WorldWideScience

Sample records for hf minute ventilation

  1. Minute Ventilation Limitations of Two Field Transport Ventilators.

    Science.gov (United States)

    Szpisjak, Dale F; Horn, Gregory; Shalov, Samuel; Abes, Alvin Angelo; Van Decar, Lauren

    2017-01-01

    Knowledge of transport ventilator performance impacts patient safety. This study compared minute ventilation (V E ) of the MOVES and Uni-Vent 731 when ventilating the VentAid Training Test Lung with compliance (C) ranging from 0.02 to 0.10 L/cm H 2 O and three different airway resistances (R) (none, Rp5, or Rp20). Tidal volume (V T ) was 800 ± 25 mL. Respiratory rate was increased to ventilator's maximum or until auto-PEEP > 5 cm H 2 O. Respiratory parameters were recorded with the RSS 100HR Research Pneumotach. Data were reported as median (interquartile range). Peak inspiratory pressure (PIP) of the Uni-Vent and MOVES ranged from 22.3 (22.2-22.5) to 82.6 (82.2-83.2) and 20.8 (20.6-20.9) to 50.6 (50.2-50.9) cm H 2 O, respectively. V E of the Uni-Vent and MOVES ranged from 17.7 (17.7-17.7) to 31.5 (31.5-31.5) and 11.3 (10.5-11.3) to 20.2 (19.7-20.5) L/min, respectively. Linear regression demonstrated strong, negative correlation of V E with PIP for the MOVES (V E [L/min] = 26 - 0.31 × PIP [cm H 2 O], r = -0.97) but weak, positive correlation for the Uni-Vent (r = 0.05). Uni-Vent V E exceeded MOVES V E under each test condition (p = 0.0002). If patient V E requirements exceed those predicted by the MOVES regression equation, then using the Uni-Vent should be considered. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.

  2. Minute ventilation of cyclists, car and bus passengers: an experimental study

    Directory of Open Access Journals (Sweden)

    Hazel Peter

    2009-10-01

    Full Text Available Abstract Background Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Methods Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Results Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3 and 2.0 times higher than in the bus (individual range from 1.3 to 5.1. The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. Conclusion The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between

  3. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; van den Hazel, Peter; Brunekreef, Bert

    2009-10-27

    Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air pollutants. Thirty-four participants performed a submaximal test on a bicycle ergometer, during which heart rate and minute ventilation were measured simultaneously at increasing cycling intensity. Individual regression equations were calculated between heart rate and the natural log of minute ventilation. Heart rates were recorded during 280 two hour trips by bicycle, bus and car and were calculated into minute ventilation levels using the individual regression coefficients. Minute ventilation during bicycle rides were on average 2.1 times higher than in the car (individual range from 1.3 to 5.3) and 2.0 times higher than in the bus (individual range from 1.3 to 5.1). The ratio of minute ventilation of cycling compared to travelling by bus or car was higher in women than in men. Substantial differences in regression equations were found between individuals. The use of individual regression equations instead of average regression equations resulted in substantially better predictions of individual minute ventilations. The comparability of the gender-specific overall regression equations linking heart rate and minute ventilation with one previous American study, supports that for studies on the group level overall equations can be used. For estimating individual doses, the use of individual regression coefficients provides more precise data. Minute ventilation levels of cyclists are on average two times higher than of bus and car passengers, consistent with the ratio found in one small previous study of young adults. The study illustrates the importance of inclusion of minute ventilation data in comparing air pollution doses between different modes of transport.

  4. Minute ventilation of cyclists, car and bus passengers: an experimental study.

    NARCIS (Netherlands)

    Zuurbier, M.; Hoek, G.; van den Hazel, P.J.; Brunekreef, B.

    2009-01-01

    ABSTRACT: BACKGROUND: Differences in minute ventilation between cyclists, pedestrians and other commuters influence inhaled doses of air pollution. This study estimates minute ventilation of cyclists, car and bus passengers, as part of a study on health effects of commuters' exposure to air

  5. Evaluation of the minute ventilation recovery time as a predictor of weaning in mechanically ventilated COPD patients in respiratory failure

    Directory of Open Access Journals (Sweden)

    Alaa Eldin Elgazzar

    2013-04-01

    Conclusion: The minute ventilation recovery time is a good, reliable predictor of weaning success and it is the most independent parameter among other weaning predictors that can predict a successful spontaneous breathing trial (SBT.

  6. Mask leak increases and minute ventilation decreases when chest compressions are added to bag ventilation in a neonatal manikin model.

    Science.gov (United States)

    Tracy, Mark B; Shah, Dharmesh; Hinder, Murray; Klimek, Jan; Marceau, James; Wright, Audrey

    2014-05-01

    To determine changes in respiratory mechanics when chest compressions are added to mask ventilation, as recommended by the International Liaison Committee on Resuscitation (ILCOR) guidelines for newborn infants. Using a Laerdal Advanced Life Support leak-free baby manikin and a 240-mL self-inflating bag, 58 neonatal staff members were randomly paired to provide mask ventilation, followed by mask ventilation with chest compressions with a 1:3 ratio, for two minutes each. A Florian respiratory function monitor was used to measure respiratory mechanics, including mask leak. The addition of chest compressions to mask ventilation led to a significant reduction in inflation rate, from 63.9 to 32.9 breaths per minute (p mask leak of 6.8% (p mask ventilation, in accordance with the ILCOR guidelines, in a manikin model is associated with a significant reduction in delivered ventilation and increase in mask leak. If similar findings occur in human infants needing an escalation in resuscitation, there is a potential risk of either delay in recovery or inadequate response to resuscitation. ©2014 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  7. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury.

    Directory of Open Access Journals (Sweden)

    Charlotte J Beurskens

    Full Text Available BACKGROUND: Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2 diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an animal model of ventilator-induced lung injury. METHODS: Sprague-Dawley rats (N=8 per group were mechanically ventilated with heliox (50% oxygen; 50% helium. Controls received a standard gas mixture (50% oxygen; 50% air. VILI was induced by application of tidal volumes of 15 mL kg(-1; lung protective ventilated animals were ventilated with 6 mL kg(-1. Respiratory parameters were monitored with a pneumotach system. Respiratory rate was adjusted to maintain arterial pCO2 within 4.5-5.5 kPa, according to hourly drawn arterial blood gases. After 4 hours, bronchoalveolar lavage fluid (BALF was obtained. Data are mean (SD. RESULTS: VILI resulted in an increase in BALF protein compared to low tidal ventilation (629 (324 vs. 290 (181 μg mL(-1; p<0.05 and IL-6 levels (640 (8.7 vs. 206 (8.7 pg mL(-1; p<0.05, whereas cell counts did not differ between groups after this short course of mechanical ventilation. Ventilation with heliox resulted in a decrease in mean respiratory minute volume ventilation compared to control (123 ± 0.6 vs. 146 ± 8.9 mL min(-1, P<0.001, due to a decrease in respiratory rate (22 (0.4 vs. 25 (2.1 breaths per minute; p<0.05, while pCO2 levels and tidal volumes remained unchanged, according to protocol. There was no effect of heliox on inspiratory pressure, while compliance was reduced. In this mild lung injury model, heliox did not exert anti-inflammatory effects. CONCLUSIONS: Heliox allowed for a reduction in respiratory rate and respiratory minute volume during VILI, while maintaining normal acid-base balance. Use of heliox may be a useful approach when protective tidal volume ventilation is limited by the development of

  8. Minutes

    International Nuclear Information System (INIS)

    1998-01-01

    In the minutes of II Uruguayan Geological Congress have been included the following topics: structural geology, tectonic, sedimentology, stratigraphy, mineralogy, petrology, geochemistry, paleontology, mineral prospecting, economic, regional and applied geology. (author)

  9. Adaptive servo ventilation for central sleep apnoea in heart failure: SERVE-HF on-treatment analysis.

    Science.gov (United States)

    Woehrle, Holger; Cowie, Martin R; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-08-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the control group in the SERVE-HF trial.Time-dependent on-treatment analyses were conducted (unadjusted and adjusted for predictive covariates). A comprehensive, time-dependent model was developed to correct for asymmetric selection effects (to minimise bias).The comprehensive model showed increased cardiovascular death hazard ratios during adaptive servo ventilation usage periods, slightly lower than those in the SERVE-HF intention-to-treat analysis. Self-selection bias was evident. Patients randomised to adaptive servo ventilation who crossed over to the control group were at higher risk of cardiovascular death than controls, while control patients with crossover to adaptive servo ventilation showed a trend towards lower risk of cardiovascular death than patients randomised to adaptive servo ventilation. Cardiovascular risk did not increase as nightly adaptive servo ventilation usage increased.On-treatment analysis showed similar results to the SERVE-HF intention-to-treat analysis, with an increased risk of cardiovascular death in heart failure with reduced ejection fraction patients with predominant central sleep apnoea treated with adaptive servo ventilation. Bias is inevitable and needs to be taken into account in any kind of on-treatment analysis in positive airway pressure studies. Copyright ©ERS 2017.

  10. Heliox allows for lower minute volume ventilation in an animal model of ventilator-induced lung injury

    NARCIS (Netherlands)

    Beurskens, Charlotte J.; Aslami, Hamid; de Beer, Friso M.; Vroom, Margreeth B.; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P.

    2013-01-01

    Helium is a noble gas with a low density, allowing for lower driving pressures and increased carbon dioxide (CO2) diffusion. Since application of protective ventilation can be limited by the development of hypoxemia or acidosis, we hypothesized that therefore heliox facilitates ventilation in an

  11. Low minute ventilation episodes during anesthesia recovery following intraperitoneal surgery as detected by a non-invasive respiratory volume monitor.

    Science.gov (United States)

    Cavalcante, Alexandre N; Martin, Yvette N; Sprung, Juraj; Imsirovic, Jasmin; Weingarten, Toby N

    2017-12-20

    An electrical impedance-based noninvasive respiratory volume monitor (RVM) accurately reports minute volume, tidal volume and respiratory rate. Here we used the RVM to quantify the occurrence of and evaluate the ability of clinical factors to predict respiratory depression in the post-anesthesia care unit (PACU). RVM generated respiratory data were collected from spontaneously breathing patients following intraperitoneal surgeries under general anesthesia admitted to the PACU. Respiratory depression was defined as low minute ventilation episode (LMVe, respiratory rate (respiratory rate was a poor predictor of LMVe (sensitivity = 11.8%). Other clinical variables (e.g., obstructive sleep apnea) were not found to be predictors of LMVe. Using RVM we identified that mild, clinically nondetectable, respiratory depression prior to opioid administration in the PACU was associated with the development of substantial subsequent respiratory depression during the PACU stay.

  12. Increased requirement for minute ventilation and negative arterial to end-tidal carbon dioxide gradient may indicate malignant hyperthermia

    Directory of Open Access Journals (Sweden)

    Ho-Tien Lin

    2014-04-01

    Full Text Available Characteristic signs of malignant hyperthermia (MH include unexplained tachycardia, increased end-tidal carbon dioxide (Etco2 concentration, metabolic and respiratory acidosis, and an increase in body temperature above 38.8°C. We present the case of a patient with highly probable MH. In addition to sinus tachycardia and metabolic and respiratory acidosis, this patient also had a negative arterial to Etco2 gradient and an increased requirement for minute ventilation to maintain a normal Etco2 concentration, with signs of increased CO2 production. Despite these signs of MH, the patient's rectal temperature monitoring equipment did not show an increase in temperature, although the temperature measured in the mouth was increased. This case illustrates the unreliability of measuring rectal temperature as a means of reflecting body temperature during MH and the usefulness of increased CO2 production signs in helping to diagnose MH.

  13. Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Svendsen, Sv Aa Højgaard

    1999-01-01

    The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger.......The note concerns ventilation in residential buildings. Describes components in ventilation systems, electric energy consumption and different ventilation systems with heat exchanger....

  14. Dispersion of UO2F2 aerosol and HF vapor in the operating floor during winter ventilation at the Paducah Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, N.C.J.; Taleyarkhan, R.P.; Keith, K.D.; Schmidt, R.W.; Carter, J.C.

    1996-01-01

    The gaseous diffusion process is currently employed at two plants in the US: the Paducah Gaseous Diffusion Plant and the Portsmouth Gaseous Diffusion Plant. As part of a facility-wide safety evaluation, a postulated design basis accident involving large line-rupture induced releases of uranium hexafluoride (UF 6 ) into the process building of a gaseous diffusion plant (GDP) is evaluated. When UF 6 is released into the atmosphere, it undergoes an exothermic chemical reaction with moisture (H 2 O) in the air to form vaporized hydrogen fluoride (HF) and aerosolized uranyl fluoride (UO 2 F 2 ). These reactants disperse in the process building and transport through the building ventilation system. The ventilation system draws outside air into the process building, distributes it evenly throughout the building, and discharges it to the atmosphere at an elevated temperature. Since air is recirculated from the cell floor area to the operating floor, issues concerning in-building worker safety and evacuation need to be addressed. Therefore, the objective of this study is to evaluate the transport of HF vapor and UO 2 F 2 aerosols throughout the operating floor area following B-line break accident in the cell floor area

  15. The effect of adaptive servo ventilation (ASV) on objective and subjective outcomes in Cheyne-Stokes respiration (CSR) with central sleep apnea (CSA) in heart failure (HF): A systematic review.

    Science.gov (United States)

    Yang, Hyunju; Sawyer, Amy M

    2016-01-01

    To summarize the current evidence for adaptive servo ventilation (ASV) in Cheyne-Stokes respiration (CSR) with central sleep apnea (CSA) in heart failure (HF) and advance a research agenda and clinical considerations for ASV-treated CSR-CSA in HF. CSR-CSA in HF is associated with higher overall mortality, worse outcomes and lower quality of life (QOL) than HF without CSR-CSA. Five databases were searched using key words (n = 234). Randomized controlled trials assessed objective sleep quality, cardiac, and self-reported outcomes in adults (≥18 years) with HF (n = 10). ASV has a beneficial effect on the reduction of central sleep apnea in adult patients with CSR-CSA in HF, but it is not be superior to CPAP, bilevel PPV, or supplemental oxygen in terms of sleep quality defined by polysomnography, cardiovascular outcomes, subjective daytime sleepiness, and quality of life. ASV is not recommended for CSR-CSA in HF. It is important to continue to refer HF patients for sleep evaluation to clearly discern OSA from CSR-CSA. Symptom management research, inclusive of objective and subjective outcomes, in CSR-CSA in HF adults is needed. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Adaptive servo ventilation for central sleep apnoea in heart failure : SERVE-HF on-treatment analysis

    NARCIS (Netherlands)

    Woehrle, Holger; Cowie, Martin R.; Eulenburg, Christine; Suling, Anna; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K.; Somers, Virend K.; Zannad, Faiez; Teschler, Helmut; Wegscheider, Karl

    2017-01-01

    This on-treatment analysis was conducted to facilitate understanding of mechanisms underlying the increased risk of all-cause and cardiovascular mortality in heart failure patients with reduced ejection fraction and predominant central sleep apnoea randomised to adaptive servo ventilation versus the

  17. Intrinsic positive end-expiratory pressure during one-lung ventilation of patients with pulmonary hyperinflation. Influence of low respiratory rate with unchanged minute volume.

    Science.gov (United States)

    Szegedi, L L; Barvais, L; Sokolow, Y; Yernault, J C; d'Hollander, A A

    2002-01-01

    We measured lung mechanics and gas exchange during one-lung ventilation (OLV) of patients with chronic obstructive pulmonary disease, using three respiratory rates (RR) and unchanged minute volume. We studied 15 patients about to undergo lung surgery, during anaesthesia, and placed in the lateral position. Ventilation was with constant minute volume, inspiratory flow and FIO2. For periods of 15 min, RR of 5, 10, and 15 bpm were applied in a random sequence and recordings were made of lung mechanics and an arterial blood gas sample was taken. Data were analysed with the repeated measures ANOVA and paired t-test with Bonferroni correction. PaO2 changes were not significant. At the lowest RR, PaCO2 decreased (from 42 (SD 4) mm Hg at RR 15-41 (4) mm Hg at RR 10 and 39 (4) mm Hg at RR 5, P<0.01), and end-tidal carbon dioxide increased (from 33 (5) mm Hg at RR 15 to 35 (5) mm Hg at RR 10 and 36 (6) mm Hg at RR 5, P<0.01). Intrinsic positive end-expiratory pressure (PEEPi) was reduced even with larger tidal volumes (from 6 (4) cm H2O at RR 15-5 (4) cm H2O at RR 10, and 3 (3) cm H2O at RR 5, P<0.01), most probably caused by increased expiratory time at the lowest RR. A reduction in RR reduces PEEPi and hypercapnia during OLV in anaesthetized patients with chronic obstructive lung disease.

  18. Adaptive servo-ventilation for central sleep apnoea in systolic heart failure: results of the major substudy of SERVE-HF.

    Science.gov (United States)

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Vettorazzi, Eik; Lezius, Susanne; Koenig, Wolfgang; Weidemann, Frank; Smith, Gillian; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita K; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2018-03-01

    The SERVE-HF trial investigated the impact of treating central sleep apnoea (CSA) with adaptive servo-ventilation (ASV) in patients with systolic heart failure. A preplanned substudy was conducted to provide insight into mechanistic changes underlying the observed effects of ASV, including assessment of changes in left ventricular function, ventricular remodelling, and cardiac, renal and inflammatory biomarkers. In a subset of the 1325 randomised patients, echocardiography, cardiac magnetic resonance imaging (cMRI) and biomarker analysis were performed at baseline, and 3 and 12 months. In secondary analyses, data for patients with baseline and 12-month values were evaluated; 312 patients participated in the substudy. The primary endpoint, change in echocardiographically determined left ventricular ejection fraction from baseline to 12 months, did not differ significantly between the ASV and the control groups. There were also no significant between-group differences for changes in left ventricular dimensions, wall thickness, diastolic function or right ventricular dimensions and ejection fraction (echocardiography), and on cMRI (in small patient numbers). Plasma N-terminal pro B-type natriuretic peptide concentration decreased in both groups, and values were similar at 12 months. There were no significant between-group differences in changes in cardiac, renal and systemic inflammation biomarkers. In patients with systolic heart failure and CSA, addition of ASV to guideline-based medical management had no statistically significant effect on cardiac structure and function, or on cardiac biomarkers, renal function and systemic inflammation over 12 months. The increased cardiovascular mortality reported in SERVE-HF may not be related to adverse remodelling or worsening heart failure. © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.

  19. Rationale and design of the SERVE-HF study: treatment of sleep-disordered breathing with predominant central sleep apnoea with adaptive servo-ventilation in patients with chronic heart failure.

    Science.gov (United States)

    Cowie, Martin R; Woehrle, Holger; Wegscheider, Karl; Angermann, Christiane; d'Ortho, Marie-Pia; Erdmann, Erland; Levy, Patrick; Simonds, Anita; Somers, Virend K; Zannad, Faiez; Teschler, Helmut

    2013-08-01

    Central sleep apnoea/Cheyne-Stokes respiration (CSA/CSR) is a risk factor for increased mortality and morbidity in heart failure (HF). Adaptive servo-ventilation (ASV) is a non-invasive ventilation modality for the treatment of CSA/CSR in patients with HF. SERVE-HF is a multinational, multicentre, randomized, parallel trial designed to assess the effects of addition of ASV (PaceWave, AutoSet CS; ResMed) to optimal medical management compared with medical management alone (control group) in patients with symptomatic chronic HF, LVEF ≤45%, and predominant CSA. The trial is based on an event-driven group sequential design, and the final analysis will be performed when 651 events have been observed or the study is terminated at one of the two interim analyses. The aim is to randomize ∼1200 patients to be followed for a minimum of 2 years. Patients are to stay in the trial up to study termination. The first patient was randomized in February 2008 and the study is expected to end mid 2015. The primary combined endpoint is the time to first event of all-cause death, unplanned hospitalization (or unplanned prolongation of a planned hospitalization) for worsening (chronic) HF, cardiac transplantation, resuscitation of sudden cardiac arrest, or appropriate life-saving shock for ventricular fibrillation or fast ventricular tachycardia in implantable cardioverter defibrillator patients. The SERVE-HF study is a randomized study that will provide important data on the effect of treatment with ASV on morbidity and mortality, as well as the cost-effectiveness of this therapy, in patients with chronic HF and predominantly CSA/CSR. ISRCTN19572887.

  20. HF laser

    International Nuclear Information System (INIS)

    Suzuki, Kazuya; Iwasaki, Matae

    1977-01-01

    A review is made of the research and development of HF chemical laser and its related work. Many gaseous compounds are used as laser media successfully; reaction kinetics and technological problems are described. The hybrid chemical laser of HF-CO 2 system and the topics related to the isotope separation are also included. (auth.)

  1. Assessment of Adaptive Rate Response Provided by Accelerometer, Minute Ventilation and Dual Sensor Compared with Normal Sinus Rhythm During Exercise: A Self-controlled Study in Chronotropically Competent Subjects

    Directory of Open Access Journals (Sweden)

    Yuanyuan Cao

    2015-01-01

    Full Text Available Background: Dual sensor (DS for rate adaption was supposed to be more physiological. To evaluate its superiority, the DS (accelerometer [ACC] and minute ventilation [MV] and normal sinus rate response were compared in a self-controlled way during exercise treadmill testing. Methods: This self-controlled study was performed in atrioventricular block patients with normal sinus function who met the indications of pacemaker implant. Twenty-one patients came to the 1-month follow-up visit. Patients performed a treadmill test 1-month post implant while programmed in DDDR and sensor passive mode. For these patients, sensor response factors were left at default settings (ACC = 8, MV = 3 and sensor indicated rates (SIRs for DS, ACC and MV sensor were retrieved from the pacemaker memories, along with measured sinus node (SN rates from the beginning to 1-minute after the end of the treadmill test, and compared among study groups. Repeated measures analysis of variance and profile analysis, as well as variance analysis of randomized block designs, were used for statistical analysis. Results: Fifteen patients (15/21 were determined to be chronotropically competent. The mean differences between DS SIRs and intrinsic sinus rates during treadmill testing were smaller than those for ACC and MV sensor (mean difference between SIR and SN rate: ACC vs. SN, MV vs. SN, DS vs. SN, respectively, 34.84, 17.60, 16.15 beats/min, though no sensors could mimic sinus rates under the default settings for sensor response factor (ACC vs. SN P-adjusted < 0.001; MV vs. SN P-adjusted = 0.002; DS vs. SN P-adjusted = 0.005. However, both in the range of 1 st minute and first 3 minutes of exercise, only the DS SIR profile did not differ from sinus rates (P-adjusted = 0.09, 0.90, respectively. Conclusions: The DS under default settings provides more physiological rate response during physical activity than the corresponding single sensors (ACC or MV sensor. Further study is needed to

  2. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  3. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  4. Ventilation systems

    International Nuclear Information System (INIS)

    Gossler

    1980-01-01

    The present paper deals with - controlled area ventilation systems - ventilation systems for switchgear-building and control-room - other ventilation systems for safety equipments - service systems for ventilation systems. (orig./RW)

  5. Mechanical Ventilation

    Science.gov (United States)

    ... ventilation is a life support treatment. A mechanical ventilator is a machine that helps people breathe when ... to breathe enough on their own. The mechanical ventilator is also called a ventilator , respirator, or breathing ...

  6. Anaesthesia ventilators

    Directory of Open Access Journals (Sweden)

    Rajnish K Jain

    2013-01-01

    Full Text Available Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV. PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  7. Anaesthesia ventilators.

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-09-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits.

  8. Anaesthesia ventilators

    Science.gov (United States)

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bellows ventilators, ascending bellows design is safer than descending bellows. Piston ventilators have the advantage of delivering accurate tidal volume. They work with electricity as their driving force and do not require a driving gas. To enable improved patient safety, several modifications were done in circle system with the different types of anaesthesia ventilators. Fresh gas decoupling is a modification done in piston ventilators and in descending bellows ventilator to reduce th incidence of ventilator induced volutrauma. In addition to the conventional volume control mode, modern anaesthesia ventilators also provide newer modes of ventilation such as synchronised intermittent mandatory ventilation, pressure-control ventilation and pressure-support ventilation (PSV). PSV mode is particularly useful for patients maintained on spontaneous respiration with laryngeal mask airway. Along with the innumerable benefits provided by these machines, there are various inherent hazards associated with the use of the ventilators in the operating room. To use these workstations safely, it is important for every Anaesthesiologist to have a basic understanding of the mechanics of these ventilators and breathing circuits. PMID:24249886

  9. Anaesthesia ventilators

    OpenAIRE

    Jain, Rajnish K; Swaminathan, Srinivasan

    2013-01-01

    Anaesthesia ventilators are an integral part of all modern anaesthesia workstations. Automatic ventilators in the operating rooms, which were very simple with few modes of ventilation when introduced, have become very sophisticated with many advanced ventilation modes. Several systems of classification of anaesthesia ventilators exist based upon various parameters. Modern anaesthesia ventilators have either a double circuit, bellow design or a single circuit piston configuration. In the bello...

  10. HF i dag

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Simonsen, Birgitte

    2008-01-01

    Notatet er lavet på baggrund af uddannelsesbiografiske dybdeinterviews med kursister på toårigt HF. Indenfor rammerne af en pilotundersøgelse identificerer notatet fire gennemgående profiler: De pragmatiske, de fagligt usikre, second chance-kursisterne, og de HF-kursister, som har HF som first...

  11. Displacement ventilation

    DEFF Research Database (Denmark)

    Kosonen, Risto; Melikov, Arsen Krikor; Mundt, Elisabeth

    The aim of this Guidebook is to give the state-of-the art knowledge of the displacement ventilation technology, and to simplify and improve the practical design procedure. The Guidebook discusses methods of total volume ventilation by mixing ventilation and displacement ventilation and it gives...... insights of the performance of the displacement ventilation. It also shows practical case studies in some typical applications and the latest research findings to create good local micro-climatic conditions....

  12. Newer nonconventional modes of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Preet Mohinder Singh

    2014-01-01

    Full Text Available The conventional modes of ventilation suffer many limitations. Although they are popularly used and are well-understood, often they fail to match the patient-based requirements. Over the years, many small modifications in ventilators have been incorporated to improve patient outcome. The ventilators of newer generation respond to patient′s demands by additional feedback systems. In this review, we discuss the popular newer modes of ventilation that have been accepted in to clinical practice. Various intensive care units over the world have found these modes to improve patient ventilator synchrony, decrease ventilator days and improve patient safety. The various modes discusses in this review are: Dual control modes (volume assured pressure support, volume support, Adaptive support ventilation, proportional assist ventilation, mandatory minute ventilation, Bi-level airway pressure release ventilation, (BiPAP, neurally adjusted ventilatory assist and NeoGanesh. Their working principles with their advantages and clinical limitations are discussed in brief.

  13. Human versus Computer Controlled Selection of Ventilator Settings: An Evaluation of Adaptive Support Ventilation and Mid-Frequency Ventilation

    Directory of Open Access Journals (Sweden)

    Eduardo Mireles-Cabodevila

    2012-01-01

    Full Text Available Background. There are modes of mechanical ventilation that can select ventilator settings with computer controlled algorithms (targeting schemes. Two examples are adaptive support ventilation (ASV and mid-frequency ventilation (MFV. We studied how different clinician-chosen ventilator settings are from these computer algorithms under different scenarios. Methods. A survey of critical care clinicians provided reference ventilator settings for a 70 kg paralyzed patient in five clinical/physiological scenarios. The survey-derived values for minute ventilation and minute alveolar ventilation were used as goals for ASV and MFV, respectively. A lung simulator programmed with each scenario’s respiratory system characteristics was ventilated using the clinician, ASV, and MFV settings. Results. Tidal volumes ranged from 6.1 to 8.3 mL/kg for the clinician, 6.7 to 11.9 mL/kg for ASV, and 3.5 to 9.9 mL/kg for MFV. Inspiratory pressures were lower for ASV and MFV. Clinician-selected tidal volumes were similar to the ASV settings for all scenarios except for asthma, in which the tidal volumes were larger for ASV and MFV. MFV delivered the same alveolar minute ventilation with higher end expiratory and lower end inspiratory volumes. Conclusions. There are differences and similarities among initial ventilator settings selected by humans and computers for various clinical scenarios. The ventilation outcomes are the result of the lung physiological characteristics and their interaction with the targeting scheme.

  14. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  15. Non-Invasive Ventilation in Patients with Heart Failure: A Systematic Review and Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Hugo Souza Bittencourt

    Full Text Available Abstract Non-invasive ventilation (NIV may perfect respiratory and cardiac performance in patients with heart failure (HF. The objective of the study to establish, through systematic review and meta-analysis, NIV influence on functional capacity of HF patients. A systematic review with meta-analysis of randomized studies was carried out through research of databases of Cochrane Library, SciELO, Pubmed and PEDro, using the key-words: heart failure, non-invasive ventilation, exercise tolerance; and the free terms: bi-level positive airway pressure (BIPAP, continuous positive airway pressure (CPAP, and functional capacity (terms were searched for in English and Portuguese using the Boolean operators AND and OR. Methodological quality was ensured through PEDro scale. Weighted averages and a 95% confidence interval (CI were calculated. The meta-analysis was done thorugh the software Review Manager, version 5.3 (Cochrane Collaboration. Four randomized clinical trials were included. Individual studies suggest NIV improved functional capacity. NIV resulted in improvement in the distance of the six-minute walk test (6MWT (68.7m 95%CI: 52.6 to 84.9 in comparison to the control group. We conclude that the NIV is an intervention that promotes important effects in the improvement of functional capacity of HF patients. However, there is a gap in literature on which are the most adequate parameters for the application of this technique.

  16. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  17. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  18. Industrial ventilation

    Science.gov (United States)

    Goodfellow, H. D.

    Industrial ventilation design methodology, using computers and using fluid dynamic models, is considered. It is noted that the design of a ventilation system must be incorporated into the plant design and layout at the earliest conceptual stage of the project. A checklist of activities concerning the methodology for the design of a ventilation system for a new facility is given. A flow diagram of the computer ventilation model shows a typical input, the initialization and iteration loop, and the output. The application of the fluid dynamic modeling techniques include external and internal flow fields, and individual sources of heat and contaminants. Major activities for a ventilation field test program are also addressed.

  19. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  20. Noninvasive ventilation.

    Science.gov (United States)

    Rabatin, J T; Gay, P C

    1999-08-01

    Noninvasive ventilation refers to the delivery of assisted ventilatory support without the use of an endotracheal tube. Noninvasive positive pressure ventilation (NPPV) can be delivered by using a volume-controlled ventilator, a pressure-controlled ventilator, a bilevel positive airway pressure ventilator, or a continuous positive airway pressure device. During the past decade, there has been a resurgence in the use of noninvasive ventilation, fueled by advances in technology and clinical trials evaluating its use. Several manufacturers produce portable devices that are simple to operate. This review describes the equipment, techniques, and complications associated with NPPV and also the indications for both short-term and long-term applications. NPPV clearly represents an important addition to the techniques available to manage patients with respiratory failure. Future clinical trials evaluating its many clinical applications will help to define populations of patients most apt to benefit from this type of treatment.

  1. Taking minutes of meetings

    CERN Document Server

    Gutmann, Joanna

    2016-01-01

    aking Minutes of Meetings guides you through the entire process behind minute taking: arranging the meeting; writing the agenda; creating the optimum environment; structuring the meeting and writing notes up accurately. The minute-taker is one of the most important and powerful people in a meeting and you can use this opportunity to develop your knowledge, broaden your horizons and build credibility within the organization. Taking Minutes of Meetings is an easy to read 'dip-in, dip-out' guide which shows you how to confidently arrange meetings and produce minutes. It provides hands-on advice about the sections of a meeting as well as tips on how to create an agenda, personal preparation, best practice advice on taking notes and how to improve your accuracy. Brand new chapters of this 4th edition include guidance on using technology to maximize effectiveness and practical help with taking minutes for a variety of different types of meetings. The creating success series of books... With over one million copi...

  2. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  3. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  4. Demand Controlled Ventilation and Classroom Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-05-01

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  5. Demand controlled ventilation and classroom ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Davies, Molly [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Ekaterina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hong, Tienzen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-01-06

    This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling.

  6. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  7. Behovstyret ventilation

    DEFF Research Database (Denmark)

    Afshari, Alireza; Heiselberg, Per; Reinhold, Claus

    2010-01-01

    I en nylig afsluttet undersøgelse er der udført en række målinger på otte udvalgte børneinstitutioner. Fire af disse med mekanisk ventilation og fire med naturlig ventilation. Formålet er at udvide den erfaringsbaserede viden om funktionen af naturlige og mekaniske ventilationsløsninger i...

  8. Ventilation Model

    International Nuclear Information System (INIS)

    Yang, H.

    1999-01-01

    The purpose of this analysis and model report (AMR) for the Ventilation Model is to analyze the effects of pre-closure continuous ventilation in the Engineered Barrier System (EBS) emplacement drifts and provide heat removal data to support EBS design. It will also provide input data (initial conditions, and time varying boundary conditions) for the EBS post-closure performance assessment and the EBS Water Distribution and Removal Process Model. The objective of the analysis is to develop, describe, and apply calculation methods and models that can be used to predict thermal conditions within emplacement drifts under forced ventilation during the pre-closure period. The scope of this analysis includes: (1) Provide a general description of effects and heat transfer process of emplacement drift ventilation. (2) Develop a modeling approach to simulate the impacts of pre-closure ventilation on the thermal conditions in emplacement drifts. (3) Identify and document inputs to be used for modeling emplacement ventilation. (4) Perform calculations of temperatures and heat removal in the emplacement drift. (5) Address general considerations of the effect of water/moisture removal by ventilation on the repository thermal conditions. The numerical modeling in this document will be limited to heat-only modeling and calculations. Only a preliminary assessment of the heat/moisture ventilation effects and modeling method will be performed in this revision. Modeling of moisture effects on heat removal and emplacement drift temperature may be performed in the future

  9. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  10. Ventilative Cooling

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Kolokotroni, Maria

    This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state-of-the-art of ventil......This report, by venticool, summarises the outcome of the work of the initial working phase of IEA ECB Annex 62 Ventilative Cooling and is based on the findings in the participating countries. It presents a summary of the first official Annex 62 report that describes the state......-of-the-art of ventilative cooling potentials and limitations, its consideration in current energy performance regulations, available building components and control strategies and analysis methods and tools. In addition, the report provides twenty six examples of operational buildings using ventilative cooling ranging from...

  11. One minute paper

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    One-Minute Paper: A thinking centered assessment tool. Ashakiran ... achievement of objectives and learning ability of the students, to analyze the questioning pattern of ... factual information, rote memory and critical thinking. The aim of every teacher while teaching ... question prompts another higher order cognitive skill ...

  12. Carbon dioxide production during mechanical ventilation

    DEFF Research Database (Denmark)

    Henneberg, S; Söderberg, D; Groth, T

    1987-01-01

    studied CO2 production (VCO2) and oxygen consumption (VO2) in mechanically ventilated ICU patients, where CO2 stores were altered by: a) changing minute ventilation by 15%, b) reducing body temperature, and c) changing the level of sedation. Expired gases went through a mixing chamber and were analyzed...

  13. HF-laser program

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    Sandia's HF-laser program for FY 77 and FY 78 was revised in June 1977 in order to meet several new program milestones. Research progress is reported on: objective of HF oscillator-amplifier studies using H 2 -F 2 gas mixtures; characteristics of large-volume oscillator using H 2 -F 2 mixtures; characteristics of large-volume amplifier using H 2 -F 2 mixtures; experimental results of the oscillator-amplifier study; objective of high-quality discharge-initiated SF 6 -HI oscillator-preamplifier system; pin-discharge-initiated oscillator and first beam expander; fast-discharge-initiated preamplifiers; reflecting beam expanders for oscillator-preamplifier system; beam quality of discharge-initiated oscillator-preamplifier system; short pulse option for discharge initiated SF 6 -HI system; H 2 -F 2 electron-beam-initiated oscillator-preamplifier system; chamber for HF-laser focusing experiments; computer study of parasitic oscillations in HF amplifiers and oscillators; kinetics upgrade of HF-laser code; repetitivey ignited flowing H 2 -F 2 -O 2 mixtures; spontaneous detonations in multiatmosphere H 2 -F 2 -O 2 mixtures; high-pressure H 2 -F 2 laser studies; and time sequenced energy extraction on the high xenon laser

  14. High fat diet blunts the effects of leptin on ventilation and on carotid body activity.

    Science.gov (United States)

    Ribeiro, Maria J; Sacramento, Joana F; Gallego-Martin, Teresa; Olea, Elena; Melo, Bernardete F; Guarino, Maria P; Yubero, Sara; Obeso, Ana; Conde, Silvia V

    2017-12-22

    Leptin plays a role in the control of breathing, acting mainly on central nervous system; however, leptin receptors have been recently shown to be expressed in the carotid body (CB), and this finding suggests a physiological role for leptin in the regulation of CB function. Leptin increases minute ventilation in both basal and hypoxic conditions in rats. It increases the frequency of carotid sinus nerve discharge in basal conditions, as well as the release of adenosine from the CB. However, in a metabolic syndrome animal model, the effects of leptin in ventilatory control, carotid sinus nerve activity and adenosine release by the CB are blunted. Although leptin may be involved in triggering CB overactivation in initial stages of obesity and dysmetabolism, resistance to leptin signalling and blunting of responses develops in metabolic syndrome animal models. Leptin plays a role in the control of breathing, acting mainly on central nervous system structures. Leptin receptors are expressed in the carotid body (CB) and this finding has been associated with a putative physiological role of leptin in the regulation of CB function. Since, the CBs are implicated in energy metabolism, here we tested the effects of different concentrations of leptin administration on ventilatory parameters and on carotid sinus nerve (CSN) activity in control and high-fat (HF) diet fed rats, in order to clarify the role of leptin in ventilation control in metabolic disease states. We also investigated the expression of leptin receptors and the neurotransmitters involved in leptin signalling in the CBs. We found that in non-disease conditions, leptin increases minute ventilation in both basal and hypoxic conditions. However, in the HF model, the effect of leptin in ventilatory control is blunted. We also observed that HF rats display an increased frequency of CSN discharge in basal conditions that is not altered by leptin, in contrast to what is observed in control animals. Leptin did not

  15. Initial mechanical ventilator settings and lung protective ventilation in the ED.

    Science.gov (United States)

    Wilcox, Susan R; Richards, Jeremy B; Fisher, Daniel F; Sankoff, Jeffrey; Seigel, Todd A

    2016-08-01

    Mechanical ventilation with low tidal volumes has been shown to improve outcomes for patients both with and without acute respiratory distress syndrome. This study aims to characterize mechanically ventilated patients in the emergency department (ED), describe the initial ED ventilator settings, and assess for associations between lung protective ventilation strategies in the ED and outcomes. This was a multicenter, prospective, observational study of mechanical ventilation at 3 academic EDs. We defined lung protective ventilation as a tidal volume of less than or equal to 8 mL/kg of predicted body weight and compared outcomes for patients ventilated with lung protective vs non-lung protective ventilation, including inhospital mortality, ventilator days, intensive care unit length of stay, and hospital length of stay. Data from 433 patients were analyzed. Altered mental status without respiratory pathology was the most common reason for intubation, followed by trauma and respiratory failure. Two hundred sixty-one patients (60.3%) received lung protective ventilation, but most patients were ventilated with a low positive end-expiratory pressure, high fraction of inspired oxygen strategy. Patients were ventilated in the ED for a mean of 5 hours and 7 minutes but had few ventilator adjustments. Outcomes were not significantly different between patients receiving lung protective vs non-lung protective ventilation. Nearly 40% of ED patients were ventilated with non-lung protective ventilation as well as with low positive end-expiratory pressure and high fraction of inspired oxygen. Despite a mean ED ventilation time of more than 5 hours, few patients had adjustments made to their ventilators. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Liquid ventilation.

    Science.gov (United States)

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  17. HF/DF chemical labs

    International Nuclear Information System (INIS)

    Meinzer, R.A.

    1987-01-01

    This paper provides the essential details to understand and design HF/DF and related types of chemical lasers. The basic operation of the HF/DF chemical laser is described. The details of the excitation chemistry are presented and the pertinent laser physics is described. A description of the various laser components is given and the analytical models for the HF/DF chemical laser are discussed. A brief description of the chain reaction HF/DF chemical laser is offered

  18. CSEWG 2017 Minutes

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D. [Brookhaven National Lab. (BNL), Upton, NY (United States); Sonzogni, A. [Brookhaven National Lab. (BNL), Upton, NY (United States); Chadwick, M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trkov, Andrej [Intl Atomic Energy Agency (IAEA), Vienna (Austria); Dunn, M. [SprectraTech, Oak Ridge, TN (United States); Danon, Y. [Rensselaer Polytechnic Inst., Troy, NY (United States); Neudecker, D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-28

    These are the minutes of the 2017 Cross Section Evaluation Working Group (CSEWG). This meeting corresponds to the 50±1th anniversary of CSEWG. The uncertainty on the anniversary reflects the fact that CSEWG was formed in 1966 yet the first ENDF library was published in 1968. Despite the uncertainty on the date of the anniversary, this meeting is an especially auspicious one: this is the last meeting before the release of ENDF/B-VIII.0. This meeting is devoted both to closing out the last open issues before releasing the library and to looking toward the future. The careful reader should note that there are no closing statements in this meeting. This is in a way symbolic of the fact that since ENDF/B is always improving, our work here will never truly be done.

  19. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  20. Displacement Ventilation

    DEFF Research Database (Denmark)

    Bjørn, Erik; Mattsson, Magnus; Sandberg, Mats

    Full-scale experiments were made in a displacement ventilated room with two breathing thermal manikins to study the effect of movements and breathing on the vertical contaminant distribution, and on the personal exposure of occupants. Concentrations were measured with tracer gas equipment...

  1. Mixing Ventilation

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  2. Effects of reducing exposure to air pollution on submaximal cardiopulmonary test in patients with heart failure: Analysis of the randomized, double-blind and controlled FILTER-HF trial.

    Science.gov (United States)

    Vieira, Jefferson L; Guimaraes, Guilherme V; de Andre, Paulo A; Saldiva, Paulo H Nascimento; Bocchi, Edimar A

    2016-07-15

    Air pollution exposure could mitigate the health benefits of exercise in patients with heart failure (HF). We tested the effects of a respiratory filter on HF patients exposed to air pollution during exercise. Ancillary analysis of the FILTER-HF trial, focused on the exercise outcomes. In a randomized, double-blind, 3-way crossover design, 26 HF patients and 15 control volunteers were exposed to clean air, unfiltered dilute diesel engine exhaust (DE), or filtered DE for 6min during a submaximal cardiopulmonary testing in a controlled-exposure facility. Prospectively collected data included six-minute walking test [6mwt], VO2, VE/VCO2 Slope, O2Pulse, pulmonary ventilation [VE], tidal volume, VD/Vt, oxyhemoglobin saturation and CO2-rebreathing. Compared to clean air, DE adversely affected VO2 (11.0±3.9 vs. 8.4±2.8ml/kg/min; preduced the particulate concentration from 325±31 to 25±6μg/m(3), and was associated with an increase in VO2 (10.4±3.8ml/kg/min; preduce the adverse effects of pollution on VO2 and O2Pulse. Given the worldwide prevalence of exposure to traffic-related air pollution, these findings are relevant for public health especially in this highly susceptible population. The filter intervention holds great promise that needs to be tested in future studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Standardization of pulmonary ventilation technique using volume-controlled ventilators in rats with congenital diaphragmatic hernia

    Directory of Open Access Journals (Sweden)

    Rodrigo Melo Gallindo

    Full Text Available OBJECTIVE: To standardize a technique for ventilating rat fetuses with Congenital Diaphragmatic Hernia (CDH using a volume-controlled ventilator. METHODS: Pregnant rats were divided into the following groups: a control (C; b exposed to nitrofen with CDH (CDH; and c exposed to nitrofen without CDH (N-. Fetuses of the three groups were randomly divided into the subgroups ventilated (V and non-ventilated (N-V. Fetuses were collected on day 21.5 of gestation, weighed and ventilated for 30 minutes using a volume-controlled ventilator. Then the lungs were collected for histological study. We evaluated: body weight (BW, total lung weight (TLW, left lung weight (LLW, ratios TLW / BW and LLW / BW, morphological histology of the airways and causes of failures of ventilation. RESULTS: BW, TLW, LLW, TLW / BW and LLW / BW were higher in C compared with N- (p 0.05. The morphology of the pulmonary airways showed hypoplasia in groups N- and CDH, with no difference between V and N-V (p <0.05. The C and N- groups could be successfully ventilated using a tidal volume of 75 ìl, but the failure of ventilation in the CDH group decreased only when ventilated with 50 ìl. CONCLUSION: Volume ventilation is possible in rats with CDH for a short period and does not alter fetal or lung morphology.

  4. Temperature of gas delivered from ventilators.

    Science.gov (United States)

    Chikata, Yusuke; Onodera, Mutsuo; Imanaka, Hideaki; Nishimura, Masaji

    2013-01-01

    Although heated humidifiers (HHs) are the most efficient humidifying device for mechanical ventilation, some HHs do not provide sufficient humidification when the inlet temperature to the water chamber is high. Because portable and home-care ventilators use turbines, blowers, pistons, or compressors to inhale in ambient air, they may have higher gas temperature than ventilators with piping systems. We carried out a bench study to investigate the temperature of gas delivered from portable and home-care ventilators, including the effects of distance from ventilator outlet, fraction of inspiratory oxygen (FIO2), and minute volume (MV). We evaluated five ventilators equipped with turbine, blower, piston, or compressor system. Ambient air temperature was adjusted to 24°C ± 0.5°C, and ventilation was set at FIO2 0.21, 0.6, and 1.0, at MV 5 and 10 L/min. We analyzed gas temperature at 0, 40, 80, and 120 cm from ventilator outlet and altered ventilator settings. While temperature varied according to ventilators, the outlet gas temperature of ventilators became stable after, at the most, 5 h. Gas temperature was 34.3°C ± 3.9°C at the ventilator outlet, 29.5°C ± 2.2°C after 40 cm, 25.4°C ± 1.2°C after 80 cm and 25.1°C ± 1.2°C after 120 cm (P < 0.01). FIO2 and MV did not affect gas temperature. Gas delivered from portable and home-care ventilator was not too hot to induce heated humidifier malfunctioning. Gas soon declined when passing through the limb.

  5. HF-laser program

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    The HF laser is an attractive candidate driver for a large-system ICF scientific demonstration facility, for an ICF experimental power reactor and for a commercial laser--fusion power reactor. Previous accomplishments of the program have included demonstrations of high efficiency and high energy capability, efficient energy extraction from HF amplifiers, good beam quality and focusability, and short-pulse generation and amplification. In the reporting period, beam quality has been determined to be near-diffraction limited for a short pulsewidth (6 ns to 25 ns) oscillator-amplifier chain, suppression of amplified spontaneous emission has been demonstrated on an individual spectral line, high-pressure characteristics have been determined for the Phoenix I amplifier, and detailed comparisions between the kinetic code and experiments have been made. Details of two major upcoming experiments are also included. The first is energy extraction and beam quality measurements on the Phoenix I amplifier operating under saturated output power conditions. The second experiment, using a newly designed amplifier (Phoenix II), is designed to demonstrate the concept of angular-multiplexing: a pulse width-compression scheme

  6. Pulsed inductive HF laser

    Energy Technology Data Exchange (ETDEWEB)

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  7. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    radiolabeled liquid aerosols are not restricted to the presence of obstructive lung disease. Radiolabeled macroaggregated human albumin is the imaging agent of choice for perfusion scintigraphy. An optimal combination of nuclide activities and acquisition times for ventilation and perfusion, collimators......Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas over......, and imaging matrix yields an adequate V/Q SPECT study in approximately 20 minutes of imaging time. The recommended protocol based on the patient remaining in an unchanged position during the initial ventilation study and the perfusion study allows presentation of matching ventilation and perfusion slices...

  8. HF-DLLME

    OpenAIRE

    Simão, Vanessa

    2015-01-01

    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro de Ciências Físicas e Matemáticas, Programa de Pós-Graduação em Química, Florianópolis, 2015. Neste trabalho foi proposto, pela primeira vez, a combinação simultânea das técnicas de microextração em fase líquida suportada em fibra oca (HF-LPME) e microextração líquido-líquido dispersiva (DLLME) para aplicação em amostras líquidas. Dois estudos foram desenvolvidos utilizando a metodologia proposta, a qua...

  9. Creating a Positive Classroom Culture: Minute by Minute

    Science.gov (United States)

    Wright, Ali

    2014-01-01

    This article offers a peek into high school math teacher Ali Wright's typical school day, which includes time-tested strategies that she uses to build a positive culture in her classroom. Scheduled timeframes and activities include before school starts, five minutes before class, during announcements, during class, last five minutes of class,…

  10. High energy HF pulsed lasers

    International Nuclear Information System (INIS)

    Patterson, E.L.; Gerber, R.A.

    1976-01-01

    Recent experiments show that pulsed HF lasers are capable of producing high energy with good efficiency. Preliminary experiments show that the laser radiation from the high-gain medium can be controlled with a low-power probe laser beam or with low-level feedback. These results indicate that the HF laser may have potential for second-generation laser fusion experiments

  11. Ventilator-driven xenon ventilation studies

    International Nuclear Information System (INIS)

    Chilcoat, R.T.; Thomas, F.D.; Gerson, J.I.

    1984-01-01

    A modification of a common commercial Xe-133 ventilation device is described for mechanically assisted ventilation imaging. The patient's standard ventilator serves as the power source controlling the ventilatory rate and volume during the xenon study, but the gases in the two systems are not intermixed. This avoids contamination of the ventilator with radioactive xenon. Supplemental oxygen and positive end-expiratory pressure (PEEP) are provided if needed. The system can be converted quickly for conventional studies with spontaneous respiration

  12. Development of a clinical applicable graphical user interface to automatically detect exercise oscillatory ventilation: The VOdEX-tool.

    Science.gov (United States)

    Cornelis, Justien; Denis, Tim; Beckers, Paul; Vrints, Christiaan; Vissers, Dirk; Goossens, Maggy

    2017-08-01

    Cardiopulmonary exercise testing (CPET) gained importance in the prognostic assessment of especially patients with heart failure (HF). A meaningful prognostic parameter for early mortality in HF is exercise oscillatory ventilation (EOV). This abnormal respiratory pattern is recognized by hypo- and hyperventilation during CPET. Up until now, assessment of EOV is mainly done upon visual agreement or manual calculation. The purpose of this research was to automate the interpretation of EOV so this prognostic parameter could be readily investigated during CPET. Preliminary, four definitions describing the original characteristics of EOV, were selected and integrated in the "Ventilatory Oscillations during Exercise-tool" (VOdEX-tool), a graphical user interface that allows automate calculation of EOV. A Discrete Meyer Level 2 wavelet transformation appeared to be the optimal filter to apply on the collected breath-by-breath minute ventilation CPET data. Divers aspects of the definitions i.e. cycle length, amplitude, regularity and total duration of EOV were combined and calculated. The oscillations meeting the criteria were visualised. Filter methods and cut-off criteria were made adjustable for clinical application and research. The VOdEX-tool was connected to a database. The VOdEX-tool provides the possibility to calculate EOV automatically and to present the clinician an overview of the presence of EOV at a glance. The computerized analysis of EOV can be made readily available in clinical practice by integrating the tool in the manufactures existing CPET software. The VOdEX-tool enhances assessment of EOV and therefore contributes to the estimation of prognosis in especially patients with HF. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  13. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    with conventional ventilation systems (mixing or displacement ventilation), diffuse ceiling ventilation can significantly reduce or even eliminate draught risk in the occupied zone. Moreover, this ventilation system presents a promising opportunity for energy saving, because of the low pressure loss, extended free...

  14. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  15. Hf på VUC

    DEFF Research Database (Denmark)

    Pless, Mette; Hansen, Niels-Henrik Møller

    . Konkret har forskningsprojektet 3 mål: At afdække hf-kursisternes tidligere uddannelsesforløb og -erfaringer, før de starter på hf på VUC.At afdække, hvordan mødet med uddannelsens studiemiljø opleves af kursisterne, og ikke mindst kursisternes oplevelse af undervisningsformer, lærere mm.At afdække, hvad...

