 274 novel miRNAs belonging to 125 and 250 families, respectively. Sixty-nine conserved miRNAs that are included in 38 families are predicted to have an RNA secondary structure typically found in miRNAs. Many miRNAs were validated by stem-loop RT-PCR. Comparison with the miRNAs in 84 animal species from miRBase showed that the conserved miRNA families we identified are highly conserved in the Arthropoda phylum. Furthermore, miRanda predicted 2701 target genes for 378 miRNAs, which could be categorized into 52 functional groups annotated by gene ontology. The function of miRNA target genes was found to be very similar between conserved and novel miRNAs. This study of miRNAs in L. striatellus will provide new information and enhance the understanding of the role of miRNAs in the regulation of L. striatellus metabolism and development. PMID:25057821

  16. Identification and characterization of microRNAs in small brown planthopper (Laodephax striatellus by next-generation sequencing.

    Directory of Open Access Journals (Sweden)

    Guoyan Zhou

    Full Text Available MicroRNAs (miRNAs are endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level and are thought to play critical roles in many metabolic activities in eukaryotes. The small brown planthopper (Laodephax striatellus Fallén, one of the most destructive agricultural pests, causes great damage to crops including rice, wheat, and maize. However, information about the genome of L. striatellus is limited. In this study, a small RNA library was constructed from a mixed L. striatellus population and sequenced by Solexa sequencing technology. A total of 501 mature miRNAs were identified, including 227 conserved and 274 novel miRNAs belonging to 125 and 250 families, respectively. Sixty-nine conserved miRNAs that are included in 38 families are predicted to have an RNA secondary structure typically found in miRNAs. Many miRNAs were validated by stem-loop RT-PCR. Comparison with the miRNAs in 84 animal species from miRBase showed that the conserved miRNA families we identified are highly conserved in the Arthropoda phylum. Furthermore, miRanda predicted 2701 target genes for 378 miRNAs, which could be categorized into 52 functional groups annotated by gene ontology. The function of miRNA target genes was found to be very similar between conserved and novel miRNAs. This study of miRNAs in L. striatellus will provide new information and enhance the understanding of the role of miRNAs in the regulation of L. striatellus metabolism and development.

  17. High-throughput sequencing identification and characterization of potentially adhesion-related small RNAs in Streptococcus mutans.

    Science.gov (United States)

    Zhu, Wenhui; Liu, Shanshan; Liu, Jia; Zhou, Yan; Lin, Huancai

    2018-05-01

    Adherence capacity is one of the principal virulence factors of Streptococcus mutans, and adhesion virulence factors are controlled by small RNAs (sRNAs) at the post-transcriptional level in various bacteria. Here, we aimed to identify and decipher putative adhesion-related sRNAs in clinical strains of S. mutans. RNA deep-sequencing was performed to identify potential sRNAs under different adhesion conditions. The expression of sRNAs was analysed by quantitative real-time PCR (qRT-PCR), and bioinformatic methods were used to predict the functional characteristics of sRNAs. A total of 736 differentially expressed candidate sRNAs were predicted, and these included 352 sRNAs located on the antisense to mRNA (AM) and 384 sRNAs in intergenic regions (IGRs). The top 7 differentially expressed sRNAs were successfully validated by qRT-PCR in UA159, and 2 of these were further confirmed in 100 clinical isolates. Moreover, the sequences of two sRNAs were conserved in other Streptococcus species, indicating a conserved role in such closely related species. A good correlation between the expression of sRNAs and the adhesion of 100 clinical strains was observed, which, combined with GO and KEGG, provides a perspective for the comprehension of sRNA function annotation. This study revealed a multitude of novel putative adhesion-related sRNAs in S. mutans and contributed to a better understanding of information concerning the transcriptional regulation of adhesion in S. mutans.

  18. MicroRNAs in the Hypothalamus

    DEFF Research Database (Denmark)

    Meister, Björn; Herzer, Silke; Silahtaroglu, Asli

    2013-01-01

    MicroRNAs (miRNAs) are short (∼22 nucleotides) non-coding ribonucleic acid (RNA) molecules that negatively regulate the expression of protein-coding genes. Posttranscriptional silencing of target genes by miRNA is initiated by binding to the 3'-untranslated regions of target mRNAs, resulting...... of the hypothalamus and miRNAs have recently been shown to be important regulators of hypothalamic control functions. The aim of this review is to summarize some of the current knowledge regarding the expression and role of miRNAs in the hypothalamus.......RNA molecules are abundantly expressed in tissue-specific and regional patterns and have been suggested as potential biomarkers, disease modulators and drug targets. The central nervous system is a prominent site of miRNA expression. Within the brain, several miRNAs are expressed and/or enriched in the region...

  19. SnoRNAs from the filamentous fungus Neurospora crassa: structural, functional and evolutionary insights

    Directory of Open Access Journals (Sweden)

    Chen Chun-Long

    2009-11-01

    Full Text Available Abstract Background SnoRNAs represent an excellent model for studying the structural and functional evolution of small non-coding RNAs involved in the post-transcriptional modification machinery for rRNAs and snRNAs in eukaryotic cells. Identification of snoRNAs from Neurospora crassa, an important model organism playing key roles in the development of modern genetics, biochemistry and molecular biology will provide insights into the evolution of snoRNA genes in the fungus kingdom. Results Fifty five box C/D snoRNAs were identified and predicted to guide 71 2'-O-methylated sites including four sites on snRNAs and three sites on tRNAs. Additionally, twenty box H/ACA snoRNAs, which potentially guide 17 pseudouridylations on rRNAs, were also identified. Although not exhaustive, the study provides the first comprehensive list of two major families of snoRNAs from the filamentous fungus N. crassa. The independently transcribed strategy dominates in the expression of box H/ACA snoRNA genes, whereas most of the box C/D snoRNA genes are intron-encoded. This shows that different genomic organizations and expression modes have been adopted by the two major classes of snoRNA genes in N. crassa . Remarkably, five gene clusters represent an outstanding organization of box C/D snoRNA genes, which are well conserved among yeasts and multicellular fungi, implying their functional importance for the fungus cells. Interestingly, alternative splicing events were found in the expression of two polycistronic snoRNA gene hosts that resemble the UHG-like genes in mammals. Phylogenetic analysis further revealed that the extensive separation and recombination of two functional elements of snoRNA genes has occurred during fungus evolution. Conclusion This is the first genome-wide analysis of the filamentous fungus N. crassa snoRNAs that aids in understanding the differences between unicellular fungi and multicellular fungi. As compared with two yeasts, a more complex

  20. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  1. microRNAs Associated with Drought Response in the Bioenergy Crop Sugarcane (Saccharum spp.)

    Science.gov (United States)

    Vilela, Romel Duarte; Costa, Gustavo Gilson Lacerda; Dias, Lara Isys; Endres, Laurício; Menossi, Marcelo

    2012-01-01

    Sugarcane (Saccharum spp.) is one of the most important crops in the world. Drought stress is a major abiotic stress factor that significantly reduces sugarcane yields. However the gene network that mediates plant responses to water stress remains largely unknown in several crop species. Although several microRNAs that mediate post-transcriptional regulation during water stress have been described in other species, the role of the sugarcane microRNAs during drought stress has not been studied. The objective of this work was to identify sugarcane miRNAs that are differentially expressed under drought stress and to correlate this expression with the behavior of two sugarcane cultivars with different drought tolerances. The sugarcane cultivars RB867515 (higher drought tolerance) and RB855536 (lower drought tolerance) were cultivated in a greenhouse for three months and then subjected to drought for 2, 4, 6 or 8 days. By deep sequencing of small RNAs, we were able to identify 18 miRNA families. Among all of the miRNAs thus identified, seven were differentially expressed during drought. Six of these miRNAs were differentially expressed at two days of stress, and five miRNAs were differentially expressed at four days. The expression levels of five miRNAs (ssp-miR164, ssp-miR394, ssp-miR397, ssp-miR399-seq 1 and miR528) were validated by RT-qPCR (quantitative reverse transcriptase PCR). Six precursors and the targets of the differentially expressed miRNA were predicted using an in silico approach and validated by RT-qPCR; many of these targets may play important roles in drought tolerance. These findings constitute a significant increase in the number of identified miRNAs in sugarcane and contribute to the elucidation of the complex regulatory network that is activated by drought stress. PMID:23071617

  2. Identification and characterization of wheat long non-protein coding RNAs responsive to powdery mildew infection and heat stress by using microarray analysis and SBS sequencing

    Directory of Open Access Journals (Sweden)

    Peng Huiru

    2011-04-01

    Full Text Available Abstract Background Biotic and abiotic stresses, such as powdery mildew infection and high temperature, are important limiting factors for yield and grain quality in wheat production. Emerging evidences suggest that long non-protein coding RNAs (npcRNAs are developmentally regulated and play roles in development and stress responses of plants. However, identification of long npcRNAs is limited to a few plant species, such as Arabidopsis, rice and maize, no systematic identification of long npcRNAs and their responses to abiotic and biotic stresses is reported in wheat. Results In this study, by using computational analysis and experimental approach we identified 125 putative wheat stress responsive long npcRNAs, which are not conserved among plant species. Among them, some were precursors of small RNAs such as microRNAs and siRNAs, two long npcRNAs were identified as signal recognition particle (SRP 7S RNA variants, and three were characterized as U3 snoRNAs. We found that wheat long npcRNAs showed tissue dependent expression patterns and were responsive to powdery mildew infection and heat stress. Conclusion Our results indicated that diverse sets of wheat long npcRNAs were responsive to powdery mildew infection and heat stress, and could function in wheat responses to both biotic and abiotic stresses, which provided a starting point to understand their functions and regulatory mechanisms in the future.

  3. MicroRNAs regulate osteogenesis and chondrogenesis

    International Nuclear Information System (INIS)

    Dong, Shiwu; Yang, Bo; Guo, Hongfeng; Kang, Fei

    2012-01-01

    Highlights: ► To focus on the role of miRNAs in chondrogenesis and osteogenesis. ► Involved in the regulation of miRNAs in osteoarthritis. ► To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  4. MicroRNAs regulate osteogenesis and chondrogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Shiwu, E-mail: shiwudong@gmail.com [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China); Yang, Bo; Guo, Hongfeng; Kang, Fei [Laboratory of Biomechanics, Department of Anatomy, The Third Military Medical University, Chongqing (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer To focus on the role of miRNAs in chondrogenesis and osteogenesis. Black-Right-Pointing-Pointer Involved in the regulation of miRNAs in osteoarthritis. Black-Right-Pointing-Pointer To speculate some therapeutic targets for bone diseases. -- Abstract: MicroRNAs (miRNAs) are a class of small molecules and non-coding single strand RNAs that regulate gene expression at the post-transcriptional level by binding to specific sequences within target genes. miRNAs have been recognized as important regulatory factors in organism development and disease expression. Some miRNAs regulate the proliferation and differentiation of osteoblasts, osteoclasts and chondrocytes, eventually influencing metabolism and bone formation. miRNAs are expected to provide potential gene therapy targets for the clinical treatment of metabolic bone diseases and bone injuries. Here, we review the recent research progress on the regulation of miRNAs in bone biology, with a particular focus on the miRNA-mediated control mechanisms of bone and cartilage formation.

  5. Identification and Expression Analyses of miRNAs from Two Contrasting Flower Color Cultivars of Canna by Deep Sequencing.

    Science.gov (United States)

    Roy, Sribash; Tripathi, Abhinandan Mani; Yadav, Amrita; Mishra, Parneeta; Nautiyal, Chandra Shekhar

    2016-01-01

    miRNAs are endogenous small RNA (sRNA) that play critical roles in plant development processes. Canna is an ornamental plant belonging to family Cannaceae. Here, we report for the first time the identification and differential expression of miRNAs in two contrasting flower color cultivars of Canna, Tropical sunrise and Red president. A total of 313 known miRNAs belonging to 78 miRNA families were identified from both the cultivars. Thirty one miRNAs (17 miRNA families) were specific to Tropical sunrise and 43 miRNAs (10 miRNA families) were specific to Red president. Thirty two and 18 putative new miRNAs were identified from Tropical sunrise and Red president, respectively. One hundred and nine miRNAs were differentially expressed in the two cultivars targeting 1343 genes. Among these, 16 miRNAs families targeting 60 genes were involved in flower development related traits and five miRNA families targeting five genes were involved in phenyl propanoid and pigment metabolic processes. We further validated the expression analysis of a few miRNA and their target genes by qRT-PCR. Transcription factors were the major miRNA targets identified. Target validation of a few randomly selected miRNAs by RLM-RACE was performed but was successful with only miR162. These findings will help in understanding flower development processes, particularly the color development in Canna.

  6. Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs.

    Directory of Open Access Journals (Sweden)

    Chen Chen

    Full Text Available The domestic pig (Sus scrofa, an important species in animal production industry, is a right model for studying adipogenesis and fat deposition. In order to expand the repertoire of porcine miRNAs and further explore potential regulatory miRNAs which have influence on adipogenesis, high-throughput Solexa sequencing approach was adopted to identify miRNAs in backfat of Large White (lean type pig and Meishan pigs (Chinese indigenous fatty pig. We identified 215 unique miRNAs comprising 75 known pre-miRNAs, of which 49 miRNA*s were first identified in our study, 73 miRNAs were overlapped in both libraries, and 140 were novelly predicted miRNAs, and 215 unique miRNAs were collectively corresponding to 235 independent genomic loci. Furthermore, we analyzed the sequence variations, seed edits and phylogenetic development of the miRNAs. 17 miRNAs were widely conserved from vertebrates to invertebrates, suggesting that these miRNAs may serve as potential evolutional biomarkers. 9 conserved miRNAs with significantly differential expressions were determined. The expression of miR-215, miR-135, miR-224 and miR-146b was higher in Large White pigs, opposite to the patterns shown by miR-1a, miR-133a, miR-122, miR-204 and miR-183. Almost all novel miRNAs could be considered pig-specific except ssc-miR-1343, miR-2320, miR-2326, miR-2411 and miR-2483 which had homologs in Bos taurus, among which ssc-miR-1343, miR-2320, miR-2411 and miR-2483 were validated in backfat tissue by stem-loop qPCR. Our results displayed a high level of concordance between the qPCR and Solexa sequencing method in 9 of 10 miRNAs comparisons except for miR-1a. Moreover, we found 2 miRNAs, miR-135 and miR-183, may exert impacts on porcine backfat development through WNT signaling pathway. In conclusion, our research develops porcine miRNAs and should be beneficial to study the adipogenesis and fat deposition of different pig breeds based on miRNAs.

  7. Role of Viral miRNAs and Epigenetic Modifications in Epstein-Barr Virus-Associated Gastric Carcinogenesis.

    Science.gov (United States)

    Giudice, Aldo; D'Arena, Giovanni; Crispo, Anna; Tecce, Mario Felice; Nocerino, Flavia; Grimaldi, Maria; Rotondo, Emanuela; D'Ursi, Anna Maria; Scrima, Mario; Galdiero, Massimiliano; Ciliberto, Gennaro; Capunzo, Mario; Franci, Gianluigi; Barbieri, Antonio; Bimonte, Sabrina; Montella, Maurizio

    2016-01-01

    MicroRNAs are short (21-23 nucleotides), noncoding RNAs that typically silence posttranscriptional gene expression through interaction with target messenger RNAs. Currently, miRNAs have been identified in almost all studied multicellular eukaryotes in the plant and animal kingdoms. Additionally, recent studies reported that miRNAs can also be encoded by certain single-cell eukaryotes and by viruses. The vast majority of viral miRNAs are encoded by the herpesviruses family. These DNA viruses including Epstein-Barr virus encode their own miRNAs and/or manipulate the expression of cellular miRNAs to facilitate respective infection cycles. Modulation of the control pathways of miRNAs expression is often involved in the promotion of tumorigenesis through a specific cascade of transduction signals. Notably, latent infection with Epstein-Barr virus is considered liable of causing several types of malignancies, including the majority of gastric carcinoma cases detected worldwide. In this review, we describe the role of the Epstein-Barr virus in gastric carcinogenesis, summarizing the functions of the Epstein-Barr virus-encoded viral proteins and related epigenetic alterations as well as the roles of Epstein-Barr virus-encoded and virally modulated cellular miRNAs.

  8. Small RNA Profiling in Dengue Virus 2-Infected Aedes Mosquito Cells Reveals Viral piRNAs and Novel Host miRNAs

    NARCIS (Netherlands)

    Miesen, P.; Ivens, A.; Buck, A.H.; Rij, R.P. van

    2016-01-01

    In Aedes mosquitoes, infections with arthropod-borne viruses (arboviruses) trigger or modulate the expression of various classes of viral and host-derived small RNAs, including small interfering RNAs (siRNAs), PIWI interacting RNAs (piRNAs), and microRNAs (miRNAs). Viral siRNAs are at the core of

  9. Dehydration-responsive miRNAs in foxtail millet: genome-wide identification, characterization and expression profiling.

    Science.gov (United States)

    Yadav, Amita; Khan, Yusuf; Prasad, Manoj

    2016-03-01

    A set of novel and known dehydration-responsive miRNAs have been identified in foxtail millet. These findings provide new insights into understanding the functional role of miRNAs and their respective targets in regulating plant response to dehydration stress. MicroRNAs perform significant regulatory roles in growth, development and stress response of plants. Though the miRNA-mediated gene regulatory networks under dehydration stress remain largely unexplored in plant including foxtail millet (Setaria italica), which is a natural abiotic stress tolerant crop. To find out the dehydration-responsive miRNAs at the global level, four small RNA libraries were constructed from control and dehydration stress treated seedlings of two foxtail millet cultivars showing contrasting tolerance behavior towards dehydration stress. Using Illumina sequencing technology, 55 known and 136 novel miRNAs were identified, representing 22 and 48 miRNA families, respectively. Eighteen known and 33 novel miRNAs were differentially expressed during dehydration stress. After the stress treatment, 32 dehydration-responsive miRNAs were up-regulated in tolerant cultivar and 22 miRNAs were down-regulated in sensitive cultivar, suggesting that miRNA-mediated molecular regulation might play important roles in providing contrasting characteristics to these cultivars. Predicted targets of identified miRNAs were found to encode various transcription factors and functional enzymes, indicating their involvement in broad spectrum regulatory functions and biological processes. Further, differential expression patterns of seven known miRNAs were validated by northern blot and expression of ten novel dehydration-responsive miRNAs were confirmed by SL-qRT PCR. Differential expression behavior of five miRNA-target genes was verified under dehydration stress treatment and two of them also validated by RLM RACE. Overall, the present study highlights the importance of dehydration stress-associated post

  10. The Potential of MicroRNAs as Prostate Cancer Biomarkers

    NARCIS (Netherlands)

    L. Fabris (Linda); Y. Ceder (Yvonne); A.M. Chinnaiyan (Arul); G.W. Jenster (Guido); K.D. Sorensen (Karina D.); S.A. Tomlins (Scott A); T. Visakorpi (Tapio); G.A. Calin (George)

    2016-01-01

    textabstractContext: Short noncoding RNAs known as microRNAs (miRNAs) control protein expression through the degradation of RNA or the inhibition of protein translation. The miRNAs influence a wide range of biologic processes and are often deregulated in cancer. This family of small RNAs constitutes

  11. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs.

    Science.gov (United States)

    Shahid, Saima; Kim, Gunjune; Johnson, Nathan R; Wafula, Eric; Wang, Feng; Coruh, Ceyda; Bernal-Galeano, Vivian; Phifer, Tamia; dePamphilis, Claude W; Westwood, James H; Axtell, Michael J

    2018-01-03

    Dodders (Cuscuta spp.) are obligate parasitic plants that obtain water and nutrients from the stems of host plants via specialized feeding structures called haustoria. Dodder haustoria facilitate bidirectional movement of viruses, proteins and mRNAs between host and parasite, but the functional effects of these movements are not known. Here we show that Cuscuta campestris haustoria accumulate high levels of many novel microRNAs (miRNAs) while parasitizing Arabidopsis thaliana. Many of these miRNAs are 22 nucleotides in length. Plant miRNAs of this length are uncommon, and are associated with amplification of target silencing through secondary short interfering RNA (siRNA) production. Several A. thaliana mRNAs are targeted by 22-nucleotide C. campestris miRNAs during parasitism, resulting in mRNA cleavage, secondary siRNA production, and decreased mRNA accumulation. Hosts with mutations in two of the loci that encode target mRNAs supported significantly higher growth of C. campestris. The same miRNAs that are expressed and active when C. campestris parasitizes A. thaliana are also expressed and active when it infects Nicotiana benthamiana. Homologues of target mRNAs from many other plant species also contain the predicted target sites for the induced C. campestris miRNAs. These data show that C. campestris miRNAs act as trans-species regulators of host-gene expression, and suggest that they may act as virulence factors during parasitism.

