WorldWideScience

Sample records for hf isotopic composition

  1. The anatectic effect on the zircon Hf isotope composition of migmatites and associated granites

    Science.gov (United States)

    Chen, Yi-Xiang; Gao, Peng; Zheng, Yong-Fei

    2015-12-01

    Zircon Hf isotope composition is widely used to trace the growth and evolution of continental crust. However, it is controversial whether the Hf isotope composition of magmatic zircons can faithfully reflect that of their sources, especially for S-type granites. In order to provide an insight into this issue, we have revisited the published Lu-Hf isotope data of zircons from well-studied migmatites and associated granites in the Sulu orogen and the Cathaysian terrane, respectively. The results show greatly elevated 176Hf/177Hf ratios (by more than 10ε units) for newly grown zircon domains compared to the relict zircon domains. This indicates considerable contributions from non-zircon Hf to anatectic melts during crustal anatexis and subsequent magmatism. Furthermore, this more radiogenic Hf isotope signature was not erased during magmatic processes such as crystal fractionation during melt ascent and emplacement. The budget of Hf isotopes in source rocks with respect to mineral Lu/Hf ratios suggests the involvement of Hf-bearing major minerals in anatectic reactions by dissolving Hf-bearing major minerals into the anatectic melts. The significant Hf isotope variations in some anatectic and magmatic zircon domains from the migmatites and granites suggest not only the source heterogeneity but also the variable non-zircon Hf contributions. As such, the Hf isotope compositions of anatectic and magmatic zircons are substantially dictated by the mass balance between the non-zircon Hf from anatectic reactions and the zircon-Hf from the dissolution of protolith zircons into the anatectic melts. They are primarily controlled by P-T conditions and mechanism of crustal anatexis, and the magmatic processes during melt evolution. The present study highlights the important contribution of non-zircon Hf to the anatectic and magmatic zircon domains. In this regard, the greatly elevated 176Hf/177Hf ratios for newly grown zircon domains in the migmatites and granites cannot reflect

  2. Numerical modeling of radioactive neutron capture influence of Hf isotopic composition dynamics rate in the RBMK-1500 reactor

    CERN Document Server

    Jurkevicius, A; Auzelyte, V; Remeikis, V

    2000-01-01

    The nuclide composition of the nuclear fuel and isotopic composition of the hafnium in the radial neutron flux detectors of the RBMK-1500 reactor were numerically modelled. The sequence SAS2 from package SCALE 4.3 was used for calculations. The nuclear fuel nuclide concentrations, the concentration of Hf isotopes, the neutron absorption rate on Hf isotopes and summary absorption rate dependences on the fuel assembly burn up are presented. (author)

  3. U-Pb ages and Hf isotope compositions of zircons in plutonic rocks from the central Famatinian arc, Argentina

    Science.gov (United States)

    Otamendi, Juan E.; Ducea, Mihai N.; Cristofolini, Eber A.; Tibaldi, Alina M.; Camilletti, Giuliano C.; Bergantz, George W.

    2017-07-01

    The Famatinian arc formed around the South Iapetus rim during the Ordovician, when oceanic lithosphere subducted beneath the West Gondwana margin. We present combined in situ U-Th-Pb and Lu-Hf isotope analyses for zircon to gain insights into the origin and evolution of Famatinian magmatism. Zircon crystals sampled from four intermediate and silicic plutonic rocks confirm previous observations showing that voluminous magmatism took place during a relatively short pulse between the Early and Middle Ordovician (472-465 Ma). The entire zircon population for the four plutonic rocks yields coherent εHf negative values and spreads over several ranges of initial εHf(t) units (-0.3 to -8.0). The range of εHf units in detrital zircons of Famatinian metasedimentary rocks reflects a prolonged history of the cratonic sources during the Proterozoic to the earliest Phanerozoic. Typical tonalites and granodiorites that contain zircons with evolved Hf isotopic compositions formed upon incorporating (meta)sedimentary materials into calc-alkaline metaluminous magmas. The evolved Hf isotope ratios of zircons in the subduction related plutonic rocks strongly reflect the Hf isotopic character of the metasedimentary contaminant, even though the linked differentiation and growth of the Famatinian arc crust was driven by ascending and evolving mantle magmas. Geochronology and Hf isotope systematics in plutonic zircons allow us understanding the petrogenesis of igneous series and the provenance of magma sources. However, these data could be inadequate for computing model ages and supporting models of crustal evolution.

  4. Meteorite zircon constraints on the bulk Lu−Hf isotope composition and early differentiation of the Earth

    Science.gov (United States)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-01-01

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The 176Lu−176Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day 176Hf/177Hf and 176Lu/177Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess 176Hf due to the accelerated decay of 176Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu−Hf system. Herein we report the first, to our knowledge, high-precision Lu−Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial 176Hf/177Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess 176Hf and accurately represent the Lu−Hf system of the bulk Earth (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago. PMID:25870298

  5. Meteorite zircon constraints on the bulk Lu-Hf isotope composition and early differentiation of the Earth.

    Science.gov (United States)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Hibiya, Yuki; Amelin, Yuri

    2015-04-28

    Knowledge of planetary differentiation is crucial for understanding the chemical and thermal evolution of terrestrial planets. The (176)Lu-(176)Hf radioactive decay system has been widely used to constrain the timescales and mechanisms of silicate differentiation on Earth, but the data interpretation requires accurate estimation of Hf isotope evolution of the bulk Earth. Because both Lu and Hf are refractory lithophile elements, the isotope evolution can be potentially extrapolated from the present-day (176)Hf/(177)Hf and (176)Lu/(177)Hf in undifferentiated chondrite meteorites. However, these ratios in chondrites are highly variable due to the metamorphic redistribution of Lu and Hf, making it difficult to ascertain the correct reference values for the bulk Earth. In addition, it has been proposed that chondrites contain excess (176)Hf due to the accelerated decay of (176)Lu resulting from photoexcitation to a short-lived isomer. If so, the paradigm of a chondritic Earth would be invalid for the Lu-Hf system. Herein we report the first, to our knowledge, high-precision Lu-Hf isotope analysis of meteorite crystalline zircon, a mineral that is resistant to metamorphism and has low Lu/Hf. We use the meteorite zircon data to define the Solar System initial (176)Hf/(177)Hf (0.279781 ± 0.000018) and further to identify pristine chondrites that contain no excess (176)Hf and accurately represent the Lu-Hf system of the bulk Earth ((176)Hf/(177)Hf = 0.282793 ± 0.000011; (176)Lu/(177)Hf = 0.0338 ± 0.0001). Our results provide firm evidence that the most primitive Hf in terrestrial zircon reflects the development of a chemically enriched silicate reservoir on Earth as far back as 4.5 billion years ago.

  6. Hf isotope evidence for a hidden mantle reservoir

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.

    2002-01-01

    High-precision Hf isotopic analyses and U-Pb ages of carbonatites and kimberlites from Greenland and eastern North America, including Earth's oldest known carbonatite (3 Ga), indicate derivation from an enriched mantle source. This previously unidentified mantle reservoir-marked by an unradiogenic...... Hf isotopic composition and preserved in the deep mantle for at least 3 b.y.-may account for the mass imbalance in Earth's Hf-Nd budget. The Hf isotopic data presented here support a common mantle source region and genetic link between carbonatite and some oceanic-island basalt volcanoes....

  7. LU-HF Age and Isotope Systematics of ALH84001

    Science.gov (United States)

    Righter, M.; Lapen, T. J.; Brandon, A. D.; Beard, B. L.; Shafer, J. T.; Peslier, A. H.

    2009-01-01

    Allan Hills (ALH) 84001 is an orthopyroxenite that is unique among the Martian meteorites in having the oldest inferred crystallization age (approx..4.5 to 4.0 Gyr) [e.g., 1-6 and references therein 7]. Its ancient origin makes this stone a critical constraint on early history of Mars, in particular the evolution of different planetary crust and mantle reservoirs. However, because there is significant variability in reported crystallization ages, determination of initial isotope compositions is imprecise making assessment of planetary reservoirs difficult. Here we report a new Lu-Hf mineral isochron age, initial Hf-176/Hf-177 isotope composition, and inferred Martian mantle source compositions for ALH84001 that place constraints on longlived source reservoirs for the enriched shergottite suite of Martian meteorites including Shergotty, Zagami, NWA4468, NWA856, RBT04262, LAR06319, and Los Angeles. Sm-Nd isotope analyses are under way for the same mineral aliquots analyzed for Lu-Hf. The Lu-Hf system was utilized because Lu and Hf are both lithophile and refractory and are not easily redistributed during short-lived thermal pulses associated with shock metamorphism. Moreover, chromite has relatively modest Hf concentrations with very low Lu/Hf ratios [9] yielding tight constraints on initial Hf-176/Hf-177 isotope compositions

  8. Accurate Hf isotope determinations of complex zircons using the "laser ablation split stream" method

    National Research Council Canada - National Science Library

    Christopher M Fisher; Jeffery D Vervoort; S Andrew DuFrane

    2014-01-01

      The "laser ablation split stream" (LASS) technique is a powerful tool for mineral-scale isotope analyses and in particular, for concurrent determination of age and Hf isotope composition of zircon...

  9. Assessing the isotopic evolution of S-type granites of the Carlos Chagas Batholith, SE Brazil: Clues from U-Pb, Hf isotopes, Ti geothermometry and trace element composition of zircon

    Science.gov (United States)

    Melo, Marilane G.; Lana, Cristiano; Stevens, Gary; Pedrosa-Soares, Antônio C.; Gerdes, Axel; Alkmin, Leonardo A.; Nalini, Hermínio A.; Alkmim, Fernando F.

    2017-07-01

    The Carlos Chagas batholith (CCB) is a very large ( 14,000 km2) S-type granitic body formed during the syn-collisional stage of the Araçuaí orogen (southeastern Brazil). Zircons extracted from the CCB record a wide range of U-Pb ages (from 825 to 490 Ma), indicating a complex history of inheritance, magmatic crystallization and partial melting during the evolution of the orogeny. Magmatic zircons (ca. 578-588 Ma) are marked by similar Hf isotope compositions and REE patterns to those of inherited cores (ca. 825-600 Ma), indicating that these aspects of the chemical signature of the magmatic zircons have likely been inherited from the source. The U-Pb ages and initial 176Hf/177Hf ratios from anatectic and metamorphic zircon domains are consistent with a two-stage metamorphic evolution marked by contrasting mechanisms of zircon growth and recrystallization during the orogeny. Ti-in-zircon thermometry is consistent with the findings of previous metamorphic work and indicates that the two metamorphic events in the batholith reached granulite facies conditions (> 800 °C) producing two generations of garnet via fluid-absent partial melting reactions. The oldest metamorphic episode (ca. 570-550 Ma) is recorded by development of thin anatectic overgrowths on older cores and by growth of new anatectic zircon crystals. Both domains have higher initial 176Hf/177Hf values compared to relict cores and display REE patterns typical of zircon that grew contemporaneously with peritectic garnet through biotite-absent fluid partial melting reactions. Hf isotopic and chemical evidences indicate that a second anatectic episode (ca. 535-500 Ma) is only recorded in parts from the CCB. In these rocks, the growth of new anatectic zircon and/or overgrowths is marked by high initial 176Hf/177Hf values and also by formation of second generation of garnet, as indicated by petrographic observations and REE patterns. In addition, some rocks contain zircon crystals formed by solid

  10. Stages of late Paleozoic to early Mesozoic magmatism in the Song Ma belt, NW Vietnam: evidence from zircon U-Pb geochronology and Hf isotope composition

    Science.gov (United States)

    Hieu, Pham Trung; Li, Shuang-Qing; Yu, Yang; Thanh, Ngo Xuan; Dung, Le Tien; Tu, Vu Le; Siebel, Wolfgang; Chen, Fukun

    2017-04-01

    The Song Ma zone in NW Vietnam bears important tectonic implications as a potential subduction corridor between the Indochina and South China blocks. On the basis of U-Pb ages, the Hf isotopic characteristics of zircons and the geochemical composition of granitoids, a two-stage magmatic evolution process of the Song Ma zone at 290-260 and 245-230 Ma can be proposed. Isotopic analyses indicate magmatic contributions from Neoproterozoic oceanic island basalt, Proterozoic continental crust, and depleted mantle or juvenile lithosphere. By combining geochronological and geochemical data from the granitoid rocks, we suggest that the staged magmatic processes of Song Ma zone may be related to a long-lasting period of ocean subduction (ca. 290-260 Ma) and subsequent syn-/post-collisional evolution (ca. 245-230 Ma).

  11. Zircon and baddeleyite from the economic ultramafic-mafic Noril'sk-1 intrusion (Russia): Hf-isotope constraints on source composition

    Science.gov (United States)

    Malitch, K. N.; Belousova, E. A.; Badanina, I. Yu.; Griffin, W. L.

    2012-04-01

    of the Noril'sk-1 intrusion, which served as the favorable factor for accumulation of ores of unique scales and concentrations, To test this hypothesis, in situ Hf-isotope data were collected on the dated spots within single zircon grains. The analysis used a New Wave LUV213 laser-ablation microprobe attached to a Nu plasma MC-ICP-MS at GEMOC (Griffin et al. 2002). Hf-isotope results grouped on the basis of lithology show notable differences. Zircons from the unmineralized 'layered rock sequence' (e.g., olivine-free gabbro, olivine-bearing gabbro and olivine gabbro) are characterized by the most 'radiogenic' initial 176Hf/177Hf and some of ɛHf values close to those of the Depleted Mantle. Irrespective of zircon population most radiogenic Hf-isotope compositions are typical for olivine-free gabbro (mean ɛHf 7.3 ± 1.1 for sample N1-4), olivine-bearing gabbro (9.2 ± 3.8, sample N1-5) and olivine gabbro (8.3 ± 2.0, sample N1-6). In contrast, zircons from the leucogabbro that encloses the low-sulphide horizon (N1-3), and plagiowehrlite (N1-7) and taxitic-textured rocks (N1-8 and N1-9) with disseminated sulphide ores have less radiogenic Hf-isotope values (e.g., mean ɛHf6.2 ± 1.4, 5.9 ± 2.3, 6.4 ± 1.2 and 4.9±1.4, respectively). The least radiogenic values (ɛHffrom -2.9 to +2.3, mean ɛHf = 0.1 ± 1.9) are recorded in gabbro-diorite from the upper part of intrusion. The baddeleyite from olivine-free gabbro has the narrowest range of ɛHf values (e.g. 6.8-8.4), with a mean of ɛHfof 7.6 ± 0.8, closely matching that of zircon (mean ɛHf= 7.3 ± 1.1). Zircons from the leucogabbro that hosts the low-sulphide horizon (N1-3), and ultramafic and taxitic-textured lithologies with disseminated sulphide ores (N1-7, N1-8 and N1-9) have less radiogenic ɛHf values than those in barren lithologies. The Hf-isotope data for zircons from ore-bearing rocks thus suggest that the Noril'sk magmas represent mixing between a juvenile source equivalent to the Depleted Mantle and a

  12. Relationships between Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system

    Science.gov (United States)

    Vervoort, Jeff D.; Patchett, P. Jonathan; Blichert-Toft, Janne; Albarède, Francis

    1999-04-01

    We report new Hf (and Nd) data for more than 100 sedimentary samples, recent to Archean in age, from a wide range of depositional environments. These data document the behavior of Lu-Hf and Sm-Nd isotopic systems in the global sedimentary system. In conjunction with existing data for mantle-derived rocks, we now have reasonable constraints on coupled Hf-Nd isotopic behavior in the crust and mantle. Lu/Hf and Hf isotopic compositions are strongly fractionated between muds and sands in passive margin sediments due to concentration of low Lu/Hf, low 176Hf/177Hf, Hf-rich zircons in mature sands. In active margin settings, Lu-Hf fractionation due to the `zircon effect' is minor due to the less weathered and more juvenile character of the sediments. Nd isotopic compositions are not highly fractionated by sedimentary sorting because heavy minerals, also rich in REEs, do not fractionate Sm-Nd efficiently. The lack of a large and systematic fractionation at active margins means that no significant Hf-Nd decoupling occurs here. This is important because sediments at active margins are the most likely to be recycled to the mantle. Hf-Nd isotopic data for all terrestrial samples fall along a single coherent trend (ɛHf=1.36ɛNd+2.95) which we call the `terrestrial array'. This array is composed of two complementary components: a mantle array (ɛHf=1.33ɛNd+3.19, defined by all oceanic basalts; and a crustal array (ɛHf=1.34ɛNd+2.82), defined by sediments, continental basalts, granitoids, and juvenile crustal rocks. The similarity of the crustal and mantle arrays indicates that no large-scale Hf-Nd decoupling occurs between the crust and mantle. The coherency of the terrestrial Hf-Nd array implies mixing within the mantle, due to stirring processes, and also within the crust, due to homogenization by collective sedimentary processes. In addition, tight Hf-Nd covariation may also imply that efficient crust to mantle recycling has modulated isotopic correlation in the silicate

  13. What Hf isotopes in zircon tell us about crust-mantle evolution

    Science.gov (United States)

    Iizuka, Tsuyoshi; Yamaguchi, Takao; Itano, Keita; Hibiya, Yuki; Suzuki, Kazue

    2017-03-01

    The 176Lu-176Hf radioactive decay system has been widely used to study planetary crust-mantle differentiation. Of considerable utility in this regard is zircon, a resistant mineral that can be precisely dated by the U-Pb chronometer and record its initial Hf isotope composition due to having low Lu/Hf. Here we review zircon U-Pb age and Hf isotopic data mainly obtained over the last two decades and discuss their contributions to our current understanding of crust-mantle evolution, with emphasis on the Lu-Hf isotope composition of the bulk silicate Earth (BSE), early differentiation of the silicate Earth, and the evolution of the continental crust over geologic history. Meteorite zircon encapsulates the most primitive Hf isotope composition of our solar system, which was used to identify chondritic meteorites best representative of the BSE (176Hf/177Hf = 0.282793 ± 0.000011; 176Lu/177Hf = 0.0338 ± 0.0001). Hadean-Eoarchean detrital zircons yield highly unradiogenic Hf isotope compositions relative to the BSE, providing evidence for the development of a geochemically enriched silicate reservoir as early as 4.5 Ga. By combining the Hf and O isotope systematics, we propose that the early enriched silicate reservoir has resided at depth within the Earth rather than near the surface and may represent a fractionated residuum of a magma ocean underlying the proto-crust, like urKREEP beneath the anorthositic crust on the Moon. Detrital zircons from world major rivers potentially provide the most robust Hf isotope record of the preserved granitoid crust on a continental scale, whereas mafic rocks with various emplacement ages offer an opportunity to trace the Hf isotope evolution of juvenile continental crust (from εHf[4.5 Ga] = 0 to εHf[present] = + 13). The river zircon data as compared to the juvenile crust composition highlight that the supercontinent cycle has controlled the evolution of the continental crust by regulating the rates of crustal generation and intra

  14. Geochemical characteristics and Sr-Nd-Hf isotope compositions of mantle xenoliths and host basalts from Assab, Eritrea: implications for the composition and thermal structure of the lithosphere beneath the Afar Depression

    Science.gov (United States)

    Teklay, Mengist; Scherer, Erik E.; Mezger, Klaus; Danyushevsky, Leonid

    2010-05-01

    The Afar Depression offers a rare opportunity to study the geodynamic evolution of a rift system from continental rifting to sea floor spreading. This study presents geochemical data for crustal and mantle xenoliths and their alkaline host basalts from the region. The basalts have enriched REE patterns, OIB-like trace element characteristics, and a limited range in isotopic composition (87Sr/86Sr = 0.70336-0.70356, ɛ Nd = +6.6 to +7.0, and ɛ Hf = +10.0 to +10.7). In terms of trace elements and Sr-Nd isotopes, they are similar to basalts from the Hanish and Zubair islands in the southern Red Sea and are thus interpreted to be melts from the Afar mantle. The gabbroic crustal xenoliths vary widely in isotope composition (87Sr/86Sr = 0.70437-0.70791, ɛ Nd = -8.1 to +2.5, and ɛ Hf = -10.5 to +4.9), and their trace element characteristics match those of Neoproterozoic rocks from the Arabian-Nubian Shield and modern arc rocks, suggesting that the lower crust beneath the Afar Depression contains Neoproterozoic mafic igneous rocks. Ultramafic mantle xenoliths from Assab contain primary assemblages of fresh ol + opx + cpx + sp ± pl, with no alteration or hydrous minerals. They equilibrated at 870-1,040°C and follow a steep geothermal gradient consistent with the tectonic environment of the Afar Depression. The systematic variations in major and trace elements among the Assab mantle xenoliths together with their isotopic compositions suggest that these rocks are not mantle residues but rather series of layered cumulate sills that crystallized from a relatively enriched picritic melt related to the Afar plume that was emplaced before the eruption of the host basalts.

  15. Impact of glacial activity on the weathering of Hf isotopes - Observations from Southwest Greenland

    Science.gov (United States)

    Rickli, Jörg; Hindshaw, Ruth S.; Leuthold, Julien; Wadham, Jemma L.; Burton, Kevin W.; Vance, Derek

    2017-10-01

    Data for the modern oceans and their authigenic precipitates suggest incongruent release of hafnium (Hf) isotopes by chemical weathering of the continents. The fact that weathering during recent glacial periods is associated with more congruent release of Hf isotopes has led to the hypothesis that the incongruency may be controlled by retention of unradiogenic Hf by zircons, and that glacial grinding enhances release of Hf from zircons. Here we study the relationship between glacial weathering processes and Hf isotope compositions released to rivers fed by land-terminating glaciers of the Greenland Ice Sheet, as well as neighbouring non-glacial streams. The weathered source rocks in the studied area mostly consist of gneisses, but also include amphibolites of the same age (1.9 Ga). Hafnium and neodymium isotope compositions in catchment sediments and in the riverine suspended load are consistent with a predominantly gneissic source containing variable trace amounts of zircon and different abundances of hornblende, garnet and titanite. Glacially sourced rivers and non-glacial streams fed by precipitation and lakes show very unradiogenic Nd isotopic compositions, in a narrow range (ɛNd= -42.8 to -37.9). Hafnium isotopes, on the other hand, are much more radiogenic and variable, with ɛHf between -18.3 and -0.9 in glacial rivers, and even more radiogenic values of +15.8 to +46.3 in non-glacial streams. Although relatively unradiogenic Hf is released by glacial weathering, glacial rivers actually fall close to the seawater array in Hf-Nd isotope space and are not distinctly unradiogenic. Based on their abundance in rocks and sediments and their isotope compositions, different minerals contribute to the radiogenic Hf in solution with a decreasing relevance from garnet to titanite, hornblende and apatite. Neodymium isotopes preclude a much stronger representation of titanite, hornblende and apatite in solution, such as might result from differences in dissolution rates

  16. Garnet effect on Nd-Hf isotope decoupling: Evidence from the Jinfosi batholith, Northern Tibetan Plateau

    Science.gov (United States)

    Huang, Hui; Niu, Yaoling; Mo, Xuanxue

    2017-03-01

    The initial Nd and Hf isotope ratios of a 420 Ma post-collisional dioritic-granitic batholith from the Northern Tibetan plateau define a negative trend above and orthogonal to the ԐHf(t)-ԐNd(t) terrestrial array. This uncommon trend offers an insight into the origin of the puzzling Nd-Hf isotope decoupling in the crustal rocks. On this trend, samples depleted in heavy rare earth elements (HREEs, i.e., [Dy/Yb]N ≫ 1) deviate most from the terrestrial array whereas samples with flat HREEs (i.e., [Dy/Yb]N ≥ 1) deviate less or plot within the terrestrial array, pointing to the controlling effect of garnet in the magma source. Ancient garnet-bearing residues after melt extraction will have elevated Lu/Hf ratios and can evolve with time to produce high ԐHf(t) at a low ԐNd(t) value. Mixing of melts derived from such source lithologies (high Lu/Hf) with melts possessing a within-terrestrial array Nd-Hf isotopic composition (low Lu/Hf) best explains the observed trend orthogonal to the terrestrial array. The samples from the Jinfosi batholith with the most decoupled Nd-Hf isotope compositions require a larger degree (> 40%) and ancient (i.e., ≥ 1.8 Gyr) previous melt extraction from their source. It follows that the ancient melts with depleted HREEs complementary to those garnet-bearing residues should have low ԐHf values and plot below the terrestrial array, which is indeed shown by some Archean/Paleoproterozic TTGs.

  17. Geochemistry and zircon U-Pb ages and Hf isotopic composition of Permian alkali granitoids of the Phan Si Pan zone in northwestern Vietnam

    Science.gov (United States)

    Hiếu, Phạm Trung; Chen, Fu-kun; Thủy, Nguyễn Thị Bích; Cu'ò'ng, Nguyễn Quốc; Li, Shuang-quing

    2013-09-01

    The late Permian granitoids exposed in the Phan Si Pan zone of northwestern Vietnam consist mainly of the Ye Yen Sun metaluminous granites and the Nam Xe-Tam Duong peralkaline granites. Laser ablation inductively coupled plasma mass spectrometry U-Pb zircon analysis reveals that both the granite suites were emplaced from 253 Ma to 251 Ma. They have a distinctive A-type geochemistry of high 10,000 × Ga/Al ratios of 3.0-5.7 and are also characterized by elevated contents of high field strength elements, A/CNK values of 0.85-1.58, negative Eu-anomalies. Magmatic zircons from the granitoids exhibit positive initial ɛHf values ranging from 6.4 to 15.9 and yield single-stage depleted mantle Hf model ages of 257-663 Ma. This Hf isotopic feature implies significant contribution of juvenile mantle material to the magmas of the spatially and temporally associated Ye Yen Sun metaluminous and Nam Xe-Tam Duong peralkaline granites.

  18. Subduction Controls of Hf and Nd Isotopes in Lavas of the Aleutian Island Arc

    Energy Technology Data Exchange (ETDEWEB)

    Yogodzinski, Gene; Vervoort, Jeffery; Brown, Shaun Tyler; Gerseny, Megan

    2010-08-29

    The Hf and Nd isotopic compositions of 71 Quaternary lavas collected from locations along the full length of the Aleutian island arc are used to constrain the sources of Aleutian magmas and to provide insight into the geochemical behavior of Nd and Hf and related elements in the Aleutian subduction-magmatic system. Isotopic compositions of Aleutian lavas fall approximately at the center of, and form a trend parallel to, the terrestrial Hf-Nd isotopic array with {var_epsilon}{sub Hf} of +12.0 to +15.5 and {var_epsilon}{sub Nd} of +6.5 to +10.5. Basalts, andesites, and dacites within volcanic centers or in nearby volcanoes generally all have similar isotopic compositions, indicating that there is little measurable effect of crustal or other lithospheric assimilation within the volcanic plumbing systems of Aleutian volcanoes. Hafnium isotopic compositions have a clear pattern of along-arc increase that is continuous from the eastern-most locations near Cold Bay to Piip Seamount in the western-most part of the arc. This pattern is interpreted to reflect a westward decrease in the subducted sediment component present in Aleutian lavas, reflecting progressively lower rates of subduction westward as well as decreasing availability of trench sediment. Binary bulk mixing models (sediment + peridotite) demonstrate that 1-2% of the Hf in Aleutian lavas is derived from subducted sediment, indicating that Hf is mobilized out of the subducted sediment with an efficiency that is similar to that of Sr, Pb and Nd. Low published solubility for Hf and Nd in aqueous subduction fluids lead us to conclude that these elements are mobilized out of the subducted component and transferred to the mantle wedge as bulk sediment or as a silicate melt. Neodymium isotopes also generally increase from east to west, but the pattern is absent in the eastern third of the arc, where the sediment flux is high and increases from east to west, due to the presence of abundant terrigenous sediment in the

  19. Tracing Proterozoic arc mantle Hf isotope depletion of southern Fennoscandia through coupled zircon U-Pb and Lu-Hf isotopes

    Science.gov (United States)

    Petersson, Andreas; Bjärnborg, Karolina; Scherstén, Anders; Gerdes, Axel; Næraa, Tomas

    2017-07-01

    Constraints on the composition of the depleted mantle Sm-Nd and Lu-Hf crust formation ages have a long history of scientific debate. When calculating mantle extraction ages, and constructing crustal growth models, a linear evolution of incompatible trace elements in a depleted mantle since > 4 Ga is routinely used. Mantle depletion however varies regionally and over time and subduction of sediments and oceanic crust renders a mantle-wedge variously enriched relative to a modelled depleted mantle. Here we show that primitive mantle-derived subduction related gabbroic intrusions from southern Fennoscandia have Hf isotope compositions that are enriched relative to a MORB-like linear depleted mantle evolution curve. Extrapolation of primitive Paleoproterozoic gabbro suites enables the construction of a regional mantle evolution curve, providing improved constraints on model ages, crustal residence times and the fraction of juvenile versus reworked continental crust. Convergent margins are assumed to be one of the main sites of continental crust growth, and using an overly depleted mantle source yield model ages that are too old, and hence cumulative crustal growth models show too much crust generation early in the Earth's history. The approach of using the Hf isotope composition of zircon from primitive subduction related gabbroic intrusions as a proxy for mantle Hf isotope composition, piloted in this study, can be applied to other convergent margins.