  16. Variable mechanical ventilation.

    Science.gov (United States)

    Fontela, Paula Caitano; Prestes, Renata Bernardy; Forgiarini, Luiz Alberto; Friedman, Gilberto

    2017-01-01

    To review the literature on the use of variable mechanical ventilation and the main outcomes of this technique. Search, selection, and analysis of all original articles on variable ventilation, without restriction on the period of publication and language, available in the electronic databases LILACS, MEDLINE®, and PubMed, by searching the terms "variable ventilation" OR "noisy ventilation" OR "biologically variable ventilation". A total of 36 studies were selected. Of these, 24 were original studies, including 21 experimental studies and three clinical studies. Several experimental studies reported the beneficial effects of distinct variable ventilation strategies on lung function using different models of lung injury and healthy lungs. Variable ventilation seems to be a viable strategy for improving gas exchange and respiratory mechanics and preventing lung injury associated with mechanical ventilation. However, further clinical studies are necessary to assess the potential of variable ventilation strategies for the clinical improvement of patients undergoing mechanical ventilation.

  17. VENTILATION NEEDS DURING CONSTRUCTION

    International Nuclear Information System (INIS)

    C.R. Gorrell

    1998-01-01

    The purpose of this analysis is to determine ventilation needs during construction and development of the subsurface repository and develop systems to satisfy those needs. For this analysis, construction is defined as pre-emplacement excavation and development is excavation that takes place simultaneously with emplacement. The three options presented in the ''Overall Development and Emplacement Ventilation Systems'' analysis (Reference 5.5) for development ventilation will be applied to construction ventilation in this analysis as well as adding new and updated ventilation factors to each option for both construction and development. The objective of this analysis is to develop a preferred ventilation system to support License Application Design. The scope of this analysis includes: (1) Description of ventilation conditions; (2) Ventilation factors (fire hazards, dust control, construction logistics, and monitoring and control systems); (3) Local ventilation alternatives; (4) Global ventilation options; and (5) Evaluation of options

  18. Application of HF Radar in Hazard Management

    Directory of Open Access Journals (Sweden)

    Mal Heron

    2016-01-01

    Full Text Available A review is given of the impact that HF radars are having on the management of coastal hazards. Maps of surface currents can be produced every 10–20 minutes which, in real time, improve navigation safety in restricted areas commonly found near ports and harbours. The time sequence of surface current maps enables Lagrangian tracking of small parcels of surface water, which enables hazard mitigation in managing suspended sediments in dredging, in emergency situations where flotsam and other drifting items need to be found, and in pollution control. The surface current measurement capability is used to assist tsunami warnings as shown by the phased-array data from Chile following the Great Tohoku Earthquake in 2011. The newly launched Tsunami Warning Center in Oman includes a network of phased-array HF radars to provide real-time tsunami monitoring. Wind direction maps can be used to locate the position of cold fronts in the open ocean and to monitor the timing and strength of sea-breeze fronts in key locations.

  19. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  20. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation.

    Science.gov (United States)

    Beurskens, Charlotte J; Brevoord, Daniel; Lagrand, Wim K; van den Bergh, Walter M; Vroom, Margreeth B; Preckel, Benedikt; Horn, Janneke; Juffermans, Nicole P

    2014-01-01

    Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2) diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen). A fixed protective ventilation protocol (6 mL/kg) was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P ventilation, respiratory rate decreased (25 ± 4 versus 23 ± 5 breaths min(-1), P = 0.010). Minute volume ventilation showed a trend to decrease compared to baseline (11.1 ± 1.9 versus 9.9 ± 2.1 L min(-1), P = 0.026), while reducing PaCO2 levels (5.0 ± 0.6 versus 4.5 ± 0.6 kPa, P = 0.011) and peak pressures (21.1 ± 3.3 versus 19.8 ± 3.2 cm H2O, P = 0.024). Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  1. Performance of mechanical ventilators at the patient's home: a multicentre quality control study.

    Science.gov (United States)

    Farré, R; Navajas, D; Prats, E; Marti, S; Guell, R; Montserrat, J M; Tebe, C; Escarrabill, J

    2006-05-01

    Quality control procedures vary considerably among the providers of equipment for home mechanical ventilation (HMV). A multicentre quality control survey of HMV was performed at the home of 300 patients included in the HMV programmes of four hospitals in Barcelona. It consisted of three steps: (1) the prescribed ventilation settings, the actual settings in the ventilator control panel, and the actual performance of the ventilator measured at home were compared; (2) the different ventilator alarms were tested; and (3) the effect of differences between the prescribed settings and the actual performance of the ventilator on non-programmed readmissions of the patient was determined. Considerable differences were found between actual, set, and prescribed values of ventilator variables; these differences were similar in volume and pressure preset ventilators. The percentage of patients with a discrepancy between the prescribed and actual measured main ventilator variable (minute ventilation or inspiratory pressure) of more than 20% and 30% was 13% and 4%, respectively. The number of ventilators with built in alarms for power off, disconnection, or obstruction was 225, 280 and 157, respectively. These alarms did not work in two (0.9%), 52 (18.6%) and eight (5.1%) ventilators, respectively. The number of non-programmed hospital readmissions in the year before the study did not correlate with the index of ventilator error. This study illustrates the current limitations of the quality control of HMV and suggests that improvements should be made to ensure adequate ventilator settings and correct ventilator performance and ventilator alarm operation.

  2. Patient-Ventilator Dyssynchrony

    Directory of Open Access Journals (Sweden)

    Elvira-Markela Antonogiannaki

    2017-11-01

    Full Text Available In mechanically ventilated patients, assisted mechanical ventilation (MV is employed early, following the acute phase of critical illness, in order to eliminate the detrimental effects of controlled MV, most notably the development of ventilator-induced diaphragmatic dysfunction. Nevertheless, the benefits of assisted MV are often counteracted by the development of patient-ventilator dyssynchrony. Patient-ventilator dyssynchrony occurs when either the initiation and/or termination of mechanical breath is not in time agreement with the initiation and termination of neural inspiration, respectively, or if the magnitude of mechanical assist does not respond to the patient’s respiratory demand. As patient-ventilator dyssynchrony has been associated with several adverse effects and can adversely influence patient outcome, every effort should be made to recognize and correct this occurrence at bedside. To detect patient-ventilator dyssynchronies, the physician should assess patient comfort and carefully inspect the pressure- and flow-time waveforms, available on the ventilator screen of all modern ventilators. Modern ventilators offer several modifiable settings to improve patient-ventilator interaction. New proportional modes of ventilation are also very helpful in improving patient-ventilator interaction.

  3. HF Interference, Procedures and Tools (Interferences HF, procedures et outils)

    Science.gov (United States)

    2007-06-01

    the actual ambient noise floor situation. Besides these HF radio links, special units such as crisis reaction forces are using low power radios for...the origin point on the ground. For ease of arithmetic and typography , the latter option is preferable. The dipole-modelled PLT is located at x = H1

  4. Mechanical ventilator - infants

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/007240.htm Mechanical ventilator - infants To use the sharing features on this page, please enable JavaScript. A mechanical ventilator is a machine that assists with breathing. ...

  5. Learning about ventilators

    Science.gov (United States)

    ... medlineplus.gov/ency/patientinstructions/000458.htm Learning about ventilators To use the sharing features on this page, ... fixed or changed. How Does Being on a Ventilator Feel? A person receives medicine to remain comfortable ...

  6. The DECam Minute Cadence Survey

    Science.gov (United States)

    Belardi, C.; Kilic, M.; Munn, J. A.; Gianninas, A.; Barber, S. D.; Dey, A.; Stetson, P. B.

    2017-03-01

    We present the first results from a minute cadence survey of a 3 deg2 field obtained with the Dark Energy Camera. We imaged part of the Canada- France-Hawaii Telescope Legacy Survey area over eight half-nights. We use the stacked images to identify 111 high proper motion white dwarf candidates with g≤ 24.5 mag and search for eclipse-like events and other sources of variability. We find a new g=20.64 mag pulsating ZZ Ceti star with pulsation periods of 11-13 min. However, we do not find any transiting planetary companions in the habitable zone of our target white dwarfs. Given the probability of eclipses of 1% and our observing window from the ground, the non-detection of such companions in this first field is not surprising. Minute cadence DECam observations of additional fields will provide stringent constraints on the frequency of planets in the white dwarf habitable zone.

  7. Comparison between conventional and protective one-lung ventilation for ventilator-assisted thoracic surgery.

    Science.gov (United States)

    Ahn, H J; Kim, J A; Yang, M; Shim, W S; Park, K J; Lee, J J

    2012-09-01

    Recent papers suggest protective ventilation (PV) as a primary ventilation strategy during one-lung ventilation (OLV) to reduce postoperative pulmonary morbidity. However, data regarding the advantage of the PV strategy in patients with normal preoperative pulmonary function are inconsistent, especially in the case of minimally invasive thoracic surgery. Therefore we compared conventional OLV (VT 10 ml/kg, FiO2 1.0, zero PEEP) to protective OLV (VT 6 ml/kg, FiO2 0.5, PEEP 5 cmH2O) in patients with normal preoperative pulmonary function tests undergoing video-assisted thoracic surgery. Oxygenation, respiratory mechanics, plasma interleukin-6 and malondialdehyde levels were measured at baseline, 15 and 60 minutes after OLV and 15 minutes after restoration of two-lung ventilation. PaO2 and PaO2/FiO2 were higher in conventional OLV than in protective OLV (PProtective ventilation did not provide advantages over conventional ventilation for video-assisted thoracic surgery in this group of patients with normal lung function.

  8. 5 experiments in 5 minutes

    Science.gov (United States)

    Hut, Rolf

    2015-04-01

    Show, don't tell. When kids ask about your research, show, don't tell. We, the ambassadors of science, shouldn't be boring our nieces and nephews at family dinners with parameter distributions, we should make them excited about science. Getting people excited: show, don't tell. In 5 minutes, I will perform 5 experiments that anyone can do using everyday household items to get kids interested in science. Bring safety glasses.

  9. Effect of Peripheral Arterial Disease on Functional and Clinical Outcomes in Patients with Heart Failure From HF-ACTION

    Science.gov (United States)

    Jones, W. Schuyler; Clare, Robert; Ellis, Stephen J.; Mills, James S.; Fischman, David L.; Kraus, William E.; Whellan, David J.; O'Connor, Christopher M.; Patel, Manesh R.

    2011-01-01

    Patients with peripheral arterial disease (PAD) have lower functional capacity and worse clinical outcomes than age and gender matched patients. Few data exist on the relationship of PAD with functional and clinical outcomes in heart failure (HF) patients. We sought to compare HF patients with and without PAD for baseline functional capacity, response to exercise training, and clinical outcomes. HF-ACTION was a randomized controlled trial comparing usual care to structured exercise training plus usual care in HF patients with an ejection fraction ≤ 35% and NYHA class II – IV heart failure symptoms. Cardiopulmonary exercise (CPX) testing occurred at enrollment, 3 months, and 1 year. Clinical follow-up occurred up to 4 years. Of the 2331 HF-ACTION patients, 157 (6.8%) had PAD. At baseline, HF patients with PAD had a lower exercise duration (8.0 vs. 9.8 minutes, p<0.001), lower peak oxygen consumption (VO2) (12.5 vs. 14.6 mL/kg/min, p<0.001), and shorter six minute walking distance (306 vs. 371 meters, p<0.001) compared to HF patients without PAD. At three months, HF patients with PAD had less improvement on CPX testing [exercise duration (0.5 vs. 1.1 minutes; p=0.002) and peak VO2 (mean change; 0.1 vs. 0.6 mL/kg/min; p=0.04)] compared to HF patients without PAD. PAD was an independent predictor of all-cause death or hospitalization [hazard ratio (95% CI); 1.31 (1.06 – 1.62), p=0.011]. PAD patients with HF have depressed baseline exercise capacity and decreased response to exercise training. In conclusion, PAD is an independent predictor of all-cause death or hospitalization in HF patients. PMID:21565325

  10. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  11. Ventilation of nuclear facilities

    International Nuclear Information System (INIS)

    1982-01-01

    In this work an examination is made of ventilation problems in nuclear installations, of the fuel cycle or the handling of radioactive compounds. The study covers the detection of radioactive aerosols, purification, iodine trapping, ventilation equipment and its maintenance, engineering, safety of ventilation, fire efficiency, operation, regulations and normalization [fr

  12. Zirconium Zr and hafnium Hf

    International Nuclear Information System (INIS)

    Busev, A.I.; Tiptsova, V.G.; Ivanov, V.M.

    1978-01-01

    The basic methods for extracting and determining Zr(4) and Hf(4) are described. Diantipyrinemethane and its alkyl homologs selectively extract Zr and Hf from HNO 3 solutions in the presence of nitrates. Zr is selectively extracted with tetraethyldiamide of heptyl phosphoric acid (in benzene) as well as with 2-thenoyltrifluoroacetone (in an acid). The latter reagents is suitable for rapid determination of 95 Zr in a mixture with 95 Nb and other fragments. The complexometric determination of Zr is based on formation of a stable complex of Zr with EDTA. The titration is carried out in the presence of n-sulfobenzene-azo-pyrocatechol, eriochrome black T. The determination is hindered by Hf, fluoride-, phosphate-, oxalate- and tartrate-ions. The method is used for determining Zr in zircon and eudialyte ore. Zr is determined photometrically with the aid of xylenol orange, arsenazo 3 and pyrocatechol violet (in phosphorites). Hf is determined in the presence of Zr photometrically with the aid of xylenol orange or methyl-thymol blue. The method is based on Zr being masked with hydrogen peroxide in the presence of sulfate-ions

  13. HF Parameters of Induction Motor

    Directory of Open Access Journals (Sweden)

    M. N. Benallal

    2017-09-01

    Full Text Available This article describes the results of experimental studies of HF input and primary parameters. A simulation model in Matlab SimulinkTM of multiphase windings as ladder circuit of coils is developed. A method for determining the primary parameters of ladder equivalent circuits is presented.

  14. Smaller self-inflating bags produce greater guideline consistent ventilation in simulated cardiopulmonary resuscitation.

    Science.gov (United States)

    Nehme, Ziad; Boyle, Malcolm J

    2009-02-20

    Suboptimal bag ventilation in cardiopulmonary resuscitation (CPR) has demonstrated detrimental physiological outcomes for cardiac arrest patients. In light of recent guideline changes for resuscitation, there is a need to identify the efficacy of bag ventilation by prehospital care providers. The objective of this study was to evaluate bag ventilation in relation to operator ability to achieve guideline consistent ventilation rate, tidal volume and minute volume when using two different capacity self-inflating bags in an undergraduate paramedic cohort. An experimental study using a mechanical lung model and a simulated adult cardiac arrest to assess the ventilation ability of third year Monash University undergraduate paramedic students. Participants were instructed to ventilate using 1600 ml and 1000 ml bags for a length of two minutes at the correct rate and tidal volume for a patient undergoing CPR with an advanced airway. Ventilation rate and tidal volume were recorded using an analogue scale with mean values calculated. Ethics approval was granted. Suboptimal ventilation with the use of conventional 1600 ml bag was common, with 77% and 97% of participants unable to achieve guideline consistent ventilation rates and tidal volumes respectively. Reduced levels of suboptimal ventilation arouse from the use of the smaller bag with a 27% reduction in suboptimal tidal volumes (p = 0.015) and 23% reduction in suboptimal minute volumes (p = 0.045). Smaller self-inflating bags reduce the incidence of suboptimal tidal volumes and minute volumes and produce greater guideline consistent results for cardiac arrest patients.

  15. Ventilation and ventilation/perfusion ratios

    International Nuclear Information System (INIS)

    Valind, S.O.

    1989-01-01

    The thesis is based on five different papers. The labelling of specific tracer compounds with positron emitting radionuclides enables a range of structural, physiological and biochemical parameters in the lung to be measured non-invasively, using positron emission tomography. This concept affords a unique opportunity for in vivo studies of different expressions of pulmonary pathophysiology at the regional level. The present thesis describes the application of positron emission tomography to the measurements of ventilation and ventilation/perfusion ratios using inert gas tracers, neon-19 and nitrogen-13 respectively. The validity of the methods applied was investigated with respect to the transport of inert gas tracers in the human lung. Both ventilation and the ventilation/perfusion ratio may be obtained with errors less than 10 % in the normal lung. In disease, however, errors may increase in those instances where the regional ventilation is very low or the intra-regional gas flow distribution is markedly nonuniform. A 2-3 fold increase in ventilation was demonstrated in normal nonsmoking subjects going from ventral to dorsal regions in the supine posture. These large regional differences could be well explained by the intrinsic elastic properties of lung tissue, considering the gravitational gradient in transpulmonary pressure. In asymptomatic smokers substantial regional ventilatroy abnormalities were found whilst the regional gas volume was similar in smokers and nonsmokers. The uncoupling between ventilation and gas volume probably reflects inflammatory changes in the airways. The regional differences in dV/dt/dQ/dt were relatively small and blood flow was largely matched to ventilation in the supine posture. However, small regions of lung with very low ventilation, unmatched by blood flow commonly exists in the most dependent parts of the lung in both smokers and nonsmokers. (29 illustrations, 7 tables, 113 references)

  16. 60 minutes/our reply

    International Nuclear Information System (INIS)

    Deakins, H.L.

    1981-01-01

    The prestigious CBS show 60 Minutes visited Illinois Power Company, an investor owned utility company building its first nuclear power plant, to do a story on the economics of nuclear construction. The company opened its doors to the show's producer and was astonished at the program that resulted. Illinois Power had filmed everything CBS filmed and subsequently prepared its own rebutal video tape showing unedited portions of interviews and factual information furnished CBS which they never used in the broadcast. The rebuttal tape has been distributed world wide and received coverage in leading newspapers and magazines. It has also been installed as a class study in major journalism and business schools

  17. Management of Mechanical Ventilation in Decompensated Heart Failure

    Directory of Open Access Journals (Sweden)

    Brooks T. Kuhn

    2016-12-01

    Full Text Available Mechanical ventilation (MV is a life-saving intervention for respiratory failure, including decompensated congestive heart failure. MV can reduce ventricular preload and afterload, decrease extra-vascular lung water, and decrease the work of breathing in heart failure. The advantages of positive pressure ventilation must be balanced with potential harm from MV: volutrauma, hyperoxia-induced injury, and difficulty assessing readiness for liberation. In this review, we will focus on cardiac, pulmonary, and broader effects of MV on patients with decompensated HF, focusing on practical considerations for management and supporting evidence.

  18. Sensitivity and Specificity of a Five-Minute Cognitive Screening Test in Patients With Heart Failure.

    Science.gov (United States)

    Cameron, Janette D; Gallagher, Robyn; Pressler, Susan J; McLennan, Skye N; Ski, Chantal F; Tofler, Geoffrey; Thompson, David R

    2016-02-01

    Cognitive impairment occurs in up to 80% of patients with heart failure (HF). The National Institute for Neurological Disorders and Stroke (NINDS) and the Canadian Stroke Network (CSN) recommend a 5-minute cognitive screening protocol that has yet to be psychometrically evaluated in HF populations. The aim of this study was to conduct a secondary analysis of the sensitivity and specificity of the NINDS-CSN brief cognitive screening protocol in HF patients. The Montreal Cognitive Assessment (MoCA) was administered to 221 HF patients. The NINDS-CSN screen comprises 3 MoCA items, with lower scores indicating poorer cognitive function. Receiver operator characteristic (ROC) curves were constructed, determining the sensitivity, specificity and appropriate cutoff scores of the NINDS-CSN screen. In an HF population aged 76 ± 12 years, 136 (62%) were characterized with cognitive impairment (MoCA area under the receiver operating characteristic curve indicated good accuracy in screening for cognitive impairment (0.88; P cognitive impairment in patients with HF. Future studies should include a neuropsychologic battery to more comprehensively examine the diagnostic accuracy of brief cognitive screening protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Complications of mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Drašković Biljana

    2011-01-01

    Full Text Available Mechanical ventilation of the lungs, as an important therapeutic measure, cannot be avoided in critically ill patients. However, when machines take over some of vital functions there is always a risk of complications and accidents. Complications associated with mechanical ventilation can be divided into: 1 airway-associated complications; 2 complications in the response of patients to mechanical ventilation; and 3 complications related to the patient’s response to the device for mechanical ventilation. Complications of artificial airway may be related to intubation and extubation or the endotracheal tube. Complications of mechanical ventilation, which arise because of the patient’s response to mechanical ventilation, may primarily cause significant side effects to the lungs. During the last two decades it was concluded that mechanical ventilation can worsen or cause acute lung injury. Mechanical ventilation may increase the alveolar/capillary permeability by overdistension of the lungs (volutrauma, it can exacerbate lung damage due to the recruitment/derecruitment of collapsed alveoli (atelectrauma and may cause subtle damages due to the activation of inflammatory processes (biotrauma. Complications caused by mechanical ventilation, beside those involving the lungs, can also have significant effects on other organs and organic systems, and can be a significant factor contributing to the increase of morbidity and mortality in critically ill of mechanically ventilated patients. Complications are fortunately rare and do not occur in every patient, but due to their seriousness and severity they require extensive knowledge, experience and responsibility by health-care workers.

  20. Mechanical Working Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This documents contains the minutes and viewgraphs from the October 27--28, 1992 meeting on the subject of power generation and delivery systems for military applications. Attendees represented the US Air Force and NASA. The thermal management panel reported on the capillary pump loop test facility, thermal control systems and compressors, and the oxygen heat pipe flight experiment. The aerospace power panel reported on the integrated power unit for the more electric airplane, the solar dynamic power system, the modular high temperature gas cooled reactor-gas-turbine program, the multi-megawatt CBC power system, and analytical modeling for heat pipe performance. The terrestrial power panel reported on a free piston stirling engine power generation system, fuel cell vehicles, and the advanced gas turbine project.

  1. Assessment of minute volume of lung in NPP workers for Korean reference man

    International Nuclear Information System (INIS)

    Lee, Y. J.; Song, S. H.; Lee, J.; Jin, Y. W.; Yim, Y. K.; Kim, J. S.

    2001-01-01

    To formulation of the reference Korean for radiation protection purpose, we measured the forced vital capacity(FVC), forced expiratory volume in second(FEVI), minute ventilation(MV) of Nuclear Power Plant workers using SP-1 Spirometry Unit(Schiller AG. 1998) and eatimated the liters of breathed for working and resting, also compared these data with ICRP 23

  2. Assessment of minute volume of lung in NPP workers for Korean reference man

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y. J.; Song, S. H.; Lee, J.; Jin, Y. W.; Yim, Y. K.; Kim, J. S. [KNETEC, Seoul (Korea, Republic of)

    2001-05-01

    To formulation of the reference Korean for radiation protection purpose, we measured the forced vital capacity(FVC), forced expiratory volume in second(FEVI), minute ventilation(MV) of Nuclear Power Plant workers using SP-1 Spirometry Unit(Schiller AG. 1998) and eatimated the liters of breathed for working and resting, also compared these data with ICRP 23.

  3. Evaluation of ventilators for mouthpiece ventilation in neuromuscular disease.

    Science.gov (United States)

    Khirani, Sonia; Ramirez, Adriana; Delord, Vincent; Leroux, Karl; Lofaso, Frédéric; Hautot, Solène; Toussaint, Michel; Orlikowski, David; Louis, Bruno; Fauroux, Brigitte

    2014-09-01

    Daytime mouthpiece ventilation is a useful adjunct to nocturnal noninvasive ventilation (NIV) in patients with neuromuscular disease. The aims of the study were to analyze the practice of mouthpiece ventilation and to evaluate the performance of ventilators for mouthpiece ventilation. Practice of mouthpiece ventilation was assessed by a questionnaire, and the performance of 6 home ventilators with mouthpiece ventilation was assessed in a bench test using 24 different conditions per ventilator: 3 mouthpieces, a child and an adult patient profile, and 4 ventilatory modes. Questionnaires were obtained from 30 subjects (mean age 33 ± 11 y) using NIV for 12 ± 7 y. Fifteen subjects used NIV for > 20 h/day, and 11 were totally ventilator-dependent. The subject-reported benefits of mouthpiece ventilation were a reduction in dyspnea (73%) and fatigue (93%) and an improvement in speech (43%) and eating (27%). The bench study showed that none of the ventilators, even those with mouthpiece ventilation software, were able to deliver mouthpiece ventilation without alarms and/or autotriggering in each condition. Alarms and/or ineffective triggering or autotriggering were observed in 135 of the 198 conditions. The occurrence of alarms was more common with a large mouthpiece without a filter compared to a small mouthpiece with a filter (P ventilator. Subjects are satisfied with mouthpiece ventilation. Alarms are common with home ventilators, although less common in those with mouthpiece ventilation software. Improvements in home ventilators are needed to facilitate the expansion of mouthpiece ventilation. Copyright © 2014 by Daedalus Enterprises.

  4. Protective garment ventilation system

    Science.gov (United States)

    Lang, R. (Inventor)

    1970-01-01

    A method and apparatus for ventilating a protective garment, space suit system, and/or pressure suits to maintain a comfortable and nontoxic atmosphere within is described. The direction of flow of a ventilating and purging gas in portions of the garment may be reversed in order to compensate for changes in environment and activity of the wearer. The entire flow of the ventilating gas can also be directed first to the helmet associated with the garment.

  5. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...... studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants...

  6. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sub-level development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  7. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  8. Design Principles for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system -Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and - principles are discussed and illustrated by four building examples....

  9. Grindability of cast Ti-Hf alloys.

    Science.gov (United States)

    Kikuchi, Masafumi; Takahashi, Masatoshi; Sato, Hideki; Okuno, Osamu; Nunn, Martha E; Okabe, Toru

    2006-04-01

    As part of our systematic studies characterizing the properties of titanium alloys, we investigated the grindability of a series of cast Ti-Hf alloys. Alloy buttons with hafnium concentrations up to 40 mass% were made using an argon-arc melting furnace. Each button was cast into a magnesia-based mold using a dental titanium casting machine; three specimens were made for each metal. Prior to testing, the hardened surface layer was removed. The specimens were ground at five different speeds for 1 min at 0.98 N using a carborundum wheel on an electric dental handpiece. Grindability was evaluated as the volume of metal removed per minute (grinding rate) and the volume ratio of metal removed compared to the wheel material lost (grinding ratio). The data were analyzed using ANOVA. A trend of increasing grindability was found with increasing amounts of hafnium, although there was no statistical difference in the grindability with increasing hafnium contents. We also found that hafnium may be used to harden or strengthen titanium without deteriorating the grindability.

  10. Natural Ventilation in Atria

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Heiselberg, Per; Hendriksen, Ole Juhl

    This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions.......This case study comprises a monitoring programme as well as a Computational Fluid Dynamics (CFD) analysis of a natural ventilated atrium. The purpose has been to analyse the performance of a typical natural ventilation system in Denmark under both summer and winter conditions....

  11. Comparison between conventional protective mechanical ventilation and high-frequency oscillatory ventilation associated with the prone position.

    Science.gov (United States)

    Fioretto, José Roberto; Klefens, Susiane Oliveira; Pires, Rafaelle Fernandes; Kurokawa, Cilmery Suemi; Carpi, Mario Ferreira; Bonatto, Rossano César; Moraes, Marcos Aurélio; Ronchi, Carlos Fernando

    2017-01-01

    To compare the effects of high-frequency oscillatory ventilation and conventional protective mechanical ventilation associated with the prone position on oxygenation, histology and pulmonary oxidative damage in an experimental model of acute lung injury. Forty-five rabbits with tracheostomy and vascular access were underwent mechanical ventilation. Acute lung injury was induced by tracheal infusion of warm saline. Three experimental groups were formed: healthy animals + conventional protective mechanical ventilation, supine position (Control Group; n = 15); animals with acute lung injury + conventional protective mechanical ventilation, prone position (CMVG; n = 15); and animals with acute lung injury + high-frequency oscillatory ventilation, prone position (HFOG; n = 15). Ten minutes after the beginning of the specific ventilation of each group, arterial gasometry was collected, with this timepoint being called time zero, after which the animal was placed in prone position and remained in this position for 4 hours. Oxidative stress was evaluated by the total antioxidant performance assay. Pulmonary tissue injury was determined by histopathological score. The level of significance was 5%. Both groups with acute lung injury showed worsening of oxygenation after induction of injury compared with the Control Group. After 4 hours, there was a significant improvement in oxygenation in the HFOG group compared with CMVG. Analysis of total antioxidant performance in plasma showed greater protection in HFOG. HFOG had a lower histopathological lesion score in lung tissue than CMVG. High-frequency oscillatory ventilation, associated with prone position, improves oxygenation and attenuates oxidative damage and histopathological lung injury compared with conventional protective mechanical ventilation.

  12. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  13. The rotational excitation of HF by H

    Science.gov (United States)

    Desrousseaux, Benjamin; Lique, François

    2018-06-01

    The HF molecule is a key tracer of molecular hydrogen in diffuse interstellar medium (ISM). Accurate modelling of the HF abundance in such media requires one to model its excitation by both radiation and collisions. In diffuse ISM, the dominant collisional partners are atomic and molecular hydrogen. We report quantum time-independent calculations of collisional cross-sections and rate coefficients for the rotational excitation of HF by H. The reactive hydrogen exchange channels are taken into account in the scattering calculations. For the first time, HF-H rate coefficients are provided for temperature ranging from 10 to 500 K. The strongest collision-induced rotational HF transitions are those with Δj = 1, and the order of magnitude of the new HF-H rate coefficients is similar to that of the HF-H2 ones previously computed. As a first application, we simulate the excitation of HF by both H and H2 in typical diffuse ISM. We show that, depending on the rotational transition, hydrogen atoms increase or decrease the simulated excitation temperatures compared to collisional excitation only due to H2 molecules. Such results suggest that the new HF-H collisional data have to be used for properly modelling the abundance of HF in diffuse ISM.

  14. Special Topics in HF Propagation

    Science.gov (United States)

    1979-11-01

    Capitaine de Frigate P.Italley Dr T.SJones Ing6nieur en Chef au CNET Physics Department 38 -40 rue du Gdn~ral Leclerc University of Leicester 9213 i1...fre’qiancý. A t’ctailcd discussion of HF reliability is giver in A companion paiper (MASLIN, N.M . 197(j)) the result tic ligs 4 atad % i-. sumniart-aed...conttoutt to determine if treie :s an additional zonal gqt.ient but wa shall ceo tto.., tnC companion Layttacings that it it, negliit.-tle. F:gur:!i 7A

  15. Adaptive support ventilation may deliver unwanted respiratory rate-tidal volume combinations in patients with acute lung injury ventilated according to an open lung concept.

    Science.gov (United States)

    Dongelmans, Dave A; Paulus, Frederique; Veelo, Denise P; Binnekade, Jan M; Vroom, Margreeth B; Schultz, Marcus J

    2011-05-01

    With adaptive support ventilation, respiratory rate and tidal volume (V(T)) are a function of the Otis least work of breathing formula. We hypothesized that adaptive support ventilation in an open lung ventilator strategy would deliver higher V(T)s to patients with acute lung injury. Patients with acute lung injury were ventilated according to a local guideline advising the use of lower V(T) (6-8 ml/kg predicted body weight), high concentrations of positive end-expiratory pressure, and recruitment maneuvers. Ventilation parameters were recorded when the ventilator was switched to adaptive support ventilation, and after recruitment maneuvers. If V(T) increased more than 8 ml/kg predicted body weight, airway pressure was limited to correct for the rise of V(T). Ten patients with a mean (±SD) Pao(2)/Fio(2) of 171 ± 86 mmHg were included. After a switch from pressure-controlled ventilation to adaptive support ventilation, respiratory rate declined (from 31 ± 5 to 21 ± 6 breaths/min; difference = 10 breaths/min, 95% CI 3-17 breaths/min, P = 0.008) and V(T) increased (from 6.5 ± 0.8 to 9.0 ± 1.6 ml/kg predicted body weight; difference = 2.5 ml, 95% CI 0.4-4.6 ml/kg predicted body weight, P = 0.02). Pressure limitation corrected for the rise of V(T), but minute ventilation declined, forcing the user to switch back to pressure-controlled ventilation. Adaptive support ventilation, compared with pressure-controlled ventilation in an open lung strategy setting, delivers a lower respiratory rate-higher V(T) combination. Pressure limitation does correct for the rise of V(T), but leads to a decline in minute ventilation.

  16. Styret naturlig ventilation

    DEFF Research Database (Denmark)

    Morsing, S.; Strøm, J.S.

    Publikationen præsenterer et generelt dimensioneringsgrundlag for naturlig ventilation i husdyrstalde. Det er kontrolleret ved forsøg i slagtesvinestalde, hvor det ligeledes er undersøgt hvilken temperaturstabilitet, der kan opnås ved naturlig ventilation, samt produktions- og adfærdsmæssige...

  17. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Lstiburek, J. [Building Science Corporation (BSC), Somerville, MA (United States); Bergey, D. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  18. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...

  19. 3 Level Ventilation: the First Clinical Experience

    Directory of Open Access Journals (Sweden)

    P. Torok

    2008-01-01

    Full Text Available Considering the issues of artificial ventilation (AV in non-homogenous pathological lung processes (acute lung injury (ALI, acute respiratory distress syndrome (ARDS, pneumonia, etc., the authors applied the three-level lung ventilation to a group of 12 patients with non-homogenous lung injury. Three-level ventilation was defined as a type (modification of AV whose basic ventilation level was produced by the modes CMV, PCV or PS (ASB and add-on level, the so-called background ventilation was generated by two levels of PEEP. PEEP (constant and PEEPh (PEEP high with varying frequency and duration of transition between the individual levels of PEEP. Objective: to elucidate whether in cases of considerably non-homogenous gas distribution in acute pathological disorders, three-level ventilation (3LV can correct gas distribution into the so-called slow bronchoalveolar compartments, by decreasing the volume load of the so-called fast compartments and to improve lung gas exchange, by following the principles of safe ventilation. Results. 3LV was applied to 12 patients with severe non-homogenous lung injury/disorder (atypic pneumonia and ARDS/ALI and low-success PCV ventilation after recruitment manoeuvre (PaO2 (kPA /FiO2 = 5—6. There were pronounced positive changes in pulmonary gas exchange within 1—4 hours after initiation of 3LV at a fPCV of 26±4 breaths/min-1 and PEEPh at a fPEEPH of 7±2 breaths/min-1 with a minute ventilation of 12±4 l/min. 3LV reduced a intrapulmonary shunt fraction 50±5 to 30±5%, increased CO2 elimination, with PaCO2 falling to the values below 6±0.3 kPa, and PaO2 to 7.5±1.2 kPa, with FiO2 being decreased to 0.8—0.4. Lung recruitment also improved gas exchange: with PEEP=1.2±0.4 kPa, static tho-racopulmonary compliance (Cst elevated from 0.18±0.02 l/kPa to 0.3±0.02 l/kPa and then to 0.38±0.05 l/kPa. Airways resistance (Raw decreased by more than 30%. Improved lung aeration was also estimated as a manifestation of

  20. Pulmonary perfusion ''without ventilation''

    International Nuclear Information System (INIS)

    Chapman, C.N.; Sziklas, J.J.; Spencer, R.P.; Rosenberg, R.J.

    1983-01-01

    An 88-yr-old man, with prior left upper lobectomy and phrenic nerve injury, had a ventilation/perfusion lung image. Both wash-in and equilibrium ventilation images showed no radioactive gas in the left lung. Nevertheless, the left lung was perfused. A similar result was obtained on a repeat study 8 days later. Delayed images, during washout, showed some radioactive gas in the left lung. Nearly absent ventilation (but continued perfusion) of that lung might have been related to altered gas dynamics brought about by the prior lobectomy, a submucosal bronchial lesion, phrenic nerve damage, and limited motion of the left part of the diaphragm. This case raises the issue of the degree of ventilation (and the phase relationship between the lungs) required for the entry of radioactive gas into a diseased lung, and the production of a ''reversed ventilation/perfusion mismatch.''

  1. Realtime mine ventilation simulation

    International Nuclear Information System (INIS)

    McDaniel, K.H.

    1997-01-01

    This paper describes the development of a Windows based, interactive mine ventilation simulation software program at the Waste Isolation Pilot Plant (WIPP). To enhance the operation of the underground ventilation system, Westinghouse Electric Corporation developed the program called WIPPVENT. While WIPPVENT includes most of the functions of the commercially available simulation program VNETPC and uses the same subroutine to calculate airflow distributions, the user interface has been completely rewritten as a Windows application with screen graphics. WIPPVENT is designed to interact with WIPP ventilation monitoring systems through the sitewise Central monitoring System. Data can be continuously collected from the Underground Ventilation Remote Monitoring and Control System (e.g., air quantity and differential pressure) and the Mine Weather Stations (psychrometric data). Furthermore, WIPPVENT incorporates regulator characteristic curves specific to the site. The program utilizes this data to create and continuously update a REAL-TIME ventilation model. This paper discusses the design, key features, and interactive capabilities of WIPPVENT

  2. 2 minute Southcentral Alaska Elevation Grid

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The 2-minute Southcentral Alaska Elevation Grid provides bathymetric data in ASCII raster format of 2-minute resolution in geographic coordinates. This grid is...

  3. MO-HF-C alloy composition

    International Nuclear Information System (INIS)

    Whelan, E.P.; Kalns, E.

    1987-01-01

    This patent describes, as an article of manufacture, a cast ingot of a molybdenum-hafnium-carbon alloy consisting essentially by weight of about 0.6% to about 1% Hf, about 0.045% to about 0.08% C, and the balance essentially molybdenum. The amount of Hf and C present are substantially stoichiometric with respect to HfC and within about +-15% of stoichiometry. The ingot is characterized in that it has a substantially less tendency to crack compared to alloys containing Hf in excess of about 1% by weight and carbon in excess of 0.08% by weight, without substantial diminution in strength properties of the alloy

  4. Heliox Improves Carbon Dioxide Removal during Lung Protective Mechanical Ventilation

    Directory of Open Access Journals (Sweden)

    Charlotte J. Beurskens

    2014-01-01

    Full Text Available Introduction. Helium is a noble gas with low density and increased carbon dioxide (CO2 diffusion capacity. This allows lower driving pressures in mechanical ventilation and increased CO2 diffusion. We hypothesized that heliox facilitates ventilation in patients during lung-protective mechanical ventilation using low tidal volumes. Methods. This is an observational cohort substudy of a single arm intervention study. Twenty-four ICU patients were included, who were admitted after a cardiac arrest and mechanically ventilated for 3 hours with heliox (50% helium; 50% oxygen. A fixed protective ventilation protocol (6 mL/kg was used, with prospective observation for changes in lung mechanics and gas exchange. Statistics was by Bonferroni post-hoc correction with statistical significance set at P<0.017. Results. During heliox ventilation, respiratory rate decreased (25±4 versus 23±5 breaths min−1, P=0.010. Minute volume ventilation showed a trend to decrease compared to baseline (11.1±1.9 versus 9.9±2.1 L min−1, P=0.026, while reducing PaCO2 levels (5.0±0.6 versus 4.5±0.6 kPa, P=0.011 and peak pressures (21.1±3.3 versus 19.8±3.2 cm H2O, P=0.024. Conclusions. Heliox improved CO2 elimination while allowing reduced minute volume ventilation in adult patients during protective mechanical ventilation.

  5. Interfaces and ventilator settings for long-term noninvasive ventilation in COPD patients

    Directory of Open Access Journals (Sweden)

    Callegari J

    2017-06-01

    Full Text Available Jens Callegari,1 Friederike Sophie Magnet,1 Steven Taubner,1 Melanie Berger,2 Sarah Bettina Schwarz,1 Wolfram Windisch,1 Jan Hendrik Storre3,4 1Department of Pneumology, Cologne-Merheim Hospital, Kliniken der Stadt Koeln, Witten/Herdecke University Hospital, 2Department of Pneumology, Malteser Hospital St Hildegardis, Cologne, 3Department of Pneumology, University Medical Hospital, Freiburg, 4Department of Intensive Care, Sleep Medicine and Mechanical Ventilation, Asklepios Fachkliniken Munich-Gauting, Gauting, Germany Introduction: The establishment of high-intensity (HI noninvasive ventilation (NIV that targets elevated PaCO2 has led to an increase in the use of long-term NIV to treat patients with chronic hypercapnic COPD. However, the role of the ventilation interface, especially in more aggressive ventilation strategies, has not been systematically assessed.Methods: Ventilator settings and NIV compliance were assessed in this prospective cross-sectional monocentric cohort study of COPD patients with pre-existing NIV. Daytime ­arterialized blood gas analyses and lung function testing were also performed. The primary end point was the distribution among study patients of interfaces (full-face masks [FFMs] vs nasal masks [NMs] in a real-life setting.Results: The majority of the 123 patients studied used an FFM (77%, while 23% used an NM. Ventilation settings were as follows: mean ± standard deviation (SD inspiratory positive airway pressure (IPAP was 23.2±4.6 mbar and mean ± SD breathing rate was 16.7±2.4/minute. Pressure support ventilation (PSV mode was used in 52.8% of patients, while assisted pressure-controlled ventilation (aPCV was used in 47.2% of patients. Higher IPAP levels were associated with an increased use of FFMs (IPAP <21 mbar: 73% vs IPAP >25 mbar: 84%. Mean compliance was 6.5 hours/day, with no differences between FFM (6.4 hours/day and NM (6.7 hours/day users. PaCO2 assessment of ventilation quality revealed

  6. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  7. Development of HF-systems for electron storage systems

    International Nuclear Information System (INIS)

    Androsov, V.P.; Karnaukhov, I.M.; Popkov, Yu.P.; Reva, S.N.; Telegin, Yu.N.

    1999-01-01

    Development of HF systems for electron storages is described. Its final task is construction of 100 kW HF station at 699,3 MHz frequency consisting from low-power HF system, klystron amplifier, wave line for HF power transmission and accelerating section. Functional parameters of HF station are given

  8. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  9. Performance of Portable Ventilators Following Storage at Temperature Extremes.

    Science.gov (United States)

    Blakeman, Thomas C; Rodriquez, Dario; Britton, Tyler J; Johannigman, Jay A; Petro, Michael C; Branson, Richard D

    2016-05-01

    In the current theater of operation, medical devices are often shipped and stored at ambient conditions. The effect of storage at hot and cold temperature extremes on ventilator performance is unknown. We evaluated three portable ventilators currently in use or being evaluated for use by the Department of Defense (731, Impact Instrumentation; T1, Hamilton Medical; and Revel, CareFusion) at temperature extremes in a laboratory setting. The ventilators were stored at temperatures of 60°C and -35°C for 24 hours and were allowed to acclimate to room temperature for 30 minutes before evaluation. The T1 required an extra 15 to 30 minutes of acclimation to room temperature before the ventilator would deliver breaths. All delivered tidal volumes at room temperature and after storage at temperature extremes were less than the ±10% American Society for Testing and Materials standard with the Revel. Delivered tidal volumes at the pediatric settings were less than the ±10% threshold after storage at both temperatures and at room temperature with the 731. Storage at extreme temperature affected the performance of the portable ventilators tested. This study showed that portable ventilators may need an hour or more of acclimation time at room temperature after storage at temperature extremes to operate as intended. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  10. Mechanical alloying of Hf and Fe powders

    International Nuclear Information System (INIS)

    Mendoza Zelis, L.; Crespo, E.; Creus, M.; Damonte, L.C.; Sanchez, F.H.; Punte, G.

    1994-01-01

    Pure crystalline Hf and Fe powders were mixed and milled under an argon atmosphere. The evolution of the system with milling time was followed with Moessbauer effect spectroscopy and X-ray diffraction. The results indicate that in the first stages an amorphous Fe-rich alloy was gradually formed together with a solid solution of Hf in Fe beyond the solubility limit. (orig.)

  11. Positron annihilation studies in Hf doped YBCO

    International Nuclear Information System (INIS)

    Gopalan, P.; Priya, E.R.; Premila, M.; Sundar, C.S.; Gopinathan, K.P.

    1992-01-01

    The variation of positron lifetime and oxygen stoichiometry as a function of quench temperature has been measured in undoped and 0.5at%, 0.75at%, and 1.0 at% Hf doped YBCO. In both the undoped and Hf doped samples, the lifetime decreases and the oxygen content increases as the quench temperature is lowered from 900degC to 300degC. The lifetime in the tetragonal phase (900degC) decreases with the increase in Hf content, whereas in the orthorhombic phase (450degC) it increases. The difference in lifetime between the tetragonal and orthorhombic phases decreases with the increase in the Hf content. These trends are discussed in terms of the influence of Hf doping on the oxygen content and the positron density distribution in YBCO

  12. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  13. What Is a Ventilator?

    Science.gov (United States)

    ... who are on ventilators for shorter periods. The advantage of this tube is that it can be ... other disease or condition. VAP is treated with antibiotics. You may need special antibiotics if the VAP ...

  14. Fire, safety and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Hindle, D.

    1999-02-01

    Correct ventilation in tunnel environments is vital for the comfort and safety of the people passing through. This article gives details of products from several manufacturers of safety rescue and fire fighting equipment, fire and fume detection equipment, special fire resistant materials, fire resistant hydraulic oils and fire dampers, and ventilation systems. Company addresses and fax numbers are supplied. 4 refs., 5 tabs., 10 photos.

  15. Aspects of HF radio propagation

    Directory of Open Access Journals (Sweden)

    Stephane Saillant

    2009-06-01

    Full Text Available

    radio systems. From the point of view Working Group 2 of the COST 296 Action, interest lies with effects associated

    with propagation via the ionosphere of signals within the HF band. Several aspects are covered in this paper:

    a The directions of arrival and times of flight of signals received over a path oriented along the trough have

    been examined and several types of propagation effects identified. Of particular note, combining the HF observations

    with satellite measurements has identified the presence of irregularities within the floor of the trough that

    result in propagation displaced from the great circle direction. An understanding of the propagation effects that

    result in deviations of the signal path from the great circle direction are of particular relevance to the operation

    of HF radiolocation systems.

    b Inclusion of the results from the above mentioned measurements into a propagation model of the northerly

    ionosphere (i.e. those regions of the ionosphere located poleward of, and including, the mid-latitude trough

    and the use of this model to predict the coverage expected from transmitters where the signals impinge on the

    northerly ionosphere

  16. DSCOVR Magnetometer Level 2 One Minute Averages

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Interplanetary magnetic field observations collected from magnetometer on DSCOVR satellite - 1-minute average of Level 1 data

  17. Demand Controlled Ventilation in a Combined Ventilation and Radiator System

    OpenAIRE

    Hesaraki, Arefeh; Holmberg, Sture

    2013-01-01

    With growing concerns for efficient and sustainable energy treatment in buildings there is a need for balanced and intelligent ventilation solutions. This paper presents a strategy for demand controlled ventilation with ventilation radiators, a combined heating and ventilation system. The ventilation rate was decreased from normal requirements (per floor area) of 0.375 l·s-1·m-2 to 0.100 l·s-1·m-2 when the residence building was un-occupied. The energy saving potential due to decreased ventil...

  18. Clinical challenges in mechanical ventilation.

    Science.gov (United States)

    Goligher, Ewan C; Ferguson, Niall D; Brochard, Laurent J

    2016-04-30

    Mechanical ventilation supports gas exchange and alleviates the work of breathing when the respiratory muscles are overwhelmed by an acute pulmonary or systemic insult. Although mechanical ventilation is not generally considered a treatment for acute respiratory failure per se, ventilator management warrants close attention because inappropriate ventilation can result in injury to the lungs or respiratory muscles and worsen morbidity and mortality. Key clinical challenges include averting intubation in patients with respiratory failure with non-invasive techniques for respiratory support; delivering lung-protective ventilation to prevent ventilator-induced lung injury; maintaining adequate gas exchange in severely hypoxaemic patients; avoiding the development of ventilator-induced diaphragm dysfunction; and diagnosing and treating the many pathophysiological mechanisms that impair liberation from mechanical ventilation. Personalisation of mechanical ventilation based on individual physiological characteristics and responses to therapy can further improve outcomes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    Science.gov (United States)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  20. Smaller self-inflating bags produce greater guideline consistent ventilation in simulated cardiopulmonary resuscitation

    Directory of Open Access Journals (Sweden)

    Boyle Malcolm J

    2009-02-01

    Full Text Available Abstract Background Suboptimal bag ventilation in cardiopulmonary resuscitation (CPR has demonstrated detrimental physiological outcomes for cardiac arrest patients. In light of recent guideline changes for resuscitation, there is a need to identify the efficacy of bag ventilation by prehospital care providers. The objective of this study was to evaluate bag ventilation in relation to operator ability to achieve guideline consistent ventilation rate, tidal volume and minute volume when using two different capacity self-inflating bags in an undergraduate paramedic cohort. Methods An experimental study using a mechanical lung model and a simulated adult cardiac arrest to assess the ventilation ability of third year Monash University undergraduate paramedic students. Participants were instructed to ventilate using 1600 ml and 1000 ml bags for a length of two minutes at the correct rate and tidal volume for a patient undergoing CPR with an advanced airway. Ventilation rate and tidal volume were recorded using an analogue scale with mean values calculated. Ethics approval was granted. Results Suboptimal ventilation with the use of conventional 1600 ml bag was common, with 77% and 97% of participants unable to achieve guideline consistent ventilation rates and tidal volumes respectively. Reduced levels of suboptimal ventilation arouse from the use of the smaller bag with a 27% reduction in suboptimal tidal volumes (p = 0.015 and 23% reduction in suboptimal minute volumes (p = 0.045. Conclusion Smaller self-inflating bags reduce the incidence of suboptimal tidal volumes and minute volumes and produce greater guideline consistent results for cardiac arrest patients.

  1. Patterns of Palliative Care Referral in Patients Admitted With Heart Failure Requiring Mechanical Ventilation.

    Science.gov (United States)

    Wiskar, Katie J; Celi, Leo Anthony; McDermid, Robert C; Walley, Keith R; Russell, James A; Boyd, John H; Rush, Barret

    2018-04-01

    Palliative care is recommended for advanced heart failure (HF) by several major societies, though prior studies indicate that it is underutilized. To investigate patterns of palliative care referral for patients admitted with HF exacerbations, as well as to examine patient and hospital factors associated with different rates of palliative care referral. Retrospective nationwide cohort analysis utilizing the National Inpatient Sample from 2006 to 2012. Patients referred to palliative care were compared to those who were not. Patients ≥18 years of age with a primary diagnosis of HF requiring mechanical ventilation (MV) were included. A cohort of non-HF patients with metastatic cancer was created for temporal comparison. Between 2006 and 2012, 74 824 patients underwent MV for HF. A referral to palliative care was made in 2903 (3.9%) patients. The rate of referral for palliative care in HF increased from 0.8% in 2006 to 6.4% in 2012 ( P care referral in patients with cancer increased from 2.9% in 2006 to 11.9% in 2012 ( P care ( P care. The use of palliative care for patients with advanced HF increased during the study period; however, palliative care remains underutilized in this setting. Patient factors such as race and SES affect access to palliative care.

  2. Ventilation of radioactive enclosures

    International Nuclear Information System (INIS)

    Caminade, F.; Laurent, H.

    1957-01-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m 3 ). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [fr

  3. Mechanical ventilation strategies.

    Science.gov (United States)

    Keszler, Martin

    2017-08-01

    Although only a small proportion of full term and late preterm infants require invasive respiratory support, they are not immune from ventilator-associated lung injury. The process of lung damage from mechanical ventilation is multifactorial and cannot be linked to any single variable. Atelectrauma and volutrauma have been identified as the most important and potentially preventable elements of lung injury. Respiratory support strategies for full term and late preterm infants have not been as thoroughly studied as those for preterm infants; consequently, a strong evidence base on which to make recommendations is lacking. The choice of modalities of support and ventilation strategies should be guided by the specific underlying pathophysiologic considerations and the ventilatory approach must be individualized for each patient based on the predominant pathophysiology at the time. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. [Ventilator associated pneumonia].

    Science.gov (United States)

    Bellani, S; Nesci, M; Celotto, S; Lampati, L; Lucchini, A

    2003-04-01

    Ventilator associated pneumonia (VAP) is a nosocomial lower respiratory tract infection that ensues in critically ill patients undergoing mechanical ventilation. The reported incidence of VAP varies between 9% and 68% with a mortality ranging between 33% and 71%. Two key factors are implicated in the pathogenesis of VAP: bacterial colonization of the upper digestive-respiratory tract and aspiration of oral secretions into the trachea. Preventive measurements are advocated to reduce the incidence of VAP, such as selective decontamination of the digestive tract (SDD), supraglottic aspiration and positioning. Prompt recognition and treatment of established VAP has also been demostrated to affect outcome. Therefore, the knowledge of risk factors associated with the development of VAP and the implementation of strategies to prevent, diagnose and treat VAP are mainstems in the nursing of mechanically ventilated patients.

  5. CFD and Ventilation Research

    DEFF Research Database (Denmark)

    Li, Y.; Nielsen, Peter V.