  12. Novel meiotic miRNAs and indications for a role of phasiRNAs in meiosis

    Science.gov (United States)

    Small RNAs (sRNA) add additional layers to the regulation of gene expression, with siRNAs directing gene silencing at the DNA level by RdDM (RNA-directed DNA methylation), and miRNAs directing post-transcriptional regulation of specific target genes, mostly by mRNA cleavage. We used manually isolate...

  13. Genome wide identification of chilling responsive microRNAs in Prunus persica

    Directory of Open Access Journals (Sweden)

    Barakat Abdelali

    2012-09-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are small RNAs (sRNAs approximately 21 nucleotides in length that negatively control gene expression by cleaving or inhibiting the translation of target gene transcripts. Within this context, miRNAs and siRNAs are coming to the forefront as molecular mediators of gene regulation in plant responses to annual temperature cycling and cold stress. For this reason, we chose to identify and characterize the conserved and non-conserved miRNA component of peach (Prunus persica (L. Batsch focusing our efforts on both the recently released whole genome sequence of peach and sRNA transcriptome sequences from two tissues representing non-dormant leaves and dormant leaf buds. Conserved and non-conserved miRNAs, and their targets were identified. These sRNA resources were used to identify cold-responsive miRNAs whose gene targets co-localize with previously described QTLs for chilling requirement (CR. Results Analysis of 21 million peach sRNA reads allowed us to identify 157 and 230 conserved and non-conserved miRNA sequences. Among the non-conserved miRNAs, we identified 205 that seem to be specific to peach. Comparative genome analysis between peach and Arabidopsis showed that conserved miRNA families, with the exception of miR5021, are similar in size. Sixteen of these conserved miRNA families are deeply rooted in land plant phylogeny as they are present in mosses and/or lycophytes. Within the other conserved miRNA families, five families (miR1446, miR473, miR479, miR3629, and miR3627 were reported only in tree species (Populustrichocarpa, Citrus trifolia, and Prunus persica. Expression analysis identified several up-regulated or down-regulated miRNAs in winter buds versus young leaves. A search of the peach proteome allowed the prediction of target genes for most of the conserved miRNAs and a large fraction of non-conserved miRNAs. A fraction of predicted targets in peach have not been previously reported in other

  14. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3 Encoded MicroRNAs.

    Directory of Open Access Journals (Sweden)

    Owen H Donohoe

    Full Text Available MicroRNAs (miRNAs are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3 is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio and koi (Cyprinus carpio koi worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA-offset RNAs (moRNAs derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3.

  15. Characterization of microRNAs in Mud Crab Scylla paramamosain under Vibrio parahaemolyticus Infection

    Science.gov (United States)

    Li, Chuanbiao; Zhang, Zhao; Zhou, Lizhen; Wang, Shijia; Wang, Shuqi; Zhang, Yueling; Wen, Xiaobo

    2013-01-01

    Background Infection of bacterial Vibrio parahaemolyticus is common in mud crab farms. However, the mechanisms of the crab’s response to pathogenic V. parahaemolyticus infection are not fully understood. MicroRNAs (miRNAs) are a class of small noncoding RNAs that function as regulators of gene expression and play essential roles in various biological processes. To understand the underlying mechanisms of the molecular immune response of the crab to the pathogens, high-throughput Illumina/Solexa deep sequencing technology was used to investigate the expression profiles of miRNAs in S . paramamosain under V. parahaemolyticus infection. Methodology/Principal Findings Two mixed RNA pools of 7 tissues (intestine, heart, liver, gill, brain, muscle and blood) were obtained from V. parahaemolyticus infected crabs and the control groups, respectively. By aligning the sequencing data with known miRNAs, we characterized 421 miRNA families, and 133 conserved miRNA families in mud crab S . paramamosain were either identical or very similar to existing miRNAs in miRBase. Stem-loop qRT-PCRs were used to scan the expression levels of four randomly chosen differentially expressed miRNAs and tissue distribution. Eight novel potential miRNAs were confirmed by qRT-PCR analysis and the precursors of these novel miRNAs were verified by PCR amplification, cloning and sequencing in S . paramamosain . 161 miRNAs (106 of which up-regulated and 55 down-regulated) were significantly differentially expressed during the challenge and the potential targets of these differentially expressed miRNAs were predicted. Furthermore, we demonstrated evolutionary conservation of mud crab miRNAs in the animal evolution process. Conclusions/Significance In this study, a large number of miRNAs were identified in S . paramamosain when challenged with V. parahaemolyticus, some of which were differentially expressed. The results show that miRNAs might play some important roles in regulating gene expression in

  16. Identification and Characterization of Cyprinid Herpesvirus-3 (CyHV-3) Encoded MicroRNAs

    Science.gov (United States)

    Donohoe, Owen H.; Henshilwood, Kathy; Way, Keith; Hakimjavadi, Roya; Stone, David M.; Walls, Dermot

    2015-01-01

    MicroRNAs (miRNAs) are a class of small non-coding RNAs involved in post-transcriptional gene regulation. Some viruses encode their own miRNAs and these are increasingly being recognized as important modulators of viral and host gene expression. Cyprinid herpesvirus 3 (CyHV-3) is a highly pathogenic agent that causes acute mass mortalities in carp (Cyprinus carpio carpio) and koi (Cyprinus carpio koi) worldwide. Here, bioinformatic analyses of the CyHV-3 genome suggested the presence of non-conserved precursor miRNA (pre-miRNA) genes. Deep sequencing of small RNA fractions prepared from in vitro CyHV-3 infections led to the identification of potential miRNAs and miRNA–offset RNAs (moRNAs) derived from some bioinformatically predicted pre-miRNAs. DNA microarray hybridization analysis, Northern blotting and stem-loop RT-qPCR were then used to definitively confirm that CyHV-3 expresses two pre-miRNAs during infection in vitro. The evidence also suggested the presence of an additional four high-probability and two putative viral pre-miRNAs. MiRNAs from the two confirmed pre-miRNAs were also detected in gill tissue from CyHV-3-infected carp. We also present evidence that one confirmed miRNA can regulate the expression of a putative CyHV-3-encoded dUTPase. Candidate homologues of some CyHV-3 pre-miRNAs were identified in CyHV-1 and CyHV-2. This is the first report of miRNA and moRNA genes encoded by members of the Alloherpesviridae family, a group distantly related to the Herpesviridae family. The discovery of these novel CyHV-3 genes may help further our understanding of the biology of this economically important virus and their encoded miRNAs may have potential as biomarkers for the diagnosis of latent CyHV-3. PMID:25928140

  17. Role of miRNAs in Epicardial Adipose Tissue in CAD Patients with T2DM

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-01-01

    Full Text Available Background. Epicardial adipose tissue (EAT is identified as an atypical fat depot surrounding the heart with a putative role in the involvement of metabolic disorders, including obesity, type-2 diabetes mellitus, and atherosclerosis. We profiled miRNAs in EAT of metabolic patients with coronary artery disease (CAD and type-2 diabetes mellitus (T2DM versus metabolically healthy patients by microarray. Compared to metabolically healthy patients, we identified forty-two miRNAs that are differentially expressed in patients with CAD and T2DM from Xinjiang, China. Eleven miRNAs were selected as potential novel miRNAs according to P value and fold change. Then the potential novel miRNAs targeted genes were predicted via TargetScan, PicTar, and miRTarbase, and the function of the target genes was predicted via Gene Ontology (GO analysis while the enriched KEGG pathway analyses of the miRNAs targeted genes were performed by bioinformatics software DAVID. Then protein-protein interaction networks of the targeted gene were conducted by online software STRING. Finally, using microarray, bioinformatics approaches revealed the possible molecular mechanisms pathogenesis of CAD and T2DM. A total of 11 differentially expressed miRNAs were identified and among them, hsa-miR-4687-3p drew specific attention. Bioinformatics analysis revealed that insulin signaling pathway is the central way involved in the progression of metabolic disorders. Conclusions. The current findings support the fact that miRNAs are involved in the pathogenesis of metabolic disorders in EAT of CAD patients with T2DM, and validation of the results of these miRNAs by independent and prospective study is certainly warranted.

  18. Transcriptome landscape of Lactococcus lactis reveals many novel RNAs including a small regulatory RNA involved in carbon uptake and metabolism.

    Science.gov (United States)

    van der Meulen, Sjoerd B; de Jong, Anne; Kok, Jan

    2016-01-01

    RNA sequencing has revolutionized genome-wide transcriptome analyses, and the identification of non-coding regulatory RNAs in bacteria has thus increased concurrently. Here we reveal the transcriptome map of the lactic acid bacterial paradigm Lactococcus lactis MG1363 by employing differential RNA sequencing (dRNA-seq) and a combination of manual and automated transcriptome mining. This resulted in a high-resolution genome annotation of L. lactis and the identification of 60 cis-encoded antisense RNAs (asRNAs), 186 trans-encoded putative regulatory RNAs (sRNAs) and 134 novel small ORFs. Based on the putative targets of asRNAs, a novel classification is proposed. Several transcription factor DNA binding motifs were identified in the promoter sequences of (a)sRNAs, providing insight in the interplay between lactococcal regulatory RNAs and transcription factors. The presence and lengths of 14 putative sRNAs were experimentally confirmed by differential Northern hybridization, including the abundant RNA 6S that is differentially expressed depending on the available carbon source. For another sRNA, LLMGnc_147, functional analysis revealed that it is involved in carbon uptake and metabolism. L. lactis contains 13% leaderless mRNAs (lmRNAs) that, from an analysis of overrepresentation in GO classes, seem predominantly involved in nucleotide metabolism and DNA/RNA binding. Moreover, an A-rich sequence motif immediately following the start codon was uncovered, which could provide novel insight in the translation of lmRNAs. Altogether, this first experimental genome-wide assessment of the transcriptome landscape of L. lactis and subsequent sRNA studies provide an extensive basis for the investigation of regulatory RNAs in L. lactis and related lactococcal species.

  19. Application of Long Noncoding RNAs in Osteosarcoma: Biomarkers and Therapeutic Targets

    Directory of Open Access Journals (Sweden)

    Zhihong Li

    2017-07-01

    Full Text Available Osteosarcoma is the most common primary bone malignancy in children and adolescents. Although improvements in therapeutic strategies were achieved, the outcome remains poor for most patients with metastatic or recurrent osteosarcoma. Therefore, it is imperative to identify novel and effective prognostic biomarker and therapeutic targets for the disease. Long noncoding RNAs (lncRNAs are a novel class of RNA molecules defined as transcripts >200 nucleotides that lack protein coding potential. Many lncRNAs are deregulated in cancer and are important regulators for malignancies. Nine lncRNAs (91H, BCAR4, FGFR3-AS1, HIF2PUT, HOTTIP, HULC, MALAT-1, TUG1, UCA1 are upregulated and considered oncogenic for osteosarcoma. Loc285194 and MEG3 are two lncRNAs downregulated and as tumor suppressor for the disease. Moreover, the expressions of LINC00161 and ODRUL are associated with chemo-resistance of osteosarcoma. The mechanisms for these lncRNAs in regulating development of osteosarcoma are diverse, e.g. ceRNA, Wnt/β-catenin pathway, etc. The lncRNAs identified may serve as potential biomarkers or therapeutic targets for osteosarcoma.

  20. Revised annotation of Plutella xylostella microRNAs and their genome-wide target identification.

    Science.gov (United States)

    Etebari, K; Asgari, S

    2016-12-01

    The diamondback moth, Plutella xylostella, is the most devastating pest of brassica crops worldwide. Although 128 mature microRNAs (miRNAs) have been annotated from this species in miRBase, there is a need to extend and correct the current P. xylostella miRNA repertoire as a result of its recently improved genome assembly and more available small RNA sequence data. We used our new ultra-deep sequence data and bioinformatics to re-annotate the P. xylostella genome for high confidence miRNAs with the correct 5p and 3p arm features. Furthermore, all the P. xylostella annotated genes were also screened to identify potential miRNA binding sites using three target-predicting algorithms. In total, 203 mature miRNAs were annotated, including 33 novel miRNAs. We identified 7691 highly confident binding sites for 160 pxy-miRNAs. The data provided here will facilitate future studies involving functional analyses of P. xylostella miRNAs as a platform to introduce novel approaches for sustainable management of this destructive pest. © 2016 The Royal Entomological Society.

  1. Research progress on the roles of microRNAs in governing synaptic plasticity, learning and memory.

    Science.gov (United States)

    Wei, Chang-Wei; Luo, Ting; Zou, Shan-Shan; Wu, An-Shi

    2017-11-01

    The importance of non-coding RNA involved in biological processes has become apparent in recent years and the mechanism of transcriptional regulation has also been identified. MicroRNAs (miRNAs) represent a class of small regulatory non-coding RNAs of 22bp in length that mediate gene silencing by identifying specific sequences in the target messenger RNAs (mRNAs). Many miRNAs are highly expressed in the central nervous system in a spatially and temporally controlled manner in normal physiology, as well as in certain pathological conditions. There is growing evidence that a considerable number of specific miRNAs play important roles in synaptic plasticity, learning and memory function. In addition, the dysfunction of these molecules may also contribute to the etiology of several neurodegenerative diseases. Here we provide an overview of the current literatures, which support non-coding RNA-mediated gene function regulation represents an important but underappreciated, layer of epigenetic control that facilitates learning and memory functions. Copyright © 2017. Published by Elsevier Inc.

  2. Identification and verification of potential piRNAs from domesticated yak testis.

    Science.gov (United States)

    Gong, Jishang; Zhang, Quanwei; Wang, Qi; Ma, Youji; Du, Jiaxiang; Zhang, Yong; Zhao, Xingxu

    2018-02-01

    PIWI-interacting RNAs (piRNA) are small non-coding RNA molecules expressed in animal germ cells that interact with PIWI family proteins to form RNA-protein complexes involved in epigenetic and post-transcriptional gene silencing of retrotransposons and other genetic elements in germ line cells, including reproductive stem cell self-sustainment, differentiation, meiosis and spermatogenesis. In the present study, we performed high-throughput sequencing of piRNAs in testis samples from yaks in different stages of sexual maturity. Deep sequencing of the small RNAs (18-40 nt in length) yielded 4,900,538 unique reads from a total of 53,035,635 reads. We identified yak small RNAs (18-30 nt) and performed functional characterization. Yak small RNAs showed a bimodal length distribution, with two peaks at 22 nt and >28 nt. More than 80% of the 3,106,033 putative piRNAs were mapped to 4637 piRNA-producing genomic clusters using RPKM. 6388 candidate piRNAs were identified from clean reads and the annotations were compared with the yak reference genome repeat region. Integrated network analysis suggested that some differentially expressed genes were involved in spermatogenesis through ECM-receptor interaction and PI3K-Akt signaling pathways. Our data provide novel insights into the molecular expression and regulation similarities and diversities in spermatogenesis and testicular development in yaks at different stages of sexual maturity. © 2018 The authors.

  3. Salivary microRNAs as promising biomarkers for detection of esophageal cancer.

    Directory of Open Access Journals (Sweden)

    Zijun Xie

    Full Text Available BACKGROUND AND PURPOSE: Tissue microRNAs (miRNAs can detect cancers and predict prognosis. Several recent studies reported that tissue, plasma, and saliva miRNAs share similar expression profiles. In this study, we investigated the discriminatory power of salivary miRNAs (including whole saliva and saliva supernatant for detection of esophageal cancer. MATERIALS AND METHODS: By Agilent microarray, six deregulated miRNAs from whole saliva samples from seven patients with esophageal cancer and three healthy controls were selected. The six selected miRNAs were subjected to validation of their expression levels by RT-qPCR using both whole saliva and saliva supernatant samples from an independent set of 39 patients with esophageal cancer and 19 healthy controls. RESULTS: Six miRNAs (miR-10b*, miR-144, miR-21, miR-451, miR-486-5p, and miR-634 were identified as targets by Agilent microarray. After validation by RT-qPCR, miR-10b*, miR-144, and miR-451 in whole saliva and miR-10b*, miR-144, miR-21, and miR-451 in saliva supernatant were significantly upregulated in patients, with sensitivities of 89.7, 92.3, 84.6, 79.5, 43.6, 89.7, and 51.3% and specificities of 57.9, 47.4, 57.9%, 57.9, 89.5, 47.4, and 84.2%, respectively. CONCLUSIONS: We found distinctive miRNAs for esophageal cancer in both whole saliva and saliva supernatant. These miRNAs possess discriminatory power for detection of esophageal cancer. Because saliva collection is noninvasive and convenient, salivary miRNAs show great promise as biomarkers for detection of esophageal cancer in areas at high risk.

  4. Discovery of replicating circular RNAs by RNA-seq and computational algorithms.

    Directory of Open Access Journals (Sweden)

    Zhixiang Zhang

    2014-12-01

    Full Text Available Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of replicating circular RNAs by analysing the total small RNA populations from samples of diseased tissues with a computational program known as progressive filtering of overlapping small RNAs (PFOR. However, PFOR written in PERL language is extremely slow and is unable to discover those subviral pathogens that do not trigger in vivo accumulation of extensively overlapping small RNAs. Moreover, PFOR is yet to identify a new viroid capable of initiating independent infection. Here we report the development of PFOR2 that adopted parallel programming in the C++ language and was 3 to 8 times faster than PFOR. A new computational program was further developed and incorporated into PFOR2 to allow the identification of circular RNAs by deep sequencing of long RNAs instead of small RNAs. PFOR2 analysis of the small RNA libraries from grapevine and apple plants led to the discovery of Grapevine latent viroid (GLVd and Apple hammerhead viroid-like RNA (AHVd-like RNA, respectively. GLVd was proposed as a new species in the genus Apscaviroid, because it contained the typical structural elements found in this group of viroids and initiated independent infection in grapevine seedlings. AHVd-like RNA encoded a biologically active hammerhead ribozyme in both polarities, and was not specifically associated with any of the viruses found in apple plants. We propose that these computational algorithms have the potential to discover novel circular RNAs in plants, invertebrates and vertebrates regardless of whether they replicate and/or induce the in vivo accumulation of small

  5. ChemiRs: a web application for microRNAs and chemicals.

    Science.gov (United States)

    Su, Emily Chia-Yu; Chen, Yu-Sing; Tien, Yun-Cheng; Liu, Jeff; Ho, Bing-Ching; Yu, Sung-Liang; Singh, Sher

    2016-04-18

    MicroRNAs (miRNAs) are about 22 nucleotides, non-coding RNAs that affect various cellular functions, and play a regulatory role in different organisms including human. Until now, more than 2500 mature miRNAs in human have been discovered and registered, but still lack of information or algorithms to reveal the relations among miRNAs, environmental chemicals and human health. Chemicals in environment affect our health and daily life, and some of them can lead to diseases by inferring biological pathways. We develop a creditable online web server, ChemiRs, for predicting interactions and relations among miRNAs, chemicals and pathways. The database not only compares gene lists affected by chemicals and miRNAs, but also incorporates curated pathways to identify possible interactions. Here, we manually retrieved associations of miRNAs and chemicals from biomedical literature. We developed an online system, ChemiRs, which contains miRNAs, diseases, Medical Subject Heading (MeSH) terms, chemicals, genes, pathways and PubMed IDs. We connected each miRNA to miRBase, and every current gene symbol to HUGO Gene Nomenclature Committee (HGNC) for genome annotation. Human pathway information is also provided from KEGG and REACTOME databases. Information about Gene Ontology (GO) is queried from GO Online SQL Environment (GOOSE). With a user-friendly interface, the web application is easy to use. Multiple query results can be easily integrated and exported as report documents in PDF format. Association analysis of miRNAs and chemicals can help us understand the pathogenesis of chemical components. ChemiRs is freely available for public use at http://omics.biol.ntnu.edu.tw/ChemiRs .

  6. Guardian small RNAs and sex determination.

    Science.gov (United States)

    Katsuma, Susumu; Kawamoto, Munetaka; Kiuchi, Takashi

    2014-01-01

    The W chromosome of the silkworm Bombyx mori has been known to determine femaleness for more than 80 years. However, the feminizing gene has not been molecularly identified, because the B. mori W chromosome is almost fully occupied by a large number of transposable elements. The W chromosome-derived feminizing factor of B. mori was recently shown to be a female-specific PIWI-interacting RNA (piRNA). piRNAs are small RNAs that potentially repress invading "non-self" elements (e.g., transposons and virus-like elements) by associating with PIWI proteins. Our results revealed that female-specific piRNA precursors, which we named Fem, are transcribed from the sex-determining region of the W chromosome at the early embryonic stage and are processed into a single mature piRNA (Fem piRNA). Fem piRNA forms a complex with Siwi (silkworm Piwi), which cleaves a protein-coding mRNA transcribed from the Z chromosome. RNA interference of this Z-linked gene, which we named Masc, revealed that this gene encodes a protein required for masculinization and dosage compensation. Fem and Masc both participate in the ping-pong cycle of the piRNA amplification loop by associating with the 2 B. mori PIWI proteins Siwi and BmAgo3 (silkworm Ago3), respectively, indicating that the piRNA-mediated interaction between the 2 sex chromosomes is the primary signal for the B. mori sex determination cascade. Fem is a non-transposable repetitive sequence on the W chromosome, whereas Masc is a single-copy protein-coding gene. It is of great interest how the piRNA system recognizes "self "Masc mRNA as "non-self" RNA.