  20. Persistence of fertile and hydrous lithospheric mantle beneath the northwestern Ethiopian plateau: Evidence from modal, trace element and Sr-Nd-Hf isotopic compositions of amphibole-bearing mantle xenoliths

    Science.gov (United States)

    Alemayehu, Melesse; Zhang, Hong-Fu; Aulbach, Sonja

    2017-07-01

    We present new trace element compositions of amphiboles, Sr-Nd-Hf isotope compositions of clinopyroxenes and mineral modes for spinel peridotite xenoliths that were entrained in a Miocene alkali basalt (Gundeweyn, northwestern Ethiopian plateau), in order to understand the geochemical evolution and variation occurring within the continental lithospheric mantle (CLM) in close proximity to the East African Rift system, and its dynamic implications. With the exception of a single amphibole-bearing sample that is depleted in LREE (La/YbN = 0.45 × Cl), amphiboles in lherzolites and in one harzburgite show variable degrees of LREE enrichment (La/YbN = 2.5-12.1 × Cl) with flat HREE (Dy/YbN = 1.5-2.1 × Cl). Lherzolitic clinoyroxenes have 87Sr/86Sr (0.70227 to 0.70357), 143Nd/144Nd (0.51285 to 0.51346), and 176Hf/177Hf (0.28297 to 0.28360) ranging between depleted lithosphere and enriched mantle. LREE-enriched clinopyroxenes generally have more enriched isotope compositions than depleted ones. While lherzolites with isotope compositions similar to those of the Afar plume result from the most recent metasomatic overprint, isotope compositions more depleted than present-day MORB can be explained by an older melt extraction and/or isotopic rehomogenisation event, possibly related to the Pan-African orogeny. Several generations of amphibole are recognized in accord with this multi-stage evolution. Texturally unequilibrated amphibole occurring within the peridotite matrix and in melt pockets attest to continued hydration and refertilization of the lithospheric mantle subsequent to Oligocene flood basalt magmatism, during which an earlier-emplaced inventory of amphibole was likely largely consumed. However, a single harzburgite contains amphibole with the highest Mg# and lowest TiO2 content, which is interpreted as sampling a volumetrically subordinate mantle region beneath the Ethiopian plateau that was not tapped during flood basalt magmatism. Strikingly, both trace

  1. Zircon U-Pb Geochronology, Hf Isotopic Composition and Geological Implications of the Neoproterozoic Huashan Group in the Jingshan Area, Northern Yangtze Block, China

    Science.gov (United States)

    Yang, Z.; Yang, K.

    2015-12-01

    In the northern Yangtze Block, a clear angular unconformity between the Mesoproterozoic sequences (e.g. Dagushi Group) and the overlying Neoproterozoic strata (e.g. Huashan Group) marks the the Jinning orogeny. A combined study of Lu-Hf isotopes and U-Pb ages for detrital zircons from Huashan Group can provide information on the crustal evolution of sedimentary provenances and the timing of the Jinning orogeny. Detrital zircons from Huashan Group have two major U-Pb age populations of about 2.0Ga, 2.65Ga, and three subordinate age groups of about 0.82Ga, 2.5Ga, 2.9Ga with minor >3.0Ga ages. The youngest five analyses yield a weighted average age of 816±9Ma, which is consistent with that of interlayered basalt (824±9Ma, Deng et al., 2013) and roughly defines the minimum depositional age of Huashan Group. Detrital zircons of Huashan Group mostly have two stage Hf isotope model ages (TDM2) between 3.0 to 3.3Ga, indicating that the northern Yangtze Block experienced significant continental crustal growth during the Paleo- to Meso-archean. Similar U-Pb ages of detrital zircons have been obtained from Precambrian sedimentary rocks in the northern Yangtze Block from previous studies (Liu et al., 2008; Guo et al., 2014 and references therein). Recently, ca. 2.65Ga A-type granites had been reported from the Kongling and Huji area, which likely record the thermally stable lithosphere (Chen et al., 2013; Zhou et al., 2015). In combination with this study, it documents the widespread 2.6-2.7Ga magmatic rocks in the northern Yangtze Block. Zhao et al. (2013) demonstrated both the ca. 850Ma tonalite and trondhjemite of the Huangling igneous complex were formed in a continental arc setting. This suggests the Miaowan-Huashan oceanic basin proposed by Bader et al. (2013) has not been closed at ca. 850Ma. This evidence, together with the depositional age of the Huashan Group, indicates the Jinning orogeny took place at 850-820 Ma. [1] Bader et al., 2013 Tectonics [2] Deng et al

  2. Tectono-magmatic evolution of the Chihuahua-Sinaloa border region in northern Mexico: Insights from zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granodiorite intrusions

    Science.gov (United States)

    Mahar, Munazzam Ali; Goodell, Philip C.; Feinstein, Michael Nicholas

    2016-11-01

    We present the whole-rock geochemistry, LA-ICP-MS zircon-apatite U-Pb ages and zircon Hf isotope composition of the granodioritic plutons at the southwestern boundary of Chihuahua with the states of Sinaloa and Sonora. These granodiorites are exposed in the north and south of the Rio El Fuerte in southwest Chihuahua and northern Sinaloa. The magmatism spans over a time period of 37 Ma from 90 to 53 Ma. Zircons are exclusively magmatic with strong oscillatory zoning. No inheritance of any age has been observed. Our new U-Pb dating ( 250 analyses) does not support the involvement of older basement lithologies in the generation of the granitic magmas. The U-Pb apatite ages from granodiorites in southwest Chihuahua vary from 52 to 70 Ma. These apatite ages are 1 to 20 Ma younger than the corresponding zircon U-Pb crystallization ages, suggesting variable cooling rates from very fast to 15 °C/Ma ( 800 °C to 500 °C) and shallow to moderate emplacement depths. In contrast, U-Pb apatite ages from the Sinaloa batholith are restricted from 64 to 61 Ma and are indistinguishable from the zircon U-Pb ages range from 67 to 60 Ma within the error, indicating rapid cooling and very shallow emplacement. However, one sample from El Realito showed a larger difference of 20 Ma in zircon-apatite age pair: zircon 80 ± 0.8 Ma and apatite 60.6 ± 4 Ma, suggesting a slower cooling rate of 15 °C/Ma. The weighted mean initial εHf (t) isotope composition (2σ) of granodiorites varies from + 1.8 to + 5.2. The radiogenic Hf isotope composition coupled with previous Sr-Nd isotope data demonstrates a significant shift from multiple crustal sources in the Sonoran batholithic belt to the predominant contribution of the mantle-derived magmas in the southwest Chihuahua and northern Sinaloa. Based on U-Pb ages, the absence of inheritance, typical high Th/U ratio and radiogenic Hf isotope composition, we suggest that the Late Cretaceous-Paleogene magmatic rocks in this region are not derived from

  3. Tracing magma sources of three different S-type peraluminous granitoid series by in situ U-Pb geochronology and Hf isotope zircon composition: The Variscan Montes de Toledo batholith (central Spain)

    Science.gov (United States)

    Merino Martínez, E.; Villaseca, C.; Orejana, D.; Pérez-Soba, C.; Belousova, E.; Andersen, T.

    2014-07-01

    Three distinct S-type peraluminous granitoid types have been identified within the Variscan Montes de Toledo batholith, located in the Central Iberian Zone (SW European Variscides): type-1, extremely high peraluminous restite-rich granitoids; type-2, highly peraluminous restite-bearing granitoids; and type-3, moderately peraluminous granitoids with mafic microgranular enclaves. Type-1 and type-2 granitoids are restricted to the western part of the batholith, whereas type-3 granites are mostly restricted to the eastern segment. There is a sequential youngering of emplacement age from type-1 (late-tectonic) to type-2 and type-3 granitoids (post-tectonic), extending the timing of the batholith formation for about 19 Ma between 316 and 297 Ma. Although the degree of peraluminousity of the different series could be related to different partial melting conditions or to the variable entrainment of restitic components (including the peritectic mineral assemblage of the melting reactions), whole-rock geochemical signatures and isotope zircon composition of the peraluminous granitoid types suggest contribution of different crustal sources. There is no evidence for the direct mantle-derived material contribution in the genesis of these peraluminous melts. Type-1 and type-2 granitoids contain mostly Archean to Neoproterozoic inherited zircons, whereas type-3 granites show preferentially Neoproterozoic (up to late Cryogenian) and Ordovician inheritance. The wide range of initial Hf isotope composition, ranging to highly radiogenic values (ƐHf up to + 10), of Neoproterozoic zircon inheritances in type-1 and type-2 granitoids suggests derivation from heterogeneous Neoproterozoic metasedimentary sources composed of both juveline and recycled crustal materials, similar in composition to the host Schist-Greywacke Complex metasediments. Trace-element modelling clearly suggests the involvement of metasediments similar to those mentioned from the southern part of the Central Iberian

  4. The Yellowstone hotspot in space and time: Nd and Hf isotopes insilici magmas

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Barbara P.; Perkins, Michael E.; Christensen, John N.; Lee,Den-Chuen; Halliday, A.N.

    2006-04-19

    Over the course of its 16 m.y. history, the Yellowstonehotspot has produced silicic magmas exhibiting systematic, and oftensympathetic, variations in isotopic and chemical composition, temperatureand frequency of eruption. Nd and Hf isotopic ratios vary systematicallyfrom initial eruptions at ~;16 Ma, contemporaneous with basalticvolcanism in eastern Oregon and Washington, to the present dayYellowstone Volcanic Plateau. Nd and Hf isotopic ratios co-vary and spanthe range of most terrestrial samples, reflecting mixing of mantle andcrustal sources. Earliest erupted silicic magmas were hot (in excess of1050oC), relatively less evolved and have isotopic ratios within therange of contemporaneous Columbia River flood basalts. The transit of thehotspot across the lithospheric boundary between the western accretedoceanic terrain and the Precambrian craton at 15 Ma is marked by shiftsin eNd from +4 to -11 and in ?Hf from +10 to -10. The duration of thetransit yields a crustal magma source diameter of ~;70 km. In theinterval from 14 to 9 Ma, ?Nd systematically increases from -11 to -7,recording a minimum increase in the mantle component from 5 percent to 30percent. The mantle component could be twice as great, depending upon theisotopic composition of crust and mantle reservoirs. In this sameinterval, peak temperatures of ~;1000oC occurred at 9 Ma. The last 8 m.y.are characterized by less frequent eruption of lower temperature(830-900oC) and more compositionally evolved magmas.

  5. Zircon U-Pb ages and Hf isotope compositions of the Mayuan migmatite complex, NW Fujian Province, Southeast China: Constraints on the timing and nature of a regional tectonothermal event associated with the Caledonian orogeny

    Science.gov (United States)

    Liu, Rui; Zhou, Hanwen; Zhang, Li; Zhong, Zengqiu; Zeng, Wen; Xiang, Hua; Jin, Song; Lu, Xinqian; Li, Chunzhong

    2010-10-01

    U-Pb ages, trace elements, and Hf isotope compositions of zircons from the Mayuan migmatite complex in NW Fujian province have been determined to provide constraints on the source and genesis of anatexis and tectonothermal evolution related to the Caledonian orogeny in South China. The migmatites investigated consist of various amounts of mesosome, leucosome, and melansome. Zircons extracted from mesosome, leucosome, and granite samples are characterized by oscillatory overgrowths enclosing inherited cores or occur as newly grown grains. The ages of the inherited zircons from the leucosome and granite samples are consistent with those of adjacent basement paragneiss in the study area, suggesting that both leucosome and granite were generated by partial melting of the latter. A comparison of Hf isotopes between the newly-formed zircons and inherited cores indicates that the former resulted from the breakdown of preexisting inherited zircons and/or less Hf-rich minerals other than zircons at the source. One mesosome sample contains typical metamorphic zircons that yielded a weighted mean 206Pb/ 238U age of 453 ± 3 Ma. They show enrichments in heavy REEs (Lu N/La N up to 22,709), indicating their growth prior to garnet crystallization. The other mesosome sample, in contrast, contains both newly-formed metamorphic rims and grains that gave a weighted mean 206Pb/ 238U age of 442 ± 8 Ma. They are characterized by relatively low Th/U ratios, depletions in heavy REEs (Lu N/La N = 117-396), and low 176Lu/ 177Hf ratios, suggesting their growth synchronous with garnet crystallization. The U-Pb ages of the mesosome samples are interpreted as recording the time of early (ca. 453 Ma) to peak (442 Ma) stages of a regional metamorphic event. Two leucosome and two granite samples yield consistent U-Pb ages of 438 ± 5 Ma to 442 ± 4 Ma, which provide constraints on the timing of subsequent anatexis and magmatism. The geochronological data reported here reveal a consecutive

  6. Lu-Hf isotope systematics of fossil biogenic apatite and their effects on geochronology

    Science.gov (United States)

    Herwartz, Daniel; Münker, Carsten; Tütken, Thomas; Hoffmann, J. Elis; Wittke, Andreas; Barbier, Bruno

    2013-01-01

    Reliable methods for direct dating of biogenic apatite from pre-Pleistocene fossils are currently not available, and recent attempts using the Lu-Hf decay system yielded highly inaccurate ages for both bones and teeth. The geological processes accounting for this poor accuracy of Lu-Hf chronometry are not yet understood. Here we explore Lu-Hf systematics in fossil bones and teeth in detail, by applying five different sample digestion techniques that are tested on bones and composites of bone and sediment. Our current dataset implies that dissolution methods only slightly affect the resulting Lu-Hf ages, while clear differences between the individual digestion techniques became apparent for element concentrations. By analysing the insoluble leftovers from incomplete sample dissolution, four main reservoirs of Hf in fossil bones were identified: (1) a radiogenic end-member associated with apatite; (2) an unradiogenic end-member represented by the authigenic minerals or the embedding sediment; (3) a highly unradiogenic end-member that can be attributed to detrital zircon; and (4) a moderately soluble phase (probably a Zr(Hf)-phosphate) that yielded very low Lu/Hf but a highly radiogenic Hf isotope composition at the same time. This Zr(Hf)-phase must have been precipitated within the fossil bone sample at a late stage of burial history, thereby incorporating radiogenic 176Hf released from apatite surfaces over geological timescales. A second focus of our study is the effect of different sediment matrices and of crystal size on the preservation of pristine Lu-Hf isotope compositions in bioapatite. Because near-depositional Lu-Hf ages of phosphate fossils have previously been reported for the London Clay (England) and a calcareous marl from Tendaguru (Tanzania), we herein investigate specimens fossilised in carbonate matrices (calcareous marl from Oker, Germany; carbonate concretions from the Santana Formation, Brazil; carbonate from the Eifel, Germany) and argillaceous

  7. Hf isotope evidence for effective impact melt homogenisation at the Sudbury impact crater, Ontario, Canada

    Science.gov (United States)

    Kenny, Gavin G.; Petrus, Joseph A.; Whitehouse, Martin J.; Daly, J. Stephen; Kamber, Balz S.

    2017-10-01

    We report on the first zircon hafnium-oxygen isotope and trace element study of a transect through one of the largest terrestrial impact melt sheets. The differentiated melt sheet at the 1.85 Ga, originally ca. 200 km in diameter Sudbury impact crater, Ontario, Canada, yields a tight range of uniform zircon Hf isotope compositionsHf(1850) of ca. -9 to -12). This is consistent with its well-established crustal origin and indicates differentiation from a single melt that was initially efficiently homogenised. We propose that the heterogeneity in other isotopic systems, such as Pb, in early-emplaced impact melt at Sudbury is associated with volatility-related depletion during the impact cratering process. This depletion leaves the isotopic systems of more volatile elements more susceptible to contamination during post-impact assimilation of country rock, whereas the systems of more refractory elements preserve initial homogeneities. Zircon oxygen isotope compositions in the melt sheet are also restricted in range relative to those in the impacted target rocks. However, they display a marked offset approximately one-third up the melt sheet stratigraphy that is interpreted to be a result of post-impact assimilation of 18O-enirched rocks into the base of the cooling impact melt. Given that impact cratering was a more dominant process in the early history of the inner Solar System than it is today, and the possibility that impact melt sheets were sources of ex situ Hadean zircon grains, these findings may have significance for the interpretation of the early zircon Hf record. We speculate that apparent εHf-time arrays observed in the oldest terrestrial and lunar zircon datasets may be related to impact melting homogenising previously more diverse crust. We also show that spatially restricted partial melting of rocks buried beneath the superheated impact melt at Sudbury provided a zircon crystallising environment distinct to the impact melt sheet itself.

  8. Impact of glacial activity on the weathering of Hf isotopes – observations from Southwest Greenland.

    OpenAIRE

    Rickli, Jörg; Hindshaw, Ruth S.; Leuthold, Julien; Wadham, Jemma L.; Burton, Kevin W.; Vance, Derek

    2017-01-01

    Data for the modern oceans and their authigenic precipitates suggest incongruent release of hafnium (Hf) isotopes by chemical weathering of the continents. The fact that weathering during recent glacial periods is associated with more congruent release of Hf isotopes has led to the hypothesis that the incongruency may be controlled by retention of unradiogenic Hf by zircons, and that glacial grinding enhances release of Hf from zircons. Here we study the relationship between glacial weatherin...

  9. The Yellowstone hotspot in space and time: Nd and Hf isotopes in silicic magmas

    Science.gov (United States)

    Nash, Barbara P.; Perkins, Michael E.; Christensen, John N.; Lee, Der-Chuen; Halliday, A. N.

    2006-07-01

    Over the course of its 16 m.y. history, the Yellowstone hotspot has produced silicic magmas exhibiting systematic, and often sympathetic, variations in isotopic and chemical composition, temperature and frequency of eruption. Nd and Hf isotopic ratios vary systematically from initial eruptions at ˜ 16 Ma, contemporaneous with basaltic volcanism in eastern Oregon and Washington, to the present day Yellowstone Volcanic Plateau. Nd and Hf isotopic ratios co-vary and span the range of most terrestrial samples, reflecting mixing of mantle and crustal sources. Earliest erupted silicic magmas were hot (in excess of 1050 °C), relatively less evolved and have isotopic ratios within the range of contemporaneous Columbia River flood basalts. The transit of the hotspot across the lithospheric boundary between the western accreted oceanic terrain and the Precambrian craton at 15 Ma is marked by shifts in ɛNd from + 4 to - 11 and in ɛHf from + 10 to - 10. The duration of the transit yields a crustal magma source diameter of ˜ 70 km. In the interval from 14 to 9 Ma, ɛNd systematically increases from - 11 to - 7, recording a minimum increase in the mantle component from 5% to 30%. The mantle component could be twice as great, depending upon the isotopic composition of crust and mantle reservoirs. In this same interval, peak temperatures of ˜ 1000 °C occurred at 9 Ma. The last 8 m.y. are characterized by less frequent eruption of lower temperature (830-900 °C) and more compositionally evolved magmas.

  10. Zircon U-Pb ages and Hf isotopic compositions of alkaline silicic magmatic rocks in the Phan Si Pan-Tu Le region, northern Vietnam: Identification of a displaced western extension of the Emeishan Large Igneous Province

    Science.gov (United States)

    Usuki, Tadashi; Lan, Ching-Ying; Tran, Trong Hoa; Pham, Thi Dung; Wang, Kuo-Lung; Shellnutt, Gregory J.; Chung, Sun-Lin

    2015-01-01

    In-situ zircon U-Pb and Hf isotope analyses were carried out for alkaline silicic magmatic rocks from the Phan Si Pan-Tu Le region in northern Vietnam to constrain their possible sources and to determine their petrogenetic relationship with the Emeishan Large Igneous Province (ELIP), SW China. Nine granites and nine rhyolites yield zircon 206Pb/238U ages from 262 Ma to 249 Ma, coinciding with the timing of silicic magmatism in the Panxi area of the ELIP. The zircon εHf(t) values (+14 to +3) of these granites and rhyolites suggest a moderately depleted mantle source and overlap with those of peralkaline and metaluminous granites in the Panxi area [i.e. εHf(t) = +14 to +4]. The zircon Hf isotope ratios show that the zircons probably record the original source characteristics whereas whole-rock Nd isotope data indicate an evidence for crustal contamination that may have occurred at lower temperatures during magma emplacement. The synchroneity, coupled with petrological and geochemical similarities, indicate that silicic rocks from the Phan Si Pan-Tu Le region are cogenetic with the Panxi silicic plutonic rocks and that they are likely derived by similar petrogenetic processes (i.e. fractionation of mafic magmas or partial melting of mafic rocks). Therefore, we propose that the Phan Si Pan-Tu Le region represents a displaced portion of the ELIP inner zone.

  11. Importance of the Lu-Hf isotopic system in studies of planetary chronology and chemical evolution

    Science.gov (United States)

    Patchett, P.J.

    1983-01-01

    The 176Lu-176Hf isotope method and its applications in earth sciences are discussed. Greater fractionation of Lu/Hf than Sm/Nd in planetary magmatic processes makes 176Hf 177Hf a powerful geochemical tracer. In general, proportional variations of 176Hf 177Hf exceed those of 143Nd l44Nd by factors of 1.5-3 in terrestrial and lunar materials. Lu-Hf studies therefore have a major contribution to make in understanding of terrestrial and other planetary evolution through time, and this is the principal importance of Lu-Hf. New data on basalts from oceanic islands show unequivocally that whereas considerable divergences occur in 176Hf 177Hf- 87Sr 86Sr and 143Nd l44Nd- 87Sr 86Sr diagrams, 176Hf 177Hf and 143Nd 144Nd display a single, linear isotopic variation in the suboceanic mantle. These discordant 87Sr 86Sr relationships may allow, with the acquisition of further Hf-Nd-Sr isotopic data, a distinction between processes such as mantle metasomatism, influence of seawater-altered material in the magma source, or recycling of sediments into the mantle. In order to evaluate the Hf-Nd isotopic correlation in terms of mantle fractionation history, there is a need for measurements of Hf distribution coefficients between silicate minerals and liquids, and specifically for a knowledge of Hf behavior in relation to rareearth elements. For studying ancient terrestrial Hf isotopic variations, the best quality Hf isotope data are obtained from granitoid rocks or zircons. New data show that very U-Pb discordant zircons may have upwardly-biased 176Hf 177Hf, but that at least concordant to slightly discordant zircons appear to be reliable carriers of initial 176Hf 177Hf. Until the controls on addition of radiogenic Hf to zircon are understood, combined zircon-whole rock studies are recommended. Lu-Hf has been demonstrated as a viable tool for dating of ancient terrestrial and extraterrestrial samples, but because it offers little advantage over existing methods, is unlikely to find

  12. Geochronology and Sr–Nd–Hf isotopic composition of the granites, enclaves, and dikes in the Karamay area, NW China: Insights into late Carboniferous crustal growth of West Junggar

    Directory of Open Access Journals (Sweden)

    Di Li

    2015-03-01

    Full Text Available New whole-rock major and trace elements, and zircon U–Pb and Hf–Nd isotope compositions are reported for the Karamay dikes, enclaves, and host granites in the West Junggar, NW China. Zircon U–Pb dating of the Karamay pluton yields an age of 300.7 ± 2.3 Ma for the enclave and 300.0 ± 2.6 Ma for the host granite, which was intruded by dike with an age of 298 Ma. The host granites exhibit relatively low SiO2 contents and A/CNK and Ga/Al ratios, low initial 87Sr/86Sr ratios (0.703421–0.703526 and positive εHf(t (5.5–14.1 and εNd(t (7.3–8.1 values with a young model age, suggesting that they are I-type granites and were mainly derived from a juvenile lower crustal source. The enclaves and dikes belong to an andesitic calc-alkaline series and have high MgO concentrations at low silica content and positive εHf(t (7.6–13.2, 14.2–14.9 and εNd(t (6.8–8.3, ∼6.9 values. They are enriched in LILEs (Rb, Ba and U and LREE and depleted in HFSEs (Nb and Ta with insignificant negative Eu anomalies, indicating that the melts were derived from an enriched lithospheric mantle modified by subducted oceanic crust-derived melts and minor fluids, followed by fractional crystallization. The Karamay host granites and enclaves are of mixed origin and are most probably formed by the interaction between the lower crust- and lithospheric mantle-derived magmas, and were intruded by the unmixed dikes subsequently. The upwelling mantle through a slab window in an island arc environment might have triggered partial melting of the lithospheric mantle and its subsequent interaction with the granitic magma, further suggesting that the ridge subduction played an important role in the crustal growth of West Junggar.

  13. Hf isotope evidence for variable slab input and crustal addition in basalts and andesites of the Taupo Volcanic Zone, New Zealand

    DEFF Research Database (Denmark)

    Waight, Tod Earle; Troll, Valentin R.; Gamble, J.A.

    2017-01-01

    Crustal contamination complicates the identification of primary mantle-derived magma compositions in Continental arcs. However,when crustal processes and components arewell characterised, it is possible to extrapolate through continental arc magma compositional arrays towards the Hf and Nd isotop...

  14. Source Components and Mass Transfer in the Aleutian Arc from Hf, Nd and Pb Isotopes

    Science.gov (United States)

    Brown, S. T.; Yogodzinski, G. M.; Vervoort, J. D.; Kelemen, P. B.