    2011-01-01

    There has been a rapid growth of scientific literature on the application of computational fluid dynamics (CFD) in the research of ventilation and indoor air science. With a 1000–10,000 times increase in computer hardware capability in the past 20 years, CFD has become an integral part...... of scientific research and engineering development of complex air distribution and ventilation systems in buildings. This review discusses the major and specific challenges of CFD in terms of turbulence modelling, numerical approximation, and boundary conditions relevant to building ventilation. We emphasize...... the growing need for CFD verification and validation, suggest on-going needs for analytical and experimental methods to support the numerical solutions, and discuss the growing capacity of CFD in opening up new research areas. We suggest that CFD has not become a replacement for experiment and theoretical...

  6. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  7. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  8. Microhardness evaluation alloys Hf-Si-B; Avaliacao de microdureza de ligas Hf-Si-B

    Energy Technology Data Exchange (ETDEWEB)

    Gigolotti, Joao Carlos Janio; Costa, Eliane Fernandes Brasil [Centro Universitario de Volta Redonda (UNIFOA), Volta Redonda, RJ (Brazil); Nunes, Carlos Angelo; Rocha, Elisa Gombio; Coelho, Gilberto Carvalho, E-mail: carlosjanio@uol.com.br, E-mail: eliane-costabrasi@hotmail.com, E-mail: cnunes@demar.eel.usp.br, E-mail: elisarocha@alunos.eel.usp.br, E-mail: coelho@demar.eel.usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil)

    2014-08-15

    The technological advance has generated increasing demand for materials that can be used under high temperature, what includes intermetallic MR-Si-B (MR = refractory metal) alloys with multiphase structures, that can also be applied in oxide environments. Thus, this work had for objective the micro hardness study of the Hf-Si-B system alloys, heat treated at 1600 deg C, in the Hf rich region. Hf-Si-B alloys had been produced with blades of Hf (min. 99.8%), Si (min. 99.998%) and B (min. 99.5%), in the voltaic arc furnace and heat treated at 1600 deg C under argon atmosphere. The relationship of the phases had been previously identified by X-ray diffraction and contrast in backscattered electron imaging mode. The alloys had their hardness analyzed by method Vickers (micro hardness) with load of 0.05 kgf and 0.2 kgf and application time of 20 s. The results, obtained from the arithmetic mean of measurements for each alloy on the heterogeneous region, showed a mean hardness of 11.08 GPA, with small coefficient of variation of 3.8%. The borides HfB2 (19.34 GPa) e HfB - 11.76 GPa, showed the hardness higher than the silicides Hf2Si (8.57 GPa), Hf5Si3 (9.63 GPa), Hf3Si2 (11.66 GPa), Hf5Si4 (10.00 GPa), HfSi (10.02 GPa) e HfSi2 (8.61 GPa). (author)

  9. Heavy ion studies with CMS HF calorimeter

    International Nuclear Information System (INIS)

    Damgov, I.; Genchev, V.; Kolosov, V.A.; Lokhtin, I.P.; Petrushanko, S.V.; Sarycheva, L.I.; Teplov, S.Yu.; Shmatov, S.V.; Zarubin, P.I.

    2001-01-01

    The capability of the very forward (HF) calorimeter of the CMS detector at LHC to be applied to specific studies with heavy ion beams is discussed. The simulated responses of the HF calorimeter to nucleus-nucleus collisions are used for the analysis of different problems: reconstruction of the total energy flow in the forward rapidity region, accuracy of determination of the impact parameter of collision, study of fluctuations of the hadronic-to-electromagnetic energy ratio, fast inelastic event selection

  10. Ventilation with heat recovery

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Svendsen, Svend

    2005-01-01

    This paper presents the experiences from the use of ventilation with heat recovery in several experimental single-family houses developed and built within the last four years to meet the new Danish energy requirements of 2005. Included are descriptions of the ventilation system components...... and the main functional demands as well as measurements of the thermal efficiency, electricity consumptions and building air tightness. The paper addresses the aspects of minimizing the heat loss from the duct system and the heat recovery unit (when placed in an unheated attic space) in order to obtain...

  11. Behovstyret ventilation til enfamiliehuse

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Drivsholm, Christian; Hansen, Mads Peter Rudolph

    Muligheden for behovsstyret ventilation i enfamiliehuse er undersøgt. To strategier er afprøvet i praksis: En relativ simpel og billig strategi og en relativ avanceret og dyr strategi. Den simple strategi regulerer luftskiftet ensartet for alle rum mellem et lavt eller højt niveau. Den avancerede...... ventilation efter gældende krav. Desuden kræver den simple regulering kun få sensorer og er således væsentlig billigere og enklere at implementere end den avancerede strategi....

  12. 1-3-7 minute intravenous urography

    International Nuclear Information System (INIS)

    Bahk, Yong Whee; Yoon, Sei Chul; Lee, Myung Hee

    1980-01-01

    Intravenous urography (IVU) as it is used widely today was probably started in early 1950's after the introduction of triiodobenzoic acid compounds as contrast media. This long cherished traditional method consists of taking radiograms at 5, 15 and 25 minutes after the injection of contrast medium. There are a few modifications of this standard urographic examination such as five minute IVU (Woodruff, 1959), minute-sequence pyelogram (Maxwell et al., 1964), drip infusion pyelography (Schencker, 1964) and nephrotomography (Evans et al., 1955). The present study has been undertaken to test if the conventional standard IVU can be more rapidly performed without losing essential informational contents of urograms. In this new clinical trial, urograms were taken at the end of 1, 3 and 7 minutes instead of 5, 15 and 25 minutes after the intravenous injection of contrast medium. We injected 40 ml of meglumine diatrizoate solution within 30 seconds using an 18G iv needle. (The amount of injected contrast medium has been reduced recently to ordinary single dose of 20 ml for subjects weighing less than 8 kg). Upon viewing the 7 minute film in front of an automatic processor, the examination was terminated after obtaining an upright view unless any further radiogram was indicated. As shown in Tables and Figures, our new 1-3-7 minute method has been proven to provide us with as much essential and useful information as conventional 5-15-25 minute urography. Thus, we were able to finish one examination within 10 minutes without losing any necessary diagnostic information. In some of patients with obstructive uropathy such as stone the examination was extended as long as it was desired. Side reactions were occasional nausea, flushing and rare mild vomiting which never prevented the examination

  13. Bench performance of ventilators during simulated paediatric ventilation.

    Science.gov (United States)

    Park, M A J; Freebairn, R C; Gomersall, C D

    2013-05-01

    This study compares the accuracy and capabilities of various ventilators using a paediatric acute respiratory distress syndrome lung model. Various compliance settings and respiratory rate settings were used. The study was done in three parts: tidal volume and FiO2 accuracy; pressure control accuracy and positive end-expiratory pressure (PEEP) accuracy. The parameters set on the ventilator were compared with either or both of the measured parameters by the test lung and the ventilator. The results revealed that none of the ventilators could consistently deliver tidal volumes within 1 ml/kg of the set tidal volume, and the discrepancy between the delivered volume and the volume measured by the ventilator varied greatly. The target tidal volume was 8 ml/kg, but delivered tidal volumes ranged from 3.6-11.4 ml/kg and the volumes measured by the ventilator ranged from 4.1-20.6 ml/kg. All the ventilators maintained pressure within 20% of the set pressure, except one ventilator which delivered pressures of up to 27% higher than the set pressure. Two ventilators maintained PEEP within 10% of the prescribed PEEP. The majority of the readings were also within 10%. However, three ventilators delivered, at times, PEEPs over 20% higher. In conclusion, as lung compliance decreases, especially in paediatric patients, some ventilators perform better than others. This study highlights situations where ventilators may not be able to deliver, nor adequately measure, set tidal volumes, pressure, PEEP or FiO2.

  14. Development of analog watch with minute repeater

    Science.gov (United States)

    Okigami, Tomio; Aoyama, Shigeru; Osa, Takashi; Igarashi, Kiyotaka; Ikegami, Tomomi

    A complementary metal oxide semiconductor with large scale integration was developed for an electronic minute repeater. It is equipped with the synthetic struck sound circuit to generate natural struck sound necessary for the minute repeater. This circuit consists of an envelope curve drawing circuit, frequency mixer, polyphonic mixer, and booster circuit made by using analog circuit technology. This large scale integration is a single chip microcomputer with motor drivers and input ports in addition to the synthetic struck sound circuit, and it is possible to make an electronic system of minute repeater at a very low cost in comparison with the conventional type.

  15. A new design for high stability pressure-controlled ventilation for small animal lung imaging

    International Nuclear Information System (INIS)

    Kitchen, M J; Habib, A; Lewis, R A; Fouras, A; Dubsky, S; Wallace, M J; Hooper, S B

    2010-01-01

    We have developed a custom-designed ventilator to deliver a stable pressure to the lungs of small animals for use in imaging experiments. Our ventilator was designed with independent pressure vessels to separately control the Peak Inspiratory Pressure (PIP) and Positive End Expiratory Pressure (PEEP) to minimise pressure fluctuations during the ventilation process. The ventilator was computer controlled through a LabVIEW interface, enabling experimental manipulations to be performed remotely whilst simultaneously imaging the lungs in situ. Mechanical ventilation was successfully performed on newborn rabbit pups to assess the most effective ventilation strategies for aerating the lungs at birth. Highly stable pressures enabled reliable respiratory gated acquisition of projection radiographs and a stable prolonged (15 minute) breath-hold for high-resolution computed tomography of deceased rabbit pups at different lung volumes.

  16. Krypton for computed tomography lung ventilation imaging: preliminary animal data.

    Science.gov (United States)

    Mahnken, Andreas H; Jost, Gregor; Pietsch, Hubertus

    2015-05-01

    The objective of this study was to assess the feasibility and safety of krypton ventilation imaging with intraindividual comparison to xenon ventilation computed tomography (CT). In a first step, attenuation of different concentrations of xenon and krypton was analyzed in a phantom setting. Thereafter, 7 male New Zealand white rabbits (4.4-6.0 kg) were included in an animal study. After orotracheal intubation, an unenhanced CT scan was obtained in end-inspiratory breath-hold. Thereafter, xenon- (30%) and krypton-enhanced (70%) ventilation CT was performed in random order. After a 2-minute wash-in of gas A, CT imaging was performed. After a 45-minute wash-out period and another 2-minute wash-in of gas B, another CT scan was performed using the same scan protocol. Heart rate and oxygen saturation were measured. Unenhanced and krypton or xenon data were registered and subtracted using a nonrigid image registration tool. Enhancement was quantified and statistically analyzed. One animal had to be excluded from data analysis owing to problems during intubation. The CT scans in the remaining 6 animals were completed without complications. There were no relevant differences in oxygen saturation or heart rate between the scans. Xenon resulted in a mean increase of enhancement of 35.3 ± 5.5 HU, whereas krypton achieved a mean increase of 21.9 ± 1.8 HU in enhancement (P = 0.0055). The use of krypton for lung ventilation imaging appears to be feasible and safe. Despite the use of a markedly higher concentration of krypton, enhancement is significantly worse when compared with xenon CT ventilation imaging, but sufficiently high for CT ventilation imaging studies.

  17. What does built-in software of home ventilators tell us? An observational study of 150 patients on home ventilation.

    Science.gov (United States)

    Pasquina, Patrick; Adler, Dan; Farr, Pamela; Bourqui, Pascale; Bridevaux, Pierre Olivier; Janssens, Jean-Paul

    2012-01-01

    Recent home ventilators are equipped with built-in software which provides data such as compliance, estimations of leaks, tidal volume, minute ventilation, respiratory rate, apnea and apnea-hypopnea indexes, and percentage of inspirations triggered by the patient (or ventilator). However, for many of these variables, there is neither consensus nor documentation as to what is to be expected in a population of stable patients under noninvasive ventilation (NIV). To document the values and distribution of specific items downloaded from ventilator monitoring software, by diagnostic category. Analysis of data downloaded from home ventilators in clinically stable patients under long-term NIV, during elective home visits by specialized nurses. Data were collected from home ventilators of 150 patients with chronic obstructive pulmonary disease (n = 32), overlap syndrome (n = 29), obesity-hypoventilation (n = 38), neuromuscular disorders (n = 19), restrictive disorders (n = 21), and central sleep apnea syndrome (n = 11). On average, leaks were low, being lowest in patients with facial masks (vs. nasal masks), and increased with older age. Compliance was excellent in all groups. Patients with neuromuscular diseases triggered their ventilators less and tended to be 'captured', while other groups triggered at least half of inspiratory cycles. Most patients had a respiratory rate just slightly above the back-up rate. Residual apneas and hypopneas were highest in patients with central apneas. Built-in software of home ventilators provides the clinician with new parameters, some of which are a useful adjunct to recommended tools for monitoring NIV and may contribute to a better understanding of residual hypoventilation and/or desaturations. However, an independent validation of the accuracy of this information is mandatory. Copyright © 2011 S. Karger AG, Basel.

  18. Demand controlled ventilation; Behovsstyrt ventilasjon

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, Henning Holm

    2006-07-01

    The terms CAV and VAV have been known terms for many years in the ventilation business. The terms are also included in building regulations, but the time is now right to focus on demand controlled ventilation (DCV). The new building regulations and the accompanying energy framework underline the need for a more nuanced thinking when it comes to controlling ventilation systems. Descriptions and further details of the ventilation systems are provided (ml)

  19. Battery life of portable home ventilators: effects of ventilator settings.

    Science.gov (United States)

    Falaize, Line; Leroux, Karl; Prigent, Hélène; Louis, Bruno; Khirani, Sonia; Orlikowski, David; Fauroux, Brigitte; Lofaso, Frédéric

    2014-07-01

    The battery life (BL) of portable home ventilator batteries is reported by manufacturers. The aim of this study was to evaluate the effects of ventilator mode, breathing frequency, PEEP, and leaks on the BL of 5 commercially available portable ventilators. The effects of the ventilator mode (volume controlled-continuous mandatory ventilation [VC-CMV] vs pressure support ventilation [PSV]), PEEP 5 cm H2O, breathing frequency (10, 15, and 20 breaths/min), and leaks during both volume-targeted ventilation and PSV on the BL of 5 ventilators (Elisée 150, Monnal T50, PB560, Vivo 50, and Trilogy 100) were evaluated. Each ventilator was ventilated with a test lung at a tidal volume of 700 ml and an inspiratory time of 1.2 s in the absence of leaks. Switching from PSV to VC-CMV or the addition of PEEP did not significantly change ventilator BL. The increase in breathing frequency from 10 to 20 breaths/min decreased the BL by 18 ± 11% (P = .005). Leaks were associated with an increase in BL during the VC-CMV mode (18 ± 20%, P = .04) but a decrease in BL during the PSV mode (-13 ± 15%, P = .04). The BL of home ventilators depends on the ventilator settings. BL is not affected by the ventilator mode (VC-CMV or PSV) or the addition of PEEP. BL decreases with an increase in breathing frequency and during leaks with a PSV mode, whereas leaks increase the duration of ventilator BL during VC-CMV. Copyright © 2014 by Daedalus Enterprises.

  20. U.S. 15 Minute Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source...

  1. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  2. Ventilator and viral induced inflammation

    NARCIS (Netherlands)

    Hennus, M.P.

    2013-01-01

    This thesis expands current knowledge on ventilator induced lung injury and provides insights on the immunological effects of mechanical ventilation during viral respiratory infections. The experimental studies in the first part of this thesis improve our understanding of how mechanical ventilation

  3. How to Plan Ventilation Systems.

    Science.gov (United States)

    Clarke, John H.

    1963-01-01

    Ventilation systems for factory safety demand careful planning. The increased heat loads and new processes of industry have introduced complex ventilation problems in--(1) ventilation supply, (2) duct work design, (3) space requirements, (4) hood face velocities, (5) discharge stacks, and (6) building eddies. This article describes and diagrams…

  4. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  5. Algebra success in 20 minutes a day

    CERN Document Server

    LearningExpress, LLC

    2014-01-01

    Stripped of unnecessary math jargon but bursting with algebra essentials, this handy guide covers vital algebra skills that apply to real-world scenarios. Whether you're new to algebra or just looking for a refresher, Algebra Success in 20 Minutes a Day offers a lesson plan that provides quick and thorough instruction in practical, critical skills. All lessons can be completed in just 20 minutes a day, for a manageable and non-intimidating learning experience.

  6. Measurements of pulmonary ventilation following inhalation of Isovist trademark -300

    International Nuclear Information System (INIS)

    Thiele, J.; Kloeppel, R.

    1995-01-01

    A self-experiment was performed, in which representative planar images of the lungs were obtained using computerized tomography following inhalation of highly atomized isoosmolar contrast medium (Isovist-300 produced by the firm Schering). The administration of 2 ml contrast medium over 15 minutes was well tolerated by a healthy volunteer and caused no discomfort. The pattern of the contrast medium distribution was in accordance with that of regional ventilation. An increased density of peripheral vascular structures was not observed. The procedure can thus be regarded as an addition to the range of methods used in computerized tomography for measurements of pulmonary ventilation. (orig.) [de

  7. The amazing Minivent ventilator

    African Journals Online (AJOL)

    Southern African Journal of Anaesthesia and Analgesia is co-published by Medpharm Publications, NISC (Pty) Ltd and Cogent, ... Respiratory rate was obtained by counting the clicking noise ... was appointed as a part-time lecturer to the University of the ... The Minivent became the first of three miniature ventilators that.

  8. Omnidirectional ventilated acoustic barrier

    Science.gov (United States)

    Zhang, Hai-long; Zhu, Yi-fan; Liang, Bin; Yang, Jing; Yang, Jun; Cheng, Jian-chun

    2017-11-01

    As an important problem in acoustics, sound insulation finds applications in a great variety of situations. In the existing schemes, however, there has always been a trade-off between the thinness of sound-insulating devices and their ventilating capabilities, limiting their potentials in the control of low-frequency sound in high ventilation environments. Here, we design and experimentally implement an omnidirectional acoustic barrier with a planar profile, subwavelength thickness ( 0.18 λ ), yet high ventilation. The proposed mechanism is based on the interference between the resonant scattering of discrete states and the background scattering of continuous states which induces a Fano-like asymmetric transmission profile. Benefitting from the binary-structured design of the coiled unit and hollow pipe, it maximally simplifies the design and fabrication while ensuring the ventilation for all the non-resonant units with open tubes. The simulated and measured results agree well, showing the effectiveness of our proposed mechanism to block low frequency sound coming from various directions while allowing 63% of the air flow to pass. We anticipate our design to open routes to design sound insulators and to enable applications in traditionally unattainable cases such as those calling for noise reduction and cooling simultaneously.

  9. Mechanical ventilation of mice

    NARCIS (Netherlands)

    Schwarte, L. A.; Zuurbier, C. J.; Ince, C.

    2000-01-01

    Due to growing interest in murine functional genomics research, there is an increasing need for physiological stable in vivo murine models. Of special importance is support and control of ventilation by artificial respiration, which is difficult to execute as a consequence of the small size of the

  10. Lavt elforbrug til ventilation

    DEFF Research Database (Denmark)

    Jagemar, L.; Bergsøe, Niels Christian

    Rapporten giver gode råd om mulige energibesparelser og praktiske projekteringshensyn, som er forbundet med udformning af energieffektiv ventilation i ikke blot kontorbygninger, men i alle bygninger med komfortventilationsanlæg. I forbindelse med projektering af ventilationsanlæg har interessen...

  11. Understanding mechanical ventilators.

    Science.gov (United States)

    Chatburn, Robert L

    2010-12-01

    The respiratory care academic community has not yet adopted a standardized system for classifying and describing modes of ventilation. As a result, there is enough confusion that patient care, clinician education and even ventilator sales are all put at risk. This article summarizes a ventilator mode taxonomy that has been extensively published over the last 15 years. Specifically, the classification system has three components: a description of the control variables within breath; a description of the sequence of mandatory and spontaneous breaths; and a specification for the targeting scheme. This three-level specification provides scalability of detail to make the mode description appropriate for the particular need. At the bedside, we need only refer to a mode briefly using the first or perhaps first and second components. To distinguish between similar modes and brand names, we would need to include all components. This taxonomy uses the equation of motion for the respiratory system as the underlying theoretical framework. All terms relevant to describing modes of mechanical ventilation are defined in an extensive appendix.

  12. Human response to ductless personalized ventilation coupled with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Veselý, Michal; Melikov, Arsen K.

    2012-01-01

    A human subject experiment was carried out to investigate the extent to which ductless personalized ventilation (DPV) in conjunction with displacement ventilation can improve perceived air quality (PAQ) and thermal comfort at elevated room air temperature in comparison with displacement ventilation...... alone. The experimental conditions comprised displacement ventilation alone (room air temperature of 23 °C, 26 °C, 29 °C) and DPV with displacement ventilation (26 °C, 29 °C), both operating at supply air temperatures 3, 5 or 6K lower than room air temperature, as well as mixing ventilation (23 °C, 3 K......). During one hour exposure participants answered questionnaires regarding PAQ and thermal comfort. PAQ was significantly better with DPV than without DPV at the same background conditions. Thermal comfort improved when DPV was used. Combining DPV with displacement ventilation showed the potential...

  13. Effect of flashlight guidance on manual ventilation performance in cardiopulmonary resuscitation: A randomized controlled simulation study.

    Science.gov (United States)

    Kim, Ji Hoon; Beom, Jin Ho; You, Je Sung; Cho, Junho; Min, In Kyung; Chung, Hyun Soo

    2018-01-01

    Several auditory-based feedback devices have been developed to improve the quality of ventilation performance during cardiopulmonary resuscitation (CPR), but their effectiveness has not been proven in actual CPR situations. In the present study, we investigated the effectiveness of visual flashlight guidance in maintaining high-quality ventilation performance. We conducted a simulation-based, randomized, parallel trial including 121 senior medical students. All participants were randomized to perform ventilation during 2 minutes of CPR with or without flashlight guidance. For each participant, we measured mean ventilation rate as a primary outcome and ventilation volume, inspiration velocity, and ventilation interval as secondary outcomes using a computerized device system. Mean ventilation rate did not significantly differ between flashlight guidance and control groups (P = 0.159), but participants in the flashlight guidance group exhibited significantly less variation in ventilation rate than participants in the control group (Pguidance group. Our results demonstrate that flashlight guidance is effective in maintaining a constant ventilation rate and interval. If confirmed by further studies in clinical practice, flashlight guidance could be expected to improve the quality of ventilation performed during CPR.

  14. Determination of the rate of HF hydration and the effects of HF on moisture condensation

    International Nuclear Information System (INIS)

    McCulla, W.H.

    1982-01-01

    There were four basic questions addressed in this report that relate to the HF interaction in the environment. As to whether HF hydrates in the vapor phase and what the rate of that hydration is, there seems ample evidence that HF hydrates readily in the vapor phase and the rate of that hydration is very fast, i.e., dHF/dt greater than or equal to 25 torr sec -1 . Concerning under what conditions condensation of the hydrate will occur and whether a third body is required for condensation, it was found that HF does effect the dew point or condensation of water and data was presented indicating the extent of that effect. It was also determined that condensation will occur without a third body present. Thus, in attempting to model an HF release for the Safety Analysis Report the hydration of HF and the subsequent heat released may be treated as occurring instantaneously; but the ultimate disposition of the HF will be strongly dependent upon the environmental conditions at the time of the release

  15. Determination of the rate of HF hydration and the effects of HF on moisture condensation

    Energy Technology Data Exchange (ETDEWEB)

    McCulla, W H

    1982-04-30

    There were four basic questions addressed in this report that relate to the HF interaction in the environment. As to whether HF hydrates in the vapor phase and what the rate of that hydration is, there seems ample evidence that HF hydrates readily in the vapor phase and the rate of that hydration is very fast, i.e., dHF/dt greater than or equal to 25 torr sec/sup -1/. Concerning under what conditions condensation of the hydrate will occur and whether a third body is required for condensation, it was found that HF does effect the dew point or condensation of water and data was presented indicating the extent of that effect. It was also determined that condensation will occur without a third body present. Thus, in attempting to model an HF release for the Safety Analysis Report the hydration of HF and the subsequent heat released may be treated as occurring instantaneously; but the ultimate disposition of the HF will be strongly dependent upon the environmental conditions at the time of the release.

  16. Ventilation of nuclear power plants

    International Nuclear Information System (INIS)

    Madoyan, A.A.; Vlasik, V.F.

    1984-01-01

    Foundations and calculation methods of ventilation of rooms with different degree of heat and gas release with the change of operation mode of NPP main equipment, as well as problems of NPP site and adjoining area aerodynamics, have been presented. Systems of air ventilation and conditioning, cooling equipment, are considered. The main points of designing are described and determination of economic efficiency of the ventilation systems are made. Technical characteristics of the ventilators, conditioners, filters and air heaters used, are presented. Organization of adjustment, tests, operation and maintenance of the ventilation systems of NPP with RBMK and WWER-type reactors, is described

  17. High-K rotational bands in {sup 174}Hf and {sup 175}Hf

    Energy Technology Data Exchange (ETDEWEB)

    Gjoerup, N L; Sletten, G [The Niels Bohr Institute, Roskilbe (Denmark); Walker, P M [Surrey Univ., Guildford (United Kingdom). Dept. of Physics; Bentley, M A [Daresbury Lab. (United Kingdom); Cullen, D M; Sharpey-Schafer, J F; Fallon, P; Smith, G [Liverpool Univ. (United Kingdom). Oliver Lodge Lab.

    1992-08-01

    High sensitivity experiments with {sup 48}Ca, {sup 18}O and {sup 9}Be induced reactions using the ESSA-30, TESSA-3 and NORDBALL arrays have provided extensive new information on the high spin level structures of {sup 174}Hf and {sup 175}Hf. During the series of experiments, several new bands have been found and most known bands have been extended considerably. Spin and excitation energy ranges for {sup 174}Hf are now {approx} 35 {Dirac_h} and {approx} 13 MeV, respectively, and for {sup 175}Hf ranges are {approx} 30 {Dirac_h} and {approx} 7 MeV. respectively. Several new high-K structures have been found in {sup 174}Hf and the structure of these and the already known high-K bands in both nuclei together with the new Tilted Axis Cranking approach might explain the small K-hindrances observed for K-isomers in this region. (author). 8 refs., 2 figs.

  18. Comparison of different inspiratory triggering settings in automated ventilators during cardiopulmonary resuscitation in a porcine model.

    Science.gov (United States)

    Tan, Dingyu; Xu, Jun; Shao, Shihuan; Fu, Yangyang; Sun, Feng; Zhang, Yazhi; Hu, Yingying; Walline, Joseph; Zhu, Huadong; Yu, Xuezhong

    2017-01-01

    Mechanical ventilation via automated in-hospital ventilators is quite common during cardiopulmonary resuscitation. It is not known whether different inspiratory triggering sensitivity settings of ordinary ventilators have different effects on actual ventilation, gas exchange and hemodynamics during resuscitation. 18 pigs enrolled in this study were anaesthetized and intubated. Continuous chest compressions and mechanical ventilation (volume-controlled mode, 100% O2, respiratory rate 10/min, and tidal volumes 10ml/kg) were performed after 3 minutes of ventricular fibrillation. Group trig-4, trig-10 and trig-20 (six pigs each) were characterized by triggering sensitivities of 4, 10 and 20 (cmH2O for pressure-triggering and L/min for flow-triggering), respectively. Additionally, each pig in each group was mechanically ventilated using three types of inspiratory triggering (pressure-triggering, flow-triggering and turned-off triggering) of 5 minutes duration each, and each animal matched with one of six random assortments of the three different triggering settings. Blood gas samples, respiratory and hemodynamic parameters for each period were all collected and analyzed. In each group, significantly lower actual respiratory rate, minute ventilation volume, mean airway pressure, arterial pH, PaO2, and higher end-tidal carbon dioxide, aortic blood pressure, coronary perfusion pressure, PaCO2 and venous oxygen saturation were observed in the ventilation periods with a turned-off triggering setting compared to those with pressure- or flow- triggering (all PVentilation with pressure- or flow-triggering tends to induce hyperventilation and deteriorating gas exchange and hemodynamics during CPR. A turned-off patient triggering or a pressure-triggering of 20 cmH2O is preferred for ventilation when an ordinary inpatient hospital ventilator is used during resuscitation.

  19. Design Procedure for Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Tjelflaat, Per Olaf

    Mechanical and natural ventilation systems have developed separately during many years. The natural next step in this development is development of ventilation concepts that utilises and combines the best features from each system into a new type of ventilation system - Hybrid Ventilation....... Buildings with hybrid ventilation often include other sustainable technologies and an energy optimisation requires an integrated approach in the design of the building and its mechanical systems. Therefore, the hybrid ventilation design procedure differs from the design procedure for conventional HVAC....... The first ideas on a design procedure for hybrid ventilation is presented and the different types of design methods, that is needed in different phases of the design process, is discussed....

  20. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  1. Non-Invasive Ventilation in Patients with Heart Failure: A Systematic Review and Meta-Analysis.

    Science.gov (United States)

    Bittencourt, Hugo Souza; Reis, Helena França Correia Dos; Lima, Melissa Santos; Gomes, Mansueto

    2017-02-01

    Non-invasive ventilation (NIV) may perfect respiratory and cardiac performance in patients with heart failure (HF). The objective of the study to establish, through systematic review and meta-analysis, NIV influence on functional capacity of HF patients. A systematic review with meta-analysis of randomized studies was carried out through research of databases of Cochrane Library, SciELO, Pubmed and PEDro, using the key-words: heart failure, non-invasive ventilation, exercise tolerance; and the free terms: bi-level positive airway pressure (BIPAP), continuous positive airway pressure (CPAP), and functional capacity (terms were searched for in English and Portuguese) using the Boolean operators AND and OR. Methodological quality was ensured through PEDro scale. Weighted averages and a 95% confidence interval (CI) were calculated. The meta-analysis was done thorugh the software Review Manager, version 5.3 (Cochrane Collaboration). Four randomized clinical trials were included. Individual studies suggest NIV improved functional capacity. NIV resulted in improvement in the distance of the six-minute walk test (6MWT) (68.7m 95%CI: 52.6 to 84.9) in comparison to the control group. We conclude that the NIV is an intervention that promotes important effects in the improvement of functional capacity of HF patients. However, there is a gap in literature on which are the most adequate parameters for the application of this technique. Resumo A ventilação não invasiva (VNI) pode aperfeiçoar o desempenho cardíaco e respiratório dos pacientes com insuficiência cardíaca (IC). O objetivo do estudo é estabelecer, por meio de revisão sistemática e meta-análise, a influência da VNI na capacidade funcional (CF) de indivíduos com IC. Foi realizada uma revisão sistemática com meta-análise de estudos randomizados através da pesquisa nas bases de dados Biblioteca Cochrane, SciELO, Pubmed e PEDro, utilizando-se as palavras-chave: insuficiência cardíaca, ventilação n

  2. High Frequency Oscillatory Ventilation

    Directory of Open Access Journals (Sweden)

    AC Bryan

    1996-01-01

    Full Text Available High frequency oscillatory (HFO ventilation using low tidal volume and peak airway pressures is extremely efficient at eliminating carbon dioxide and raising pH in the newborn infant with acute respiratory failure. Improvement in oxygenation requires a strategy of sustained or repetitive inflations to 25 to 30 cm H2O in order to place the lung on the deflation limb of the pressure-volume curve. This strategy has also been shown to decrease the amount of secondary lung injury in animal models. Experience of the use of HFO ventilation as a rescue therapy as well as several published controlled trials have shown improved outcomes and a decrease in the use of extracorporeal membrane oxygenation when it has been used in newborns.

  3. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    cooling capacity, energy saving, low investment cost and low noise level; while the limitations include condensation risk and the limit on the room geometry. Furthermore, the crucial design parameters are summarized and their effects on the system performance are discussed. In addition to the stand...... is not well structured with this system. These become the motivations in developing the design guide. This design guide aims to establish a systematic understanding of diffuse ceiling ventilation and provide assistance in designing of such a system. The guide is targeted at design engineers, architects...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  4. Mesocrystals luminescent BaZrHfO{sub 3} synthesized via hydrothermal process assisted by microwave

    Energy Technology Data Exchange (ETDEWEB)

    Fassbender, Rafael Uarth, E-mail: uarth.fisica@gmail.com

    2016-07-01

    Full text: The Barium Zirconate (BaZrO{sub 3}), is a ceramic oxide belonging to the functional group of perovskites (ABO{sub 3}), this compound can be doped with hafniun (Hf) in solid solution by microwave assisted hydrothermal method (MAH) radioluminescent increases their properties. This method allows to obtain barium zirconate at low temperature as 140 deg C and short times as 160 minutes. The choice of Hafnium (Hf) as a dopant is based on its similarity with Zirconium (Zr), another good reason for this choice is that the Hafnium has intrinsic luminescent characteristics. In general, radioluminescent materials have high density and high atomic mass (atomic number of Hafnium is 72), thereby facilitating the absorption of ionizing radiation to convert it into visible light, this characteristic is strongly dependent on the morphology and especially the electronic structure of (BaZrO{sub 3}). This work consisted in production of barium zirconate powders doped 1-2-4-8-16% (Hf) using (MAH) method. For the characterization of the powders was employed methods : a) X-ray diffraction, b) Raman Spectroscopy, c) Xanes, d) photoluminescence spectroscopy. After the electronic and structural characterization the powders were introduced in a polymeric resin (nylon-BZO), one new characterizations will be performed to validate the results obtained in the production of films to the results already obtained for the powders. We conclude so far, that the powders-doped with 16% Hf has an intense luminescent emission compared to the powders with less concentration of Hf. The small structural change that causes the Hf in (BZO) is considered as a secondary factory. (author)

  5. Geometry success in 20 minutes a day

    CERN Document Server

    LLC, LearningExpress

    2014-01-01

    Whether you're new to geometry or just looking for a refresher, Geometry Success in 20 Minutes a Day offers a 20-step lesson plan that provides quick and thorough instruction in practical, critical skills. Stripped of unnecessary math jargon but bursting with geometry essentials, Geometry Success in 20 Minutes a Day: Covers all vital geometry skills, from the basic building blocks of geometry to ratio, proportion, and similarity to trigonometry and beyond Provides hundreds of practice exercises in test format Applies geometr

  6. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    Science.gov (United States)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J. R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J. L.; Soubervielle-Montalvo, C.; Mani-Gonzalez, P. G.

    2016-06-01

    The final structure of HfO2 films grown by atomic layer deposition (ALD) after reaction with OH- ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl4 (hafnium tetrachloride), HfI4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO-H was studied employing the B3LYP (Becke 3-parameter, Lee-Yang-Parr) hybrid functional and the PBE (Perdew-Burke-Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  7. Harnessing natural ventilation benefits.

    Science.gov (United States)

    O'Leary, John

    2013-04-01

    Making sure that a healthcare establishment has a good supply of clean fresh air is an important factor in keeping patients, staff, and visitors, free from the negative effects of CO2 and other contaminants. John O'Leary of Trend Controls, a major international supplier of building energy management solutions (BEMS), examines the growing use of natural ventilation, and the health, energy-saving, and financial benefits, that it offers.

  8. Purge ventilation operability

    International Nuclear Information System (INIS)

    Marella, J.R.

    1995-01-01

    A determination of minimum requirements for purge exhaust ventilation system operability has been performed. HLWE and HLW Regulatory Program personnel have evaluated the various scenarios of equipment conditions and HLWE has developed the requirements for purge exhaust systems. This report is provided to document operability requirements to assist Tank Farm personnel to determine whether a system is operable/inoperable and to define required compensatory actions

  9. Ventilation i industrien

    DEFF Research Database (Denmark)

    Valbjørn, O.

    I en række afsnit belyses problemer med træk, kulde, varme, og luftforurening på industriens arbejdspladser, og hvordan man ved ventilation og bygningsudformning kan bekæmpe disse gener. Hvert afsnit kan i princippet læses for sig, og anvisningen kan derfor bruges som håndbog, både af de der er...

  10. Criteria for Postoperative Mechanical Ventilation After Thymectomy in Patients With Myasthenia Gravis: A Retrospective Analysis.

    Science.gov (United States)

    Chigurupati, Keerthi; Gadhinglajkar, Shrinivas; Sreedhar, Rupa; Nair, Muraleedharan; Unnikrishnan, Madathipat; Pillai, Manjusha

    2018-02-01

    To determine the criteria for postoperative mechanical ventilation after thymectomy in patients with Myasthenia Gravis. Retrospective study. Teritiary care centre. 77 Myasthenia gravis patients operated for thymectomy were studied. After obtaining clearance from Institutional ethics committee, medical records of 77 patients with MG, who were operated for thymectomy between January 2005 and December 2015 were reviewed in a retrospective manner. Perioperative variables collected from the patient records were demographic data, duration of the disease, Osserman and Genkin classification, Anti-acetylcholine antibody (AChR) positivity, preoperative daily dose of drug, history of preoperative myasthenic crisis, preoperative vital capacity, technique of anesthesia, drugs used for anesthesia, perioperative complications, and duration of postoperative mechanical ventilation. The patients were divided into two groups, group I and group II consisting of those who required postoperative ventilation for 300 minutes, respectively. The determinants of prolonged postoperative ventilation were studied. The requirement of mechanical ventilation was higher in patients with higher Osserman's grade of myasthenia gravis. Duration of the disease had no effect on the duration of mechanical ventilation in myasthenic patients post thymectomy (p = 0.89). The patients with a preoperative history of myasthenic crisis had a requirement for prolonged mechanical ventilation (p=0.03). Patients with preoperative vital capacity mechanical ventilation with p values mechanical ventilation (p=0.026). Preoperative dose of pyridostigmine and the choice of continuation or discontinuation of antcholinesterases on the day of surgery had no influence on the duration of mechanical ventilation (p value of 0.19 and 0.36 respectively). Epidural analgesia intra and postoperatively significantly reduced the requirement of mechanical ventilation (p=0.006). The predictors of postoperative ventilation in myasthenic

  11. Noninvasive Ventilation in Premature Neonates.

    Science.gov (United States)

    Flanagan, Keri Ann

    2016-04-01

    The use of noninvasive ventilation is a constantly evolving treatment option for respiratory disease in the premature infant. The goals of these noninvasive ventilation techniques are to improve gas exchange in the premature infant's lungs and to minimize the need for intubation and invasive mechanical ventilation. The goals of this article are to consider various uses of nasal interfaces, discuss skin care and developmental positioning concerns faced by the bedside nurse, and discuss the medical management aimed to reduce morbidity and mortality. This article explores the nursing role, the advances in medical strategies for noninvasive ventilation, and the team approach to noninvasive ventilation use in this population. Search strategy included a literature review on medical databases, such as EBSCOhost, CINAHL, PubMed, and NeoReviews. Innovative products, nursing research on developmental positioning and skin care, and advanced medical management have led to better and safer outcomes for premature infants requiring noninvasive ventilation. The medical focus of avoiding long-term mechanical ventilation would not be possible without the technology to provide noninvasive ventilation to these premature infants and the watchful eye of the nurse in terms of careful positioning, preventing skin breakdown and facial scarring, and a proper seal to maximize ventilation accuracy. This article encourages nursing-based research to quantify some of the knowledge about skin care and positioning as well as research into most appropriate uses for noninvasive ventilation devices.

  12. Performance evaluation of ventilation radiators

    International Nuclear Information System (INIS)

    Myhren, Jonn Are; Holmberg, Sture

    2013-01-01

    A ventilation radiator is a combined ventilation and heat emission unit currently of interest due to its potential for increasing energy efficiency in exhaust-ventilated buildings with warm water heating. This paper presents results of performance tests of several ventilation radiator models conducted under controlled laboratory conditions. The purpose of the study was to validate results achieved by Computational Fluid Dynamics (CFD) in an earlier study and identify possible improvements in the performance of such systems. The main focus was on heat transfer from internal convection fins, but comfort and health aspects related to ventilation rates and air temperatures were also considered. The general results from the CFD simulations were confirmed; the heat output of ventilation radiators may be improved by at least 20% without sacrificing ventilation efficiency or thermal comfort. Improved thermal efficiency of ventilation radiators allows a lower supply water temperature and energy savings both for heating up and distribution of warm water in heat pumps or district heating systems. A secondary benefit is that a high ventilation rate can be maintained all year around without risk for cold draught. -- Highlights: ► Low temperature heat emitters are currently of interest due to their potential for increasing energy efficiency. ► A ventilation radiator is a combined ventilation and heat emission unit which can be adapted to low temperature heating systems. ► We examine how ventilation radiators can be made to be more efficient in terms of energy consumption and thermal comfort. ► Current work focuses on heat transfer mechanisms and convection fin configuration of ventilation radiators

  13. Mile-A-Minute (Pest Alert)

    Science.gov (United States)

    Denise Binion; William Jackson

    2009-01-01

    Mile-a-minute weed (Persicaria perfoliata (L.) H. Gross, formerly Polygonum perfoliatum, L.) is an annual vine in the Polygonaceae or Buckwheat family. It is native to eastern Asia including India, Bhutan, Nepal, China, Burma, Japan, Korea, Indonesia, Bangladesh, Siberia, the Philippines, New Guinea, the Malay peninsula and the...

  14. SuperDARN HF Scattering and Propagation in the Presence of Polar Patches Imaged Using RISR

    Science.gov (United States)

    Gillies, R. G.; Perry, G. W.; Varney, R. H.; Gillies, D. M.; Donovan, E.

    2017-12-01

    The global array of High Frequency (HF) Super Dual Auroral Radar Network (SuperDARN) radars continuously monitors ionospheric convection in the middle-to-high latitude region. The radars measure coherent backscatter from decameter scale field-aligned irregularities. One of the main generation mechanisms for these field-aligned irregularities is the gradient drift instability (GDI). The edges of ionospheric density structures, such as polar cap patches, provide ideal locations for GDI growth. The geometry required for GDI growth results in irregularities forming on the trailing edge of polar patches. However, irregularities generated by the non-linear evolution of the GDI can become prevalent throughout the patch within minutes. Modelling the irregularity growth and measurements of backscatter within patches have both confirmed this. One aspect that has often been overlooked in studies of coherent backscatter within patches is the effect of HF propagation on echo location. This study examines HF echo locations in the vicinity of patches that were imaged using the Resolute Bay Incoherent Scatter Radars (RISR). The effect of both vertical and lateral refraction of the HF wave on echo location is examined.

  15. Pretest Predictions for Ventilation Tests

    International Nuclear Information System (INIS)

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only

  16. Variable tidal volumes improve lung protective ventilation strategies in experimental lung injury.

    Science.gov (United States)

    Spieth, Peter M; Carvalho, Alysson R; Pelosi, Paolo; Hoehn, Catharina; Meissner, Christoph; Kasper, Michael; Hübler, Matthias; von Neindorff, Matthias; Dassow, Constanze; Barrenschee, Martina; Uhlig, Stefan; Koch, Thea; de Abreu, Marcelo Gama

    2009-04-15

    Noisy ventilation with variable Vt may improve respiratory function in acute lung injury. To determine the impact of noisy ventilation on respiratory function and its biological effects on lung parenchyma compared with conventional protective mechanical ventilation strategies. In a porcine surfactant depletion model of lung injury, we randomly combined noisy ventilation with the ARDS Network protocol or the open lung approach (n = 9 per group). Respiratory mechanics, gas exchange, and distribution of pulmonary blood flow were measured at intervals over a 6-hour period. Postmortem, lung tissue was analyzed to determine histological damage, mechanical stress, and inflammation. We found that, at comparable minute ventilation, noisy ventilation (1) improved arterial oxygenation and reduced mean inspiratory peak airway pressure and elastance of the respiratory system compared with the ARDS Network protocol and the open lung approach, (2) redistributed pulmonary blood flow to caudal zones compared with the ARDS Network protocol and to peripheral ones compared with the open lung approach, (3) reduced histological damage in comparison to both protective ventilation strategies, and (4) did not increase lung inflammation or mechanical stress. Noisy ventilation with variable Vt and fixed respiratory frequency improves respiratory function and reduces histological damage compared with standard protective ventilation strategies.

  17. Searching triaxial superdeformation in 175Hf

    International Nuclear Information System (INIS)

    Li Xiaowei; Zhejiang Normal Univ., Jinhua; Yu Shaoying; Zhejiang Normal Univ., Jinhua; Chinese Academy of Sciences, Beijing; Shen Caiwan; National Laboratory of Heavy Ion Accelerator of Lanzhou, Lanzhou; Chen Yongshou; Chinese Academy of Sciences, Beijing; National Laboratory of Heavy Ion Accelerator of Lanzhou

    2006-01-01

    A two-dimensional Total Routhian Surface (TRS) calculation is carried out in order to ascertain if there is triaxial superdeformation in 175 Hf. A five quasi-particle configuration is chosen in the calculation. Unfortunately, the TRS minimum does not show up in the total potential energy surface. (authors)

  18. Ferromagnetic characteristics of HfFe2

    International Nuclear Information System (INIS)

    Novakovic, N.; Belosevic-Cavor, J.; Cekic, B.; Manasijevic, M.; Milosevic, Z. . E-mail address of correspoding author: novnik@rt270.vin.bg.ac.yu; Novakovic, N.)

    2003-01-01

    The magnetic hyperfine fields at 181 Ta ion-probe sites in the HfFe 2 polycrystalline binary compound were measured using the time-differential perturbed angular correlation (TDPAC) method. Measurements were performed in the absence of polarizing external magnetic field, at room temperature. The existence of two different structures, dominant cubic MgCu 2 -type and hexagonal MgZn 2 -type in our HfFe 2 sample was refined. Both structures are ferromagnetic with Curie temperatures, which differ significantly (588 K for MgCu 2 and 427 K for MgZn 2 ). The corresponding values of hyperfine fields are H hf 13.8±0.1 T for MgCu 2 -type structure and H hf = 8.0±0.2 T for MgZn 2 -type structure. Calculations using LAPW-Wien 97 program package are in progress and preliminary results are in good agreement with experiment. The analysis includes qualitative explanation of the exchange interactions mechanism between magnetic dipole moment of the observed 181 Ta ion-probe and magnetic dipole moments of the nearest neighbours on the corresponding coordination polyhedra. All these results will be published recently. (author)

  19. Statistical gamma transitions in {sup 174}Hf

    Energy Technology Data Exchange (ETDEWEB)

    Farris, L P; Cizewski, J A; Brinkman, M J; Henry, R G; Lee, C S [Rutgers--the State Univ., New Brunswick, NJ (United States); Khoo, T L; Janssens, R V.F.; Moore, E F; Carpenter, M P; Ahmad, I; Lauritsen, T [Argonne National Lab., IL (United States); Kolata, J J; Beard, K B; Ye, B; Garg, U [Notre Dame Univ., IN (United States); Kaplan, M S; Saladin, J X; Winchell, D [Pittsburgh Univ., PA (United States)

    1992-08-01

    The statistical spectrum extracted from the {sup 172}Yb({alpha},2n){sup 174}Hf reaction was fit with Monte Carlo simulations using a modified GDR E1 strength function and several formulations of the level density. (author). 15 refs., 1 tab., 3 figs.

  20. Design Principles for Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. ....... The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.......For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation...

  1. Mechanical ventilation in neurosurgical patients

    Directory of Open Access Journals (Sweden)

    Keshav Goyal

    2013-01-01

    Full Text Available Mechanical ventilation significantly affects cerebral oxygenation and cerebral blood flow through changes in arterial carbon dioxide levels. Neurosurgical patients might require mechanical ventilation for correction and maintenance of changes in the pulmonary system that occur either due to neurosurgical pathology or following surgery during the acute phase. This review discusses the basics of mechanical ventilation relevant to the neurosurgeon in the day-to-day management of neurosurgical patient requiring artificial support of the respiration.

  2. Mechanical Ventilation and Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Keszler, Martin; Sant'Anna, Guilherme

    2015-12-01

    Mechanical ventilation is an important potentially modifiable risk factor for the development of bronchopulmonary dysplasia. Effective use of noninvasive respiratory support reduces the risk of lung injury. Lung volume recruitment and avoidance of excessive tidal volume are key elements of lung-protective ventilation strategies. Avoidance of oxidative stress, less invasive methods of surfactant administration, and high-frequency ventilation are also important factors in lung injury prevention. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Design Principles for Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2000-01-01

    For many years mechanical and natural ventilation systems have developed separately. Naturally, the next step in this development is the development of ventilation concepts that utilize and combine the best features from each system to create a new type of ventilation system- Hybrid Ventilation. The hybrid ventilation concepts, design challenges and principles are discussed and illustrated by four building examples.

  4. 46 CFR 42.15-45 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 42.15-45 Section 42.15-45 Shipping COAST... Conditions of Assignment of Freeboard § 42.15-45 Ventilators. (a) Ventilators in position 1 or 2 to spaces... any ventilator exceeds 351/2 inches in height it shall be specially supported. (b) Ventilators passing...

  5. Severe bronchopulmonary dysplasia improved by noninvasive positive pressure ventilation: a case report

    Directory of Open Access Journals (Sweden)

    Mann Christian

    2011-09-01

    Full Text Available Abstract Introduction This is the first report to describe the feasibility and effectiveness of noninvasive positive pressure ventilation in the secondary treatment of bronchopulmonary dysplasia. Case presentation A former male preterm of Caucasian ethnicity delivered at 29 weeks gestation developed severe bronchopulmonary dysplasia. At the age of six months he was in permanent tachypnea and dyspnea and in need of 100% oxygen with a flow of 2.0 L/minute via a nasal cannula. Intermittent nocturnal noninvasive positive pressure ventilation was then administered for seven hours daily. The ventilator was set at a positive end-expiratory pressure of 6 cmH2O, with pressure support of 4 cmH2O, trigger at 1.4 mL/second, and a maximum inspiratory time of 0.7 seconds. Over the course of seven weeks, the patient's maximum daytime fraction of inspired oxygen via nasal cannula decreased from 1.0 to 0.75, his respiratory rate from 64 breaths/minute to 50 breaths/minute and carbon dioxide from 58 mmHg to 44 mmHg. Conclusion Noninvasive positive pressure ventilation may be a novel therapeutic option for established severe bronchopulmonary dysplasia. In the case presented, noninvasive positive pressure ventilation achieved sustained improvement in ventilation and thus prepared our patient for safe home oxygen therapy.

  6. QAPP for Hydraulic Fracturing (HF) Surface Spills Data Analysis

    Science.gov (United States)

    This QAPP provides information concerning the analysis of spills associated with hydraulic fracturing. This project is relevant to both the chemical mixing and flowback and produced water stages of the HF water cycle as found in the HF Study Plan.

  7. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  8. Interagency Advanced Power Group meeting minutes

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This document contains the minutes and viewgraphs from a meeting of military personnel on the subject of power generation and distribution systems for military applications. Topics include heating and cooling systems for standard shelters, SDIO power programs, solar dynamic space power systems, hybrid solar dynamic/ photovoltaic systems, pulsed power technology, high-{Tc} superconductors, and actuators and other electronic equipment for aerospace vehicles. Attendees represented the US Air Force, Army, Navy, and NASA. (GHH)

  9. Mild Wind Series, Minute Steak Event

    Science.gov (United States)

    1992-11-20

    radioactive gas and debris from reaching the atmosphere, thereby complying with the test ban treaty. distance from the source point to the surface was...percent of the active data recorded on film is also important in the event of excessive radioactive release. The weighing of the experiments is arbitrary...in a water-base Polution . S41 ’ The caldera 245 feet In diameter and 17 feet deep formed at +23 minutes (figure 4.2). There was consistent

  10. The elements of grammar in 90 minutes

    CERN Document Server

    Hollander, Robert

    2011-01-01

    An eminent scholar explains the essentials of English grammar to those who never studied the basics as well as those who need a refresher course. Inspired by Strunk & White's classic The Elements of Style, this user-friendly guide focuses exclusively on grammar, explaining the individual parts of speech and their proper arrangement in sentence form. A modest investment of 90 minutes can provide readers of all ages with simple but important tools that will improve their communication skills. Dover (2011) original publication.

  11. Naturlig ventilation i enfamiliehuse

    DEFF Research Database (Denmark)

    Bergsøe, N.C.

    Meddelelsen beskriver resultaterne af en række beregninger foretaget ved anvendelse af et computerprogram. Beregningerne har til formål at belyse forskellige parametres indvirkning på funktionen af et naturligt ventilationssystem. Blandt andet belyses systemets afhængighed af aftrækskanalernes di...... dimension, udeluftventilarealet og placeringen af aftrækskanalernes udmunding i tagfladen. Derudover gengives i kortfattet form de væsentligste konklusioner af udvalgte publikationer, som behandler særlige forhold vedrørende naturlig ventilation i praksis....

  12. SEMICONDUCTOR TECHNOLOGY: Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    Science.gov (United States)

    Yongliang, Li; Qiuxia, Xu

    2010-03-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 °C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case.