  7. Identification and Functional Analysis of MicroRNAs and Their Targets in Platanus acerifolia under Lead (Pb) Stress

    OpenAIRE

    Yuanlong Wang; Zhenli Zhao; Minjie Deng; Rongning Liu; Suyan Niu; Guoqiang Fan

    2015-01-01

    MicroRNAs (miRNAs) play important regulatory roles in development and stress responses in plants. Lead (Pb) is a non-essential element that is highly toxic to living organisms. Platanus acerifolia is grown as a street tree in cities throughout temperate regions for its importance in improving the urban ecological environment. MiRNAs that respond to abiotic stresses have been identified in plants; however, until now, the influence of Pb stress on P. acerifolia miRNAs has not been reported. To ...

  8. Circulating microRNAs as biomarkers for the early diagnosis of childhood tuberculosis infection.

    Science.gov (United States)

    Zhou, Mengyao; Yu, Guangyuan; Yang, Xiantao; Zhu, Chaomin; Zhang, Zhenzhen; Zhan, Xue

    2016-06-01

    MicroRNAs (miRNAs) are a class of highly conserved, single-stranded RNA molecules (length, 18-25 nt) that regulate the expression of their target mRNAs. Previous studies have demonstrated that miRNAs may be novel biomarkers in the diagnosis of certain diseases. In order to evaluate the diagnostic value of miRNAs in childhood tuberculosis (TB), the circulating miRNA profile was determined using microarray analysis. An miRNA‑gene network was constructed to identify closely associated miRNAs and these miRNAs were validated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). A receiver operational curve (ROC) was used to evaluate the diagnostic sensitivity and specificity of confirmed miRNAs. The microarray data demonstrated that 29 miRNAs were altered with 15 upregulated and 14 downregulated. The network showed indicated 14 miRNAs that are critical in childhood TB. RT-qPCR validated that miR-1, miR-155, miR‑31, miR‑146a, miR‑10a, miR‑125b and miR‑150 were downregulated in while miR‑29 was upregulated in children with TB compared with uninfected children. The ROC curve data indicated the diagnostic value of single miRNA was as follows: miR‑150>miR‑146a>miR‑125b>miR‑31>miR‑10a>miR‑1>miR‑155>miR‑29. Notably, a combination of these miRNAs exhibited increased diagnostic value compared with any single miRNA. To the best of our knowledge, the present study is the first to identify the expression profile of circulating miRNAs in childhood TB and demonstrated that miRNAs may be a novel, non‑invasive and effective biomarker for the early diagnosis of childhood TB.

  9. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene

    Directory of Open Access Journals (Sweden)

    Rathjen Tina

    2011-01-01

    Full Text Available Abstract Background Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. Results We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~ 2.5 Mb did not reveal any other miRNAs and no novel miRNAs were predicted. Conclusions Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in

  10. Characterisation and expression of microRNAs in developing wings of the neotropical butterfly Heliconius melpomene.

    Science.gov (United States)

    Surridge, Alison K; Lopez-Gomollon, Sara; Moxon, Simon; Maroja, Luana S; Rathjen, Tina; Nadeau, Nicola J; Dalmay, Tamas; Jiggins, Chris D

    2011-01-26

    Heliconius butterflies are an excellent system for studies of adaptive convergent and divergent phenotypic traits. Wing colour patterns are used as signals to both predators and potential mates and are inherited in a Mendelian manner. The underlying genetic mechanisms of pattern formation have been studied for many years and shed light on broad issues, such as the repeatability of evolution. In Heliconius melpomene, the yellow hindwing bar is controlled by the HmYb locus. MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression that have key roles in many biological processes, including development. miRNAs could act as regulators of genes involved in wing development, patterning and pigmentation. For this reason we characterised miRNAs in developing butterfly wings and examined differences in their expression between colour pattern races. We sequenced small RNA libraries from two colour pattern races and detected 142 Heliconius miRNAs with homology to others found in miRBase. Several highly abundant miRNAs were differentially represented in the libraries between colour pattern races. These candidates were tested further using Northern blots, showing that differences in expression were primarily due to developmental stage rather than colour pattern. Assembly of sequenced reads to the HmYb region identified hme-miR-193 and hme-miR-2788; located 2380 bp apart in an intergenic region. These two miRNAs are expressed in wings and show an upregulation between 24 and 72 hours post-pupation, indicating a potential role in butterfly wing development. A search for miRNAs in all available H. melpomene BAC sequences (~2.5 Mb) did not reveal any other miRNAs and no novel miRNAs were predicted. Here we describe the first butterfly miRNAs and characterise their expression in developing wings. Some show differences in expression across developing pupal stages and may have important functions in butterfly wing development. Two miRNAs were located in the Hm

  11. Mechanisms in endocrinology: micro-RNAs: targets for enhancing osteoblast differentiation and bone formation.

    Science.gov (United States)

    Taipaleenmäki, Hanna; Bjerre Hokland, Lea; Chen, Li; Kauppinen, Sakari; Kassem, Moustapha

    2012-03-01

    Osteoblast differentiation and bone formation (osteogenesis) are regulated by transcriptional and post-transcriptional mechanisms. Recently, a novel class of regulatory factors termed micro-RNAs (miRNAs) has been identified as playing an important role in the regulation of many aspects of osteoblast biology including proliferation, differentiation, metabolism and apoptosis. Also, preliminary data from animal disease models suggest that targeting miRNAs in bone can be a novel approach to increase bone mass. This review highlights the current knowledge of miRNA biology and their role in bone formation and discusses their potential use in future therapeutic applications for metabolic bone diseases.

  12. Two types of defective RNAs arising from the tomato black ring virus genome.

    Science.gov (United States)

    Hasiów-Jaroszewska, Beata; Borodynko, Natasza; Figlerowicz, Marek; Pospieszny, Henryk

    2012-03-01

    Short defective RNAs (D-RNAs) associated with tomato black ring virus (TBRV) were isolated, cloned and sequenced. As a result, two types of D-RNAs associated with different TBRV isolates were identified. Both types were derived from RNA1. The first one contained sequences from the 5' and 3' untranslated regions (UTR) and from the 5' region of a single large open reading frame. The second one included a portion of the coding region for the RNA-dependent RNA polymerase flanked by a short fragment of the 5' UTR and the entire 3' UTR. The possible nature and origin of these RNA species is discussed.

  13. Apple ring rot-responsive putative microRNAs revealed by high-throughput sequencing in Malus × domestica Borkh.

    Science.gov (United States)

    Yu, Xin-Yi; Du, Bei-Bei; Gao, Zhi-Hong; Zhang, Shi-Jie; Tu, Xu-Tong; Chen, Xiao-Yun; Zhang, Zhen; Qu, Shen-Chun

    2014-08-01

    MicroRNAs (miRNAs) are small non-coding RNAs, which silence target mRNA via cleavage or translational inhibition to function in regulating gene expression. MiRNAs act as important regulators of plant development and stress response. For understanding the role of miRNAs responsive to apple ring rot stress, we identified disease-responsive miRNAs using high-throughput sequencing in Malus × domestica Borkh.. Four small RNA libraries were constructed from two control strains in M. domestica, crabapple (CKHu) and Fuji Naga-fu No. 6 (CKFu), and two disease stress strains, crabapple (DSHu) and Fuji Naga-fu No. 6 (DSFu). A total of 59 miRNA families were identified and five miRNAs might be responsive to apple ring rot infection and validated via qRT-PCR. Furthermore, we predicted 76 target genes which were regulated by conserved miRNAs potentially. Our study demonstrated that miRNAs was responsive to apple ring rot infection and may have important implications on apple disease resistance.

  14. MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Lihui Zhu

    2016-02-01

    Full Text Available Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production.

  15. MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum.

    Science.gov (United States)

    Zhu, Lihui; Zhao, Jiangping; Wang, Jianbin; Hu, Chao; Peng, Jinbiao; Luo, Rong; Zhou, Chunjing; Liu, Juntao; Lin, Jiaojiao; Jin, Youxin; Davis, Richard E; Cheng, Guofeng

    2016-02-01

    Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs) are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production.

  16. Exploiting tRNAs to Boost Virulence

    Directory of Open Access Journals (Sweden)

    Suki Albers

    2016-01-01

    Full Text Available Transfer RNAs (tRNAs are powerful small RNA entities that are used to translate nucleotide language of genes into the amino acid language of proteins. Their near-uniform length and tertiary structure as well as their high nucleotide similarity and post-transcriptional modifications have made it difficult to characterize individual species quantitatively. However, due to the central role of the tRNA pool in protein biosynthesis as well as newly emerging roles played by tRNAs, their quantitative assessment yields important information, particularly relevant for virus research. Viruses which depend on the host protein expression machinery have evolved various strategies to optimize tRNA usage—either by adapting to the host codon usage or encoding their own tRNAs. Additionally, several viruses bear tRNA-like elements (TLE in the 5′- and 3′-UTR of their mRNAs. There are different hypotheses concerning the manner in which such structures boost viral protein expression. Furthermore, retroviruses use special tRNAs for packaging and initiating reverse transcription of their genetic material. Since there is a strong specificity of different viruses towards certain tRNAs, different strategies for recruitment are employed. Interestingly, modifications on tRNAs strongly impact their functionality in viruses. Here, we review those intersection points between virus and tRNA research and describe methods for assessing the tRNA pool in terms of concentration, aminoacylation and modification.

  17. Discovery of cashmere goat (Capra hircus) microRNAs in skin and hair follicles by Solexa sequencing.

    Science.gov (United States)

    Yuan, Chao; Wang, Xiaolong; Geng, Rongqing; He, Xiaolin; Qu, Lei; Chen, Yulin

    2013-07-28

    MicroRNAs (miRNAs) are a large family of endogenous, non-coding RNAs, about 22 nucleotides long, which regulate gene expression through sequence-specific base pairing with target mRNAs. Extensive studies have shown that miRNA expression in the skin changes remarkably during distinct stages of the hair cycle in humans, mice, goats and sheep. In this study, the skin tissues were harvested from the three stages of hair follicle cycling (anagen, catagen and telogen) in a fibre-producing goat breed. In total, 63,109,004 raw reads were obtained by Solexa sequencing and 61,125,752 clean reads remained for the small RNA digitalisation analysis. This resulted in the identification of 399 conserved miRNAs; among these, 326 miRNAs were expressed in all three follicular cycling stages, whereas 3, 12 and 11 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. We also identified 172 potential novel miRNAs by Mireap, 36 miRNAs were expressed in all three cycling stages, whereas 23, 29 and 44 miRNAs were specifically expressed in anagen, catagen, and telogen, respectively. The expression level of five arbitrarily selected miRNAs was analyzed by quantitative PCR, and the results indicated that the expression patterns were consistent with the Solexa sequencing results. Gene Ontology and KEGG pathway analyses indicated that five major biological pathways (Metabolic pathways, Pathways in cancer, MAPK signalling pathway, Endocytosis and Focal adhesion) accounted for 23.08% of target genes among 278 biological functions, indicating that these pathways are likely to play significant roles during hair cycling. During all hair cycle stages of cashmere goats, a large number of conserved and novel miRNAs were identified through a high-throughput sequencing approach. This study enriches the Capra hircus miRNA databases and provides a comprehensive miRNA transcriptome profile in the skin of goats during the hair follicle cycle.

  18. Deregulated Cardiac Specific MicroRNAs in Postnatal Heart Growth

    Directory of Open Access Journals (Sweden)

    Pujiao Yu

    2016-01-01

    Full Text Available The heart is recognized as an organ that is terminally differentiated by adulthood. However, during the process of human development, the heart is the first organ with function in the embryo and grows rapidly during the postnatal period. MicroRNAs (miRNAs, miRs, as regulators of gene expression, play important roles during the development of multiple systems. However, the role of miRNAs in postnatal heart growth is still unclear. In this study, by using qRT-PCR, we compared the expression of seven cardiac- or muscle-specific miRNAs that may be related to heart development in heart tissue from mice at postnatal days 0, 3, 8, and 14. Four miRNAs—miR-1a-3p, miR-133b-3p, miR-208b-3p, and miR-206-3p—were significantly decreased while miR-208a-3p was upregulated during the postnatal heart growth period. Based on these results, GeneSpring GX was used to predict potential downstream targets by performing a 3-way comparison of predictions from the miRWalk, PITA, and microRNAorg databases. Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG analysis were used to identify potential functional annotations and signaling pathways related to postnatal heart growth. This study describes expression changes of cardiac- and muscle-specific miRNAs during postnatal heart growth and may provide new therapeutic targets for cardiovascular diseases.

  19. Fitness Landscapes of Functional RNAs

    Directory of Open Access Journals (Sweden)

    Ádám Kun

    2015-08-01

    Full Text Available The notion of fitness landscapes, a map between genotype and fitness, was proposed more than 80 years ago. For most of this time data was only available for a few alleles, and thus we had only a restricted view of the whole fitness landscape. Recently, advances in genetics and molecular biology allow a more detailed view of them. Here we review experimental and theoretical studies of fitness landscapes of functional RNAs, especially aptamers and ribozymes. We find that RNA structures can be divided into critical structures, connecting structures, neutral structures and forbidden structures. Such characterisation, coupled with theoretical sequence-to-structure predictions, allows us to construct the whole fitness landscape. Fitness landscapes then can be used to study evolution, and in our case the development of the RNA world.

  20. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing.

    Science.gov (United States)

    Gangras, Pooja; Dayeh, Daniel M; Mabin, Justin W; Nakanishi, Kotaro; Singh, Guramrit

    2018-01-01

    Argonaute proteins (AGOs) are loaded with small RNAs as guides to recognize target mRNAs. Since the target specificity heavily depends on the base complementarity between two strands, it is important to identify small guide and long target RNAs bound to AGOs. For this purpose, next-generation sequencing (NGS) technologies have extended our appreciation truly to the nucleotide level. However, the identification of RNAs via NGS from scarce RNA samples remains a challenge. Further, most commercial and published methods are compatible with either small RNAs or long RNAs, but are not equally applicable to both. Therefore, a single method that yields quantitative, bias-free NGS libraries to identify small and long RNAs from low levels of input will be of wide interest. Here, we introduce such a procedure that is based on several modifications of two published protocols and allows robust, sensitive, and reproducible cloning and sequencing of small amounts of RNAs of variable lengths. The method was applied to the identification of small RNAs bound to a purified eukaryotic AGO. Following ligation of a DNA adapter to RNA 3'-end, the key feature of this method is to use the adapter for priming reverse transcription (RT) wherein biotinylated deoxyribonucleotides specifically incorporated into the extended complementary DNA. Such RT products are enriched on streptavidin beads, circularized while immobilized on beads and directly used for PCR amplification. We provide a stepwise guide to generate RNA-Seq libraries, their purification, quantification, validation, and preparation for next-generation sequencing. We also provide basic steps in post-NGS data analyses using Galaxy, an open-source, web-based platform.

  1. Identification and analysis of miRNAs in human breast cancer and teratoma samples using deep sequencing

    DEFF Research Database (Denmark)

    Nygaard, Sanne; Jacobsen, Anders; Lindow, Morten

    2009-01-01

    ABSTRACT: BACKGROUND: MiRNAs play important roles in cellular control and in various disease states such as cancers, where they may serve as markers or possibly even therapeutics. Identifying the whole repertoire of miRNAs and understanding their expression patterns is therefore an important goal...

  2. Genome-wide identification and characterization of miRNAs in the hypocotyl and cotyledon of cauliflower (Brassica oleracea L. var. botrytis) seedlings.

    Science.gov (United States)

    Geng, Meijuan; Li, Hui; Jin, Chuan; Liu, Qian; Chen, Chengbin; Song, Wenqin; Wang, Chunguo

    2014-02-01

    MicroRNAs (miRNAs) are a class of small endogenous, non-coding RNAs that have key regulatory functions in plant growth, development, and other biological processes. Hypocotyl and cotyledon are the two major tissues of cauliflower (Brassica oleracea L. var. botrytis) seedlings. Tissue culture experiments have indicated that the regenerative abilities of these two tissues are significantly different. However, the characterization of miRNAs and their roles in regulating organ development in cauliflower remain unexplored. In the present study, two small RNA libraries were sequenced by Solexa sequencing technology. 99 known miRNAs belonging to 28 miRNA families were identified, in which 6 miRNA families were detected only in Brassicaceae. A total of 162 new miRNA sequences with single nucleotide substitutions corresponding to the known miRNAs, and 32 potentially novel miRNAs were also first discovered. Comparative analysis indicated that 42 of 99 known miRNAs and 17 of 32 novel miRNAs exhibited significantly differential expression between hypocotyl and cotyledon, and the differential expression of several miRNAs was further validated by stem-loop RT-PCR. In addition, 235 targets for 89 known miRNAs and 198 targets for 24 novel miRNAs were predicted, and their functions were further discussed. The expression patterns of several representative targets were also confirmed by qRT-PCR analysis. The results identified that the transcriptional expression patterns of miRNAs were negatively correlated with their targets. These findings gave new insights into the characteristics of miRNAs in cauliflower, and provided important clues to elucidate the roles of miRNAs in the tissue differentiation and development of cauliflower.

  3. Identification and characterization of miRNAs transcriptome in the South African abalone, Haliotis midae.

    Science.gov (United States)

    Picone, Barbara; Rhode, Clint; Roodt-Wilding, Rouvay

    2017-02-01

    Aquatic animal diseases are one of the most important limitations to the growth of aquaculture. miRNAs represent an important class of small ncRNAs able to modulate host immune and stress responses. In Mollusca, a large phylum of invertebrates, miRNAs have been identified in several species. The current preliminary study identified known miRNAs from the South African abalone, Haliotis midae. The economic and ecological importance of abalone makes this species a suitable model for studying and understanding stress response in marine gastropods. Furthermore, the identification of miRNA, represents an alternative and powerful tool to combat infectious disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Salivary extracellular vesicle-associated miRNAs as potential biomarkers in oral squamous cell carcinoma.

    Science.gov (United States)

    Gai, Chiara; Camussi, Francesco; Broccoletti, Roberto; Gambino, Alessio; Cabras, Marco; Molinaro, Luca; Carossa, Stefano; Camussi, Giovanni; Arduino, Paolo G

    2018-04-18

    Several studies in the past have investigated the expression of micro RNAs (miRNAs) in saliva as potential biomarkers. Since miRNAs associated with extracellular vesicles (EVs) are known to be protected from enzymatic degradation, we evaluated whether salivary EVs from patients with oral squamous cell carcinoma (OSCC) were enriched with specific subsets of miRNAs. OSCC patients and controls were matched with regards to age, gender and risk factors. Total RNA was extracted from salivary EVs and the differential expression of miRNAs was evaluated by qRT-PCR array and qRT-PCR. The discrimination power of up-regulated miRNAs as biomarkers in OSCC patients versus controls was evaluated by the Receiver Operating Characteristic (ROC) curves. A preliminary qRT-PCR array was performed on samples from 5 OSCC patients and 5 healthy controls whereby a subset of miRNAs were identified that were differentially expressed. On the basis of these results, a cohort of additional 16 patients and 6 controls were analyzed to further confirm the miRNAs that were up-regulated or selectively expressed in the previous pilot study. The following miRNAs: miR-302b-3p and miR-517b-3p were expressed only in EVs from OSCC patients and miR-512-3p and miR-412-3p were up-regulated in salivary EVs from OSCC patients compared to controls with the ROC curve showing a good discrimination power for OSCC diagnosis. The Kyoto Encyclopedia of Gene and Genomes (KEGG) pathway analysis suggested the possible involvement of the miRNAs identified in pathways activated in OSCC. In this work, we suggest that salivary EVs isolated by a simple charge-based precipitation technique can be exploited as a non-invasive source of miRNAs for OSCC diagnosis. Moreover, we have identified a subset of miRNAs selectively enriched in EVs of OSCC patients that could be potential biomarkers.