    2008-12-01

    Hafnium, Nd and Pb isotopic and trace element data from the eastern Aleutian arc, including new samples from dredged back arc volcanoes, are used to evaluate the sources of Hf and other high field strength elements (HFSE) in island arc lavas. A relatively simple subduction system and on-going efforts to accurately characterize the subducting sediment make the Aleutian arc an ideal natural laboratory to test models of mass transfer from the subducting plate through the sub arc mantle and back to the surface. Aleutian lavas sampled from the arc front have less radiogenic Nd and Hf isotope ratios than estimates of the local mantle wedge, consistent with the addition of small amounts of subducting sediment to the melt source. In general ɛNd and ɛHf increase westward, apparently due to decreasing subduction rates and sediment flux to the trench. In detail, Nd and Hf isotopes are well correlated west of Seguam Island but are decoupled to the east, where ɛHf decreases continuously and ɛNd is weakly correlated with the sediment flux. Correlations between sediment flux, Nd and Hf isotopes indicate that sediment-derived Nd and Hf are incorporated into the source of Aleutian magmas. This implies that Hf (+ other HFSE's?) is not conserved in the subducted sediment. An eastward increase in the terrigenous component of subducting sediments, which likely include a greater proportion of detrital zircon, may be the source of relatively unradiogenic Hf in eastern Aleutian lavas. This suggests that Hf, derived in part from detrital zircon, may be transferred from the subducting plate to the sub arc mantle. Dredged lavas from submerged, back-arc volcanoes located between Umnak Island and the Islands of Four Mountains display stronger isotopic diversity (e.g.,ɛHf= 11.6-19.9, ɛNd= 5.8-9.4, and 206Pb/204Pb= 18.4-19.0) than nearby emergent and arc front volcanoes. This suggests that the small seafloor volcanoes effectively sample isotopic end-members, which likely originate from

  15. Geochemical proxies of ocean circulation and weathering inputs: Radiogenic isotopes of Nd, Pb, Sr, Hf, and Os

    Energy Technology Data Exchange (ETDEWEB)

    Frank, Martin, E-mail: mfrank@ifm-geomar.de [IFM-GEOMAR, Leibniz Institute of Marine Sciences at the University of Kiel, Wischhofstrasse 1-3, 24148 Kiel (Germany)

    2011-05-15

    Marine records of the radiogenic isotope composition of the elements neodymium (Nd), lead (Pb), hafnium (Hf), strontium (Sr), and osmium (Os) allow the reconstruction of past continental weathering inputs on different time scales as a function of their respective oceanic residence times. Sr and Os have oceanic residence times significantly longer than the global mixing time of the ocean and are efficiently mixed on a global scale. Their isotope composition changes on long time scales as a function of plate tectonics and major orogenies, which allows their use as precise stratigraphic tools for the entire Phanerozoic. In contrast, Hf, Pb, and in particular Nd, have residence times on the order of or shorter than the global mixing time of the ocean, which results in distinct isotopic signatures of water masses and allows the reconstruction of past water mass mixing and weathering inputs on both long and short time scales. Here applications of these isotopes systems with a focus on the shorter residence time tracers are reviewed (without claiming to be comprehensive) and problems and potential solutions are discussed.

  16. Temporal and Hf isotope geochemical evolution of southern Finnish Lapland from 2.77 Ga to 1.76 Ga

    Directory of Open Access Journals (Sweden)

    Laura S. Lauri

    2012-12-01

    Full Text Available The southern Finnish Lapland area in the central part of the Fennoscandian shield is a geologically complex zone comprising several Archean blocks and Paleoproterozoic supracrustal belts all of which are intruded by voluminous Paleoproterozoic granites (the central Lapland granitoid complex, CLGC. New in-situ single crystal zircon U–Pb age determinations coupled with Lu–Hf isotope data from the same zircons were acquired from five granitoid rocks and one amphibolitic rock sample from the southern Lapland area. The samples represent at least four distinct magmatic events (at ca. 2.77 Ga, 2.12Ga, 1.81 Ga, and 1.76 Ga. The 2.77 Ga and the 1.81-1.76 Ga events have initial Hf isotope signatures implying that local Archean rocks represent the source for the younger granites. The 2.12 Ga event has a slightly more juvenile Hf isotope composition suggesting either that the source for the 2.12 Ga granites represents a different Archean block or that the source is composed of mixed Archean and Paleoproterozoic components. The Neoarchean source for the Paleoproterozoic granites may be traced through the CLGC all the way to the Jokkmokk area in Sweden and possibly to the Lofoten area in Norway

  17. Combined U-Pb SHRIMP and Hf isotope study of the Late Paleozoic Yaminué Complex, Rio Negro Province, Argentina: Implications for the origin and evolution of the Patagonia composite terrane

    Directory of Open Access Journals (Sweden)

    Carlos J. Chernicoff

    2013-01-01

    Combining geological and isotope data, as well as geophysical models, we identify the Yaminué Complex within the La Esperanza-Yaminué crustal block flanked by two other, distinct crustal blocks: the Eastern block which forms part of the Patagonia terrane sensu stricto, located in the eastern Patagonian region, and the Western block forming part of the Southern Patagonia terrane. Their origins and timing of amalgamation to form the Patagonia composite terrane are also discussed.

  18. Refinement of the supercontinent cycle with Hf, Nd and Sr isotopes

    Directory of Open Access Journals (Sweden)

    Kent C. Condie

    2013-11-01

    External and internal orogens show similar patterns in ɛNd and ɛHf with age suggesting that both juvenile and reworked crustal components are produced in both types of orogens with similar proportions. However, both types of orogens clearly produce more juvenile isotopic signatures in retreating mode than in advancing mode. Many secular changes in ɛHf and ɛNd distributions correlate with the supercontinent cycle. Although supercontinent breakup is correlated with short-lived decreasing ɛHf and ɛNd (≤100 Myr for most supercontinents, there is no isotopic evidence for the breakup of the Paleoproterozoic supercontinent Nuna. Assembly of supercontinents by extroversion is recorded by decreasing ɛNd in granitoids and metasediments and decreasing ɛHf in zircons, attesting to the role of crustal reworking in external orogens in advancing mode. As expected, seawater Sr isotopes increase and seawater Nd isotopes decrease during supercontinent assembly by extroversion. Pangea is the only supercontinent that has a clear isotopic record of introversion assembly, during which median ɛNd and ɛHf rise rapidly for ≤100 Myr. Although expected to increase, radiogenic seawater Sr decreases (and seawater Nd increases during assembly of Pangea, a feature that may be caused by juvenile input into the oceans from new ocean ridges and external orogens in retreating mode. The fact that a probable onset of plate tectonics around 3 Ga is not recorded in isotopic distributions may be due the existence of widespread felsic crust formed prior to the onset of plate tectonics in a stagnant lid tectonic regime, as supported by Nd and Hf model ages.

  19. Crustal formation in the Nanling Range, South China Block: Hf isotope evidence of zircons from Phanerozoic granitoids

    Science.gov (United States)

    Shu, Xu-Jie; Wang, Xiao-Lei; Sun, Tao; Chen, Wei-Feng; Shen, Wei-Zhou

    2013-09-01

    Granitic rocks are the principle agent of crustal differentiation, therefore their origins yield important information on crustal formation and reworking. An extensive survey of zircon Hf isotopes from granitic rocks in a large region can provide a profile of crustal characteristics that may be further linked to previous crustal evolution. In this study, we measured U-Pb ages and Hf isotope compositions of zircon grains extracted from twenty-five Jurassic, five Triassic and two Ordovician granitic plutons from the Nanling Range, South China Block (SCB). Combined with the published Lu-Hf isotopic data for the granitic rocks in the studied and adjacent areas, three domains with different crustal formation histories have been identified in the southern part of the SCB: eastern side, middle part and western side. The eastern side extends to the coastal area of the SCB, with dominant Hf crustal model ages (TDM2) in zircons falling within the range of 2.2-1.6 Ga. The middle part is partly coincided with the low-Nd model age belt proposed by Chen and Jahn (1998), with zircon Hf TDM2 ranging from 1.6 to 1.0 Ga. The western side covers the westernmost Nanling Range and the western end of the Jiangnan orogen, in which the granitoids have zircon Hf TDM2 model ages spanning 2.2-1.8 Ga. The Paleo- to Meso-Proterozoic model ages of the Phanerozoic granitoids in the Nanling Range imply a long-term crustal reworking. Zircons from the western and eastern sides have an average ɛHf(155 Ma) at around -10, about 4 epsilon units lower than the middle part (ɛHf(155 Ma) = -6). Hf TDM2 histogram from the western Nanling Range is similar to that of the Neoproterozoic granitoids in northern Guangxi Province to the west but much lower to the granites in the middle part to the east. The eastern side has a broader range of Hf model ages in zircons, with the main peak low to ca 1.6 Ga, suggesting the reworking of Mesoproterozoic crust. However, granitoids in the middle part have zircon Hf TDM2

  20. Evolution of continental crust and mantle heterogeneity: Evidence from Hf isotopes

    Science.gov (United States)

    Jonathan, Patchett P.; Kouvo, O.; Hedge, C.E.; Tatsumoto, M.

    1982-01-01

    We present initial 176Hf/177 Hf ratios for many samples of continental crust 3.7-0.3 Gy old. Results are based chiefly on zircons (1% Hf) and whole rocks: zircons are shown to be reliable carriers of essentially the initial Hf itself when properly chosen on the basis of U-Pb studies. Pre-3.0 Gy gneisses were apparently derived from an unfractionated mantle, but both depleted and undepleted mantle are evident as magma sources from 2.9 Gy to present. This mantle was sampled mainly from major crustal growth episodes 2.8, 1.8 and 0.7 Gy ago, all of which show gross heterogeneity of 176Hf/177Hf in magma sources from ??Hf=0 to +14, or about 60% of the variability of the present mantle. The approximate ??Hf=2??Nd relationship in ancient and modern igneous rocks shows that 176Lu/177Hf fractionates in general twice as much as 147Sm/144Nd in mantle melting processes. This allows an estimation of the relative value of the unknown bulk solid/liquid distribution coefficient for Hf. DLu/DHf=??? 2.3 holds for most mantle source regions. For garnet to be an important residual mantle phase, it must hold Hf strongly in order to preserve Hf-Nd isotopic relationships. The ancient Hf initials are consistent with only a small proportion of recycled older cratons in new continental crust, and with quasi-continuous, episodic growth of the continental crust with time. However, recycling of crust less than 150 My old cannot realistically be detected using Hf initials. The mantle shows clearly the general positive ??Hf resulting from a residual geochemical state at least back to 2.9 Gy ago, and seems to have repeatedly possessed a similar degree of heterogeneity, rather than a continuously-developing depletion. This is consistent with a complex dynamic disequilibrium model for the creation, maintenance and destruction of heterogeneity in the mantle. ?? 1981 Springer-Verlag.

  1. Shape change in Hf, W and Os-isotopes: A non-relativistic Hartree ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 62; Issue 4. Shape change in Hf, W and Os-isotopes: A non-relativistic Hartree-Fock versus relativistic Hartree approximation. Z Naik B K Sharma T K Jha P Arumugam S K Patra. Research Articles Volume 62 Issue 4 April 2004 pp 827-839 ...

  2. Magma mixing and the generation of isotopically juvenile silicic magma at Yellowstone caldera inferred from coupling 238U–230Th ages with trace elements and Hf and O isotopes in zircon and Pb isotopes in sanidine

    Science.gov (United States)

    Stelten, Mark E.; Cooper, Kari M.; Vazquez, Jorge A.; Reid, Mary R.; Barfod, Gry H.; Wimpenny, Josh; Yin, Qing-Zhu

    2013-01-01

    The nature of compositional heterogeneity within large silicic magma bodies has important implications for how silicic reservoirs are assembled and evolve through time. We examine compositional heterogeneity in the youngest (~170 to 70 ka) post-caldera volcanism at Yellowstone caldera, the Central Plateau Member (CPM) rhyolites, as a case study. We compare 238U–230Th age, trace-element, and Hf isotopic data from zircons, and major-element, Ba, and Pb isotopic data from sanidines hosted in two CPM rhyolites (Hayden Valley and Solfatara Plateau flows) and one extracaldera rhyolite (Gibbon River flow), all of which erupted near the caldera margin ca. 100 ka. The Hayden Valley flow hosts two zircon populations and one sanidine population that are consistent with residence in the CPM reservoir. The Gibbon River flow hosts one zircon population that is compositionally distinct from Hayden Valley flow zircons. The Solfatara Plateau flow contains multiple sanidine populations and all three zircon populations found in the Hayden Valley and Gibbon River flows, demonstrating that the Solfatara Plateau flow formed by mixing extracaldera magma with the margin of the CPM reservoir. This process highlights the dynamic nature of magmatic interactions at the margins of large silicic reservoirs. More generally, Hf isotopic data from the CPM zircons provide the first direct evidence for isotopically juvenile magmas contributing mass to the youngest post-caldera magmatic system and demonstrate that the sources contributing magma to the CPM reservoir were heterogeneous in 176Hf/177Hf at ca. 100 ka. Thus, the limited compositional variability of CPM glasses reflects homogenization occurring within the CPM reservoir, not a homogeneous source.

  3. Integrated elemental and Sr-Nd-Pb-Hf isotopic studies of Mesozoic mafic dykes from the eastern North China Craton: implications for the dramatic transformation of lithospheric mantle

    Science.gov (United States)

    Liu, Shen; Feng, Caixia; Santosh, M.; Feng, Guangying; Coulson, Ian M.; Xu, Mengjing; Guo, Zhuang; Guo, Xiaolei; Peng, Hao; Feng, Qiang

    2018-02-01

    Evolution of the lithospheric mantle beneath the North China Craton (NCC) from its Precambrian cratonic architecture until Paleozoic, and the transformation to an oceanic realm during Mesozoic, with implications on the destruction of cratonic root have attracted global attention. Here we present geochemical and isotopic data on a suite of newly identified Mesozoic mafic dyke swarms from the Longwangmiao, Weijiazhuang, Mengjiazhuang, Jiayou, Huangmi, and Xiahonghe areas (Qianhuai Block) along the eastern NCC with an attempt to gain further insights on the lithospheric evolution of the region. The Longwangmiao dykes are alkaline with LILE (Ba and K)- and LREE-enrichment ((La/Yb) N > 4.3) and EM1-like Sr-Nd-Pb-Hf isotopic signature ((87Sr/86Sr) i > 0.706; ε Nd (t) 16.6, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.8, ε Hf (t) 3.7), and display similar EM1-like isotopic features ((87Sr/86Sr) i > 0.706; ε Nd (t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 2.4) and EM1-like isotopic features((87Sr/86Sr) i > 0.706; ε Nd (t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 3.7) and EM1-like Sr-Nd-Pb-Hf isotopic features ((87Sr/86Sr) i > 0.706; ε Nd(t) 16.7, (207Pb/204Pb) i > 15.4, (208Pb/204Pb) i > 36.9, ε Hf (t) 9.3) and EM1-like isotopic composition ((87Sr/86Sr) i > 0.705; ε Nd (t) 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) Hf isotopic signature ((87Sr/86Sr) i > 0.705; ε Nd (t) 16.9, (207Pb/204Pb) i > 15.5, (208Pb/204Pb) i > 36.9, ε Hf (t) < -8.6). Our data from the various mafic dyke suites suggest that the magmas were derived from EM1-like lithospheric mantle, corresponding to lithospheric mantle modified by the previously foundered lower crust beneath the eastern NCC. Our results suggest contrasting lithospheric evolution from Triassic (212 Ma) to Cretaceous (123 Ma) beneath the NCC. These mafic dykes mark an important phase of lithospheric thinning in the eastern North China Craton.

  4. A method for combined Sr-Nd-Hf isotopic analysis of <10 mg dust samples: implication for ice core science

    Science.gov (United States)

    Ujvari, Gabor; Wegner, Wencke; Klötzli, Urs

    2017-04-01

    Aeolian mineral dust particles below the size of 10-20 μm often experience longer distance transport in the atmosphere, and thus Aeolian dust is considered an important tracer of large-scale atmospheric circulation. Since ice core dust is purely Aeolian in origin, discrimination of its potential source region(s) can contribute to a better understanding of past dust activity and climatic/environmental causes. Furthermore, ice core dust source information provides critical experimental constraints for model simulations of past atmospheric circulation patterns [1,2]. However, to identify dust sources in past dust archives such as ice cores, the mineralogy and geochemistry of the wind-blown dust material must be characterized. While the amount of dust in marine cores or common terrestrial archives is sufficient for different types of analyses and even for multiple repeat measurements, dust content in ice cores is usually extremely low even for the peak dusty periods such as the Last Glacial Maximum (LGM) (5-8 mg dust/kg ice; [3]). Since the most powerful dust fingerprinting methods, such as REE composition and Sr-Nd-Pb isotopic analyses are destructive there is a clear need to establish sequential separation techniques of Sr, Nd, Pb and other REEs to get the most information out of small (5-10 mg) dust samples recovered from ice cores. Although Hf isotopes have recently been added as a robust tool of aerosol/dust source discrimination (e.g. [4,5,6,7]), precise Hf isotopic measurements of small (dispersion in 176Hf/177Hf for the different aliquots of BEI is a unique feature or not. Nevertheless, the ca. 3-7 ɛHf unit difference between the Central European and Chinese dust sample provides an opportunity to better discriminate last glacial Greenland dust sources [7] in Nd-Hf space. This study was supported by the OMAA 92öu7 project, the OTKA PD-108639 grant and the Bolyai János Research Fellowship (to GÚ). References [1] Biscaye et al., 1997. J. Geophys. Res. 102

  5. Magmatic recharge buffers the isotopic compositions against crustal contamination in formation of continental flood basalts

    Science.gov (United States)

    Yu, Xun; Chen, Li-Hui; Zeng, Gang

    2017-07-01

    Isotopic compositions of continental flood basalts are essential to understand their genesis and to constrain the character of their mantle sources. Because of potential crustal contamination, it needs to be evaluated if and to which degree these basalts record original isotopic signals of their mantle sources and/or crustal signatures. This study examines the Sr, Nd, Hf, and Pb isotopic compositions of the late Cenozoic Xinchang-Shengzhou (XS) flood basalts, a small-scale continental flood basalt field in eastern China. The basalts show positive correlations between 87Sr/86Sr and 143Nd/144Nd, and negative correlations between 143Nd/144Nd and 176Hf/177Hf, which deviate from compositional arrays of crustal contamination and instead highlight variations in magmatic recharge intensity and mantle source compositions. The lava samples formed by high-volume magmatic recharge recorded signals of recycled sediments in the mantle source, which are characterized by moderate Ba/Th (91.9-106.5), excess 208Pb/204Pb relative to 206Pb/204Pb, and excess 176Hf/177Hf relative to 143Nd/144Nd. Thus, we propose that magmatic recharge buffers the original isotopic compositions of magmas against crustal contamination. Identifying and utilizing the isotope systematics of continental flood basalts generated by high volumes of magmatic recharge are thus crucial to trace their mantle sources.

  6. Evolution of the mantle source in an evolving arc-backarc system (Torres del Paine, Patagonia): Evidence from Hf isotopes in zircon

    Science.gov (United States)

    Ewing, T. A.; Muntener, O.; Leuthold, J.; Baumgartner, L. P.; Putlitz, B.; d'Abzac, F. X.; Chiaradia, M.

    2015-12-01

    The Miocene Torres del Paine intrusive complex (TPIC) in Patagonia is a transitional alkaline backarc intrusion1 emplaced on short timescales of 162 ± 11 ka2. It is subdivided into two units with distinct ages of ~12.6 Ma and ~12.45 Ma1. Smaller intrusive bodies in the area record a change in chemistry from calc-alkaline at ~16 Ma, to transitional alkaline at ~12.5 Ma. Zircons from ~16 Ma intrusives and the 12.6 Ma part of the TPIC have remarkably consistent, slightly enriched Hf isotope compositions with ɛHf(i) of -1 to +2. An abrupt shift towards more juvenile Hf isotope compositions is observed in the ~12.45 Ma part of the TPIC, with ɛHf(i) of +3 to +6. Bulk rock Nd and Sr isotopes for the TPIC show the same shift towards more juvenile compositions at this time1. The long-term consistency of ɛHf(i) from 16 to 12.6 Ma is surprising, given that in the same period the bulk rock chemistry changes from calc-alkaline to transitional alkaline. Conversely, the major shift in ɛHf(i) is not correlated with any change in bulk rock chemistry, which remains transitional alkaline from 12.6 to 12.45 Ma. The decoupling of major element chemical evolution and Hf isotope signatures suggests that the subsequent rapid influx of juvenile material recorded by our Hf isotope data must have occurred by renewed mantle melting. Subduction of the Chile ridge at ~12.5 Ma in this area caused arc magmatism to move westwards and back-arc extension to initiate. We propose that the first TPIC magmas (12.6 Ma) came from a mantle wedge with a residual subduction signature. Subsequent melting of more juvenile mantle, less contaminated by a subduction component, generated the 12.45 Ma TPIC magmas. These results demonstrate that magmatic complexes such as the TPIC may tap distinct mantle sources even on very short timescales, fingerprinting arc-backarc transition processes. 1Leuthold et al., 2013, JPET, 54: 273-303 2Leuthold et al., 2012, EPSL, 325: 85-92

  7. shape change in Hf, W and Os-isotopes: A non-relativistic Hartree ...

    Indian Academy of Sciences (India)

    Shape change in Hf, W and Os isotopes. 2. Formalisms. 2.1 Non-relativistic Hartree-Fock. Theoretically, the band structure of the Nilsson orbit [ЖТ3A]Ω , is studied with a well-known microscopic model, i.e., deformed Hartree-Fock and angular momentum projection [19,20]. In this calculation, axial symmetry of the ...

  8. Zircon Hf isotopic constraints on the mantle source of felsic magmatic rocks in the Phan Si Pan uplift and Tu Le basin, northern Vietnam

    Science.gov (United States)

    Usuki, T.; Lan, C.; Tran, T.; Pham, T.; Wang, K.

    2013-12-01

    Permian plume-related rocks, such as picrites, flood basalts and silicic volcanic rocks occur in northern Vietnam. This area was displaced 600 km southeastward along the Ailao Shan-Red River fault during mid-Tertiary in response to the India-Eurasia collision. The original location of the area was situated at the central Emeishan Large Igneous Province (ELIP) in SW China before Tertiary. The picrites and flood basalts in northern Vietnam have been investigated by many authors and are comparable with the ELIP. While, felsic magmatisms in northern Vietnam has been poorly studied. Zircon U-Pb age and Hf isotopic data are useful to compare the felsic magmatism in northern Vietnam with that in the ELIP, because the magmatisms of the ELIP had a characteristic time period (260-250 Ma) and the Hf isotopes show a remarkable mantle signature. Therefore, this study carried out in-situ U-Pb ages and Hf isotopic compositions for 300 zircon grains in eighteen granitoids and rhyolites in Phan Si Pan uplift and Tu Le basin in northern Vietnam. Zircons from the granitoids and rhyolites occasionally show development of {101} pyramid and {100} prism crystal facies, suggesting typical zircons crystallized from high temperature alkaline granite. 206Pb/238U ages of granitoid and rhyolite yield consistently in a narrow range of 260 to 250 Ma, which coincides with those from peralkaline to metaluminous granites in the ELIP. ɛHf(t) values of zircons in rhyolites and granites of this study dominate in the range of +5 to +10, which is consistent with those from the ELIP. U-Pb ages and Hf isotopic compositions of zircons indicate that felsic magmatic rocks in the Phan Si Pan uplift and Tu La basin have been derived from the same mantle source with the ELIP.

  9. Amount and composition of gases in the HF process

    Energy Technology Data Exchange (ETDEWEB)

    Welz, H.

    1944-04-04

    Gases arising from production of 50%-aromatics gasoline in an HF kiln installation are considered. Results from a naphthenic starting material are compared to those from a paraffinic starting material, with both starting materials being raw gasoline distilled to 165/sup 0/C. The figures gave 19 to 21% by weight for naphthenic versus 23 to 25% for paraffinnic materials. The author's superior, Dr. Kaufmann, made a marginal note that those figures were quite high under consideration of the fact that the yield of HF gasoline and gases would be only 71.5% versus 75.5% after losses to coking and redistillation residues. Figures are also included for the composition of the gases. Relative to the total amount of gas, the composition was given as 6 to 7% hydrogen, 14 to 20% methane, 24 to 32% ethane, 25 to 33% propane, 5 to 8% iso-butane, and 11.5 to 15.5% normal butane. Relative to the hydrocarbon content only, the composition was given as 15 to 21% methane, 25.5 to 34% ethane, 26.5 to 35% propane, 5.5 to 8.5% iso-butane, and 12.5 to 16.5% normal butane. The olefin content of the gases was less than 2%. Another marginal note gave compositions separated into naphthenic versus paraffinic materials, respectively, again relative to hydrocarbons only. These figures were 18.5 vs 18.2% methane, 28.4 vs. 29.6% ethane, 29.4 vs. 31.0% propane, 7.6 vs. 6.9% iso-butane, and 16.3 vs. 14.4% normal butane. Yields were given as 82 vs. 79.5% for this set of figures.

  10. Zinc isotopic compositions of breast cancer tissue.

    Science.gov (United States)

    Larner, Fiona; Woodley, Laura N; Shousha, Sami; Moyes, Ashley; Humphreys-Williams, Emma; Strekopytov, Stanislav; Halliday, Alex N; Rehkämper, Mark; Coombes, R Charles

    2015-01-01

    An early diagnostic biomarker for breast cancer is essential to improve outcome. High precision isotopic analysis, originating in Earth sciences, can detect very small shifts in metal pathways. For the first time, the natural intrinsic Zn isotopic compositions of various tissues in breast cancer patients and controls were determined. Breast cancer tumours were found to have a significantly lighter Zn isotopic composition than the blood, serum and healthy breast tissue in both groups. The Zn isotopic lightness in tumours suggests that sulphur rich metallothionein dominates the isotopic selectivity of a breast tissue cell, rather than Zn-specific proteins. This reveals a possible mechanism of Zn delivery to Zn-sequestering vesicles by metallothionein, and is supported by a similar signature observed in the copper isotopic compositions of one breast cancer patient. This change in intrinsic isotopic compositions due to cancer has the potential to provide a novel early biomarker for breast cancer.

  11. Sr-Nd-Hf-Pb isotopic evidence for modification of the Devonian lithospheric mantle beneath the Chinese Altai

    Science.gov (United States)

    Yu, Yang; Sun, Min; Huang, Xiao-Long; Zhao, Guochun; Li, Pengfei; Long, Xiaoping; Cai, Keda; Xia, Xiaoping

    2017-07-01

    Intensive Devonian felsic magmatism is recorded within the southwestern Mongolian collage system of the Central Asian Orogenic Belt (CAOB). The voluminous magmas have isotopic compositions of juvenile materials from the mantle, thus manifesting significant mantle-crust interaction and continental growth at this time. Here, we present systematic Sr-Nd-Hf-Pb isotopic data for the Devonian mafic intrusions in the Chinese Altai, a key region within the southwestern Mongolian collage system to decipher the evolution of the mantle during this important tectonothermal event. The Keketuohai gabbro (409 ± 5 Ma) and type I mafic dykes (376 ± 5 Ma) within the Habahe complex have high (87Sr/86Sr)i, (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t ratios, and decoupled Nd-Hf isotopic compositions; e.g., low εNd(t) values (- 2.5 to + 5.4) combined with high εHf(t) (+ 2.6 to + 15.1) values. These rocks have low Ba/La and high La/Yb and Th/Yb ratios, and are enriched in Pb, the light rare earth elements (LREE) and Th. They formed from magmas generated from the depleted lithospheric mantle metasomatised by hydrous melts from subducted sediments. In comparison, the gabbroic samples from the Habahe complex (369 ± 3 Ma) are enriched in the LREE, Th and Ba and have high La/Yb, Th/Yb and Ba/La ratios. They do not show significant Pb anomalies, and have depleted isotopic compositions that include low initial 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios and high εNd(t) (+ 7.4 to + 7.8) and εHf(t) (+ 13.4 to + 15.3) values. These rocks are thought to have formed from magmas derived from the lithospheric mantle metasomatised by hydrous melts from subducted oceanic crust. The type II mafic dykes within the Habahe complex are depleted in the LREE and Th, have high Ba/La ratios, and are enriched in Pb, Ba, Sr, and U. They have positive εNd(t) (+ 7.6 to + 8.1) and εHf(t) (+ 14.1 to + 15.4) values, high initial 87Sr/86Sr, 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb ratios

  12. A new digestion and chemical separation technique for rapid and highly reproducible determination of Lu/Hf and Hf isotope ratios in geological materials by mc-ICP-MS

    DEFF Research Database (Denmark)

    Bizzarro, Martin; Baker, J.A.; Ulfbeck, D.