  13. Wet etching characteristics of a HfSiON high-k dielectric in HF-based solutions

    International Nuclear Information System (INIS)

    Li Yongliang; Xu Qiuxia

    2010-01-01

    The wet etching properties of a HfSiON high-k dielectric in HF-based solutions are investigated. HF-based solutions are the most promising wet chemistries for the removal of HfSiON, and etch selectivity of HF-based solutions can be improved by the addition of an acid and/or an alcohol to the HF solution. Due to densification during annealing, the etch rate of HfSiON annealed at 900 0 C for 30 s is significantly reduced compared with as-deposited HfSiON in HF-based solutions. After the HfSiON film has been completely removed by HF-based solutions, it is not possible to etch the interfacial layer and the etched surface does not have a hydrophobic nature, since N diffuses to the interface layer or Si substrate formation of Si-N bonds that dissolves very slowly in HF-based solutions. Existing Si-N bonds at the interface between the new high-k dielectric deposit and the Si substrate may degrade the carrier mobility due to Coulomb scattering. In addition, we show that N 2 plasma treatment before wet etching is not very effective in increasing the wet etch rate for a thin HfSiON film in our case. (semiconductor technology)

  14. The performances of standard and ResMed masks during bag-valve-mask ventilation.

    Science.gov (United States)

    Lee, Hyoung Youn; Jeung, Kyung Woon; Lee, Byung Kook; Lee, Seung Joon; Jung, Yong Hun; Lee, Geo Sung; Min, Yong Il; Heo, Tag

    2013-01-01

    A tight mask seal is frequently difficult to obtain and maintain during single-rescuer bag-valve-mask (BVM) ventilation. The ResMed mask (Bella Vista, NSW, Australia) is a continuous-positive-airway-pressure mask (CM) designed for noninvasive ventilation. In this study, we compared the ventilation performances of a standard mask (SM) and a ResMed CM using a simulation manikin in an out-of-hospital single-rescuer BVM ventilation scenario. Thirty emergency medical technicians (EMTs) performed two 2-minute attempts to ventilate a simulation manikin using BVM ventilation, alternatively, with the SM or the ResMed CM in a randomized order. Ventilation parameters including tidal volume and peak airway pressure were measured using computer analysis software connected to the simulation manikin. Successful volume delivery was defined as delivery of 440-540 mL of tidal volume in accord with present cardiopulmonary resuscitation guidelines. BVM ventilation using the ResMed CM produced higher mean (± standard deviation) tidal volumes (452 ± 50 mL vs. 394 ± 113 mL, p = 0.014) and had a higher proportion of successful volume deliveries (65.3% vs. 26.7%, p < 0.001) than that using the SM. Peak airway pressure was higher in BVM ventilation using the ResMed CM (p = 0.035). Stomach insufflation did not occur during either method. Twenty-nine of the participants (96.7%) preferred BVM ventilation using the ResMed CM. BVM ventilations using ResMed CM resulted in a significantly higher proportion of successful volume deliveries meeting the currently recommended range of tidal volume. Clinical studies are needed to determine the value of the ResMed CM for BVM ventilation.

  15. Improved regression models for ventilation estimation based on chest and abdomen movements

    International Nuclear Information System (INIS)

    Liu, Shaopeng; Gao, Robert; He, Qingbo; Staudenmayer, John; Freedson, Patty

    2012-01-01

    Non-invasive estimation of minute ventilation is important for quantifying the intensity of physical activity of individuals. In this paper, several improved regression models are presented, based on the measurement of chest and abdomen movements from sensor belts worn by subjects (n = 50) engaged in 14 types of physical activity. Five linear models involving a combination of 11 features were developed, and the effects of different model training approaches and window sizes for computing the features were investigated. The performance of the models was evaluated using experimental data collected during the physical activity protocol. The predicted minute ventilation was compared to the criterion ventilation measured using a bidirectional digital volume transducer housed in a respiratory gas exchange system. The results indicate that the inclusion of breathing frequency and the use of percentile points instead of interdecile ranges over a 60 s window size reduced error by about 43%, when applied to the classical two-degrees-of-freedom model. The mean percentage error of the minute ventilation estimated for all the activities was below 7.5%, verifying reasonably good performance of the models and the applicability of the wearable sensing system for minute ventilation estimation during physical activity. (paper)

  16. Radioaerosol ventilation imaging in ventilator-dependent patients. Technical considerations

    International Nuclear Information System (INIS)

    Vezina, W.; Chamberlain, M.; Vinitski, S.; King, M.; Nicholson, R.; Morgan, W.K.

    1985-01-01

    The differentiation of pulmonary embolism (PE) from regional ventilatory abnormalities accompanied by reduced perfusion requires contemporary perfusion and ventilation studies. Distinguishing these conditions in ventilator-dependent patients is aided by administering a Tc-99m aerosol to characterize regional ventilation, and by performing a conventional Tc-99m MAA perfusion study. The technique uses a simple in-house constructed apparatus. Simple photographic techniques suffice, but computer subtraction of perfusion from the combined perfusion-ventilation image renders interpretation easier if aerosol administration follows perfusion imaging. Multiple defects can be examined in a single study. Excluding normal or near-normal perfusion studies, PE was thought to be present in eight of 16 patients after perfusion imaging alone, but in only one of eight after added aerosol imaging. Angiography confirmed the diagnosis in that patient. Of the eight patients who had abnormal perfusion but were thought unlikely to have PE from the perfusion study alone, two had normal ventilation, and subsequently were shown to have PE by angiography. Because angiography was only performed on patients who were thought to have a high probability of PE on sequential perfusion-ventilation imaging, the true incidence of PE may have been higher. Aerosol ventilation imaging is a useful adjunct to perfusion imaging in patients on ventilators. It requires an efficient delivery system, particularly if aerosol administration follows perfusion imaging, as it does in this study

  17. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  18. Influence of gestational age on dead space and alveolar ventilation in preterm infants ventilated with volume guarantee.

    Science.gov (United States)

    Neumann, Roland P; Pillow, Jane J; Thamrin, Cindy; Larcombe, Alexander N; Hall, Graham L; Schulzke, Sven M

    2015-01-01

    Ventilated preterm infant lungs are vulnerable to overdistension and underinflation. The optimal ventilator-delivered tidal volume (VT) in these infants is unknown and may depend on the extent of alveolarisation at birth. We aimed to calculate respiratory dead space (VD) from the molar mass (MM) signal of an ultrasonic flowmeter (VD,MM) in very preterm infants on volume-targeted ventilation (VT target, 4-5 ml/kg) and to study the association between gestational age (GA) and VD,MM-to-VT ratio (VD,MM/VT), alveolar tidal volume (VA) and alveolar minute volume (AMV). This was a single-centre, prospective, observational, cohort study in a neonatal intensive care unit. Tidal breathing analysis was performed in ventilated very preterm infants (GA range 23-32 weeks) on day 1 of life. Valid measurements were obtained in 43/51 (87%) infants. Tidal breathing variables were analysed using multivariable linear regression. VD,MM/VT was negatively associated with GA after adjusting for birth weight Z score (p volume guarantee setting of 4-5 ml/kg in the Dräger Babylog® 8000 plus ventilator may be inappropriate as a universal target across the GA range of 23-32 weeks. Differences between measured and set VT and the dependence of this difference on GA require further investigation. © 2014 S. Karger AG, Basel.

  19. The Six Minute Walk Test Revisited

    Science.gov (United States)

    Mazumder, M.

    2017-12-01

    Background and Purpose: Heart failure is the leading cause of death and often alters or severely restricts human mobility, an essential life function. Motion capture is an emerging tool for analyzing human movement and extremity articulation, providing quantitative information on gait and range of motion. This study uses BioStamp mechanosensors to identify differences in motion for the duration of the Six Minute Walk Test and signature patterns of muscle contraction and posture in patients with advanced heart failure compared to healthy subjects. Identification and close follow up of these patterns may allow enhanced diagnosis and the possibility for early intervention before disease worsening. Additionally, movement parameters represent a new family of potential biomarkers to track heart failure onset, progression and therapy. Methods: Prior to the Six Minute Walk Test, BioStamps (MC10) were applied to the chest, upper and lower extremities of heart failure and healthy patients and data were streamed and recorded revealing the pattern of movement in three separate axes. Conjointly, before and after the Six Minute Walk Test, the following vitals were measured per subject: heart rate, respiratory rate, blood pressure, oxygen saturation, dyspnea and leg fatigue (self-reported with Borg scale). During the test, patients were encouraged to walk as far as they can in 6 minutes on a 30m course, as we recorded the number of laps completed and oxygen saturation every minute. Results and Conclusions: The sensors captured and quantified whole body and regional motion parameters including: a. motion extent, position, acceleration and angle via incorporated accelerometers and gyroscopes; b. muscle contraction via incorporated electromyogram (EMG). Accelerometry and gyroscopic data for the last five steps of a healthy and heart failure patient are shown. While significant differences in motion for the duration of the test were not found, each category of patients had a distinct

  20. Hf layer thickness dependence of resistive switching characteristics of Ti/Hf/HfO2/Au resistive random access memory device

    Science.gov (United States)

    Nakajima, Ryo; Azuma, Atsushi; Yoshida, Hayato; Shimizu, Tomohiro; Ito, Takeshi; Shingubara, Shoso

    2018-06-01

    Resistive random access memory (ReRAM) devices with a HfO2 dielectric layer have been studied extensively owing to the good reproducibility of their SET/RESET switching properties. Furthermore, it was reported that a thin Hf layer next to a HfO2 layer stabilized switching properties because of the oxygen scavenging effect. In this work, we studied the Hf thickness dependence of the resistance switching characteristics of a Ti/Hf/HfO2/Au ReRAM device. It is found that the optimum Hf thickness is approximately 10 nm to obtain good reproducibility of SET/RESET voltages with a small RESET current. However, when the Hf thickness was very small (∼2 nm), the device failed after the first RESET process owing to the very large RESET current. In the case of a very thick Hf layer (∼20 nm), RESET did not occur owing to the formation of a leaky dielectric layer. We observed the occurrence of multiple resistance states in the RESET process of the device with a Hf thickness of 10 nm by increasing the RESET voltage stepwise.

  1. [Lung protective ventilation. Ventilatory modes and ventilator parameters].

    Science.gov (United States)

    Schädler, Dirk; Weiler, Norbert

    2008-06-01

    Mechanical ventilation has a considerable potential for injuring the lung tissue. Therefore, attention has to be paid to the proper choice of ventilatory mode and settings to secure lung-protective ventilation whenever possible. Such ventilator strategy should account for low tidal volume ventilation (6 ml/kg PBW), limited plateau pressure (30 to 35 cm H2O) and positive end-expiratory pressure (PEEP). It is unclear whether pressure controlled or volume controlled ventilation with square flow profile is beneficial. The adjustment of inspiration and expiration time should consider the actual breathing mechanics and anticipate the generation of intrinsic PEEP. Ventilatory modes with the possibility of supporting spontaneous breathing should be used as soon as possible.

  2. Improved Performance With Ventilation

    Science.gov (United States)

    Kawakami, Ellison; Lee, Seung Jae; Karn, Ashish; Hong, Jiarong; Arndt, Roger

    2013-11-01

    Drag reduction and/or speed augmentation of marine vehicles by means of supercavitation is a topic of great interest. During the initial launch of a supercavitating vehicle, ventilation is required to supply an artificial cavity until conditions at which a natural supercavity can be sustained are reached. Various aspects of the flow physics of a supercavitating vehicle have been under investigation for several years at Saint Anthony Falls Laboratory. Both steady flow and simulated flow below a wave train have been studied. Using a high speed camera and the proper software, it is possible to synchronize cavity dimensions with pressure measurements taken inside the cavity to permit an in-depth study of unsteadiness. It was found that flow unsteadiness caused a decrease in the overall length of the supercavity while having only a minimal effect on the maximum diameter. Results regarding supercavity shape, ventilation demand, cavitation parameters and closure methods are reviewed in light of new studies that focused on various closure mechanisms. Sponsored by ONR.

  3. Ventilator-associated pneumonia.

    Science.gov (United States)

    Shaw, Michael Jan

    2005-05-01

    This review summarises some of the notable papers on ventilator-associated pneumonia (VAP) from January 2003 to October 2004. Ventilator-associated pneumonia remains an important drain on hospital resources. All population groups are affected, but patients with VAP are more likely to be older, sicker, and male, with invasive medical devices in situ. Early VAP diagnosis is desirable to reduce VAP mortality and to retard emergence of multidrug-resistant microbes. This may be possible using preliminary culture results or intracellular organism in polymorphonuclear cells. In most intensive care units, Staphylococcus aureus, Pseudomonas aeruginosa, and Acinetobacter baumannii are the commonest organisms isolated in VAP. However, causative organisms vary between and within hospitals. Consequently, individual intensive care units should develop empirical antibiotic policies to target the pathogenic bacteria prevalent in their patient populations. Preventative strategies aimed at reducing aerodigestive tract colonisation by pathogenic organisms, and also their subsequent aspiration, are becoming increasingly important. Educating medical staff about these simple measures is therefore pertinent. To reduce the occurrence of multidrug-resistant organisms, limiting the duration of antibiotic treatment to 8 days and antimicrobial rotation should be contemplated. Empirical therapy with antipseudomonal penicillins plus beta-lactamase inhibitors should be considered. If methicillin-resistant Staphylococcus aureus VAP is a possibility, linezolid may be better than vancomycin. Prevention remains the key to reducing VAP prevalence.

  4. Heartbeat synchronized with ventilation

    Science.gov (United States)

    Schäfer, Carsten; Rosenblum, Michael G.; Kurths, Jürgen; Abel, Hans-Henning

    1998-03-01

    It is widely accepted that cardiac and respiratory rhythms in humans are unsynchronised. However, a newly developed data analysis technique allows any interaction that does occur in even weakly coupled complex systems to be observed. Using this technique, we found long periods of hidden cardiorespiratory synchronization, lasting up to 20 minutes, during spontaneous breathing at rest.

  5. Free Convection Personalized Ventilation (FCPV)

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally ...

  6. Innovation in home mechanical ventilation

    NARCIS (Netherlands)

    Hazenberg, Andrea

    2017-01-01

    Patients on home mechanical ventilation (HMV) are ventilator dependent, usually for the rest of their lives. In the past decades, the number of patients on HMV increased to nearly 3,000 in 2016 in the Netherlands. Current indications for HMV are patients diagnosed with either neuromuscular disease,

  7. Reverse ventilation--perfusion mismatch

    International Nuclear Information System (INIS)

    Palmaz, J.C.; Barnett, C.A.; Reich, S.B.; Krumpe, P.E.; Farrer, P.A.

    1984-01-01

    Patients having lobar airway obstruction or consolidation usually have decreases of both ventilation and perfusion on lung scans. We report three patients in whom hypoxic vasoconstriction was apparently incomplete, resulting in a ''reversed'' ventilation-perfusion mismatch. Perfusion of the hypoxic lobe on the radionuclide scan was associated with metabolic alkalosis, pulmonary venous and pulmonary arterial hypertension in these patients

  8. Performance of Leak Compensation in All-Age ICU Ventilators During Volume-Targeted Neonatal Ventilation: A Lung Model Study.

    Science.gov (United States)

    Itagaki, Taiga; Bennett, Desmond J; Chenelle, Christopher T; Fisher, Daniel F; Kacmarek, Robert M

    2017-01-01

    Volume-targeted ventilation is increasingly used in low birthweight infants because of the potential for reducing volutrauma and avoiding hypocapnea. However, it is not known what level of air leak is acceptable during neonatal volume-targeted ventilation when leak compensation is activated concurrently. Four ICU ventilators (Servo-i, PB980, V500, and Avea) were compared in available invasive volume-targeted ventilation modes (pressure control continuous spontaneous ventilation [PC-CSV] and pressure control continuous mandatory ventilation [PC-CMV]). The Servo-i and PB980 were tested with (+) and without (-) their proximal flow sensor. The V500 and Avea were tested with their proximal flow sensor as indicated by their manufacturers. An ASL 5000 lung model was used to simulate 4 neonatal scenarios (body weight 0.5, 1, 2, and 4 kg). The ASL 5000 was ventilated via an endotracheal tube with 3 different leaks. Two minutes of data were collected after each change in leak level, and the asynchrony index was calculated. Tidal volume (V T ) before and after the change in leak was assessed. The differences in delivered V T between before and after the change in leak were within ±5% in all scenarios with the PB980 (-/+) and V500. With the Servo-i (-/+), baseline V T was ≥10% greater than set V T during PC-CSV, and delivered V T markedly changed with leak. The Avea demonstrated persistent high V T in all leak scenarios. Across all ventilators, the median asynchrony index was 1% (interquartile range 0-27%) in PC-CSV and 1.8% (0-45%) in PC-CMV. The median asynchrony index was significantly higher in the Servo-i (-/+) than in the PB980 (-/+) and V500 in 1 and 2 kg scenarios during PC-CSV and PC-CMV. The PB980 and V500 were the only ventilators to acclimate to all leak scenarios and achieve targeted V T . Further clinical investigation is needed to validate the use of leak compensation during neonatal volume-targeted ventilation. Copyright © 2017 by Daedalus Enterprises.

  9. Comparison of HfCl4, HfI4, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO2 films deposited by ALD: A DFT study

    International Nuclear Information System (INIS)

    Cortez-Valadez, M.; Fierro, C.; Farias-Mancilla, J.R.; Vargas-Ortiz, A.; Flores-Acosta, M.; Ramírez-Bon, R.; Enriquez-Carrejo, J.L.

    2016-01-01

    Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO 2 films grown by atomic layer deposition (ALD) after reaction with OH − ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl 4 (hafnium tetrachloride), HfI 4 (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  10. Comparison of HfCl{sub 4}, HfI{sub 4}, TEMA-Hf, and TDMA-Hf as precursors in early growing stages of HfO{sub 2} films deposited by ALD: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Cortez-Valadez, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Fierro, C.; Farias-Mancilla, J.R. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); Vargas-Ortiz, A. [Universidad Autónoma de Sinaloa, Facultad de Ingeniería Mochis, Ciudad Universitaria, C.P. 81223 Los Mochis, Sinaloa (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190 Hermosillo, Son. (Mexico); Ramírez-Bon, R. [Centro de Investigación y Estudios Avanzados del IPN, Unidad Querétaro, Apdo. Postal 1-798, 76001 Querétaro, Qro. (Mexico); Enriquez-Carrejo, J.L. [Instituto de Ingeniería y Tecnología, Departamento de Física y Matemáticas, Universidad Autónoma de Ciudad Juárez, Av. del Charro 450, Cd. Juárez C.P. 32310, Chihuahua (Mexico); and others

    2016-06-15

    Highlights: • Hafnium oxide growth on Si(100) by atomic layer deposition was simulated. • The interface structure was considered as silicate and silicide. • The interface was studied employing DFT. • TDMA-Hf precursor show better interface stability. - Abstract: The final structure of HfO{sub 2} films grown by atomic layer deposition (ALD) after reaction with OH{sup −} ions has been analyzed by DFT (density functional theory). The interaction of the precursors: HfCl{sub 4} (hafnium tetrachloride), HfI{sub 4} (hafnium tetraiodide), TEMA-Hf (tetrakis-ethylmethylamino hafnium), and TDMA-Hf (tetrakis-dimethylamino hafnium) with HO–H was studied employing the B3LYP (Becke 3-parameter, Lee–Yang–Parr) hybrid functional and the PBE (Perdew–Burke–Ernzerhof) generalized gradient functional. The structural evolution at the Si(100) surface has been analyzed by LDA (local density approximation). The structural parameters: bond length and bond angle, and the vibrational parameters for the optimized structures are also reported. The presence of hafnium silicate at the interface was detected. The infrared spectra and structural parameters obtained in this work agree with previously reported experimental results.

  11. Ventilation of an hydrofoil wake

    Science.gov (United States)

    Arndt, Roger; Lee, Seung Jae; Monson, Garrett

    2013-11-01

    Ventilation physics plays a role in a variety of important engineering applications. For example, hydroturbine ventilation is used for control of vibration and cavitation erosion and more recently for improving the dissolved oxygen content of the flow through the turbine. The latter technology has been the focus of an ongoing study involving the ventilation of an hydrofoil wake to determine the velocity and size distribution of bubbles in a bubbly wake. This was carried out by utilizing particle shadow velocimetry (PSV). This technique is a non-scattering approach that relies on direct in-line volume illumination by a pulsed source such as a light-emitting diode (LED). The data are compared with previous studies of ventilated flow. The theoretical results of Hinze suggest that a scaling relationship is possible that can lead to developing appropriate design parameters for a ventilation system. Sponsored by ONR and DOE.

  12. Natural ventilation for free stall dairy barns

    OpenAIRE

    Gay, Susan Wood

    2009-01-01

    Natural ventilation is a result of a combination good construction, correct temperature, humidity control, air exchange. This publication discusses how to achieve natural ventilation in your structure.

  13. Self-diffusion of Er and Hf inpure and HfO2-doped polycrystalline Er2O3

    International Nuclear Information System (INIS)

    Scheidecker, R.W.

    1979-01-01

    Using a tracer technique, self-diffusion of Er and Hf was measured over the approximate temperature interval of 1600 to 1970 0 C in pure and HfO 2 -doped polycryatalline Er 2 O 3 . Up to about 10 m/o HfO 2 dopant level, the Er self-diffusion coefficients followed a relationship based on cation vacancies. Above 10 m/o HfO 2 , deviation from this relationship occurred, apparently due to clustering of cation vacancies and oxygen interstitials around the dopant hafnia ion. The activation energy for the self-diffusion of Er in pure Er 2 O 3 was 82.2 Kcal/mole and increased with the HfO 2 dopant level present. Self-diffusion of Hf was measured in pure Er 2 O 3 having two impurity levels, and a separation of the grain boundary. The volume diffusion of Hf showed both extrinsic and intrinsic behavior with the transition temperature increasing with the impurity level present in Er 2 O 3 . The activation energy for Hf volume diffusion in the intrinsic region was high, i.e. 235 -+ 9.5 Kcal/mole. The grain boundary diffusion was apparently extrinsic over the entire temperature interval Very low Hf self diffusion rates were found in both pure and HfO 2 doped Er 2 O 3 compositions. Despite a clustering effect, the HfO 2 dopant increased the Hf volume diffusion coefficients

  14. High resolution TDPAC measurements on 181Ta in Hf2Fe, Hf2Co and Hf2Rh at high temperature

    International Nuclear Information System (INIS)

    Cekic, B.; Koicki, S.; Ivanovic, N.; Manasijevic, M.; Koteski, V.; Marjanovic, D.

    1998-01-01

    The time differential perturbed angular correlation measurements (TDPAC-method ) on 181 Ta ion probe in Hf 2 Co, Hf 2 Fe and Hf 2 Rh intermetallic compounds have been performed at 1170 K, using a fast - slow time spectrometer consisting of two BaF 2 detectors. The results of the measurements show the presence of two independent electric quadrupole interactions, compatible with the crystalline structure of these polycrystalline compounds. (authors)

  15. Home monitoring of daytime mouthpiece ventilation effectiveness in patients with neuromuscular disease

    Science.gov (United States)

    Nardi, Julie; Leroux, Karl; Orlikowski, David; Prigent, Hélène

    2015-01-01

    Mouthpiece ventilation (MPV) allows patients with neuromuscular disease to receive daytime support from a portable ventilator, which they can disconnect at will, for example, for speaking, eating, swallowing, and coughing. However, MPV carries a risk of underventilation. Our purpose here was to evaluate the effectiveness of daytime MPV under real-life conditions. Eight wheelchair-bound patients who used MPV underwent daytime polygraphy at home with recordings of airflow, mouthpiece pressure, thoracic and abdominal movements, peripheral capillary oxygen saturation (SpO2), and transcutaneous partial pressure of carbon dioxide (PtcCO2). Times and durations of tasks and activities were recorded. The Apnea–Hypopnea Index (AHI) was computed. Patient–ventilator disconnections ≥3 minutes and episodes of hypoventilation defined as PtcCO2>45 mmHg were counted. Patient–ventilator asynchrony events were analyzed. The AHI was >5 hour−1 in two patients. Another patient experienced unexplained 3% drops in arterial oxygen saturations at a frequency of 70 hour−1. Patient–ventilator disconnections ≥3 minutes occurred in seven of eight patients and were consistently associated with decreases in SpO2 and ≥5-mmHg increases in PtcCO2; PtcCO2 rose above 45 mmHg in two patients during these disconnections. The most common type of patient–ventilator asynchrony was ineffective effort. This study confirms that MPV can be effective as long as the patient remains connected to the mouthpiece. However, transient arterial oxygen desaturation and hypercapnia due to disconnection from the ventilator may occur, without inducing unpleasant sensations in the patients. Therefore, an external warning system based on a minimal acceptable value of minute ventilation would probably be useful. PMID:26703922

  16. [Oesophagitis during mechanical ventilation].

    Science.gov (United States)

    Gastinne, H; Canard, J M; Pillegand, B; Voultoury, J C; Catanzano, A; Claude, R; Gay, R

    1982-10-16

    Twenty-one patients whose condition required mechanical ventilation with nasogastric intubation were investigated for oesophagitis before the 3rd day and on the 15th day of treatment, including endoscopy and biopsy. Lesions of oesophagitis were detected in 14 cases during the initial examination and in 19 cases on the second endoscopy. The course of the lesions varied from one patient to another and appeared to be unrelated to the course of the primary disease. Oesophagitis in these patients is probably due to frequent episodes of gastro-oesophageal reflux encouraged by cough, impaired consciousness and the presence of a tube. Reflux may also be the cause of inapparent and recurrent lung aspiration.

  17. Cardiac gated ventilation

    International Nuclear Information System (INIS)

    Hanson, C.W. III; Hoffman, E.A.

    1995-01-01

    There are several theoretic advantages to synchronizing positive pressure breaths with the cardiac cycle, including the potential for improving distribution of pulmonary and myocardial blood flow and enhancing cardiac output. The authors evaluated the effects of synchronizing respiration to the cardiac cycle using a programmable ventilator and electron beam CT (EBCT) scanning. The hearts of anesthetized dogs were imaged during cardiac gated respiration with a 50 msec scan aperture. Multi slice, short axis, dynamic image data sets spanning the apex to base of the left ventricle were evaluated to determine the volume of the left ventricular chamber at end-diastole and end-systole during apnea, systolic and diastolic cardiac gating. The authors observed an increase in cardiac output of up to 30% with inspiration gated to the systolic phase of the cardiac cycle in a non-failing model of the heart

  18. Validation of Zr and Hf analysis contained on water phase using k_0-neutron activation analysis method

    International Nuclear Information System (INIS)

    Wisjachudin Faisa; Sutisna

    2010-01-01

    At conversion of Zr-sand to Zircon Oxide, the Hf content in product process should not be more than 100 ppm. While Zr and Hf are two elements that have a similar chemical property Hs, they are difficult to analyze by ordinary chemical analysis. One of reliable analytical method that can be used to quantify Zr and Hf is the instrumental neutron activation analysis. Related to this problem, a result of k_0-Instrumental Neutron Activation Analysis (k_0-INAA) on Zr and Hf (in aqueous phase) has been validated. A number of 200 µL SPEX Pure standard solution which have a concentration of 1 g/L pipeted into a cleaned micro vial, then dried at a temperature of 40°C for 24 hours. Samples, together with flux monitors, were irradiated simultaneously at 15 MW power (thermal neutron flux around 4.1 x 10"1"7n. m"-"2.s"-"1) for 30 minutes in the rabbit facility of GA. Siwabessy reactor. Counting of the irradiated sample have been done using a high resolution HPGe detector (FWHM = 1.9 keV at Eγ 1332.5 keV of "6"0Co,Peak to Compton ratio ~ 40). The analytical results showed a relative standard deviation (RSD) of Zr is 6.6 % with average uncertainty of 3.08 % and a detection limit of 0.1 mg, while RSD of Hf = 8.2 %, with average uncertainty of 8.04 % and a detection limit of 0.3 mg. Recovery obtained was 106,0 % and 96,0 % for Zr and Hf respectively. These results are relatively better compared to the previous result using the Standard Reference Material (SRM) 1633b Coal Fly Ash which have RSD Hf was 20.6 %. (author)

  19. Physiologic effects of alveolar recruitment and inspiratory pauses during moderately-high-frequency ventilation delivered by a conventional ventilator in a severe lung injury model.

    Directory of Open Access Journals (Sweden)

    Ricardo Luiz Cordioli

    Full Text Available To investigate whether performing alveolar recruitment or adding inspiratory pauses could promote physiologic benefits (VT during moderately-high-frequency positive pressure ventilation (MHFPPV delivered by a conventional ventilator in a porcine model of severe acute respiratory distress syndrome (ARDS.Prospective experimental laboratory study with eight pigs. Induction of acute lung injury with sequential pulmonary lavages and injurious ventilation was initially performed. Then, animals were ventilated on a conventional mechanical ventilator with a respiratory rate (RR = 60 breaths/minute and PEEP titrated according to ARDS Network table. The first two steps consisted of a randomized order of inspiratory pauses of 10 and 30% of inspiratory time. In final step, we removed the inspiratory pause and titrated PEEP, after lung recruitment, with the aid of electrical impedance tomography. At each step, PaCO2 was allowed to stabilize between 57-63 mmHg for 30 minutes.The step with RR of 60 after lung recruitment had the highest PEEP when compared with all other steps (17 [16,19] vs 14 [10, 17]cmH2O, but had lower driving pressures (13 [13,11] vs 16 [14, 17]cmH2O, higher P/F ratios (212 [191,243] vs 141 [105, 184] mmHg, lower shunt (23 [20, 23] vs 32 [27, 49]%, lower dead space ventilation (10 [0, 15] vs 30 [20, 37]%, and a more homogeneous alveolar ventilation distribution. There were no detrimental effects in terms of lung mechanics, hemodynamics, or gas exchange. Neither the addition of inspiratory pauses or the alveolar recruitment maneuver followed by decremental PEEP titration resulted in further reductions in VT.During MHFPPV set with RR of 60 bpm delivered by a conventional ventilator in severe ARDS swine model, neither the inspiratory pauses or PEEP titration after recruitment maneuver allowed reduction of VT significantly, however the last strategy decreased driving pressures and improved both shunt and dead space.

  20. Estimation of Lung Ventilation

    Science.gov (United States)

    Ding, Kai; Cao, Kunlin; Du, Kaifang; Amelon, Ryan; Christensen, Gary E.; Raghavan, Madhavan; Reinhardt, Joseph M.

    Since the primary function of the lung is gas exchange, ventilation can be interpreted as an index of lung function in addition to perfusion. Injury and disease processes can alter lung function on a global and/or a local level. MDCT can be used to acquire multiple static breath-hold CT images of the lung taken at different lung volumes, or with proper respiratory control, 4DCT images of the lung reconstructed at different respiratory phases. Image registration can be applied to this data to estimate a deformation field that transforms the lung from one volume configuration to the other. This deformation field can be analyzed to estimate local lung tissue expansion, calculate voxel-by-voxel intensity change, and make biomechanical measurements. The physiologic significance of the registration-based measures of respiratory function can be established by comparing to more conventional measurements, such as nuclear medicine or contrast wash-in/wash-out studies with CT or MR. An important emerging application of these methods is the detection of pulmonary function change in subjects undergoing radiation therapy (RT) for lung cancer. During RT, treatment is commonly limited to sub-therapeutic doses due to unintended toxicity to normal lung tissue. Measurement of pulmonary function may be useful as a planning tool during RT planning, may be useful for tracking the progression of toxicity to nearby normal tissue during RT, and can be used to evaluate the effectiveness of a treatment post-therapy. This chapter reviews the basic measures to estimate regional ventilation from image registration of CT images, the comparison of them to the existing golden standard and the application in radiation therapy.

  1. Oxygenation with T-piece versus self-inflating bag for ventilation of extremely preterm infants at birth: a randomized controlled trial.

    LENUS (Irish Health Repository)

    Dawson, Jennifer A

    2011-06-01

    To investigate whether infants < 29 weeks gestation who receive positive pressure ventilation (PPV) immediately after birth with a T-piece have higher oxygen saturation (SpO₂) measurements at 5 minutes than infants ventilated with a self inflating bag (SIB).

  2. APRV Mode in Ventilator Induced Lung Injury (VILI

    Directory of Open Access Journals (Sweden)

    Ata Mahmoodpoor

    2014-01-01

    Full Text Available Ventilator-Induced Lung Injury (VILI, being a significant iatrogenic complication in the ICU patients, is associated with high morbidity and mortality. Numerous approaches, protocols and ventilation modes have been introduced and examined to decrease the incidence of VILI in the ICU patients. Airway pressure release ventilation (APRV, firstly introduced by Stock and Downs in 1987, applies higher Continuous Positive Airway Pressure (CPAP levels in prolonged periods (P and T high in order to preserve satisfactory lung volume and consequently alveolar recruitment. This mode benefits a time-cycled release phase to a lower set of pressure for a short period of time (P and T low i.e. release time (1,2. While some advantages have been introduced for APRV such as efficiently recruited alveoli over time, more homogeneous ventilation, less volutrauma, probable stabilization of patent alveoli and reduction in atelectrauma, protective effects of APRV on lung damage only seem to be substantial if spontaneous breathing responds to more than 30% of total minute ventilation (3. APRV in ARDS patients should be administered cautiously; T low<0.6 seconds, for recruiting collapsed alveoli; however overstretching of alveoli especially during P high should not be neglected and appropriate sedation considered. The proposed advantages for APRV give the impression of being outstanding; however, APRV, as a non-physiologic inverse ratio mode of ventilation, might result in inflammation mainly due to impaired patient-ventilator interaction explaining the negative or minimally desirable effects of APRV on inflammation (4. Consequently, continuous infusion of neuromuscular blocking drugs during ARDS has been reported to reduce mortality (5. There are insufficient confirming data on the superiority of APRV above other ventilatory methods in regard to oxygenation, hemodynamics, regional blood flow, patient comfort and length of mechanical ventilation. Based on current findings

  3. Mechanical ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, E; Godet, T; Millot, A; Constantin, J-M; Jaber, S

    2014-01-01

    One of the key challenges in perioperative care is to reduce postoperative morbidity and mortality. Patients who develop postoperative morbidity but survive to leave hospital have often reduced functional independence and long-term survival. Mechanical ventilation provides a specific example that may help us to shift thinking from treatment to prevention of postoperative complications. Mechanical ventilation in patients undergoing surgery has long been considered only as a modality to ensure gas exchange while allowing maintenance of anesthesia with delivery of inhaled anesthetics. Evidence is accumulating, however, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary function and clinical outcome in patients undergoing abdominal surgery. Non-protective ventilator settings, especially high tidal volume (VT) (>10-12mL/kg) and the use of very low level of positive end-expiratory pressure (PEEP) (PEEPventilator-associated lung injury in patients with healthy lungs. Stimulated by previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung protective mechanical ventilation. In this review, we aimed at providing the most recent and relevant clinical evidence regarding the use of mechanical ventilation in patients undergoing abdominal surgery. Copyright © 2014 Société française d’anesthésie et de réanimation (Sfar). Published by Elsevier SAS. All rights reserved.

  4. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    Science.gov (United States)

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  5. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  6. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  7. Evaluation of a computerized system for mechanical ventilation of infants.

    Science.gov (United States)

    Tehrani, Fleur T; Abbasi, Soraya

    2009-04-01

    To evaluate a computerized system for mechanical ventilation of infants. FLEX is a computerized system that includes the features of a patented mode known as adaptive-support ventilation (ASV). In addition, it has many other features including adjustment of positive end-expiratory pressure (PEEP), fraction of inspired oxygen (F(IO2)), minute ventilation, and control of weaning. It is used as an open-loop decision support system or as a closed-loop technique. Blood gas and ventilation data were collected from 12 infants in the neonatal intensive care at baseline and at the next round of evaluation. This data were input to open-loop version of FLEX. The system recommendations were compared to clinical determinations. FLEX recommended values for ventilation were on the average within 25% and 16.5% of the measured values at baseline and at the next round of evaluation, respectively. For F(IO2) and PEEP, FLEX recommended values were in general agreement with the clinical settings. FLEX recommendations for weaning were the same as the clinical determinations 50% of the time at baseline and 55% of the time at the next round of evaluation. FLEX did not recommend weaning for infants with weak spontaneous breathing effort or those who showed signs of dyspnea. A computerized system for mechanical ventilation is evaluated for treatment of infants. The results of the study show that the system has good potential for use in neonatal ventilatory care. Further refinements can be made in the system for very low-birth-weight infants.

  8. Measurements of waste tank passive ventilation rates using tracer gases

    International Nuclear Information System (INIS)

    Huckaby, J.L.; Olsen, K.B.; Sklarew, D.S.; Evans, J.C.; Remund, K.M.

    1997-09-01

    This report presents the results of ventilation rate studies of eight passively ventilated high-level radioactive waste tanks using tracer gases. Head space ventilation rates were determined for Tanks A-101, AX-102, AX-103, BY-105, C-107, S-102, U-103, and U-105 using sulfur hexafluoride (SF 6 ) and/or helium (He) as tracer gases. Passive ventilation rates are needed for the resolution of several key safety issues. These safety issues are associated with the rates of flammable gas production and ventilation, the rates at which organic salt-nitrate salt mixtures dry out, and the estimation of organic solvent waste surface areas. This tracer gas study involves injecting a tracer gas into the tank headspace and measuring its concentration at different times to establish the rate at which the tracer is removed by ventilation. Tracer gas injection and sample collection were performed by SGN Eurisys Service Corporation and/or Lockheed Martin Hanford Corporation, Characterization Project Operations. Headspace samples were analyzed for He and SF 6 by Pacific Northwest National Laboratory (PNNL). The tracer gas method was first demonstrated on Tank S-102. Tests were conducted on Tank S-102 to verify that the tracer gas was uniformly distributed throughout the tank headspace before baseline samples were collected, and that mixing was sufficiently vigorous to maintain an approximately uniform distribution of tracer gas in the headspace during the course of the study. Headspace samples, collected from a location about 4 in away from the injection point and 15, 30, and 60 minutes after the injection of He and SF 6 , indicated that both tracer gases were rapidly mixed. The samples were found to have the same concentration of tracer gases after 1 hour as after 24 hours, suggesting that mixing of the tracer gas was essentially complete within 1 hour

  9. Ventilation design for Yucca Mountain Exploratory Studies Facility

    International Nuclear Information System (INIS)

    Jurani, R.S.

    1995-01-01

    Yucca Mountain, located in Southern Nevada approximately 160 km northwest of Las Vegas, is currently the site of intensive surface-based and underground investigations. The investigations are required to determine if the site is suitable for long term isolation of the Nation's high level nuclear waste inventory. A major component of the program is the Exploratory Studies Facility, or ESF. The ESF, when completed, will consist of approximately 25,600 meters of tunnels and drifts. The network of tunnels and drifts will house and support a wide array of testing programs conceived to provide physical information about the site. Information on geologic, geomechanical, and hydrologic data will be used in the repository design if the site is found suitable. Besides a few special requirements, the general ESF ventilation criteria during construction are similar to that of commercial tunneling and mining operations. The minimum air velocity at the Tunnel Boring Machine (TBM) and other active mining faces is 0.51 meter per second (m/s) (100 feet per minute [fpm]). Airways, estimated leakages and ventilation controls are converted into equivalent resistances for input to mine ventilation network computer simulations. VNETPC Version 3.1 computer software is used to generate the ventilation models for optimized system design and component selection. Subsequently, actual performance of the ventilation system will be verified and validated to comply with applicable nuclear regulatory quality assurance requirements. Dust control in the ESF is dependent on effective dust collection, enclosure, and airflow dilution. Minimum use of water, as feasible, is necessary to avoid adding moisture to the potential repository horizon. The limitation of water use for test drilling and TBM operation, and the rigid compliance with applicable federal and state regulations, make the ESF a ventilation design challenge

  10. Magnetic properties of Hf177 and Hf180 in the strong-coupling deformed model

    Science.gov (United States)

    Muto, S.; Stone, N. J.; Bingham, C. R.; Stone, J. R.; Walker, P. M.; Audi, G.; Gaulard, C.; Köster, U.; Nikolov, J.; Nishimura, K.; Ohtsubo, T.; Podolyak, Z.; Risegari, L.; Simpson, G. S.; Veskovic, M.; Walters, W. B.

    2014-04-01

    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2-, 51.4 m, 2740 keV state in Hf177 and the 8-, 5.5 h, 1142 keV state in Hf180 by the method of on-line nuclear orientation. Also included are results on the angular distributions of γ transitions in the decay of the Hf177 isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2+, 1.1 s, isomer at 1315 keV and on the 9/2+, 0.663 ns, isomer at 321 keV. The new results are discussed in the light of the recently reported finding of systematic dependence of the behavior of the gR parameter upon the quasiproton and quasineutron make up of high-K isomeric states in this region.

  11. Electric Field Gradients at Hf and Fe Sites in Hf2Fe Recalculated

    International Nuclear Information System (INIS)

    Belosevic-Cavor, J.; Cekic, B.; Novakovic, N.; Koteski, V.; Milosevic, Z.

    2004-01-01

    The electric field gradients (EFG) of the Hf 2 Fe intermetallic compound were calculated using the full-potential linearized augmented plain-wave (FP-LAPW) method as embodied in the WIEN 97 code. The obtained values are compared with other ab-initio calculations and on a qualitative basis with the previously reported experimental data obtained from TDPAC. The calculated results, -23.1.10 21 V/m 2 and 2.7.10 21 V/m 2 for Hf 48f and Fe 32e position, respectively, are in excellent agreement with experimental data (23.4.10 21 V/m 2 and 2.7.10 21 V/m 2 ), better than those reported in earlier calculations. The calculated EFG for Hf 16c position (4.2.10 21 V/m 2 ) is stronger than the experimental one (1.1.10 21 V/m 2 ).

  12. How 60 Minutes ticked off Illinois Power

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    A November 60 Minutes broadcast on CBS television asserting that costs are out of control at the Illinois Power Co's(IP) Clinton nuclear power project because of management incompetence triggered a series of rebuttals and counter-rebuttals. A review of the events and correspondence during the planning stage and after the broadcast explores the question of construction cost overruns and the economic impact the broadcast had on IP's investors, employees, and customers. A parallel filming by IP was aired to show how the CBS edited the interview with IP officials. IP personnel feel betrayed by what they consider misconceptions and errors in the broadcast and are unhappy that an employee morale problem was worsened. Counter-arguments by both parties indicate a disagreement on both facts and interpretations

  13. Calorimetry measurements in less than 20 minutes

    International Nuclear Information System (INIS)

    Perry, R.B.; Cremers, T.

    1991-01-01

    Argonne National Laboratory has developed a new series of 10 watt Bulk Plutonium Assay Calorimeters (BPAC10). The calorimeter measures bulk samples of plutonium bearing material in containers up to 5in. in diameter and 7in. high. The average measurement time is 19.7 minutes compared to 2--9 hours for the same sample measured in a water bath calorimeter. Measurement precision in the range of 1--10 watts is 1% to 0.1% and it is 0.010 watt for sample power less than 1 watt. BPAC10 series calorimeters are in use in two plutonium facilities at the EG ampersand G Rocky Flats Plant and at the Los Alamos National Laboratory TA55 Plutonium Facility. The paper presents a description of the calorimeter, discusses operating experience at Los Alamos, and presents a comparison of data on typical samples measured with both types of calorimeters. 5 refs., 5 figs., 1 tab

  14. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  15. Contaminant Distribution Around Persons in Rooms Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter V.

    An optimal design of the ventilation system needs a proper prediction of the velocity, temperature and contaminant distribution in the room. Traditionally this is done either by the use of simplified models or by a somewhat more comprehensive CFD-simulation. Common to both methods is usually...... the lack of consideration for the persons present in the room. This paper deals with some of the effects of persons present in a displacement ventilated room, especially the effect on the contaminant distribution....

  16. "Take ten minutes": a dedicated ten minute medication review reduces polypharmacy in the elderly.

    LENUS (Irish Health Repository)

    Walsh, E K

    2012-02-01

    Multiple and inappropriate medications are often the cause for poor health status in the elderly. Medication reviews can improve prescribing. This study aimed to determine if a ten minute medication review by a general practitioner could reduce polypharmacy and inappropriate prescribing in elderly patients. A prospective, randomised study was conducted. Patients over the age of 65 (n = 50) underwent a 10-minute medication review. Inappropriate medications, dosage errors, and discrepancies between prescribed versus actual medication being consumed were recorded. A questionnaire to assess satisfaction was completed following review. The mean number of medications taken by patients was reduced (p < 0.001). A medication was stopped in 35 (70%) patients. Inappropriate medications were detected in 27 (54%) patients and reduced (p < 0.001). Dose errors were detected in 16 (32%). A high level of patient satisfaction was reported. A ten minute medication review reduces polypharmacy, improves prescribing and is associated with high levels of patient satisfaction.

  17. "Take ten minutes": a dedicated ten minute medication review reduces polypharmacy in the elderly.

    LENUS (Irish Health Repository)

    Walsh, E K

    2010-09-01

    Multiple and inappropriate medications are often the cause for poor health status in the elderly. Medication reviews can improve prescribing. This study aimed to determine if a ten minute medication review by a general practitioner could reduce polypharmacy and inappropriate prescribing in elderly patients. A prospective, randomised study was conducted. Patients over the age of 65 (n = 50) underwent a 10-minute medication review. Inappropriate medications, dosage errors, and discrepancies between prescribed versus actual medication being consumed were recorded. A questionnaire to assess satisfaction was completed following review. The mean number of medications taken by patients was reduced (p < 0.001). A medication was stopped in 35 (70%) patients. Inappropriate medications were detected in 27 (54%) patients and reduced (p < 0.001). Dose errors were detected in 16 (32%). A high level of patient satisfaction was reported. A ten minute medication review reduces polypharmacy, improves prescribing and is associated with high levels of patient satisfaction.

  18. Lifetime of the first excited 2{sup +} state in {sup 172}Hf and {sup 174}Hf

    Energy Technology Data Exchange (ETDEWEB)

    Gerst, Rosa-Belle; Stegemann, Simon; Jolie, Jan; Regis, Jean-Marc; Rudigier, Matthias; Saed-Samii, Nima; Zell, Karl Oskar [Institut fuer Kernphysik, Universitaet zu Koeln, Zuelpicher Str. 77, 50937 Koeln (Germany)

    2014-07-01

    Using the {sup 170}Yb(α,2n) and {sup 172}Yb(α,2n) reactions the lifetimes of the first excited 2{sup +} state in {sup 172}Hf and {sup 174}Hf have been measured in fast-timing experiments using the Cologne Orange-Spectrometer and 6 LaBr{sub 3}(Ce)-Detectors. The lifetimes were obtained analyzing e{sup -}-γ-coincidence time-spectra with the slope method. The new and more precise lifetimes correct existing, outdated lifetimes in nuclear databases. Additionally, the systematics of the B(E2,2{sub 1}{sup +}→0{sub 1}{sup +}) is studied.

  19. Search for chemical separations of the element 106 homologues in HF and HF-HCl media

    International Nuclear Information System (INIS)

    Trubert, D.; Monroy-Guzman, F.; Hussonnois, M.; Brillard, L.; Le Naour, C.; Constantinescu, O.

    1996-01-01

    In order to study the chemical properties of element 263 106 in aqueous media, fast, efficient and reproducible chromatographic separations were tested on its assumed homologous: Mo, W and U. Corroborative static and dynamic off-line experiments have shown that after fixation of these three elements on anion-exchange resin in HF medium, selective elution could be achieved by using suitable concentration of HCl - HF and HCl solutions. Separations of short-lived W isotopes, produced through heavy ion irradiation were also performed on-line. (author). 27 refs., 14 figs

  20. Design of Energy Efficient Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The focus in the development has for both systems been to minimise energy consumption while maintaining a comfortable and healthy indoor environment. The natural next step in this development is to develop ventilation concepts that utilises and combines the best features from each system......[Mechanical and natural ventilation] into a new type of ventilation system- Hybrid Ventilation....

  1. 21 CFR 868.5975 - Ventilator tubing.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ventilator tubing. 868.5975 Section 868.5975 Food... DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5975 Ventilator tubing. (a) Identification. Ventilator tubing is a device intended for use as a conduit for gases between a ventilator and a patient...

  2. Preoperational test report, vent building ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Vent Building Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides Heating, Ventilation, and Air Conditioning (HVAC) for the W-030 Ventilation Building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  3. 46 CFR 45.131 - Ventilators.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Ventilators. 45.131 Section 45.131 Shipping COAST GUARD....131 Ventilators. (a) Ventilators passing through superstructures other than enclosed superstructures must have coamings of steel or equivalent material at the freeboard deck. (b) Ventilators in position 1...

  4. Spontaneous breathing during lung-protective ventilation in an experimental acute lung injury model: high transpulmonary pressure associated with strong spontaneous breathing effort may worsen lung injury.

    Science.gov (United States)

    Yoshida, Takeshi; Uchiyama, Akinori; Matsuura, Nariaki; Mashimo, Takashi; Fujino, Yuji

    2012-05-01

    We investigated whether potentially injurious transpulmonary pressure could be generated by strong spontaneous breathing and exacerbate lung injury even when plateau pressure is limited to ventilation, each combined with weak or strong spontaneous breathing effort. Inspiratory pressure for low tidal volume ventilation was set at 10 cm H2O and tidal volume at 6 mL/kg. For moderate tidal volume ventilation, the values were 20 cm H2O and 7-9 mL/kg. The groups were: low tidal volume ventilation+spontaneous breathingweak, low tidal volume ventilation+spontaneous breathingstrong, moderate tidal volume ventilation+spontaneous breathingweak, and moderate tidal volume ventilation+spontaneous breathingstrong. Each group had the same settings for positive end-expiratory pressure of 8 cm H2O. Respiratory variables were measured every 60 mins. Distribution of lung aeration and alveolar collapse were histologically evaluated. Low tidal volume ventilation+spontaneous breathingstrong showed the most favorable oxygenation and compliance of respiratory system, and the best lung aeration. By contrast, in moderate tidal volume ventilation+spontaneous breathingstrong, the greatest atelectasis with numerous neutrophils was observed. While we applied settings to maintain plateau pressure at ventilation+spontaneous breathingstrong, transpulmonary pressure rose >33 cm H2O. Both minute ventilation and respiratory rate were higher in the strong spontaneous breathing groups. Even when plateau pressure is limited to mechanical ventilation, transpulmonary pressure and tidal volume should be strictly controlled to prevent further lung injury.

  5. 46 CFR 111.103-1 - Power ventilation systems except machinery space ventilation systems.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Power ventilation systems except machinery space ventilation systems. 111.103-1 Section 111.103-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY... Power ventilation systems except machinery space ventilation systems. Each power ventilation system must...

  6. The role of ventilation. 2 v. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    The 78 papers which constitute the proceedings of the conference are presented in two volumes. The papers in the first volume cover sessions dealing with the following broad topics: ventilation strategies; indoor air quality; energy impact of ventilation; building design for optimum ventilation; ventilation and energy. Volume 2 also covers ventilation strategies and ventilation and energy, and in addition: calculation, measurement and design tools; measurement and modelling. Separate abstract have been prepared for 4 papers in Volume 1 which deal with the role of ventilation in mitigating the hazard of radon in buildings. (UK)

  7. Application of mid-frequency ventilation in an animal model of lung injury: a pilot study.

    Science.gov (United States)

    Mireles-Cabodevila, Eduardo; Chatburn, Robert L; Thurman, Tracy L; Zabala, Luis M; Holt, Shirley J; Swearingen, Christopher J; Heulitt, Mark J

    2014-11-01

    Mid-frequency ventilation (MFV) is a mode of pressure control ventilation based on an optimal targeting scheme that maximizes alveolar ventilation and minimizes tidal volume (VT). This study was designed to compare the effects of conventional mechanical ventilation using a lung-protective strategy with MFV in a porcine model of lung injury. Our hypothesis was that MFV can maximize ventilation at higher frequencies without adverse consequences. We compared ventilation and hemodynamic outcomes between conventional ventilation and MFV. This was a prospective study of 6 live Yorkshire pigs (10 ± 0.5 kg). The animals were subjected to lung injury induced by saline lavage and injurious conventional mechanical ventilation. Baseline conventional pressure control continuous mandatory ventilation was applied with V(T) = 6 mL/kg and PEEP determined using a decremental PEEP trial. A manual decision support algorithm was used to implement MFV using the same conventional ventilator. We measured P(aCO2), P(aO2), end-tidal carbon dioxide, cardiac output, arterial and venous blood oxygen saturation, pulmonary and systemic vascular pressures, and lactic acid. The MFV algorithm produced the same minute ventilation as conventional ventilation but with lower V(T) (-1 ± 0.7 mL/kg) and higher frequency (32.1 ± 6.8 vs 55.7 ± 15.8 breaths/min, P ventilation and MFV for mean airway pressures (16.1 ± 1.3 vs 16.4 ± 2 cm H2O, P = .75) even when auto-PEEP was higher (0.6 ± 0.9 vs 2.4 ± 1.1 cm H2O, P = .02). There were no significant differences in any hemodynamic measurements, although heart rate was higher during MFV. In this pilot study, we demonstrate that MFV allows the use of higher breathing frequencies and lower V(T) than conventional ventilation to maximize alveolar ventilation. We describe the ventilatory or hemodynamic effects of MFV. We also demonstrate that the application of a decision support algorithm to manage MFV is feasible. Copyright © 2014 by Daedalus Enterprises.