  5. Characterization of mTOR-Responsive Truncated mRNAs in Cell Proliferation

    Science.gov (United States)

    2017-07-01

    These findings identify a previously uncharacterized role for mTOR in modulating 3’- UTR length of mRNAs by alternative polyadenylation ( APA ). Another...outcome of APA in the mTOR-activated transcriptome is an early termination of mRNA transcription to produce truncated mRNAs with polyadenylation in...for exhaustive analysis of Alternative cleavage and polyadenylation ( APA ) events (Figure 1). In IntMAP, first the position of multiple

  6. Identification of microRNAs regulating the developmental pathways of bone marrow derived mast cells.

    Directory of Open Access Journals (Sweden)

    Yang Xiang

    Full Text Available MicroRNAs (miRNAs play important roles in leukocyte differentiation, although those utilised for specific programs and key functions remain incompletely characterised. As a global approach to gain insights into the potential regulatory role of miRNA in mast cell differentiation we characterised expression in BM cultures from the initiation of differentiation. In cultures enriched in differentiating mast cells we characterised miRNA expression and identified miRNA targeting the mRNA of putative factors involved in differentiation pathways and cellular identity. Detailed pathway analysis identified a unique miRNA network that is intimately linked to the mast cell differentiation program.We identified 86 unique miRNAs with expression patterns that were up- or down- regulated at 5-fold or more during bone marrow derived mast cells (BMMC development. By employing TargetScan and MeSH databases, we identified 524 transcripts involved in 30 canonical pathways as potentially regulated by these specific 86 miRNAs. Furthermore, by applying miRanda and IPA analyses, we predict that 7 specific miRNAs of this group are directly associated with the expression of c-Kit and FcεRIα and likewise, that 18 miRNAs promote expression of Mitf, GATA1 and c/EBPα three core transcription factors that direct mast cell differentiation. Furthermore, we have identified 11 miRNAs that may regulate the expression of STATs-3, -5a/b, GATA2 and GATA3 during differentiation, along with 13 miRNAs that target transcripts encoding Ndst2, mMCP4 and mMCP6 and thus may regulate biosynthesis of mast cell secretory mediators.This investigation characterises changes in miRNA expression in whole BM cultures during the differentiation of mast cells and predicts functional links between miRNAs and their target mRNAs for the regulation of development. This information provides an important resource for further investigations of the contributions of miRNAs to mast cell differentiation and

  7. MicroRNAs in Kidney Fibrosis and Diabetic Nephropathy: Roles on EMT and EndMT

    Directory of Open Access Journals (Sweden)

    Swayam Prakash Srivastava

    2013-01-01

    Full Text Available MicroRNAs (miRNAs are a family of small, noncoding RNAs that regulate gene expression in diverse biological and pathological processes, including cell proliferation, differentiation, apoptosis, and carcinogenesis. As a result, miRNAs emerged as major area of biomedical research with relevance to kidney fibrosis. Fibrosis is characterized by the excess deposition of extracellular matrix (ECM components, which is the end result of an imbalance of metabolism of the ECM molecule. Recent evidence suggests that miRNAs participate in the fibrotic process in a number of organs including the heart, kidney, liver, and lung. Epithelial mesenchymal transition (EMT and endothelial mesenchymal transition (EndMT programs play vital roles in the development of fibrosis in the kidney. A growing number of the extracellular and intracellular molecules that control EMT and EndMT have been identified and could be exploited in developing therapeutics for fibrosis. This review highlights recent advances on the role of miRNAs in the kidney diseases; diabetic nephropathy especially focused on EMT and EndMT program responsible for the development of kidney fibrosis. These miRNAs can be utilized as a potential novel drug target for the studying of underlying mechanism and treatment of kidney fibrosis.

  8. A novel program to design siRNAs simultaneously effective to highly variable virus genomes.

    Science.gov (United States)

    Lee, Hui Sun; Ahn, Jeonghyun; Jun, Eun Jung; Yang, Sanghwa; Joo, Chul Hyun; Kim, Yoo Kyum; Lee, Heuiran

    2009-07-10

    A major concern of antiviral therapy using small interfering RNAs (siRNAs) targeting RNA viral genome is high sequence diversity and mutation rate due to genetic instability. To overcome this problem, it is indispensable to design siRNAs targeting highly conserved regions. We thus designed CAPSID (Convenient Application Program for siRNA Design), a novel bioinformatics program to identify siRNAs targeting highly conserved regions within RNA viral genomes. From a set of input RNAs of diverse sequences, CAPSID rapidly searches conserved patterns and suggests highly potent siRNA candidates in a hierarchical manner. To validate the usefulness of this novel program, we investigated the antiviral potency of universal siRNA for various Human enterovirus B (HEB) serotypes. Assessment of antiviral efficacy using Hela cells, clearly demonstrates that HEB-specific siRNAs exhibit protective effects against all HEBs examined. These findings strongly indicate that CAPSID can be applied to select universal antiviral siRNAs against highly divergent viral genomes.

  9. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds.

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    Full Text Available MicroRNAs (miRNAs are small regulators of gene expression that act on many different molecular and biochemical processes in eukaryotes. To date, miRNAs have not been considered in the current evaluation system for GM crops. In this study, small RNAs from the dry seeds of a GM wheat line overexpressing GmDREB1 and non-GM wheat cultivars were investigated using deep sequencing technology and bioinformatic approaches. As a result, 23 differentially expressed miRNAs in dry seeds were identified and confirmed between GM wheat and a non-GM acceptor. Notably, more differentially expressed tae-miRNAs between non-GM wheat varieties were found, indicating that the degree of variance between non-GM cultivars was considerably higher than that induced by the transgenic event. Most of the target genes of these differentially expressed miRNAs between GM wheat and a non-GM acceptor were associated with abiotic stress, in accordance with the product concept of GM wheat in improving drought and salt tolerance. Our data provided useful information and insights into the evaluation of miRNA expression in edible GM crops.

  10. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells

    International Nuclear Information System (INIS)

    Kwon, ChangHyuk; Tak, Hyosun; Rho, Mina; Chang, Hae Ryung; Kim, Yon Hui; Kim, Kyung Tae; Balch, Curt; Lee, Eun Kyung; Nam, Seungyoon

    2014-01-01

    Highlights: • piRNA sequences were mapped to human mitochondrial (mt) genome. • We inspected small RNA-Seq datasets from somatic cell mt subcellular fractions. • Piwi and piRNA transcripts are present in mammalian somatic cancer cell mt fractions. - Abstract: Piwi-interacting RNAs (piRNAs) are 26–31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies

  11. MicroRNAs: New Insight in Modulating Follicular Atresia: A Review

    Directory of Open Access Journals (Sweden)

    Tesfaye Worku

    2017-02-01

    Full Text Available Our understanding of the post-transcriptional mechanisms involved in follicular atresia is limited; however, an important development has been made in understanding the biological regulatory networks responsible for mediating follicular atresia. MicroRNAs have come to be seen as a key regulatory actor in determining cell fate in a wide range of tissues in normal and pathological processes. Profiling studies of miRNAs during follicular atresia and development have identified several putative miRNAs enriched in apoptosis signaling pathways. Subsequent in vitro and/or in vivo studies of granulosa cells have elucidated the functional role of some miRNAs along with their molecular pathways. In particular, the regulatory roles of some miRNAs have been consistently observed during studies of follicular cellular apoptosis. Continued work should gradually lead to better understanding of the role of miRNAs in this field. Ultimately, we expect this understanding will have substantial benefits for fertility management at both the in vivo or/and in vitro levels. The stable nature of miRNA holds remarkable promise in clinical use as a diagnostic tool and in reproductive medicine to solve the ever-increasing fertility problem. In this review, we summarize current knowledge of the involvement of miRNAs in follicular atresia, discuss the challenges for further work and pinpoint areas for future research.

  12. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs.

    Science.gov (United States)

    Schuster, Andrew; Skinner, Michael K; Yan, Wei

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.

  13. Detection of PIWI and piRNAs in the mitochondria of mammalian cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, ChangHyuk, E-mail: netbuyer@hanmail.net [Cancer Genomics Branch, National Cancer Center, Goyang 410-769 (Korea, Republic of); Tak, Hyosun, E-mail: chuberry@naver.com [Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Rho, Mina, E-mail: minarho@hanyang.ac.kr [Department of Computer Science, Hanyang University, Seoul 133-791 (Korea, Republic of); Chang, Hae Ryung, E-mail: heyhae@ncc.re.kr [New Experimental Therapeutics Branch, National Cancer Center, Goyang 410-769 (Korea, Republic of); Kim, Yon Hui, E-mail: yhkim@ncc.re.kr [New Experimental Therapeutics Branch, National Cancer Center, Goyang 410-769 (Korea, Republic of); Kim, Kyung Tae, E-mail: bioktkim@ncc.re.kr [Molecular Epidemiology Branch, National Cancer Center, Goyang 410-769 (Korea, Republic of); Balch, Curt, E-mail: curt.balch@gmail.com [Medical Sciences Program, Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Bloomington, IN 47405 (United States); Lee, Eun Kyung, E-mail: leeek@catholic.ac.kr [Department of Biochemistry, College of Medicine, Catholic University of Korea, Seoul 137-701 (Korea, Republic of); Nam, Seungyoon, E-mail: seungyoon.nam@ncc.re.kr [Cancer Genomics Branch, National Cancer Center, Goyang 410-769 (Korea, Republic of)

    2014-03-28

    Highlights: • piRNA sequences were mapped to human mitochondrial (mt) genome. • We inspected small RNA-Seq datasets from somatic cell mt subcellular fractions. • Piwi and piRNA transcripts are present in mammalian somatic cancer cell mt fractions. - Abstract: Piwi-interacting RNAs (piRNAs) are 26–31 nt small noncoding RNAs that are processed from their longer precursor transcripts by Piwi proteins. Localization of Piwi and piRNA has been reported mostly in nucleus and cytoplasm of higher eukaryotes germ-line cells, where it is believed that known piRNA sequences are located in repeat regions of nuclear genome in germ-line cells. However, localization of PIWI and piRNA in mammalian somatic cell mitochondria yet remains largely unknown. We identified 29 piRNA sequence alignments from various regions of the human mitochondrial genome. Twelve out 29 piRNA sequences matched stem-loop fragment sequences of seven distinct tRNAs. We observed their actual expression in mitochondria subcellular fractions by inspecting mitochondrial-specific small RNA-Seq datasets. Of interest, the majority of the 29 piRNAs overlapped with multiple longer transcripts (expressed sequence tags) that are unique to the human mitochondrial genome. The presence of mature piRNAs in mitochondria was detected by qRT-PCR of mitochondrial subcellular RNAs. Further validation showed detection of Piwi by colocalization using anti-Piwil1 and mitochondria organelle-specific protein antibodies.

  14. Regulation of Pancreatic Beta Cell Stimulus-Secretion Coupling by microRNAs

    Directory of Open Access Journals (Sweden)

    Jonathan L. S. Esguerra

    2014-11-01

    Full Text Available Increased blood glucose after a meal is countered by the subsequent increased release of the hypoglycemic hormone insulin from the pancreatic beta cells. The cascade of molecular events encompassing the initial sensing and transport of glucose into the beta cell, culminating with the exocytosis of the insulin large dense core granules (LDCVs is termed “stimulus-secretion coupling.” Impairment in any of the relevant processes leads to insufficient insulin release, which contributes to the development of type 2 diabetes (T2D. The fate of the beta cell, when exposed to environmental triggers of the disease, is determined by the possibility to adapt to the new situation by regulation of gene expression. As established factors of post-transcriptional regulation, microRNAs (miRNAs are well-recognized mediators of beta cell plasticity and adaptation. Here, we put focus on the importance of comprehending the transcriptional regulation of miRNAs, and how miRNAs are implicated in stimulus-secretion coupling, specifically those influencing the late stages of insulin secretion. We suggest that efficient beta cell adaptation requires an optimal balance between transcriptional regulation of miRNAs themselves, and miRNA-dependent gene regulation. The increased knowledge of the beta cell transcriptional network inclusive of non-coding RNAs such as miRNAs is essential in identifying novel targets for the treatment of T2D.

  15. Ontological function annotation of long non-coding RNAs through hierarchical multi-label classification.

    Science.gov (United States)

    Zhang, Jingpu; Zhang, Zuping; Wang, Zixiang; Liu, Yuting; Deng, Lei

    2018-05-15

    Long non-coding RNAs (lncRNAs) are an enormous collection of functional non-coding RNAs. Over the past decades, a large number of novel lncRNA genes have been identified. However, most of the lncRNAs remain function uncharacterized at present. Computational approaches provide a new insight to understand the potential functional implications of lncRNAs. Considering that each lncRNA may have multiple functions and a function may be further specialized into sub-functions, here we describe NeuraNetL2GO, a computational ontological function prediction approach for lncRNAs using hierarchical multi-label classification strategy based on multiple neural networks. The neural networks are incrementally trained level by level, each performing the prediction of gene ontology (GO) terms belonging to a given level. In NeuraNetL2GO, we use topological features of the lncRNA similarity network as the input of the neural networks and employ the output results to annotate the lncRNAs. We show that NeuraNetL2GO achieves the best performance and the overall advantage in maximum F-measure and coverage on the manually annotated lncRNA2GO-55 dataset compared to other state-of-the-art methods. The source code and data are available at http://denglab.org/NeuraNetL2GO/. leideng@csu.edu.cn. Supplementary data are available at Bioinformatics online.

  16. Identification and Functional Analysis of Long Intergenic Non-coding RNAs Underlying Intramuscular Fat Content in Pigs

    Directory of Open Access Journals (Sweden)

    Cheng Zou

    2018-03-01

    Full Text Available Intramuscular fat (IMF content is an important trait that can affect pork quality. Previous studies have identified many genes that can regulate IMF. Long intergenic non-coding RNAs (lincRNAs are emerging as key regulators in various biological processes. However, lincRNAs related to IMF in pig are largely unknown, and the mechanisms by which they regulate IMF are yet to be elucidated. Here we reconstructed 105,687 transcripts and identified 1,032 lincRNAs in pig longissimus dorsi muscle (LDM of four stages with different IMF contents based on published RNA-seq. These lincRNAs show typical characteristics such as shorter length and lower expression compared with protein-coding genes. Combined with methylation data, we found that both the promoter and genebody methylation of lincRNAs can negatively regulate lincRNA expression. We found that lincRNAs exhibit high correlation with their protein-coding neighbors in expression. Co-expression network analysis resulted in eight stage-specific modules, gene ontology and pathway analysis of them suggested that some lincRNAs were involved in IMF-related processes, such as fatty acid metabolism and peroxisome proliferator-activated receptor signaling pathway. Furthermore, we identified hub lincRNAs and found six of them may play important roles in IMF development. This work detailed some lincRNAs which may affect of IMF development in pig, and facilitated future research on these lincRNAs and molecular assisted breeding for pig.

  17. Analysis of miRNAs Involved in Mouse Brain Damage upon Enterovirus 71 Infection.

    Science.gov (United States)

    Yang, Xiaoxia; Xie, Jing; Jia, Leili; Liu, Nan; Liang, Yuan; Wu, Fuli; Liang, Beibei; Li, Yongrui; Wang, Jinyan; Sheng, Chunyu; Li, Hao; Liu, Hongbo; Ma, Qiuxia; Yang, Chaojie; Du, Xinying; Qiu, Shaofu; Song, Hongbin

    2017-01-01

    Enterovirus 71 (EV71) infects the central nervous system (CNS) and causes brainstem encephalitis in children. MiRNAs have been found to play various functions in EV71 infection in human cell lines. To identify potential miRNAs involved in the inflammatory injury in CNS, our study, for the first time, performed a miRNA microarray assay in vivo using EV71 infected mice brains. Twenty differentially expressed miRNAs were identified (four up- and 16 down-regulated) and confirmed by qRT-PCR. The target genes of these miRNAs were analyzed using KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis, revealing that the miRNAs were mainly involved in the regulation of inflammation and neural system function. MiR-150-5p, -3082-5p, -3473a, -468-3p, -669n, -721, -709, and -5107-5p that regulate MAPK and chemokine signaling were all down-regulated, which might result in increased cytokine production. In addition, miR-3473a could also regulate focal adhesion and leukocyte trans-endothelial migration, suggesting a role in virus-induced blood-brain barrier disruption. The miRNAs and pathways identified in this study could help to understand the intricate interactions between EV71 and the brain injury, offering new insight for the future research of the molecular mechanism of EV71 induced brainstem encephalitis.

  18. Altered expression of miRNAs in the uterus from a letrozole-induced rat PCOS model.

    Science.gov (United States)

    Li, Chunjin; Chen, Lu; Zhao, Yun; Chen, Shuxiong; Fu, Lulu; Jiang, Yanwen; Gao, Shan; Liu, Zhuo; Wang, Fengge; Zhu, Xiaoling; Rao, Jiahui; Zhang, Jing; Zhou, Xu

    2017-01-20

    Polycystic ovary syndrome (PCOS) causes female subfertility with ovarian disorders and may be associated with increased rate of early-pregnancy failure. Rat PCOS models were established using letrozole to understand the uterine pathogenesis of PCOS. The differential expression of microRNAs (miRNAs) was observed in rat uterus with PCOS. After estrous cycles were disrupted, significantly abnormal ovarian morphology and hormone level were observed in rats with PCOS. A total of 148 miRNAs differentially expressed were identified in the uterus from the letrozole-induced rat model compared with the control. These miRNAs included 111 upregulated miRNAs and 37 downregulated miRNAs. The differential expression of miR-484, miR-375-3p, miR-324-5p, and miR-223-3p was further confirmed by quantitative reverse transcription polymerase chain reaction. Bioinformatic analysis showed that these four miRNAs were predicted to regulate a large number of genes with different functions. Pathway analysis supported that target genes of miRNAs were involved in insulin secretion and signaling pathways, such as wnt, AMPK, PI3K-Akt, and Ras. These data indicated that miRNAs differentially expressed in rat uterus with PCOS may be associated with PCOS pathogenesis in the uterus. Our findings can help clarify the mechanism of uterine defects in PCOS. Copyright © 2016. Published by Elsevier B.V.

  19. Integrating miRNA and mRNA Expression Profiling Uncovers miRNAs Underlying Fat Deposition in Sheep

    Directory of Open Access Journals (Sweden)

    Guangxian Zhou

    2017-01-01

    Full Text Available MicroRNAs (miRNAs are endogenous, noncoding RNAs that regulate various biological processes including adipogenesis and fat metabolism. Here, we adopted a deep sequencing approach to determine the identity and abundance of miRNAs involved in fat deposition in adipose tissues from fat-tailed (Kazakhstan sheep, KS and thin-tailed (Tibetan sheep, TS sheep breeds. By comparing HiSeq data of these two breeds, 539 miRNAs were shared in both breeds, whereas 179 and 97 miRNAs were uniquely expressed in KS and TS, respectively. We also identified 35 miRNAs that are considered to be putative novel miRNAs. The integration of miRNA-mRNA analysis revealed that miRNA-associated targets were mainly involved in the gene ontology (GO biological processes concerning cellular process and metabolic process, and miRNAs play critical roles in fat deposition through their ability to regulate fundamental pathways. These pathways included the MAPK signaling pathway, FoxO and Wnt signaling pathway, and focal adhesion. Taken together, our results define miRNA expression signatures that may contribute to fat deposition and lipid metabolism in sheep.

  20. MicroRNAs of the mesothorax in Qinlingacris elaeodes, an alpine grasshopper showing a wing polymorphism with unilateral wing form.

    Science.gov (United States)

    Li, R; Jiang, G F; Ren, Q P; Wang, Y T; Zhou, X M; Zhou, C F; Qin, D Z

    2016-04-01

    MicroRNAs (miRNAs) are now recognized as key post-transcriptional regulators in regulation of phenotypic diversity. Qinlingacris elaeodes is a species of the alpine grasshopper, which is endemic to China. Adult individuals have three wing forms: wingless, unilateral-winged and short-winged. This is an ideal species to investigate the phenotypic plasticity, development and evolution of insect wings because of its case of unilateral wing form in both the sexes. We sequenced a small RNA library prepared from mesothoraxes of the adult grasshoppers using the Illumina deep sequencing technology. Approximately 12,792,458 raw reads were generated, of which the 854,580 high-quality reads were used only for miRNA identification. In this study, we identified 49 conserved miRNAs belonging to 41 families and 69 species-specific miRNAs. Moreover, seven miRNA*s were detected both for conserved miRNAs and species-specific miRNAs, which were supported by hairpin forming precursors based on polymerase chain reaction. This is the first description of miRNAs in alpine grasshoppers. The results provide a useful resource for further studies on molecular regulation and evolution of miRNAs in grasshoppers. These findings not only enrich the miRNAs for insects but also lay the groundwork for the study of post-transcriptional regulation of wing forms.

  1. Identification of cisregulatory elements and bioinformatic prediction of transcriptional factors involved in regulation of miRNAs in plants

    International Nuclear Information System (INIS)

    Perez Quintero, Alvaro; Lopez, Camilo

    2013-01-01

    MicroRNAs (miRNAs) are a group of small non coding MAS involved in the control of gene expression through the degradation of miRNAs in a sequence specific manner, miRNAs expression is dependent on RNA polymerase ii as most of the coding protein genes. The regulation of miRNAs expression is under the coordinated and combinatorial control of transcription factors (TFS). A bioinformatics approach was carried out to identify transcription factor binding sites (TFBS) in the promoter of miRNAs genes in 17 different plant species and the possible involvement of TF in antibacterial response was analyzed. In nine of the plants studied significant differences in TFBS distribution in the promoter of miRNAs were observed when compare to the promoter of protein coding genes. TFBS as CCA1, T-box y SORLREP3 were present on the promoters of the cassava miRNAs induced in response to the infection by the bacteria Xanthomonas axonopodis pv. manihotis. These TFBS are also present in the promoter of genes coding for proteins involved in circadian rhythm and light responses, suggesting a crosstalk between these process and immune plant responses. Taken together, the results here described give insight about the transcriptional mechanisms involved in the expression of miRNAs.