    2003-01-01

    A new digestion procedure and chemical separation technique has been developed for measurement of Lu/Hf and Hf isotope ratios that does not require high-pressure bombs or use of HF or HClO acids. Samples are digested in dilute HCl or HNO after flux-fusion at 1100 °C in the presence of lithium...

  13. Properties of even 168-178Hf isotopes using IBM-1 and SEF

    Science.gov (United States)

    Abed Al-Jubbori, Mushtaq; Ajaj Al-Mtiuty, Khalaf; Saeed, Khaliel. I.; Sharrad, Fadhil I.

    2017-08-01

    The properties of the ground and excited-state (γ- and β- bands) of 168-178Hf nuclei have been studied. The ratio and Eγ (I → I - 2)/I have been calculated as a function of the spin (I) to determine the ground-state evolution. The results indicate that these isotopes have a rotational property SU(3). The energy levels for the ground-state, γ- and β- bands of 168-178Hf have been calculated using the Interacting Boson Model and Semi Empirical Formula (SEF). The parameters of the best fit to the measured data are determined. The behavior of energy and B(E2) ratios in the ground state band are examined.

  14. Isotopic Compositions of the Elements 1989

    Science.gov (United States)

    De Laeter, J. R.; Heumann, K. G.; Rosman, K. J. R.

    1991-11-01

    The Subcommittee for Isotopic Abundance Measurements (SIAM) of the IUPAC Commission on Atomic Weights and Isotopic Abundances has carried out its biennial review of isotopic compositions, as determined by mass spectrometry and other relevant methods. The Subcommittee's critical evaluation of the published literature element by element forms the basis of the Table of Isotopic Compositions of the Elements as Determined by Mass Spectrometry 1989, which is presented in this Report. Atomic Weights calculated from the tabulated isotopic abundances are consistent with Ar(E) values listed in the Table of Standard Atomic Weights 1989.

  15. Evidence of early Archean crust in northwest Gondwana, from U-Pb and Hf isotope analysis of detrital zircon, in Ediacaran surpacrustal rocks of northern Spain

    Science.gov (United States)

    Naidoo, Thanusha; Zimmermann, Udo; Vervoort, Jeff; Tait, Jenny

    2017-06-01

    The Mora Formation (Narcea Group) is one of the oldest Precambrian supracrustal successions in northern Spain. Here, we use U-Pb and in situ Hf isotope analysis on detrital zircon to determine its age and provenance. The youngest U-Pb dates constrain the maximum depositional age of the Mora Formation at 565 ± 11 Ma. Results indicate: (1) a dominant Ediacaran zircon population (33%; 565-633 Ma, Cadomian) within a spectrum of Neoproterozoic ages (40%; 636-996 Ma); and (2) smaller Mesoproterozoic (5%; 1004-1240 Ma), Palaeoproterozoic (11%; 1890-2476 Ma) and Archean (11%; 2519-3550 Ma) populations. Results here do not point to one specific cratonic source area; instead, detritus may have been derived from the West African craton and Amazonia, or even the concealed Iberian basement. The lack of 1.3-1.8 Ga grains suggests exclusion of the Sahara Craton as a major source, but this is not certain. This mixed composition favours a complex source history with reworking of detritus across terrane/craton boundaries. Hafnium isotope compositions indicate a range of crustal and juvenile sources, with initial ɛHf values between -15.8 and 11.1, and Hf model ages from 0.8 to 3.7 Ga. For Neoproterozoic zircons (80%), juvenile components (ɛHf(i) +10) may be related to Rodinia fragmentation and the onset of an active margin setting leading to the Cadomian orogeny. Palaeoproterozoic to Paleoarchean grains (20%) all have negative ɛHf values and Meso- to Eoarchean Hf model ages. This indicates an early (Archean) sialic crustal component for northwestern Gondwana.

  16. Isotopic Compositions of the Elements 1997

    Science.gov (United States)

    Rosman, K. J. R.; Taylor, P. D. P.

    1998-11-01

    The Commission's Subcommittee for the Isotopic Composition of the Elements has carried out its biennial review of isotopic compositions, as determined by mass spectrometry and other relevant methods. This involves a critical evaluation of the published literature, element by element, and forms the basis of the Table of Isotopic Compositions of the Elements as Determined by Mass Spectrometry presented here. New guidelines have been used to arrive at the uncertainties on the isotopic abundances and there are numerous changes to the table since it was last published in 1991. Atomic Weights calculated from this table are consistent with Ar(E) values listed in the Table of Standard Atomic Weights 1997.

  17. Elemental, Hf-Nd isotopic and geochronological constraints on an island arc sequence associated with the Cretaceous Caribbean plateau: Bonaire, Dutch Antilles

    Science.gov (United States)

    Thompson, P. M. E.; Kempton, P. D.; White, R. V.; Saunders, A. D.; Kerr, A. C.; Tarney, J.; Pringle, M. S.

    2004-05-01

    On the Caribbean margins, Upper Cretaceous oceanic plateaux fragments are juxtaposed with island arc fragments of a similar age; until this study, the relationship between them was unknown. This work represents the first detailed study of one such island arc sequence, the Bonaire Washikemba Formation (BWF). These rocks display typical arc-like trace element and Hf-Nd isotopic characteristics (negative Nb and Ta anomalies, ɛHf of +12 to +14, ɛNd of +6.5 to +8). They show no indication for the involvement of oceanic plateau material in their source. This is confirmed by binary mixing hyperbolae, which indicate that the Hf-Nd isotopic composition can be modelled by mixing of the whole rock, signifying that whole-rock Sr isotope ratios have been affected by alteration processes. New 40Ar- 39Ar ages indicate that the Formation is at least 96±4 Ma, which is older than the main phase of the Caribbean plateau (88-91 Ma). Together, the data presented in this study suggest that the Bonaire Washikemba Formation is part of an intra-oceanic arc unrelated to the Carribean plateau, but the Carribean plateau is probably indirectly responsible for the transport and ultimate preservation of this arc sequence.

  18. Evolution of the lithospheric mantle beneath Mt. Baekdu (Changbaishan): Constraints from geochemical and Sr-Nd-Hf isotopic studies on peridotite xenoliths in trachybasalt

    Science.gov (United States)

    Park, Keunsu; Choi, Sung Hi; Cho, Moonsup; Lee, Der-Chuen

    2017-08-01

    Major and trace element compositions of minerals as well as Sr-Nd-Hf isotopic compositions of clinopyroxenes from spinel peridotite xenoliths entrained in Late Cenozoic trachybasalt from Mt. Baekdu (Changbaishan) were used to elucidate lithospheric mantle formation and evolution in the eastern North China Craton (NCC). The analyzed peridotites were mainly spinel lherzolites with rare harzburgites. They consisted of olivine (Fo89.3-91.0), enstatite (Wo1-2En88-90Fs8-11), diopside (Wo45-50En45-51Fs4-6), and spinel (Cr# = 8.8-54.7). The peridotite residues underwent up to 25% partial melting in fertile mid-ocean-ridge basalt (MORB) mantle. Plots of the Cr# in spinel against the Mg# in coexisting olivine or spinel suggested an affinity with abyssal peridotites. Comparisons of Cr# and TiO2 in spinel were also compatible with an abyssal peridotite-like composition; however, harzburgites were slightly enriched in TiO2 because of the reaction with MORB-like melt. Temperatures estimated using two-pyroxene thermometry ranged from 750 to 1010 °C, reflecting their lithospheric mantle origin. The rare earth element (REE) patterns in clinopyroxenes of the peridotites varied from light REE (LREE) depleted to spoon shaped to LREE enriched, reflecting secondary overprinting effects of metasomatic melts or fluids on the residues from primordial melting. The calculated trace element pattern of metasomatic melt equilibrated with clinopyroxene in Mt. Baekdu peridotite showed strong enrichment in large-ion lithophile elements, Th and U together with slight fractionation in heavy REEs (HREEs) and considerable depletion in Nb and Ti. The Sr-Nd-Hf isotopic compositions of clinopyroxenes separated from the peridotites varied from more depleted than present-day MORB to bulk Earth values. However, some clinopyroxene showed a decoupling between Nd and Sr isotopes, deviating from the mantle array with a high 87Sr/86Sr ratio. This sample also showed a significant Nd-Hf isotope decoupling lying

  19. Combined U-Pb and Lu-Hf isotope analyses by laser ablation MC-ICP-MS: methodology and applications

    Energy Technology Data Exchange (ETDEWEB)

    Matteini, Massimo; Dantas, Elton L.; Pimentel, Marcio M.; Bühn, Bernhard, E-mail: massimo@unb.br [Universidade de Brasilia (UnB), DF (Brazil). Instituto de Geociencias

    2010-06-15

    The Lutetium-Hafnium isotopic system represents one of the most innovative and powerful tools for geochronology and isotopic studies. Combined U-Pb and Lu-Hf in situ analyses on zircon by LA-MC-ICP-MS permit to characterize isotopically the host magma from which it crystallized furnishing significant information for sediment provenance and crustal evolution studies. In this paper e describe the Lu-Hf systematic by LA-MC-ICP-MS developed in the laboratory of Geochronology of the University of Brasilia and report the results obtained by repeated analyses of {sup 176}Hf/{sup 177}Hf isotopic ratio of three zircon standards: GJ-1 = 0.282022 ± 11 (n=56), Temora 2 = 0.282693 ± 14 (n=25) and UQZ = 0.282127 ± 33 (n=11). The {sup 176}Hf/{sup 177}Hf ratio (0.282352 ± 22, n=14) of gem quality zircon used as in-house standard have been also characterized. As a geological application, we analyzed two complex zircons selected from a migmatitic rocks from the Borborema Province, NE Brazil. On the basis of U-Pb and Lu-Hf data, two main crystallization events have been identified in both studied zircons. An older event at ca. 2.05 Ga recognized in the inherited cores represents a well-characterized paleoproterozoic magmatic event that affected the whole Borborema Province. A second crystallization event at ∼ 575 Ma, recognized at the rims, represents a Neoproterozoic (Brazilian) high grade metamorphic-magmatic event. (author)

  20. Magma mixing and crystal exchange at Yellowstone caldera revealed though sub-crystal-scale age, trace-element, and Hf-isotopic analyses of zircons

    Science.gov (United States)

    Stelten, M. E.; Cooper, K. M.; Vazquez, J. A.; Wimpenny, J.; Yin, Q.

    2011-12-01

    We examine magma mixing and crystal exchange in a young magma reservoir by correlating sub-crystal-scale SIMS age, SIMS trace element, and LA-MC-ICPMS Hf-isotopic data from zircons in the coeval ca. 100ka, yet compositionally distinct rhyolites of the Solfatara Plateau flow (SPF) and Hayden Valley flow (HVF) at Yellowstone Caldera. The SPF and HVF lavas are part of the Central Plateau Member (CPM) of the Plateau Rhyolite that is composed of the youngest intracaldera rhyolite flows at Yellowstone, erupted between ca. 170-70ka. We compare these data to age and trace element data from zircons in 1) the Pitchstone Plateau Flow, West Yellowstone Flow, and Dry Creek Flow of the CPM as representative of main reservoir zircons, 2) the ca. 118ka extracaldera Gibbon River Flow rhyolite (GRF), and 3) the ca. 260ka Scaup Lake Flow of the Upper Basin Member rhyolites. Additionally, we compare the zircon data to new MC-ICPMS Hf-isotopic data from CPM glasses. Correlating age, trace element, and Hf-isotopic data from zircons in the HVF and SPF reveals the presence of four zircon populations. Main reservoir-like (MR-like) zircons have trace element compositions similar to main CPM reservoir zircons, young ages (Lastly, a population of zircons (which we interpret to be inherited) have cores with older ages (>350ka), a range in trace element compositions, and high ɛHf (-5.8 to -3.6) whereas the rims have restricted MR-like trace element compositions and ɛHf within error of CPM glasses. The sense of core to rim zoning specific to each population suggests that each population has its own unique history. The core to rim zoning in MR-like and inherited zircons, from cores with a range of Hf-isotopic compositions to rims similar to CPM glasses, suggests that MR-like and inherited zircons in the SPF and HVF came from distinct high ɛHf magmas and were incorporated into the CPM reservoir. For mixed zircons, the zoning from MR-like or EC-like cores to intermediate rim compositions

  1. Characterising the continental crust factory: new insights into the roots of an island arc from Hf isotopes in rutile (Kohistan complex, Pakistan)

    Science.gov (United States)

    Ewing, Tanya; Müntener, Othmar; Schaltegger, Urs

    2017-04-01

    Island arcs are one of the primary sites of generation of new continental crust. As such, a question of fundamental importance to models of continental growth is to what extent island arc magmas are strictly juvenile melts derived directly from the mantle, versus potentially incorporating a significant recycled continental component, for example from subducted sediment. The Kohistan complex (northeastern Pakistan) preserves a remarkably complete ˜50 km thick cross-section through an exhumed Jurassic-Cretaceous island arc. It affords a rare opportunity to study the evolution of island arc magmatism from subduction initiation, through intra-oceanic subduction, to arc-continent collision. In this study, we investigate the ultramafic-mafic Jijal Complex, which preserves part of the plutonic roots of the Kohistan complex formed over ˜20 Ma of intra-oceanic subduction. The Jijal Complex is volumetrically dominated by ultramafic rocks and garnet-bearing gabbros whose petrogenesis is controversial. Garnet formation has variously been attributed a prograde metamorphic origin1, a magmatic origin recording crystallisation at high pressures2,3, or a restitic origin following partial melting4. We have characterised the source of the Jijal Complex using in situ LA-MC-ICPMS determination of the Hf isotope composition of rutile from garnet gabbros, which are zircon-free. This work exploits the superior sensitivity of the Neptune Plus, coupled with an improved analytical protocol, to improve precision of this novel technique and permit in situ analysis of rutile with only ˜10-30 ppm Hf. Rutile occurs included in early-formed minerals such as clinopyroxene and garnet, indicating crystallisation at high pressures and temperatures. Rutile from all samples, collected across ˜3 km of former crustal depth, has indistinguishable Hf isotope compositions close to depleted mantle values. Integrating the new Hf isotope data for rutile with previously published whole rock Nd-Sr isotope

  2. In-situ zircon U-Pb age and Hf-O isotopic constraints on the origin of the Hasan-Robat A-type granite from Sanandaj-Sirjan zone, Iran: implications for reworking of Cadomian arc igneous rocks

    Science.gov (United States)

    Honarmand, Maryam; Li, Xian-Hua; Nabatian, Ghasem; Neubauer, Franz

    2017-10-01

    The Lower Permian Hasan-Robat syenogranite occurs as a single pluton and intruded the Upper Carboniferous-Lower Permian sandstones and dolomitic limestones in the central part of the Sanandaj-Sirjan zone. This syenogranitic intrusion shows A-type granitic affinity and is a good representative of Early Permian igneous activity in Iran. SIMS U-Pb zircon analyses indicate a crystallization age of 294.2 ± 2.5 Ma for the Hasan-Robat A-type granite. In-situ Lu-Hf and oxygen isotope analyses of magmatic zircons were carried out to infer the magma sources and evolution of the Hasan-Robat A-type syenogranite. The Hf-O zircon isotopic compositions are relatively homogeneous, with nearly chondritic ɛHf(t) values of -0.8 to +2.4 corresponding to two-stage zircon Hf model ages of 1.15-1.36 Ga. The δ18O values of zircon range from +7.6 to +8.6‰. The Hf model ages of the Hasan-Robat zircons is within the range of those reported from the Cadomian granitoids in Iran. The isotopic features of the Hasan-Robat syenogranite are in good agreement with Hf isotopic values and Hf and Nd model ages reported from the Cadomian arc magmatic suites in Iran. Thus, partial melting of these Cadomian igneous rocks would be the favorite source for the Hasan-Robat syenogranitic magma during the opening of the Neotethys Ocean and separation of Iranian terranes from the northern margin of Gondwana.

  3. Sr-Nd-Hf-Pb isotope geochemistry of basaltic rocks from the Cretaceous Gyeongsang Basin, South Korea: Implications for basin formation

    Science.gov (United States)

    Choi, S.; Kwon, S.; Lee, D.

    2013-12-01

    To better understand the formative mechanism of the Cretaceous Gyeongsang Basin in South Korea, we determined the geochemical compositions of Early Cretaceous syntectonic basaltic rocks intercalated with basin sedimentary assemblages. Two distinct compositional groups appeared: tholeiitic to calc-alkaline basalts from the Yeongyang sub-basin and high-K to shoshonitic basaltic trachyandesites from the Jinju and Uiseong sub-basins. All collected samples exhibit patterns of light rare earth element enrichment and chondrite-normalized (La/Yb)N ratios ranging from 2.4 to 23.6. In a primitive-mantle-normalized spidergram, the samples show distinctive negative anomalies in Nb, Ta, and Ti and a positive anomaly in Pb. The basalts exhibit no or a weak positive U anomaly in a spidergram, but the basaltic trachyandesites show a negative U anomaly. The basalts have highly radiogenic Sr [(87Sr/86Sr)i = 0.70722-0.71145], slightly negative ɛNd, positive ɛHf [(ɛNd)i = -2.7 to 0.0; (ɛHf)i = +2.9 to +6.4], and radiogenic Pb isotopic compositions [(206Pb/204Pb)i = 18.20-19.19; (207Pb/204Pb)i = 15.60-15.77; (208Pb/204Pb)i = 38.38-39.11]. The basaltic trachyandesites are characterized by radiogenic Sr [(87Sr/86Sr)i = 0.70576-0.71119] and unradiogenic Nd, Hf, and Pb isotopic compositions [(ɛNd)i = -14.0 to -1.4; (ɛHf)i = -17.9 to +3.7; (206Pb/204Pb)i = 17.83-18.25; (207Pb/204Pb)i = 15.57-15.63; (208Pb/204Pb)i = 38.20-38.70]. The 'crust-like' signatures, such as negative Nb-Ta anomalies, elevated Sr isotopic compositions, and negative ɛNd(t) and ɛHf(t) values, of the basaltic trachyandesites resemble the geochemistry of Early Cretaceous mafic volcanic rocks from the southern portion of the eastern North China Craton. Considering the lower-crust-like low U/Pb and high Th/U ratios and the unradiogenic Pb isotopic compositions, the basaltic trachyandesites are considered to be derived from lithospheric mantle modified by interaction with melts that originated from foundered eclogite

  4. Nickel isotopic composition of the mantle

    Science.gov (United States)

    Gall, Louise; Williams, Helen M.; Halliday, Alex N.; Kerr, Andrew C.

    2017-02-01

    This paper presents a detailed high-precision study of Ni isotope variations in mantle peridotites and their minerals, komatiites as well as chondritic and iron meteorites. Ultramafic rocks display a relatively large range in δ60 Ni (permil deviation in 60 Ni /58 Ni relative to the NIST SRM 986 Ni isotope standard) for this environment, from 0.15 ± 0.07‰ to 0.36 ± 0.08‰, with olivine-rich rocks such as dunite and olivine cumulates showing lighter isotope compositions than komatiite, lherzolite and pyroxenite samples. The data for the mineral separates shed light on the origin of these variations. Olivine and orthopyroxene display light δ60 Ni whereas clinopyroxene and garnet are isotopically heavy. This indicates that peridotite whole-rock δ60 Ni may be controlled by variations in modal mineralogy, with the prediction that mantle melts will display variable δ60 Ni values due to variations in residual mantle and cumulate mineralogy. Based on fertile peridotite xenoliths and Phanerozoic komatiite samples it is concluded that the upper mantle has a relatively homogeneous Ni isotope composition, with the best estimate of δ60Nimantle being 0.23 ± 0.06‰ (2 s.d.). Given that >99% of the Ni in the silicate Earth is located in the mantle, this also defines the Ni isotope composition of the Bulk Silicate Earth (BSE). This value is nearly identical to the results obtained for a suite of chondrites and iron meteorites (mean δ60 Ni 0.26 ± 0.12‰ and 0.29 ± 0.10‰, respectively) showing that the BSE is chondritic with respect to its Ni isotope composition, with little to no Ni mass-dependent isotope fractionation resulting from core formation.

  5. Laser Ablation Split Stream (LASS) U-Pb & Lu-Hf Isotope Analysis of Detrital Zircons from the Old Red Sandstone, NW Svalbard: Implications for Northern Caledonian Paleogeography

    Science.gov (United States)

    Beranek, L. P.; Gee, D. G.; Fisher, C. M.

    2015-12-01

    The Svalbard archipelago consists of three Caledonian provinces that were assembled by thrusting and transcurrent faulting during the Silurian and Devonian in a location directly northeast of the Greenland Caledonides. Syn- to post-orogenic alluvial strata, referred to as the Old Red Sandstones, filled pull-apart basins adjacent to the transcurrent faults and comprise cover assemblages that help constrain the timing of the Caledonian orogeny. To further investigate the tectonic history and paleogeography of the Raudfjorden-Liefdefjorden-Woodfjorden area of Spitsbergen, NW Svalbard, we analyzed rock samples of the Old Red Sandstones and underlying Precambrian basement complexes for detrital zircon analysis. Laboratory studies of the Old Red Sandstones include the novel Laser Ablation Split Stream (LASS) technique, which allows for simultaneous U-Pb & Lu-Hf isotope analysis of zircon crystals. Lower Devonian Red Bay Group strata contain a range of early Neoproterozoic to Neoarchean detrital zircons with prominent age peaks c. 960, 1050, 1370, 1450, 1650, and 2700 Ma; subordinate Ordovician (c. 460-490 Ma) and Cryogenian (c. 650 Ma) detrital zircons occur in a subset of the samples. Underlying Precambrian metasedimentary rocks are composed of similar earliest Neoproterozoic to Neoarchean age populations, which argues for much of the Red Bay Group to be derived from local basement rocks during thrusting and other faulting. The U-Pb ages and Hf isotope compositions of Paleozoic to Neoarchean detrital zircons are consistent with Arctic crustal evolution, and support the hypothesis that northwestern and northeastern provinces of the Svalbard Caledonides are extruded fragments of the northeast Greenland allochthons. The new Hf isotope results further allow paleogeographic and stratigraphic comparisons with rock assemblages proximal to the North Atlantic Caledonides during the Silurian-Devonian, including the Pearya terrane of Ellesmere Island, Alexander terrane of NW

  6. Combined U-Pb and Lu-Hf isotope analyses by laser ablation MC-ICP-MS: methodology and applications

    Directory of Open Access Journals (Sweden)

    Massimo Matteini

    2010-06-01

    Full Text Available The Lutetium-Hafnium isotopic system represents one of the most innovative and powerful tools for geochronology and isotopic studies. Combined U-Pb and Lu-Hf in situ analyses on zircon by LA-MC-ICP-MS permit to characterize isotopically the host magma from which it crystallized furnishing significant information for sediment provenance and crustal evolution studies. In this paper e describe the Lu-Hf systematic by LA-MC-ICP-MS developed in the laboratory of Geochronology of the University of Brasilia and report the results obtained by repeated analyses of 176Hf/177Hf isotopic ratio of three zircon standards: GJ-1 = 0.282022 ± 11 (n=56, Temora 2 = 0.282693 ± 14 (n=25 and UQZ = 0.282127 ± 33 (n=11. The 176Hf/177Hf ratio (0.282352 ± 22, n=14 of gem quality zircon used as in-house standard have been also characterized. As a geological application, we analyzed two complex zircons selected from a migmatitic rocks from the Borborema Province, NE Brazil. On the basis of U-Pb and Lu-Hf data, two main crystallization events have been identified in both studied zircons. An older event at ca. 2.05 Ga recognized in the inherited cores represents a well-characterized paleoproterozoic magmatic event that affected the whole Borborema Province. A second crystallization event at ~ 575 Ma, recognized at the rims, represents a Neoproterozoic (Brazilian high grade metamorphic-magmatic event.O sistema isotópico Lutécio-Hafnio representa uma das ferramentas mais recentes e poderosas para estudos isotópicos e geocronológicos. Análises combinadas in situ de U-Pb e Lu-Hf sobre zircão pelo LA-MC-ICP-MS permitem caracterizar iso-topicamente o magma onde ele cristalizou, fornecendo valiosas informações para estudos de proveniência de sedimento e de evolução crustal. Nesse trabalho descrevemos a sistemática de Lu-Hf pelo LA-MC-ICP-MS implantada no laboratório de Geocronologia da Universidade de Brasília e reportamos os resultados obtidos de repetidas an

  7. Detrital Zircon U-Pb and Hf-isotope Constrains on Basement Ages, Granitic Magmatism, and Sediment Provenance in the Malay Peninsula

    Science.gov (United States)

    Sevastjanova, Inga; Clements, Benjamin; Hall, Robert; Belousova, Elena; Pearson, Norman; Griffin, William

    2010-05-01

    The Malay Peninsula forms the western part of central Sundaland in SE Asia. Sundaland comprises Indochina, the Thai-Malay Peninsula, Sumatra, Java, Borneo, and the shallow shelf between these landmasses. It is a composite region of continental crustal fragments that are separated by sutures that represent remnant ocean basins and volcanic arcs. The Malay Peninsula includes two of these fragments - East Malaya and Sibumasu - separated by the Bentong-Raub Suture Zone. The latter is a Palaeo-Tethyan ocean remnant. Granitoids of the Malay Peninsula are the major sources of detrital zircon in Sundaland. East Malaya is intruded by Permian-Triassic Eastern Province granitoids interpreted as products of Palaeozoic subduction of oceanic crust beneath the East Malaya Volcanic Arc. Sibumasu is intruded by Triassic Main Range Province granitoids interpreted as syn- to post-collisional magmatism following suturing to East Malaya. Locally, there are minor Late Cretaceous plutons. Basements of Sibumasu and East Malaya are not exposed and their ages are poorly constrained. The exact timing of the collision between these fragments is also contentious. In order to resolve these uncertainties, 752 U-Pb analyses from 9 samples were carried out on detrital zircons from modern rivers draining the Malay Peninsula and, of these, 243 grains from 6 samples were selected for Hf-isotope analyses. U-Pb zircon ages show that small numbers of Neoarchean-Proterozoic grains are consistently present in all samples, but do not form prominent populations. Permian-Triassic populations are dominant. Only one sample contains a small Jurassic population probably sourced from the area of Thailand and most likely recycled from fluvial-alluvial Mesozoic 'red-beds'. Late Cretaceous populations are locally abundant. Hf-isotope crustal model ages suggest that basement beneath the Malay Peninsula is heterogeneous. Some basement may be Neoarchean but there is no evidence for basement older than 2.8 Ga beneath

  8. Isotopic compositions of boron in sediments and their implications

    Digital Repository Service at National Institute of Oceanography (India)

    Shirodkar, P.V.; Yingkai, X.

    The abundance and isotopic compositions of boron in sediments from the salt lakes of Qaidam Basin, China have been determined by thermal ionization mass spectrometry of cesium borate. The results show large variations in the isotopic compositions...

  9. Petrogenesis of the igneous Mucajaí AMG complex, northern Amazonian craton — Geochemical, U-Pb geochronological, and Nd-Hf-O isotopic constraints

    Science.gov (United States)

    Heinonen, A. P.; Fraga, L. M.; Rämö, O. T.; Dall'Agnol, R.; Mänttäri, I.; Andersen, T.