  8. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  9. Low-energy mechanical ventilation

    DEFF Research Database (Denmark)

    Andersen, Claus Wessel; Hviid, Christian Anker

    2014-01-01

    and with as little energy consumption as 41.1 kWh/m2/year including heating and all building services with no use of renewable energy such as PVcells or solar heating. One of the key means of reaching the objectives was to implement mechanical ventilation with low pressure loss and therefore low energy consumption....... The project consists of two buildings, building one is 6 stories high, and building two is 4 stories high. The buildings have a gross area of 50,500 m2 including underground parking. The ventilation and indoor climate concept was to use mechanical ventilation together with mechanical cooling and fanassisted......, with an average of 1.1 kJ/m3. The yearly mean SFP based on estimated runtime is approx. 0.8 kJ/m3. The case shows the unlocked potential that lies within mechanical ventilation for nearzero energy consuming buildings....

  10. Pulsed ventilation in mines. II

    Energy Technology Data Exchange (ETDEWEB)

    Krause, D

    1975-06-01

    Using test results, an attempt is made to determine the form of the free jet and to derive design data for pulsed fans. The most suitable placing of these fans for the ventilation of headings is discussed.

  11. ENERGY STAR Certified Ventilating Fans

    Data.gov (United States)

    U.S. Environmental Protection Agency — Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of...

  12. HF Radio Astronomy from a Small Satellite

    Science.gov (United States)

    2016-06-15

    SSC16-XI-03 HF Radio Astronomy from a Small Satellite Frank C. Robey1, Mary Knapp2, Alan J. Fenn1, Mark Silver1, Kerry Johnson1 Frank J. Lind3...frequency end of the electromagnetic spectrum (below 15 MHz) is one of the least explored windows in observational astronomy . Observations at these...pdf. [Accessed: 17-Oct-2015]. 3. G. Hallinan, “The Owens Valley LWA,” in Exascale Radio Astronomy , 2014, vol. 2. 4. C. J. Lonsdale, R. J. Cappallo

  13. High-aspect-ratio HfC nanobelts accompanied by HfC nanowires: Synthesis, characterization and field emission properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Song, E-mail: tiansong22@126.com [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); School of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Yulei; Ren, Jincui; Qiang, Xinfa; Zhang, Shouyang [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China); Li, Hejun, E-mail: lihejun@nwpu.edu.cn [State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072 (China)

    2017-04-30

    Highlights: • HfC naobelts accompanied by HfC nanowires were synthesized by a catalytic CVD method. • HfC nanobelts as a novel structure of HfC ceramic are reported for the first time. • HfC nanobelts have 100–200 μm in lengths and reach up to 10 μm in widths. • The synthesized product is promising field nanoemitters. - Abstract: As a key refractory carbide, hafnium carbide (HfC) is commonly used as structural materials while the field emission (FE) application of HfC in the field of vacuum microelectronics is almost the only one for functional material purposes. Based on its outstanding physical and chemical characteristics, HfC is identified as a potential candidate with satisfactory mechanical properties and long-term and/or high-temperature FE stability for future applications in high-performance field emitters. However, the development of HfC in various FE applications is hindered because it is not facile to fabricate large-scale low-dimensional HfC field nanoemitters. Herein, High-aspect-ratio HfC nanobelts accompanied by HfC nanowires were synthesized on a large scale by a traditional and simple catalytic chemical vapor deposition (CVD) method. Classical vapor–liquid–solid (VLS) theory was employed to explain the growth of the HfC nanowires and nanobelts along axial direction. The thin HfO{sub 2} shell and thin C layer surrounding the nanostructures might give rise to the diameter fluctuation of HfC nanowires and the width increase of HfC nanobelts in lateral direction. Field emission results show that the high-aspect-ratio HfC nanobelts accompanied by the nanowires are promising field nanoemitters, which exhibit excellent field emission properties with a fairly low turn-on field of ∼1.5 V μm{sup −1} and a low current fluctuation less than ∼10%. This suggests that HfC ceramics with high-aspect-ratio nanostructures are ideal cathode material for various field emission applications.

  14. HF Propagation Effects Caused by an Artificial Plasma Cloud in the Ionosphere

    Science.gov (United States)

    Joshi, D. R.; Groves, K. M.; McNeil, W. J.; Caton, R. G.; Parris, R. T.; Pedersen, T. R.; Cannon, P. S.; Angling, M. J.; Jackson-Booth, N. K.

    2014-12-01

    In a campaign carried out by the NASA sounding rocket team, the Air Force Research Laboratory (AFRL) launched two sounding rockets in the Kwajalein Atoll, Marshall Islands, in May 2013 known as the Metal Oxide Space Cloud (MOSC) experiment to study the interactions of artificial ionization and the background plasma and measure the effects on high frequency (HF) radio wave propagation. The rockets released samarium metal vapor in the lower F-region of the ionosphere that ionized forming a plasma cloud that persisted for tens of minutes to hours in the post-sunset period. Data from the experiments has been analyzed to understand the impacts of the artificial ionization on HF radio wave propagation. Swept frequency HF links transiting the artificial ionization region were employed to produce oblique ionograms that clearly showed the effects of the samarium cloud. Ray tracing has been used to successfully model the effects of the ionized cloud. Comparisons between observations and modeled results will be presented, including model output using the International Reference Ionosphere (IRI), the Parameterized Ionospheric Model (PIM) and PIM constrained by electron density profiles measured with the ALTAIR radar at Kwajalein. Observations and modeling confirm that the cloud acted as a divergent lens refracting energy away from direct propagation paths and scattering energy at large angles relative to the initial propagation direction. The results confirm that even small amounts of ionized material injected in the upper atmosphere can result in significant changes to the natural propagation environment.

  15. Effects of Natural Sounds on Pain: A Randomized Controlled Trial with Patients Receiving Mechanical Ventilation Support.

    Science.gov (United States)

    Saadatmand, Vahid; Rejeh, Nahid; Heravi-Karimooi, Majideh; Tadrisi, Sayed Davood; Vaismoradi, Mojtaba; Jordan, Sue

    2015-08-01

    Nonpharmacologic pain management in patients receiving mechanical ventilation support in critical care units is under investigated. Natural sounds may help reduce the potentially harmful effects of anxiety and pain in hospitalized patients. The aim of this study was to examine the effect of pleasant, natural sounds on self-reported pain in patients receiving mechanical ventilation support, using a pragmatic parallel-arm, randomized controlled trial. The study was conducted in a general adult intensive care unit of a high-turnover teaching hospital, in Tehran, Iran. Between October 2011 and June 2012, we recruited 60 patients receiving mechanical ventilation support to the intervention (n = 30) and control arms (n = 30) of a pragmatic parallel-group, randomized controlled trial. Participants in both arms wore headphones for 90 minutes. Those in the intervention arm heard pleasant, natural sounds, whereas those in the control arm heard nothing. Outcome measures included the self-reported visual analog scale for pain at baseline; 30, 60, and 90 minutes into the intervention; and 30 minutes post-intervention. All patients approached agreed to participate. The trial arms were similar at baseline. Pain scores in the intervention arm fell and were significantly lower than in the control arm at each time point (p natural sounds via headphones is a simple, safe, nonpharmacologic nursing intervention that may be used to allay pain for up to 120 minutes in patients receiving mechanical ventilation support. Copyright © 2015 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.

  16. Wind Extraction for Natural Ventilation

    Science.gov (United States)

    Fagundes, Tadeu; Yaghoobian, Neda; Kumar, Rajan; Ordonez, Juan

    2017-11-01

    Due to the depletion of energy resources and the environmental impact of pollution and unsustainable energy resources, energy consumption has become one of the main concerns in our rapidly growing world. Natural ventilation, a traditional method to remove anthropogenic and solar heat gains, proved to be a cost-effective, alternative method to mechanical ventilation. However, while natural ventilation is simple in theory, its detailed design can be a challenge, particularly for wind-driven ventilation, which its performance highly involves the buildings' form, surrounding topography, turbulent flow characteristics, and climate. One of the main challenges with wind-driven natural ventilation schemes is due to the turbulent and unpredictable nature of the wind around the building that impose complex pressure loads on the structure. In practice, these challenges have resulted in founding the natural ventilation mainly on buoyancy (rather than the wind), as the primary force. This study is the initial step for investigating the physical principals of wind extraction over building walls and investigating strategies to reduce the dependence of the wind extraction on the incoming flow characteristics and the target building form.

  17. TS LOOP ALCOVE VENTILATION ANALYSIS

    International Nuclear Information System (INIS)

    T.M. Lahnalampi

    2000-01-01

    The scope of this analysis is to examine the existing, constructor installed, physical ventilation installations located in each of the Exploratory Studies Facility (ESF) Topopah Springs (TS) Loop Alcoves No.1, No.2, No.3, No.4, No.6, and No.7. Alcove No.5 is excluded from the scope of this analysis since it is an A/E design system. Each ventilation installation will be analyzed for the purpose of determining if requirements for acceptance into the A/E design technical baseline have been met. The ventilation installations will be evaluated using Occupational Safety and Health Administration (OSHA) standards and Exploratory Studies Facility Design Requirements (ESFDR) (YMP 1997) requirements. The end product will be a technical analysis that will define ventilation installation compliance issues, any outstanding field changes, and use-as-is design deviations that are required to bring the ventilation installations into compliance with requirements for acceptance into the A/E design technical baseline. The analysis will provide guidance for alcove ventilation component design modifications to be developed to correct any deficient components that do not meet minimum requirements and standards

  18. Ventilation Model and Analysis Report

    International Nuclear Information System (INIS)

    Chipman, V.

    2003-01-01

    This model and analysis report develops, validates, and implements a conceptual model for heat transfer in and around a ventilated emplacement drift. This conceptual model includes thermal radiation between the waste package and the drift wall, convection from the waste package and drift wall surfaces into the flowing air, and conduction in the surrounding host rock. These heat transfer processes are coupled and vary both temporally and spatially, so numerical and analytical methods are used to implement the mathematical equations which describe the conceptual model. These numerical and analytical methods predict the transient response of the system, at the drift scale, in terms of spatially varying temperatures and ventilation efficiencies. The ventilation efficiency describes the effectiveness of the ventilation process in removing radionuclide decay heat from the drift environment. An alternative conceptual model is also developed which evaluates the influence of water and water vapor mass transport on the ventilation efficiency. These effects are described using analytical methods which bound the contribution of latent heat to the system, quantify the effects of varying degrees of host rock saturation (and hence host rock thermal conductivity) on the ventilation efficiency, and evaluate the effects of vapor and enhanced vapor diffusion on the host rock thermal conductivity

  19. Mechanical ventilation for severe asthma.

    Science.gov (United States)

    Leatherman, James

    2015-06-01

    Acute exacerbations of asthma can lead to respiratory failure requiring ventilatory assistance. Noninvasive ventilation may prevent the need for endotracheal intubation in selected patients. For patients who are intubated and undergo mechanical ventilation, a strategy that prioritizes avoidance of ventilator-related complications over correction of hypercapnia was first proposed 30 years ago and has become the preferred approach. Excessive pulmonary hyperinflation is a major cause of hypotension and barotrauma. An appreciation of the key determinants of hyperinflation is essential to rational ventilator management. Standard therapy for patients with asthma undergoing mechanical ventilation consists of inhaled bronchodilators, corticosteroids, and drugs used to facilitate controlled hypoventilation. Nonconventional interventions such as heliox, general anesthesia, bronchoscopy, and extracorporeal life support have also been advocated for patients with fulminant asthma but are rarely necessary. Immediate mortality for patients who are mechanically ventilated for acute severe asthma is very low and is often associated with out-of-hospital cardiorespiratory arrest before intubation. However, patients who have been intubated for severe asthma are at increased risk for death from subsequent exacerbations and must be managed accordingly in the outpatient setting.

  20. Ab initio theoretical study of dipole-bound anions of molecular complexes: (HF)3- and (HF)4- anions

    Science.gov (United States)

    Ramaekers, Riet; Smith, Dayle M. A.; Smets, Johan; Adamowicz, Ludwik

    1997-12-01

    Ab initio calculations have been performed to determine structures and vertical electron detachment energy (VDE) of the hydrogen fluoride trimer and tetramer anions, (HF)3- and (HF)4-. In these systems the excess electron is bound by the dipole field of the complex. It was determined that, unlike the neutral complexes which prefer the cyclic structures, the equilibrium geometries of the anions have "zig-zag" shapes. For both complexes the predicted VDEs are positive [210 meV and 363 meV for (HF)3- and (HF)4-, respectively], indicating that the anions are stable systems with respect to the vertical electron detachment. These results were obtained at the coupled-cluster level of theory with single, double and triple excitations [CCSD(T) method; the triple-excitation contribution in this method is calculated approximately using the perturbation approach] with the anion geometries obtained using the second-order Møller-Plesset perturbation theory (MP2) method. The same approach was also used to determine the adiabatic electron affinities (AEA) of (HF)3 and (HF)4. In addition to the electronic contribution, we also calculated the contributions (using the harmonic approximation) resulting from different zero-point vibration energies of the neutral and anionic clusters. The calculations predicted that while the AEA of (HF)3 is positive (44 meV), the AEA for (HF)4 is marginally negative (-16 meV). This suggests that the (HF)3- anion should be a stable system, while the (HF)4- is probably metastable.

  1. Thermoelectric properties of doped BaHfO_3

    International Nuclear Information System (INIS)

    Dixit, Chandra Kr.; Bhamu, K. C.; Sharma, Ramesh

    2016-01-01

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO_3 by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO_3 doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO_3 is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO_3 is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  2. Minute synthesis of extremely stable gold nanoparticles.

    Science.gov (United States)

    Zhou, Min; Wang, Baoxiang; Rozynek, Zbigniew; Xie, Zhaohui; Fossum, Jon Otto; Yu, Xiaofeng; Raaen, Steinar

    2009-12-16

    We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl(4) in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 microM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.

  3. Minute synthesis of extremely stable gold nanoparticles

    International Nuclear Information System (INIS)

    Zhou Min; Wang Baoxiang; Rozynek, Zbigniew; Xie Zhaohui; Fossum, Jon Otto; Yu Xiaofeng; Raaen, Steinar

    2009-01-01

    We describe a rapid environmentally friendly wet-chemical approach to synthesize extremely stable non-toxic, biocompatible, water-soluble monodispersed gold nanoparticles (AuNPs) in one step at room temperature. The particles have been successfully achieved in just a few minutes by merely adding sodium hydroxide (NaOH) acting as an initiator for the reduction of HAuCl 4 in aqueous solution in the presence of polyvinylpyrrolidone (PVP) without the use of any reducing agent. It is also proved to be highly efficient for the preparation of AuNPs with controllable sizes. The AuNPs show remarkable stability in water media with high concentrations of salt, various buffer solutions and physiological conditions in biotechnology and biomedicine. Moreover, the AuNPs are also non-toxic at high concentration (100 μM). Therefore, it provides great opportunities to use these AuNPs for biotechnology and biomedicine. This new approach also involved several green chemistry concepts, such as the selection of environmentally benign reagents and solvents, without energy consumption, and less reaction time.

  4. Nuclear quadrupole interactions in ferroelectric compounds of HF181

    International Nuclear Information System (INIS)

    Kunzler, J.V.

    1971-01-01

    Measurements of nuclear quadrupole interaction constants in perovkite-type compounds of PbHfO 3 , SnhfO 3 , CaHfO 3 e SrHfO 3 have been performed using the perturbed angular correlation technique. A range of fundamental frequencies from 150 to 550 Megaradians persecond was determined. The variation of quadrupole constants has been discussed through the molecular orbital theory

  5. Beta decomposition processes in Hf-rich Hf--Nb alloys

    International Nuclear Information System (INIS)

    Jones, W.B.; Taggart, R.; Polonis, D.H.

    1978-01-01

    The decomposition of the bcc β-phase by both athermal and isothermal processes has been investigated in Hf-rich Hf--Nb alloys. An all β-phase structure is retained in chill-cast alloys containing 30 to 50 at.% Nb (Cb), although electron diffraction streaking effects and the behavior of the temperature coefficient of electrical resistivity indicate the presence of a bcc lattice instability similar to that reported in solute lean Ti and Zr alloys. Aging a Hf 0 . 65 Nb 0 . 35 alloy at 400 and 600 0 C resulted in the direct precipitation of a fine dispersion of α-phase needles; this morphology differs from the discs of transition α (α/sub t/) which Carpenter et al observed in Nb-rich Nb 0 . 68 Hf 0 . 32 . During continued aging, the needles grow selectively to form colonies or groups of needles in which both the individual needles and the groups of needles have major axes aligned along (110)/sub β/ type directions. The initial α-phase particles exhibit the Burgers orientation relationship with the parent matrix; continued aging changes the electron diffraction patterns in a way that is similar to that observed in aged Ti--Mo and Ti--Mo--Al alloys where they were attributed to the α-phase having a different crystallographic relationship to the β-phase (Type 2 α-phase). The observed changes in the electron diffraction patterns of aged Hf 0 . 65 Nb 0 . 35 cannot be described as resulting from strained Burgers α-phase

  6. Hf isotope evidence for a hidden mantle reservoir

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2002-01-01

    High-precision Hf isotopic analyses and U-Pb ages of carbonatites and kimberlites from Greenland and eastern North America, including Earth's oldest known carbonatite (3 Ga), indicate derivation from an enriched mantle source. This previously unidentified mantle reservoir-marked by an unradiogenic...... Hf isotopic composition and preserved in the deep mantle for at least 3 b.y.-may account for the mass imbalance in Earth's Hf-Nd budget. The Hf isotopic data presented here support a common mantle source region and genetic link between carbonatite and some oceanic-island basalt volcanoes....

  7. Microstructural characterization of as-cast hf-b alloys

    Directory of Open Access Journals (Sweden)

    João Carlos Jânio Gigolotti

    2012-04-01

    Full Text Available An accurate knowledge of several metal-boron phase diagrams is important to evaluation of higher order systems such as metal-silicon-boron ternaries. The refinement and reassessment of phase diagram data is a continuous work, thus the reevaluation of metal-boron systems provides the possibility to confirm previous data from an investigation using higher purity materials and better analytical techniques. This work presents results of rigorous microstructural characterization of as-cast hafnium-boron alloys which are significant to assess the liquid composition associated to most of the invariant reactions of this system. Alloys were prepared by arc melting high purity hafnium (minimum 99.8% and boron (minimum 99.5% slices under argon atmosphere in water-cooled copper crucible with non consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy, using back-scattered electron image mode and X-ray diffraction. In general, a good agreement was found between our data and those from the currently accepted Hafnium-Boron phase diagram. The phases identified are αHfSS and B-RhomSS, the intermediate compounds HfB and HfB2 and the liquide L. The reactions are the eutectic L ⇔ αHfSS + HfB and L ⇔ HfB2 + B-Rhom, the peritectic L + HfB2 ⇔ HfB and the congruent formation of HfB2.

  8. PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKAN MIXER SETTLER

    Directory of Open Access Journals (Sweden)

    Dwi Biyantoro

    2017-01-01

    Full Text Available ABSTRAK PEMISAHAN Zr – Hf SECARA SINAMBUNG MENGGUNAKANMIXER SETTLER. Telah dilakukan pemisahanZr – Hf secara sinambung menggunakan pengaduk pengenap (mixer settler 16 stage. Larutan umpan adalah zirkon nitrat dengan kadar Zr = 30786 ppm dan Hf = 499 ppm. Ekstraktan dipakai adalah solven 60 % TBP dalam kerosen dan larutan scrubbingyang dipakai adalah asam nitrat 1 M. Umpan masuk pada stageke 5 dikontakkan secara berlawanan arah dengan solven masuk pada stage ke 16 dan larutan scrubbing masuk pada stage ke 1. Tujuan penelitian ini adalah memisahkan unsur Zr dan Hf dari hasil olah pasir zirkon menggunakan solven TBP dengan alat mixer settler16 stage. Analisis umpan dan hasil proses pemisahan untuk zirkonium (Zr dilakukan dengan menggunakan alat pendar sinar-X, sedangkananalisis unsur hafnium (Hf menggunakan Analisis Pengaktifan Neutron (APN. Parameter penelitian dilakukan dengan variasi keasaman asam nitrat dalam umpan dan variasi waktu pada berbagai laju pengadukan. Hasil penelitian pemisahan unsur Zr dengan Hf diperolehkondisi optimum pada keasaman umpan 4 N HNO3, keseimbangan dicapai setelah 3jam dan laju pengadukan 3300 rpm. Hasil ekstrak  unsur zirkon (Zr diperoleh kadar sebesar 28577 ppm dengan efisiensi 92,76 % serta kadar pengotor hafnium (Hf sebesar 95 ppm. Kata Kunci: pemisahan Zr, Hf, ekstraksi, mixer settler, alat pendar sinar-X, APN. ABSTRACT SEPARATION of Zr - Hf CONTINUOUSLY USE THE MIXER SETTLER. Separation of Zr - Hf continuously using mixer settler 16 stage has been done. The feed solution is zircon nitrate concentration of Zr = 30786 ppm  and Hf = 499 ppm. As the solvent used extractant 60 % TBP in 40 % kerosene. Nitric acid solution used srubbing 1 M. The feed entered into stage to 5 is contacted with solvents direction on the stage to 16 and the scrubbing solution enter the stage to 1. The purpose of this study is to separate Zr and Hf of the results from the process of zircon sand using solvent TBP using 16 stage

  9. Impact of Fire Ventilation on General Ventilation in the Building

    Science.gov (United States)

    Zender-Świercz, Ewa; Telejko, Marek

    2017-10-01

    The fire of building is a threat to its users. The biggest threat is generation, during lifetime of fire, hot gases and smoke. The purpose of quick and efficient evacuation from the area covered by the fire, at first step the escape routes have to be secured from smokiness. The smoke ventilation systems are used for this purpose. The proper design and execution of smoke ventilation is important not only because of the safety, but also of the maintenance of comfort in the building at a time when there is no fire. The manuscript presents the effect of incorrectly realized smoke ventilation in the stairwell of the medium building. The analysis shows that the flaps of smoke ventilation located in the stairwell may have a significant impact on the proper functioning of mechanical ventilation in the period when there is no fire. The improperly installed or incorrect insulated components cause perturbation of air flow and they change pressure distribution in the building. The conclusion of the analysis is the need to include the entire technical equipment of the building during the design and realization of its individual elements. The impact of various installations at each other is very important, and the omission of any of them can cause disturbances in the proper work of another.

  10. High-temperature x-ray diffraction study of HfTiO4-HfO2 solid solutions

    International Nuclear Information System (INIS)

    Carpenter, D.A.

    1975-01-01

    High-temperature x-ray diffraction techniques were used to determine the axial thermal expansion curves of HfTiO 4 -HfO 2 solid solutions as a function of composition. Data show increasing anisotropy with increasing HfO 2 content. An orthorhombic-to-monoclinic phase transformation was detected near room temperature for compositions near the high HfO 2 end of the orthorhombic phase field and for compositions within the two-phase region (HfTiO 4 solid solution plus HfO 2 solid solution). An orthorhombic-to-cubic phase transformation is indicated by data from oxygen-deficient materials at greater than 1873 0 K. (U.S.)

  11. Contaminants in ventilated filling boxes

    Science.gov (United States)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  12. Effect of metronome rates on the quality of bag-mask ventilation during metronome-guided 30:2 cardiopulmonary resuscitation: A randomized simulation study.

    Science.gov (United States)

    Na, Ji Ung; Han, Sang Kuk; Choi, Pil Cho; Shin, Dong Hyuk

    2017-01-01

    Metronome guidance is a feasible and effective feedback technique to improve the quality of cardiopulmonary resuscitation (CPR). The rate of the metronome should be set between 100 to 120 ticks/minute and the speed of ventilation may have crucial effect on the quality of ventilation. We compared three different metronome rates (100, 110, 120 ticks/minute) to investigate its effect on the quality of ventilation during metronome-guided 30:2 CPR. This is a prospective, randomized, crossover observational study using a RespiTrainer○ r . To simulate 30 chest compressions, one investigator counted from 1 to 30 in cadence with the metronome rate (1 count for every 1 tick), and the participant performed 2 consecutive ventilations immediately following the counting of 30. Thirty physicians performed 5 sets of 2 consecutive (total 10) bag-mask ventilations for each metronome rate. Participants were instructed to squeeze the bag over 2 ticks (1.0 to 1.2 seconds depending on the rate of metronome) and deflate the bag over 2 ticks. The sequence of three different metronome rates was randomized. Mean tidal volume significantly decreased as the metronome rate was increased from 110 ticks/minute to 120 ticks/minute (343±84 mL vs. 294±90 mL, P =0.004). Peak airway pressure significantly increased as metronome rate increased from 100 ticks/minute to 110 ticks/minute (18.7 vs. 21.6 mmHg, P =0.006). In metronome-guided 30:2 CPR, a higher metronome rate may adversely affect the quality of bag-mask ventilations. In cases of cardiac arrest where adequate ventilation support is necessary, 100 ticks/minute may be better than 110 or 120 ticks/minute to deliver adequate tidal volume during audio tone guided 30:2 CPR.

  13. Trigger performance of mid-level ICU mechanical ventilators during assisted ventilation: a bench study.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Kacmarek, Robert M

    2008-09-01

    To compare the triggering performance of mid-level ICU mechanical ventilators with a standard ICU mechanical ventilator. Experimental bench study. The respiratory care laboratory of a university-affiliated teaching hospital. A computerized mechanical lung model, the IngMar ASL5000. Ten mid-level ICU ventilators were compared to an ICU ventilator at two levels of lung model effort, three combinations of respiratory mechanics (normal, COPD and ARDS) and two modes of ventilation, volume and pressure assist/control. A total of 12 conditions were compared. Performance varied widely among ventilators. Mean inspiratory trigger time was ventilators. The mean inspiratory delay time (time from initiation of the breath to return of airway pressure to baseline) was longer than that for the ICU ventilator for all tested ventilators except one. The pressure drop during triggering (Ptrig) was comparable with that of the ICU ventilator for only two ventilators. Expiratory Settling Time (time for pressure to return to baseline) had the greatest variability among ventilators. Triggering differences among these mid-level ICU ventilators and with the ICU ventilator were identified. Some of these ventilators had a much poorer triggering response with high inspiratory effort than the ICU ventilator. These ventilators do not perform as well as ICU ventilators in patients with high ventilatory demand.

  14. Reductions in dead space ventilation with nasal high flow depend on physiological dead space volume: metabolic hood measurements during sleep in patients with COPD and controls.

    Science.gov (United States)

    Biselli, Paolo; Fricke, Kathrin; Grote, Ludger; Braun, Andrew T; Kirkness, Jason; Smith, Philip; Schwartz, Alan; Schneider, Hartmut

    2018-05-01

    Nasal high flow (NHF) reduces minute ventilation and ventilatory loads during sleep but the mechanisms are not clear. We hypothesised NHF reduces ventilation in proportion to physiological but not anatomical dead space.11 subjects (five controls and six chronic obstructive pulmonary disease (COPD) patients) underwent polysomnography with transcutaneous carbon dioxide (CO 2 ) monitoring under a metabolic hood. During stable non-rapid eye movement stage 2 sleep, subjects received NHF (20 L·min -1 ) intermittently for periods of 5-10 min. We measured CO 2 production and calculated dead space ventilation.Controls and COPD patients responded similarly to NHF. NHF reduced minute ventilation (from 5.6±0.4 to 4.8±0.4 L·min -1 ; pspace ventilation (from 2.5±0.4 to 1.6±0.4 L·min -1 ; pspace ventilation correlated with baseline physiological dead space fraction (r 2 =0.36; pspace volume.During sleep, NHF decreases minute ventilation due to an overall reduction in dead space ventilation in proportion to the extent of baseline physiological dead space fraction. Copyright ©ERS 2018.

  15. Simultaneous analysis of rotational and vibrational-rotational spectra of DF and HF to obtain irreducible molecular constants for HF

    International Nuclear Information System (INIS)

    Horiai, Koui; Uehara, Hiromichi

    2011-01-01

    Graphical abstract: Available rotational and vibrational-rotational spectral lines of DF and HF are analyzed simultaneously using a non-Born-Oppenheimer effective Hamiltonian. Research highlights: → Simultaneous analysis of DF and HF spectral data. → Application of a non-Born-Oppenheimer effective Hamiltonian. → Twenty irreducible molecular constants for HF have been determined. - Abstract: Analytic expressions of corrections for the breakdown of the Born-Oppenheimer approximation to Dunham's Y ij with optimal parameters, i.e., determinable clusters of expansion coefficients, are applied to a data analysis of the rotational and vibrational-rotational transitions of HF reported in the literature. All the available spectral lines of the two isotopologues, DF and HF, are simultaneously fitted to a single set of molecular parameters of HF within experimental errors. Fitting of a data set of 595 spectral transitions for DF and HF has generated only 20 minimal independent parameter values, i.e., 'irreducible' molecular constants of HF, that are sufficient to precisely generate 82 Y ij coefficients and 144 band constants in total: 41 Y ij and 72 band constants each for DF and HF.

  16. Utilization of antenna arrays in HF systems

    Directory of Open Access Journals (Sweden)

    Louis Bertel

    2009-06-01

    Full Text Available

    Different applications of radio systems are based on the implementation of antenna arrays. Classically, radio direction

    finding operates with a multi channel receiving system connected to an array of receiving antennas. More

    recently, MIMO architectures have been proposed to increase the capacity of radio links by the use of antenna

    arrays at both the transmitter and receiver.

    The first part of this paper describes some novel experimental work carried out to examine the feasibility of applying

    MIMO techniques for communications within the HF radio band. A detailed correlation analysis of a variety

    of different antenna array configurations is presented. The second section of the paper also deals with HF

    MIMO communications, focusing on the problem from a modelling point of view. The third part presents a sensitivity

    analysis of different antenna array structures for HF direction finding applications. The results demonstrate

    that when modelling errors, heterogeneous antenna arrays are more robust in comparison to homogeneous structures


  17. Tidal ventilation distribution during pressure-controlled ventilation and pressure support ventilation in post-cardiac surgery patients.

    Science.gov (United States)

    Blankman, P; VAN DER Kreeft, S M; Gommers, D

    2014-09-01

    Inhomogeneous ventilation is an important contributor to ventilator-induced lung injury. Therefore, this study examines homogeneity of lung ventilation by means of electrical impedance tomography (EIT) measurements during pressure-controlled ventilation (PCV) and pressure support ventilation (PSV) using the same ventilation pressures. Twenty mechanically ventilated patients were studied after cardiac surgery. On arrival at the intensive care unit, ventilation distribution was measured with EIT just above the diaphragm for 15 min. After awakening, PCV was switched to PSV and EIT measurements were again recorded. Tidal impedance variation, a measure of tidal volume, increased during PSV compared with PCV, despite using the same ventilation pressures (P = 0.045). The distribution of tidal ventilation to the dependent lung region was more pronounced during PSV compared with PCV, especially during the first half of the inspiration. An even distribution of tidal ventilation between the dependent and non-dependent lung regions was seen during PCV at lower tidal volumes (tidal volumes (≥ 8 ml/kg). In addition, the distribution of tidal ventilation was predominantly distributed to the dependent lung during PSV at low tidal volumes. In post-cardiac surgery patients, PSV showed improved ventilation of the dependent lung region due to the contribution of the diaphragm activity, which is even more pronounced during lower assist levels. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  18. Residential ventilation standards scoping study

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Sherman, Max H.

    2003-10-01

    The goals of this scoping study are to identify research needed to develop improved ventilation standards for California's Title 24 Building Energy Efficiency Standards. The 2008 Title 24 Standards are the primary target for the outcome of this research, but this scoping study is not limited to that timeframe. We prepared this scoping study to provide the California Energy Commission with broad and flexible options for developing a research plan to advance the standards. This document presents the findings of a scoping study commissioned by the Public Interest Energy Research (PIER) program of the California Energy Commission to determine what research is necessary to develop new residential ventilation requirements for California. This study is one of three companion efforts needed to complete the job of determining the ventilation needs of California residences, determining the bases for setting residential ventilation requirements, and determining appropriate ventilation technologies to meet these needs and requirements in an energy efficient manner. Rather than providing research results, this scoping study identifies important research questions along with the level of effort necessary to address these questions and the costs, risks, and benefits of pursuing alternative research questions. In approaching these questions and corresponding levels of effort, feasibility and timing were important considerations. The Commission has specified Summer 2005 as the latest date for completing this research in time to update the 2008 version of California's Energy Code (Title 24).

  19. 5-minute Gridded Global Relief Data (ETOPO5)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Earth topography five minute grid (ETOPO5) is a gridded data base of worldwide elevations derived from several sources at a resolution of 5 minutes of latitude and...

  20. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  1. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative...

  2. Air ventilation/controlling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-12-12

    When all electricity supply from the outside of a power plant are lost, a power generator directly connected to an emergency steam turbine which is driven by steams introduced from a nuclear reactor is driven to supply electricity required in the power plant. Cool water prepared by a refrigerator is used as cooling water in an air ventilation/controlling facility of a room equipped with the power generating facility. As the refrigerator, a refrigerator of an existent emergency air cooling water system for an auxiliary air ventilation/controlling equipment is used. This can extend the period of time till the temperature of the room where the power generator is disposed exceeds the temperature range capable of keeping the integrity of the power generator even when all the AC power supply are lost to inactivate the function of the air ventilation/controlling system. (I.S.)

  3. Direct currents produced by hf heating of plasma

    International Nuclear Information System (INIS)

    Klima, R.

    1974-01-01

    In addition to the well-known diffusion currents, toroidal direct currents arise in h.f. heated plasmas as a result of a momentum transfer from the h.f. field to plasma particles. The estimates of steady-state conditions are given for these currents. Particularly, the possibility of stationary operation of a Tokamak device is analyzed. (author)

  4. Lu-Hf and Sm-Nd garnet geochronology

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik E.; Mezger, Klaus

    2013-01-01

    To investigate the systematics of the 176Lu–176Hf and 147Sm–143Nd garnet chronometers, we performed REE and isotope analyses on garnet crystals of different size (0.55–3.1 mm radius) from a single granulite specimen (Archean Pikwitonei Granulite Domain, Manitoba, Canada). The Lu–Hf dates are simi...

  5. [Pressure support ventilation and proportional assist ventilation during weaning from mechanical ventilation].

    Science.gov (United States)

    Aguirre-Bermeo, H; Bottiroli, M; Italiano, S; Roche-Campo, F; Santos, J A; Alonso, M; Mancebo, J

    2014-01-01

    To compare tolerance, duration of mechanical ventilation (MV) and clinical outcomes during weaning from MV in patients subjected to either pressure support ventilation (PSV) or proportional assist ventilation (PAV). A prospective, observational study was carried out. Intensive Care Unit. A total of 40 consecutive subjects were allocated to either the PSV or the PAV group until each group contained 20 patients. Patients were included in the study when they met the criteria to begin weaning and the attending physician decided to initiate the weaning process. The physician selected the modality and set the ventilatory parameters. None. Demographic data, respiratory mechanics, ventilatory parameters, duration of MV, and clinical outcomes (reintubation, tracheostomy, mortality). Baseline characteristics were similar in both groups. No significant differences were observed between the PSV and PAV groups in terms of the total duration of MV (10 [5-18] vs. 9 [7-19] days; P=.85), reintubation (5 [31%] vs. 3 [19%]; P=.69), or mortality (4 [20%] vs. 5 [25%] deaths; P=1). Eight patients (40%) in the PSV group and 6 patients (30%) in the PAV group (P=.74) required a return to volume assist-control ventilation due to clinical deterioration. Tolerance, duration of MV and clinical outcomes during weaning from mechanical ventilation were similar in PSV and PAV. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  6. Membrane modules for building ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Kistler, K.R.; Cussler, E.L.

    2002-01-01

    Hollow fibre and flat sheet membranes with an interfacially polymerized coating of polyamide have a permeance for water vapour of about 0.16 m sec{sup -1}. These membranes can serve as a basis for building ventilation which provides fresh air while recovering about 70% of the specific heat and 60% of the latent heat. Because these membranes are selective for water vapour, the air is exhausted with internal pollutants like carbon monoxide, formaldehyde, and radon. The expense of the ventilator should be recovered in reduced heating costs in about three years. (Author)

  7. Limiting volume with modern ventilators.

    Science.gov (United States)

    Wing, Thomas J; Haan, Lutana; Ashworth, Lonny J; Anderson, Jeff

    2015-06-01

    The acute respiratory distress syndrome (ARDS) network low tidal-volume study comparing tidal volumes of 12 ml/kg versus 6 ml/kg was published in 2000. The study was stopped early as data revealed a 22% relative reduction in mortality rate when using 6 ml/kg tidal volume. The current generation of critical care ventilators allows the tidal volume to be set during volume-targeted, assist/control (volume A/C); however, some ventilators include options that may prevent the tidal volume from being controlled. The purpose of this bench study was to evaluate the delivered tidal volume, when these options are active, in a spontaneously breathing lung model using an electronic breathing simulator. Four ventilators were evaluated: CareFusion AVEA (AVEA), Dräger Evita® XL (Evita XL), Covidien Puritan Bennett® 840(TM) (PB 840), and Maquet SERVO-i (SERVO-i). Each ventilator was connected to the Hans Rudolph Electronic Breathing Simulator at an amplitude of 0 cm H2O and then 10 cm H2O. All four ventilators were set to deliver volume A/C, tidal volume 400 ml, respiratory rate 20 bpm, positive end-expiratory pressure 5 cm H2O, peak flowrate 60 L/min. The displayed tidal volume was recorded for each ventilator at the above settings with additional options OFF and then ON. The AVEA has two options in volume A/C: demand breaths and V-sync. When activated, these options allow the patient to exceed the set tidal volume. When using the Evita XL, the option AutoFlow can be turned ON or OFF, and when this option is ON, the tidal volume may vary. The PB 840 does not have any additional options that affect volume delivery, and it maintains the set tidal volume regardless of patient effort. The SERVO-i's demand valve allows additional flow if the patient's inspiratory flowrate exceeds the set flowrate, increasing the delivered tidal volume; this option can be turned OFF with the latest software upgrade. Modern ventilators have an increasing number of optional settings. These settings may

  8. Ventilation of radioactive enclosures; Ventilation des enceintes radioactives

    Energy Technology Data Exchange (ETDEWEB)

    Caminade, F; Laurent, H [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    Mechanical, physical and chemical manipulations on radioactive products must be carried out in properly ventilated enclosed places. The air extracted can only be discharged into the atmosphere after a correct filtration. The power of the ventilation systems is a function of the dimensions and purpose of the enclosure? The choice of types of filter is determined by the physical state and chemical nature of the radioactive materials to be manipulated. This study deals with the individual equipment of small installations: glove boxes, manipulation boxes with outside control and, if necessary, production chambers (maximum useful volume: 5 m{sup 3}). The performances of three types of 'ventilators', and the modifications provided by the addition of filters, are measured and compared. (author) [French] Les manipulations oceaniques, physiques et chimiques sur des produits radioactifs doivent s'effectuer dans des enceintes convenablement ventilees. L'air extrait ne peut etre rejete dans l'atmosphere qu'apres une filtration correcte. La puissance des installations de ventilation est fonction des dimensions de l'enceinte et de son utilisation. Le choix des types de filtres est determine par l'etat physique et la nature ehimique des corps radioactifs manipules. Notre etude porte sur l'equipement individuel d'installations de petites dimensions: boites a gants, boites a pinces et, a la rigueur, enceintes de production (volume maximum utilisable 5 m{sup 3}). Nous mesurons et comparons les performances de trois types de 'ventilateurs' et les modifications apportees par l'adjonction de filtres. (auteur)

  9. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  10. Minute Temperature Fluctuations Detected in Eta Bootis

    Science.gov (United States)

    1994-11-01

    A group of astronomers from the Aarhus University (Denmark) and the European Southern Observatory (2) have for the first time succeeded in detecting solar-type oscillations in another star. They observed the temperature of the bright northern star Eta Bootis during six nights with the 2.5-metre Nordic Optical Telescope at the Roque de los Muchachos observatory on the island of La Palma (Canary Islands) and were able to show that it varies periodically by a few hundredths of a degree. These changes are caused by pressure waves in the star and are directly dependent on its inner structure. A detailed analysis by the astronomers has shown that the observed effects are in good agreement with current stellar models. This is a most important, independent test of stellar theory. The Sun is an Oscillating Star About twenty years ago, it was discovered that the nearest star, our Sun, oscillates like the ringing of a bell with a period of about 5 minutes. The same phenomenon is known in the Earth, which begins to vibrate after earthquakes; in this way seismologists have been able to discern a layered structure in the Earth's interior. The recent impacts of a comet on Jupiter most likely had a similar effect on that planet. The observed solar oscillations concern the entire gaseous body of the Sun, but we can of course only observe them on its surface. It has been found that each mode moves the surface up and down by less than 25 metres; the combined motion is very complicated, because there are many different, simultaneous modes, each of which has a slightly different period. The exact values of these periods are sensitive to the speed of sound in the Sun's interior, which in turn depends on the density of the material there. Thus, by measuring the periods of solar oscillations, we may probe the internal structure of the Sun, that is otherwise inaccessible to observations. Why does the Sun oscillate and what is the cause of these oscillations ? We do not know yet, but it is

  11. Decisional responsibility for mechanical ventilation and weaning

    DEFF Research Database (Denmark)

    Rose, Louise; Blackwood, Bronagh; Egerod, Ingrid

    2011-01-01

    Optimal management of mechanical ventilation and weaning requires dynamic and collaborative decision making to minimize complications and avoid delays in the transition to extubation. In the absence of collaboration, ventilation decision making may be fragmented, inconsistent, and delayed. Our...

  12. Perioperative lung protective ventilation in obese patients

    NARCIS (Netherlands)

    Fernandez-Bustamante, Ana; Hashimoto, Soshi; Serpa Neto, Ary; Moine, Pierre; Vidal Melo, Marcos F.; Repine, John E.

    2015-01-01

    The perioperative use and relevance of protective ventilation in surgical patients is being increasingly recognized. Obesity poses particular challenges to adequate mechanical ventilation in addition to surgical constraints, primarily by restricted lung mechanics due to excessive adiposity, frequent

  13. The School Advanced Ventilation Engineering Software (SAVES)

    Science.gov (United States)

    The School Advanced Ventilation Engineering Software (SAVES) package is a tool to help school designers assess the potential financial payback and indoor humidity control benefits of Energy Recovery Ventilation (ERV) systems for school applications.

  14. Improvements of uranium mine ventilation system

    International Nuclear Information System (INIS)

    Liu Changrong; Zhou Xinghuo; Liu Zehua; Wang Zhiyong

    2007-01-01

    Ventilation has been proved to be a main method to eliminate radon and its daughters in uranium mines. According to the practical rectifications of uranium mine ventilation system, the improved measures are summarized. (authors)

  15. Ventilation area measured with eit in order to optimize peep settings in mechanically ventilated patients

    NARCIS (Netherlands)

    Blankman, P; Groot Jebbink, E; Preis, C; Bikker, I.; Gommers, D.

    2012-01-01

    INTRODUCTION. Electrical Impedance Tomography (EIT) is a non-invasive imaging technique, which can be used to visualize ventilation. Ventilation will be measured by impedance changes due to ventilation. OBJECTIVES. The aim of this study was to optimize PEEP settings based on the ventilation area of

  16. Initial ventilator settings for critically ill patients

    OpenAIRE

    Kilickaya, Oguz; Gajic, Ognjen

    2013-01-01

    The lung-protective mechanical ventilation strategy has been standard practice for management of acute respiratory distress syndrome (ARDS) for more than a decade. Observational data, small randomized studies and two recent systematic reviews suggest that lung protective ventilation is both safe and potentially beneficial in patients who do not have ARDS at the onset of mechanical ventilation. Principles of lung-protective ventilation include: a) prevention of volutrauma (tidal volume 4 to 8 ...

  17. Building ventilation, state of the art, prospective

    International Nuclear Information System (INIS)

    1995-10-01

    This conference is composed of 21 communications and 21 posters in the domain of building ventilation and indoor air quality; the main themes are: indoor air quality assessment and optimization; performance enhancement and optimization of ventilation systems and equipment; ventilation systems for renovated and rehabilitated buildings; French and European regulations, standardizations and certifications; experimental and numerical simulation studies concerning ventilation systems, air flow, temperature distribution, air quality, radon decontamination, thermal comfort and acoustic levels in buildings

  18. Artificial humidification for the mechanically ventilated patient

    OpenAIRE

    Selvaraj, Nelson

    2010-01-01

    Caring for patients who are mechanically ventilated poses many\\ud challenges for critical care nurses. It is important to humidify the\\ud patient’s airways artificially to prevent complications such as\\ud ventilator-associated pneumonia. There is no gold standard to\\ud determine which type of humidification is best for patients who\\ud are artificially ventilated. This article provides an overview of\\ud commonly used artificial humidification for mechanically ventilated\\ud patients and discuss...

  19. Artificial humidification for the mechanically ventilated patient.

    Science.gov (United States)

    Selvaraj, N

    Caring for patients who are mechanically ventilated poses many challenges for critical care nurses. It is important to humidify the patient's airways artificially to prevent complications such as ventilator-associated pneumonia. There is no gold standard to determine which type of humidification is best for patients who are artificially ventilated. This article provides an overview of commonly used artificial humidification for mechanically ventilated patients and discusses nurses' responsibilities in caring for patients receiving artificial humidification.

  20. High-Frequency Percussive Ventilation Revisited

    Science.gov (United States)

    2010-01-01

    be implemented. ‡ Follow the reverse of the ventilation sequence if respiratory alkalosis develops—however, start at ventilation goal sequence 1 not at...High-frequency percussive ventilation (HFPV) has demonstrated a potential role as a rescue option for refractory acute respiratory distress syndrome...frequency percussive ventilation (HFPV) has demon- strated a potential role as a salvage option for refrac- tory acute respiratory distress syndrome

  1. Performance comparison of 15 transport ventilators.

    Science.gov (United States)

    Chipman, Daniel W; Caramez, Maria P; Miyoshi, Eriko; Kratohvil, Joseph P; Kacmarek, Robert M

    2007-06-01

    Numerous mechanical ventilators are designed and marketed for use in patient transport. The complexity of these ventilators differs considerably, but very few data exist to compare their operational capabilities. Using bench and animal models, we studied 15 currently available transport ventilators with regard to their physical characteristics, gas consumption (duration of an E-size oxygen cylinder), battery life, ease of use, need for compressed gas, ability to deliver set ventilation parameters to a test lung under 3 test conditions, and ability to maintain ventilation and oxygenation in normal and lung-injured sheep. Most of the ventilators tested were relatively simple to operate and had clearly marked controls. Oxygen cylinder duration ranged from 30 min to 77 min. Battery life ranged from 70 min to 8 hours. All except 3 of the ventilators were capable of providing various F(IO2) values. Ten of the ventilators had high-pressure and patient-disconnect alarms. Only 6 of the ventilators were able to deliver all settings as specifically set on the ventilator during the bench evaluation. Only 4 of the ventilators were capable of maintaining ventilation, oxygenation, and hemodynamics in both the normal and the lung-injured sheep. Only 2 of the ventilators met all the trial targets in all the bench and animal tests. With many of the ventilators, certain of the set ventilation parameters were inaccurate (differed by > 10% from the values from a cardiopulmonary monitor). The physical characteristics and high gas consumption of some of these ventilators may render them less desirable for patient transport.

  2. A 30-Minute, but Not a 10-Minute Nighttime Nap is Associated with Sleep Inertia

    Science.gov (United States)

    Hilditch, Cassie J.; Centofanti, Stephanie A.; Dorrian, Jillian; Banks, Siobhan

    2016-01-01

    Study Objectives: To assess sleep inertia following 10-min and 30-min naps during a simulated night shift. Methods: Thirty-one healthy adults (aged 21–35 y; 18 females) participated in a 3-day laboratory study that included one baseline (BL) sleep (22:00–07:00) and one experimental night involving randomization to either: total sleep deprivation (NO-NAP), a 10-min nap (10-NAP) or a 30-min nap (30-NAP). Nap opportunities ended at 04:00. A 3-min psychomotor vigilance task (PVT-B), digit-symbol substitution task (DSST), fatigue scale, sleepiness scale, and self-rated performance scale were undertaken pre-nap (03:00) and at 2, 17, 32, and 47 min post-nap. Results: The 30-NAP (14.7 ± 5.7 min) had more slow wave sleep than the 10-NAP (0.8 ± 1.5 min; P inertia and helped to mitigate short-term performance impairment during a simulated night shift. Self-rated performance did not reflect objective performance following a nap. Citation: Hilditch CJ, Centofanti SA, Dorrian J, Banks S. A 30-minute, but not a 10-minute nighttime nap is associated with sleep inertia. SLEEP 2016;39(3):675–685. PMID:26715234

  3. Implementation of natural ventilation in pig houses

    NARCIS (Netherlands)

    Klooster, van 't C.E.

    1994-01-01

    A description of experimental work and discussion on implementation of natural ventilation in pig houses is given. A literature review describes the state of the art, animal growth data are given. It includes characterization of ventilation openings, a technique to estimate the ventilation

  4. 46 CFR 98.25-75 - Ventilation.

    Science.gov (United States)

    2010-10-01

    ... shall be fitted with efficient natural or mechanical ventilation. (b) Enclosed compartments in which... 46 Shipping 4 2010-10-01 2010-10-01 false Ventilation. 98.25-75 Section 98.25-75 Shipping COAST... Ventilation. (a) All enclosed spaces containing cargo tanks fitted with bottom outlet connections shall be...

  5. 46 CFR 194.10-25 - Ventilation.

    Science.gov (United States)

    2010-10-01

    ... magazines. (1) All integral magazines shall be provided with natural or mechanical ventilation. Design... vans shall be provided with natural ventilation sufficient to maintain the inside air temperature below... 46 Shipping 7 2010-10-01 2010-10-01 false Ventilation. 194.10-25 Section 194.10-25 Shipping COAST...

  6. Ventilation in Commercial and Residential Buildings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    A number of areas have to be considered in connection with indoor air quality and ventilation. The selection of ventilation principle and components in the ventilation system will have influence on the indoor air quality and this subject will be discussed on the following pages. The main object o...

  7. 14 CFR 252.9 - Ventilation systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Ventilation systems. 252.9 Section 252.9... REGULATIONS SMOKING ABOARD AIRCRAFT § 252.9 Ventilation systems. Air carriers shall prohibit smoking whenever the ventilation system is not fully functioning. Fully functioning for this purpose means operating so...

  8. Ventilation strategies and indoor environment in classrooms

    DEFF Research Database (Denmark)

    Zhang, Chen; Liu, Li

    2017-01-01

    Compared with the other building types, the school building has much higher occupancy density and ventilation demand. In Demark, most of the school buildings are ventilated by natural manner. There is a risk of poor indoor environment associated with the lack of ventilation system or insufficient...

  9. Intelligent ventilation in the intensive care unit

    Directory of Open Access Journals (Sweden)

    Sigal Sviri

    2012-08-01

    Full Text Available Objectives. Automated, microprocessor-controlled, closed-loop mechanical ventilation has been used in our Medical Intensive Care Unit (MICU at the Hadassah Hebrew-University Medical Center for the past 15 years; for 10 years it has been the primary (preferred ventilator modality. Design and setting. We describe our clinical experience with adaptive support ventilation (ASV over a 6-year period, during which time ASV-enabled ventilators became more readily available and were used as the primary (preferred ventilators for all patients admitted to the MICU. Results. During the study period, 1 220 patients were ventilated in the MICU. Most patients (84% were ventilated with ASV on admission. The median duration of ventilation with ASV was 6 days. The weaning success rate was 81%, and tracheostomy was required in 13%. Sixty-eight patients (6% with severe hypoxia and high inspiratory pressures were placed on pressure-controlled ventilation, in most cases to satisfy a technical requirement for precise and conservative administration of inhaled nitric oxide. The overall pneumothorax rate was less than 3%, and less than 1% of patients who were ventilated only using ASV developed pneumothorax. Conclusions. ASV is a safe and acceptable mode of ventilation for complicated medical patients, with a lower than usual ventilation complication rate.