  2. Identification and Characterization of MicroRNAs in the Liver of Blunt Snout Bream (Megalobrama amblycephala Infected by Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Lei Cui

    2016-11-01

    Full Text Available MicroRNAs (miRNAs are small RNA molecules that play key roles in regulation of various biological processes. In order to better understand the biological significance of miRNAs in the context of Aeromonas hydrophila infection in Megalobrama amblycephala, small RNA libraries obtained from fish liver at 0 (non-infection, 4, and 24 h post infection (poi were sequenced using Illumina deep sequencing technology. A total of 11,244,207, 9,212,958, and 7,939,157 clean reads were obtained from these three RNA libraries, respectively. Bioinformatics analysis identified 171 conserved miRNAs and 62 putative novel miRNAs. The existence of ten randomly selected novel miRNAs was validated by RT-PCR. Pairwise comparison suggested that 61 and 44 miRNAs were differentially expressed at 4 and 24 h poi, respectively. Furthermore, the expression profiles of nine randomly selected miRNAs were validated by qRT-PCR. MicroRNA target prediction, gene ontology (GO annotation, and Kyoto Encylopedia of Genes and Genomes (KEGG analysis indicated that a variety of biological pathways could be affected by A. hydrophila infection. Additionally, transferrin (TF and transferrin receptor (TFR genes were confirmed to be direct targets of miR-375. These results will expand our knowledge of the role of miRNAs in the immune response of M. amblycephala to A. hydrophila infection, and facilitate the development of effective strategies against A. hydrophila infection in M. amblycephala.

  3. LncRNAs in Secondary Hair Follicle of Cashmere Goat: Identification, Expression, and Their Regulatory Network in Wnt Signaling Pathway.

    Science.gov (United States)

    Bai, Wen L; Zhao, Su J; Wang, Ze Y; Zhu, Yu B; Dang, Yun L; Cong, Yu Y; Xue, Hui L; Wang, Wei; Deng, Liang; Guo, Dan; Wang, Shi Q; Zhu, Yan X; Yin, Rong H

    2018-07-03

    Long noncoding RNAs (lncRNAs) are a novel class of eukaryotic transcripts. They are thought to act as a critical regulator of protein-coding gene expression. Herein, we identified and characterized 13 putative lncRNAs from the expressed sequence tags from secondary hair follicle of Cashmere goat. Furthermore, we investigated their transcriptional pattern in secondary hair follicle of Liaoning Cashmere goat during telogen and anagen phases. Also, we generated intracellular regulatory networks of upregulated lncRNAs at anagen in Wnt signaling pathway based on bioinformatics analysis. The relative expression of six putative lncRNAs (lncRNA-599618, -599556, -599554, -599547, -599531, and -599509) at the anagen phase is significantly higher than that at telogen. Compared with anagen, the relative expression of four putative lncRNAs (lncRNA-599528, -599518, -599511, and -599497) was found to be significantly upregulated at telogen phase. The network generated showed that a rich and complex regulatory relationship of the putative lncRNAs and related miRNAs with their target genes in Wnt signaling pathway. Our results from the present study provided a foundation for further elucidating the functional and regulatory mechanisms of these putative lncRNAs in the development of secondary hair follicle and cashmere fiber growth of Cashmere goat.

  4. Differential Expression of microRNAs in the Ovaries from Letrozole-Induced Rat Model of Polycystic Ovary Syndrome.

    Science.gov (United States)

    Li, Dandan; Li, Chunjin; Xu, Ying; Xu, Duo; Li, Hongjiao; Gao, Liwei; Chen, Shuxiong; Fu, Lulu; Xu, Xin; Liu, Yongzheng; Zhang, Xueying; Zhang, Jingshun; Ming, Hao; Zheng, Lianwen

    2016-04-01

    Polycystic ovary syndrome (PCOS) is a complex and heterogeneous endocrine disorder. To understand the pathogenesis of PCOS, we established rat models of PCOS induced by letrozole and employed deep sequencing to screen the differential expression of microRNAs (miRNAs) in PCOS rats and control rats. We observed vaginal smear and detected ovarian pathological alteration and hormone level changes in PCOS rats. Deep sequencing showed that a total of 129 miRNAs were differentially expressed in the ovaries from letrozole-induced rat model compared with the control, including 49 miRNAs upregulated and 80 miRNAs downregulated. Furthermore, the differential expression of miR-201-5p, miR-34b-5p, miR-141-3p, and miR-200a-3p were confirmed by real-time polymerase chain reaction. Bioinformatic analysis revealed that these four miRNAs were predicted to target a large set of genes with different functions. Pathway analysis supported that the miRNAs regulate oocyte meiosis, mitogen-activated protein kinase (MAPK) signaling, phosphoinositide 3-kinase/Akt (PI3K-Akt) signaling, Rap1 signaling, and Notch signaling. These data indicate that miRNAs are differentially expressed in rat PCOS model and the differentially expressed miRNA are involved in the etiology and pathophysiology of PCOS. Our findings will help identify miRNAs as novel diagnostic markers and therapeutic targets for PCOS.

  5. microRNA dependent and independent deregulation of long non-coding RNAs by an oncogenic herpesvirus.

    Directory of Open Access Journals (Sweden)

    Sunantha Sethuraman

    2017-07-01

    Full Text Available Kaposi's sarcoma (KS is a highly prevalent cancer in AIDS patients, especially in sub-Saharan Africa. Kaposi's sarcoma-associated herpesvirus (KSHV is the etiological agent of KS and other cancers like Primary Effusion Lymphoma (PEL. In KS and PEL, all tumors harbor latent KSHV episomes and express latency-associated viral proteins and microRNAs (miRNAs. The exact molecular mechanisms by which latent KSHV drives tumorigenesis are not completely understood. Recent developments have highlighted the importance of aberrant long non-coding RNA (lncRNA expression in cancer. Deregulation of lncRNAs by miRNAs is a newly described phenomenon. We hypothesized that KSHV-encoded miRNAs deregulate human lncRNAs to drive tumorigenesis. We performed lncRNA expression profiling of endothelial cells infected with wt and miRNA-deleted KSHV and identified 126 lncRNAs as putative viral miRNA targets. Here we show that KSHV deregulates host lncRNAs in both a miRNA-dependent fashion by direct interaction and in a miRNA-independent fashion through latency-associated proteins. Several lncRNAs that were previously implicated in cancer, including MEG3, ANRIL and UCA1, are deregulated by KSHV. Our results also demonstrate that KSHV-mediated UCA1 deregulation contributes to increased proliferation and migration of endothelial cells.

  6. Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants

    KAUST Repository

    Khraiwesh, Basel

    2012-02-01

    Small, non-coding RNAs are a distinct class of regulatory RNAs in plants and animals that control a variety of biological processes. In plants, several classes of small RNAs with specific sizes and dedicated functions have evolved through a series of pathways. The major classes of small RNAs include microRNAs (miRNAs) and small interfering RNAs (siRNAs), which differ in their biogenesis. miRNAs control the expression of cognate target genes by binding to reverse complementary sequences, resulting in cleavage or translational inhibition of the target RNAs. siRNAs have a similar structure, function, and biogenesis as miRNAs but are derived from long double-stranded RNAs and can often direct DNA methylation at target sequences. Besides their roles in growth and development and maintenance of genome integrity, small RNAs are also important components in plant stress responses. One way in which plants respond to environmental stress is by modifying their gene expression through the activity of small RNAs. Thus, understanding how small RNAs regulate gene expression will enable researchers to explore the role of small RNAs in biotic and abiotic stress responses. This review focuses on the regulatory roles of plant small RNAs in the adaptive response to stresses. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress. © 2011 Elsevier B.V.

  7. Modulation of the osteosarcoma expression phenotype by microRNAs.

    Directory of Open Access Journals (Sweden)

    Heidi M Namløs

    Full Text Available BACKGROUND: Osteosarcomas are the most common primary malignant tumors of bone and show multiple and complex genomic aberrations. miRNAs are non-coding RNAs capable of regulating gene expression at the post transcriptional level, and miRNAs and their target genes may represent novel therapeutic targets or biomarkers for osteosarcoma. In order to investigate the involvement of miRNAs in osteosarcoma development, global microarray analyses of a panel of 19 human osteosarcoma cell lines was performed. PRINCIPAL FINDINGS: We identified 177 miRNAs that were differentially expressed in osteosarcoma cell lines relative to normal bone. Among these, miR-126/miR-126*, miR-142-3p, miR-150, miR-223, miR-486-5p and members of the miR-1/miR-133a, miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b clusters were found to be downregulated in osteosarcoma cell lines. All miRNAs in the paralogous clusters miR-17-92, miR-106b-25 and miR-106a-92 were overexpressed. Furthermore, the upregulated miRNAs included miR-9/miR-9*, miR-21*, miR-31/miR-31*, miR-196a/miR-196b, miR-374a and members of the miR-29 and miR-130/301 families. The most interesting inversely correlated miRNA/mRNA pairs in osteosarcoma cell lines included miR-9/TGFBR2 and miR-29/p85α regulatory subunit of PI3K. PTEN mRNA correlated inversely with miR-92a and members of the miR-17 and miR-130/301 families. Expression profiles of selected miRNAs were confirmed in clinical samples. A set of miRNAs, miR-1, miR-18a, miR-18b, miR-19b, miR-31, miR-126, miR-142-3p, miR-133b, miR-144, miR-195, miR-223, miR-451 and miR-497 was identified with an intermediate expression level in osteosarcoma clinical samples compared to osteoblasts and bone, which may reflect the differentiation level of osteosarcoma relative to the undifferentiated osteoblast and fully differentiated normal bone. SIGNIFICANCE: This study provides an integrated analysis of miRNA and mRNA in osteosarcoma, and gives new insight into the complex

  8. Song exposure regulates known and novel microRNAs in the zebra finch auditory forebrain

    Directory of Open Access Journals (Sweden)

    Kim Jong H

    2011-05-01

    Full Text Available Abstract Background In an important model for neuroscience, songbirds learn to discriminate songs they hear during tape-recorded playbacks, as demonstrated by song-specific habituation of both behavioral and neurogenomic responses in the auditory forebrain. We hypothesized that microRNAs (miRNAs or miRs may participate in the changing pattern of gene expression induced by song exposure. To test this, we used massively parallel Illumina sequencing to analyse small RNAs from auditory forebrain of adult zebra finches exposed to tape-recorded birdsong or silence. Results In the auditory forebrain, we identified 121 known miRNAs conserved in other vertebrates. We also identified 34 novel miRNAs that do not align to human or chicken genomes. Five conserved miRNAs showed significant and consistent changes in copy number after song exposure across three biological replications of the song-silence comparison, with two increasing (tgu-miR-25, tgu-miR-192 and three decreasing (tgu-miR-92, tgu-miR-124, tgu-miR-129-5p. We also detected a locus on the Z sex chromosome that produces three different novel miRNAs, with supporting evidence from Northern blot and TaqMan qPCR assays for differential expression in males and females and in response to song playbacks. One of these, tgu-miR-2954-3p, is predicted (by TargetScan to regulate eight song-responsive mRNAs that all have functions in cellular proliferation and neuronal differentiation. Conclusions The experience of hearing another bird singing alters the profile of miRNAs in the auditory forebrain of zebra finches. The response involves both known conserved miRNAs and novel miRNAs described so far only in the zebra finch, including a novel sex-linked, song-responsive miRNA. These results indicate that miRNAs are likely to contribute to the unique behavioural biology of learned song communication in songbirds.

  9. Deep sequencing discovery of novel and conserved microRNAs in trifoliate orange (Citrus trifoliata

    Directory of Open Access Journals (Sweden)

    Yu Huaping

    2010-07-01

    Full Text Available Abstract Background MicroRNAs (miRNAs play a critical role in post-transcriptional gene regulation and have been shown to control many genes involved in various biological and metabolic processes. There have been extensive studies to discover miRNAs and analyze their functions in model plant species, such as Arabidopsis and rice. Deep sequencing technologies have facilitated identification of species-specific or lowly expressed as well as conserved or highly expressed miRNAs in plants. Results In this research, we used Solexa sequencing to discover new microRNAs in trifoliate orange (Citrus trifoliata which is an important rootstock of citrus. A total of 13,106,753 reads representing 4,876,395 distinct sequences were obtained from a short RNA library generated from small RNA extracted from C. trifoliata flower and fruit tissues. Based on sequence similarity and hairpin structure prediction, we found that 156,639 reads representing 63 sequences from 42 highly conserved miRNA families, have perfect matches to known miRNAs. We also identified 10 novel miRNA candidates whose precursors were all potentially generated from citrus ESTs. In addition, five miRNA* sequences were also sequenced. These sequences had not been earlier described in other plant species and accumulation of the 10 novel miRNAs were confirmed by qRT-PCR analysis. Potential target genes were predicted for most conserved and novel miRNAs. Moreover, four target genes including one encoding IRX12 copper ion binding/oxidoreductase and three genes encoding NB-LRR disease resistance protein have been experimentally verified by detection of the miRNA-mediated mRNA cleavage in C. trifoliata. Conclusion Deep sequencing of short RNAs from C. trifoliata flowers and fruits identified 10 new potential miRNAs and 42 highly conserved miRNA families, indicating that specific miRNAs exist in C. trifoliata. These results show that regulatory miRNAs exist in agronomically important trifoliate orange

  10. Microarray Expression Profile and Functional Analysis of Circular RNAs in Osteosarcoma

    Directory of Open Access Journals (Sweden)

    Weihai Liu

    2017-09-01

    Full Text Available Background/Aims: Osteosarcoma (OS is the most common primary malignant bone tumor in children and adolescents. However, the molecular mechanisms regulating osteosarcoma tumorigenesis and progression are still poorly understood. Circular RNAs (circRNAs have been identified as microRNA sponges and are involved in many important biological processes. This study aims to investigate the global changes in the expression pattern of circRNAs in osteosarcoma and provide a comprehensive understanding of differentially expressed circRNAs. Methods: Microarray based circRNA expression was determined in osteosarcoma cell lines and compared with hFOB1.19, which was used as the normal control. We confirmed the microarray data by real time-qPCR in both osteosarcoma cell lines and tissues. The circRNA/microRNA/mRNA interaction network was predicted using bioinformatics. Gene Ontology analysis and 4 annotation tools for pathway analysis (KEGG, Biocarta, PANTHER and Reactome were used to predict the functions of differentially expressed circRNAs. Results: We revealed a number of differentially expressed circRNAs and 12 of them were confirmed, which suggests a potential role of circRNAs in OS. Among these differentially expressed circRNAs, hsa_circRNA_103801 was up-regulated in both osteosarcoma cell lines and tissues, while hsa_circRNA_104980 was down-regulated. The most likely potential target miRNAs for hsa_circRNA_103801 include hsa-miR-370-3p, hsa-miR-338-3p and hsa-miR-877-3p, while the most potential target miRNAs of hsa_circRNA_104980 consist of hsa-miR-1298-3p and hsa-miR-660-3p. Functional analysis found that hsa_circRNA_103801 was involved in pathways in cancer, such as the HIF-1, VEGF and angiogenesis pathway, the Rap1 signaling pathway and the PI3K-Akt signaling pathway, while hsa_circRNA_104980 was related to some pathways such as the tight junction pathway. Conclusions: This study has identified the comprehensive expression profile of circRNAs in

  11. The Host RNAs in Retroviral Particles

    Directory of Open Access Journals (Sweden)

    Alice Telesnitsky

    2016-08-01

    Full Text Available As they assemble, retroviruses encapsidate both their genomic RNAs and several types of host RNA. Whereas limited amounts of messenger RNA (mRNA are detectable within virion populations, the predominant classes of encapsidated host RNAs do not encode proteins, but instead include endogenous retroelements and several classes of non-coding RNA (ncRNA, some of which are packaged in significant molar excess to the viral genome. Surprisingly, although the most abundant host RNAs in retroviruses are also abundant in cells, unusual forms of these RNAs are packaged preferentially, suggesting that these RNAs are recruited early in their biogenesis: before associating with their cognate protein partners, and/or from transient or rare RNA populations. These RNAs’ packaging determinants differ from the viral genome’s, and several of the abundantly packaged host ncRNAs serve cells as the scaffolds of ribonucleoprotein particles. Because virion assembly is equally efficient whether or not genomic RNA is available, yet RNA appears critical to the structural integrity of retroviral particles, it seems possible that the selectively encapsidated host ncRNAs might play roles in assembly. Indeed, some host ncRNAs appear to act during replication, as some transfer RNA (tRNA species may contribute to nuclear import of human immunodeficiency virus 1 (HIV-1 reverse transcription complexes, and other tRNA interactions with the viral Gag protein aid correct trafficking to plasma membrane assembly sites. However, despite high conservation of packaging for certain host RNAs, replication roles for most of these selectively encapsidated RNAs—if any—have remained elusive.

  12. Interfering Satellite RNAs of Bamboo mosaic virus

    Directory of Open Access Journals (Sweden)

    Kuan-Yu Lin

    2017-05-01

    Full Text Available Satellite RNAs (satRNAs are sub-viral agents that may interact with their cognate helper virus (HV and host plant synergistically and/or antagonistically. SatRNAs totally depend on the HV for replication, so satRNAs and HV usually evolve similar secondary or tertiary RNA structures that are recognized by a replication complex, although satRNAs and HV do not share an appreciable sequence homology. The satRNAs of Bamboo mosaic virus (satBaMV, the only satRNAs of the genus Potexvirus, have become one of the models of how satRNAs can modulate HV replication and virus-induced symptoms. In this review, we summarize the molecular mechanisms underlying the interaction of interfering satBaMV and BaMV. Like other satRNAs, satBaMV mimics the secondary structures of 5′- and 3′-untranslated regions (UTRs of BaMV as a molecular pretender. However, a conserved apical hairpin stem loop (AHSL in the 5′-UTR of satBaMV was found as the key determinant for downregulating BaMV replication. In particular, two unique nucleotides (C60 and C83 in the AHSL of satBaMVs determine the satBaMV interference ability by competing for the replication machinery. Thus, transgenic plants expressing interfering satBaMV could confer resistance to BaMV, and interfering satBaMV could be used as biological-control agent. Unlike two major anti-viral mechanisms, RNA silencing and salicylic acid-mediated immunity, our findings in plants by in vivo competition assay and RNA deep sequencing suggested replication competition is involved in this transgenic satBaMV-mediated BaMV interference. We propose how a single nucleotide of satBaMV can make a great change in BaMV pathogenicity and the underlying mechanism.

  13. Identification and characterization of novel microRNAs from Schistosoma japonicum.

    Directory of Open Access Journals (Sweden)

    Xiangyang Xue

    Full Text Available BACKGROUND: Schistosomiasis japonica remains a major public health problem in China. Its pathogen, Schistosoma japonicum has a complex life cycle and a unique repertoire of genes expressed at different life cycle stages. Exploring schistosome gene regulation will yield the best prospects for new drug targets and vaccine candidates. MicroRNAs (miRNAs are a highly conserved class of noncoding RNA that control many biological processes by sequence-specific inhibition of gene expression. Although a large number of miRNAs have been identified from plants to mammals, it remains no experimental proof whether schistosome exist miRNAs. METHODOLOGY AND RESULTS: We have identified novel miRNAs from Schistosoma japonicum by cloning and sequencing a small (18-26 nt RNA cDNA library from the adult worms. Five novel miRNAs were identified from 227 cloned RNA sequences and verified by Northern blot. Alignments of the miRNAs with corresponding family members indicated that four of them belong to a metazoan miRNA family: let-7, miR-71, bantam and miR-125. The fifth potentially new (non conserved miRNA appears to belong to a previously undescribed family in the genus Schistosome. The novel miRNAs were designated as sja-let-7, sja-miR-71, sja-bantam, sja-miR-125 and sja-miR-new1, respectively. Expression of sja-let-7, sja-miR-71 and sja-bantam were analyzed in six stages of the life cycle, i.e. egg, miracidium, sporocyst, cercaria, schistosomulum, and adult worm, by a modified stem-loop reverse transcribed polymerase chain reaction (RT-PCR method developed in our laboratory. The expression patterns of these miRNAs were highly stage-specific. In particular, sja-miR-71 and sja-bantam expression reach their peaks in the cercaria stage and then drop quickly to the nadirs in the schistosomulum stage, following penetration of cercaria into a mammalian host. CONCLUSIONS: Authentic miRNAs were identified for the first time in S. japonicum, including a new schistosome

  14. VlincRNAs controlled by retroviral elements are a hallmark of pluripotency and cancer.

    Science.gov (United States)

    St Laurent, Georges; Shtokalo, Dmitry; Dong, Biao; Tackett, Michael R; Fan, Xiaoxuan; Lazorthes, Sandra; Nicolas, Estelle; Sang, Nianli; Triche, Timothy J; McCaffrey, Timothy A; Xiao, Weidong; Kapranov, Philipp

    2013-07-22

    The function of the non-coding portion of the human genome remains one of the most important questions of our time. Its vast complexity is exemplified by the recent identification of an unusual and notable component of the transcriptome - very long intergenic non-coding RNAs, termed vlincRNAs. Here we identify 2,147 vlincRNAs covering 10 percent of our genome. We show they are present not only in cancerous cells, but also in primary cells and normal human tissues, and are controlled by canonical promoters. Furthermore, vlincRNA promoters frequently originate from within endogenous retroviral sequences. Strikingly, the number of vlincRNAs expressed from endogenous retroviral promoters strongly correlates with pluripotency or the degree of malignant transformation. These results suggest a previously unknown connection between the pluripotent state and cancer via retroviral repeat-driven expression of vlincRNAs. Finally, we show that vlincRNAs can be syntenically conserved in humans and mouse and their depletion using RNAi can cause apoptosis in cancerous cells. These intriguing observations suggest that vlincRNAs could create a framework that combines many existing short ESTs and lincRNAs into a landscape of very long transcripts functioning in the regulation of gene expression in the nucleus. Certain types of vlincRNAs participate at specific stages of normal development and, based on analysis of a limited set of cancerous and primary cell lines, they appear to be co-opted by cancer-associated transcriptional programs. This provides additional understanding of transcriptome regulation during the malignant state, and could lead to additional targets and options for its reversal.