    2012-10-01

    The ca. 1525 Ma igneous Mucajaí anorthosite-monzonite-granite (AMG) complex in northern Brazil is a rare manifestation of Mesoproterozoic intraplate magmatism in the northern Amazonian Craton. The complex comprises a two-phase rapakivi granite batholith with subordinate quartz-fayalite monzonites and syenites and the closely associated Repartimento anorthosite. Zircon U-Pb (ID-TIMS) geochronology reveals that the anorthosite (1526 ± 2 Ma), monzonite (1526 ± 2 Ma), and the main-phase biotite-hornblende granite (1527 ± 2 Ma) of the complex intruded the Paleoproterozoic (~ 1.94 Ga) country rocks simultaneously at ~ 1526 Ma and that the more evolved biotite granite is marginally younger at 1519 ± 2 Ma. Intraplate magmatism in the Mucajaí region was relatively short-lived and lasted 12 million years (1529-1517 Ma) at maximum. The Nd (whole-rock, ID-TIMS; ɛNd from - 1.9 to - 2.8), Hf (zircon, LAM-ICP-MS; ɛHf from - 2.0 to - 3.1), and O (zircon, SIMS; δ18O from 6.1 to 7.0‰) isotopic compositions of the studied rocks are fairly uniform but still reveal a small degree of isotopic heterogeneity in the Paleoproterozoic crust enclosing the complex. The small isotopic differences observed in the two types of rapakivi granites (biotite-hornblende granite and biotite granite) may result either from an isotopically heterogeneous lower crustal source or, more likely, from contamination of the granitic magma derived from a lower crustal source during prolonged residence at upper crustal levels.

  10. Efficacy of Experimental Hydrofluoric Acid (HF on Bond Strength and Microleakage of Composite-Porcelain Interface

    Directory of Open Access Journals (Sweden)

    Samaneh Mahvidyzadeh

    2012-09-01

    Full Text Available Background and Aims: The aim of this study was to evaluate the quality of an experimental hydrofluoric acid (HF for preparation of porcelain and to compare it with two commercial hydrofluoric acids in Iranian trademark. Materials and Methods: A- Evaluation of etch pattern of experimental HF using scanning electron microscope (SEM: 6 feldespathic discs were divided into 3 groups. Each group was etched with related HF (experimental, Ultradent and Kimia for 1 minute. SEM images were recorded at 3 magnifications. B- Bond strength test: 18 feldespathic discs were considered for each acidic group. Then the porcelain surfaces were etched and bonded to composite with unfilled resin. Consequently, the microshear test was done. C- Microleakage test: 54 discs were divided into 3 groups (n=18. Then the porcelain surfaces were etched and bonded to composite with unfilled resin and finally observed under stereomicroscope. The data were analyzed with one-way ANOVA and Smirnov tests. Results: SEM analysis showed no difference between groups in terms of etch pattern. Microshear bond strength values for experimental, Kimia, and Ultradent HF were 28.53 (±4.92, 28.21 (±6.61, and 26.14 (±7.61 MPa, respectively. There was no significant difference between the bond strength of test groups (P0.05. Conclusion: Quality of experimental HF in terms of etch pattern, microshear bond strength and microleakage of composite/porcelain interface was similar to that of two commercial hydrofluoric acids.

  11. Tungsten Stable Isotope Compositions of Ferromanganese Crusts

    Science.gov (United States)

    Abraham, K.; Barling, J.; Hein, J. R.; Schauble, E. A.; Halliday, A. N.

    2014-12-01

    We report the first accurate and precise data for mass-dependent fractionation of tungsten (W) stable isotopes, using a double spike technique and MC-ICPMS. Results are expressed relative to the NIST 3136 W isotope standard as per mil deviations in 186W/184W (δ186W). Although heavy element mass-dependent fractionations are expected to be small, Tl and U both display significant low temperature isotopic fractionations. Theoretical calculations indicate that W nuclear volume isotopic effects should be smaller than mass-dependent fractionations at low temperatures. Hydrogenetic ferromanganese (Fe-Mn) crusts precipitate directly from seawater and have been used as paleoceanographic recorders of temporal changes in seawater chemistry. Crusts are strongly enriched in W and other metals, and are a promising medium for exploring W isotopic variability. Tungsten has a relatively long residence time in seawater of ~61,000 years, mainly as the tungstate ion (WO42-). Water depth profiles show conservative behaviour. During adsorption on Fe-Mn crusts, W species form inner-sphere complexes in the hexavalent (W6+) state. The major host phase is thought to be Mn oxides and the lighter W isotope is expected to be absorbed preferentially. Surface scrapings of 13 globally distributed hydrogenetic Fe-Mn crusts display δ186W from -0.08 to -0.22‰ (±0.03‰, 2sd). A trend toward lighter W isotope composition exists with increasing water depth (~1500 to ~5200m) and W concentration. One hydrothermal Mn-oxide sample is anomalously light and Mn nodules are both heavy and light relative to Fe-Mn crusts. Tungsten speciation depends on concentration, pH, and time in solution and is not well understood because of the extremely slow kinetics of the reactions. In addition, speciation of aqueous and/or adsorbed species might be sensitive to pressure, showing similar thermodynamic stability but different effective volumes. Thus, W stable isotopes might be used as a water-depth barometer in

  12. The control of weathering processes on riverine and seawater hafnium isotope ratios

    OpenAIRE

    Bayon, Germain; Vigier, Nathalie; Burton, Kevin W.; Brenot, Agnès; Carignan, Jean; Etoubleau, Joel; Chu, Nan-chin

    2006-01-01

    Hafnium Hf-176/Hf-177 isotope ratio variations in marine records are thought to reflect changes in continental weathering through time, but the behavior of Hf in rivers, and during weathering, is not well understood. Here, we present Hf-176/Hf-177 data for rivers, bedrock, soils, and leaching experiments for the Moselle basin, Vosges, France. These data strongly suggest that the Hf-176/Hf-177 composition of river waters is controlled by preferential dissolution of accessory phases (i.e., apat...

  13. The Proterozoic of NW Mexico revisited: U-Pb geochronology and Hf isotopes of Sonoran rocks and their tectonic implications

    Science.gov (United States)

    Solari, L. A.; González-León, C. M.; Ortega-Obregón, C.; Valencia-Moreno, M.; Rascón-Heimpel, M. A.

    2017-07-01

    Several Proterozoic basement units crop out in the Sonora State of NW Mexico, and the same can be correlated with crustal provinces of southern Laurentia in the neighboring southwestern USA. Zircon U-Pb and Hf isotopic determinations in more than 300 grains separated from igneous and metaigneous rocks from these units indicate that the crystalline basement in Sonora is made up of different components, which are from west to east: (1) The Caborca-Mojave province to the west, characterized by the so-called Bámori Complex, have U-Pb ages between 1696 and 1772 Ma, with moderately juvenile to slightly evolved ɛHf values, yielding T DM ages of ca. 2.1-2.4 Ga; (2) in the intermediate area, east of Hermosillo, the Palofierral and La Ramada orthogneiss units yield an age of 1640 and 1703 Ma, respectively, both having juvenile ɛHf with the Palofierral overlapping the depleted mantle curve at ca. 1.65 Ga; and (3) in the northeastern Sonora, samples from the southern extension of the Mazatzal province, represented by the Pinal Schist, yielded ages between 1674 and 1694 Ma, with moderately juvenile to juvenile ɛHf values and a T DM age of ca. 1.9 Ga. In addition, a suite of post-tectonic granites was also studied in Caborca (San Luis granite) as well as in northeastern Sonora (Cananea granite), both yielding ages of ca. 1.44 Ga with moderately juvenile ɛHf values ranging from -1 to +8 and T DM dates of ca. 1.8-1.9 Ga and 1.6-1.7 Ga, respectively. These two isotopically contrasting provinces may imply the existence of a Proterozoic paleo-suture. However, if the Palofierral gneiss, of which the Hf signature straddles the depleted mantle array, is taken as the source for the 1.44 Ga Cananea granite, then the location of such a suture zone should lay farther south than the proposed trace of the Mojave-Sonora megashear.

  14. The Oxygen Isotopic Composition of the Sun

    Science.gov (United States)

    McKeegan, K. D.; Kallio, A.; Heber, V. S.; Jarzebinski, G.; Mao, P.; Coath, C.; Kunihiro, T.; Wiens, R. C.; Judith, A.; Burnett, D. S.

    2010-12-01

    An accurate and precise determination of the oxygen isotopic composition of the Sun is the highest priority scientific goal of the Genesis Mission [1] as such data would provide a baseline from which one could interpret the oxygen isotopic anomalies found at all spatial scales in inner solar system materials. We have measured oxygen isotope compositions of implanted solar wind in 40 spots along a radial traverse of the Genesis SiC target sample 60001 by depth profiling with the UCLA MegaSIMS [2]. Mass-dependent fractionation induced by the solar wind concentrator [3] ion optics was corrected by comparison of the concentrator 22Ne/20Ne with that measured in a bulk solar wind target (diamond-like carbon on Si, [4]). The solar wind captured at L1 has an isotopic composition of (δ18O, δ17O) ≈ (-99, -79)‰, a value which is far removed from the terrestrial mass fractionation line. Profiles from the central portion of the target, where solar concentrations are highest and background corrections minimal, yield a mean Δ17O = -28.3 ± 1.8 ‰ indicating that the Earth and other planetary materials from the inner solar system are highly depleted in 16O relative to the solar wind. A mass-dependent fractionation of ~ -20%/amu in the acceleration of solar wind is required if we hypothesize that the photospheric oxygen isotope value, which represents the bulk starting composition of the solar system, is on the 16O-mixing line characteristic of refractory phase in primitive meteorites [5]. With this assumption, our preferred value for the bulk solar oxygen isotope composition is δ18O ≈ δ17O ≈ -57‰. A mechanism is required to fractionate oxygen isotopes in a non-mass-dependent manner to deplete 16O by ~6 to 7% in the rocky materials of the solar nebula. As oxygen is the third most abundant element in the solar system, and the most abundant in the terrestrial planets, this mechanism must operate on a large scale. Isotope-selective photochemistry, for example as in

  15. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  16. Sr, Nd, Pb and Hf isotopic constraints on mantle sources and crustal contaminants in the Payenia volcanic province, Argentina

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin; Thirlwall, Matthew F.

    2015-01-01

    The presented Sr, Nd, Hf and double-spike Pb-isotopic analyses of Quaternary basalts from the Payenia volcanic province in southern Mendoza, Argentina, confirm the presence of two distinct mantle types feeding the Payenia volcanism. The southern Payenia mantle source feeding the intraplate-type Río...... material to the mantle source of the Nevado basalts and the transitional SVZ arc and retroarc rocks and similar degrees of melting throughout this arc segment. A gradual depletion of the pre-metasomatic mantle source going from the backarc over the retroarc to the arc is indicated. The depletion...... is suggested to be caused by step-wise melt extraction due to repeated injections of subduction zone fluids and melts. The lower crustal contamination trends found in the trace element variations of basalt groups from all parts of the Payenia province are also recognized in isotopic space and the dominant...

  17. Crustal growth and episodic reworking over one billion years in the Capricorn Orogen, Western Australia: evidence from Lu-Hf and O isotope data

    Science.gov (United States)

    Jahn, Inalee; Clark, Chris; Reddy, Steve; Taylor, Rich

    2017-04-01

    Fundamental to understanding the generation and evolution of a crustal block is knowledge of the relationship between additions of new material from the mantle, and the extent of crustal recycling [1]. Hafnium isotope ratios can be used to characterise relative contributions from mantle, crustal and recycled reservoirs within magmas. Oxygen isotopes can be used to constrain the extent of crustal interaction during magma emplacement. When used in conjunction, they can help unravel multiple crystallisation histories of a crustal block, and follow the source composition through magma evolution. The Capricorn Orogen records the Paleoproterozoic collision of the Yilgarn and Pilbara Cratons to form the West Australian Craton, and over one billion years of subsequent intracontinental crustal reworking. U-Pb zircon geochronology records three discrete tectono-magmatic events which resulted in voluminous granitic magmatism: the 2005-1975 Ma Glenburgh Orogeny, the 1820-1770 Ma Capricorn Orogeny, and the 1680-1620 Ma Durlacher Orogeny [2]. We present U-Pb, Lu-Hf and δ18O isotopic data from zircon from 50 samples of granites and granitoids from the Capricorn Orogen to provide constraints on the crustal evolution of the Paleoproterozoic crust. Our results confirm crustal growth by juvenile mantle input was limited to the Glenburgh Orogeny associated with the amalgamation of the West Australian Craton, while all subsequent Paleoproterozoic magmatism was primarily derived from significant reworking of the pre-existing crustal components. Time-sliced maps showing the variation in Hf and O isotopes can be used to image crustal evolution in space and time, and are particularly useful in constraining the spatial and temporal extent of juvenile magmatic additions to the crust. These maps suggest that crustal growth was concentrated along, or in the terranes adjacent to, the Yilgarn Craton margin. Our results are in agreement with previous isotopic studies [3], and provide additional

  18. Neoarchean (2.5–2.8 Ga crustal growth of the North China Craton revealed by zircon Hf isotope: A synthesis

    Directory of Open Access Journals (Sweden)

    Andong Wang

    2012-03-01

    Full Text Available The crustal growth of the North China Craton (NCC during the Neoarchean time (2.5–2.8 Ga is a hotly controversial topic, with some proposing that the main crustal growth occurred in the late Neoarchean (2.5–2.6 Ga, in agreement with the time of the magmatism, whereas others suggest that the main crustal accretion took place during early Neoarchean time (2.7–2.8 Ga, consistent with the time of crustal-formation of other cratons in the world. Zircon U-Pb ages and Hf isotope compositions can provide rigorous constraints on the time of crustal growth and the evolution and tectonic division of the NCC. In this contribution, we make a comprehensive review of zircon Hf isotope data in combination with zircon U-Pb geochronology and some geochemistry data from various divisions of the NCC with an aim to constrain the Neoarchean crustal growth of the NCC. The results suggest that both 2.7–2.8 Ga and 2.5–2.6 Ga crustal growth are distributed over the NCC and the former is much wider than previously suggested. The Eastern block is characterized by the main 2.7–2.8 Ga crustal growth with local new crustal-formation at 2.5–2.6 Ga, and the Yinshan block is characterized by ∼2.7 Ga crustal accretion as revealed by Hf-isotope data of detrital zircons from the Zhaertai Group. Detrital zircon data of the Khondalite Belt indicate that the main crustal growth period of the Western block is Paleoproterozoic involving some ∼2.6 Ga and minor Early- to Middle-Archean crustal components, and the crustal accretion in the Trans-North China Orogen (TNCO has a wide age range from 2.5 Ga to 2.9 Ga with a notable regional discrepancy. Zircon Hf isotope compositions, coupled with zircon ages and other geochemical data suggest that the southern margin may not be an extension of the TNCO, and the evolution and tectonic division of the NCC is more complex than previously proposed, probably involving multi-stage crustal growth and subduction processes

  19. Magnetic dipole moments of High-K isomeric states in Hf isotopes

    CERN Multimedia

    Walters, W; Nishimura, K; Bingham, C R

    2007-01-01

    It is proposed to make precision measurements of the magnetic moments of 5 multi-quasi-particle K-isomers in Hf nuclei by the Nuclear Magnetic Resonance of Oriented Nuclei (NMR/ON) technique using the NICOLE on-line nuclear orientation facility and exploiting the unique HfF$_{3}$ beams recently available at ISOLDE. Results will be used to extract single-particle and collective g-factors of the isomeric states and their excitations and to shed new light on their structure.

  20. Petrogenesis of the Late Jurassic peraluminous biotite granites and muscovite-bearing granites in SE China: geochronological, elemental and Sr-Nd-O-Hf isotopic constraints

    Science.gov (United States)

    Jiang, Yao-Hui; Zhu, Shu-Qi

    2017-12-01

    Biotite granites and muscovite-bearing granites are dominant rock types of the widespread granites in SE China. However, their petrogenesis has been enigmatic. A combined study of zircon U-Pb dating and Lu-Hf isotopes, whole-rock element geochemistry and Sr-Nd-O isotopes was performed for three late Mesozoic granitic plutons (Xinfengjie, Jiangbei and Dabu) in central Jiangxi province, SE China. All the plutons are composed of biotite granites and muscovite-bearing granites that have been poorly investigated previously. The new data not only allow us to assess their sources and magma evolution processes, but also helps us to better understand the genetic link to the large-scale polymetallic mineralization in SE China. LA-ICP-MS zircon U-Pb dating shows that three plutons were emplaced in the Late Jurassic (159-148 Ma) and that the muscovite-bearing granites are almost contemporaneous with the biotite granites. The biotite granites have SiO2 contents of 70.3-74.4 wt% and are weakly to strongly peraluminous with ASI from 1.00 to 1.26, and show a general decrease in ASI with increasing SiO2. They have relatively high zircon saturation temperatures ( T Zr = 707-817 °C, most > 745 °C) and show a general decrease in T Zr with increasing SiO2. They have high initial 87Sr/86Sr ratios (0.7136 to 0.7166) and high δ18O values (9.1-12.8‰, most > 9.5‰) and clearly negative ɛ Nd (T) (- 9.5 to - 11.8) and ɛ Hf (T) (in situ zircon) (- 13.1 to - 13.5). The muscovite-bearing granites have high SiO2 contents (74.7-78.2 wt%). They are also weakly to strongly peraluminous with ASI of 1.04-1.18 but show a general increase in ASI with increasing SiO2. They have relatively low T Zr (671-764 °C, most Hf (Hf isotopic compositions to the biotite granites with ɛ Nd (T) of - 8.7 to - 12.0, δ18O of 8.7-13.0‰ (most > 9.5‰) and ɛ Hf (T) (in situ zircon) of - 11.3 to - 13.1. Geochemical data suggest the origin of the biotite granites and muscovite-bearing granites as follows

  1. Effect of three porcelain etchants type (HF-APF-PHA on porcelain- composite shear bond strength

    Directory of Open Access Journals (Sweden)

    Kermanshah H.

    2005-05-01

    Full Text Available Statement of Problem: Porcelain restorations are susceptible to fracture and a common method for repairing is the use of silane and composite on etched porcelain. Although HF is very effective in porcelain etching but has detrimental effects on tissues. Purpose: In this study, the effect of APF and PHA was compared with HF in porcelain etching. Also the role of silane, unfilled resin and dentin bonding in bond strength of composite- porcelain was evaluated. Methods and Materials: In this experimental in-vitro study, one-hundred twenty porcelain square blocks (552 mm were prepared and bonding surfaces of each sandblasted. Samples were divided into three groups. The first group (n=40 were etched with buffered HF 9.5% (Ultradent for 1 min., the second group (n=40 were etched with Iranian APF 1.23% (Kimia for 10 minutes and the third group (n=40 were etched with Iranian PHA 37% (Kimia for 1 min. Ultradent silane was applied on the surfaces of half of cases in each group. On the surfaces of half of silane-treated samples unfilled resin was applied and dentin bonding was used on the surfaces of the remaining. Samples without silane were treated in a similar manner. Composite cylinder with 4mm diameter and 2 mm height was bonded to porcelain. Specimens were stored in 37°C distilled water for 24 hours and subjected to 500 cycles. Shear bond strength was measured with an Instron machine and type of fracture was evaluated using a stereomicroscope. Results were analyzed using 3 way ANOVA, Kaplan- Maier and Tukey HSD tests. Results: Findings showed that PHA and APF roughened the porcelain surface without creating retentive micro undercuts but HF etches porcelain and creates retentive microundercuts. Ultradent silane had no significant effect on bond strength of porcelain- composite. Unfilled resin with Ultradent silane compared with dentin bonding with the same silane is more effective in bond strength of composite- porcelain. Conclusion: Based on

  2. Measurements of Isotopic Composition of Vapour on the Antarctic Plateau

    Science.gov (United States)

    Casado, M.; Landais, A.; Masson-Delmotte, V.; Genthon, C.; Prie, F.; Kerstel, E.; Kassi, S.; Arnaud, L.; Steen-Larsen, H. C.; Vignon, E.

    2015-12-01

    The oldest ice core records are obtained on the East Antarctic plateau. The composition in stable isotopes of water (δ18O, δD, δ17O) permits to reconstruct the past climatic conditions over the ice sheet and also at the evaporation source. Paleothermometer accuracy relies on good knowledge of processes affecting the isotopic composition of surface snow in Polar Regions. Both simple models such as Rayleigh distillation and global atmospheric models with isotopes provide good prediction of precipitation isotopic composition in East Antarctica but post deposition processes can alter isotopic composition on site, in particular exchanges with local vapour. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum water vapour - precipitation - surface snow - buried snow. While precipitation and snow sampling are routinely performed in Antarctica, climatic conditions in Concordia, very cold (-55°C in average) and very dry (less than 1000ppmv), impose difficult conditions to measure the water vapour isotopic composition. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces (down to 20ppmv). Here we present the results of a campaign of measurement of isotopic composition in Concordia in 2014/2015. Two infrared spectrometers have been deployed or the first time on top of the East Antarctic Plateau allowing a continuous vapour measurement for a month. Comparison of the results from infrared spectroscopy with cryogenic trapping validates the relevance of the method to measure isotopic composition in dry conditions. Identification of different behaviour of isotopic composition in the water vapour associated to turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction.

  3. Isotopic Composition of Xenon in Petroleum from the Shell ...

    Indian Academy of Sciences (India)

    We have measured the abundance and isotopic composition of xenon in petroleum samples from the Shell Bullwinkle Field off the coast of Louisiana. We used an oxidation and purification procedure designed to insure complete extraction and clean up of xenon from the petroleum. The xenon isotopic composition was ...

  4. Angular momentum limit of Hf isotopes produced in three fusion-evaporation reactions

    CERN Document Server

    Domscheit, J; Ernst, J; Fallon, P; Herskind, B; Hübel, H; Korten, W; Lee, I Y; Macchiavelli, A O; Nenoff, N; Siem, S; Ward, D; Wilson, J N

    2001-01-01

    The compound nucleus sup 1 sup 6 sup 8 Hf was populated in three fusion-evaporation reactions with different beam-target mass asymmetries: sup 5 sup 0 Ti+ sup 1 sup 1 sup 8 Sn, sup 6 sup 4 Ni+ sup 1 sup 0 sup 4 Ru and sup 7 sup 4 Ge+ sup 9 sup 4 Zr. Due to the large negative Q values of these reactions the compound nucleus is formed at low excitation energy. At three or four excitation energies for each reaction gamma-ray spectra of the evaporation residues sup 1 sup 6 sup 6 Hf to sup 1 sup 6 sup 3 Hf, corresponding to the 2n to 5n exit channels, respectively, were recorded with the Ge detectors of the 8 pi-spectrometer array. The gamma-ray multiplicity and total energy were measured using the inner ball of BGO detectors. This data was used to determine the maximum angular momentum transferred to each evaporation channel, the gamma-ray decay entry region and the relative cross sections. No differences are observed between the three reactions. This is explained by the very similar dependence of the excitation ...

  5. Three-Dimensional FIB/EBSD Characterization of Irradiated HfAl3-Al Composite

    Energy Technology Data Exchange (ETDEWEB)

    Hua, Zilong; Guillen, Donna Post; Harris, William; Ban, Heng

    2016-09-01

    A thermal neutron absorbing material, comprised of 28.4 vol% HfAl3 in an Al matrix, was developed to serve as a conductively cooled thermal neutron filter to enable fast flux materials and fuels testing in a pressurized water reactor. In order to observe the microstructural change of the HfAl3-Al composite due to neutron irradiation, an EBSD-FIB characterization approach is developed and presented in this paper. Using the focused ion beam (FIB), the sample was fabricated to 25µm × 25µm × 20 µm and mounted on the grid. A series of operations were carried out repetitively on the sample top surface to prepare it for scanning electron microscopy (SEM). First, a ~100-nm layer was removed by high voltage FIB milling. Then, several cleaning passes were performed on the newly exposed surface using low voltage FIB milling to improve the SEM image quality. Last, the surface was scanned by Electron Backscattering Diffraction (EBSD) to obtain the two-dimensional image. After 50 to 100 two-dimensional images were collected, the images were stacked to reconstruct a three-dimensional model using DREAM.3D software. Two such reconstructed three-dimensional models were obtained from samples of the original and post-irradiation HfAl3-Al composite respectively, from which the most significant microstructural change caused by neutron irradiation apparently is the size reduction of both HfAl3 and Al grains. The possible reason is the thermal expansion and related thermal strain from the thermal neutron absorption. This technique can be applied to three-dimensional microstructure characterization of irradiated materials.

  6. Influence of pairing on the ({ital p},{ital t}) transition strength between high-spin {ital K} isomers of Hf isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Kuzmenko, N.K. [V. G. Khlopin Radium Institute, 2nd Murinsky Prosp. 28, St. Petersburg 194021 (Russian Federation); Mikhajlov, V.M. [Institute of Physics, St. Petersburg State University, St. Petersburg 19804 (Russian Federation)

    1995-05-01

    The influence of pairing on the probability of the two-nucleon-transfer transition between high-spin {ital K} isomers of Hf isotopes is discussed. Calculations of energies and cross sections are performed by using the particle number projection (FBCS method). In contrast with BCS, the FBCS method predicts that the pairing in many-quasiparticles states does not disappear.

  7. Phase composition of Bi2O3 specimens doped with Ti, Zr and Hf

    Directory of Open Access Journals (Sweden)

    Poleti Dejan

    2012-01-01

    Full Text Available Powder mixtures of α-Bi2O3 containing 2, 5 and 10 mole % of TiO2, ZrO2 or HfO2 were homogenized, heated at 820ºC for 24 h and quenched in air. X-ray powder diffraction technique was used to characterize the prepared samples. In all cases metastable Bi2O3 polymorphs, γ-Bi2O3 or β-Bi2O3, are found as single or major phases. Addition of Ti4+ ions stabilizes γ-Bi2O3 polymorph, while either Zr4+ or Hf4+ ions stabilize β-Bi2O3 polymorph. In the samples with 2 and 5 mole % of TiO2 the presence of even two γ-Bi2O3 phases (Bi12TiO20 compound and a very low Ti-doped γ-Bi2O3 was established. Similarly, in the sample with 2 mole % of HfO2 two β-Bi2O3 phases were found. Phase composition of prepared samples, values of unit cell parameters and the appearance of two polymorphs with identical crystal structure but different unit cell parameters are discussed and compared with known data.

  8. The isotopic composition of Nd in different ocean masses

    Science.gov (United States)

    Piepgras, D. J.; Wasserburg, G. J.; Dasch, E. J.

    1979-01-01

    The paper examines the isotopic composition of Nd in marine environments. The Sm-Nd data for authigenic ferromanganese sediments indicate that the Atlantic, Pacific, and Indian Oceans have a distinct range in Nd isotopic composition characteristics of each ocean basin and reflect the dissolved load of Nd in the water mass. Measurements of the Nd isotopic seawater composition of seawater indicate that the rare earth elements (REE) in ferromanganese sediments are derived by direct precipitation of these elements out of seawater. It is believed that the Nd isotopic variations in these sediments represent true variations in the dissolved Nd isotopic composition which reflect the age and (Sm-147)/(Nd-144) ratios of the continental masses sampled believed to be the major source of REE in seawater.