  10. Why this crisis in residential ventilation

    NARCIS (Netherlands)

    Hasselaar, E.

    2008-01-01

    Ventilation is the cornerstone of good indoor air quality. Ventilation requirements have major attention in building regulations, but ventilation in practice is often poor, resulting in increased concentration of pollutants and hence exposure to health risk. Inspection of 500 houses with interviews

  11. 21 CFR 868.5895 - Continuous ventilator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Continuous ventilator. 868.5895 Section 868.5895...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5895 Continuous ventilator. (a) Identification. A continuous ventilator (respirator) is a device intended to mechanically control or assist...

  12. Computational Fluid Dynamics in Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Allard, Francis; Awbi, Hazim B.

    2008-01-01

    Computational Fluid Dynamics in Ventilation Design is a new title in the is a new title in the REHVA guidebook series. The guidebook is written for people who need to use and discuss results based on CFD predictions, and it gives insight into the subject for those who are not used to work with CFD...

  13. Ventilation system in fire modelization

    International Nuclear Information System (INIS)

    Cordero Garcia, S.

    2012-01-01

    There is a model of fire in an enclosure formed by two rooms. In one of them, it will cause the fire and check how the system of ventilation in different configurations responds. In addition, the behavior of selected targets, which will be a configuration of cables similar to those found in nuclear power stations will be analyzed.

  14. Cardiogenic oscillation induced ventilator autotriggering

    Directory of Open Access Journals (Sweden)

    Narender Kaloria

    2015-01-01

    Full Text Available Cardiogenic oscillation during mechanical ventilation can auto-trigger the ventilator resembling patient initiated breadth. This gives a false sense of intact respiratory drive and determination brain death, even if other tests are positive, is not appropriate in such a situation. It will prolong the ICU stay and confound the brain-death determination. In this case report, we describe a 35 year old man who was brought to the hospital after many hours of critical delay following multiple gun shot injuries. The patient suffered a cardiac arrest while on the way from another hospital. After an emergency laparotomy, patient was shifted to Intensive Care Unit (ICU with Glasgow Coma Scale (GCS score of E1VTM1 and was mechanically ventilated. Despite absence of brainstem reflexes, the ventilator continued to be triggered on continuous positive airway pressure (CPAP mode and the patient maintained normal oxygen saturation and acceptable levels of carbon dioxide. An apnoea test confirmed absent respiratory drive. Ventilatory waveform graph analysis, revealed cardiogenic oscillation as the cause for autotrigerring.

  15. Design ventilátoru

    OpenAIRE

    Macháčková, Petra

    2013-01-01

    Předmětem této bakalářské práce je návrh designu stolního ventilátoru. Hlavní myšlenkou je inovativní přístup a dodržení technických, estetických a ergonomických požadavků a současně splnění psychologických a ekonomických funkcí. Navržený ventilátor by měl využívat inovativní technologie bezlopatkových ventilátorů. Ventilátor by měl působit jako vhodný doplněk do moderního interiéru. Cílem je propojit originální design s modernizací přístroje při splnění obecných předpokladů průmyslového desi...

  16. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects....

  17. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    Ventilation systems with vertical displacement flow have been used in industrial areas with extensive heat loads for many years. Hot and contaminant air is carried directly from the occupied zone towards the ceiling by hot processes and other activities which create a natural convection flow....

  18. ENERGY STAR Certified Ventilating Fans

    Science.gov (United States)

    Certified models meet all ENERGY STAR requirements as listed in the Version 4.0 ENERGY STAR Program Requirements for Ventilating Fans that are effective as of October 1, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=vent_fans.pr_crit_vent_fans

  19. Pulmonary ventilation/perfusion scan

    Science.gov (United States)

    ... to stop eating (fast), be on a special diet, or take any medicines before the test. A chest x-ray is usually done before or after a ventilation and perfusion scan. You wear a hospital gown or comfortable clothing that does not have ...

  20. Effect of three porcelain etchants type (HF-APF-PHA on porcelain- composite shear bond strength

    Directory of Open Access Journals (Sweden)

    Kermanshah H.

    2005-05-01

    Full Text Available Statement of Problem: Porcelain restorations are susceptible to fracture and a common method for repairing is the use of silane and composite on etched porcelain. Although HF is very effective in porcelain etching but has detrimental effects on tissues. Purpose: In this study, the effect of APF and PHA was compared with HF in porcelain etching. Also the role of silane, unfilled resin and dentin bonding in bond strength of composite- porcelain was evaluated. Methods and Materials: In this experimental in-vitro study, one-hundred twenty porcelain square blocks (552 mm were prepared and bonding surfaces of each sandblasted. Samples were divided into three groups. The first group (n=40 were etched with buffered HF 9.5% (Ultradent for 1 min., the second group (n=40 were etched with Iranian APF 1.23% (Kimia for 10 minutes and the third group (n=40 were etched with Iranian PHA 37% (Kimia for 1 min. Ultradent silane was applied on the surfaces of half of cases in each group. On the surfaces of half of silane-treated samples unfilled resin was applied and dentin bonding was used on the surfaces of the remaining. Samples without silane were treated in a similar manner. Composite cylinder with 4mm diameter and 2 mm height was bonded to porcelain. Specimens were stored in 37°C distilled water for 24 hours and subjected to 500 cycles. Shear bond strength was measured with an Instron machine and type of fracture was evaluated using a stereomicroscope. Results were analyzed using 3 way ANOVA, Kaplan- Maier and Tukey HSD tests. Results: Findings showed that PHA and APF roughened the porcelain surface without creating retentive micro undercuts but HF etches porcelain and creates retentive microundercuts. Ultradent silane had no significant effect on bond strength of porcelain- composite. Unfilled resin with Ultradent silane compared with dentin bonding with the same silane is more effective in bond strength of composite- porcelain. Conclusion: Based on

  1. In vitro growth and leaf anatomy of Cattleya walkeriana (Gardner, 1839 grown in natural ventilation system

    Directory of Open Access Journals (Sweden)

    Adriano Bortolotti da Silva

    2014-12-01

    Full Text Available Natural ventilation system facilitates gaseous exchanges in in vitro plants promoting changes in the leaf tissue, which can be evaluated through the leaf anatomy, and it allows a cultivation closer to the photoautrophic micropropagation. The objective of this work was to evaluate the effects on in vitro growth and on the leaf anatomy of Cattleya walkeriana grown in natural and conventional ventilation system with different concentrations of sucrose (0; 15; 30 and 45 L-1 combined with different cultivation systems (conventional micropropagation and natural ventilation system. The culture medium was composed of MS salts, solidified with 7 g L-1 of agar and pH adjusted to 5.8. Forty milliliters of culture medium were distributed in 250 mL flasks, autoclaved at 120 ºC for 20 minutes. The greater plant growth, as well as the greater thickness of the mesophyll was observed with the use of 20 g L-1 sucrose in natural ventilation system. Plants grown in natural ventilation system showed a thicker leaf mesophyll, which is directly related to photoautotrophic crops. The natural ventilation system induced more elliptical stomata and probably more functional formats.

  2. Effectiveness of mask ventilation performed by hospital doctors in an Irish tertiary referral teaching hospital.

    LENUS (Irish Health Repository)

    Walsh, K

    2012-02-03

    The objective of this study was to assess the effectiveness of mask ventilation performed by 112 doctors with clinical responsibilities at a tertiary referral teaching hospital. Participant doctors were asked to perform mask ventilation for three minutes on a Resusci Anne mannequin using a facemask and a two litre self inflating bag. The tidal volumes generated were quantified using a Laerdal skillmeter computer as grades 0-5, corresponding to 0, 334, 434, 561, 673 and > 800 ml respectively. The effectiveness of mask ventilation (i.e. the proportion of ventilation attempts which achieved a volume delivery of > 434 mls) was greater for anaesthetists [78.0 (29.5)%] than for non anaesthetists [54.6 (40.0)%] (P = 0.012). Doctors who had attended one or more resuscitation courses where no more effective at mask ventilation than their colleagues who had not undertaken such courses. It is likely that first responders to in-hospital cardiac arrests are commonly unable to perform adequate mask ventilation.

  3. Theoretical study of inspiratory flow waveforms during mechanical ventilation on pulmonary blood flow and gas exchange.

    Science.gov (United States)

    Niranjan, S C; Bidani, A; Ghorbel, F; Zwischenberger, J B; Clark, J W

    1999-08-01

    A lumped two-compartment mathematical model of respiratory mechanics incorporating gas exchange and pulmonary circulation is utilized to analyze the effects of square, descending and ascending inspiratory flow waveforms during mechanical ventilation. The effects on alveolar volume variation, alveolar pressure, airway pressure, gas exchange rate, and expired gas species concentration are evaluated. Advantages in ventilation employing a certain inspiratory flow profile are offset by corresponding reduction in perfusion rates, leading to marginal effects on net gas exchange rates. The descending profile provides better CO2 exchange, whereas the ascending profile is more advantageous for O2 exchange. Regional disparities in airway/lung properties create maldistribution of ventilation and a concomitant inequality in regional alveolar gas composition and gas exchange rates. When minute ventilation is maintained constant, for identical time constant disparities, inequalities in compliance yield pronounced effects on net gas exchange rates at low frequencies, whereas the adverse effects of inequalities in resistance are more pronounced at higher frequencies. Reduction in expiratory air flow (via increased airway resistance) reduces the magnitude of upstroke slope of capnogram and oxigram time courses without significantly affecting end-tidal expired gas compositions, whereas alterations in mechanical factors that result in increased gas exchanges rates yield increases in CO2 and decreases in O2 end-tidal composition values. The model provides a template for assessing the dynamics of cardiopulmonary interactions during mechanical ventilation by combining concurrent descriptions of ventilation, capillary perfusion, and gas exchange. Copyright 1999 Academic Press.

  4. Comparison of devices for newborn ventilation in the delivery room.

    Science.gov (United States)

    Szyld, Edgardo; Aguilar, Adriana; Musante, Gabriel A; Vain, Nestor; Prudent, Luis; Fabres, Jorge; Carlo, Waldemar A

    2014-08-01

    To evaluate the effectiveness and safety of a T-piece resuscitator compared with a self-inflating bag for providing mask ventilation to newborns at birth. Newborns at ≥26 weeks gestational age receiving positive-pressure ventilation at birth were included in this multicenter cluster-randomized 2-period crossover trial. Positive-pressure ventilation was provided with either a self-inflating bag (self-inflating bag group) with or without a positive end-expiratory pressure valve or a T-piece with a positive end-expiratory pressure valve (T-piece group). Delivery room management followed American Academy of Pediatrics and International Liaison Committee on Resuscitation guidelines. The primary outcome was the proportion of newborns with heart rate (HR)≥100 bpm at 2 minutes after birth. A total of 1027 newborns were included. There was no statistically significant difference in the incidence of HR≥100 bpm at 2 minutes after birth between the T-piece and self-inflating bag groups: 94% (479 of 511) and 90% (466 of 516), respectively (OR, 0.65; 95% CI, 0.41-1.05; P=.08). A total of 86 newborns (17%) in the T-piece group and 134 newborns (26%) in the self-inflating bag group were intubated in the delivery room (OR, 0.58; 95% CI, 0.4-0.8; P=.002). The mean±SD maximum positive inspiratory pressure was 26±2 cm H2O in the T-piece group vs 28±5 cm H2O in the self-inflating bag group (P<.001). Air leaks, use of drugs/chest compressions, mortality, and days on mechanical ventilation did not differ significantly between groups. There was no difference between the T-piece resuscitator and a self-inflating bag in achieving an HR of ≥100 bpm at 2 minutes in newborns≥26 weeks gestational age resuscitated at birth. However, use of the T-piece decreased the intubation rate and the maximum pressures applied. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Volume-Targeted Ventilation in the Neonate: Benchmarking Ventilators on an Active Lung Model.

    Science.gov (United States)

    Krieger, Tobias J; Wald, Martin

    2017-03-01

    Mechanically ventilated neonates have been observed to receive substantially different ventilation after switching ventilator models, despite identical ventilator settings. This study aims at establishing the range of output variability among 10 neonatal ventilators under various breathing conditions. Relative benchmarking test of 10 neonatal ventilators on an active neonatal lung model. Neonatal ICU. Ten current neonatal ventilators. Ventilators were set identically to flow-triggered, synchronized, volume-targeted, pressure-controlled, continuous mandatory ventilation and connected to a neonatal lung model. The latter was configured to simulate three patients (500, 1,500, and 3,500 g) in three breathing modes each (passive breathing, constant active breathing, and variable active breathing). Averaged across all weight conditions, the included ventilators delivered between 86% and 110% of the target tidal volume in the passive mode, between 88% and 126% during constant active breathing, and between 86% and 120% under variable active breathing. The largest relative deviation occurred during the 500 g constant active condition, where the highest output machine produced 147% of the tidal volume of the lowest output machine. All machines deviate significantly in volume output and ventilation regulation. These differences depend on ventilation type, respiratory force, and patient behavior, preventing the creation of a simple conversion table between ventilator models. Universal neonatal tidal volume targets for mechanical ventilation cannot be transferred from one ventilator to another without considering necessary adjustments.

  6. Process Simulation Analysis of HF Stripping

    Directory of Open Access Journals (Sweden)

    Thaer A. Abdulla

    2015-02-01

    Full Text Available    HYSYS process simulator is used for the analysis of existing HF stripping column in LAB plant (Arab Detergent Company, Baiji-Iraq. Simulated column performance and profiles curves are constructed. The variables considered are the thermodynamic model option, bottom temperature, feed temperature, and column profiles for the temperature, vapor flow rate, liquid flow rate and composition. The five thermodynamic models options used (Margules, UNIQUAC, van laar, Antoine, and Zudkevitch-Joffee, affecting the results within (0.1-58% variation for the most cases.        The simulated results show that about 4% of paraffin (C10 & C11 presents at the top stream, which may cause a problem in the LAB production plant. The major variations were noticed for the total top vapor flow rate with bottom temperature and with feed composition. The column profiles maintain fairly constants from tray 5 to tray 18. The study gives evidence about a successful simulation with HYSYS because the results correspond with the real plant operation data.

  7. Time variations of hf induced plasma waves

    International Nuclear Information System (INIS)

    Showen, R.L.

    1976-01-01

    Intense plasma waves are generated by an HF pump wave in an ionospheric heating experiment at the Arecibo Observatory. These plasma waves can be observed as enhancements to the ion and plasma lines of the incoherent backscatter echo. The enhancements can be three or four orders of magnitude more intense than the unenhanced lines, and tend to fluctuate wildly. Both the purely growing and the decay mode parametric instabilities are present. When the pump wave is turned on abruptly the enhancements develop in time in a repeatable manner. A rather remarkable feature on time scales of seconds is an overshoot in instability power. These overshoots occur frequently but not universally and last for 1 to 6 seconds. They can have a magnitude from ten to hundreds of times the average instability level. Field aligned irregularities may be the cause of the overshoots. The overshoots appear definitely related to an unusually rapid rise in measured electron temperature that cannot be understood in terms of ohmic energy deposition. On time scales of milliseconds there is a ''mini-overshoot'' before the growth of the instability to a large value. The spectral details also change in a striking manner. The instabilities can first be detected 2 to 4 msec after the pump wave turn-on. The decay mode is present as well as a broad featureless ''noise bump'', which partially sharpens into a line as time progresses. These changes of the spectra in time seem to run counter to the currently accepted theories of plasma wave saturation

  8. [OR minute myth : Guidelines for calculation of DRG revenues per OR minute].

    Science.gov (United States)

    Waeschle, R M; Hinz, J; Bleeker, F; Sliwa, B; Popov, A; Schmidt, C E; Bauer, M

    2016-02-01

    The economic situation in German Hospitals is tense and needs the implementation of differentiated controlling instruments. Accordingly, parameters of revenue development of different organizational units within a hospital are needed. This is particularly necessary in the revenue and cost-intensive operating theater field. So far there are only barely established productivity data for the control of operating room (OR) revenues during the year available. This article describes a valid method for the calculation of case-related revenues per OR minute conform to the diagnosis-related groups (DRG).For this purpose the relevant datasets from the OR information system and the § 21 productivity report (DRG grouping) of the University Medical Center Göttingen were combined. The revenues defined in the DRG browser of the Institute for Hospital Reimbursement (InEK) were assigned to the corresponding process times--incision-suture time (SNZ), operative preparation time and anesthesiology time--according to the InEK system. All full time stationary DRG cases treated within the OR were included and differentiated according to the surgical department responsible. The cost centers "OR section" and "anesthesia" were isolated to calculate the revenues of the operating theater. SNZ clusters and cost type groups were formed to demonstrate their impact on the revenues per OR minute. A surgical personal simultaneity factor (GZF) was calculated by division of the revenues for surgeons and anesthesiologists. This factor resembles the maximum DRG financed personnel deployment for surgeons in German hospitals.The revenue per OR minute including all cost types and DRG was 16.63 €/min. The revenues ranged from 10.45 to 24.34 €/min depending on the surgical field. The revenues were stable when SNZ clusters were analyzed. The differentiation of cost type groups revealed a revenue reduction especially after exclusion of revenues for implants and infrastructure. The calculated GZF over

  9. Spirolit-2 instrument used to test pulmonary ventilation

    Science.gov (United States)

    Zhuravlev, V. V.

    1985-02-01

    At the present time, the Spirolit-2 automatic analyzer of main respiratory gases, of the Junkalor Dessau firm, is used to examine parameters of gas exchange, levels of energy expended by man and animals with different degrees of activity. However, the capabilities of this model of the instrument are limited. A method of determining pulmonary ventilation with use of the Spirolit-2 is described. An additional exhalation valve is built into a valve box to which an anesthesia machine rubber bag is attached. Samples are collected into another bag concurrently with the usual tests on the Spirolit-2 instrument. Four to five minutes are sufficient to obtain stable parameters at relative rest of oxygen uptake, determine carbon dioxide output per minute and collect samples in for analysis of exhaled air. The proposed method can furnish information about the dynamics of development of respiratory function of the lungs at virtually any moment with a constant physical load. For this, there must be spare bags to collect samples. Stage-by-stage data can be obtained analogously as to ventilation volume during a step test while determining maximum oxygen uptake.

  10. Three minute versus six minute adenosine infusion in myocardial perfusion scintigraphy

    International Nuclear Information System (INIS)

    Gopinath, G.; Naojee, S.A.; Croasdale, J.; Johnson, G.; Hilson, A.J.W.; Buscombe, J.R.

    2003-01-01

    Pharmacological stress imaging techniques are used widely in clinical nuclear cardiology for evaluation of ischemic heart disease. Adenosine is often used but is expensive and causes significant side effects .The aim of this retrospective review was to study the tolerance and efficacy, of adenosine infusion of a 3 minute (min) versus the conventional 6 min stress protocol and to assess the cost efficiency of the 3 min protocol. Three hundred thirty one patients had myocardial scintigraphy using adenosine as a stressing agent. Blood pressure, heart rate and ECG were recorded at baseline and during the test. Symptoms (flushing, headache, chest pain, dyspnoea, neck pain) were recorded throughout the adenosine infusion. All the patients had had either 6 min or 3 min adenosine infusion at 140 mg/kg per minute. 169 of them had side effects. Flushing (32% at 3 min vs 50 % at 6 min, p<0.05), headache (11.5% at 3 min vs 7 % at 6 min p-not significant-ns), chest pain (8% at 3 min vs 13 % at 6 min, ns), dyspnoea (7% at 3 min vs %10 at 6 min, ns), ECG changes (10% at 3 min vs 28% at 6 min, p<0.05), neck pain (4.5% at 3 min vs 9% at 6 min, ns), abdominal discomfort (3% at 3 min vs 3% at 6 min, ns) and fall in blood pressure (6% at 3 min vs 8.5% at 6 min, ns). The change in heart rate was not significant with either protocol. The 6 min and 3 min infusions of adenosine had similar accuracy (73% vs 70%) for the detection of coronary artery disease. The patients tolerated the 3 min protocol better with only 40% of the patients having minimal side effects compared with 60% for the 6 mon protocol. The 3 min protocol is also cost effective as it uses less adenosine and therefore reduces total costs by 40 US$ per patient. (author)

  11. Injurious mechanical ventilation in the normal lung causes a progressive pathologic change in dynamic alveolar mechanics.

    Science.gov (United States)

    Pavone, Lucio A; Albert, Scott; Carney, David; Gatto, Louis A; Halter, Jeffrey M; Nieman, Gary F

    2007-01-01

    Acute respiratory distress syndrome causes a heterogeneous lung injury, and without protective mechanical ventilation a secondary ventilator-induced lung injury can occur. To ventilate noncompliant lung regions, high inflation pressures are required to 'pop open' the injured alveoli. The temporal impact, however, of these elevated pressures on normal alveolar mechanics (that is, the dynamic change in alveolar size and shape during ventilation) is unknown. In the present study we found that ventilating the normal lung with high peak pressure (45 cmH(2)0) and low positive end-expiratory pressure (PEEP of 3 cmH(2)O) did not initially result in altered alveolar mechanics, but alveolar instability developed over time. Anesthetized rats underwent tracheostomy, were placed on pressure control ventilation, and underwent sternotomy. Rats were then assigned to one of three ventilation strategies: control group (n = 3, P control = 14 cmH(2)O, PEEP = 3 cmH(2)O), high pressure/low PEEP group (n = 6, P control = 45 cmH(2)O, PEEP = 3 cmH(2)O), and high pressure/high PEEP group (n = 5, P control = 45 cmH(2)O, PEEP = 10 cmH(2)O). In vivo microscopic footage of subpleural alveolar stability (that is, recruitment/derecruitment) was taken at baseline and than every 15 minutes for 90 minutes following ventilator adjustments. Alveolar recruitment/derecruitment was determined by measuring the area of individual alveoli at peak inspiration (I) and end expiration (E) by computer image analysis. Alveolar recruitment/derecruitment was quantified by the percentage change in alveolar area during tidal ventilation (%I - E Delta). Alveoli were stable in the control group for the entire experiment (low %I - E Delta). Alveoli in the high pressure/low PEEP group were initially stable (low %I - E Delta), but with time alveolar recruitment/derecruitment developed. The development of alveolar instability in the high pressure/low PEEP group was associated with histologic lung injury. A large change in

  12. 3:1 compression to ventilation ratio versus continuous chest compression with asynchronous ventilation in a porcine model of neonatal resuscitation.

    Science.gov (United States)

    Schmölzer, Georg M; O'Reilly, Megan; Labossiere, Joseph; Lee, Tze-Fun; Cowan, Shaun; Nicoll, Jessica; Bigam, David L; Cheung, Po-Yin

    2014-02-01

    In contrast to the resuscitation guidelines of children and adults, guidelines on neonatal resuscitation recommend synchronized 90 chest compressions with 30 manual inflations (3:1) per minute in newborn infants. The study aimed to determine if chest compression with asynchronous ventilation improves the recovery of bradycardic asphyxiated newborn piglets compared to 3:1 Compression:Ventilation cardiopulmonary resuscitation (CPR). Term newborn piglets (n=8/group) were anesthetized, intubated, instrumented and exposed to 45-min normocapnic hypoxia followed by asphyxia. Protocolized resuscitation was initiated when heart rate decreased to 25% of baseline. Piglets were randomized to receive resuscitation with either 3:1 compressions to ventilations (3:1C:V CPR group) or chest compressions with asynchronous ventilations (CCaV) or sham. Continuous respiratory parameters (Respironics NM3(®)), cardiac output, mean systemic and pulmonary artery pressures, and regional blood flows were measured. Piglets in 3:1C:V CPR and CCaV CPR groups had similar time to return of spontaneous circulation, survival rates, hemodynamic and respiratory parameters during CPR. The systemic and regional hemodynamic recovery in the subsequent 4h was similar in both groups and significantly lower compared to sham-operated piglets. Newborn piglets resuscitated by CCaV had similar return of spontaneous circulation, survival, and hemodynamic recovery compared to those piglets resuscitated by 3:1 Compression:Ventilation ratio. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  14. Pool fires in a large scale ventilation system

    International Nuclear Information System (INIS)

    Smith, P.R.; Leslie, I.H.; Gregory, W.S.; White, B.

    1991-01-01

    A series of pool fire experiments was carried out in the Large Scale Flow Facility of the Mechanical Engineering Department at New Mexico State University. The various experiments burned alcohol, hydraulic cutting oil, kerosene, and a mixture of kerosene and tributylphosphate. Gas temperature and wall temperature measurements as a function of time were made throughout the 23.3m 3 burn compartment and the ducts of the ventilation system. The mass of the smoke particulate deposited upon the ventilation system 0.61m x 0.61m high efficiency particulate air filter for the hydraulic oil, kerosene, and kerosene-tributylphosphate mixture fires was measured using an in situ null balance. Significant increases in filter resistance were observed for all three fuels for burning time periods ranging from 10 to 30 minutes. This was found to be highly dependent upon initial ventilation system flow rate, fuel type, and flow configuration. The experimental results were compared to simulated results predicted by the Los Alamos National Laboratory FIRAC computer code. In general, the experimental and the computer results were in reasonable agreement, despite the fact that the fire compartment for the experiments was an insulated steel tank with 0.32 cm walls, while the compartment model FIRIN of FIRAC assumes 0.31 m thick concrete walls. This difference in configuration apparently caused FIRAC to consistently underpredict the measured temperatures in the fire compartment. The predicted deposition of soot proved to be insensitive to ventilation system flow rate, but the measured values showed flow rate dependence. However, predicted soot deposition was of the same order of magnitude as measured soot deposition

  15. [Nasal CPAP versus mechanical ventilation in 28 to 32-week preterm infants with early surfactant administration].

    Science.gov (United States)

    Pérez, Luis Alfonso; González, Diana Marcela; Álvarez, Karen Margarita de Jesús; Díaz-Martínez, Luis Alfonso

    2014-01-01

    Continuous positive airway pressure (CPAP) is useful in low birth weight infants with respiratory distress, but it is not known if it is a better alternative to mechanical ventilation after early pulmonary surfactant administration. To compare the incidence of adverse events in 28 to 32-week newborns with respiratory distress managed with mechanical ventilation or CPAP after early surfactant administration. In total, 176 newborns were treated with CPAP and 147 with mechanical ventilation, all with Apgar scores >3 at five minutes and without apnea. The incidence of CPAP failure was 6.5% (95% CI: 11.3-22.8%); 29 patients died: 7 with CPAP (4.0%) and 22 with mechanical ventilation (15.0%, pmechanical ventilation was 0.27 (95% CI: 0.12-0.61), but after adjusting for confounding factors, CPAP use did not imply a higher risk of dying (RR=0.60; 95% CI: 0.29-1.24). Mechanical ventilation fatality rate was 5.70 (95% CI: 3.75-8.66) deaths/1,000 days-patient, while with CPAP it was 1.37 (95% CI: 0.65-2.88, pmechanical ventilation (RR=0.71; 95% CI: 0.54-0.96), as were intracranial hemorrhage (RR=0.28, 95% CI: 0.09-0.84) and sepsis (RR=0.67; 95%CI: 0.52-0.86), and it was similar for air leaks (RR=2.51; 95% CI: 0.83-7.61) and necrotizing enterocolitis (RR=1.68, 95% CI: 0.59-4.81). CPAP exposure of premature infants with respiratory distress syndrome is protective against chronic lung disease, intraventricular hemorrhage and sepsis compared to mechanical ventilation. No differences were observed regarding air leak syndrome or death.

  16. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  17. The magnetic properties of $^{\\rm 177}$Hf and $^{\\rm 180}$Hf in the strong coupling deformed model

    OpenAIRE

    Muto, S.; Stone, N. J.; Bingham, C. R.; Stone, J. R.; Walker, P. M.; Audi, G.; Gaulard, C.; Köster, U.; Nikolov, J.; Nishimura, K.; Ohtsubo, T.; Podolyak, Z.; Risegari, L.; Simpson, G. S.; Veskovic, M.

    2014-01-01

    This paper reports NMR measurements of the magnetic dipole moments of two high-K isomers, the 37/2$^-$, 51.4 m, 2740 keV state in $^{\\rm 177}$Hf and the 8$^-$, 5.5 h, 1142 keV state in $^{\\rm 180}$Hf by the method of on-line nuclear orientation. Also included are results on the angular distributions of gamma transitions in the decay of the $^{\\rm 177}$Hf isotope. These yield high precision E2/M1 multipole mixing ratios for transitions in bands built on the 23/2$^+$, 1.1 s, isomer at 1315 keV ...

  18. Low tidal volume mechanical ventilation against no ventilation during cardiopulmonary bypass heart surgery (MECANO): study protocol for a randomized controlled trial.

    Science.gov (United States)

    Nguyen, Lee S; Merzoug, Messaouda; Estagnasie, Philippe; Brusset, Alain; Law Koune, Jean-Dominique; Aubert, Stephane; Waldmann, Thierry; Grinda, Jean-Michel; Gibert, Hadrien; Squara, Pierre

    2017-12-02

    Postoperative pulmonary complications are a leading cause of morbidity and mortality after cardiac surgery. There are no recommendations on mechanical ventilation associated with cardiopulmonary bypass (CPB) during surgery and anesthesiologists perform either no ventilation (noV) at all during CPB or maintain low tidal volume (LTV) ventilation. Indirect evidence points towards better pulmonary outcomes when LTV is performed but no large-scale prospective trial has yet been published in cardiac surgery. The MECANO trial is a single-center, double-blind, randomized, controlled trial comparing two mechanical ventilation strategies, noV and LTV, during cardiac surgery with CPB. In total, 1500 patients are expected to be included, without any restrictions. They will be randomized between noV and LTV on a 1:1 ratio. The noV group will receive no ventilation during CPB. The LTV group will receive 5 breaths/minute with a tidal volume of 3 mL/kg and positive end-expiratory pressure of 5 cmH2O. The primary endpoint will be a composite of all-cause mortality, early respiratory failure defined as a ratio of partial pressure of oxygen/fraction of inspired oxygen ventilation, mechanical ventilation or high-flow oxygen) at 2 days after arrival in the ICU or ventilator-acquired pneumonia defined by the Center of Disease Control. Lung recruitment maneuvers will be performed in the noV and LTV groups at the end of surgery and at arrival in ICU with an insufflation at +30 cmH20 for 5 seconds. Secondary endpoints are those composing the primary endpoint with the addition of pneumothorax, CPB duration, quantity of postoperative bleeding, red blood cell transfusions, revision surgery requirements, length of stay in the ICU and in the hospital and total hospitalization costs. Patients will be followed until hospital discharge. The MECANO trial is the first of its kind to compare in a double-blind design, a no-ventilation to a low-tidal volume strategy for mechanical ventilation during

  19. Low-Frequency Waves in HF Heating of the Ionosphere

    Science.gov (United States)

    Sharma, A. S.; Eliasson, B.; Milikh, G. M.; Najmi, A.; Papadopoulos, K.; Shao, X.; Vartanyan, A.

    2016-02-01

    Ionospheric heating experiments have enabled an exploration of the ionosphere as a large-scale natural laboratory for the study of many plasma processes. These experiments inject high-frequency (HF) radio waves using high-power transmitters and an array of ground- and space-based diagnostics. This chapter discusses the excitation and propagation of low-frequency waves in HF heating of the ionosphere. The theoretical aspects and the associated models and simulations, and the results from experiments, mostly from the HAARP facility, are presented together to provide a comprehensive interpretation of the relevant plasma processes. The chapter presents the plasma model of the ionosphere for describing the physical processes during HF heating, the numerical code, and the simulations of the excitation of low-frequency waves by HF heating. It then gives the simulations of the high-latitude ionosphere and mid-latitude ionosphere. The chapter also briefly discusses the role of kinetic processes associated with wave generation.

  20. Theoretical Assessment of 178m2Hf De-Excitation

    Energy Technology Data Exchange (ETDEWEB)

    Hartouni, E P; Chen, M; Descalle, M A; Escher, J E; Loshak, A; Navratil, P; Ormand, W E; Pruet, J; Thompson, I J; Wang, T F

    2008-10-06

    This document contains a comprehensive literature review in support of the theoretical assessment of the {sup 178m2}Hf de-excitation, as well as a rigorous description of controlled energy release from an isomeric nuclear state.

  1. HF Surface Wave Radar Operation in Adverse Conditions

    National Research Council Canada - National Science Library

    Ponsford, Anthony M; Dizaji, Reza M; McKerracher, Richard

    2005-01-01

    ...) system based on HF Surface Wave Radar (HFSWR). the primary objective behind the programme was to demonstrate the capability of HFSWR to continuously detect and track surface targets (ships and icebergs...

  2. HF band filter bank multi-carrier spread spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Laraway, Stephen Andrew; Moradi, Hussein; Farhang-Boroujeny, Behrouz

    2015-10-01

    Abstract—This paper describes modifications to the filter bank multicarrier spread spectrum (FB-MC-SS) system, that was presented in [1] and [2], to enable transmission of this waveform in the HF skywave channel. FB-MC-SS is well suited for the HF channel because it performs well in channels with frequency selective fading and interference. This paper describes new algorithms for packet detection, timing recovery and equalization that are suitable for the HF channel. Also, an algorithm for optimizing the peak to average power ratio (PAPR) of the FBMC- SS waveform is presented. Application of this algorithm results in a waveform with low PAPR. Simulation results using a wide band HF channel model demonstrate the robustness of this system over a wide range of delay and Doppler spreads.

  3. HF-voltage testing of accelerating system functional model

    International Nuclear Information System (INIS)

    Gladkov, A.V.; Stepanov, V.B.

    1989-01-01

    Owing to ambiguity in interpreting the notion of the electron strength of the operating HF device in an acceleator a technique of measurements and result processing, based on statistical analysis of the data is suggested. Experimental testing on electric strength of structures with HF focusing was carried out using a bench in the form of a cylindrical vacuum container inside which a double H-resonator with HF quadrupole electrodes without surface modulation was installed. The dependences obtained permit to evaluate the bahaviour of the HF device from the viewpoint of electric strength and radiation hazard for the whole range of possible values of voltage on the basis of data on the frequency of breakdowns and radiation situation only in one experimental point. 12 refs.; 8 figs

  4. Stockpiling Ventilators for Influenza Pandemics.

    Science.gov (United States)

    Huang, Hsin-Chan; Araz, Ozgur M; Morton, David P; Johnson, Gregory P; Damien, Paul; Clements, Bruce; Meyers, Lauren Ancel

    2017-06-01

    In preparing for influenza pandemics, public health agencies stockpile critical medical resources. Determining appropriate quantities and locations for such resources can be challenging, given the considerable uncertainty in the timing and severity of future pandemics. We introduce a method for optimizing stockpiles of mechanical ventilators, which are critical for treating hospitalized influenza patients in respiratory failure. As a case study, we consider the US state of Texas during mild, moderate, and severe pandemics. Optimal allocations prioritize local over central storage, even though the latter can be deployed adaptively, on the basis of real-time needs. This prioritization stems from high geographic correlations and the slightly lower treatment success assumed for centrally stockpiled ventilators. We developed our model and analysis in collaboration with academic researchers and a state public health agency and incorporated it into a Web-based decision-support tool for pandemic preparedness and response.

  5. International Ventilation Cooling Application Database

    DEFF Research Database (Denmark)

    Holzer, Peter; Psomas, Theofanis Ch.; OSullivan, Paul

    2016-01-01

    The currently running International Energy Agency, Energy and Conservation in Buildings, Annex 62 Ventilative Cooling (VC) project, is coordinating research towards extended use of VC. Within this Annex 62 the joint research activity of International VC Application Database has been carried out...... and locations, using VC as a mean of indoor comfort improvement. The building-spreadsheet highlights distributions of technologies and strategies, such as the following. (Numbers in % refer to the sample of the database’s 91 buildings.) It may be concluded that Ventilative Cooling is applied in temporary......, systematically investigating the distribution of technologies and strategies within VC. The database is structured as both a ticking-list-like building-spreadsheet and a collection of building-datasheets. The content of both closely follows Annex 62 State-Of-The- Art-Report. The database has been filled, based...

  6. Displacement Ventilation in Hospital Environments

    DEFF Research Database (Denmark)

    Li, Yuguo; Nielsen, Peter V.; Sandberg, Mats

    2011-01-01

    Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors. In m....... In most health-care environments, harmful microorganisms and infectious aerosols may exist in relatively high concentration. They are particularly harmful to patients due to reduced immunity, and to those with open wounds.......Hospital differ from conventional buildings in terms of ventilation needs. Exhaled infectious droplets or droplet nuclei of an infected patient need to be removed in general wards, waiting areas and isolation rooms to minimize transmission to health-care workers, other patients and visitors...

  7. Integrated magnetics design for HF-link power converters

    Energy Technology Data Exchange (ETDEWEB)

    Ljusev, P.; Andersen, Michael A.E.

    2005-07-01

    This paper deals with the design of integrated magnetics for HF-link converters, where the two integrated magnetic components on the same core do not necessarily belong to the same voltage loop. Depending on the specific HF-link converter topology, the proposed integrated magnetics can either alleviate the derivation of independent auxiliary supply voltages from the main transformer or integrate other magnetic structures, thus saving board space and cutting costs. (au)

  8. Large Magnetic Anisotropy in HfMnP

    Science.gov (United States)

    Parker, David; Lamichhane, Tej; Taufour, Valentin; Masters, Morgan; Thimmaiah, Srinivasa; Bud'Ko, Ser'gey; Canfield, Paul

    We present a theoretical and experimental study of two little-studied manganese phosphide ferromagnets, HfMnP and ZrMnP, with Curie temperatures above room temperature. We find an anisotropy field in HfMnP approaching 10 T - larger than that of the permanent magnet workhorse NdFeB magnets. From theory we determine the source of this anisotropy. Our results show the potential of 3d-element-based magnetic materials for magnetic applications.

  9. Are there benefits or harm from pressure targeting during lung-protective ventilation?

    Science.gov (United States)

    MacIntyre, Neil R; Sessler, Curtis N

    2010-02-01

    Mechanically, breath design is usually either flow/volume-targeted or pressure-targeted. Both approaches can effectively provide lung-protective ventilation, but they prioritize different ventilation parameters, so their responses to changing respiratory-system mechanics and patient effort are different. These different response behaviors have advantages and disadvantages that can be important in specific circumstances. Flow/volume targeting guarantees a set minute ventilation but sometimes may be difficult to synchronize with patient effort, and it will not limit inspiratory pressure. In contrast, pressure targeting, with its variable flow, may be easier to synchronize and will limit inspiratory pressure, but it provides no control over delivered volume. Skilled clinicians can maximize benefits and minimize problems with either flow/volume targeting or pressure targeting. Indeed, as is often the case in managing complex life-support devices, it is operator expertise rather than the device design features that most impacts patient outcomes.

  10. Early predictors of success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

    Science.gov (United States)

    Bhattacharyya, D; Prasad, Bnbm; Tampi, P S; Ramprasad, R

    2011-10-01

    Non-invasive positive pressure ventilation (NIPPV) has emerged as a significant advancement in the management of acute hypercapnic respiratory failure. Patients with hypercapnic respiratory failure requiring ventilation therapy (respiratory rate [RR] of > 30 breaths per minutes, PaCO2 > 55 mmHg and arterial pH success group and these parameters continued to improve even after four and 24 hours of NIPPV treatment. Out of 24 (24%) patients who failed to respond, 13 (54%) needed endotracheal intubation within one hour. The failure group had higher baseline HR than the success group. Improvement in HR, RR, pH, and PCO2 one hour after putting the patient on NIPPV predicts success of non-invasive positive pressure ventilation in hypercapnic respiratory failure.

  11. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    Different measurement procedures are available for the experimental assessment of air change rates inside ventilated enclosures. These mainly consist of tracer gas techniques and can usually be applied to steady-state or moderately transient conditions and when a continous mixing of the indoor air...... ventilation. The results are critically compared with the air flow rates assessed through anemometric measurements. The measurement features, limitations, shortcomings and uncertainties are also discussed....... is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...

  12. Comparative analysis of parameters of oxygenation, ventilation and acid-base status during intraoperative application of conventional and protective lung ventilation

    Directory of Open Access Journals (Sweden)

    Videnović N.

    2015-01-01

    Full Text Available The aim of this study was to perform a comparative analysis applied conventional (traditional and protective mechanical lung ventilation in clinical conditions with regard to intraoperative parameters changes of oxygenation, ventilation and acid-base status. This was a prospective study that included 240 patients. All patients underwent the same elective surgery (classic cholecystectomy. Patients were divided into two groups of 120 patients, A and B. In group A during the operation had received conventional lung ventilation with tidal volume of 10-15 ml/kg body weight, respiratory rate 12/min. and a PEEP zero. In group B was applied protective lung ventilation with a tidal volume of 6-8 ml/kg body weight, respiratory rate 12/min. and a PEEP of 7 mbar. Monitoring of oxygenation included the monitoring SaO2 and PaO2. Monitoring of ventilation included the determination of the value of tidal volume and minute volume ventilation, peak inspiratory pressure (Ppeak, medium pressure in the airway (Paw.mean, PEEP, PaCO2 and EtCO2. Monitoring of acid-base status was performed via determination of the pH values of arterial blood. Monitoring was carried out in four intervals: T1 - 5-10 minutes after the establishment of the airway, T2 - after opening peritoneum, T3 - after removal of the gallbladder, T4 - after the closure of the abdominal wall. All monitoring results are presented as mean. The statistical significance of differences in mean values was tested by t - test mean values in the case of two independent samples. As a statistical significance test taken as standard values p <0.01 and p <0.001. Comparative analysis of the value of SaO2, PaO2, Ppeak did not reach statistical significance. Statistical significance there is in the analysis of values of tidal volume and Paw.mean (p <0.001. Analysis of PaCO2 and pH of arterial blood showed no statistical significance in the first interval measurements but did interval T2-T4 (p <0.001. Based on the

  13. Thermoelectric properties of doped BaHfO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dixit, Chandra Kr., E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Dr. Shakuntala Misra National Rehabilitation University, Lucknow-229001, U.P India (India); Bhamu, K. C. [Department of Physics, Goa University, Goa-403 206 (India); Sharma, Ramesh, E-mail: ckparadise@gmail.com, E-mail: sharmarameshfgiet@gmail.com [Dept. of Physics, Feroze Gandhi Institute of Engineering & Technology, Raebareli-229001, U.P India (India)

    2016-05-06

    We have studied the structural stability, electronic structure, optical properties and thermoelectric properties of doped BaHfO{sub 3} by full potential linearized augmented plane wave (FP-LAPW) method. The electronic structure of BaHfO{sub 3} doped with Sr shows enhances the indirect band gaps of 3.53 eV, 3.58 eV. The charge density plots show strong ionic bonding in Ba-Hf, and ionic and covalent bonding between Hf and O. Calculations of the optical spectra, viz., the dielectric function, refractive index and extinction coefficient are performed for the energy range are calculated and analyzed. Thermoelectric properties of semi conducting are also reported first time. The doped BaHfO{sub 3} is approximately wide band gap semiconductor with the large p-type Seebeck coefficient. The power factor of BaHfO{sub 3} is increased with Sr doping, decreases because of low electrical resistivity and thermal conductivity.

  14. The isobutylene-isobutane alkylation process in liquid HF revisited.

    Science.gov (United States)

    Esteves, P M; Araújo, C L; Horta, B A C; Alvarez, L J; Zicovich-Wilson, C M; Ramírez-Solís, A

    2005-07-07

    Details on the mechanism of HF catalyzed isobutylene-isobutane alkylation were investigated. On the basis of available experimental data and high-level quantum chemical calculations, a detailed reaction mechanism is proposed taking into account solvation effects of the medium. On the basis of our computational results, we explain why the density of the liquid media and stirring rates are the most important parameters to achieve maximum yield of alkylate, in agreement with experimental findings. The ab initio Car-Parrinello molecular dynamics calculations show that isobutylene is irreversibly protonated in the liquid HF medium at higher densities, leading to the ion pair formation, which is shown to be a minimum on the potential energy surface after optimization using periodic boundary conditions. The HF medium solvates preferentially the fluoride anion, which is found as solvated [FHF](-) or solvated F(-.)(HF)(3). On the other hand, the tert-butyl cation is weakly solvated, where the closest HF molecules appear at a distance of about 2.9 Angstrom with the fluorine termination of an HF chain.

  15. Solid phase crystallisation of HfO2 thin films

    International Nuclear Information System (INIS)

    Modreanu, M.; Sancho-Parramon, J.; O'Connell, D.; Justice, J.; Durand, O.; Servet, B.

    2005-01-01

    In this paper, we report on the solid phase crystallisation of carbon-free HfO 2 thin films deposited by plasma ion assisted deposition (PIAD). After deposition, the HfO 2 films were annealed in N 2 ambient for 3 h at 350, 550 and 750 deg. C. Several characterisation techniques including X-ray reflectometry (XRR), X-ray diffraction (XRD), spectroscopic ellipsometry (SE) and atomic force microscopy (AFM) were used for the physical characterisation of as-deposited and annealed HfO 2 . XRD has revealed that the as-deposited HfO 2 film is in an amorphous-like state with only traces of crystalline phase and that the annealed films are in a highly crystalline state. These results are in good agreement with the SE results showing an increase of refractive index by increasing the annealing temperature. XRR results show a significant density gradient over the as-deposited film thickness, which is characteristic of the PIAD method. The AFM measurements show that the HfO 2 layers have a smooth surface even after annealing at 750 deg. C. The present study demonstrates that the solid phase crystallisation of HfO 2 PIAD thin films starts at a temperature as low as 550 deg. C

  16. Sequential sputtered Co-HfO{sub 2} granular films

    Energy Technology Data Exchange (ETDEWEB)

    Chadha, M.; Ng, V.

    2017-03-15

    A systematic study of magnetic, magneto-transport and micro-structural properties of Co-HfO{sub 2} granular films fabricated by sequential sputtering is presented. We demonstrate reduction in ferromagnetic-oxide formation by using HfO{sub 2} as the insulting matrix. Microstructure evaluation of the films showed that the film structure consisted of discrete hcp-Co grains embedded in HfO{sub 2} matrix. Films with varying compositions were prepared and their macroscopic properties were studied. We correlate the variation in these properties to the variation in film microstructure. Our study shows that Co-HfO{sub 2} films with reduced cobalt oxide and varying properties can be prepared using sequential sputtering technique. - Highlights: • Co-HfO{sub 2} granular films were prepared using sequential sputtering. • A reduction in ferromagnetic-oxide formation is observed. • Co-HfO{sub 2} films display superparamagnetism and tunnelling magneto-resistance. • Varying macroscopic properties were achieved by changing film composition. • Applications can be found in moderate MR sensors and high –frequency RF devices.

  17. Ventilation-air conditioning system

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1991-01-01

    Heretofore, in ventilation-air conditioning systems in a nuclear power plant, exhaust gases from each of the ventilation-air conditioning systems of a reactor building, a turbine building, a waste processing building are joined and they are released into atmosphere from the top of a high main exhaustion stack. In order to build such a high main exhaustion stack, a considerable construction cost is required and, in addition, there is a worry of lacking balance with surrounding scenery. Then, in the present invention, exhaust gases are heated by waste heat in a turbine during their introduction from the ventilation-air conditioning facility in the building of a power plant to the main exhaust stack. With such a constitution, since the exhaust gases are heated and their temperature is elevated, they uprise by natural convection when they are released from the top of the main exhaustion stack to the atmosphere. Accordingly, they are released to a level higher than the conventional case in view of the volume of the blower which sends the exhaust gases under pressure, to diffuse them to the atmosphere more sufficiently compared with a conventional case. Further, the height of the main exhaustion stack can be reduced, enabling to minimize the cost for moving the blower. (T.M.)

  18. Econometric Assessment of "One Minute" Paper as a Pedagogic Tool

    Science.gov (United States)

    Das, Amaresh

    2010-01-01

    This paper makes an econometric testing of one-minute paper used as a tool to manage and assess instruction in my statistics class. One of our findings is that the one minute paper when I have tested it by using an OLS estimate in a controlled Vs experimental design framework is found to statistically significant and effective in enhancing…

  19. One-Minute Paper: A thinking centered assessment tool | Ashakiran ...

    African Journals Online (AJOL)

    A versatile assessment technique used in classroom for quick and simple feedback is 'One-Minute paper'. It provides real-time feedback from class and enables the teacher to find out if students have recognized the main points in a class session. The objectives of the study were to employ one-minute paper for ...

  20. Alterations in the morphology of skeletal myofibres after 90 minutes ...

    African Journals Online (AJOL)

    Alterations in the morphology of skeletal myofibres after 90 minutes of ischaemia and '- 3 hours of reperfusion. M.A. Gregory, M. Mars. Abstract. Morphometric, light and electron microscopic methods were employed to determine whether skeletal myofibres were damaged by 90 minutes of tourniquet-mediated ischaemia.

  1. 3-minute Stephen Hawking. His life, theories and influence

    International Nuclear Information System (INIS)

    Parsons, Paul; Dixon, Gail

    2013-01-01

    3-minutes Stephen Hawking offers a compact introduction to life and work of this impressing scientist. This book is devided into three parts: Hawking's life, his theories, his influence. Each part offers fascinating reading material for one hour. The partial themes of this book are served up in practical 3-minute portions.

  2. 2-minute Gridded Global Relief Data (ETOPO2) v2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Two-minute gridded global relief for both ocean and land areas are available in the ETOPO2v2 (2006) database. ETOPO2v2 replaced ETOPO2 (2001). The historic 2-minute...

  3. Dual HF radar study of the subauroral polarization stream

    Directory of Open Access Journals (Sweden)

    R. A. Makarevich

    2008-01-01

    Full Text Available The dual HF radars comprising the Tasman International Geophysical Environment Radar (TIGER system often observe localized high-velocity F-region plasma flows (≥1500 m/s in the midnight sector (20:00–02:00 MLT at magnetic latitudes as low as Λ=60° S. The flow channels exhibit large variability in the latitudinal extent and electric field strength, and are similar to the subauroral polarization stream or SAPS, a plasma convection feature thought to be related to the polarization electric field due to the charge separation during substorm and storm development. In this study, the 2-D plasma drift velocity within the channel is derived for each of the two TIGER radars from the maximum velocities measured in all 16 radar beams within the latitudinally narrow channel, and the time variation of the subauroral electric field is examined near substorm onset. It is demonstrated that the flow channel often does not have a clear onset, rather it manifests differently in different phases of its evolution and can persist for at least two substorm cycles. During the growth phase the electric fields within the flow channel are difficult to distinguish from those of the background auroral convection but they start to increase near substorm onset and peak during the recovery phase, in contrast to what has been reported previously for auroral convection which peaks just before the substorm onset and falls sharply at the substorm onset. The response times to substorm onset range from −5 to +40 min and show some dependence on the substorm location with longer delays observed for substorms eastward of the radars' viewing area. The propagation velocity of the high-velocity region is also investigated by comparing the observations from the two closely-spaced TIGER radars. The observations are consistent with the notion that the polarization electric field is established with the energetic ions drifting westward and equatorward from the initial substorm

  4. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  5. Mechanical ventilators in US acute care hospitals.

    Science.gov (United States)

    Rubinson, Lewis; Vaughn, Frances; Nelson, Steve; Giordano, Sam; Kallstrom, Tom; Buckley, Tim; Burney, Tabinda; Hupert, Nathaniel; Mutter, Ryan; Handrigan, Michael; Yeskey, Kevin; Lurie, Nicole; Branson, Richard

    2010-10-01

    The supply and distribution of mechanical ventilation capacity is of profound importance for planning for severe public health emergencies. However, the capability of US health systems to provide mechanical ventilation for children and adults remains poorly quantified. The objective of this study was to determine the quantity of adult and pediatric mechanical ventilators at US acute care hospitals. A total of 5,752 US acute care hospitals included in the 2007 American Hospital Association database were surveyed. We measured the quantities of mechanical ventilators and their features. Responding to the survey were 4305 (74.8%) hospitals, which accounted for 83.8% of US intensive care unit beds. Of the 52,118 full-feature mechanical ventilators owned by respondent hospitals, 24,204 (46.4%) are pediatric/neonatal capable. Accounting for nonrespondents, we estimate that there are 62,188 full-feature mechanical ventilators owned by US acute care hospitals. The median number of full-feature mechanical ventilators per 100,000 population for individual states is 19.7 (interquartile ratio 17.2-23.1), ranging from 11.9 to 77.6. The median number of pediatric-capable device full-feature mechanical ventilators per 100,000 population younger than 14 years old is 52.3 (interquartile ratio 43.1-63.9) and the range across states is 22.1 to 206.2. In addition, respondent hospitals reported owning 82,755 ventilators other than full-feature mechanical ventilators; we estimate that there are 98,738 devices other than full-feature ventilators at all of the US acute care hospitals. The number of mechanical ventilators per US population exceeds those reported by other developed countries, but there is wide variation across states in the population-adjusted supply. There are considerably more pediatric-capable ventilators than there are for adults only on a population-adjusted basis.