  15. Identification and validation of sRNAs in Edwardsiella tarda S08.

    Directory of Open Access Journals (Sweden)

    Yuying Sun

    Full Text Available Bacterial small non-coding RNAs (sRNAs are known as novel regulators involved in virulence, stress responsibility, and so on. Recently, a lot of new researches have highlighted the critical roles of sRNAs in fine-tune gene regulation in both prokaryotes and eukaryotes. Edwardsiella tarda (E. tarda is a gram-negative, intracellular pathogen that causes edwardsiellosis in fish. Thus far, no sRNA has been reported in E. tarda. The present study represents the first attempt to identify sRNAs in E. tarda S08. Ten sRNAs were validated by RNA sequencing and quantitative PCR (qPCR. ET_sRNA_1 and ET_sRNA_2 were homolous to tmRNA and GcvB, respectively. However, the other candidate sRNAs have not been reported till now. The cellular abundance of 10 validated sRNA was detected by qPCR at different growth phases to monitor their biosynthesis. Nine candidate sRNAs were expressed in the late-stage of exponential growth and stationary stages of growth (36~60 h. And the expression of the nine sRNAs was growth phase-dependent. But ET_sRNA_10 was almost expressed all the time and reached the highest peak at 48 h. Their targets were predicted by TargetRNA2 and each sRNA target contains some genes that directly or indirectly relate to virulence. These results preliminary showed that sRNAs probably play a regulatory role of virulence in E. tarda.

  16. Cap-independent translation of plant viral RNAs.

    Science.gov (United States)

    Kneller, Elizabeth L Pettit; Rakotondrafara, Aurélie M; Miller, W Allen

    2006-07-01

    The RNAs of many plant viruses lack a 5' cap and must be translated by a cap-independent mechanism. Here, we discuss the remarkably diverse cap-independent translation elements that have been identified in members of the Potyviridae, Luteoviridae, and Tombusviridae families, and genus Tobamovirus. Many other plant viruses have uncapped RNAs but their translation control elements are uncharacterized. Cap-independent translation elements of plant viruses differ strikingly from those of animal viruses: they are smaller (translation factors, and speculate on their mechanism of action and their roles in the virus replication cycle. Much remains to be learned about how these elements enable plant viruses to usurp the host translational machinery.

  17. Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing.

    Science.gov (United States)

    Zhang, Ning; Yang, Jiangwei; Wang, Zemin; Wen, Yikai; Wang, Jie; He, Wenhui; Liu, Bailin; Si, Huaijun; Wang, Di

    2014-01-01

    MicroRNAs (miRNAs) are a group of small, non-coding RNAs that play important roles in plant growth, development and stress response. There have been an increasing number of investigations aimed at discovering miRNAs and analyzing their functions in model plants (such as Arabidopsis thaliana and rice). In this research, we constructed small RNA libraries from both polyethylene glycol (PEG 6,000) treated and control potato samples, and a large number of known and novel miRNAs were identified. Differential expression analysis showed that 100 of the known miRNAs were down-regulated and 99 were up-regulated as a result of PEG stress, while 119 of the novel miRNAs were up-regulated and 151 were down-regulated. Based on target prediction, annotation and expression analysis of the miRNAs and their putative target genes, 4 miRNAs were identified as regulating drought-related genes (miR811, miR814, miR835, miR4398). Their target genes were MYB transcription factor (CV431094), hydroxyproline-rich glycoprotein (TC225721), quaporin (TC223412) and WRKY transcription factor (TC199112), respectively. Relative expression trends of those miRNAs were the same as that predicted by Solexa sequencing and they showed a negative correlation with the expression of the target genes. The results provide molecular evidence for the possible involvement of miRNAs in the process of drought response and/or tolerance in the potato plant.

  18. Circulating microRNAs as a Fingerprint for Liver Cirrhosis.

    Directory of Open Access Journals (Sweden)

    Yan-Jie Chen

    Full Text Available Sensitive and specific detection of liver cirrhosis is an urgent need for optimal individualized management of disease activity. Substantial studies have identified circulation miRNAs as biomarkers for diverse diseases including chronic liver diseases. In this study, we investigated the plasma miRNA signature to serve as a potential diagnostic biomarker for silent liver cirrhosis.A genome-wide miRNA microarray was first performed in 80 plasma specimens. Six candidate miRNAs were selected and then trained in CHB-related cirrhosis and controls by qPCR. A classifier, miR-106b and miR-181b, was validated finally in two independent cohorts including CHB-related silent cirrhosis and controls, as well as non-CHB-related cirrhosis and controls as validation sets, respectively.A profile of 2 miRNAs (miR-106b and miR-181b was identified as liver cirrhosis biomarkers irrespective of etiology. The classifier constructed by the two miRNAs provided a high diagnostic accuracy for cirrhosis (AUC = 0.882 for CHB-related cirrhosis in the training set, 0.774 for CHB-related silent cirrhosis in one validation set, and 0.915 for non-CHB-related cirrhosis in another validation set.Our study demonstrated that the combined detection of miR-106b and miR-181b has a considerable clinical value to diagnose patients with liver cirrhosis, especially those at early stage.

  19. Long Intergenic Noncoding RNAs Mediate the Human Chondrocyte Inflammatory Response and Are Differentially Expressed in Osteoarthritis Cartilage.

    Science.gov (United States)

    Pearson, Mark J; Philp, Ashleigh M; Heward, James A; Roux, Benoit T; Walsh, David A; Davis, Edward T; Lindsay, Mark A; Jones, Simon W

    2016-04-01

    To identify long noncoding RNAs (lncRNAs), including long intergenic noncoding RNAs (lincRNAs), antisense RNAs, and pseudogenes, associated with the inflammatory response in human primary osteoarthritis (OA) chondrocytes and to explore their expression and function in OA. OA cartilage was obtained from patients with hip or knee OA following joint replacement surgery. Non-OA cartilage was obtained from postmortem donors and patients with fracture of the neck of the femur. Primary OA chondrocytes were isolated by collagenase digestion. LncRNA expression analysis was performed by RNA sequencing (RNAseq) and quantitative reverse transcriptase-polymerase chain reaction. Modulation of lncRNA chondrocyte expression was achieved using LNA longRNA GapmeRs (Exiqon). Cytokine production was measured with Luminex. RNAseq identified 983 lncRNAs in primary human hip OA chondrocytes, 183 of which had not previously been identified. Following interleukin-1β (IL-1β) stimulation, we identified 125 lincRNAs that were differentially expressed. The lincRNA p50-associated cyclooxygenase 2-extragenic RNA (PACER) and 2 novel chondrocyte inflammation-associated lincRNAs (CILinc01 and CILinc02) were differentially expressed in both knee and hip OA cartilage compared to non-OA cartilage. In primary OA chondrocytes, these lincRNAs were rapidly and transiently induced in response to multiple proinflammatory cytokines. Knockdown of CILinc01 and CILinc02 expression in human chondrocytes significantly enhanced the IL-1-stimulated secretion of proinflammatory cytokines. The inflammatory response in human OA chondrocytes is associated with widespread changes in the profile of lncRNAs, including PACER, CILinc01, and CILinc02. Differential expression of CILinc01 and CIinc02 in hip and knee OA cartilage, and their role in modulating cytokine production during the chondrocyte inflammatory response, suggest that they may play an important role in mediating inflammation-driven cartilage degeneration in

  20. The Impact of MicroRNAs on Brain Aging and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Stephan P. Persengiev

    2012-01-01

    Full Text Available The molecular instructions that govern gene expression regulation are encoded in the genome and ultimately determine the morphology and functional specifications of the human brain. As a consequence, changes in gene expression levels might be directly related to the functional decline associated with brain aging. Small noncoding RNAs, including miRNAs, comprise a group of regulatory molecules that modulate the expression of hundred of genes which play important roles in brain metabolism. Recent comparative studies in humans and nonhuman primates revealed that miRNAs regulate multiple pathways and interconnected signaling cascades that are the basis for the cognitive decline and neurodegenerative disorders during aging. Identifying the roles of miRNAs and their target genes in model organisms combined with system-level studies of the brain would provide more comprehensive understanding of the molecular basis of brain deterioration during the aging process.

  1. High-throughput identification of miRNAs of Taenia ovis, a cestode threatening sheep industry.

    Science.gov (United States)

    Zheng, Yadong

    2017-07-01

    Taenia ovis is a tapeworm that is mainly transmitted between dogs and sheep or goats and has an adverse effect on sheep industry. miRNAs are short regulatory non-coding RNAs, involved in parasite development and growth as well as parasite infection. The miRNA profile of T. ovis remains to be established. Herein, 33 known miRNAs belonging to 23 different families were identified in T. ovis metacestodes using deep sequencing approach. Of them, expression of some miRNAs such as tov-miR-10 and -let-7 was absolutely predominant. Moreover, comparative analysis revealed the presence of a miR-71/2b/2c cluster in T. ovis, which was also completely conserved in other 6 cestodes. The study provides rich data for further understandings of T. ovis biology. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Hydrophobically Modified siRNAs Silence Huntingtin mRNA in Primary Neurons and Mouse Brain

    Directory of Open Access Journals (Sweden)

    Julia F Alterman

    2015-01-01

    Full Text Available Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context.

  3. Nuclear-Encoded Mitochondrial mRNAs: A Powerful Force in Axonal Growth and Development.

    Science.gov (United States)

    Gale, Jenna R; Aschrafi, Armaz; Gioio, Anthony E; Kaplan, Barry B

    2018-04-01

    Axons, their growth cones, and synaptic nerve terminals are neuronal subcompartments that have high energetic needs. As such, they are enriched in mitochondria, which supply the ATP necessary to meet these demands. To date, a heterogeneous population of nuclear-encoded mitochondrial mRNAs has been identified in distal axons and growth cones. Accumulating evidence suggests that the local translation of these mRNAs is required for mitochondrial maintenance and axonal viability. Here, we review evidence that suggests a critical role for axonal translation of nuclear-encoded mitochondrial mRNAs in axonal growth and development. Additionally, we explore the role that site-specific translation at the mitochondria itself may play in this process. Finally, we briefly review the clinical implications of dysregulation of local translation of mitochondrial-related mRNAs in neurodevelopmental disorders.

  4. ParSel: Parallel Selection of Micro-RNAs for Survival Classification in Cancers.

    Science.gov (United States)

    Sinha, Debajyoti; Sengupta, Debarka; Bandyopadhyay, Sanghamitra

    2017-07-01

    It is known that tumor micro-RNAs (miRNA) can define patient survival and treatment response. We present a framework to identify miRNAs which are predictive of cancer survival. The framework attempts to rank the miRNAs by exploring their collaborative role in gene regulation. Our approach tests a significantly large number of combinatorial cases leveraging parallel computation. We carefully avoided parametric assumptions involved in evaluations of miRNA expressions but used rigorous statistical computation to assign an importance score to a miRNA. Experimental results on three cancer types namely, KIRC, OV and GBM verify that the top ranked miRNAs obtained using the proposed framework produce better classification accuracy as compared to some best practice variable selection methods. Some of these top ranked miRNA are also known to be associated with related diseases. © 2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Profiling Osteogenic microRNAs For RNAi-Functionalization Of Scaffolds In Bone Tissue Engineering

    DEFF Research Database (Denmark)

    Chang, Chi-Chih (Clare); Chen, Li; Venø, Morten Trillingsgaard

    is limited and grafts are required to assist in bone repair. The use of allografts can cause immunological complications, whilst autografts subject the patient to two surgeries. Bone tissue engineering is a multidisciplinary field encompassing material science, medicine, chemistry and molecular biology aimed...... both miRNAs that have been reported previously and many novel miRNAs with potent osteogenic capabilities. For tissue engineering applications, we then functionalized scaffolds with the miRNAs we identified and observed an increase in osteogenic capabilities in our 3D cultures. Our findings depicted...... the miRNA expression landscape as mesenchymal stem cells underwent osteogenic differentiation. We also highlight the potency of miRNAs as biological therapeutics in bone tissue engineering....

  6. Differentially expressed circulating microRNAs in the development of acute diabetic Charcot foot.

    Science.gov (United States)

    Pasquier, Jennifer; Ramachandran, Vimal; Abu-Qaoud, Moh'd Rasheed; Thomas, Binitha; Benurwar, Manasi J; Chidiac, Omar; Hoarau-Véchot, Jessica; Robay, Amal; Fakhro, Khalid; Menzies, Robert A; Jayyousi, Amin; Zirie, Mahmoud; Al Suwaidi, Jassim; Malik, Rayaz A; Talal, Talal K; Najafi-Shoushtari, Seyed Hani; Rafii, Arash; Abi Khalil, Charbel

    2018-06-05

    Charcot foot (CF) is a rare complication of Type 2 diabetes (T2D). We assessed circulating miRNAs in 17 patients with T2D and acute CF (G1), 17 patients with T2D (G2) and equivalent neuropathy and 17 patients with T2D without neuropathy (G3) using the high-throughput miRNA expression profiling. 51 significantly deregulated miRNAs were identified in G1 versus G2, 37 in G1 versus G3 and 64 in G2 versus G3. Furthermore, we demonstrated that 16 miRNAs differentially expressed between G1 versus G2 could be involved in osteoclastic differentiation. Among them, eight are key factors involved in CF pathophysiology. Our data reveal that CF patients exhibit an altered expression profile of circulating miRNAs.

  7. Host factor I, Hfq, binds to Escherichia coli ompA mRNA in a growth rate-dependent fashion and regulates its stability

    DEFF Research Database (Denmark)

    Vytvytska, O; Jakobsen, J S; Balcunaite, G

    1998-01-01

    RNA. In hfq mutant cells with a deficient Hfq gene product, the RNA-binding activity is missing, and analysis of the ompA mRNA showed that the growth-rate dependence of degradation is lost. Furthermore, the half-life of the ompA mRNA is prolonged in the mutant cells, irrespective of growth rate. Hfq has...

  8. Differentially Expressed microRNAs and Target Genes Associated with Plastic Internode Elongation in Alternanthera philoxeroides in Contrasting Hydrological Habitats

    Directory of Open Access Journals (Sweden)

    Gengyun Li

    2017-12-01

    Full Text Available Phenotypic plasticity is crucial for plants to survive in changing environments. Discovering microRNAs, identifying their targets and further inferring microRNA functions in mediating plastic developmental responses to environmental changes have been a critical strategy for understanding the underlying molecular mechanisms of phenotypic plasticity. In this study, the dynamic expression patterns of microRNAs under contrasting hydrological habitats in the amphibious species Alternanthera philoxeroides were identified by time course expression profiling using high-throughput sequencing technology. A total of 128 known and 18 novel microRNAs were found to be differentially expressed under contrasting hydrological habitats. The microRNA:mRNA pairs potentially associated with plastic internode elongation were identified by integrative analysis of microRNA and mRNA expression profiles, and were validated by qRT-PCR and 5′ RLM-RACE. The results showed that both the universal microRNAs conserved across different plants and the unique microRNAs novelly identified in A. philoxeroides were involved in the responses to varied water regimes. The results also showed that most of the differentially expressed microRNAs were transiently up-/down-regulated at certain time points during the treatments. The fine-scale temporal changes in microRNA expression highlighted the importance of time-series sampling in identifying stress-responsive microRNAs and analyzing their role in stress response/tolerance.

  9. Identification of rat lung-specific microRNAs by micoRNA microarray: valuable discoveries for the facilitation of lung research.

    Science.gov (United States)

    Wang, Yang; Weng, Tingting; Gou, Deming; Chen, Zhongming; Chintagari, Narendranath Reddy; Liu, Lin

    2007-01-24

    An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs). These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM) and Tukey Honestly Significant Difference (HSD) revealed 2 miRNAs (miR-195 and miR-200c) expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  10. Identification of rat lung-specific microRNAs by microRNA microarray: valuable discoveries for the facilitation of lung research

    Directory of Open Access Journals (Sweden)

    Chintagari Narendranath

    2007-01-01

    Full Text Available Abstract Background An important mechanism for gene regulation utilizes small non-coding RNAs called microRNAs (miRNAs. These small RNAs play important roles in tissue development, cell differentiation and proliferation, lipid and fat metabolism, stem cells, exocytosis, diseases and cancers. To date, relatively little is known about functions of miRNAs in the lung except lung cancer. Results In this study, we utilized a rat miRNA microarray containing 216 miRNA probes, printed in-house, to detect the expression of miRNAs in the rat lung compared to the rat heart, brain, liver, kidney and spleen. Statistical analysis using Significant Analysis of Microarray (SAM and Tukey Honestly Significant Difference (HSD revealed 2 miRNAs (miR-195 and miR-200c expressed specifically in the lung and 9 miRNAs co-expressed in the lung and another organ. 12 selected miRNAs were verified by Northern blot analysis. Conclusion The identified lung-specific miRNAs from this work will facilitate functional studies of miRNAs during normal physiological and pathophysiological processes of the lung.

  11. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    Science.gov (United States)

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  12. Interactions Among Host–Parasite MicroRNAs During Nosema ceranae Proliferation in Apis mellifera

    Directory of Open Access Journals (Sweden)

    Jay D. Evans

    2018-04-01

    Full Text Available We previously identified microRNA (miRNA from Nosema ceranae and found that knockdowns of transcripts for the parasite protein Dicer greatly reduce parasite reproduction. In order to study parasitic miRNA functions and identify candidate target genes, we fed honey bees infected with N. ceranae with small interfering RNA (siRNA targeting the N. ceranae gene Dicer. We then deep-sequenced honey bee and N. ceranae miRNAs daily across a full 6-day proliferation cycle. We found seven honey bee and five N. ceranae miRNAs that were significantly differently expressed between the infection and siRNA-Dicer groups. N. ceranae miRNA showed potentially strong impacts on the N. ceranae transcriptome, where over 79% of the total protein coding genes were significantly correlated with one or more miRNAs. N. ceranae miRNAs also can regulate honey bee metabolism and immune response, given parasitic miRNAs were secreted into the cytoplasm. Our results suggest that N. ceranae miRNAs regulate both parasite and host gene expression, providing new insights for microsporidia parasitism evolution.

  13. MicroRNAs in fruit trees: discovery, diversity and future research directions.

    Science.gov (United States)

    Solofoharivelo, M C; van der Walt, A P; Stephan, D; Burger, J T; Murray, S L

    2014-09-01

    Since the first description of microRNAs (miRNAs) 20 years ago, the number of miRNAs identified in different eukaryotic organisms has exploded, largely due to the recent advances in DNA sequencing technologies. Functional studies, mostly from model species, have revealed that miRNAs are major post-transcriptional regulators of gene expression in eukaryotes. In plants, they are implicated in fundamental biological processes, from plant development and morphogenesis, to regulation of plant pathogen and abiotic stress responses. Although a substantial number of miRNAs have been identified in fruit trees to date, their functions remain largely uncharacterised. The present review aims to summarise the progress made in miRNA research in fruit trees, focusing specifically on the economically important species Prunus persica, Malus domestica, Citrus spp, and Vitis vinifera. We also discuss future miRNA research prospects in these plants and highlight potential applications of miRNAs in the on-going improvement of fruit trees. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  14. Mining, Validation, and Clinical Significance of Colorectal Cancer (CRC)-Associated lncRNAs.