  9. In situ U-Pb and Lu-Hf isotopic studies of zircons from the Sancheong-Hadong AMCG suite, Yeongnam Massif, Korea: Implications for the petrogenesis of ∼1.86 Ga massif-type anorthosite

    Science.gov (United States)

    Lee, Yuyoung; Cho, Moonsup; Yi, Keewook

    2017-05-01

    Isotopic and geochemical characteristics of Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite have long been used for tracing the mantle-crustal source and magmatic evolution. We analyzed Lu-Hf isotopic compositions of zircon from the Sancheong-Hadong AMCG complex, Yeongnam Massif, Korea, in order to understand tectonomagmatic evolution of the Paleoproterozoic AMCG suite occurring at the southeastern margin of the North China Craton (NCC). The anorthositic rocks in this complex, associated with charnockitic and granitic gneisses, were recrystallized to eradicate magmatic features. In situ SHRIMP (sensitive high-resolution ion microprobe) U-Pb analyses of zircon from a leuconorite and an oxide-bearing gabbroic dyke yielded weighted mean 207Pb/206Pb ages of 1870 ± 2 Ma and 1861 ± 6 Ma, respectively. Charnockitic, granitic, and porphyroblastic gneisses yielded weighted mean 207Pb/206Pb zircon ages of 1861 ± 6 Ma, 1872 ± 6 Ma, and 1873 ± 4 Ma, respectively. These crystallization ages, together with our previous geochronological data for anorthosites (1862 ± 2 Ma), are indicative of episodic AMCG magmatism over an ∼10 Ma interval. Initial εHf(t) values of zircon analyzed from five anorthositic rocks and four felsic gneisses range from +2.1 to -6.1 and -0.3 to -5.4, respectively. Zircon Hf isotopic data in combination with available whole rock Sr-Nd isotopic data suggest that anorthositic parental magma was most likely derived from a mantle source and variably affected by crustal contamination. This crustal component is also reflected in charnockitic-granitic magmas produced primarily by the melting of lower crust. Taken together, the AMCG magmatism at 1.87-1.86 Ga in the Yeongnam Massif is most likely a late orogenic product of Paleoproterozoic NCC amalgamation tectonically linked to assembly of the Columbia supercontinent.

  10. Juvenile crust formation in the Zimbabwe Craton deduced from the O-Hf isotopic record of 3.8-3.1 Ga detrital zircons

    Science.gov (United States)

    Bolhar, Robert; Hofmann, Axel; Kemp, Anthony I. S.; Whitehouse, Martin J.; Wind, Sandra; Kamber, Balz S.

    2017-10-01

    Hafnium and oxygen isotopic compositions measured in-situ on U-Pb dated zircon from Archaean sedimentary successions belonging to the 2.9-2.8 Ga Belingwean/Bulawayan groups and previously undated Sebakwian Group are used to characterize the crustal evolution of the Zimbabwe Craton prior to 3.0 Ga. Microstructural and compositional criteria were used to minimize effects arising from Pb loss due to metamorphic overprinting and interaction with low-temperature fluids. 207Pb/206Pb age spectra (concordance >90%) reveal prominent peaks at 3.8, 3.6, 3.5, and 3.35 Ga, corresponding to documented geological events, both globally and within the Zimbabwe Craton. Zircon δ18O values from +4 to +10‰ point to both derivation from magmas in equilibrium with mantle oxygen and the incorporation of material that had previously interacted with water in near-surface environments. In εHf-time space, 3.8-3.6 Ga grains define an array consistent with reworking of a mafic reservoir (176Lu/177Hf ∼0.015) that separated from chondritic mantle at ∼3.9 Ga. Crustal domains formed after 3.6 Ga depict a more complex evolution, involving contribution from chondritic mantle sources and, to a lesser extent, reworking of pre-existing crust. Protracted remelting was not accompanied by significant mantle depletion prior to 3.35 Ga. This implies that early crust production in the Zimbabwe Craton did not cause complementary enriched and depleted reservoirs that were tapped by later magmas, possibly because the volume of crust extracted and stabilised was too small to influence (asthenospheric) mantle isotopic evolution. Growth of continental crust through pulsed emplacement of juvenile (chondritic mantle-derived) melts, into and onto the existing cratonic nucleus, however, involved formation of complementary depleted subcontinental lithospheric mantle since the early Archaean, indicative of strongly coupled evolutionary histories of both reservoirs, with limited evidence for recycling and lateral

  11. Evolution of the African continental crust as recorded by U-Pb, Lu-Hf and O isotopes in detrital zircons from modern rivers

    Science.gov (United States)

    Iizuka, Tsuyoshi; Campbell, Ian H.; Allen, Charlotte M.; Gill, James B.; Maruyama, Shigenori; Makoka, Frédéric

    2013-04-01

    To better understand the evolutionary history of the African continental crust, a combined U-Pb, Lu-Hf and O isotopic study has been carried out by in situ analyses of approximately 450 detrital zircon grains from the Niger, Nile, Congo, Zambezi and Orange Rivers. The U-Pb isotopic data show age peaks at ca. 2.7, 2.1-1.8, 1.2-1.0, ca. 0.8, 0.7-0.5 and ca. 0.3 Ga. These peaks, with the exception of the one at ca. 0.8 Ga, correspond with the assembly of supercontinents. Furthermore, the detrital zircons that crystallized during these periods of supercontinent assembly have dominantly non-mantle-like O and Hf isotopic signatures, in contrast to the ca. 0.8 Ga detrital zircons which have juvenile characteristics. These data can be interpreted as showing that continental collisions during supercontinent assembly resulted in supermountain building accompanied by remelting of older continental crust, which in turn led to significant erosion of young igneous rocks with non-mantle-like isotopic signatures. Alternatively, the data may indicate that the major mode of crustal development changed during the supercontinent cycle: the generation of juvenile crust in extensional settings was dominant during supercontinent fragmentation, whereas the stabilization of the generated crust via crustal accretion and reworking was important during supercontinent assembly. The Lu-Hf and O isotope systematics indicate that terreigneous sediments could attain elevated 18O/16O via prolonged sediment-sediment recycling over long crustal residence time, and also that reworking of carbonate and chert which generally have elevated 18O/16O and low Hf contents is minor in granitoid magmatism. The highest 18O/16O in detrital zircon abruptly increased at ca. 2.1 Ga and became nearly constant thereafter. This indicates that reworking of mature sediments increased abruptly at that time, probably as a result of a transition in the dynamics of either granitoid crust formation or sedimentary evolution

  12. Late Paleozoic to Mesozoic extension in southwestern Fujian Province, South China: Geochemical, geochronological and Hf isotopic constraints from basic-intermediate dykes

    Directory of Open Access Journals (Sweden)

    Sen Wang

    2017-05-01

    Full Text Available The tectonic evolution of SE China block since late Paleozoic remains debated. Here we present a new set of zircon U-Pb geochronological, Lu-Hf isotopic data and whole-rock geochemistry for two stages of basic-intermediate dykes from the southwestern Fujian. The samples were collected from the NE-trending (mainly diabases and NW-trending (mainly diabasic diorites dykes and yielded zircon U-Pb ages of 315 and 141 Ma, with εHf (t values of −8.90 to 7.49 and −23.39 to −7.15 (corresponding to TDM2 values of 850 to 1890 Ma and 737 to 2670 Ma, respectively. Geochemically these rocks are characterized by low TiO2 (0.91–1.73 wt.% and MgO (3.04–7.96 wt.%, and high Al2O3 (12.5–16.60 wt.% and K2O (0.60–3.63 wt.%. Further they are enriched in LREEs and LILEs (Rb, Ba, Th and K, but depleted in HFSEs (Nb, Ta and Zr. The tectonic discrimination analysis revealed that the dykes were formed in an intraplate extensional environment. However, the NW trending dykes show crust-mantle mixed composition, which indicate an extensional tectonic setting with evidence for crustal contamination. The SE China block experienced two main stages of extensional tectonics from late Carboniferous to early Cretaceous. The tectonic evolution of the SE China block from late Devonian to Cretaceous is also evaluated.

  13. Tracing source terranes using U-Pb-Hf isotopic analysis of detrital zircons: provenance of the Orhanlar Unit of the Palaeotethyan Karakaya subduction-accretion complex, NW Turkey

    Science.gov (United States)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Sandstones of the Late Palaeozoic-Early Mesozoic Karakaya Complex are interpreted to have accumulated along an active continental margin related to northward subduction of Palaeotethys. The age of deposition and provenance of the sandstones are currently being determined using radiometric dating of detrital zircons, coupled with dating of potential source terranes. Our previous work shows that the U-Pb-Hf isotopic characteristics of the sandstones of all but one of the main tectonostratigraphic units of the Karakaya Complex are compatible with a provenance that was dominated by Triassic and Permo-Carboniferous magmatic arc-type rocks, together with a minor contribution from Lower to Mid-Devonian igneous rocks (Ustaömer et al. 2015). However, one of the tectono-stratigraphic units, the Orhanlar Unit, which occurs in a structurally high position, differs in sedimentary facies and composition from the other units of the Karakaya Complex. Here, we report new isotopic age data for the sandstones of the Orhanlar Unit and also from an extensive, associated tectonic slice of continental metamorphic rocks (part of the regional Sakarya Terrane). Our main aim is to assess the provenance of the Orhanlar Unit sandstones in relation to the tectonic development of the Karakaya Complex as a whole. The Orhanlar Unit is composed of shales, sandstone turbidites and debris-flow deposits, which include blocks of Devonian radiolarian chert and Carboniferous and Permian neritic limestones. The sandstones are dominated by rock fragments, principally volcanic and plutonic rocks of basic-to-intermediate composition, metamorphic rocks and chert, together with common quartz, feldspar and mica. This modal composition contrasts significantly with the dominantly arkosic composition of the other Karakaya Complex sandstones. The detrital zircons were dated by the U-Pb method, coupled with determination of Lu-Hf isotopic compositions using a laser ablation microprobe attached to a multicollector

  14. An Integrated Analytical Approach to Obtaining Reliable U-Pb and Hf Isotopic Data from Complex (>3.9 to 3.3 Ga) Zircon from the Acasta Gneiss Complex

    Science.gov (United States)

    Bauer, A.; Bowring, S. A.; Vervoort, J. D.; Fisher, C. M.

    2014-12-01

    The Acasta Gneiss Complex (AGC) of northwestern Canada preserves some of Earth's oldest granitic crust (>4.03 Ga) and thereby contains important insight into crust forming processes on the early Earth. In general, rocks of the AGC have undergone a complex history of metamorphism and deformation (Archean and Paleoproterozoic)1,2, and, as a consequence, the zircons retain a complex history including inheritance, magmatic and metamorphic overgrowths, recrystallization, and multi-stage Pb loss. Previously published Hf isotopic data on zircons show within sample variability in excess of analytical uncertainty2,3,4. In order to assess the meaning and significance of this apparent isotopic variability, we are using two different methods to obtain coupled U-Pb and Lu-Hf isotopic data in zircon from a suite of rocks ranging in age from ca. > 3.9 Ga to 3.3 Ga. To obtain these data from the same volume of zircon, our approach involves: 1) split stream LA-ICPMS for U-Pb and Lu-Hf; 2) mechanical isolation of zircon domains for chemical abrasion and ID-TIMS U-Pb analyses and solution ICPMS for Lu-Hf recovered from U-Pb ion exchange chromatography. The deconvolution of complex histories requires this integrated approach and permits us to take advantage of both high spatial resolution and highest precision measurements to ultimately decipher the age and isotopic composition of discrete domains of multi-phase zircon. We demonstrate our approach with both relatively simple and complex grain populations in an attempt to understand within and between grain heterogeneity. The samples with the simplest zircon systematics have increasingly negative ɛHf from oldest to youngest, consistent with involvement of 4.0 Ga or older crust in later generations; also, none of our samples have been derived solely from strongly depleted sources. The presence of intra-zircon variability within samples from the AGC reflects a complex history of magmatic additions requiring melting/assimilation of older

  15. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Earth System Science; Volume 120; Issue 3 ... Pyrite; minor element; sulphur isotope; evolution; Jaduguda; Singhbhum; India. ... By integrating minor element and sulphur isotope compositions of pyrite in conjunction with other published data on the Jaduguda deposit, it is proposed that reduced ...

  16. A comparative study on isotopic composition of precipitation in wet ...

    Indian Academy of Sciences (India)

    tion of precipitation are due to isotopic fraction- ation occurring during the advection of the water vapour, condensation of vapour into rain and evap- oration during downfall from cloud level to ground level (Clark and Fritz 1997). The variations in sta- ble isotopic composition of water bodies have been explained in terms of ...

  17. Precambrian-Cambrian provenance of Matinde Formation, Karoo Supergroup, northwestern Mozambique, constrained from detrital zircon U-Pb age and Lu-Hf isotope data

    Science.gov (United States)

    Bicca, Marcos Müller; Jelinek, Andrea Ritter; Philipp, Ruy Paulo; de Carvalho Lana, Cristiano; Alkmim, Ana Ramalho

    2018-02-01

    The Permian-Triassic time interval was a period of high sedimentation rates in the intracontinental Karoo rift basin of northwestern Mozambique, reflecting high exhumation rates in the surrounding high ground Precambrian-Cambrian basement and juxtaposed nappes. U-Pb LA-MC-ICPMS dating and Lu-Hf isotopic analysis of detrital zircons from the Late Permian-Early Triassic Matinde Formation of the Karoo Supergroup is used as a reliable proxy to map denudation patterns of source regions. Data allow discrimination of U-Pb age populations of ca. 1250-900 Ma, a secondary population between ca. 900-700 and a major contribution of ages around ca. 700-490 Ma. Zircon grains of the Mesoproterozoic age population present Mesoproterozoic (1000-1500 Ma) to Paleoproterozoic (1800-2300 Ma) Hf TDM ages, with positive (0 to +11) and negative εHf values (-3 to -15), respectively. The younger U-Pb age population also presents two different groups of zircon grains according to Lu-Hf isotopes. The first group comprise Paleoproterozoic (1800-2300 Ma) ages, with highly negative εHf values, between -10 and -22, and the second group exhibits Mesoproterozoic ages (1200-1500 Ma), with increased juvenile εHf values (ca. 0 to -5). These Hf isotopes reinforce the presence of unexposed ancient crust in this region. The oldest U-Pb age population resembles the late stages of Grenville Orogeny and the Rodinia Supercontinent geotectonic activity mostly represented by magmatic rocks, which are widely present in the basement of northern Mozambique. The juvenile Hf-isotope signature with an older age component is associated to rocks generated from subduction processes with crust assimilation by continental arcs, which we correlate to rocks of the Nampula Complex, south and east of the Moatize-Minjova Basin. The U-Pb ages between 900 and 700 Ma were correlated to the calc-alkaline magmatism registered in the Guro Suite, related to the breakup phase of Rodinia, and mark the western limit of the Moatize

  18. Factors affecting the isotopic composition of organic matter. (1) Carbon isotopic composition of terrestrial plant materials.

    Science.gov (United States)

    Yeh, H W; Wang, W M

    2001-07-01

    The stable isotope composition of the light elements (i.e., H, C, N, O and S) of organic samples varies significantly and, for C, is also unique and distinct from that of inorganic carbon. This is the result of (1) the isotope composition of reactants, (2) the nature of the reactions leading to formation and post-formational modification of the samples, (3) the environmental conditions under which the reactions took place, and (4) the relative concentration of the reactants compared to that of the products (i.e., [products]/[reactants] ratio). This article will examine the carbon isotope composition of terrestrial plant materials and its relationship with the above factors. delta13C(PDB) values of terrestrial plants range approximately from -8 to -38%, inclusive of C3-plants (-22 to -38%), C4-plants (-8 to -15%) and CAM-plants (-13 to -30%). Thus, the delta13C(PDB) values largely reflect the photosynthesis pathways of a plant as well as the genetics (i.e., species difference), delta13C(PDB) values of source CO2, relevant humidity, CO2/O2 ratios, wind and light intensity etc. Significant variations in these values also exist among different tissues, different portions of a tissue and different compounds. This is mainly a consequence of metabolic reactions. Animals mainly inherit the delta13C(PDB) values of the foods they consume; therefore, their delta13C(PDB) values are similar. The delta13C(PDB) values of plant materials, thus, contain information regarding the inner workings of the plants, the environmental conditions under which they grow, the delta13C(PDB) values of CO2 sources etc., and are unique. Furthermore, this uniqueness is passed on to their derivative matter, such as animals, humus etc. Hence, they are very powerful tools in many areas of research, including the ecological and environmental sciences.

  19. Molecular and isotopic composition of foraminiferal organic linings

    NARCIS (Netherlands)

    Ní Fhlaithearta, S.; Ernst, S.R.; Nierop, K.G.J.; de Lange, G.J.; Reichart, G.-J.

    2013-01-01

    Fossil remnants of benthic foraminifera consist of carbonate tests and their organic linings. The macromolecular and stable isotopic composition of these benthic foraminiferal organic liningswas characterized to evaluate their potential use as paleoclimate proxies. Using Curie point

  20. Characters of chlorine isotopic composition in ocean water

    Digital Repository Service at National Institute of Oceanography (India)

    Xiao, Y.; Zhou, Y.; Liu, W.G.; Hong, A.; Wang, Q.; Wang, Y.; Wei, H.; Shirodkar, P.V.

    The chlorine isotopic composition of ocean water was determined using thermal ionization mass spectrometry based on the measurement of Cs sub(2) Cl sup(+) ion. The results show that the sup(37) Cl/ sup(35) Cl ratios are basically homogeneous...

  1. Isotopic compositions of the elements 2013 (IUPAC Technical Report)

    Science.gov (United States)

    Meija, Juris; Coplen, Tyler B.; Berglund, Michael; Brand, Willi A.; De Bièvre, Paul; Gröning, Manfred; Holden, Norman E.; Irrgeher, Johanna; Loss, Robert D.; Walczyk, Thomas; Prohaska, Thomas

    2016-01-01

    The Commission on Isotopic Abundances and Atomic Weights (ciaaw.org) of the International Union of Pure and Applied Chemistry (iupac.org) has revised the Table of Isotopic Compositions of the Elements (TICE). The update involved a critical evaluation of the recent published literature. The new TICE 2013 includes evaluated data from the “best measurement” of the isotopic abundances in a single sample, along with a set of representative isotopic abundances and uncertainties that accommodate known variations in normal terrestrial materials.

  2. Production cross sections of niobium and tantalum isotopes in proton-induced reactions on (nat)Zr and (nat)Hf up to 14 MeV.

    Science.gov (United States)

    Murakami, M; Haba, H; Goto, S; Kanaya, J; Kudo, H

    2014-08-01

    Production cross sections of Nb and Ta isotopes in the proton-induced reactions on (nat)Zr and (nat)Hf, respectively, were measured up to 14 MeV using a stacked-foil technique. The observed nuclides in the (nat)Zr(p,x) reactions were (90g,91m,92m,95m,95g,96)Nb, (95)Zr, and (87g,88)Y. In the (nat)Hf(p,x) reactions, (175,176,177,178,179)Ta and (175)Hf were observed. The obtained cross sections for each nuclide were compared with the previously reported data and with the theoretical cross sections calculated by the TALYS-1.4 code. Thick-target yields of the observed nuclides were deduced from the measured production cross sections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Asthenospheric outflow from the shrinking Philippine Sea Plate: Evidence from Hf-Nd isotopes of southern Mariana lavas

    Science.gov (United States)

    Ribeiro, Julia M.; Stern, Robert J.; Martinez, Fernando; Woodhead, Jon; Chen, Min; Ohara, Yasuhiko

    2017-11-01

    At subduction zones, sinking of the downgoing lithosphere is thought to enable a return flow of asthenospheric mantle around the slab edges, so that the asthenosphere from underneath the slab invades the ambient mantle flowing underneath the volcanic arc and the backarc basin. For instance at the northern end of the Lau Basin, trench retreat and slab rollback enable toroidal return flow of Samoan mantle beneath a transform margin to provide a supply of fresh, undepleted Indian mantle that feeds the backarc spreading center. Questions, however, arise about the sense of mantle flow when plate kinematics predict that the trench is advancing, as seen in the Mariana convergent margin. Does the mantle flow in or does it escape outward through slab tears or gaps? Here, we address the origin and sense of asthenospheric mantle flow supplying the southern Mariana convergent margin, a region of strong extension occurring above the subducting Pacific plate. Does the asthenosphere flow northward, from underneath the Pacific plate and Caroline hotspot through a slab tear or gap, or does it flow outward from the Mariana Trough, which possesses a characteristic Indian Ocean isotopic signature? To address these questions, we integrate geodetic data along with new Hf-Nd isotopic data for fresh basaltic lavas from three tectonic provinces in the southernmost Marianas: the Fina Nagu volcanic complex, the Malaguana-Gadao backarc spreading ridge and the SE Mariana forearc rift. Our results indicate that Indian mantle flows outward and likely escapes through slab tears or gaps to accommodate shrinking of the Philippine Sea plate. We thus predict that asthenospheric flow around the Pacific slab at the southern Mariana Trench is opposite to that predicted by most subduction-driven mantle flow models.

  4. Controls on the barium isotope compositions of marine sediments

    Science.gov (United States)

    Bridgestock, Luke; Hsieh, Yu-Te; Porcelli, Donald; Homoky, William B.; Bryan, Allison; Henderson, Gideon M.

    2018-01-01

    The accumulation of barium (Ba) in marine sediments is considered to be a robust proxy for export production, although this application can be limited by uncertainty in BaSO4 preservation and sediment mass accumulation rates. The Ba isotope compositions of marine sediments could potentially record insights into past changes in the marine Ba cycle, which should be insensitive to these limitations, enabling more robust interpretation of sedimentary Ba as a proxy. To investigate the controls on the Ba isotope compositions of marine sediments and their potential for paleo-oceanographic applications, we present the first Ba isotope compositions results for sediments, as well as overlying seawater depth profiles collected in the South Atlantic. Variations in Ba isotope compositions of the sediments predominantly reflect changes in the relative contributions of detrital and authigenic Ba sources, with open-ocean sediments constraining the isotope composition of authigenic Ba to be δ138/134Ba ≈ + 0.1 ‰. This value is consistent with the average isotope composition inferred for sinking particulate Ba using simple mass balance models of Ba in the overlying water column and is hypothesized to reflect the removal of Ba from the upper water column with an associated isotopic fractionation of Δdiss-part 138/134Ba ≈ + 0.4 to +0.5. Perturbations to upper ocean Ba cycling, due to changes in export production and the supply of Ba via upwelling, should therefore be recorded by the isotope compositions of sedimentary authigenic Ba. Such insights will help to improve the reliable application of Ba accumulation rates in marine sediments as a proxy for past changes in export production.

  5. A Sr-Nd-Hf isotope characterization of dust source areas in Victoria Land and the McMurdo Sound sector of Antarctica

    Science.gov (United States)

    Blakowski, Molly A.; Aciego, Sarah M.; Delmonte, Barbara; Baroni, Carlo; Salvatore, Maria Cristina; Sims, Kenneth W. W.

    2016-06-01

    Determining the geographical provenance of dust provides crucial insight into the global dust cycle. For the East Antarctic Ice Sheet (EAIS), the importance of Southern hemisphere potential dust sources has been thoroughly investigated using radiogenic isotopes, whereas proximal dust source areas located on the periphery of the ice sheet remain poorly documented from a geochemical standpoint. In this work, we expand the existing isotopic (Srsbnd Nd) catalogue of dust and sand-sized sediments from Victoria Land and the McMurdo Sound sector, and incorporate Hf isotopic data to place additional constraints on dust source identification. The isotopic field for materials considered in this study is characterized by 87Sr/86Sr ratios ranging from 0.703 to 0.783, εNd between -12.01 and 6.36, and εHf from -16.77 to 6.89. As reported in previous works, the data reveal close relationships between Antarctic sediments and distinct parent lithologies; in addition, our findings emphasize the background presence of very fine dusts originating from dominant global sources and regional volcanic activity as barriers to direct source-to-sink comparison of isotopic signatures. Thus, geochemical characterizations of dust sources to the Antarctic ice sheet involving multiple size fractions, including coarser-grained particles more susceptible to short-range transport, can help us to rule out global sources of dust when examining local sediment cores and ice cores.

  6. Detrital zircon U-Pb ages and Hf isotopic constraints on the terrigenous sediments of the Western Alps and their paleogeographic implications

    OpenAIRE

    Chu, Yang; Lin, Wei; Faure, Michel; Wang, Qingchen

    2016-01-01

    International audience; Detrital zircons from Cretaceous micaschist, Late Eocene-Earliest Oligocene sandstone and Early Oligocene siltstone of the Western Alps fall into three main separable age clusters at 610-540 Ma, 490-430 Ma, and 340-280 Ma that correspond to the Cadomian (Neoproterozoic), Ordovician and Variscan (Carboniferous) events widespread in Western and Central Europe. Hf isotopic results indicate that these three magmatic and tectonic episodes did not give rise to significant pr...

  7. A trio of laser ablation in concert with two ICP-MSs: Simultaneous, pulse-by-pulse determination of U-Pb discordant ages and a single spot Hf isotope ratio analysis in complex zircons from petrographic thin sections

    National Research Council Canada - National Science Library

    Darren L. Tollstrup; Lie-Wen Xie; Josh B. Wimpenny; Emily Chin; Cin-Ty Lee; Qing-Zhu Yin

    2012-01-01

      We have developed a technique for the simultaneous in situ determination of U-Pb ages and Hf isotope ratios from a single spot in complex, discordant zircons by combining both a single-collector...

  8. The ruthenium isotopic composition of the oceanic mantle

    Science.gov (United States)

    Bermingham, K. R.; Walker, R. J.

    2017-09-01

    The approximately chondritic relative, and comparatively high absolute mantle abundances of the highly siderophile elements (HSE), suggest that their concentrations in the bulk silicate Earth were primarily established during a final ∼0.5 to 1% of ;late accretion; to the mantle, following the cessation of core segregation. Consequently, the isotopic composition of the HSE Ru in the mantle reflects an amalgamation of the isotopic compositions of late accretionary contributions to the silicate portion of the Earth. Among cosmochemical materials, Ru is characterized by considerable mass-independent isotopic variability, making it a powerful genetic tracer of Earth's late accretionary building blocks. To define the Ru isotopic composition of the oceanic mantle, the largest portion of the accessible mantle, we report Ru isotopic data for materials from one Archean and seven Phanerozoic oceanic mantle domains. A sample from a continental lithospheric mantle domain is also examined. All samples have identical Ru isotopic compositions, within analytical uncertainties, indicating that Ru isotopes are well mixed in the oceanic mantle, defining a μ100Ru value of 1.2 ± 7.2 (2SD). The only known meteorites with the same Ru isotopic composition are enstatite chondrites and, when corrected for the effects of cosmic ray exposure, members of the Main Group and sLL subgroup of the IAB iron meteorite complex which have a collective CRE corrected μ100Ru value of 0.9 ± 3.0. This suggests that materials from the region(s) of the solar nebula sampled by these meteorites likely contributed the dominant portion of late accreted materials to Earth's mantle.

  9. Isotopic ratio correlation for the isotopic composition analysis of plutonium in Am-Pu mixed samples having high americium content.

    Science.gov (United States)

    Patra, Sabyasachi; Agarwal, Chhavi; Chaudhury, Sanhita; Newton Nathaniel, T; Gathibandhe, M; Goswami, A

    2013-08-01

    Interference of high amount of americium in the plutonium isotopic composition analysis has been studied by simulating gamma-ray spectra for Am-Pu samples over a wide composition range (5-97% (241)Am) for both power and research reactor grade plutonium. An alternate way for isotopic composition analysis has been proposed by correlating the isotopic ratios available in our old database with the experimentally obtained (241)Pu/(239)Pu isotopic ratio. The proposed method has been validated using simulated spectra of known isotopic compositions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth

    Science.gov (United States)

    Chen, Heng; Savage, Paul S.; Teng, Fang-Zehn; Helz, Rosalind T.; Moynier, Frédéric

    2013-01-01

    he zinc stable isotope system has been successfully applied to many and varied fields in geochemistry, but to date it is still not completely clear how this isotope system is affected by igneous processes. In order to evaluate the potential application of Zn isotopes as a proxy for planetary differentiation and volatile history, it is important to constrain the magnitude of Zn isotopic fractionation induced by magmatic differentiation. In this study we present high-precision Zn isotope analyses of two sets of chemically diverse, cogenetic samples from Kilauea Iki lava lake, Hawaii, and Hekla volcano, Iceland, which both show clear evidence of having undergone variable and significant degrees of magmatic differentiation. The Kilauea Iki samples display small but resolvable variations in Zn isotope composition (0.26‰66Zn66Zn defined as the per mille deviation of a sample's 66Zn/64Zn compositional ratio from the JMC-Lyon standard), with the most differentiated lithologies exhibiting more positive δ66Zn values. This fractionation is likely a result of the crystallization of olivine and/or Fe–Ti oxides, which can both host Zn in their crystal structures. Samples from Hekla have a similar range of isotopic variation (0.22‰66Zn66Zn=0.28±0.05‰ (2s.d.).