  6. Evaluation of a flexible bronchoscope prototype designed for bronchoscopy during mechanical ventilation: a proof-of-concept study.

    Science.gov (United States)

    Nay, M-A; Auvet, A; Mankikian, J; Herve, V; Dequin, P-F; Guillon, A

    2017-06-01

    Bronchoscopy during mechanical ventilation of patients' lungs significantly affects ventilation because of partial obstruction of the tracheal tube, and may thus be omitted in the most severely ill patients. It has not previously been possible to reduce the external diameter of the bronchoscope without reducing the diameter of the suction channel, thus reducing the suctioning capacity of the device. We believed that a better-designed bronchoscope could improve the safety of bronchoscopy in patients whose lungs were ventilated. We designed a flexible bronchoscope prototype with a drumstick-shaped head consisting of a long, thin proximal portion; a short and large distal portion for camera docking; and a large suction channel throughout the length of the device. The aims of our study were to test the impact of our prototype on mechanical ventilation when inserted into the tracheal tube, and to assess suctioning capacity. We first tested the efficiency of the suction channel, and demonstrated that the suction flow of the prototype was similar to that of conventional adult bronchoscopes. We next evaluated the consequences of bronchoscopy when using the prototype on minute ventilation and intrathoracic pressures during mechanical ventilation: firstly, in vitro using a breathing simulator; and secondly, in vivo using a porcine model of pulmonary ventilation. The insertion of adult bronchoscopes into the tracheal tube immediately impaired the protective ventilation strategy employed, whereas the prototype preserved it. For the first time, we have developed an innovative flexible bronchoscope designed for bronchoscopy during invasive mechanical ventilation, that both preserved the protective ventilation strategy, and enabled efficient suction flow. © 2017 The Association of Anaesthetists of Great Britain and Ireland.

  7. Ventilation onset prior to umbilical cord clamping (physiological-based cord clamping improves systemic and cerebral oxygenation in preterm lambs.

    Directory of Open Access Journals (Sweden)

    Graeme R Polglase

    Full Text Available As measurement of arterial oxygen saturation (SpO2 is common in the delivery room, target SpO2 ranges allow clinicians to titrate oxygen therapy for preterm infants in order to achieve saturation levels similar to those seen in normal term infants in the first minutes of life. However, the influence of the onset of ventilation and the timing of cord clamping on systemic and cerebral oxygenation is not known.We investigated whether the initiation of ventilation, prior to, or after umbilical cord clamping, altered systemic and cerebral oxygenation in preterm lambs.Systemic and cerebral blood-flows, pressures and peripheral SpO2 and regional cerebral tissue oxygenation (SctO2 were measured continuously in apnoeic preterm lambs (126±1 day gestation. Positive pressure ventilation was initiated either 1 prior to umbilical cord clamping, or 2 after umbilical cord clamping. Lambs were monitored intensively prior to intervention, and for 10 minutes following umbilical cord clamping.Clamping the umbilical cord prior to ventilation resulted in a rapid decrease in SpO2 and SctO2, and an increase in arterial pressure, cerebral blood flow and cerebral oxygen extraction. Ventilation restored oxygenation and haemodynamics by 5-6 minutes. No such disturbances in peripheral or cerebral oxygenation and haemodynamics were observed when ventilation was initiated prior to cord clamping.The establishment of ventilation prior to umbilical cord clamping facilitated a smooth transition to systemic and cerebral oxygenation following birth. SpO2 nomograms may need to be re-evaluated to reflect physiological management of preterm infants in the delivery room.

  8. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark Raymond [Univ. of California, Berkeley, CA (United States)

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 μm were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on the

  9. Reconciliation of the excess 176Hf conundrum in meteorites: Recent disturbances of the Lu-Hf and Sm-Nd isotope systematics

    Science.gov (United States)

    Bast, Rebecca; Scherer, Erik E.; Sprung, Peter; Mezger, Klaus; Fischer-Gödde, Mario; Taetz, Stephan; Böhnke, Mischa; Schmid-Beurmann, Hinrich; Münker, Carsten; Kleine, Thorsten; Srinivasan, Gopalan

    2017-09-01

    The long-lived 176Lu-176Hf and 147Sm-143Nd radioisotope systems are commonly used chronometers, but when applied to meteorites, they can reveal disturbances. Specifically, Lu-Hf isochrons commonly yield dates up to ∼300 Myr older than the solar system and varying initial 176Hf/177Hf values. We investigated this problem by attempting to construct mineral and whole rock isochrons for eucrites and angrites. Meteorites from different parent bodies exhibit similar disturbance features suggesting that a common process is responsible. Minerals scatter away from isochron regressions for both meteorite classes, with low-Hf phases such as plagioclase and olivine typically being most displaced above (or left of) reference isochrons. Relatively Hf-rich pyroxene is less disturbed but still to the point of steepening Lu-Hf errorchrons. Using our Lu-Hf and Sm-Nd data, we tested various Hf and Lu redistribution scenarios and found that decoupling of Lu/Hf from 176Hf/177Hf must postdate the accumulation of significant radiogenic 176Hf. Therefore early irradiation or diffusion cannot explain the excess 176Hf. Instead, disturbed meteorite isochrons are more likely caused by terrestrial weathering, contamination, or common laboratory procedures. The partial dissolution of phosphate minerals may predominantly remove rare earth elements including Lu, leaving relatively immobile and radiogenic Hf behind. Robust Lu-Hf (and improved Sm-Nd) meteorite geochronology will require the development of chemical or physical methods for removing unsupported radiogenic Hf and silicate-hosted terrestrial contaminants without disturbing parent-daughter ratios.

  10. Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada

    Science.gov (United States)

    Lowery, Claiborne L.E.; Miller, C.F.; Walker, B.A.; Wooden, J.L.; Mazdab, F.K.; Bea, F.

    2006-01-01

    Zirconium and Hf are nearly identical geochemically, and therefore most of the crust maintains near-chondritic Zr/Hf ratios of ???35-40. By contrast, many high-silica rhyolites and granites have anomalously low Zr/Hf (15-30). As zircon is the primary reservoir for both Zr and Hf and preferentially incorporates Zr, crystallization of zircon controls Zr/ Hf, imprinting low Zr/Hf on coexisting melt. Thus, low Zr/Hf is a unique fingerprint of effective magmatic fractionation in the crust. Age and compositional zonation in zircons themselves provide a record of the thermal and compositional histories of magmatic systems. High Hf (low Zr/ Hf) in zircon zones demonstrates growth from fractionated melt, and Ti provides an estimate of temperature of crystallization (TTiZ) (Watson and Harrison, 2005). Whole-rock Zr/Hf and zircon zonation in the Spirit Mountain batholith, Nevada, document repeated fractionation and thermal fluctuations. Ratios of Zr/Hf are ???30-40 for cumulates and 18-30 for high-SiO2 granites. In zircons, Hf (and U) are inversely correlated with Ti, and concentrations indicate large fluctuations in melt composition and TTiZ (>100??C) for individual zircons. Such variations are consistent with field relations and ion-probe zircon geochronology that indicate a >1 million year history of repeated replenishment, fractionation, and extraction of melt from crystal mush to form the low Zr/Hf high-SiO2 zone. ?? 2006 The Mineralogical Society.

  11. Isothermal cross-sections of Hf-Sc-Ga(800 deg C) and Hf-Ti-Ga (750 deg C) phase diagrams

    International Nuclear Information System (INIS)

    Markiv, V.Ya.; Belyavina, N.N.

    1981-01-01

    Isothermal cross sections of Hf-Sc-Ga (800 deg C) and Hf-Ti-Ga (750 deg C) state diagrams are plotted. The existence of two ternary Hfsub(0.1-0.8)Scsub(0.9)-sub(0.2)Ga and Hfsub(0.8)Scsub(0.2)Gasub(3) phases is stated in the Hf-Sc-Ga system. The crystal structure of these compounds investigated by the powder method belongs to the structural α-MoB and ZrAl 3 types respectively. Continuous rows of (Hf, Sc 5 Ga 5 , (Hf, Ti)Ga 3 and (Hf, Ti)Ga 2 solid solutions are formed in the investigated systems. Essential quantity of the third component dissolve binary Sc 5 Ga 4 , Sc 2 Ga 3 (15 and 30 at % Hf respectively), Hf 5 Ga 4 , HfGa 2 (20, 10 at. % Sc), Hf 5 Ga 4 , HfGa, Hf 5 Ga 3 , Hf 2 Ga 3 (48, 30, 46, 20 at. % Ti) gallides [ru

  12. Ge interactions on HfO2 surfaces and kinetically driven patterning of Ge nanocrystals on HfO2

    International Nuclear Information System (INIS)

    Stanley, Scott K.; Joshi, Sachin V.; Banerjee, Sanjay K.; Ekerdt, John G.

    2006-01-01

    Germanium interactions are studied on HfO 2 surfaces, which are prepared through physical vapor deposition (PVD) and by atomic layer deposition. X-ray photoelectron spectroscopy and temperature-programed desorption are used to follow the reactions of germanium on HfO 2 . Germanium chemical vapor deposition at 870 K on HfO 2 produces a GeO x adhesion layer, followed by growth of semiconducting Ge 0 . PVD of 0.7 ML Ge (accomplished by thermally cracking GeH 4 over a hot filament) also produces an initial GeO x layer, which is stable up to 800 K. PVD above 2.0 ML deposits semiconducting Ge 0 . Temperature programed desorption experiments of ∼1.0 ML Ge from HfO 2 at 400-1100 K show GeH 4 desorption below 600 K and GeO desorption above 850 K. These results are compared to Ge on SiO 2 where GeO desorption is seen at 550 K. Exploiting the different reactivity of Ge on HfO 2 and SiO 2 allows a kinetically driven patterning scheme for high-density Ge nanoparticle growth on HfO 2 surfaces that is demonstrated

  13. Theoretical predictions of hydrolysis and complex formation of group-4 elements Zr, Hf and Rf in HF and HCl solutions

    International Nuclear Information System (INIS)

    Pershina, V.; Trubert, D.; Le Naour, C.; Kratz, J.V.

    2002-01-01

    Fully relativistic molecular density-functional calculations of the electronic structures of hydrated, hydrolyzed and fluoride/chloride complexes have been performed for group-4 elements Zr, Hf, and element 104, Rf. Using the electronic density distribution data, relative values of the free energy change for hydrolysis and complex formation reactions were defined. The results show the following trend for the first hydrolysis step of the cationic species: Zr>Hf>Rf in agreement with experiments. For the complex formation in HF solutions, the trend to a decrease from Zr to Hf is continued with Rf, provided no hydrolysis takes place. At pH>0, further fluorination of hydrolyzed species or fluoro-complexes has an inversed trend in the group Rf≥Zr>Hf, with the difference between the elements being very small. For the complex formation in HCl solutions, the trend is continued with Rf, so that Zr>Hf>Rf independently of pH. A decisive energetic factor in hydrolysis or complex formation processes proved to be a predominant electrostatic metal-ligand interaction. Trends in the K d (distribution coefficient) values for the group-4 elements are expected to follow those of the complex formation

  14. Relationship between CCR and NT-proBNP in Chinese HF patients, and their correlations with severity of HF.

    Science.gov (United States)

    Lu, Zhigang; Wang, Bo; Wang, Yunliang; Qian, Xueqing; Zheng, Wei; Wei, Meng

    2014-01-01

    To evaluate the relationship between creatinine clearance rate (CCR) and the level of N-terminal pro-B-type natriuretic peptide (NT-proBNP) in heart failure (HF) patients and their correlations with HF severity. Two hundred and one Chinese patients were grouped according to the New York Heart Association (NYHA) classification as NYHA 1-2 and 3-4 groups and 135 cases out of heart failure patients as control group. The following variables were compared among these three groups: age, sex, body mass index (BMI), smoking status, hypertension, diabetes, NT-proBNP, creatinine (Cr), uric acid (UA), left ventricular end-diastolic diameter (LVEDD), and CCR. The biomarkers of NT-proBNP, Cr, UA, LVEDD, and CCR varied significantly in the three groups, and these variables were positively correlated with the NHYA classification. The levels of NT-proBNP and CCR were closely related to the occurrence of HF and were independent risk factors for HF. At the same time, there was a significant negative correlation between the levels of NT-proBNP and CCR. The area under the receiver operating characteristic curve suggested that the NT-proBNP and CCR have high accuracy for diagnosis of HF and have clinical diagnostic value. NT-proBNP and CCR may be important biomarkers in evaluating the severity of HF.

  15. Radiation protect during the ventilation scintigraphy of Tc99m DTPA radioaerosol in pediatric application

    International Nuclear Information System (INIS)

    Chen, Yu-Wen; Dai, Zen-Kong; Huang, Ying-Fong; Jong, Shiang-Bing

    2000-01-01

    Lung ventilation-perfusion scintigraphy is of great value for the management of patients with both primary lung disease and heart disease, by proving patho- physiological information of importance for the diagnosis, follow-up and functional evaluation of the patients. Krypton 81m radioactive gas is preferable for pediatric application due to its short half-life. However, the rubidium-krypton 81m generator is not popular in hospital of our country. Tc99m DTPA radioaerosol ventilation scintigraphy has its unique convenient for clinical application. But, the most disadvantage of clinical application of Tc99m DTPA radioaerosol is contamination of environment when the poor-cooperative patient can't breathe by mouth. For this reason, we design the certain procedure to reduce the radioaerosol contamination. During May to Aug., 1999, we collect 36 pediatric patients (male to female ratio 2:1, age from 6 months to 20 years old) with clinical history of lung or heart disease, including congenital heart disease, asthma and so on. Before the cases receive 10 to 15 mCi Tc99m DTPA radioaerosol ventilation scan, all of them were trained with breath training. And during the ventilation scintigraphy, the special mouth mask is designed to prevent the radioaerosol leakage into atmosphere. Then Geiger-Muller survey meter was arranged to detect the environmental contamination of radioaerosol in the mask, one and two metes away from the mask every 10 minutes during ventilation scintigraphy procedure and 1 hour after finishing image. Two nuclear medicine physicians evaluated imaging quality of ventilation scintigraphy. Results: Among thirty-six pediatric patients with prior breath training, thirty-two cases are successful to proceed the Tc99m DTPA ventilation scintigraphy. The other four cases that were under three-year-old fail to receive ventilation scintigraphy. There is limited detectable radioactivity in the mouth mask at early 10 minute by Geiger-Muller counter. No significant

  16. Joint Efforts Towards European HF Radar Integration

    Science.gov (United States)

    Rubio, A.; Mader, J.; Griffa, A.; Mantovani, C.; Corgnati, L.; Novellino, A.; Schulz-Stellenfleth, J.; Quentin, C.; Wyatt, L.; Ruiz, M. I.; Lorente, P.; Hartnett, M.; Gorringe, P.

    2016-12-01

    During the past two years, significant steps have been made in Europe for achieving the needed accessibility to High Frequency Radar (HFR) data for a pan-European use. Since 2015, EuroGOOS Ocean Observing Task Teams (TT), such as HFR TT, are operational networks of observing platforms. The main goal is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of HFR data access and tools. Particular attention is being paid by HFR TT to converge from different projects and programs toward those common objectives. First, JERICO-NEXT (Joint European Research Infrastructure network for Coastal Observatory - Novel European eXpertise for coastal observaTories, H2020 2015 Programme) will contribute on describing the status of the European network, on seeking harmonization through exchange of best practices and standardization, on developing and giving access to quality control procedures and new products, and finally on demonstrating the use of such technology in the general scientific strategy focused by the Coastal Observatory. Then, EMODnet (European Marine Observation and Data Network) Physics started to assemble HF radar metadata and data products within Europe in a uniform way. This long term program is providing a combined array of services and functionalities to users for obtaining free of charge data, meta-data and data products on the physical conditions of European sea basins and oceans. Additionally, the Copernicus Marine Environment Monitoring Service (CMEMS) delivers from 2015 a core information service to any user related to 4 areas of benefits: Maritime Safety, Coastal and Marine Environment, Marine Resources, and Weather, Seasonal Forecasting and Climate activities. INCREASE (Innovation and Networking for the integration of Coastal Radars into EuropeAn marine SErvices - CMEMS Service Evolution 2016) will set the necessary developments towards the integration of existing European

  17. Comparative performances analysis of neonatal ventilators.

    Science.gov (United States)

    Baldoli, Ilaria; Tognarelli, Selene; Scaramuzzo, Rosa T; Ciantelli, Massimiliano; Cecchi, Francesca; Gentile, Marzia; Sigali, Emilio; Ghirri, Paolo; Boldrini, Antonio; Menciassi, Arianna; Laschi, Cecilia; Cuttano, Armando

    2015-02-08

    Mechanical ventilation is a therapeutic action for newborns with respiratory diseases but may have side effects. Correct equipment knowledge and training may limit human errors. We aimed to test different neonatal mechanical ventilators' performances by an acquisition module (a commercial pressure sensor plus an isolated chamber and a dedicated software). The differences (ΔP) between peak pressure values and end-expiration pressure were investigated for each ventilator. We focused on discrepancies among measured and imposed pressure data. A statistical analysis was performed. We investigated the measured/imposed ΔP relation. The ΔP do not reveal univocal trends related to ventilation setting parameters and the data distributions were non-Gaussian. Measured ΔP represent a significant parameter in newborns' ventilation, due to the typical small volumes. The investigated ventilators showed different tendencies. Therefore, a deep specific knowledge of the intensive care devices is mandatory for caregivers to correctly exploit their operating principles.

  18. Application of CPM procedures in mine ventilation

    International Nuclear Information System (INIS)

    Wang, Y.J.; Mutmansky, J.M.

    1982-01-01

    Mine ventilation analysis is an engineering discipline that can be considered a branch of the body of science known as network analysis. Likewise, the group of engineering procedures known as the critical path method (CPM) is considered a branch of network analysis. It is therefore not surprising that mine ventilation network analysis and CPM have many similarities. These similarities are useful in analyzing several types of mine ventilation problems and will be utilized in this paper. The analogy between the free split in a ventilation circuit and the critical path in a scheduling network has been recognized by Owili-Eger (1973). While this was recognized as a property of a general ventilation network, many important applications to controlled-splitting problems also exist. The mathematical procedures necessary to apply CPM and network methods have previously been presented (Wang, 1981; Wang, 1982). This paper will illustrate the implementation of these methods by application to mine ventilation networks

  19. Photospheric Origin of Three-minute Oscillations in a Sunspot

    Energy Technology Data Exchange (ETDEWEB)

    Chae, Jongchul; Lee, Jeongwoo; Cho, Kyuhyoun; Song, Donguk [Astronomy Program, Department of Physics and Astronomy, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826 (Korea, Republic of); Cho, Kyungsuk; Yurchyshyn, Vasyl [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of)

    2017-02-10

    The origin of the three-minute oscillations of intensity and velocity observed in the chromosphere of sunspot umbrae is still unclear. We investigated the spatio-spectral properties of the 3 minute oscillations of velocity in the photosphere of a sunspot umbra as well as those in the low chromosphere using the spectral data of the Ni i λ 5436, Fe i λ 5435, and Na i D{sub 2} λ 5890 lines taken by the Fast Imaging Solar Spectrograph of the 1.6 m New Solar Telescope at the Big Bear Solar Observatory. As a result, we found a local enhancement of the 3 minute oscillation power in the vicinities of a light bridge (LB) and numerous umbral dots (UDs) in the photosphere. These 3 minute oscillations occurred independently of the 5 minute oscillations. Through wavelet analysis, we determined the amplitudes and phases of the 3 minute oscillations at the formation heights of the spectral lines, and they were found to be consistent with the upwardly propagating slow magnetoacoustic waves in the photosphere with energy flux large enough to explain the chromospheric oscillations. Our results suggest that the 3 minute chromospheric oscillations in this sunspot may have been generated by magnetoconvection occurring in the LB and UDs.

  20. Modelling of Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2006-01-01

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building,...

  1. Prevention of ventilator-associated pneumonia

    OpenAIRE

    J. Oliveira; C. Zagalo; P. Cavaco-Silva

    2014-01-01

    Invasive mechanical ventilation (IMV) represents a risk factor for the development of ventilator-associated pneumonia (VAP), which develops at least 48 h after admission in patients ventilated through tracheostomy or endotracheal intubation. VAP is the most frequent intensive-care-unit (ICU)-acquired infection among patients receiving IMV. It contributes to an increase in hospital mortality, duration of MV and ICU and length of hospital stay. Therefore, it worsens the condition of the critica...

  2. 46 CFR 153.312 - Ventilation system standards.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system standards. 153.312 Section 153.312... Handling Space Ventilation § 153.312 Ventilation system standards. A cargo handling space ventilation system must meet the following: (a) A ventilation system exhaust duct must discharge no less than 10 m...

  3. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    Science.gov (United States)

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  4. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditio......The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....

  5. A NEW EXHAUST VENTILATION SYSTEM DESIGN SOFTWARE

    Directory of Open Access Journals (Sweden)

    H. Asilian Mahabady

    2007-09-01

    Full Text Available A Microsoft Windows based ventilation software package is developed to reduce time-consuming and boring procedure of exhaust ventilation system design. This program Assure accurate and reliable air pollution control related calculations. Herein, package is tentatively named Exhaust Ventilation Design Software which is developed in VB6 programming environment. Most important features of Exhaust Ventilation Design Software that are ignored in formerly developed packages are Collector design and fan dimension data calculations. Automatic system balance is another feature of this package. Exhaust Ventilation Design Software algorithm for design is based on two methods: Balance by design (Static pressure balance and design by Blast gate. The most important section of software is a spreadsheet that is designed based on American Conference of Governmental Industrial Hygienists calculation sheets. Exhaust Ventilation Design Software is developed so that engineers familiar with American Conference of Governmental Industrial Hygienists datasheet can easily employ it for ventilation systems design. Other sections include Collector design section (settling chamber, cyclone, and packed tower, fan geometry and dimension data section, a unit converter section (that helps engineers to deal with units, a hood design section and a Persian HTML help. Psychometric correction is also considered in Exhaust Ventilation Design Software. In Exhaust Ventilation Design Software design process, efforts are focused on improving GUI (graphical user interface and use of programming standards in software design. Reliability of software has been evaluated and results show acceptable accuracy.

  6. Coulomb-nuclear interference measurements of 168Yb, 176Hf, 178Hf, and 180Hf and lifetime measurements in 186Hg

    International Nuclear Information System (INIS)

    Nettles, W.G.

    1979-01-01

    Alpha scattering measurements were performed at center-of-mass energies near the Coulomb barrier. These energies allow for nuclear as well as pure Coulomb forces to play a significant role in the excitation process. The interference of these two forces is very sensitive to the sign of the E4 ground-state moment, whereas pure Coulomb excitation is not. Systematics of the E4 moments of the rare earth mass region indicate a transition in the magnitude and sign of the reduced matrix element of the M(E4) operator between 0 + and 4 + states from small and positive to large and negative between Yb and W. Previous Coulomb-nuclear interference measurements show that this reduced matrix element for 180 Hf is large and negative. The present results agree with that conclusion. It is also shown that the above reduced matrix element for 178 Hf, like that of 180 Hf, is large and negative. The small and positive moment (matrix element) for 168 Yb is seen to be consistent with the experimental data. No conclusions are drawn for the E4 moment in 176 Hf. The measurement of nuclear lifetimes shorter than 500 ps requires the use of plastic scintilltor detectors. These detectors, however have very poor energy resolution. A system is described that uses plastic scintillators with a magnetic lens spectrometer for energy selection. The system was used to measure the lifetime of the 522-keV 0 + sate in 186 Hf. A data analysis method using higher-order distribution moments is also presented

  7. Radionuclide assessment of the effects of chest physical therapy on ventilation in cystic fibrosis

    International Nuclear Information System (INIS)

    DeCesare, J.A.; Babchyck, B.M.; Colten, H.R.; Treves, S.

    1982-01-01

    This study assesses the use of /sup 81m/Kr scintigraphy as a measurement tool in evaluating the effectiveness of bronchial drainage with percussion and vibration on peripheral ventilation in patients with cystic fibrosis. Ten patients with cystic fibrosis participated. Each patient underwent a /sup 81m/Kr ventilation study and traditional pulmonary function tests. Forty-five minutes later, these studies were repeated before and after a chest physical therapy treatment. Each patient acted as his own control. All /sup 81m/Kr scintiscans were recorded and analyzed visually and numerically using a digital computer to assess distribution of ventilation. Visual analysis of the scintiscans indicated individual variation in treatment response: in some patients ventilation improved with therapy; in others, no change was noted; still others had changes independent of treatment. Numerical data derived from the scintiscans and pulmonary function tests showed no important differences among the three studies of each patient. Airway abnormalities characteristic of cystic fibrosis, progression of the disease, sputum production, or a combination of these factors may account for the individual variation in response to treatment. /sup 81m/Kr scintigraphy is a reliable measure of regional ventilation and should be useful for assessing the efficacy of chest physical therapy because of the consistent, high quality visual data retrieved

  8. [Alveolar ventilation and recruitment under lung protective ventilation].

    Science.gov (United States)

    Putensen, Christian; Muders, Thomas; Kreyer, Stefan; Wrigge, Hermann

    2008-11-01

    Goal of mechanical ventilation is to improve gas exchange and reduce work of breathing without contributing to further lung injury. Besides providing adequate EELV and thereby arterial oxygenation PEEP in addition to a reduction in tidal volume is required to prevent cyclic alveolar collapse and tidal recruitment and hence protective mechanical ventilation. Currently, there is no consensus if and if yes at which price alveolar recruitment with high airway pressures should be intended ("open up the lung"), or if it is more important to reduce the mechanical stress and strain to the lungs as much as possible ("keep the lung closed"). Potential of alveolar recruitment differs from patient to patient but also between lung regions. Potential for recruitment depends probably more on regional lung mechanics - especially on lung elastance - than on the underlying disease. Based on available data neither high PEEP nor other methods used for alveolar recruitment could demonstrate a survival benefit in patients with ARDS. These results may support an individualized titration of PEEP or other manoeuvres used for recruitment taking into consideration the regional effects. Bedside imaging techniques allowing titration of PEEP or other manoeuvres to prevent end-expiratory alveolar collapse (tidal recruitment) and inspiratory overinflation may be a promising development.

  9. Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation

    DEFF Research Database (Denmark)

    Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim

    2004-01-01

    The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution...

  10. Boundary conditions for the use of personal ventilation over mixing ventilation in open plan offices

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    2013-01-01

    This paper investigates the boundary conditions for choosing a combined Personal Ventilation (PV) and Mixing Ventilation (MV) over conventional mixing ventilation in an office with multiple workers. A simplified procedure for annual performance assessment of PV/MV systems in terms of air quality...

  11. [Effect of a multifunctional instrument (HF scissors) in parotis surgery].

    Science.gov (United States)

    Strauss, G; Schaller, S; Gollnick, I

    2014-03-01

    Lateral parotidectomy is a demanding surgical procedure and requires a large number of instruments with a high frequency (HF) of alternating. Many functions, such as preparing, spreading, coagulating and cutting could be combined by using scissors with an integrated function of bipolar coagulation. This study has targeted an investigation of technical application, influence on surgery time, frequency of HF application and change of instruments. In the period between 01 April 2011 and 30 September 2012 (18 months) 35 procedures of lateral parotidectomy in 35 patients were investigated. In all cases lateral parotidectomy was carried out with a similar technique (modified extracapsular preparation). Workflow data were used from a control group in the period between 01 January 2009 and 31 December 2010 (24 months). The following parameters from both groups were documented and evaluated: incision-suture times (subdivided into nine sections of the procedure), change of instruments, period of application for HF function and early facial nerve function (6 h and 6 days after surgery according to House-Brackmann). Additionally, in the HF+ group a questionnaire that facilitated subjective evaluation of instruments was analyzed. It was possible to perform the surgery in both groups with neither technical nor surgical intraoperative complications. Incision-suture times showed an average reduction of 31.6 min (34.8 %) in the HF+ group. There was a reduction in the change of instruments compared to a conventional group (CONV) by up to 62.7 %. With the deployment of HF scissors there was a clear increase in the use of HF surgery by more than 100 % when comparing incision-suture times. Evaluation of both groups according to House-Brackmann showed a similar postoperative facial nerve function. The surgeons involved were of the opinion that in all 35 surgeries with HF scissors the intervention was easier and more comfortable. The use of HF scissors is appropriate for parotid gland

  12. In vitro evaluation of aerosol delivery by different nebulization modes in pediatric and adult mechanical ventilators.

    Science.gov (United States)

    Wan, Gwo-Hwa; Lin, Hui-Ling; Fink, James B; Chen, Yen-Hey; Wang, Wei-Jhen; Chiu, Yu-Chun; Kao, Yu-Yao; Liu, Chia-Jung

    2014-10-01

    Aerosol delivery through mechanical ventilation is influenced by the type of aerosol generator, pattern of nebulization, and a patient's breathing pattern. This study compares the efficiency of pneumatic nebulization modes provided by a ventilator with adult and pediatric in vitro lung models. Three pneumatic nebulization modes (inspiratory intermittent [IIM], continuous [CM], and expiratory intermittent [EIM]) provided by the Galileo Gold ventilator delivered medical aerosol to collection filters distal to an endotracheal tube with adult and pediatric test lungs. A unit dose of 5 mg/2.5 mL albuterol was diluted into 4 mL with distilled water and added to a jet nebulizer. The nebulizer was placed proximal to the ventilator, 15 cm from the inlet of the heated humidifier chamber with a T-piece and corrugated aerosol tubing and powered by gas from the ventilator in each of the 3 modes. Time for nebulization was recorded in minutes. Albuterol samples collected in the inhalation filter, nebulizer, T-piece, and corrugated tubing were eluted with distilled water and analyzed with a spectrophotometer. The inhaled drug, as a percentage of total dose in both lung models, was 5.1-7.5%, without statistical significance among the 3 modes. Median nebulization times for IIM, CM, and EIM were 38.9, 14.3, and 17.7 min, respectively, and nebulization time for the 3 modes significantly differed (P ventilator was not dependent on nebulization mode during simulated pediatric and adult conventional mechanical ventilation. Use of expiratory intermittent mode and continuous nebulization should be considered to reduce treatment time. Copyright © 2014 by Daedalus Enterprises.

  13. Performance of portable ventilators for mass-casualty care.

    Science.gov (United States)

    Blakeman, Thomas C; Rodriquez, Dario; Dorlac, Warren C; Hanseman, Dennis J; Hattery, Ellie; Branson, Richard D

    2011-10-01

    Disasters and mass-casualty scenarios may overwhelm medical resources regardless of the level of preparation. Disaster response requires medical equipment, such as ventilators, that can be operated under adverse circumstances and should be able to provide respiratory support for a variety of patient populations. The objective of this study was to evaluate the performance of three portable ventilators designed to provide ventilatory support outside the hospital setting and in mass-casualty incidents, and their adherence to the Task Force for Mass Critical Care recommendations for mass-casualty care ventilators. Each device was evaluated at minimum and maximum respiratory rate and tidal volume settings to determine the accuracy of set versus delivered VT at lung compliance settings of 0.02, 0.08 and 0.1 L/cm H20 with corresponding resistance settings of 10, 25, and 5 cm H2O/L/sec, to simulate patients with ARDS, severe asthma, and normal lungs. Additionally, different FIO2 settings with each device (if applicable) were evaluated to determine accuracy of FIO2 delivery and evaluate the effect on delivered VT. Ventilators also were tested for duration of battery life. VT decreased with all three devices as compliance decreased. The decrease was more pronounced when the internal compressor was activated. At the 0.65 FIO2 setting on the MCV 200, the measured FIO2 varied widely depending on the set VT. Battery life range was 311-582 minutes with the 73X having the longest battery life. Delivered VT decreased toward the end of battery life with the SAVe having the largest decrease. The respiratory rate on the SAVe also decreased approaching the end of battery life. The 73X and MCV 200 were the closest to satisfying the Task Force for Mass Critical Care requirements for mass casualty ventilators, although neither had the capability to provide PEEP. The 73X provided the most consistent tidal volume delivery across all compliances, had the longest battery duration and the

  14. Ovarian dysgenesis in an alpaca with a minute chromosome 36.

    Science.gov (United States)

    Fellows, Elizabeth; Kutzler, Michelle; Avila, Felipe; Das, Pranab J; Raudsepp, Terje

    2014-01-01

    A 4-year-old female alpaca (Lama pacos [LPA]) was presented to the Oregon State Veterinary Teaching Hospital for failure to display receptive behavior to males. Although no abnormalities were found on physical examination, transrectal ultrasonographic examination of the reproductive tract revealed uterine hypoplasia and ovarian dysgenesis. Cytogenetic analysis demonstrated a normal female 74,XX karyotype with 1 exceptionally small (minute) homologue of autosome LPA36. Chromosome analysis by Giemsa staining and DAPI- and C-banding revealed that the minute LPA36 was submetacentric, AT-rich, and largely heterochromatic. Because of the small size and lack of molecular markers, it was not possible to identify the origin of the minute. There is a need to improve molecular cytogenetic tools to further study the phenomenon of this minute chromosome and its relation to female reproduction in alpacas and llamas. © The American Genetic Association. 2012. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. NOS CO-OPS Water Level Data, Verified, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has verified (quality-controlled), 6-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS)....

  16. NOS CO-OPS Water Level Data, Preliminary, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has recent, preliminary (not quality-controlled), 6-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and...

  17. Six-minute-walk test in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Polkey, Michael I; Spruit, Martijn A; Edwards, Lisa D

    2013-01-01

    Outcomes other than spirometry are required to assess nonbronchodilator therapies for chronic obstructive pulmonary disease. Estimates of the minimal clinically important difference for the 6-minute-walk distance (6MWD) have been derived from narrow cohorts using nonblinded intervention....

  18. Smiles count but minutes matter: responses to classroom exercise breaks.

    Science.gov (United States)

    Howie, Erin K; Newman-Norlund, Roger D; Pate, Russell R

    2014-09-01

    To determine the subjective responses of teachers and students to classroom exercise breaks, and how responses varied by duration. This mixed-methods experimental study included focus groups with teachers (N = 8) and 4(th)- and 5(th)-grade students (N = 96). Students participated in 5-, 10-, and 20-minute exercise breaks and 10 minutes of sedentary activity. In an additional exploratory analysis, video-tapes of each condition were coded and compared for positive affect. Students and teachers discussed multiple benefits, but teachers discussed barriers to implementing regular breaks of 5-minutes or more. Students exhibited higher positive affect during each exercise condition. Classroom exercise breaks are an enjoyable way to increase physical activity, but additional support may be needed to encourage teachers to implement breaks of 5 minutes or longer.

  19. Jobs within a 30-minute transit ride - Service

    Data.gov (United States)

    U.S. Environmental Protection Agency — This mapping service summarizes the total number of jobs that can be reached within 30 minutes by transit. EPA modeled accessibility via transit by calculating total...

  20. NOS CO-OPS Water Level Data, Preliminary, 1-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has recent, preliminary (not quality-controlled), 1-minute, water level (tide) data from NOAA NOS Center for Operational Oceanographic Products and...

  1. Draft revision of human factors guideline HF-010

    International Nuclear Information System (INIS)

    Lee, Hyun Chul; Lee, Yong Hee; Oh, In Seok; Lee, Jung Woon; Cha, Woo Chang; Lee, Dhong Ha

    2003-05-01

    The Application of Human Factors to the design of Man-Machine Interfaces System(MMIS) in the nuclear power plant is essential to the safety and productivity of the nuclear power plants, human factors standards and guidelines as well as human factors analysis methods and experiments are weightily used to the design application. A Korean engineering company has developed a human factors engineering guideline, so-call HF-010, and has used it for human factors design, however the revision of HF-010 is necessary owing to lack of the contents related to the advanced MMI(Man-Machine Interfaces). As the results of the reviews of HF-010, it is found out that the revision of Section 9. Computer Displays of HF-010 is urgent, thus the revision was drafted on the basis of integrated human factors design guidelines for VDT, human factors design guidelines for PMAS SPADES display, human factors design guidelines for PMAS alarm display, and human factors design guidelines for electronic displays developed by the surveillance and operation support project of KOICS. The draft revision of HF-010 Section 9 proposed in this report can be utilized for the human factors design of the advanced MMI, and the high practical usability of the draft can be kept up through the continuous revision according to the advancement of digital technology

  2. Ventil

    OpenAIRE

    Schmidt, U.; Schuetz, H.G.; Meinel, M.; Buehling, H.

    1998-01-01

    The valve, especially as an overload safety valve for a mechanical press, has a mechanical lock on the valve piston (1) in the pressure medium flow path between an entry (7) and outlet (9) opening. The lock is a screw which is broken by a pyrotechnic or explosive action. The valve piston (1) has the structure of a step piston, where it is under loading from the pressure medium. USE - The safety valve is for protection of a mechanical press from damage through overloading. ADVANTAGE - The stru...

  3. Multicenter Evaluation of a Novel Surveillance Paradigm for Complications of Mechanical Ventilation

    Science.gov (United States)

    Klompas, Michael; Khan, Yosef; Kleinman, Kenneth; Evans, R. Scott; Lloyd, James F.; Stevenson, Kurt; Samore, Matthew; Platt, Richard

    2011-01-01

    Background Ventilator-associated pneumonia (VAP) surveillance is time consuming, subjective, inaccurate, and inconsistently predicts outcomes. Shifting surveillance from pneumonia in particular to complications in general might circumvent the VAP definition's subjectivity and inaccuracy, facilitate electronic assessment, make interfacility comparisons more meaningful, and encourage broader prevention strategies. We therefore evaluated a novel surveillance paradigm for ventilator-associated complications (VAC) defined by sustained increases in patients' ventilator settings after a period of stable or decreasing support. Methods We assessed 600 mechanically ventilated medical and surgical patients from three hospitals. Each hospital contributed 100 randomly selected patients ventilated 2–7 days and 100 patients ventilated >7 days. All patients were independently assessed for VAP and for VAC. We compared incidence-density, duration of mechanical ventilation, intensive care and hospital lengths of stay, hospital mortality, and time required for surveillance for VAP and for VAC. A subset of patients with VAP and VAC were independently reviewed by a physician to determine possible etiology. Results Of 597 evaluable patients, 9.3% had VAP (8.8 per 1,000 ventilator days) and 23% had VAC (21.2 per 1,000 ventilator days). Compared to matched controls, both VAP and VAC prolonged days to extubation (5.8, 95% CI 4.2–8.0 and 6.0, 95% CI 5.1–7.1 respectively), days to intensive care discharge (5.7, 95% CI 4.2–7.7 and 5.0, 95% CI 4.1–5.9), and days to hospital discharge (4.7, 95% CI 2.6–7.5 and 3.0, 95% CI 2.1–4.0). VAC was associated with increased mortality (OR 2.0, 95% CI 1.3–3.2) but VAP was not (OR 1.1, 95% CI 0.5–2.4). VAC assessment was faster (mean 1.8 versus 39 minutes per patient). Both VAP and VAC events were predominantly attributable to pneumonia, pulmonary edema, ARDS, and atelectasis. Conclusions Screening ventilator settings for VAC captures a

  4. Performances of domiciliary ventilators compared by using a parametric procedure

    Directory of Open Access Journals (Sweden)

    Fresnel Emeline

    2016-12-01

    Performances of domiciliary ventilators strongly depend not only on the breathing dynamics but also on the ventilator strategy. One given ventilator may be more adequate than another one for a given patient.

  5. The ionospheric response to flux transfer events: the first few minutes

    Directory of Open Access Journals (Sweden)

    A. S. Rodger

    1997-06-01

    Full Text Available We utilise high-time resolution measurements from the PACE HF radar at Halley, Antarctica to explore the evolution of the ionospheric response during the first few minutes after enhanced reconnection occurs at the magnetopause. We show that the plasma velocity increases associated with flux transfer events (FTEs occur first ~100–200 km equatorward of the region to which magnetosheath (cusp precipitation maps to the ionosphere. We suggest that these velocity variations start near the ionospheric footprint of the boundary between open and closed magnetic field lines. We show that these velocity variations have rise times ~100 s and fall times of ~10 s. When these velocity transients reach the latitude of the cusp precipitation, sometimes the equatorward boundary of the precipitation begins to move equatorward, the expected and previously reported ionospheric signature of enhanced reconnection. A hypothesis is proposed to explain the velocity variations. It involves the rapid outflow of magnetospheric electrons into the magnetosheath along the most recently reconnected field lines. Several predictions are made arising from the proposed explanation which could be tested with ground-based and space-based observations.

  6. Centrifugal stretching along the ground state band of 168Hf

    International Nuclear Information System (INIS)

    Costin, A.; Pietralla, N.; Reese, M.; Moeller, O.; Ai, H.; Casten, R. F.; Heinz, A.; McCutchan, E. A.; Meyer, D. A.; Qian, J.; Werner, V.; Dusling, K.; Fitzpatrick, C. R.; Guerdal, G.; Petkov, P.; Rainovski, G.

    2009-01-01

    The lifetimes of the J π =4 + , 6 + , 8 + , and 10 + levels along the ground state band in 168 Hf were measured by means of the recoil distance Doppler shift (RDDS) method using the New Yale Plunger Device (NYPD) and the SPEEDY detection array at Wright Nuclear Structure Laboratory of Yale University. Excited states in 168 Hf were populated using the 124 Sn( 48 Ti,4n) fusion evaporation reaction. The new lifetime values are sufficiently precise to clearly prove the increase of quadrupole deformation as a function of angular momentum in the deformed nucleus 168 Hf. The data agree with the predictions from the geometrical confined β-soft (CBS) rotor model that involves centrifugal stretching in a soft potential

  7. Determining characteristics of HF communications links using SuperDARN

    Directory of Open Access Journals (Sweden)

    J. M. Hughes

    2002-07-01

    Full Text Available Space weather effects can strongly influence high-frequency (HF communications by changing the ionospheric environment through which the radio waves propagate. Since many systems utilize HF communications, the ability to make real-time assessments of propagation conditions is an important part of space weather monitoring systems. In this paper, we present new techniques for measuring high-latitude HF communications link parameters using data from SuperDARN radars. These techniques use ground-scatter returns to define the variation in skip distance with frequency. From these data, the maximum usable frequency (MUF as a function of range is determined and ionospheric critical frequencies are estimated. These calculations are made in near-real-time and the results are made available on the World Wide Web. F-region critical frequencies calculated using this method show good agreement with ionosonde data.Key words. Ionosphere (active experiments; instruments and techniques – Radio science (ionospheric propagation

  8. Determining characteristics of HF communications links using SuperDARN

    Directory of Open Access Journals (Sweden)

    J. M. Hughes

    Full Text Available Space weather effects can strongly influence high-frequency (HF communications by changing the ionospheric environment through which the radio waves propagate. Since many systems utilize HF communications, the ability to make real-time assessments of propagation conditions is an important part of space weather monitoring systems. In this paper, we present new techniques for measuring high-latitude HF communications link parameters using data from SuperDARN radars. These techniques use ground-scatter returns to define the variation in skip distance with frequency. From these data, the maximum usable frequency (MUF as a function of range is determined and ionospheric critical frequencies are estimated. These calculations are made in near-real-time and the results are made available on the World Wide Web. F-region critical frequencies calculated using this method show good agreement with ionosonde data.

    Key words. Ionosphere (active experiments; instruments and techniques – Radio science (ionospheric propagation

  9. Densification and properties of HfB2 based materials

    International Nuclear Information System (INIS)

    Sonber, J.K.; Ch Murthy, T.S.R.; Bedse, R.D.; Subramanian, C.; Kumar, Sunil; Fotedar, R.K.; Krishnamurthy, N.; Suri, A.K.

    2011-01-01

    This paper presents the results of investigation carried out on densification and properties of HfB 2 based materials. Densification study of HfB 2 with and without sinter additive was carried out by hot pressing. TiSi 2 and CrSi 2 were used as sinter additive. Monolithic HfB 2 was densified to only 80%ρ th at 1850 deg C with a pressure of 35 MPa. Addition of 10 wt% TiSi 2 resulted in a density of 95% TD at a relatively low temperature of 1650 deg C and a low pressure of 20 MPa. Addition of 10% CrSi 2 resulted in a density of 99% TD at the same operating conditions. All the samples were characterized by SEM/EDS and mechanical property measurement. (author)

  10. Sympathetic Response and Outcomes Following Renal Denervation in Patients With Chronic Heart Failure: 12-Month Outcomes From the Symplicity HF Feasibility Study.

    Science.gov (United States)

    Hopper, Ingrid; Gronda, Edoardo; Hoppe, Uta C; Rundqvist, Bengt; Marwick, Thomas H; Shetty, Sharad; Hayward, Christopher; Lambert, Thomas; Hering, Dagmara; Esler, Murray; Schlaich, Markus; Walton, Antony; Airoldi, Flavio; Brandt, Mathias C; Cohen, Sidney A; Reiters, Pascalle; Krum, Henry

    2017-09-01

    Heart failure (HF) is associated with chronic sympathetic activation. Renal denervation (RDN) aims to reduce sympathetic activity by ablating the renal sympathetic nerves. We investigated the effect of RDN in patients with chronic HF and concurrent renal dysfunction in a prospective, multicenter, single-arm feasibility study. Thirty-nine patients with chronic systolic HF (left ventricular ejection fraction [LVEF] renal impairment (estimated glomerular filtration rate [eGFR; assessed with the use of the Modification of Diet in Renal Disease equation] renal artery occlusion that was possibly related to the denervation procedure. Statistically significant reductions in N-terminal pro-B-type natriuretic peptide (NT-proBNP; 1530 ± 1228 vs 1428 ± 1844 ng/mL; P = .006) and 120-minute glucose tolerance test (11.2 ± 5.1 vs 9.9 ± 3.6; P = .026) were seen at 12 months, but there was no significant change in LVEF (28 ± 9% vs 29 ± 11%; P= .536), 6-minute walk test (384 ± 96 vs 391 ± 97 m; P= .584), or eGFR (52.6 ± 15.3 vs 52.3 ± 18.5 mL • min -1  • 1.73 m -2 ; P= .700). RDN was associated with reductions in NT-proBNP and 120-minute glucose tolerance test in HF patients 12 months after RDN treatment. There was no deterioration in other indices of cardiac and renal function in this small feasibility study. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. History of Mechanical Ventilation. From Vesalius to Ventilator-induced Lung Injury.

    Science.gov (United States)

    Slutsky, Arthur S

    2015-05-15

    Mechanical ventilation is a life-saving therapy that catalyzed the development of modern intensive care units. The origins of modern mechanical ventilation can be traced back about five centuries to the seminal work of Andreas Vesalius. This article is a short history of mechanical ventilation, tracing its origins over the centuries to the present day. One of the great advances in ventilatory support over the past few decades has been the development of lung-protective ventilatory strategies, based on our understanding of the iatrogenic consequences of mechanical ventilation such as ventilator-induced lung injury. These strategies have markedly improved clinical outcomes in patients with respiratory failure.

  12. Trends in mechanical ventilation: are we ventilating our patients in the best possible way?

    Directory of Open Access Journals (Sweden)

    Raffaele L. Dellaca’

    2017-06-01

    To learn how mechanical ventilation developed in recent decades and to provide a better understanding of the actual technology and practice. To learn how and why interdisciplinary research and competences are necessary for providing the best ventilation treatment to patients. To understand which are the most relevant technical limitations in modern mechanical ventilators that can affect their performance in delivery of the treatment. To better understand and classify ventilation modes. To learn the classification, benefits, drawbacks and future perspectives of automatic ventilation tailoring algorithms.

  13. HF-START: A Regional Radio Propagation Simulator

    Science.gov (United States)

    Hozumi, K.; Maruyama, T.; Saito, S.; Nakata, H.; Rougerie, S.; Yokoyama, T.; Jin, H.; Tsugawa, T.; Ishii, M.

    2017-12-01

    HF-START (HF Simulator Targeting for All-users' Regional Telecommunications) is a user-friendly simulator developed to meet the needs of space weather users. Prediction of communications failure due to space weather disturbances is of high priority. Space weather users from various backgrounds with high economic impact, i.e. airlines, telecommunication companies, GPS-related companies, insurance companies, international amateur radio union, etc., recently increase. Space weather information provided by Space Weather Information Center of NICT is, however, too professional to be understood and effectively used by the users. To overcome this issue, I try to translate the research level data to the user level data based on users' needs and provide an immediate usable data. HF-START is positioned to be a space weather product out of laboratory based truly on users' needs. It is originally for radio waves in HF band (3-30 MHz) but higher frequencies up to L band are planned to be covered. Regional ionospheric data in Japan and southeast Asia are employed as a reflector of skywave mode propagation. GAIA (Ground-to-topside model of Atmosphere and Ionosphere for Aeronomy) model will be used as ionospheric input for global simulation. To evaluate HF-START, an evaluation campaign for Japan region will be launched in coming months. If the campaign successes, it will be expanded to southeast Asia region as well. The final goal of HF-START is to provide the near-realtime necessary radio parameters as well as the warning message of radio communications failure to the radio and space weather users.

  14. Healthcare Technology Management (HTM) of mechanical ventilators by clinical engineers.

    Science.gov (United States)

    Yoshioka, Jun; Nakane, Masaki; Kawamae, Kaneyuki

    2014-01-01

    Mechanical ventilator failures expose patients to unacceptable risks, and maintaining mechanical ventilator safety is an important issue. We examined the usefulness of maintaining mechanical ventilators by clinical engineers (CEs) using a specialized calibrator. These evaluations and the ability to make in-house repairs proved useful for obviating the need to rent ventilators which, in turn, might prove faulty themselves. The CEs' involvement in maintaining mechanical ventilators is desirable, ensures prompt service, and, most importantly, enhances safe management of mechanical ventilators.

  15. Oxidation behavior of Hf-modified platinum aluminide coatings during thermal cycling

    Directory of Open Access Journals (Sweden)

    Liya Ye

    2018-02-01

    Full Text Available Platinum aluminide coatings with different Hf contents were fabricated by using HfCl4. The oxidation kinetics and the rumpling behavior of oxide scale were investigated. After thermal cycling, the coating with 0.46 wt% Hf showed least weight gain. With the increase of Hf content, rumpling extent of the scale decreased. Meanwhile, HfO2 preferentially formed in the scale resulting in the increase of scale thickness. The oxidation of excessive Hf even caused the spallation of the scale. The results in the present study indicate that although Hf plays an important role in decreasing rumpling extent of TGO, the oxidation of Hf decreases the adhesion of the scale. Keywords: Pt-Al coating, Hf, Oxidation, Rumpling

  16. Preoperational test report, primary ventilation system

    International Nuclear Information System (INIS)

    Clifton, F.T.

    1997-01-01

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System

  17. Naturlig ventilation og træk

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    2002-01-01

    Nye ventilationsprincipper som naturlig ventilation er med til at sætte fokus på de strømningselementer, der skal anvendes til dimensionering af luftfordelingen i et rum. Artiklen anviser, hvordan træk fra vinduer og tagåbninger i rum med naturlig ventilation kan beregnes ved hjælp af...

  18. Preoperational test report, primary ventilation system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-11-04

    This represents a preoperational test report for Primary Ventilation Systems, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides vapor space filtered venting of tanks AY101, AY102, AZ101, AZ102. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  19. [Mechanical ventilation in acute asthma crisis].

    Science.gov (United States)

    Barbas, Carmen Sílvia Valente; Pinheiro, Bruno do Valle; Vianna, Arthur; Magaldi, Ricardo; Casati, Ana; José, Anderson; Okamoto, Valdelis Novis

    2007-06-01

    The II Brazilian Consensus Conference on Mechanical Ventilation was published in 2000. Knowledge on the field of mechanical ventilation evolved rapidly since then, with the publication of numerous clinical studies with potential impact on the ventilatory management of critically ill patients. Moreover, the evolving concept of evidence - based medicine determined the grading of clinical recommendations according to the methodological value of the studies on which they are based. This explicit approach has broadened the understanding and adoption of clinical recommendations. For these reasons, AMIB - Associação de Medicina Intensiva Brasileira and SBPT - Sociedade Brasileira de Pneumologia e Tisiologia - decided to update the recommendations of the II Brazilian Consensus. Mechanical ventilation in the asthma attack has been one of the updated topics. Describe the most important topics on the mechanical ventilation during the asthma attack and suggest the main therapeutic approaches. Systematic review of the published literature and gradation of the studies in levels of evidence, using the key words "mechanical ventilation" and "asthma". We present recommendations on the ventilatory modes and settings to be adopted when ventilating a patient during an asthma attack, as well as the recommended monitoring. Alternative ventilation techniques are also presented. Protective ventilatory strategies are recommended when ventilating a patient during a severe asthma attack.