    Science.gov (United States)

    Sun, Xiangwei; Hu, Yingying; Zhang, Liang; Hu, Changyuan; Guo, Gangqiang; Mao, Chenchen; Xu, Jianfeng; Ye, Sisi; Huang, Guanli; Xue, Xiangyang; Guo, Aizhen; Shen, Xian

    2016-01-01

    Colorectal cancer (CRC) is one of the deadliest tumours, but its pathogenesis remains unclear. The involvement of differentially expressed long non-coding RNAs (lncRNAs) in CRC tumorigenesis makes them suitable tumour biomarkers. Here, we screened 150 cases of CRC and 85 cases of paracancerous tissues in the GEO database for differentially expressed lncRNAs. The levels of lncRNA candidates in 84 CRC and paracancerous tissue samples were validated by qRT-PCR and their clinical significance was analyzed. We identified 15 lncRNAs with differential expression in CRC tumours; among them, AK098081 was significantly up-regulated, whereas AK025209, BC040303, BC037331, AK026659, and CR749831 were down-regulated in CRC. In a receiver operating characteristic curve analysis, the area under the curve for the six lncRNAs was 0.914. High expression of AK098081 and low expression of BC040303, CR749831, and BC037331 indicated poor CRC differentiation. CRC patients with lymph node metastasis had lower expression of BC037331. In addition, the group with high AK098081 expression presented significantly lower overall survival and disease-free survival rates than the low-expression group, confirming AK098081 as an independent risk factor for CRC patients. In conclusion, we have identified multiple CRC-associated lncRNAs from microarray expression profiles that can serve as novel biomarkers for the diagnosis and prognosis of CRC.

  15. Long noncoding RNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana.

    Science.gov (United States)

    Zhu, Qian-Hao; Stephen, Stuart; Taylor, Jennifer; Helliwell, Chris A; Wang, Ming-Bo

    2014-01-01

    Short noncoding RNAs have been demonstrated to play important roles in regulation of gene expression and stress responses, but the repertoire and functions of long noncoding RNAs (lncRNAs) remain largely unexplored, particularly in plants. To explore the role of lncRNAs in disease resistance, we used a strand-specific RNA-sequencing approach to identify lncRNAs responsive to Fusarium oxysporum infection in Arabidopsis thaliana. Antisense transcription was found in c. 20% of the annotated A. thaliana genes. Several noncoding natural antisense transcripts responsive to F. oxysporum infection were found in genes implicated in disease defense. While the majority of the novel transcriptionally active regions (TARs) were adjacent to annotated genes and could be an extension of the annotated transcripts, 159 novel intergenic TARs, including 20 F. oxysporum-responsive lncTARs, were identified. Ten F. oxysporum-induced lncTARs were functionally characterized using T-DNA insertion or RNA-interference knockdown lines, and five were demonstrated to be related to disease development. Promoter analysis suggests that some of the F. oxysporum-induced lncTARs are direct targets of transcription factor(s) responsive to pathogen attack. Our results demonstrated that strand-specific RNA sequencing is a powerful tool for uncovering hidden levels of transcriptome and that IncRNAs are important components of the antifungal networks in A. thaliana. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Genome-wide computational identification of microRNAs and their targets in the deep-branching eukaryote Giardia lamblia.

    Science.gov (United States)

    Zhang, Yan-Qiong; Chen, Dong-Liang; Tian, Hai-Feng; Zhang, Bao-Hong; Wen, Jian-Fan

    2009-10-01

    Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.

  17. NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs

    Directory of Open Access Journals (Sweden)

    Shobbir Hussain

    2013-07-01

    Full Text Available Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs, yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs. Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.

  18. Identification of miRNAs and their targets through high-throughput sequencing and degradome analysis in male and female Asparagus officinalis.

    Science.gov (United States)

    Chen, Jingli; Zheng, Yi; Qin, Li; Wang, Yan; Chen, Lifei; He, Yanjun; Fei, Zhangjun; Lu, Gang

    2016-04-12

    MicroRNAs (miRNAs), a class of non-coding small RNAs (sRNAs), regulate various biological processes. Although miRNAs have been identified and characterized in several plant species, miRNAs in Asparagus officinalis have not been reported. As a dioecious plant with homomorphic sex chromosomes, asparagus is regarded as an important model system for studying mechanisms of plant sex determination. Two independent sRNA libraries from male and female asparagus plants were sequenced with Illumina sequencing, thereby generating 4.13 and 5.88 million final clean reads, respectively. Both libraries predominantly contained 24-nt sRNAs, followed by 21-nt sRNAs. Further analysis identified 154 conserved miRNAs, which belong to 26 families, and 39 novel miRNA candidates seemed to be specific to asparagus. Comparative profiling revealed that 63 miRNAs exhibited significant differential expression between male and female plants, which was confirmed by real-time quantitative PCR analysis. Among them, 37 miRNAs were significantly up-regulated in the female library, whereas the others were preferentially expressed in the male library. Furthermore, 40 target mRNAs representing 44 conserved and seven novel miRNAs were identified in asparagus through high-throughput degradome sequencing. Functional annotation showed that these target mRNAs were involved in a wide range of developmental and metabolic processes. We identified a large set of conserved and specific miRNAs and compared their expression levels between male and female asparagus plants. Several asparagus miRNAs, which belong to the miR159, miR167, and miR172 families involved in reproductive organ development, were differentially expressed between male and female plants, as well as during flower development. Consistently, several predicted targets of asparagus miRNAs were associated with floral organ development. These findings suggest the potential roles of miRNAs in sex determination and reproductive developmental processes in

  19. Interplay of noncoding RNAs, mRNAs, and proteins during the growth of eukaryotic cells

    International Nuclear Information System (INIS)

    Zhdanov, V. P.

    2010-01-01

    Numerous biological functions of noncoding RNAs (ncRNAs) in eukaryotic cells are based primarily on their ability to pair with target mRNAs and then either to prevent translation or to result in rapid degradation of the mRNA-ncRNA complex. Using a general model describing this scenario, we show that ncRNAs may help to maintain constant mRNA and protein concentrations during the growth of cells. The possibility of observation of this effect on the global scale is briefly discussed.

  20. Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging.

    Science.gov (United States)

    Grammatikakis, Ioannis; Panda, Amaresh C; Abdelmohsen, Kotb; Gorospe, Myriam

    2014-12-01

    During aging, progressive deleterious changes increase the risk of disease and death. Prominent molecular hallmarks of aging are genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, cellular senescence, stem cell exhaustion, and altered intercellular communication. Long noncoding RNAs (lncRNAs) play important roles in a wide range of biological processes, including age-related diseases like cancer, cardiovascular pathologies, and neurodegenerative disorders. Evidence is emerging that lncRNAs influence the molecular processes that underlie age-associated phenotypes. Here, we review our current understanding of lncRNAs that control the development of aging traits.

  1. Horizontal Transfer of Small RNAs To and From Plants

    Directory of Open Access Journals (Sweden)

    Lu eHan

    2015-12-01

    Full Text Available Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs. sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs and small interfering RNAs (siRNAs, are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing (HIGS system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.

  2. The therapeutic potential of MicroRNAs in cancer

    DEFF Research Database (Denmark)

    Thorsen, Stine Buch; Obad, Susanna; Jensen, Niels Frank

    2012-01-01

    MicroRNAs (miRNAs) have been uncovered as important posttranscriptional regulators of nearly every biological process in the cell. Furthermore, mounting evidence implies that miRNAs play key roles in the pathogenesis of cancer and that many miRNAs can function either as oncogenes or tumor...

  3. MicroRNAs: role and therapeutic targets in viral hepatitis

    NARCIS (Netherlands)

    van der Ree, Meike H.; de Bruijne, Joep; Kootstra, Neeltje A.; Jansen, Peter Lm; Reesink, Hendrik W.

    2014-01-01

    MicroRNAs regulate gene expression by binding to the 3'-untranslated region (UTR) of target messenger RNAs (mRNAs). The importance of microRNAs has been shown for several liver diseases, for example, viral hepatitis. MicroRNA-122 is highly abundant in the liver and is involved in the regulation of

  4. Circadian changes in long noncoding RNAs in the pineal gland

    DEFF Research Database (Denmark)

    Coon, Steven L; Munson, Peter J; Cherukuri, Praveen F

    2012-01-01

    Long noncoding RNAs (lncRNAs) play a broad range of biological roles, including regulation of expression of genes and chromosomes. Here, we present evidence that lncRNAs are involved in vertebrate circadian biology. Differential night/day expression of 112 lncRNAs (0.3 to >50 kb) occurs in the ra...

  5. Shrimp miRNAs regulate innate immune response against white spot syndrome virus infection.

    Science.gov (United States)

    Kaewkascholkul, Napol; Somboonviwat, Kulwadee; Asakawa, Shuichi; Hirono, Ikuo; Tassanakajon, Anchalee; Somboonwiwat, Kunlaya

    2016-07-01

    MicroRNAs are short noncoding RNAs of RNA interference pathways that regulate gene expression through partial complementary base-pairing to target mRNAs. In this study, miRNAs that are expressed in white spot syndrome virus (WSSV)-infected Penaeus monodon, were identified using next generation sequencing. Forty-six miRNA homologs were identified from WSSV-infected shrimp hemocyte. Stem-loop real-time RT-PCR analysis showed that 11 out of 16 selected miRNAs were differentially expressed upon WSSV infection. Of those, pmo-miR-315 and pmo-miR-750 were highly responsive miRNAs. miRNA target prediction revealed that the miRNAs were targeted at 5'UTR, ORF, and 3'UTR of several immune-related genes such as genes encoding antimicrobial peptides, signaling transduction proteins, heat shock proteins, oxidative stress proteins, proteinases or proteinase inhibitors, proteins in blood clotting system, apoptosis-related proteins, proteins in prophenoloxidase system, pattern recognition proteins and other immune molecules. The highly conserved miRNA homolog, pmo-bantam, was characterized for its function in shrimp. The pmo-bantam was predicted to target the 3'UTR of Kunitz-type serine protease inhibitor (KuSPI). Binding of pmo-bantam to the target sequence of KuSPI gene was analyzed by luciferase reporter assay. Correlation of pmo-bantam and KuSPI expression was observed in lymphoid organ of WSSV-infected shrimp. These results implied that miRNAs might play roles as immune gene regulators in shrimp antiviral response. Copyright © 2016. Published by Elsevier Ltd.

  6. Hidden layers of human small RNAs

    DEFF Research Database (Denmark)

    Kawaji, Hideya; Nakamura, Mari; Takahashi, Yukari

    2008-01-01

    small RNA have focused on miRNA and/or siRNA rather than on the exploration of additional classes of RNAs. RESULTS: Here, we explored human small RNAs by unbiased sequencing of RNAs with sizes of 19-40 nt. We provide substantial evidences for the existence of independent classes of small RNAs. Our data......BACKGROUND: Small RNA attracts increasing interest based on the discovery of RNA silencing and the rapid progress of our understanding of these phenomena. Although recent studies suggest the possible existence of yet undiscovered types of small RNAs in higher organisms, many studies to profile...... shows that well-characterized non-coding RNA, such as tRNA, snoRNA, and snRNA are cleaved at sites specific to the class of ncRNA. In particular, tRNA cleavage is regulated depending on tRNA type and tissue expression. We also found small RNAs mapped to genomic regions that are transcribed in both...

  7. Immunomodulating microRNAs of mycobacterial infections.

    Science.gov (United States)

    Bettencourt, Paulo; Pires, David; Anes, Elsa

    2016-03-01

    MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Extracellular small RNAs: what, where, why?

    Science.gov (United States)

    Hoy, Anna M.; Buck, Amy H.

    2012-01-01

    miRNAs (microRNAs) are a class of small RNA that regulate gene expression by binding to mRNAs and modulating the precise amount of proteins that get expressed in a cell at a given time. This form of gene regulation plays an important role in developmental systems and is critical for the proper function of numerous biological pathways. Although miRNAs exert their functions inside the cell, these and other classes of RNA are found in body fluids in a cell-free form that is resistant to degradation by RNases. A broad range of cell types have also been shown to secrete miRNAs in association with components of the RISC (RNA-induced silencing complex) and/or encapsulation within vesicles, which can be taken up by other cells. In the present paper, we provide an overview of the properties of extracellular miRNAs in relation to their capacity as biomarkers, stability against degradation and mediators of cell–cell communication. PMID:22817753

  9. The expanding universe of noncoding RNAs.

    Science.gov (United States)

    Hannon, G J; Rivas, F V; Murchison, E P; Steitz, J A

    2006-01-01

    The 71st Cold Spring Harbor Symposium on Quantitative Biology celebrated the numerous and expanding roles of regulatory RNAs in systems ranging from bacteria to mammals. It was clearly evident that noncoding RNAs are undergoing a renaissance, with reports of their involvement in nearly every cellular process. Previously known classes of longer noncoding RNAs were shown to function by every possible means-acting catalytically, sensing physiological states through adoption of complex secondary and tertiary structures, or using their primary sequences for recognition of target sites. The many recently discovered classes of small noncoding RNAs, generally less than 35 nucleotides in length, most often exert their effects by guiding regulatory complexes to targets via base-pairing. With the ability to analyze the RNA products of the genome in ever greater depth, it has become clear that the universe of noncoding RNAs may extend far beyond the boundaries we had previously imagined. Thus, as much as the Symposium highlighted exciting progress in the field, it also revealed how much farther we must go to understand fully the biological impact of noncoding RNAs.

  10. Transcriptome and Degradome of microRNAs and Their Targets in Response to Drought Stress in the Plants of a Diploid and Its Autotetraploid Paulownia australis.

    Directory of Open Access Journals (Sweden)

    Suyan Niu

    Full Text Available MicroRNAs (miRNAs are small, non-coding RNAs that play vital roles in plant growth, development, and stress response. Increasing numbers of studies aimed at discovering miRNAs and analyzing their functions in plants are being reported. In this study, we investigated the effect of drought stress on the expression of miRNAs and their targets in plants of a diploid and derived autotetraploid Paulownia australis. Four small RNA (sRNA libraries and four degradome libraries were constructed from diploid and autotetraploid P. australis plants treated with either 75% or 25% relative soil water content. A total of 33 conserved and 104 novel miRNAs (processing precision value > 0.1 were identified, and 125 target genes were identified for 36 of the miRNAs by using the degradome sequencing. Among the identified miRNAs, 54 and 68 were differentially expressed in diploid and autotetraploid plants under drought stress (25% relative soil water content, respectively. The expressions of miRNAs and target genes were also validated by quantitative real-time PCR. The results showed that the relative expression trends of the randomly selected miRNAs were similar to the trends predicted by Illumina sequencing. And the correlations between miRNAs and their target genes were also analyzed. Furthermore, the functional analysis showed that most of these miRNAs and target genes were associated with plant development and environmental stress response. This study provided molecular evidence for the possible involvement of certain miRNAs in the drought response and/or tolerance in P. australis, and certain level of differential expression between diploid and autotetraploid plants.

  11. Systematic identification of long noncoding RNAs expressed during zebrafish embryogenesis

    DEFF Research Database (Denmark)

    Pauli, Andrea; Valen, Eivind; Lin, Michael F.

    2012-01-01

    Long non-coding RNAs (lncRNAs) comprise a diverse class of transcripts that structurally resemble mRNAs but do not encode proteins. Recent genome-wide studies in human and mouse have annotated lncRNAs expressed in cell lines and adult tissues, but a systematic analysis of lncRNAs expressed during...... of genes with developmental functions. The temporal expression profile of lncRNAs revealed two novel properties: lncRNAs are expressed in narrower time windows than protein-coding genes and are specifically enriched in early-stage embryos. In addition, several lncRNAs show tissue-specific expression...... and distinct subcellular localization patterns. Integrative computational analyses associated individual lncRNAs with specific pathways and functions, ranging from cell cycle regulation to morphogenesis. Our study provides the first systematic identification of lncRNAs in a vertebrate embryo and forms...

  12. Isolation and Identification of Post-Transcriptional Gene Silencing-Related Micro-RNAs by Functionalized Silicon Nanowire Field-effect Transistor

    Science.gov (United States)

    Chen, Kuan-I.; Pan, Chien-Yuan; Li, Keng-Hui; Huang, Ying-Chih; Lu, Chia-Wei; Tang, Chuan-Yi; Su, Ya-Wen; Tseng, Ling-Wei; Tseng, Kun-Chang; Lin, Chi-Yun; Chen, Chii-Dong; Lin, Shih-Shun; Chen, Yit-Tsong

    2015-11-01

    Many transcribed RNAs are non-coding RNAs, including microRNAs (miRNAs), which bind to complementary sequences on messenger RNAs to regulate the translation efficacy. Therefore, identifying the miRNAs expressed in cells/organisms aids in understanding genetic control in cells/organisms. In this report, we determined the binding of oligonucleotides to a receptor-modified silicon nanowire field-effect transistor (SiNW-FET) by monitoring the changes in conductance of the SiNW-FET. We first modified a SiNW-FET with a DNA probe to directly and selectively detect the complementary miRNA in cell lysates. This SiNW-FET device has 7-fold higher sensitivity than reverse transcription-quantitative polymerase chain reaction in detecting the corresponding miRNA. Next, we anchored viral p19 proteins, which bind the double-strand small RNAs (ds-sRNAs), on the SiNW-FET. By perfusing the device with synthesized ds-sRNAs of different pairing statuses, the dissociation constants revealed that the nucleotides at the 3‧-overhangs and pairings at the terminus are important for the interactions. After perfusing the total RNA mixture extracted from Nicotiana benthamiana across the device, this device could enrich the ds-sRNAs for sequence analysis. Finally, this bionanoelectronic SiNW-FET, which is able to isolate and identify the interacting protein-RNA, adds an additional tool in genomic technology for the future study of direct biomolecular interactions.

  13. High throughput sequencing of small RNA component of leaves and inflorescence revealed conserved and novel miRNAs as well as phasiRNA loci in chickpea.

    Science.gov (United States)

    Srivastava, Sangeeta; Zheng, Yun; Kudapa, Himabindu; Jagadeeswaran, Guru; Hivrale, Vandana; Varshney, Rajeev K; Sunkar, Ramanjulu

    2015-06-01

    Among legumes, chickpea (Cicer arietinum L.) is the second most important crop after soybean. MicroRNAs (miRNAs) play important roles by regulating target gene expression important for plant development and tolerance to stress conditions. Additionally, recently discovered phased siRNAs (phasiRNAs), a new class of small RNAs, are abundantly produced in legumes. Nevertheless, little is known about these regulatory molecules in chickpea. The small RNA population was sequenced from leaves and flowers of chickpea to identify conserved and novel miRNAs as well as phasiRNAs/phasiRNA loci. Bioinformatics analysis revealed 157 miRNA loci for the 96 highly conserved and known miRNA homologs belonging to 38 miRNA families in chickpea. Furthermore, 20 novel miRNAs belonging to 17 miRNA families were identified. Sequence analysis revealed approximately 60 phasiRNA loci. Potential target genes likely to be regulated by these miRNAs were predicted and some were confirmed by modified 5' RACE assay. Predicted targets are mostly transcription factors that might be important for developmental processes, and others include superoxide dismutases, plantacyanin, laccases and F-box proteins that could participate in stress responses and protein degradation. Overall, this study provides an inventory of miRNA-target gene interactions for chickpea, useful for the comparative analysis of small RNAs among legumes. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  14. Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Santana Clara

    2009-10-01

    Full Text Available Abstract Background Schistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA (ncRNA plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available. Results A homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in S. japonicum and found two additional homologs of known miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs. Conclusion The ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.

  15. Comparative transcriptome profiling of dairy goat microRNAs from dry period and peak lactation mammary gland tissues.

    Directory of Open Access Journals (Sweden)

    Zhuanjian Li

    Full Text Available BACKGROUND: MicroRNAs (miRNAs are small noncoding RNA molecules that serve as important post-transcriptional gene expression regulators by targeting messenger RNAs for post-transcriptional endonucleolytic cleavage or translational inhibition. miRNAs play important roles in many biological processes. Extensive high-throughput sequencing studies of miRNAs have been performed in several animal models. However, little is known about the diversity of these regulatory RNAs in goat (Capra hircus, which is one of the most important agricultural animals and the oldest domesticated species raised worldwide. Goats have long been used for their milk, meat, hair (including cashmere, and skins throughout much of the world. RESULTS: In this study, two small RNA libraries were constructed based on dry period and peak lactation dairy goat mammary gland tissues and sequenced using the Illumina-Solexa high-throughput sequencing technology. A total of 346 conserved and 95 novel miRNAs were identified in the dairy goat. miRNAs expression was confirmed by qRT-PCR in nine tissues and in the mammary gland during different stages of lactation. In addition, several candidate miRNAs that may be involved in mammary gland development and lactation were found by comparing the miRNA expression profiles in different tissues and developmental stages of the mammary gland. CONCLUSIONS: This study reveals the first miRNAs profile related to the biology of the mammary gland in the dairy goat. The characterization of these miRNAs could contribute to a better understanding of the molecular mechanisms of lactation physiology and mammary gland development in the dairy goat.