  11. Characteristics of stable carbon isotopic composition of shale gas

    Directory of Open Access Journals (Sweden)

    Zhenya Qu

    2016-04-01

    Full Text Available A type Ⅱ kerogen with low thermal maturity was adopted to perform hydrocarbon generation pyrolysis experiments in a vacuum (Micro-Scale Sealed Vessel system at the heating rates of 2 °C/h and 20 °C/h. The stable carbon isotopic compositions of gas hydrocarbons were measured to investigate their evolving characteristics and the possible reasons for isotope reversal. The δ13C values of methane became more negative with the increasing pyrolysis temperatures until it reached the lightest point, after which they became more positive. Meanwhile, the δ13C values of ethane and propane showed a positive trend with elevating pyrolysis temperatures. The carbon isotopic compositions of shale gasses were mainly determined by the type of parent organic matter, thermal evolutionary extent, and gas migration in shale systems. Our experiments and study proved that the isotope reversal shouldn't occur in a pure thermogenic gas reservoir, it must be involved with some other geochemical process/es; although mechanisms responsible for the reversal are still vague. Carbon isotopic composition of the Fayetteville and Barnett shale gas demonstrated that the isotope reversal was likely involved with water–gas reaction and Fischer-Tropsch synthesis during its generation.

  12. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS

    Science.gov (United States)

    Yang, Yue-Heng; Zhang, Hong-Fu; Chu, Zhu-Yin; Xie, Lie-Wen; Wu, Fu-Yuan

    2010-02-01

    A combined procedure for separating Lu, Hf, Rb, Sr, Sm and Nd from a single sample digestion is presented in this paper. The procedure consists of the following four steps: (1) sample dissolution in a mixture of concentrated HF-HNO3-HClO4; (2) Lu and Hf separation from the Rb, Sr, LMREE and other matrix elements by HF-free extraction chromatography; (3) Rb, Sr and LMREE separation from other matrix elements using a cation-exchange resin; (4) Sm and Nd separation from others LMREE by extraction chromatography. Analytical feasibility, flexibility and reproducibility of Rb-Sr, Sm-Nd and Lu-Hf isotope systems are demonstrated for international standard solutions and Certified Reference Materials (CRMs). Results show good agreement with previously reported values by isotope dilution methods, indicating the technique has fewer problems in respect to well-known sample inhomogeneity of natural geological materials and demonstrating its potential application to the study of limited and precious terrestrial rocks or minerals (like peridotite, kimberlite and xenoliths) and extra-terrestrial samples (like lunar rock and meteorites).

  13. Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg-suite: the age of the lunar crust and its relation to the time of Moon formation.

    Science.gov (United States)

    Carlson, Richard W; Borg, Lars E; Gaffney, Amy M; Boyet, Maud

    2014-09-13

    New Rb-Sr, (146,147)Sm-(142,143)Nd and Lu-Hf isotopic analyses of Mg-suite lunar crustal rocks 67667, 76335, 77215 and 78238, including an internal isochron for norite 77215, were undertaken to better define the time and duration of lunar crust formation and the history of the source materials of the Mg-suite. Isochron ages determined in this study for 77215 are: Rb-Sr=4450±270 Ma, (147)Sm-(143)Nd=4283±23 Ma and Lu-Hf=4421±68 Ma. The data define an initial (146)Sm/(144)Sm ratio of 0.00193±0.00092 corresponding to ages between 4348 and 4413 Ma depending on the half-life and initial abundance used for (146)Sm. The initial Nd and Hf isotopic compositions of all samples indicate a source region with slight enrichment in the incompatible elements in accord with previous suggestions that the Mg-suite crustal rocks contain a component of KREEP. The Sm/Nd-(142)Nd/(144)Nd correlation shown by both ferroan anorthosite and Mg-suite rocks is coincident with the trend defined by mare and KREEP basalts, the slope of which corresponds to ages between 4.35 and 4.45 Ga. These data, along with similar ages for various early Earth differentiation events, are in accord with the model of lunar formation via giant impact into Earth at ca 4.4 Ga. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Stable isotope composition of human fingernails from Slovakia

    Energy Technology Data Exchange (ETDEWEB)

    Grolmusová, Zuzana, E-mail: zuzana.grolmusova@geology.sk [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Rapčanová, Anna [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Michalko, Juraj; Čech, Peter [State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia); Veis, Pavel [Comenius University in Bratislava, Faculty of Mathematics, Physics and Informatics, Department of Experimental Physics, Mlynská dolina F2, 842 48 Bratislava (Slovakia); State Geological Institute of Dionýz Štúr, Laboratory of Isotope Geology, Mlynská dolina 1, 817 04 Bratislava (Slovakia)

    2014-10-15

    Stable isotope composition of human fingernails has proven to be useful for documenting human dietary information and geographical patterns in archeological, forensic, anthropological and biological studies. Therefore, it is of interest to detect all factors influencing the stable isotopic composition in the certain regions in the world. Carbon and nitrogen isotope data of human fingernail keratin from 52 individuals from Slovakia were reported in this study. The online combustion and continuous flow isotope-ratio mass spectrometer Delta V Advantage was used for δ{sup 13}C and δ{sup 15}N analysis of fingernail keratin samples from 24 vegetarian and 28 omnivorous individuals. A group of people with frequent meat consumption showed enrichment in {sup 13}C and {sup 15}N isotopes in fingernails. A similar trend was observed with increasing seafood in an individual's diet. Moreover a significant difference was revealed between smokers and nonsmokers for both δ{sup 13}C and δ{sup 15}N values. These data were compared to previously published δ{sup 13}C and δ{sup 15}N fingernail values from across the globe. This study brings new information on the stable isotope signature of individuals from Slovakia and characterizes the Central European region for the first time. The stable isotope composition of fingernails is influenced by the frequency of meat and seafood consumption as well as smoking. - Highlights: • This study deals with stable isotope analyses of fingernails from Slovak volunteers. • δ{sup 13}C and δ{sup 15}N values of vegetarian and omnivore fingernails were compared. • Influence of sex, diet and smoking was studied.

  15. Aerosol carbon isotope composition over Baltic Sea

    Science.gov (United States)

    Garbaras, Andrius; Pabedinskas, Algirdas; Masalaite, Agne; Petelski, Tomasz; Gorokhova, Elena; Sapolaite, Justina; Ezerinskis, Zilvinas; Remeikis, Vidmantas

    2017-04-01

    Particulate carbonaceous matter is significant contributor to ambient particulate matter originating from intervening sources which contribution is difficult to quantify due to source diversity, chemical complexity and processes during atmospheric transport. Carbon isotope analysis can be extremely useful in source apportionment of organic matter due to the unique isotopic signatures associated with anthropocentric (fossil fuel), continental (terrestrial plants) and marine sources, and is particularly effective when these sources are mixed (Ceburnis et al., 2011;Ceburnis et al., 2016). We will present the isotope ratio measurement results of aerosol collected during the cruise in the Baltic Sea. Sampling campaign of PM10 and size segregated aerosol particles was performed on the R/V "Oceania" in October 2015. Air mass back trajectories were prevailing both from the continental and marine areas during the sampling period. The total carbon concentration varied from 1 µg/m3 to 8 µg/m3. Two end members (δ13C = -25‰ and δ13C = -28 ‰ ) were established from the total stable carbon isotope analysis in PM10 fraction. δ13C analysis in size segregated aerosol particles revealed δ13C values being highest in the 1 - 2.5 µm range (δ13C = -24.9 ‰ ) during continental transport, while lowest TC δ13C values (δ13C ≈ -27 ‰ ) were detected in the size range D50 matter origin in submicron marine aerosol by 13 C and 14 C isotope analysis, Atmospheric Chemistry and Physics, 11, 8593-8606, 2011. Ceburnis, D., Masalaite, A., Ovadnevaite, J., Garbaras, A., Remeikis, V., Maenhaut, W., Claeys, M., Sciare, J., Baisnée, D., and O'Dowd, C. D.: Stable isotopes measurements reveal dual carbon pools contributing to organic matter enrichment in marine aerosol, Scientific Reports, 6, 2016. Masalaite, A., Remeikis, V., Garbaras, A., Dudoitis, V., Ulevicius, V., and Ceburnis, D.: Elucidating carbonaceous aerosol sources by the stable carbon δ13C TC ratio in size

  16. Mercury isotope compositions in North American forest soils and litters

    Science.gov (United States)

    Zheng, W.; Obrist, D.; Bergquist, B. A.

    2013-12-01

    Soils represent one of the largest reservoirs of mercury on Earth, playing a critical role in the natural cycle of mercury by acting as both a sink and source. However, it is not well understood how soils sequestrate and remobilize Hg. Natural variations in stable Hg isotopes are being explored as a promising tool in studying the transformation and transport of Hg. However, Hg isotopic data in soils is scarce. In addition, the limited isotopic data that exists is significantly different from those of atmospheric Hg, which is one of the major sources of Hg to soils. For example, Hg mass independent fractionation (MIF, typically reported as Δ199Hg) is positive in atmospheric wet deposition, but most soils display negative Δ199Hg. MIF on 200Hg (Δ200Hg) is also observed in atmospheric wet deposition, but not in soils. The discrepancy between soils and atmospheric samples is still unexplained. In this study, we surveyed the Hg isotope compositions in soil profiles, litters and fresh vegetation from four different forest sites across United States (Thompson forest, WA, Truckee, CA, Niwot Ridge, CO and Howland, MA). The current results from the WA site show that soils primarily display negative mass dependent fractionation for the even isotopes (MDF, reported as δ202Hg) with values for δ202Hg of up to -2.0‰. Significant MIF for both odd isotopes is also observed in all WA soil samples and Δ199Hg is mostly negative (up to -0.4‰). No MIF on 200Hg is observed in these soils. The negative Δ199Hg in soils is inconsistent with the positive Δ199Hg reported in atmospheric wet deposition, suggesting that either Hg transformations within or on the surface of soils and/or plants alter its isotope composition after deposition or other types of Hg deposition (e.g., Hg(0) or Hg(II) dry deposition) is more predominant. The Δ199Hg/Δ201Hg ratio is close to 1 in the soils, which is consistent with the results of laboratory photochemical reduction of inorganic Hg

  17. Isothermal gas chromatography of short-lived Hf isotopes and element 104 in chlorinating, oxygen containing carrier gas

    Energy Technology Data Exchange (ETDEWEB)

    Jost, D.T.; Dressler, R.; Eichler, B.; Piguet, D.; Tuerler, A.; Gaeggeler, H.W.; Gaertner, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Grantz, M.; Huebener, S. [FZR (Germany); Buklanov, G.; Lebedev, V.; Timkhin, S.; Vedeneev, M.V.; Yakushev, A.; Zvara, I. [Joint Inst. for Nuclear Research, Dubna (Russian Federation)

    1997-09-01

    Based on thermodynamic state functions retention times of Hf and element 104 were calculated in the case of the simple adsorption of the tetrachlorides and the case of a complex adsorption involving a substitution process with oxygen in the chlorinating gas. Preliminary results for {sup 261}104 and Hf are shown. (author) 1 fig., 1 tab., 3 refs.

  18. Determination of porphyrin carbon isotopic composition using gas chromatography-isotope ratio monitoring mass spectrometry.

    Science.gov (United States)

    Yu, Z; Sheng, G; Fu, J; Peng, P

    2000-12-01

    Carbon isotopic compositions of aetio I occurring in the form of free-base, nickel, demetallation, dihydroxysilicon(IV) and bis(tert.-butyldimethylsiloxy)silicon(IV) [(tBDMSO)2Si(IV)] have shown that it has experienced no obvious isotope fractionation during the synthesis of [(tBDMSO)2Si(IV)] porphyrin from aetio I. Here, aetio I porphyrin species such as free-base, nickel, demetallated and dihydroxysilicon were analyzed by the conventional method, namely it is combusted in sealed system, and followed by isotope ratio monitoring mass spectrometric analysis. [(tBDMSO)2Si(IV)] aetio I was assayed by gas chromatography-isotope ratio monitoring mass spectrometry (GC-IRMS). A porphyrin mixture of [(tBDMSO)2Si(IV)] aetio I and octaethylporphyrin was also prepared. Their carbon isotopic compositions measured by GC-IRMS indicate that no isotope exchange took place between the porphyrins during the synthesis of [(tBDMSO)2Si(IV)] porphyrins. This method is employed for delta13C determination of geoporphyrins from the Maoming and Jianghan oil shales.

  19. Converting isotope ratios to diet composition - the use of mixing models - June 2010

    Science.gov (United States)

    One application of stable isotope analysis is to reconstruct diet composition based on isotopic mass balance. The isotopic value of a consumer’s tissue reflects the isotopic values of its food sources proportional to their dietary contributions. Isotopic mixing models are used ...

  20. Heavy nickel isotope compositions in rivers and the oceans

    Science.gov (United States)

    Cameron, V.; Vance, D.

    2014-03-01

    Nickel is a biologically-active trace metal whose dissolved concentration depth profiles in the ocean show nutrient-like behaviour. If the pronounced removal of nickel from the dissolved phase in the surface ocean, and its return in the deep, is associated with an isotopic fractionation nickel isotopes may be able to yield constraints on the precise biogeochemical processes involved. Here we present the first nickel isotope data for seawater along with data for the dissolved phase of rivers, one of the principal sources of nickel to the oceans. The dissolved phase of rivers exhibits substantial variability in both Ni concentration and δ60Ni: from 2.2 to 35 nmol kg-1 and +0.29 to +1.34‰, respectively. The most striking result from the nickel isotope analyses of rivers is that they are substantially heavier (by up to 1‰ for δ60Ni) than the range for silicate rocks on the continents, a finding that is analogous to that for other transition metal isotope systems. If the data presented here are close to representative of the global riverine flux, they suggest an annual input of Ni to the oceans of 3.6 × 108moles, and a discharge- and concentration-weighted δ60Ni average of +0.80‰. The relationship between Ni isotopes and concentrations shows similarities with those for other transition metal isotope systems, where the main control has been suggested to be isotopic partitioning between the dissolved phase and particulates, either in the weathering environment or during transport. In stark contrast to the rivers, the dataset for seawater is very homogeneous, with 2SD of the entire dataset being only twice the analytical reproducibility. The second main feature is that seawater is distinctly heavier in Ni isotopes than rivers. The average δ60Ni is 1.44 ± 0.15‰ (2SD), and only 2 of the 29 seawater analyses have a Ni isotopic composition that is lighter than the heaviest river. The lack of an isotopic shift associated with the drawdown of nickel concentrations

  1. Sr–Nd isotope composition of the Bay of Bengal sediments: Impact of climate on erosion in the Himalaya

    Digital Repository Service at National Institute of Oceanography (India)

    Tripathy, G.R.; Singh, S.K.; Bhushan, R.; Ramaswamy, V.

    /Al and V/Al ratios) and Sr and Nd isotope compositions. 2. MATERIALS AND METHODS The samples for this study are from a 12.8 m long piston core (SK187/PC33) collected from the western BoB (16 º 16′ N, 84 º 30′ E; Fig. 1;) during the 187 th... carbonate samples were reanalyzed after treating them one more time with 0.6 N HCl. The decarbonated and washed samples were ashed at 600ºC to combust the organic matter. The residue (silicate phase), spiked with 84 Sr and 150 Nd, was digested with HF...

  2. What controls the isotopic composition of Greenland surface snow?

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2014-02-01

    Full Text Available Water stable isotopes in Greenland ice core data provide key paleoclimatic information, and have been compared with precipitation isotopic composition simulated by isotopically enabled atmospheric models. However, post-depositional processes linked with snow metamorphism remain poorly documented. For this purpose, monitoring of the isotopic composition (δ18O, δD of near-surface water vapor, precipitation and samples of the top (0.5 cm snow surface has been conducted during two summers (2011–2012 at NEEM, NW Greenland. The samples also include a subset of 17O-excess measurements over 4 days, and the measurements span the 2012 Greenland heat wave. Our observations are consistent with calculations assuming isotopic equilibrium between surface snow and water vapor. We observe a strong correlation between near-surface vapor δ18O and air temperature (0.85 ± 0.11‰ °C−1 (R = 0.76 for 2012. The correlation with air temperature is not observed in precipitation data or surface snow data. Deuterium excess (d-excess is strongly anti-correlated with δ18O with a stronger slope for vapor than for precipitation and snow surface data. During nine 1–5-day periods between precipitation events, our data demonstrate parallel changes of δ18O and d-excess in surface snow and near-surface vapor. The changes in δ18O of the vapor are similar or larger than those of the snow δ18O. It is estimated using the CROCUS snow model that 6 to 20% of the surface snow mass is exchanged with the atmosphere. In our data, the sign of surface snow isotopic changes is not related to the sign or magnitude of sublimation or deposition. Comparisons with atmospheric models show that day-to-day variations in near-surface vapor isotopic composition are driven by synoptic variations and changes in air mass trajectories and distillation histories. We suggest that, in between precipitation events, changes in the surface snow isotopic composition are driven by these changes in near

  3. Cryogenian alkaline magmatism in the Southern Granulite Terrane, India: Petrology, geochemistry, zircon U-Pb ages and Lu-Hf isotopes

    Science.gov (United States)

    Santosh, M.; Yang, Qiong-Yan; Ram Mohan, M.; Tsunogae, T.; Shaji, E.; Satyanarayanan, M.

    2014-11-01

    22 Ma correlating with the ages of the basement rocks from these areas. The initial 176Hf/177Hf isotope ratios of the zircon grains from the AM syenite fall in the range between 0.281771 and 0.282284, with moderately negative εHf(t) values between - 5.9 and 0.1. Similarly, the initial 176Hf/177Hf isotope ratios for the zircon grains of PM ultrapotassic granite range between 0.281197 and 0.281970, albeit with more negative εHf(t) values in the range between - 22.7 and - 0.3 (average εHf (t) value - 18.8). The Lu-Hf data suggest the involvement of variable extent of older crust with distinct crustal residence times, either in the form of assimilation during magma emplacement, or crustal recycling during magma genesis. Based on the geochemical and isotopic systematics, a possible petrogenetic model would be asthenospheric upwelling in an extensional setting, melting of enriched lithosphere, and interaction of the magmas with lower crustal domains with subduction-related components of various ages. The disposition of these alkali plutons along two paleo sutures that weld the Meso-Neoarchean crustal blocks in the northern periphery of SGT suggests that the zones of emplacement might represent an aborted rift. The paleo-sutures probably served as a weak zone along which extension occurred broadly coeval with the Cryogenian subduction further south.

  4. Oxygen Isotope Composition of Nitrate Produced by Freshwater Nitrification

    Science.gov (United States)

    Boshers, D.; Granger, J.; Bohlke, J. K.

    2016-12-01

    Measurements of the naturally occurring nitrogen and oxygen stable isotope ratios of nitrate (NO3-), δ15N and δ18O, can be used to determine the source, dispersal, and fate of natural and contaminant NO3- in aquatic environments. To this end, it is necessary to know the extent to which NO3- isotopologues are modified by biological reactions, as heavy and light isotopes have different reaction rates. The purpose of this study was to determine the influence of the δ18O of ambient water on the isotope composition of NO3- produced during nitrification, the biological oxidation of ammonium (NH4+) to nitrite (NO2-) and then NO3-, which is poorly constrained in freshwater systems. To determine the δ18O of NO3- produced by nitrification in freshwater, we collected water from a stream in New England, which we amended with NH4+ and with increments of 18O-enriched water, to monitor the isotope composition of NO3- produced by a natural consortium of nitrifiers. Added NH4+ was completely oxidized to NO3- over 26 days. The final δ18O of nitrified NO3- revealed sensitivity to the δ18O of water mediated by (a) isotopic equilibration between water and NO2- and (b) kinetic isotope fractionation during O-atom incorporation from water into NO2- and NO3-. Our results concur with nitrifying culture experiments that have demonstrated analogous sensitivity of the δ18O of nitrified NO3- to equilibrium and kinetic O isotope effects (Buchwald et al. 2012), as well as show that these dynamics need to be considered to interpret NO3- isotope distribution in freshwater environments.

  5. Measurement of Plutonium Isotopic Composition - MGA

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-21

    In this module, we will use the Canberra InSpector-2000 Multichannel Analyzer with a high-purity germanium detector (HPGe) and the MGA isotopic anlysis software to assay a variety of plutonium samples. The module provides an understanding of the MGA method, its attributes and limitations. You will assess the system performance by measuring a range of materials similar to those you may assay in your work. During the final verification exercise, the results from MGA will be combined with the 240Pueff results from neutron coincidence or multiplicity counters so that measurements of the plutonium mass can be compared with the operator-declared (certified) values.

  6. H-Isotopic Composition of Apatite in Northwest Africa 7034

    Science.gov (United States)

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.

    2016-01-01

    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to estimates of Mars' bulk crust composition [1]. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the crustal composition of components that cannot be measured directly by remote sensing. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034.

  7. Geochemistry and Nd - isotopic composition of high silica rhyolites ...

    African Journals Online (AJOL)

    The samples have very low concentration of the transition elements, Sr (3.13 – 48.4 ppm) and very large negative Europium anomalies (Eu/Eu* = 0.27 – 0.48). Their Nd isotopic composition reveals that the T-depleted mantle (DM) model ages of the samples are highly variable and range from 2867 Ma to 4015 Ma.

  8. Facies, dissolution seams and stable isotope compositions of the ...

    Indian Academy of Sciences (India)

    Stable isotope analysis of the limestone shows that 13C and 18O values are compatible with the early Mesoproterozoic open seawater composition. The ribbon limestone facies in the Rohtas Limestone is characterized by micritic beds, each decoupled in a lower band enriched and an upper band depleted in dissolution ...

  9. Stable isotope compositions of organic carbon and contents of ...

    African Journals Online (AJOL)

    The stable isotope compositions of organic carbon (OC), and contents of OC and nitrogen for four sediment cores recovered from lakes Makat (located in the Ngorongoro Crater), Ndutu and Masek (located in the Serengeti Plains) are used to document sources of organic matter (OM) and climatic changes in sub-arid ...

  10. elemental and isotopic compositions of organic carbon and nitrogen ...

    African Journals Online (AJOL)

    ABSTRACT. A 29 cm long core recovered from a water depth of 5 m in a small closed lake located in the. Empakai crater northern Tanzania, is used to document the contents of organic carbon and nitrogen, stable isotopes composition of organic carbon and nitrogen, and C/N ratios and to infer climatic changes from these ...

  11. Memories of Earth Formation in the Modern Mantle: W Isotopic Composition of Flood Basalt Lavas

    Science.gov (United States)

    Rizo Garza, H. L.; Walker, R. J.; Carlson, R.; Horan, M. F.; Mukhopadhyay, S.; Francis, D.; Jackson, M. G.

    2015-12-01

    Four and a half billion years of geologic activity has overprinted much of the direct evidence for processes involved in Earth's formation and its initial chemical differentiation. Xenon isotopic ratios [1] and 3He/22Ne ratios [2] suggest that heterogeneities formed during Earth's accretion have been preserved to the present time. New opportunities to learn about early Earth history have opened up with the development of analytical techniques that allow high precision analysis of short-lived isotopic systems. The Hf-W system (t½ = 8.9 Ma) is particularly valuable for studying events that occurred during the first ~50 Ma of Solar System history. Here we report new data for ~ 60 Ma Baffin Bay and ~ 120 Ma Ontong Java Plateau lava samples. Both are large igneous provinces that may have sampled a primitive, less degassed deep mantle reservoir that has remained isolated since shortly after Earth formation [3,4]. Three samples analyzed have 182W/184W ratios that are 10 to 48 ppm higher than our terrestrial standard. These excesses in 182W are the highest ever measured in terrestrial rocks, and may reflect 182W ingrowth in an early-formed high Hf/W mantle domain that was produced by magma ocean differentiation [5]. Long and short-lived Sm-Nd systematics in these samples, however, are inconsistent with this hypothesis. The 182W excessses could rather reflect the derivation of these lavas from a mantle reservoir that was isolated from late accretionary additions [6]. The chondritic initial Os isotopic compositions and highly siderophile element abundances of these samples, however, are inconsistent with this interpretation. Tungsten concentrations for the Baffin Bay and Ontong Java Plateau samples range from 23 ppb to 62 ppb, and are negatively correlated with their 182W/184W ratios. We propose that the source reservoirs for these flood basalts likely formed through Hf/W fractionation caused by core-forming events occuring over a protacted time interval during Earth

  12. Isotope composition and volume of Earth's early oceans.

    Science.gov (United States)

    Pope, Emily C; Bird, Dennis K; Rosing, Minik T

    2012-03-20

    Oxygen and hydrogen isotope compositions of Earth's seawater are controlled by volatile fluxes among mantle, lithospheric (oceanic and continental crust), and atmospheric reservoirs. Throughout geologic time the oxygen mass budget was likely conserved within these Earth system reservoirs, but hydrogen's was not, as it can escape to space. Isotopic properties of serpentine from the approximately 3.8 Ga Isua Supracrustal Belt in West Greenland are used to characterize hydrogen and oxygen isotope compositions of ancient seawater. Archaean oceans were depleted in deuterium [expressed as δD relative to Vienna standard mean ocean water (VSMOW)] by at most 25 ± 5‰, but oxygen isotope ratios were comparable to modern oceans. Mass balance of the global hydrogen budget constrains the contribution of continental growth and planetary hydrogen loss to the secular evolution of hydrogen isotope ratios in Earth's oceans. Our calculations predict that the oceans of early Earth were up to 26% more voluminous, and atmospheric CH(4) and CO(2) concentrations determined from limits on hydrogen escape to space are consistent with clement conditions on Archaean Earth.

  13. The isotopic composition of solar flare accelerated neon

    Science.gov (United States)

    Mewaldt, R. A.; Spalding, J. D.; Stone, E. C.; Vogt, R. E.

    1979-01-01

    The individual isotopes of neon in energetic solar-flare particles have been clearly resolved with a rms mass resolution of 0.20 amu. The ratios found are Ne-20/Ne-22 = 7.6 (+2.0, -1.8) and Ne-21/Ne-22 of no more than about 0.11 in the 11-26 MeV per nucleon interval. This isotopic composition is essentially the same as that of meteoritic planetary neon-A and is significantly different from that of the solar wind.

  14. Menopause effect on blood Fe and Cu isotope compositions.

    Science.gov (United States)

    Jaouen, Klervia; Balter, Vincent

    2014-02-01

    Iron (δ(56) Fe) and copper (δ(65) Cu) stable isotope compositions in blood of adult human include a sex effect, which still awaits a biological explanation. Here, we investigate the effect of menopause by measuring blood δ(56) Fe and δ(65) Cu values of aging men and women. The results show that, while the Fe and Cu isotope compositions of blood of men are steady throughout their lifetime, postmenopausal women exhibit blood δ(65) Cu values similar to men, and δ(56) Fe values intermediate between men and premenopausal women. The residence time of Cu and Fe in the body likely explains why the blood δ(65) Cu values, but not the δ(56) Fe values, of postmenopausal women resemble that of men. We suggest that the Cu and Fe isotopic fractionation between blood and liver resides in the redox reaction occurring during hepatic solicitation of Fe stores. This reaction affects the Cu speciation, which explains why blood Cu isotope composition is impacted by the cessation of menstruations. Considering that Fe and Cu sex differences are recorded in bones, we believe this work has important implications for their use as a proxy of sex or age at menopause in past populations. Copyright © 2013 Wiley Periodicals, Inc.