  20. Intraoperative mechanical ventilation for the pediatric patient.

    Science.gov (United States)

    Kneyber, Martin C J

    2015-09-01

    Invasive mechanical ventilation is required when children undergo general anesthesia for any procedure. It is remarkable that one of the most practiced interventions such as pediatric mechanical ventilation is hardly supported by any scientific evidence but rather based on personal experience and data from adults, especially as ventilation itself is increasingly recognized as a harmful intervention that causes ventilator-induced lung injury. The use of low tidal volume and higher levels of positive end-expiratory pressure became an integral part of lung-protective ventilation following the outcomes of clinical trials in critically ill adults. This approach has been readily adopted in pediatric ventilation. However, a clear association between tidal volume and mortality has not been ascertained in pediatrics. In fact, experimental studies have suggested that young children might be less susceptible to ventilator-induced lung injury. As such, no recommendations on optimal lung-protective ventilation strategy in children with or without lung injury can be made. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Lung-protective ventilation in abdominal surgery.

    Science.gov (United States)

    Futier, Emmanuel; Jaber, Samir

    2014-08-01

    To provide the most recent and relevant clinical evidence regarding the use of prophylactic lung-protective mechanical ventilation in abdominal surgery. Evidence is accumulating, suggesting an association between intraoperative mechanical ventilation strategy and postoperative pulmonary complications in patients undergoing abdominal surgery. Nonprotective ventilator settings, especially high tidal volume (>10-12 ml/kg), very low level of positive end-expiratory pressure (PEEP, ventilator-associated lung injury in patients with healthy lungs. Stimulated by the previous findings in patients with acute respiratory distress syndrome, the use of lower tidal volume ventilation is becoming increasingly more common in the operating room. However, lowering tidal volume, though important, is only part of the overall multifaceted approach of lung-protective mechanical ventilation. Recent data provide compelling evidence that prophylactic lung-protective mechanical ventilation using lower tidal volume (6-8 ml/kg of predicted body weight), moderate PEEP (6-8 cm H2O), and recruitment maneuvers is associated with improved functional or physiological and clinical postoperative outcome in patients undergoing abdominal surgery. The use of prophylactic lung-protective ventilation can help in improving the postoperative outcome.

  2. Review of operating room ventilation standards

    NARCIS (Netherlands)

    Melhado, M.D.A.; Hensen, J.L.M.; Loomans, M.G.L.C.

    2006-01-01

    This article reviews standards applied to operating room ventilation design used by European, South and North American countries. Required environmental parameters are compared with regard to type of surgery, and ventilation system. These requirements as well as their relation to infection control

  3. Lung-protective ventilation in neonatology

    NARCIS (Netherlands)

    van Kaam, Anton

    2011-01-01

    Ventilator-induced lung injury (VILI) is considered an important risk factor in the development of bronchopulmonary dysplasia (BPD) and is primarily caused by overdistension (volutrauma) and repetitive opening and collapse (atelectrauma) of terminal lung units. Lung-protective ventilation should

  4. Ventilation in low energy housing retrofits

    NARCIS (Netherlands)

    Mlecnik, E.

    2008-01-01

    According to the definition, passive houses in Europe meet a target energy demand for heating of less than 15 kWh per square meter and per year. This low level for the heating demand is based on heating by a small post-heater in the hygienic ventilation system at 52 °C maximum, while the ventilation

  5. Echocardiographic evaluation during weaning from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Luciele Medianeira Schifelbain

    2011-01-01

    Full Text Available INTRODUCTION: Echocardiographic, electrocardiographic and other cardiorespiratory variables can change during weaning from mechanical ventilation. OBJECTIVES: To analyze changes in cardiac function, using Doppler echocardiogram, in critical patients during weaning from mechanical ventilation, using two different weaning methods: pressure support ventilation and T-tube; and comparing patient subgroups: success vs. failure in weaning. METHODS: Randomized crossover clinical trial including patients under mechanical ventilation for more than 48 h and considered ready for weaning. Cardiorespiratory variables, oxygenation, electrocardiogram and Doppler echocardiogram findings were analyzed at baseline and after 30 min in pressure support ventilation and T-tube. Pressure support ventilation vs. T-tube and weaning success vs. failure were compared using ANOVA and Student's t-test. The level of significance was p<0.05. RESULTS: Twenty-four adult patients were evaluated. Seven patients failed at the first weaning attempt. No echocardiographic or electrocardiographic differences were observed between pressure support ventilation and T-tube. Weaning failure patients presented increases in left atrium, intraventricular septum thickness, posterior wall thickness and diameter of left ventricle and shorter isovolumetric relaxation time. Successfully weaned patients had higher levels of oxygenation. CONCLUSION: No differences were observed between Doppler echocardiographic variables and electrocardiographic and other cardiorespiratory variables during pressure support ventilation and T-tube. However cardiac structures were smaller, isovolumetric relaxation time was larger, and oxygenation level was greater in successfully weaned patients

  6. Methodology for ventilation/perfusion SPECT

    DEFF Research Database (Denmark)

    Bajc, Marika; Neilly, Brian; Miniati, Massimo

    2010-01-01

    Ventilation/perfusion single-photon emission computed tomography (V/Q SPECT) is the scintigraphic technique of choice for the diagnosis of pulmonary embolism and many other disorders that affect lung function. Data from recent ventilation studies show that the theoretic advantages of Technegas ov...

  7. New modes of assisted mechanical ventilation.

    Science.gov (United States)

    Suarez-Sipmann, F

    2014-05-01

    Recent major advances in mechanical ventilation have resulted in new exciting modes of assisted ventilation. Compared to traditional ventilation modes such as assisted-controlled ventilation or pressure support ventilation, these new modes offer a number of physiological advantages derived from the improved patient control over the ventilator. By implementing advanced closed-loop control systems and using information on lung mechanics, respiratory muscle function and respiratory drive, these modes are specifically designed to improve patient-ventilator synchrony and reduce the work of breathing. Depending on their specific operational characteristics, these modes can assist spontaneous breathing efforts synchronically in time and magnitude, adapt to changing patient demands, implement automated weaning protocols, and introduce a more physiological variability in the breathing pattern. Clinicians have now the possibility to individualize and optimize ventilatory assistance during the complex transition from fully controlled to spontaneous assisted ventilation. The growing evidence of the physiological and clinical benefits of these new modes is favoring their progressive introduction into clinical practice. Future clinical trials should improve our understanding of these modes and help determine whether the claimed benefits result in better outcomes. Copyright © 2013 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  8. Ventilation of gloveboxes and containment shells

    International Nuclear Information System (INIS)

    Guetron, R.

    1984-01-01

    In this paper are defined fundamental principles for the ventilation of containment enclosures and gloveboxes, and examined criteria required to maintain containment in normal or accidental conditions. Dimensioning of ventilation network and associated equipment (adjustement and filtering devices). Some examples are given [fr

  9. Commissioning Ventilated Containment Systems in the Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  10. European coordination for coastal HF radar data in EMODnet Physics

    Science.gov (United States)

    Mader, Julien; Novellino, Antonio; Gorringe, Patrick; Griffa, Annalisa; Schulz-Stellenfleth, Johannes; Montero, Pedro; Montovani, Carlo; Ayensa, Garbi; Vila, Begoña; Rubio, Anna; Sagarminaga, Yolanda

    2015-04-01

    Historically, joint effort has been put on observing open ocean, organizing, homogenizing, sharing and reinforcing the impact of the acquired information based on one technology: ARGO with profilers Argo floats, EuroSites, ESONET-NoE, FixO3 for deep water platforms, Ferrybox for stations in ships of opportunities, and GROOM for the more recent gliders. This kind of networking creates synergies and makes easier the implementation of this source of data in the European Data exchange services like EMODnet, ROOSs portals, or any applied services in the Blue economy. One main targeted improvement in the second phase of EMODnet projects is the assembling of data along coastline. In that sense, further coordination is recommended between platform operators around a specific technology in order to make easier the implementation of the data in the platforms (4th EuroGOOS DATAMEQ WG). HF radar is today recognized internationally as a cost-effective solution to provide high spatial and temporal resolution current maps (depending on the instrument operation frequency, covering from a few kilometres offshore up to 200 km) that are needed for many applications for issues related to ocean surface drift or sea state characterization. Significant heterogeneity still exists in Europe concerning technological configurations, data processing, quality standards and data availability. This makes more difficult the development of a significant network for achieving the needed accessibility to HF Radar data for a pan European use. EuroGOOS took the initiative to lead and coordinate activities within the various observation platforms by establishing a number of Ocean Observing Task Teams such as HF-Radars. The purpose is to coordinate and join the technological, scientific and operational HF radar communities at European level. The goal of the group is on the harmonization of systems requirements, systems design, data quality, improvement and proof of the readiness and standardization of

  11. HF-induced airglow at magnetic zenith: theoretical considerations

    Directory of Open Access Journals (Sweden)

    E. V. Mishin

    2005-01-01

    Full Text Available Observations of airglow at 630nm (red line and 557.7nm (green line during HF modification experiments at the High Frequency Active Auroral Research Program (HAARP heating facility are analyzed. We propose a theoretical framework for understanding the generation of Langmuir and ion acoustic waves during magnetic zenith injections. We show that observations of HF-induced airglow in an underdense ionosphere as well as a decrease in the height of the emitting volume are consistent with this scenario.

  12. Assisted Ventilation in Patients with Acute Respiratory Distress Syndrome: Lung-distending Pressure and Patient-Ventilator Interaction

    NARCIS (Netherlands)

    Doorduin, J.; Sinderby, C.A.; Beck, J.; Hoeven, J.G. van der; Heunks, L.M.

    2015-01-01

    BACKGROUND: In patients with acute respiratory distress syndrome (ARDS), the use of assisted mechanical ventilation is a subject of debate. Assisted ventilation has benefits over controlled ventilation, such as preserved diaphragm function and improved oxygenation. Therefore, higher level of

  13. Performance of ductless personalized ventilation in conjunction with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Melikov, Arsen Krikor; Vesely, Michal

    2014-01-01

    perception of the environment. The subjects could control the position of the DPV supply diffuser and the personalized air flow (air velocity). The use of DPV improved perceived air quality and thermal comfort compared to displacement ventilation alone. At 26 °C and 29 °C the percentage dissatisfied with air......, increased eye dryness sensation was reported by 30% of subjects. The personalized air flow selected by nearly 80% of the subjects at 26 °C was between 10 and 20 l/s corresponding to the target air velocity of 1.2–1.7 m/s. At 29 °C almost 90% of subjects chose a personalized air flow between 15 and 20 l/s (1...

  14. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies...... that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...

  15. Mechanical Ventilation: State of the Art.

    Science.gov (United States)

    Pham, Tài; Brochard, Laurent J; Slutsky, Arthur S

    2017-09-01

    Mechanical ventilation is the most used short-term life support technique worldwide and is applied daily for a diverse spectrum of indications, from scheduled surgical procedures to acute organ failure. This state-of-the-art review provides an update on the basic physiology of respiratory mechanics, the working principles, and the main ventilatory settings, as well as the potential complications of mechanical ventilation. Specific ventilatory approaches in particular situations such as acute respiratory distress syndrome and chronic obstructive pulmonary disease are detailed along with protective ventilation in patients with normal lungs. We also highlight recent data on patient-ventilator dyssynchrony, humidified high-flow oxygen through nasal cannula, extracorporeal life support, and the weaning phase. Finally, we discuss the future of mechanical ventilation, addressing avenues for improvement. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  16. [Lung protective ventilation - pathophysiology and diagnostics].

    Science.gov (United States)

    Uhlig, Stefan; Frerichs, Inéz

    2008-06-01

    Mechanical ventilation may lead to lung injury depending on the ventilatory settings (e.g. pressure amplitudes, endexpiratory pressures, frequency) and the length of mechanical ventilation. Particularly in the inhomogeneously injured lungs of ARDS patients, alveolar overextension results in volutrauma, cyclic opening and closure of alveolar units in atelectrauma. Particularly important appears to be the fact that these processes may also cause biotrauma, i.e. the ventilator-induced hyperactivation of inflammatory responses in the lung. These side effects are reduced, but not eliminated with the currently recommended ventilation strategy with a tidal volume of 6 ml/kg idealized body weight. It is our hope that in the future optimization of ventilator settings will be facilated by bedside monitoring of novel indices of respiratory mechanics such as the stress index or the Slice technique, and by innovative real-time imaging technologies such as electrical impedance tomography.

  17. Pandemic ventilator rationing and appeals processes.

    Science.gov (United States)

    Patrone, Daniel; Resnik, David

    2011-06-01

    In a severe influenza pandemic, hospitals will likely experience serious and widespread shortages of patient pulmonary ventilators and of staff qualified to operate them. Deciding who will receive access to mechanical ventilation will often determine who lives and who dies. This prospect raises an important question whether pandemic preparedness plans should include some process by which individuals affected by ventilator rationing would have the opportunity to appeal adverse decisions. However, the issue of appeals processes to ventilator rationing decisions has been largely neglected in state pandemic planning efforts. If we are to devise just and effective plans for coping with a severe influenza pandemic, more attention to the issue of appeals processes for pandemic ventilator rationing decisions is needed. Arguments for and against appeals processes are considered, and some suggestions are offered to help efforts at devising more rational pandemic preparedness plans.

  18. Potential of Natural Ventilation in Shopping Centres

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Friis, Kristina; Brohus, Henrik

    2008-01-01

    The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV) in shop......The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV......) in shopping centres with focus on both the achieved IEQ and energy consumptions for air movement. By thermal building simulations it is found that there exists an interesting potential for hybrid ventilation of shopping centres, which can lead to great savings in the electrical energy consumptions...

  19. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  20. Functionality of Ventilated Facades: Protection of Insulation

    Directory of Open Access Journals (Sweden)

    Petrichenko Mikhail

    2016-01-01

    Full Text Available This article discusses about methods of construction of the ventilated facades. The ventilated facade is not only the element of facing, it is the supporting structure. Their main objective - creation of air ventilating space between a facade and an external wall of the building. Moving of air in this gap protects a heater from destruction, interfering with a moisture congestion. In addition, the ventilated facade protect the building from aggressive influence of external environment, have a sound and thermal insulation properties. There are several problems of systems of the ventilated facades connected with an application of a heater. For more effective using it is necessary to minimize contact of a heater with environment.

  1. Modelling and Simulation of Volume Controlled Mechanical Ventilation System

    Directory of Open Access Journals (Sweden)

    Yan Shi

    2014-01-01

    Full Text Available Volume controlled mechanical ventilation system is a typical time-delay system, which is applied to ventilate patients who cannot breathe adequately on their own. To illustrate the influences of key parameters of the ventilator on the dynamics of the ventilated respiratory system, this paper firstly derived a new mathematical model of the ventilation system; secondly, simulation and experimental results are compared to verify the mathematical model; lastly, the influences of key parameters of ventilator on the dynamics of the ventilated respiratory system are carried out. This study can be helpful in the VCV ventilation treatment and respiratory diagnostics.

  2. Study of regional lung ventilation and perfusion by xenon 133

    International Nuclear Information System (INIS)

    Lombard, Yves.

    1976-01-01

    The present work consists of a regional lung exploration after injection of xenon 133, dissolved in physiological serum, followed a few minutes later by that of 99m Tc-labelled serumalbumin microspheres. The aim is three fold: first of all to study perfusion and ventilation by xenon 133, next to compare the results obtained after xenon 133 and 99 m Tc-labelled microsphere injection, lastly to establish the value of the technique and its routine application. This examination has not solved all problems of lung exploration by xenon 133. For example we deliberately kept to intraveinous injection of the gas dissolved in physiological serum, leaving aside the breathing test. Xenon 133 scintigraphy in our opinion will not tend to replace 99m Tc-labelled microsphere scintigraphy, which has irreplaceable morphological qualities, but will serve as an excellent complement. The basic advantage of xenon 133 is the regional ventilation estimate it provides allowing any anomaly of the lung parenchyma to be located immediately or conversely the functional value of the healthy lung to be established with a view to a surgical removal of a diseased zone [fr

  3. Bilevel vs ICU ventilators providing noninvasive ventilation: effect of system leaks: a COPD lung model comparison.

    Science.gov (United States)

    Ferreira, Juliana C; Chipman, Daniel W; Hill, Nicholas S; Kacmarek, Robert M

    2009-08-01

    Noninvasive positive-pressure ventilation (NPPV) modes are currently available on bilevel and ICU ventilators. However, little data comparing the performance of the NPPV modes on these ventilators are available. In an experimental bench study, the ability of nine ICU ventilators to function in the presence of leaks was compared with a bilevel ventilator using the IngMar ASL5000 lung simulator (IngMar Medical; Pittsburgh, PA) set at a compliance of 60 mL/cm H(2)O, an inspiratory resistance of 10 cm H(2)O/L/s, an expiratory resistance of 20 cm H(2)O/ L/s, and a respiratory rate of 15 breaths/min. All of the ventilators were set at 12 cm H(2)O pressure support and 5 cm H(2)O positive end-expiratory pressure. The data were collected at baseline and at three customized leaks. At baseline, all of the ventilators were able to deliver adequate tidal volumes, to maintain airway pressure, and to synchronize with the simulator, without missed efforts or auto-triggering. As the leak was increased, all of the ventilators (except the Vision [Respironics; Murrysville, PA] and Servo I [Maquet; Solna, Sweden]) needed adjustment of sensitivity or cycling criteria to maintain adequate ventilation, and some transitioned to backup ventilation. Significant differences in triggering and cycling were observed between the Servo I and the Vision ventilators. The Vision and Servo I were the only ventilators that required no adjustments as they adapted to increasing leaks. There were differences in performance between these two ventilators, although the clinical significance of these differences is unclear. Clinicians should be aware that in the presence of leaks, most ICU ventilators require adjustments to maintain an adequate tidal volume.

  4. Mechanical ventilation during extracorporeal membrane oxygenation.

    Science.gov (United States)

    Schmidt, Matthieu; Pellegrino, Vincent; Combes, Alain; Scheinkestel, Carlos; Cooper, D Jamie; Hodgson, Carol

    2014-01-21

    The timing of extracorporeal membrane oxygenation (ECMO) initiation and its outcome in the management of respiratory and cardiac failure have received considerable attention, but very little attention has been given to mechanical ventilation during ECMO. Mechanical ventilation settings in non-ECMO studies have been shown to have an effect on survival and may also have contributed to a treatment effect in ECMO trials. Protective lung ventilation strategies established for non-ECMO-supported respiratory failure patients may not be optimal for more severe forms of respiratory failure requiring ECMO support. The influence of positive end-expiratory pressure on the reduction of the left ventricular compliance may be a matter of concern for patients receiving ECMO support for cardiac failure. The objectives of this review were to describe potential mechanisms for lung injury during ECMO for respiratory or cardiac failure, to assess the possible benefits from the use of ultra-protective lung ventilation strategies and to review published guidelines and expert opinions available on mechanical ventilation-specific management of patients requiring ECMO, including mode and ventilator settings. Articles were identified through a detailed search of PubMed, Ovid, Cochrane databases and Google Scholar. Additional references were retrieved from the selected studies. Growing evidence suggests that mechanical ventilation settings are important in ECMO patients to minimize further lung damage and improve outcomes. An ultra-protective ventilation strategy may be optimal for mechanical ventilation during ECMO for respiratory failure. The effects of airway pressure on right and left ventricular afterload should be considered during venoarterial ECMO support of cardiac failure. Future studies are needed to better understand the potential impact of invasive mechanical ventilation modes and settings on outcomes.

  5. Exploring Market State and Stock Interactions on the Minute Timescale.

    Directory of Open Access Journals (Sweden)

    Lei Tan

    Full Text Available A stock market is a non-stationary complex system. The stock interactions are important for understanding the state of the market. However, our knowledge on the stock interactions on the minute timescale is limited. Here we apply the random matrix theory and methods in complex networks to study the stock interactions and sector interactions. Further, we construct a new kind of cross-correlation matrix to investigate the correlation between the stock interactions at different minutes within one trading day. Based on 50 million minute-to-minute price data in the Shanghai stock market, we discover that the market states in the morning and afternoon are significantly different. The differences mainly exist in three aspects, i.e. the co-movement of stock prices, interactions of sectors and correlation between the stock interactions at different minutes. In the afternoon, the component stocks of sectors are more robust and the structure of sectors is firmer. Therefore, the market state in the afternoon is more stable. Furthermore, we reveal that the information of the sector interactions can indicate the financial crisis in the market, and the indicator based on the empirical data in the afternoon is more effective.

  6. Exploring Market State and Stock Interactions on the Minute Timescale.

    Science.gov (United States)

    Tan, Lei; Chen, Jun-Jie; Zheng, Bo; Ouyang, Fang-Yan

    2016-01-01

    A stock market is a non-stationary complex system. The stock interactions are important for understanding the state of the market. However, our knowledge on the stock interactions on the minute timescale is limited. Here we apply the random matrix theory and methods in complex networks to study the stock interactions and sector interactions. Further, we construct a new kind of cross-correlation matrix to investigate the correlation between the stock interactions at different minutes within one trading day. Based on 50 million minute-to-minute price data in the Shanghai stock market, we discover that the market states in the morning and afternoon are significantly different. The differences mainly exist in three aspects, i.e. the co-movement of stock prices, interactions of sectors and correlation between the stock interactions at different minutes. In the afternoon, the component stocks of sectors are more robust and the structure of sectors is firmer. Therefore, the market state in the afternoon is more stable. Furthermore, we reveal that the information of the sector interactions can indicate the financial crisis in the market, and the indicator based on the empirical data in the afternoon is more effective.

  7. Parameters of mitotic recombination in minute mutants of Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ferrus, A.

    1975-01-01

    A sample of 16 Minutes, representing 12 loci distributed over all the chromosome arms and including 3 pairs of alleles and 4 deficiencies, has been studied with respect to several developmental and recombinational parameters. Cell marker mutants located in most of the chromosome arms were used to assess (1) spontaneous and x-ray-induced mitotic recombination frequencies of each Minute, and (2) clone sizes of the different cell marker clones. These parameters were analyzed both in the wing disc and in the abdominal histoblasts. Whereas spontaneous frequencies are not affected by the presence of the Minutes studied, the different Minutes characteristically increase the frequency of recombination clones arising after x irradiation. The recombinant clones which are M + /M + are significantly larger than clones in the same fly which retain the M + /M condition. This is particularly striking in clones in the wing disc, slightly so in clones in the tergites. The occurrence of mitotic recombination in the fourth chromosome is reported for the first time. Chaeta length and developmental delay correlates with the recombinational parameters in different ways. Possible causal interrelationships of the different traits of the Minute syndrome are discussed. (U.S.)

  8. The 15-minute family interview: a family health strategy tool

    Directory of Open Access Journals (Sweden)

    Mariana Cristina Lobato dos Santos Ribeiro Silva

    2013-06-01

    Full Text Available The 15-minute family interview is a condensed form of the Calgary Family Assessment and Intervention Models (CFAM and CFIM that aims to contribute to the establishment of a therapeutic relationship between nurses and family and to implement interventions to promote health and suffering relief, even during brief interactions. This study investigated the experience of nurses from the Family Health Strategy (FHS who used the 15-minute interview on postpartum home. The qualitative research was conducted in three stages: participants' training program, utilization of the 15-minute family interview by participants, and interviews with nurses. The data were collected through semi-structured interviews with eight nurses. The thematic analysis revealed two main themes: dealing with the challenge of a new practice and evaluating the assignment. This work shows that this tool can be used to deepen relationships between nurses and families in the Family Health Strategy.

  9. Thermal plumes in ventilated rooms

    DEFF Research Database (Denmark)

    Kofoed, Peter; Nielsen, Peter V.

    1990-01-01

    The design of a displacement ventilation system involves determination of the flow rate in the thermal plumes. The flow rate in the plumes and the vertical temperature gradient influence each other, and they are influenced by many factors. This paper shows some descriptions of these effects. Free...... above a point heat source cannot be used. This is caused either by the way of generating the plume including a long intermediate region or by the environmental conditions where vertical temperature gradients are present. The flow has a larger angle of spread and the entrainment factor is greather than...... turbulent plumes from different heated bodies are investigated. The measurements have taken place in a full-scale test room where the vertical temperature gradient have been changed. The velocity and the temperature distribution in the plume are measured. Large scale plume axis wandering is taken...

  10. Response to Exercise Training and Outcomes in Patients With Heart Failure and Diabetes Mellitus: Insights From the HF-ACTION Trial.

    Science.gov (United States)

    Banks, Adam Z; Mentz, Robert J; Stebbins, Amanda; Mikus, Catherine R; Schulte, Phillip J; Fleg, Jerome L; Cooper, Lawton S; Leifer, Eric S; Badenhop, Dalynn T; Keteyian, Steven J; Piña, Ileana L; Kitzman, Dalane W; Fiuzat, Mona; Whellan, David J; Kraus, William E; O'Connor, Christopher M

    2016-07-01

    In HF-ACTION (Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training), exercise training improved functional capacity in heart failure with reduced ejection fraction (HFrEF). Previous studies have suggested that diabetes mellitus (DM) may be associated with an attenuated response to exercise. We explored whether DM attenuated the improvement in functional capacity with exercise. HF-ACTION randomized 2331 patients with HFrEF to medical therapy with or without exercise training over a median follow-up of 2.5 years. We examined the interaction between DM and exercise response measured by change in 6-minute walk distance (6MWD) and peak VO2. We also examined outcomes by DM status. In HF-ACTION, 748 (32%) patients had DM. DM patients had lower functional capacity at baseline and had lower exercise volumes at 3 months. There was a significant interaction between DM status and exercise training for change in peak VO2 (interaction P = .02), but not 6MWD. In the exercise arm, DM patients had a smaller mean increase in peak VO2 than non-DM patients (P = .03). There was no interaction between DM and exercise on clinical outcomes. After risk adjustment, DM was associated with increased all-cause mortality/hospitalization (P = .03). In HF-ACTION, DM was associated with lower baseline functional capacity, an attenuated improvement in peak VO2, and increased hospitalizations. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. General design guide for ventilation systems for fuel reprocessing plants, September 1975

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    General safety, occupied area ventilation systems, process area ventilation systems, exhaust ventilation and filtration systems, ventilation system construction and layout ventilation system testing and monitoring, and the quality assurance program are discussed

  12. Keep pushing! Limiting interruptions to CPR; bag-valve mask versus i-gel® airway ventilation

    Directory of Open Access Journals (Sweden)

    Craig Vincent-Lambert

    2016-10-01

    Objectives: This pilot study evaluated how interruptions to chest compressions or hands-off time (HOT are affected by the placement of an i-gel® airway vs. simple BVM ventilation during single rescuer CPR. Method: 16 participants performed two, ten-minute single rescuer CPR simulations, firstly using the BVM and later the i-gel® airway for ventilation. Data pertaining to ventilations and HOT in each scenario was statistically analysed and compared. Results: The i-gel® airway demonstrated a superior ease of ventilation compared to BVM alone and resulted in a reduction of time spent on ventilations overall. The i-gel® however took a mean of 29 s, ± 10 s, to secure which contributes considerably to HOT. Conclusion: The use of the i-gel® airway resulted in a considerable decrease in the amount of time spent on ventilations and in more compressions being performed. The overall reduction in HOT was, however, offset by the time it took to secure the device. Further investigation into the use and securing of the i-gel® airway in single rescuer CPR is recommended.

  13. Influence of rotation on multiphoton processes in HF

    International Nuclear Information System (INIS)

    Broeckhove, J.; Feyen, B.; Van Leuven, P.

    1994-01-01

    In this contribution, the authors are concerned with the role of rotational motion in multiphoton processes induced by a laser field of high intensity. The authors use the pseudospectral split operator method for the propagation of the quantum wave-function. The rotation is treated by decomposition of the HF wave-function in its angular momentum components

  14. lambda-3, Sandia's 100-J HF laser system

    International Nuclear Information System (INIS)

    Klein, R.A.

    1979-09-01

    Sandia's lambda-geometry intermediate electron-beam-initiated HF amplifier is described in sufficient detail such that a similar system could be designed, constructed and characterized. Items included are the design of the laser cell, magnetic field design and measurements, electron-beam calorimetry, and typical laser results

  15. Multiple excitation modes in 163Hf

    DEFF Research Database (Denmark)

    Yadav, Rachita; Ma, J.C.; Marsh, J.C.

    2014-01-01

    Excited states of Hf163 were populated using the Zr94(Ge74,5n) reaction and the decay γ rays were measured with the Gammasphere spectrometer. Two previously known bands were extended to higher spins, and nine new bands were identified. In addition to bands associated with three- and five-quasiparticle...

  16. COPD predicts mortality in HF: the Norwegian Heart Failure Registry.

    Science.gov (United States)

    De Blois, Jonathan; Simard, Serge; Atar, Dan; Agewall, Stefan

    2010-03-01

    Chronic obstructive pulmonary disease (COPD) and chronic heart failure (HF) are common clinical conditions that share tobacco as a risk factor. Our aim was to evaluate the prognostic impact of COPD on HF patients. The Norwegian Heart Failure Registry was used. The study included 4132 HF patients (COPD, n = 699) from 22 hospitals (mean follow-up, 13.3 months). COPD patients were older, more often smokers and diabetics, less often on beta-blockers and had a higher heart rate. They were more often in New York Heart Association (NYHA) Class III or IV (COPD, 63%; no COPD, 51%), although left ventricular ejection fraction (LVEF) distribution was similar. COPD independently predicted death (adjusted hazard ratio [HR], 1.188; 95% CI: 1.015 to 1.391; P = 0.03) along with age, creatinine, NYHA Class III/IV (HR, 1.464; 95% CI: 1.286 to 1.667) and diabetes. beta-blockers at baseline were associated with improved survival in patients with LVEF < or =40% independently of COPD. COPD is associated with a poorer survival in HF patients. COPD patients are overrated in terms of NYHA class in comparison with patients with similar LVEF. Nonetheless, NYHA class remains the strongest predictor of death in these patients. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  17. Research of HF and HV circuit with Pspice

    International Nuclear Information System (INIS)

    Guo Jianjiang; Li Quanfeng; Zheng Shuxin; Li Wenjun; Tang Chuanxiang

    2005-01-01

    Transferring HF and HV pulse with 3 kinds of components is discussed. Terminal volt waves was got using the soft of Pspice when transmission line is matching of load in 3 kinds of condition. It is proved by experiments that the results got from Pspice have important values to improve experiment circuit. (authors)

  18. Oral mask ventilation is more effective than face mask ventilation after nasal surgery.

    Science.gov (United States)

    Yazicioğlu, Dilek; Baran, Ilkay; Uzumcugil, Filiz; Ozturk, Ibrahim; Utebey, Gulten; Sayın, M Murat

    2016-06-01

    To evaluate and compare the face mask (FM) and oral mask (OM) ventilation techniques during anesthesia emergence regarding tidal volume, leak volume, and difficult mask ventilation (DMV) incidence. Prospective, randomized, crossover study. Operating room, training and research hospital. American Society of Anesthesiologists physical status I and II adult patients scheduled for nasal surgery. Patients in group FM-OM received FM ventilation first, followed by OM ventilation, and patients in group OM-FM received OM ventilation first, followed by FM ventilation, with spontaneous ventilation after deep extubation. The FM ventilation was applied with the 1-handed EC-clamp technique. The OM was placed only over the mouth, and the 1-handed EC-clamp technique was used again. A child's size FM was used for the OM ventilation technique, the mask was rotated, and the inferior part of the mask was placed toward the nose. The leak volume (MVleak), mean airway pressure (Pmean), and expired tidal volume (TVe) were assessed with each mask technique for 3 consecutive breaths. A mask ventilation grade ≥3 was considered DMV. DMV occurred more frequently during FM ventilation (75% with FM vs 8% with OM). In the FM-first sequence, the mean TVe was 249±61mL with the FM and 455±35mL with the OM (P=.0001), whereas in the OM-first sequence, it was 276±81mL with the FM and 409±37mL with the OM (P=.0001). Regardless of the order used, the OM technique significantly decreased the MVleak and increased the TVe when compared to the FM technique. During anesthesia emergence after nasal surgery the OM may offer an effective ventilation method as it decreases the incidence of DMV and the gas leak around the mask and provides higher tidal volume delivery compared with FM ventilation. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. The fluid mechanics of natural ventilation

    Science.gov (United States)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  20. Variation in Definition of Prolonged Mechanical Ventilation.

    Science.gov (United States)

    Rose, Louise; McGinlay, Michael; Amin, Reshma; Burns, Karen Ea; Connolly, Bronwen; Hart, Nicholas; Jouvet, Philippe; Katz, Sherri; Leasa, David; Mawdsley, Cathy; McAuley, Danny F; Schultz, Marcus J; Blackwood, Bronagh

    2017-10-01

    Consistency of definitional criteria for terminology applied to describe subject cohorts receiving mechanical ventilation within ICU and post-acute care settings is important for understanding prevalence, risk stratification, effectiveness of interventions, and projections for resource allocation. Our objective was to quantify the application and definition of terms for prolonged mechanical ventilation. We conducted a scoping review of studies (all designs except single-case study) reporting a study population (adult and pediatric) using the term prolonged mechanical ventilation or a synonym. We screened 5,331 references, reviewed 539 full-text references, and excluded 120. Of the 419 studies (representing 38 countries) meeting inclusion criteria, 297 (71%) reported data on a heterogeneous subject cohort, and 66 (16%) included surgical subjects only (46 of those 66, 70% cardiac surgery). Other studies described COPD (16, 4%), trauma (22, 5%), neuromuscular (17, 4%), and sepsis (1, 0.2%) cohorts. A total of 741 terms were used to refer to the 419 study cohorts. The most common terms were: prolonged mechanical ventilation (253, 60%), admission to specialized unit (107, 26%), and long-term mechanical ventilation (79, 19%). Some authors (282, 67%) defined their cohorts based on duration of mechanical ventilation, with 154 studies (55%) using this as the sole criterion. We identified 37 different durations of ventilation ranging from 5 h to 1 y, with > 21 d being the most common (28 of 282, 7%). For studies describing a surgical cohort, minimum ventilation duration required for inclusion was ≥ 24 h for 20 of 66 studies (30%). More than half of all studies (237, 57%) did not provide a reason/rationale for definitional criteria used, with only 28 studies (7%) referring to a consensus definition. We conclude that substantial variation exists in the terminology and definitional criteria for cohorts of subjects receiving prolonged mechanical ventilation. Standardization of

  1. REVERSIBLE VENTILATION SYSTEM FOR ADMINISTRATIVE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Valery Yu. Kravchuk

    2017-01-01

    Full Text Available Abstract. Objectives To consider the possibility of applying the principle of reversing air flows for a centralised ventilation system; to develop a specific scheme for air exchange reversible ventilation, which will take into account the peculiarities of the microclimate of administrative buildings; to select the type of filling of the air-permeable element and justify this choice; to determine the conditions for changing the direction of air movement in the ventilation system and the area of its application; to form a list of equipment necessary for the operation of such a system; to consider the influence of supply and exhaust devices on the heat and humidity regime of claddings. Methods  To achieve this goal, the published thematic material was reviewed and a patent search carried out using Russian and European databases. Data on mathematical modelling of filtration in porous media and experimental results were used. A method for ventilating rooms in administrative building using the reversal of movement of supply and exhaust air streams along the same channels was applied. Results  Schemas for reversible ventilation systems are presented and their modes of operation considered. It is established that the idea of reversing ventilation flows has not yet been applied in the development of centralised ventilation systems. Based on these published materials, it was concluded that the proposed design of supply and exhaust devices can be used in practice. An original air exchange scheme for the ventilation of administrative buildings and design of supply and exhaust devices for this system are proposed. The conditions for changing the operating modes of the system and the scope of its application are determined. Conclusion The use of the proposed ventilation system allows normative air exchange to be provided without using a supply unit during the cold season. This application of airflow reversal allows the potential of natural forces to be used

  2. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  3. Effect of endobronchial valve therapy on pulmonary perfusion and ventilation distribution.

    Directory of Open Access Journals (Sweden)

    Carmen Pizarro

    Full Text Available Endoscopic lung volume reduction (ELVR is an emerging therapy for emphysematous COPD. However, any resulting changes in lung perfusion and ventilation remain undetermined. Here, we report ELVR-mediated adaptations in lung perfusion and ventilation, as investigated by means of pulmonary scintigraphy.In this observational study, we enrolled 26 patients (64.9 ± 9.4 yrs, 57.7% male with COPD heterogeneous emphysema undergoing ELVR with endobronchial valves (Zephyr, Pulmonx, Inc.. Mean baseline FEV1 and RV were 32.9% and 253.8% predicted, respectively. Lung scintigraphy was conducted prior to ELVR and eight weeks thereafter. Analyses of perfusion and ventilation shifts were performed and complemented by correlation analyses between paired zones.After ELVR, target zone perfusion showed a mean relative reduction of 43.32% (p<0.001, which was associated with a significant decrease in target zone ventilation (p<0.001. Perfusion of the contralateral untreated zone and of the contralateral total lung exhibited significant increases post-ELVR (p = 0.002 and p = 0.005, respectively; both correlated significantly with the corresponding target zone perfusion adaptations. Likewise, changes in target zone ventilation correlated significantly with ventilatory changes in the contralateral untreated zone and the total contralateral lung (Pearson's r: -0.42, p = 0.04 and Pearson's r: -0.42, p = 0.03, respectively. These effects were observed in case of clinical responsiveness to ELVR, as assessed by changes in the six-minute walk test distance.ELVR induces a relevant decrease in perfusion and ventilation of the treated zone with compensatory perfusional and ventilatory redistribution to the contralateral lung, primarily to the non-concordant, contralateral zone.

  4. Effects of Pressure Support Ventilation May Be Lost at High Exercise Intensities in People with COPD.

    Science.gov (United States)

    Anekwe, David; de Marchie, Michel; Spahija, Jadranka

    2017-06-01

    Pressure support ventilation (PSV) may be used for exercise training in chronic obstructive pulmonary disease (COPD), but its acute effect on maximum exercise capacity is not fully known. The objective of this study was to evaluate the effect of 10 cm H 2 O PSV and a fixed PSV level titrated to patient comfort at rest on maximum exercise workload (WLmax), breathing pattern and metabolic parameters during a symptom-limited incremental bicycle test in individuals with COPD. Eleven individuals with COPD (forced expiratory volume in one second: 49 ± 16%; age: 64 ± 7 years) performed three exercise tests: without a ventilator, with 10 cm H 2 O of PSV and with a fixed level titrated to comfort at rest, using a SERVO-i ventilator. Tests were performed in randomized order and at least 48 hours apart. The WLmax, breathing pattern, metabolic parameters, and mouth pressure (Pmo) were compared using repeated measures analysis of variance. Mean PSV during titration was 8.2 ± 4.5 cm H 2 O. There was no difference in the WLmax achieved during the three tests. At rest, PSV increased the tidal volume, minute ventilation, and mean inspiratory flow with a lower end-tidal CO 2 ; this was not sustained at peak exercise. Pmo decreased progressively (decreased unloading) with PSV at workloads close to peak, suggesting the ventilator was unable to keep up with the increased ventilatory demand at high workloads. In conclusion, with a Servo-i ventilator, 10 cm H 2 O of PSV and a fixed level of PSV established by titration to comfort at rest, is ineffective for the purpose of achieving higher exercise workloads as the acute physiological effects may not be sustained at peak exercise.

  5. The six-minute walk test in paediatric populations

    NARCIS (Netherlands)

    Janke de Groot

    2011-01-01

    The six-minute walk test (6MWT) is a self-paced, submaximal exercise test used to assess functional exercise capacity in patients with chronic diseases (Chang 2006, Solway et al 2001). It has been used widely in adults, and is being utilised increasingly in paediatric populations; it has been used

  6. Sing, Play, and Create: All in 20 Minutes!

    Science.gov (United States)

    Mason, Emily

    2014-01-01

    Young teachers often struggle with pacing and the ability to cover more than one or two songs and activities in a single 30-minute general music class. Included in this article are lesson activities that show it is not only possible to include many of the National Standards in a single lesson, but also possible to sing, play, and create in every…

  7. 39 CFR 6.5 - Minutes of meetings.

    Science.gov (United States)

    2010-07-01

    ... 39 Postal Service 1 2010-07-01 2010-07-01 false Minutes of meetings. 6.5 Section 6.5 Postal Service UNITED STATES POSTAL SERVICE THE BOARD OF GOVERNORS OF THE U.S. POSTAL SERVICE MEETINGS (ARTICLE...) or 39 U.S.C. 410(c). ...

  8. [Six-minute walk test in children with neuromuscular disease.

    Science.gov (United States)

    Cruz-Anleu, Israel Didier; Baños-Mejía, Benjamín Omar; Galicia-Amor, Susana

    2013-01-01

    Background: neuromuscular diseases affect the motor unit. When they evolve, respiratory complications are common; the six-minute walk test plays an important role in the assessment of functional capacity. Methods: prospective, transversal, descriptive and observational study. We studied seven children with a variety of neuromuscular diseases and spontaneous ambulation. We tested their lung function, and administered a six-minute walk test and a test of respiratory muscle strength to these children. Results: the age was 9.8 ± 2.4 years. All patients were males. Forced vital capacity decreased in three patients (42.8 %), forced expiratory volume during the first second (2.04 ± 1.4 L) and peak expiratory flow (4.33 ± 3.3 L/s) were normal. The maximum strength of respiratory muscles was less than 60 % of predicted values. The distance covered in the six-minute walk test was lower when compared with healthy controls (29.9 %). Conclusions: the six-minute walk test can be a useful tool in early stages of this disease, since it is easy to perform and well tolerated by the patients.

  9. Preoperational test report, primary ventilation condensate system

    Energy Technology Data Exchange (ETDEWEB)

    Clifton, F.T.

    1997-01-29

    Preoperational test report for Primary Ventilation Condensate System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system provides a collection point for condensate generated by the W-030 primary vent offgas cooling system serving tanks AYIOI, AY102, AZIOI, AZI02. The system is located inside a shielded ventilation equipment cell and consists of a condensate seal pot, sampling features, a drain line to existing Catch Tank 241-AZ-151, and a cell sump jet pump. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.

  10. Secretion management in the mechanically ventilated patient.

    Science.gov (United States)

    Branson, Richard D

    2007-10-01

    Secretion management in the mechanically ventilated patient includes routine methods for maintaining mucociliary function, as well as techniques for secretion removal. Humidification, mobilization of the patient, and airway suctioning are all routine procedures for managing secretions in the ventilated patient. Early ambulation of the post-surgical patient and routine turning of the ventilated patient are common secretion-management techniques that have little supporting evidence of efficacy. Humidification is a standard of care and a requisite for secretion management. Both active and passive humidification can be used. The humidifier selected and the level of humidification required depend on the patient's condition and the expected duration of intubation. In patients with thick, copious secretions, heated humidification is superior to a heat and moisture exchanger. Airway suctioning is the most important secretion removal technique. Open-circuit and closed-circuit suctioning have similar efficacy. Instilling saline prior to suctioning, to thin the secretions or stimulate a cough, is not supported by the literature. Adequate humidification and as-needed suctioning are the foundation of secretion management in the mechanically ventilated patient. Intermittent therapy for secretion removal includes techniques either to simulate a cough, to mechanically loosen secretions, or both. Patient positioning for secretion drainage is also widely used. Percussion and postural drainage have been widely employed for mechanically ventilated patients but have not been shown to reduce ventilator-associated pneumonia or atelectasis. Manual hyperinflation and insufflation-exsufflation, which attempt to improve secretion removal by simulating a cough, have been described in mechanically ventilated patients, but neither has been studied sufficiently to support routine use. Continuous lateral rotation with a specialized bed reduces atelectasis in some patients, but has not been shown

  11. Position paper - primary ventilation system configuration

    International Nuclear Information System (INIS)

    Dalpiaz, E.L.

    1994-06-01

    The purpose of this paper is to develop and document a position on the configuration of the primary ventilation system. This configuration will be used on the waste storage tanks currently being designed for the Multi-Function Waste Tank Facility. The primary ventilation system provides a single treatment train and exhaust fan for each waste storage tank. The ventilation systems from each of two tanks are grouped with an additional treatment train and exhaust fan that function as backup to either of the two systems

  12. Energy Analysis of the Ductless Personalized Ventilation

    DEFF Research Database (Denmark)

    Lelong, Cyril; Dalewski, Mariusz; Melikov, Arsen Krikor

    2013-01-01

    energy efficient strategies for implantation of DPV in practice. The impact of using DPV on annual energy use has been studied for different occupancy profiles in cold climates. The results suggest that using DPV combined with displacement ventilation may significantly reduce building energy use while......This study explores the impact of different occupancy profiles on the potential energy savings due to using ductless personalized ventilation (DPV) combined with displacement ventilation. Energy simulations were performed with the dynamic simulation software IDA-ICE in order to investigate optimal...

  13. Weaning newborn infants from mechanical ventilation

    Directory of Open Access Journals (Sweden)

    Paolo Biban

    2013-06-01

    Full Text Available Invasive mechanical ventilation is a life-saving procedure which is largely used in neonatal intensive care units, particularly in very premature newborn infants. However, this essential treatment may increase mortality and cause substantial morbidity, including lung or airway injuries, unplanned extubations, adverse hemodynamic effects, analgosedative dependency and severe infectious complications, such as ventilator-associated pneumonia. Therefore, limiting the duration of airway intubation and mechanical ventilator support is crucial for the neonatologist, who should aim to a shorter process of discontinuing mechanical ventilation as well as an earlier appreciation of readiness for spontaneous breathing trials. Unfortunately, there is scarce information about the best ways to perform an effective weaning process in infants undergoing mechanical ventilation, thus in most cases the weaning course is still based upon the individual judgment of the attending clinician. Nonetheless, some evidence indicate that volume targeted ventilation modes are more effective in reducing the duration of mechanical ventilation than traditional pressure limited ventilation modes, particularly in very preterm babies. Weaning and extubation directly from high frequency ventilation could be another option, even though its effectiveness, when compared to switching and subsequent weaning and extubating from conventional ventilation, is yet to be adequately investigated. Some data suggest the use of weaning protocols could reduce the weaning time and duration of mechanical ventilation, but better designed prospective studies are still needed to confirm these preliminary observations. Finally, the implementation of short spontaneous breathing tests in preterm infants has been shown to be beneficial in some centres, favoring an earlier extubation at higher ventilatory settings compared with historical controls, without worsening the extubation failure rate. Further

  14. Special Considerations in Neonatal Mechanical Ventilation.

    Science.gov (United States)

    Dalgleish, Stacey; Kostecky, Linda; Charania, Irina

    2016-12-01

    Care of infants supported with mechanical ventilation is complex, time intensive, and requires constant vigilance by an expertly prepared health care team. Current evidence must guide nursing practice regarding ventilated neonates. This article highlights the importance of common language to establish a shared mental model and enhance clear communication among the interprofessional team. Knowledge regarding the underpinnings of an open lung strategy and the interplay between the pathophysiology and individual infant's response to a specific ventilator strategy is most likely to result in a positive clinical outcome. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Do new anesthesia ventilators deliver small tidal volumes accurately during volume-controlled ventilation?

    Science.gov (United States)

    Bachiller, Patricia R; McDonough, Joseph M; Feldman, Jeffrey M

    2008-05-01

    During mechanical ventilation of infants and neonates, small changes in tidal volume may lead to hypo- or hyperventilation, barotrauma, or volutrauma. Partly because breathing circuit compliance and fresh gas flow affect tidal volume delivery by traditional anesthesia ventilators in volume-controlled ventilation (VCV) mode, pressure-controlled ventilation (PCV) using a circle breathing system has become a common approach to minimizing the risk of mechanical ventilation for small patients, although delivered tidal volume is not assured during PCV. A new generation of anesthesia machine ventilators addresses the problems of VCV by adjusting for fresh gas flow and for the compliance of the breathing circuit. In this study, we evaluated the accuracy of new anesthesia ventilators to deliver small tidal volumes. Four anesthesia ventilator systems were evaluated to determine the accuracy of volume delivery to the airway during VCV at tidal volume settings of 100, 200, and 500 mL under different conditions of breathing circuit compliance (fully extended and fully contracted circuits) and lung compliance. A mechanical test lung (adult and infant) was used to simulate lung compliances ranging from 0.0025 to 0.03 L/cm H(2)O. Volumes and pressures were measured using a calibrated screen pneumotachograph and custom software. We tested the Smartvent 7900, Avance, and Aisys anesthesia ventilator systems (GE Healthcare, Madison, WI) and the Apollo anesthesia ventilator (Draeger Medical, Telford, PA). The Smartvent 7900 and Avance ventilators use inspiratory flow sensors to control the volume delivered, whereas the Aisys and Apollo ventilators compensate for the compliance of the circuit. We found that the anesthesia ventilators that use compliance compensation (Aisys and Apollo) accurately delivered both large and small tidal volumes to the airway of the test lung under conditions of normal and low lung compliance during VCV (ranging from 95.5% to 106.2% of the set tidal volume

  16. Nanosized Hydroxyapatite Precipitation on the Ti—30Ta—xHf Alloys.

    Science.gov (United States)

    Lee, Kang; Jang, Jae- In; Han-Cheol, Choe

    2017-04-01

    In this study, we prepared hydroxyapatite (HAp) layer on the alkali treated Ti–30Ta–xHf alloys using electrochemical deposition method. Ti–30Ta–xHf alloys was anodized in 5 M NaOH solution at 0.3 A for 10 min. Alkali treated Ti–30Ta–xHf surface formed by anodization step which acted as templates and anchorage for growth of the HAp during subsequent pulsed electrochemical deposition process at 85 °C. The phase and morphologies of deposited HAp layer were affected by the Hf contents of Ti–30Ta–xHf alloys. The nano-scale rod-like HAp layer was formed on untreated Ti–30Ta–xHf alloys with partially low crystallinity. In the case of alkali treated Ti–30Ta–xHf, nano-sized needle-like layers were transferred to nano-flake surface and denser morphology as Hf content increased.

  17. HF Radar observations of the Dardanelles outflow current in North Eastern Aegean using validated WERA HF radar data

    Directory of Open Access Journals (Sweden)

    Z. KOKKINI

    2014-12-01

    Full Text Available A two-site WERA HF radar station was installed in November 2009 at the eastern coast of Lemnos Island in North Aegean Sea, aiming to monitor the surface inflow of Black Sea waters exiting from the Dardanelles Strait, as well as to constitute a coastal management tool for incidents of oil-pollution or save-and-rescue operations. Strong interference by foreign transmissions is a source of noise deteriorating the quality of the backscattered signal, thus significantly reducing the HF radar’s effective data return rate. In order to ameliorate this problem, further quality-control and data gap interpolating procedures have been developed and applied, to be used in addition to the procedures incorporated and used by the manufacturer’s signal processing software. The second-level processing involves traditional despiking in the temporal domain, preceding Empirical Orthogonal Function analysis. The latter is used not only to filter high-frequency noise but also to fill data gaps in time and space. The data reconstruction procedure has been assessed via comparison of (a HF radial with CODE-type drifter radial velocities as well as (b HF-derived virtual drifter tracks with actual drifter tracks. The main circulation features and their variability, as revealed by the reconstructed fields, are presented.

  18. 33 CFR 183.610 - Powered ventilation system.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Powered ventilation system. 183... (CONTINUED) BOATING SAFETY BOATS AND ASSOCIATED EQUIPMENT Ventilation § 183.610 Powered ventilation system... must: (1) Be open to the atmosphere, or (2) Be ventilated by an exhaust blower system. (b) Each exhaust...

  19. 46 CFR 153.310 - Ventilation system type.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Ventilation system type. 153.310 Section 153.310... Handling Space Ventilation § 153.310 Ventilation system type. A cargo handling space must have a permanent forced ventilation system of the exhaust type. ...

  20. Modeling and Control of Livestock Ventilation Systems and Indoor Environments

    DEFF Research Database (Denmark)

    Wu, Zhuang; Heiselberg, Per; Stoustrup, Jakob

    2005-01-01

    The hybrid ventilation systems have been widely used for livestock barns to provide optimum indoor climate by controlling the ventilation rate and air flow distribution within the ventilated building structure. The purpose of this paper is to develop models for livestock ventilation systems and i...