  16. Analysis of Small RNAs in Streptococcus mutans under Acid Stress-A New Insight for Caries Research.

    Science.gov (United States)

    Liu, Shanshan; Tao, Ye; Yu, Lixia; Zhuang, Peilin; Zhi, Qinghui; Zhou, Yan; Lin, Huancai

    2016-09-14

    Streptococcus mutans (S. mutans) is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs) are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5) at three time points (0.5, 1, and 2 h). Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.

  17. Annotating function to differentially expressed LincRNAs in myelodysplastic syndrome using a network-based method.

    Science.gov (United States)

    Liu, Keqin; Beck, Dominik; Thoms, Julie A I; Liu, Liang; Zhao, Weiling; Pimanda, John E; Zhou, Xiaobo

    2017-09-01

    Long non-coding RNAs (lncRNAs) have been implicated in the regulation of diverse biological functions. The number of newly identified lncRNAs has increased dramatically in recent years but their expression and function have not yet been described from most diseases. To elucidate lncRNA function in human disease, we have developed a novel network based method (NLCFA) integrating correlations between lncRNA, protein coding genes and noncoding miRNAs. We have also integrated target gene associations and protein-protein interactions and designed our model to provide information on the combined influence of mRNAs, lncRNAs and miRNAs on cellular signal transduction networks. We have generated lncRNA expression profiles from the CD34+ haematopoietic stem and progenitor cells (HSPCs) from patients with Myelodysplastic syndromes (MDS) and healthy donors. We report, for the first time, aberrantly expressed lncRNAs in MDS and further prioritize biologically relevant lncRNAs using the NLCFA. Taken together, our data suggests that aberrant levels of specific lncRNAs are intimately involved in network modules that control multiple cancer-associated signalling pathways and cellular processes. Importantly, our method can be applied to prioritize aberrantly expressed lncRNAs for functional validation in other diseases and biological contexts. The method is implemented in R language and Matlab. xizhou@wakehealth.edu. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Analysis of Small RNAs in Streptococcus mutans under Acid Stress—A New Insight for Caries Research

    Directory of Open Access Journals (Sweden)

    Shanshan Liu

    2016-09-01

    Full Text Available Streptococcus mutans (S. mutans is the major clinical pathogen responsible for dental caries. Its acid tolerance has been identified as a significant virulence factor for its survival and cariogenicity in acidic conditions. Small RNAs (sRNAs are recognized as key regulators of virulence and stress adaptation. Here, we constructed three libraries of sRNAs with small size exposed to acidic conditions for the first time, followed by verification using qRT-PCR. The levels of two sRNAs and target genes predicted to be bioinformatically related to acid tolerance were further evaluated under different acid stress conditions (pH 7.5, 6.5, 5.5, and 4.5 at three time points (0.5, 1, and 2 h. Meanwhile, bacterial growth characteristics and vitality were assessed. We obtained 1879 sRNAs with read counts of at least 100. One hundred and ten sRNAs were perfectly mapped to reported msRNAs in S. mutans. Ten out of 18 sRNAs were validated by qRT-PCR. The survival of bacteria declined as the acid was increased from pH 7.5 to 4.5 at each time point. The bacteria can proliferate under each pH except pH 4.5 with time. The levels of sRNAs gradually decreased from pH 7.5 to 5.5, and slightly increased in pH 4.5; however, the expression levels of target mRNAs were up-regulated in acidic conditions than in pH 7.5. These results indicate that some sRNAs are specially induced at acid stress conditions, involving acid adaptation, and provide a new insight into exploring the complex acid tolerance for S. mutans.

  19. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    International Nuclear Information System (INIS)

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-01-01

    Highlights: ► Matrigel alters cancer cell line miRNA expression relative to culture on plastic. ► Many identified Matrigel-regulated miRNAs are implicated in cancer. ► miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. ► miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a valuable approach to the in vitro study of miRNAs.

  20. Identification of microRNAs from Amur grape (Vitis amurensis Rupr.) by deep sequencing and analysis of microRNA variations with bioinformatics.

    Science.gov (United States)

    Wang, Chen; Han, Jian; Liu, Chonghuai; Kibet, Korir Nicholas; Kayesh, Emrul; Shangguan, Lingfei; Li, Xiaoying; Fang, Jinggui

    2012-03-29

    MicroRNA (miRNA) is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr.) is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs) from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR) analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Deep sequencing of short RNAs from Amur grape flowers and berries identified 72 new potential miRNAs and 34 known but non-conserved miRNAs

  1. Identification of microRNAs from Amur grape (vitis amurensis Rupr. by deep sequencing and analysis of microRNA variations with bioinformatics

    Directory of Open Access Journals (Sweden)

    Wang Chen

    2012-03-01

    Full Text Available Abstract Background MicroRNA (miRNA is a class of functional non-coding small RNA with 19-25 nucleotides in length while Amur grape (Vitis amurensis Rupr. is an important wild fruit crop with the strongest cold resistance among the Vitis species, is used as an excellent breeding parent for grapevine, and has elicited growing interest in wine production. To date, there is a relatively large number of grapevine miRNAs (vv-miRNAs from cultivated grapevine varieties such as Vitis vinifera L. and hybrids of V. vinifera and V. labrusca, but there is no report on miRNAs from Vitis amurensis Rupr, a wild grapevine species. Results A small RNA library from Amur grape was constructed and Solexa technology used to perform deep sequencing of the library followed by subsequent bioinformatics analysis to identify new miRNAs. In total, 126 conserved miRNAs belonging to 27 miRNA families were identified, and 34 known but non-conserved miRNAs were also found. Significantly, 72 new potential Amur grape-specific miRNAs were discovered. The sequences of these new potential va-miRNAs were further validated through miR-RACE, and accumulation of 18 new va-miRNAs in seven tissues of grapevines confirmed by real time RT-PCR (qRT-PCR analysis. The expression levels of va-miRNAs in flowers and berries were found to be basically consistent in identity to those from deep sequenced sRNAs libraries of combined corresponding tissues. We also describe the conservation and variation of va-miRNAs using miR-SNPs and miR-LDs during plant evolution based on comparison of orthologous sequences, and further reveal that the number and sites of miR-SNP in diverse miRNA families exhibit distinct divergence. Finally, 346 target genes for the new miRNAs were predicted and they include a number of Amur grape stress tolerance genes and many genes regulating anthocyanin synthesis and sugar metabolism. Conclusions Deep sequencing of short RNAs from Amur grape flowers and berries identified 72

  2. Plasma EBV microRNAs in paediatric renal transplant recipients.

    Science.gov (United States)

    Hassan, Jaythoon; Dean, Jonathan; De Gascun, Cillian F; Riordan, Michael; Sweeney, Clodagh; Connell, Jeff; Awan, Atif

    2018-06-01

    Epstein-Barr virus (EBV) was the first human virus identified to express microRNA (miRNA). To date, 44 mature miRNAs are encoded for within the EBV genome. EBV miRNAs have not been profiled in paediatric renal transplant recipients. In this study, we investigated circulating EBV miRNA profiles as novel biomarkers in paediatric renal transplant patients. Forty-two microRNAs encoded within 2 EBV open reading frames (BART and BHRF) were examined in renal transplant recipients who resolved EBV infection (REI) or maintained chronic high viral loads (CHL), and in non-transplant patients with acute infectious mononucleosis (IM). Plasma EBV-miR-BART2-5p was present in higher numbers of IM (7/8) and CHL (7/10) compared to REI (7/12) patients. A trend was observed between the numbers of plasma EBV miRNAs expressed and EBV viral load (p < 0.07). Several EBV-miRs including BART7-3p, 15, 9-3p, 11-3p, 1-3p and 3-3p were detected in IM and CHL patients only. The lytic EBV-miRs, BHRF1-2-3p and 1-1, indicating active viral replication, were detected in IM patients only. One CHL patient developed post-transplant lymphoproliferative disease (PTLD) after several years and analysis of 10 samples over a 30-month period showed an average 24-fold higher change in plasma EBV-miR-BART2-5p compared to the CHL group and 110-fold higher change compared to the REI group. Our results suggest that EBV-miR-BART2-5p, which targets the stress-induced immune ligand MICB to escape recognition and elimination by NK cells, may have a role in sustaining high EBV viral loads in CHL paediatric kidney transplant recipients.

  3. Regulation of Corticosteroidogenic Genes by MicroRNAs

    Directory of Open Access Journals (Sweden)

    Stacy Robertson

    2017-01-01

    Full Text Available The loss of normal regulation of corticosteroid secretion is important in the development of cardiovascular disease. We previously showed that microRNAs regulate the terminal stages of corticosteroid biosynthesis. Here, we assess microRNA regulation across the whole corticosteroid pathway. Knockdown of microRNA using Dicer1 siRNA in H295R adrenocortical cells increased levels of CYP11A1, CYP21A1, and CYP17A1 mRNA and the secretion of cortisol, corticosterone, 11-deoxycorticosterone, 18-hydroxycorticosterone, and aldosterone. Bioinformatic analysis of genes involved in corticosteroid biosynthesis or metabolism identified many putative microRNA-binding sites, and some were selected for further study. Manipulation of individual microRNA levels demonstrated a direct effect of miR-125a-5p and miR-125b-5p on CYP11B2 and of miR-320a-3p levels on CYP11A1 and CYP17A1 mRNA. Finally, comparison of microRNA expression profiles from human aldosterone-producing adenoma and normal adrenal tissue showed levels of various microRNAs, including miR-125a-5p to be significantly different. This study demonstrates that corticosteroidogenesis is regulated at multiple points by several microRNAs and that certain of these microRNAs are differentially expressed in tumorous adrenal tissue, which may contribute to dysregulation of corticosteroid secretion. These findings provide new insights into the regulation of corticosteroid production and have implications for understanding the pathology of disease states where abnormal hormone secretion is a feature.

  4. Identification and characterization of novel and differentially expressed microRNAs in peripheral blood from healthy and mastitis Holstein cattle by deep sequencing.

    Science.gov (United States)

    Li, Zhixiong; Wang, Hongliang; Chen, Ling; Wang, Lijun; Liu, Xiaolin; Ru, Caixia; Song, Ailong

    2014-02-01

    MicroRNA (miRNA) mediates post-transcriptional gene regulation and plays an important role in regulating the development of immune cells and in modulating innate and adaptive immune responses in mammals, including cattle. In the present study, we identified novel and differentially expressed miRNAs in peripheral blood from healthy and mastitis Holstein cattle by Solexa sequencing and bioinformatics. In total, 608 precursor hairpins (pre-miRNAs) encoding for 753 mature miRNAs were detected. Statistically, 173 unique miRNAs (of 753, 22.98%) were identified that had significant differential expression between healthy and mastitis Holstein cattle (P mastitis Holstein cattle, which provide important information on mastitis in miRNAs expression. Diverse miRNAs may play an important role in the treatment of mastitis in Holstein cattle. © 2013 Stichting International Foundation for Animal Genetics.

  5. Spliceosomal small nuclear RNAs of Tetrahymena thermophila and some possible snRNA-snRNA base-pairing interactions

    DEFF Research Database (Denmark)

    Orum, H; Nielsen, Henrik; Engberg, J

    1991-01-01

    We have identified and characterized the full set of spliceosomal small nuclear RNAs (snRNAs; U1, U2, U4, U5 and U6) from the ciliated protozoan Tetrahymena thermophila. With the exception of U4 snRNA, the sizes of the T. thermophila snRNAs are closely similar to their metazoan homologues. The T....... thermophila snRNAs all have unique 5' ends, which start with an adenine residue. In contrast, with the exception of U6, their 3' ends show some size heterogeneity. The primary sequences of the T. thermophila snRNAs contain the sequence motifs shown, or proposed, to be of functional importance in other...

  6. Identification of microRNAs Involved in the Host Response to Enterovirus 71 Infection by a Deep Sequencing Approach

    Directory of Open Access Journals (Sweden)

    Lunbiao Cui

    2010-01-01

    Full Text Available Role of microRNA (miRNA has been highlighted in pathogen-host interactions recently. To identify cellular miRNAs involved in the host response to enterovirus 71 (EV71 infection, we performed a comprehensive miRNA profiling in EV71-infected Hep2 cells through deep sequencing. 64 miRNAs were found whose expression levels changed for more than 2-fold in response to EV71 infection. Gene ontology analysis revealed that many of these mRNAs play roles in neurological process, immune response, and cell death pathways, which are known to be associated with the extreme virulence of EV71. To our knowledge, this is the first study on host miRNAs expression alteration response to EV71 infection. Our findings supported the hypothesis that certain miRNAs might be essential in the host-pathogen interactions.

  7. Profiling of Long Non-coding RNAs and mRNAs by RNA-Sequencing in the Hippocampi of Adult Mice Following Propofol Sedation.

    Science.gov (United States)

    Fan, Jun; Zhou, Quan; Li, Yan; Song, Xiuling; Hu, Jijie; Qin, Zaisheng; Tang, Jing; Tao, Tao

    2018-01-01

    Propofol is a frequently used intravenous anesthetic agent. The impairment caused by propofol on the neural system, especially the hippocampus, has been widely reported. However, the molecular mechanism underlying the effects of propofol on learning and memory functions in the hippocampus is still unclear. In the present study we performed lncRNA and mRNA analysis in the hippocampi of adult mice, after propofol sedation, through RNA-Sequencing (RNA-Seq). A total of 146 differentially expressed lncRNAs and 1103 mRNAs were identified. Bioinformatics analysis, including gene ontology (GO) analysis, pathway analysis and network analysis, were done for the identified dysregulated genes. Pathway analysis indicated that the FoxO signaling pathway played an important role in the effects of propofol on the hippocampus. Finally, four lncRNAs and three proteins were selected from the FoxO-related network for further validation. The up-regulation of lncE230001N04Rik and the down-regulation of lncRP23-430H21.1 and lncB230206L02Rik showed the same fold change tendencies but changes in Gm26532 were not statistically significant in the RNA-Seq results, following propofol sedation. The FoxO pathway-related proteins, PI3K and AKT, are up-regulated in propofol-exposed group. FoxO3a is down-regulated at both mRNA and protein levels. Our study reveals that propofol sedation can influence the expression of lncRNAs and mRNAs in the hippocampus, and bioinformatics analysis have identified key biological processes and pathways associated with propofol sedation. Cumulatively, our results provide a framework for further study on the role of lncRNAs in propofol-induced or -related neurotoxicity, particularly with regards to hippocampus-related dysfunction.

  8. Profiling of Long Non-coding RNAs and mRNAs by RNA-Sequencing in the Hippocampi of Adult Mice Following Propofol Sedation

    Directory of Open Access Journals (Sweden)

    Jun Fan

    2018-03-01

    Full Text Available Propofol is a frequently used intravenous anesthetic agent. The impairment caused by propofol on the neural system, especially the hippocampus, has been widely reported. However, the molecular mechanism underlying the effects of propofol on learning and memory functions in the hippocampus is still unclear. In the present study we performed lncRNA and mRNA analysis in the hippocampi of adult mice, after propofol sedation, through RNA-Sequencing (RNA-Seq. A total of 146 differentially expressed lncRNAs and 1103 mRNAs were identified. Bioinformatics analysis, including gene ontology (GO analysis, pathway analysis and network analysis, were done for the identified dysregulated genes. Pathway analysis indicated that the FoxO signaling pathway played an important role in the effects of propofol on the hippocampus. Finally, four lncRNAs and three proteins were selected from the FoxO-related network for further validation. The up-regulation of lncE230001N04Rik and the down-regulation of lncRP23-430H21.1 and lncB230206L02Rik showed the same fold change tendencies but changes in Gm26532 were not statistically significant in the RNA-Seq results, following propofol sedation. The FoxO pathway-related proteins, PI3K and AKT, are up-regulated in propofol-exposed group. FoxO3a is down-regulated at both mRNA and protein levels. Our study reveals that propofol sedation can influence the expression of lncRNAs and mRNAs in the hippocampus, and bioinformatics analysis have identified key biological processes and pathways associated with propofol sedation. Cumulatively, our results provide a framework for further study on the role of lncRNAs in propofol-induced or -related neurotoxicity, particularly with regards to hippocampus-related dysfunction.

  9. [MicroRNAs: circulating biomarkers in type 2 Diabetes Mellitus and physical exercise].

    Science.gov (United States)

    Gómez-Banoy, Nicolás; Mockus, Ismena

    2016-03-01

    MicroRNAs are small, non-coding molecules with a crucial function in the cell´s biologic regulation. Circulating levels of miRNAs may be useful biomarkers in metabolic diseases such as type 2 Diabetes Mellitus (DM2), which alters the circulating concentrations of several types of miRNA. Specific serum profiles of these molecules have been identified in high-risk patients before the development of DM2 and its chronic complications. Most importantly, these profiles can be modified with physical exercise, which is crucial in the treatment of metabolic diseases. Acute physical activity alone can induce changes in tissue specific miRNAs, and responses are different in aerobic or non-aerobic training. Muscle and cardiovascular miRNAs, which may play an important role in the adap tation to exercise, are predominantly altered. Even further, there is a correlation between serum levels of miRNAs and fitness, suggesting a role for chronic exercise in their regulation. Thus, miRNAs are molecules of growing importance in exercise physiology, and may be involved in the mechanisms behind the beneficial effects of physical activity for patients with metabolic diseases.

  10. Identification of novel and conserved microRNAs in Coffea canephora and Coffea arabica

    Directory of Open Access Journals (Sweden)

    Guilherme Loss-Morais

    2014-12-01

    Full Text Available As microRNAs (miRNAs are important regulators of many biological processes, a series of small RNAomes from plants have been produced in the last decade. However, miRNA data from several groups of plants are still lacking, including some economically important crops. Here microRNAs from Coffea canephora leaves were profiled and 58 unique sequences belonging to 33 families were found, including two novel microRNAs that have never been described before in plants. Some of the microRNA sequences were also identified in Coffea arabica that, together with C. canephora, correspond to the two major sources of coffee production in the world. The targets of almost all miRNAs were also predicted on coffee expressed sequences. This is the first report of novel miRNAs in the genus Coffea, and also the first in the plant order Gentianales. The data obtained establishes the basis for the understanding of the complex miRNA-target network on those two important crops.

  11. AnnoLnc: a web server for systematically annotating novel human lncRNAs.

    Science.gov (United States)

    Hou, Mei; Tang, Xing; Tian, Feng; Shi, Fangyuan; Liu, Fenglin; Gao, Ge

    2016-11-16

    Long noncoding RNAs (lncRNAs) have been shown to play essential roles in almost every important biological process through multiple mechanisms. Although the repertoire of human lncRNAs has rapidly expanded, their biological function and regulation remain largely elusive, calling for a systematic and integrative annotation tool. Here we present AnnoLnc ( http://annolnc.cbi.pku.edu.cn ), a one-stop portal for systematically annotating novel human lncRNAs. Based on more than 700 data sources and various tool chains, AnnoLnc enables a systematic annotation covering genomic location, secondary structure, expression patterns, transcriptional regulation, miRNA interaction, protein interaction, genetic association and evolution. An intuitive web interface is available for interactive analysis through both desktops and mobile devices, and programmers can further integrate AnnoLnc into their pipeline through standard JSON-based Web Service APIs. To the best of our knowledge, AnnoLnc is the only web server to provide on-the-fly and systematic annotation for newly identified human lncRNAs. Compared with similar tools, the annotation generated by AnnoLnc covers a much wider spectrum with intuitive visualization. Case studies demonstrate the power of AnnoLnc in not only rediscovering known functions of human lncRNAs but also inspiring novel hypotheses.

  12. Conservation and losses of non-coding RNAs in avian genomes.

    Directory of Open Access Journals (Sweden)

    Paul P Gardner

    Full Text Available Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs in birds. Furthermore, we describe numerous "losses" of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes.

  13. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  14. Profiling of REST-dependent microRNAs reveals dynamic modes of expression

    Directory of Open Access Journals (Sweden)

    Zhengliang eGao

    2012-05-01

    Full Text Available Multipotent neural stem cells (NSCs possess the ability to self-renew and differentiate into both neurons and glia. However, the detailed mechanisms underlying NSC fate decisions are not well understood. Recent work suggest that the interaction between cell-type specific transcription factors and microRNAs (miRNAs is important as resident neural stem/progenitor cells give rise to functionally mature neurons. Recently, we demonstrated that the transcriptional repressor REST (RE1-silencing transcription factor is essential to prevent precocious neuronal differentiation and maintain NSC self-renewal in the adult hippocampus. Here we show that REST is required for orchestrating the expression of distinct subsets of miRNAs in primary mouse NSC cultures, a physiologically relevant cell type. Using miRNA array profiling, we identified known REST-regulated miRNA genes, as well as previously uncharacterized REST-dependent miRNAs. Interestingly, REST-regulated miRNAs undergo dynamic expression changes under differentiation conditions over time, but not under proliferation conditions. These results suggest that REST functions in a context-dependent manner through its target miRNAs for mediating neuronal production.

  15. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    Science.gov (United States)

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-d