  15. The Chlorine Isotopic Composition Of Lunar UrKREEP

    Science.gov (United States)

    Barnes, J. J.; Tartese, R.; Anand, M.; McCubbin, F. M.; Neal, C. R.; Franchi, I. A.

    2016-01-01

    Since the long standing paradigm of an anhydrous Moon was challenged there has been a renewed focus on investigating volatiles in a variety of lunar samples. However, the current models for the Moon’s formation have yet to fully account for its thermal evolution in the presence of H2O and other volatiles. When compared to chondritic meteorites and terrestrial rocks, lunar samples have exotic chlorine isotope compositions, which are difficult to explain in light of the abundance and isotopic composition of other volatile species, especially H, and the current estimates for chlorine and H2O in the bulk silicate Moon. In order to better understand the processes involved in giving rise to the heavy chlorine isotope compositions of lunar samples, we have performed a comprehensive in situ high precision study of chlorine isotopes, using NanoSIMS (Nanoscale Secondary Ion Mass Spectrometry) of lunar apatite from a suite of Apollo samples covering a range of geochemical characteristics and petrologic types.

  16. Transition of Plutonium isotopic composition by multi-recycling

    Energy Technology Data Exchange (ETDEWEB)

    Kofuji, Hirohide; Ono, Kiyoshi [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1997-10-01

    The degradation of Plutonium isotopic composition is suggested by the multi-recycling in the LWR. On the other hand, it is expected that FBR or FR has some advantages from the view point of the use of the degraded Plutonium. In this report, the Plutonium mass flow was calculated on some scenarios focused on the trend of the Plutonium isotopic composition through several times recycling. As the results, the Plutonium composition was remarkably degraded in the case of LWR only recycling, however it would be recovered by using both the FBR core and the blanket fuels. In the case of FR recycling, Plutonium can be consumed steadily by using one ratio of LWR, LWR(Pu) and FR. Though the FBR system has some merits, for example saving the natural Uranium resource, it became clear that the FBR can be used for the purpose of using degraded Plutonium. (author)

  17. Do foraminifera accurately record seawater neodymium isotope composition?

    Science.gov (United States)

    Scrivner, Adam; Skinner, Luke; Vance, Derek

    2010-05-01

    Palaeoclimate studies involving the reconstruction of past Atlantic meridional overturning circulation increasingly employ isotopes of neodymium (Nd), measured on a variety of sample media (Frank, 2002). In the open ocean, Nd isotopes are a conservative tracer of water mass mixing and are unaffected by biological and low-temperature fractionation processes (Piepgras and Wasserburg, 1987; Lacan and Jeandel, 2005). For decades, benthic foraminifera have been widely utilised in stable isotope and geochemical studies, but have only recently begun to be exploited as a widely distributed, high-resolution Nd isotope archive (Klevenz et al., 2008), potentially circumventing the difficulties associated with other methods used to recover past deep-water Nd isotopes (Klevenz et al., 2008; Rutberg et al., 2000; Tachikawa et al., 2004). Thus far, a single pilot study (Klevenz et al., 2008) has indicated that core-top sedimentary benthic foraminifera record a Nd isotope composition in agreement with the nearest available bottom seawater data, and has suggested that this archive is potentially useful on both millennial and million-year timescales. Here we present seawater and proximal core-top foraminifer Nd isotope data for samples recovered during the 2008 "RETRO" cruise of the Marion Dufresne. The foraminifer samples comprise a depth-transect spanning 3000m of the water column in the Angola Basin and permit a direct comparison between high-resolution water column and core-top foraminiferal Nd isotope data. We use these data to assess the reliability of both planktonic and benthic foraminifera as recorders of water column neodymium isotope composition. Frank, M., 2002. Radiogenic isotopes: Tracers of past ocean circulation and erosional input, Rev. Geophys., 40 (1), 1001, doi:10.1029/2000RG000094. Klevenz, V., Vance, D., Schmidt, D.N., and Mezger, K., 2008. Neodymium isotopes in benthic foraminifera: Core-top systematics and a down-core record from the Neogene south Atlantic

  18. C-isotope composition of fossil sedges and grasses

    Science.gov (United States)

    Kurschner, Wolfram M.

    2010-05-01

    C4 plants differ from C3 plants regarding their anatomy and their C-isotope composition. Both features can be used in the geological record to determine the presence of C4 plants. Yet, the evolution of the C4 pathway in the fossil record is enigmatic as palaeobotanical and geological evidence for C4 plants is sparse. The oldest structural evidence for Kranz anatomy has been found in Late Miocene permineralized grass leaf remains. But studies on the C-isotope composition of sedimentary organic matter indicate that abundant C4 biomass was present in N-America and Asia throughout the Miocene in expanding savannahs and grasslands. The success of C4 plants appears to be related also to an increasing seasonal aridity in the tropical climate belts and the co-evolution of grazers. However, C- isotope composition of palaeosols or vertebrate teeth only allows to estimate the abundance of C4 plant biomass in the vegetation or in the diet without further taxonomical specification which plant groups would have had C4 metabolism. In this contribution the first extensive C-isotope analysis of fossil seeds of sedges and a few grasses are presented. The age of the carpological material ranges from Late Eocene to Pliocene and was collected from several central European brown coal deposits. The 52 different taxa studied include several species of Carex, Cladiocarya, Eriopherum, Eleocharis, Scirpus, Sparganium. Most of them representing herbaceous elements of a (sub)tropical vegetation growing near the edge of a lake. The C-isotope composition of the fossil seeds varies between -30 and -23 o/oo indicating C3 photosynthesis. This first systematic inventory shows that C4 plants were absent in the European (sub)tropical brown coal forming wetland vegetation during the Tertiary. These preliminary data are in agreement with phylogenetic studies which predict the origin of C4 plants outside the European realm.

  19. Petrography, compositional characteristics and stable isotope ...

    African Journals Online (AJOL)

    13O versus δ18O bivariate diagram indicates that the limestone is predominantly average marine limestone with chalk and late cement. The values of depositional setting (Z), estimated from δ13O and δ18O composition support a diagenetic ...

  20. Stable isotope composition and volume of Early Archaean oceans

    DEFF Research Database (Denmark)

    Pope, Emily Catherine; Rosing, Minik Thorleif; Bird, Dennis K.

    Oxygen and hydrogen isotope compositions of seawater are controlled by volatile fluxes between mantle, lithospheric (oceanic and continental crust) and atmospheric reservoirs. Throughout geologic time oxygen was likely conserved within these Earth system reservoirs, but hydrogen was not, as it can...... escape to space [1]. Hydrogen isotope ratios of serpentinites from the ~3.8Ga Isua Supracrustal Belt in West Greenland are between -53 and -99‰; the highest values are in antigorite ± lizardite serpentinites from a low-strain lithologic domain where hydrothermal reaction of Archaean seawater with oceanic...... of continents present at that time), and the mass of Early Archaean oceans to ~109 to 126% of present day oceans. Oxygen isotope analyses from these Isua serpentinites (δ18O = +0.1 to 5.6‰ relative to VSMOW) indicate that early Archaean δ18OSEAWATER similar to modern oceans. Our observations suggest...

  1. Triple oxygen isotope composition of the Campi Flegrei magma systems

    Science.gov (United States)

    Iovine, Raffaella Silvia; Wörner, Gerhard; Pack, Andreas; Sengupta, Sukanya; Carmine Mazzeo, Fabio; Arienzo, Ilenia; D'Antonio, Massimo

    2017-04-01

    Sr-O isotope relationships in igneous rocks are a powerful tool to distinguish magma sources and quantify assimilation processes in magmatic rocks. Isotopic (87Sr/86Sr and 18O/16O-17O/16O) data have been acquired on whole rocks and separated minerals (feldspar, Fe-cpx, Mg-cpx, olivine phenocrysts) from pyroclastic products of the Campi Flegrei volcanic complex (Gulf of Naples, Southern Italy). Oxygen isotope ratios were measured by infrared laser fluorination using a Thermo MAT253 gas source isotope ratio mass spectrometer in dual inlet mode, on ˜2 mg of hand-picked phenocrysts. Variations in triple oxygen isotope ratios (17O/16O, 18O/16O) are expressed as the δ notation relative to VSMOW. Sr isotopic compositions were determined by thermal ionization mass spectrometry after standard cation-exchange methods on separated hand-picked phenocrysts (˜300 mg), and on whole rocks, in case of insufficient sample size to separate crystals. Sr-isotopes in Campi Flegrei minerals range from 0.707305 to 0.707605 and δ18O varies from 6.5 to 8.3‰ . Recalculated δ18Omelt values accordingly show a large range between 7.2 and 8.6‰ . Our data, compared with published δ18O-isotope data from other Italian volcanic centers (Alban Hills, Mts. Ernici, Ischia, Mt. Vesuvius, Aeolian Islands, Tuscany and Sardinia) and from subduction zones worldwide (Kamchatka, Lesser Antilles, Indonesia and Central Andean ignimbrites), show compositions that are very different from typical mantle values. Distinct trends and sources are recognized in our compilation from global data: (1) serpentinized mantle (Kamchatka), (2) sediment-enrichment in the mantle source (Indonesia, Lesser Antilles, Eolian arc), (3) assimilation of old radiogenic continental crust affecting magmas derived from sediment-modified mantle sources (Tuscany, Sardinia), (4) assimilation of lower crustal lithologies (Central Andes, Alban Hills, Mts. Ernici, Ischia). Sr-O-isotope values of Campi Flegrei and Vesuvius magmas

  2. Early Silurian to Early Carboniferous ridge subduction in NW Junggar: Evidence from geochronological, geochemical, and Sr-Nd-Hf isotopic data on alkali granites and adakites

    Science.gov (United States)

    Zhang, Chen; Santosh, M.; Liu, Luofu; Luo, Qun; Zhang, Xin; Liu, Dongdong

    2018-02-01

    The Central Asian Orogenic Belt (CAOB) evolved through a long-lived orogeny involving multiple episodes of subduction and accretion marking a major phase of continental growth during the Paleozoic. The northern part of the Western Junggar region (NW Junggar) offers a window into these processes, particularly to constrain the timing of closure of the Paleo-Asian Ocean. Here we report geochemical, geochronological, and isotopic data from K-feldspar granites and adakitic rocks from the NW Junggar region. Zircon U-Pb ages suggest that the granites were emplaced during Early Silurian to the Early Carboniferous (434-328 Ma). The granites show geochemical characteristics similar to those of A-type granites, with high SiO2 (71.13-76.72 wt%), Na2O + K2O (8.00-9.59 wt%), and Al2O3 (12.28-14.08 wt%), but depleted Sr, Nb, Ta and Eu. They display moderate to high positive εNd(t) and εHf(t) values (4.26-8.21 and 7.69-14.60, respectively) and young Nd and Hf model ages (T2DM-Nd = 489-740 Ma and T2DM-Hf = 471-845 Ma), suggesting magma derivation through partial melting of lower crust in the Boshchekul-Chingiz and Zharma-Saur arcs. The adakites are characterized by high Sr content (406.5-751.6 ppm), and low Y (13.8-16.4 ppm) and Yb (1.5-1.8 ppm) content, yielding relatively high Sr/Y ratios (25.38-49.41) similar to those of modern adakites. They have high positive εNd(t) and εHf(t) values (7.85-8.25 and 13.23-15.97, respectively) and young Nd and Hf model ages (T2DM-Nd = 429-535 Ma and T2DM-Hf = 355-550 Ma), indicating that their source magmas were likely derived from partial melting of the oceanic crust beneath the Boshchekul-Chingiz arc. The petrogenesis and distribution of the A-type granites and adakites, as well as the tectonic architecture of the region, suggest that a ridge subduction event might have occurred during the Early Silurian to Early Carboniferous. In combination with previous studies in the Chinese Altai, we suggest a two-sided ridge subduction model for the

  3. Changing compositions in the Iceland plume; Isotopic and elemental constraints from the Paleogene Faroe flood basalts

    DEFF Research Database (Denmark)

    Søager, Nina; Holm, Paul Martin

    2011-01-01

    Elemental and Sr, Nd, Hf and high precision Pb isotopic data are presented from 59 low-Ti and high-Ti lavas from the syn-break up part of the Faroe Flood Basalt Province. The depleted MORB-like low-Ti lavas erupted in the rift zone between the Faroe Islands and central East Greenland around......-type component similar in geochemistry to the Icelandic Öræfajökull lavas. This component is believed to be recycled pelagic sediments in the plume but it can alternatively be a local crustal or lithospheric mantle component. The enriched Faroe high-Ti lavas erupted inland from the rift have isotopic...... compositions very similar to the enriched Icelandic neo-volcanics and these lava suites apparently share the two enriched plume end-members IE1 and IE2 (Geochim. Cosmochim. Acta 68, 2, 2004). The lack of mixing between high and low-Ti melts at the time of break up, is explained by a zoned plume where only low...

  4. Oxygen isotopic composition of opaline phytoliths: Potential for terrestrial climatic reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Shahack-Gross, R.; Weiner, S.; Shemesh, A.; Yakir, D. [Weizmann Institute of Science, Rehovot (Israel)

    1996-10-01

    Opaline mineralized bodies are produced by many terrestrial plants and accumulate in certain soils and archaeological sites. Analyses of the oxygen isotopic compositions of these so-called phytoliths from stems and leaves of wheat plants grown in a greenhouse showed a linear relationship with stem and leaf water isotopic compositions and hence, indirectly, rain water isotopic composition. Analyses of wheat plants grown in fields showed that stem phytoliths isotopic composition directly reflects the seasonal air temperature change, whereas leaf phytoliths isotopic composition reflects both temperature and relative humidity. Temperature and the oxygen isotopic composition of stem phytoliths were related by an equation similar to that proposed for marine opal. Oxygen isotopic compositions of fossil phytoliths, and in particular those from stems, could be valuable for reconstructing past terrestrial climate change.

  5. Phase and Microstructural Correlation of Spark Plasma Sintered HfB2-ZrB2 Based Ultra-High Temperature Ceramic Composites

    Directory of Open Access Journals (Sweden)

    Ambreen Nisar

    2017-07-01

    Full Text Available The refractory diborides (HfB2 and ZrB2 are considered as promising ultra-high temperature ceramic (UHTCs where low damage tolerance limits their application for the thermal protection system in re-entry vehicles. In this regard, SiC and CNT have been synergistically added as the sintering aids and toughening agents in the spark plasma sintered (SPS HfB2-ZrB2 system. Herein, a novel equimolar composition of HfB2 and ZrB2 has shown to form a solid-solution which then allows compositional tailoring of mechanical properties (such as hardness, elastic modulus, and fracture toughness. The hardness of the processed composite is higher than the individual phase hardness up to 1.5 times, insinuating the synergy of SiC and CNT reinforcement in HfB2-ZrB2 composites. The enhanced fracture toughness of CNT reinforced composite (up to a 196% increment surpassing that of the parent materials (ZrB2/HfB2-SiC is attributed to the synergy of solid solution formation and enhanced densification (~99.5%. In addition, the reduction in the analytically quantified interfacial residual tensile stress with SiC and CNT reinforcements contribute to the enhancement in the fracture toughness of HfB2-ZrB2-SiC-CNT composites, mandatory for aerospace applications.

  6. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Directory of Open Access Journals (Sweden)

    Xueshu Xie

    Full Text Available Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively, it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  7. On the Effect of Planetary Stable Isotope Compositions on Growth and Survival of Terrestrial Organisms.

    Science.gov (United States)

    Xie, Xueshu; Zubarev, Roman A

    2017-01-01

    Isotopic compositions of reactants affect the rates of chemical and biochemical reactions. Usually it is assumed that heavy stable isotope enrichment leads to progressively slower reactions. Yet the effect of stable isotopes may be nonlinear, as exemplified by the "isotopic resonance" phenomenon. Since the isotopic compositions of other planets of Solar system, including Mars and Venus, are markedly different from terrestrial (e.g., deuterium content is ≈5 and ≈100 times higher, respectively), it is far from certain that terrestrial life will thrive in these isotopic conditions. Here we found that Martian deuterium content negatively affected survival of shrimp in semi-closed biosphere on a year-long time scale. Moreover, the bacterium Escherichia coli grows slower at Martian isotopic compositions and even slower at Venus's compositions. Thus, the biological impact of varying stable isotope compositions needs to be taken into account when planning interplanetary missions.

  8. Fabrication and thermal shock resistance of HfB2-SiC composite with B4C additives

    Science.gov (United States)

    Weng, L.; Han, W.; Hong, Ch.

    2011-12-01

    A HfB2 based ceramic matrix composite containing 20 vol.% SiC particles with 2 vol.% B4C as sintering additives was fabricated by hot-pressed sintering. The microstructure and properties, especially the thermal shock resistance of the composite were investigated. Results showed that the addition of B4C improved the powder sinterability and led to obtaining nearly full dense composite. The flexural strength and fracture toughness of the composite were 771 MPa and 7.06 MPam1/2, respectively. The thermal shock resistance tests indicated that the residual strength decreased significantly when the thermal shock temperature difference was higher than 600 °C. The large number of microcracks on the sample surface was the main reason for the catastrophic failure.

  9. Clumped-isotope geochemistry of carbonates: A new tool for the reconstruction of temperature and oxygen isotope composition of seawater

    Energy Technology Data Exchange (ETDEWEB)

    Bernasconi, Stefano M., E-mail: Stefano.bernasconi@erdw.ethz.ch [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Schmid, Thomas W.; Grauel, Anna-Lena [Geological Institute, ETH Zuerich, Sonneggstrasse 5, 8092 Zuerich (Switzerland); Mutterlose, Joerg [Institut fuer Geologie, Mineralogie und Geophysik, Ruhr Universitaet Bochum, Universitaetsstr. 150, 44801 Bochum (Germany)

    2011-06-15

    Highlights: > Clumped-isotope thermometry of carbonates is discussed. > Clumped isotopes of Belemnites show higher sea surface temperatures than commonly assumed for the lower Cretaceous. > The potential of clumped-isotope measurement on foraminifera is discussed. - Abstract: Clumped-isotope geochemistry deals with State of ordering of rare isotopes in molecules, in particular with their tendency to form bonds with other rare isotopes rather than with the most abundant ones. Among its possible applications, carbonate clumped-isotope thermometry is the one that has gained most attention because of the wide potential of applications in many disciplines of the earth sciences. In particular, it allows reconstructing the temperature of formation of carbonate minerals without knowledge of the isotopic composition of the water from which they were formed. In addition, the O isotope composition of the waters from which they were formed can be calculated using the {delta}{sup 18}O of the same carbonate sample. This feature offers new approaches in paleoclimatology for reconstructing past global geochemical cycles. In this contribution two applications of this method are presented. First the potential of a new analytical method of measurement of clumped isotopes on small samples of foraminifera, for high-resolution SST and seawater {delta}{sup 18}O reconstructions from marine sediments is shown. Furthermore the potential of clumped isotope analysis of belemnites, for reconstructing seawater {delta}{sup 18}O and temperatures in the Cretaceous is shown.

  10. Growth of continental crust and its episodic reworking over >800 Ma: evidence from Hf-Nd isotope data on the Pietersburg block (South Africa)

    Science.gov (United States)

    Laurent, Oscar; Zeh, Armin; Moyen, Jean-François; Doucelance, Régis; Martin, Hervé

    2014-05-01

    The formation and evolution of the continental crust during the Precambrian, and in particular during the Archaean eon (4.0-2.5 Ga), is still a matter of debate. In particular, it is not yet clear in which tectonic environment the genesis of crust took place and how the large volume of granitoid rocks that form ~70% of the Archaean crust were extracted from the mantle. Many studies highlighted that radiogenic isotope systems, especially Lu-Hf and Sm-Nd, are powerful tools to unravel the respective extent of crustal growth and recycling in Archaean terranes. This work presents coupled Hf and Nd isotope data (analyzed both in situ in accessory minerals and in whole rock samples) of Meso- to Neoarchaean granitoids, applied to unravel the processes of crust formation and evolution of the Pietersburg crustal block in South Africa. This crustal segment, the northermost one of the Archaean Kaapvaal Craton, is separated from older crust (3.65-3.10 Ga) by a large-scale suture zone, and the processes related to amalgamation of both blocks and their subsequent evolution are still unclear. The Pietersburg block is made up of a wide range of Archaean granitoid rocks, including tonalite-trondhjemite-granodiorite (TTG) series, high-K monzogranites as well as (grano)diorites belonging to the so-called "sanukitoid" group [1], all intruded by late Paleoproterozoic alkaline complexes. Age determinations highlighted two stages of granitoid formation: (1) TTG magmatism took place episodically over >400 Ma between 3.34 and 2.89 Ga, with a major pulse at 2.97-2.90 Ga; while (2) all the other (high-K) granitoid types emplaced subsequently between 2.84 and 2.69 Ga before a long magmatic shutdown until the intrusion of alkaline complexes at ~2.00 Ga [2-3]. Isotope systematics reveal that these two stages are related to juvenile crust formation and crust reworking, respectively. Indeed, all Hf-Nd isotope data from TTG gneisses are suprachondritic, pointing to a juvenile origin and precluding

  11. BOREAS TE-5 CO2 Concentration and Stable Isotope Composition

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Ehleriinger, Jim; Brooks, J. Renee; Flanagan, Larry

    2000-01-01

    The BOREAS TE-5 team collected measurements in the NSA and SSA on gas exchange, gas composition, and tree growth. This data set contains measurements of the concentration and stable carbon (C-13/C-12 and oxygen (O-18/O-16) isotope ratios of atmospheric CO2 in air samples collected at different heights within forest canopies. The data were collected to determine the influence of photosynthesis and respiration by the forest ecosystems on the concentration and stable isotope ratio of atmospheric CO2 These measurements were collected at the SSA during each 1994 IFC at OJP, OBS, and OA sites. Measurements were also collected at the NSA during each 1994 IFC at the OJP, T6R5S TE UBS, and T2Q6A TE OA sites. The stable isotope ratios are expressed using standard delta notation and in units of per mil. The isotope ratios are expressed relative to the international standard, PDB, for both carbon and oxygen samples. The data are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Activity Archive Center (DAAC).

  12. Origin of the granites and related Sn and Pb-Zn polymetallic ore deposits in the Pengshan district, Jiangxi Province, South China: constraints from geochronology, geochemistry, mineral chemistry, and Sr-Nd-Hf-Pb-S isotopes

    Science.gov (United States)

    Xu, Bin; Jiang, Shao-Yong; Luo, Lan; Zhao, Kui-Dong; Ma, Liang

    2017-03-01

    The Pengshan Sn and Pb-Zn polymetallic deposits are located in the south margin of the Jiujiang-Ruichang (Jiurui) district of the Middle-Lower Yangtze River Metallogenic Belt in South China. Four large deposits include Huangjinwa, Zengjialong, Jianfengpo, and Zhangshiba, the former three are Sn-dominant deposits which occur as stratiform orebodies in the contact zones of the Pengshan granites and within the country rock strata, whereas Zhangshiba consists of stratiform Pb-Zn orebodies within the Precambrian metasedimentary strata. In this study, we present results on zircon U-Pb ages, major and trace elements, and mineral chemistry as well as Sr-Nd-Hf isotope data of the granites, Pb and S isotopes of both the Sn-dominant and Pb-Zn dominant deposits, and U-Pb dating of cassiterite from the Pengshan district. SHRIMP and LA-ICP-MS zircon U-Pb dating shows that the Pengshan granites were emplaced in the Early Cretaceous (129-128 Ma), which is in good agreement with the U-Pb dating (130-128 Ma) of cassiterite from the Jianfengpo Sn deposit. The Pengshan granites consist mainly of weakly peraluminous highly fractionated I-type affinity granitic rocks. Detailed elemental and isotopic data suggest that the granites formed by partial melting of Mesoproterozoic metamorphic basement materials with minor input of mantle-derived melts. The mineral chemistry of biotite demonstrates that the Pengshan granitic magma had a low oxygen fugacity, thereby precluding the tin dominantly partitioning into the rock-forming silicate minerals and favoring accumulation in the exsolved residual liquid during magma crystallization stages. Sulfur isotopes show a relatively heavy sulfur isotopic composition from 5.8 to 17.6 ‰, and no difference for sulfur isotopes between the Sn deposits (5.8-13.4 ‰, Huangjinwa, Zengjialong, Jianfengpo) and the Pb-Zn deposit (mostly 7.1-13.0 ‰, except for one 17.6 ‰, Zhangshiba). The sulfur isotope data of pyrite from the host sedimentary rocks show

  13. Zircon U-Pb and Lu-Hf isotopic and geochemical constraints on the origin of the paragneisses from the Jiaobei terrane, North China Craton

    Science.gov (United States)

    Shan, Houxiang; Zhai, Mingguo; Zhu, Xiyan; Santosh, M.; Hong, Tao; Ge, Songsheng

    2016-01-01

    Clastic sedimentary rocks are important tracers to understand the evolution of the continental crust. Whole-rock major and trace element data, zircon U-Pb dating and Hf isotopic data for the paragneisses from the Jiaobei terrane are presented in this study in order to constrain their protoliths, provenance and tectonic setting. The paragneisses are characterized by enrichment in Al2O3 and TiO2, negative DF (DF = 10.44 - 0.21SiO2 - 0.32Fe2O3T - 0.98MgO + 0.55CaO + 1.46Na2O + 0.54K2O) values and the presence of aluminum-rich metamorphic minerals (e.g., garnet and sillimanite). Together with the mineral assemblages and zircon features, it can be inferred that the protoliths of these rocks are of sedimentary origin. The K-A (A = Al2O3/(Al2O3 + CaO + Na2O + K2O), K = K2O/(Na2O + K2O)) and log(Fe2O3/K2O)-log(SiO2/Al2O3) diagrams indicate that they belong principally to clay-silty rocks with some contributions from graywacke. A series of geochemical indexes, such as the widely employed CIA (CIA = [Al2O3/(Al2O3 + CaO∗ + Na2O + K2O)] × 100; molar proportions) and ICV (ICV = (Fe2O3 + MnO + MgO + CaO + Na2O + K2O + TiO2)/Al2O3) values, and the A-CN-K diagram for the paragneisses indicate relatively weak weathering in the source rocks and negligible post-depositional K-metasomatism. In addition, their REE patterns, low Cr/Zr (0.61-1.99), high Zr/Y (4.81-23.59) and Th/U (3.21-40.67) ratios, the low to moderate contents of Cr (197-362 ppm) and Ni (6.68-233 ppm), and source rock discrimination diagrams collectively suggest that the sediments of the protoliths of the paragneisses in the Jiaobei terrane were derived from the source with intermediate-acidic composition, probably granitic-to-tonalitic rocks. In combination with geochronological and isotopic studies on the paragneisses and the basement rocks in the Jiaobei terrane, it is suggested that the Archean-early Paleoproterozoic granitic rocks in the Jiaobei terrane possibly provided the most important source materials. In

  14. Zircon U-Pb geochronology and Hf isotopes from the Sanbagawa Metamorphic Belt, Western Shikoku, Japan: evidence for the prevalence for the Late Cretaceous protoliths

    Science.gov (United States)

    Walia, Monika; Knittel, Ulrich; Suzuki, Shigeyuki; Nishizaka, Naoki; Kimura, Kazunari; Lee, Yuan-Hsi; Lee, Hao-Yang

    2017-04-01

    Sanbagawa Metamorphic Belt lies to the south of Median Tectonic Line and is exposed on Kyushu, Shikoku and Honshu Islands in Japan. This belt has been the focus of many studies in recent years since the discovery of young detrital zircon grains (80 - 95 Ma). Samples for this study come from a 2000 m bore hole from north-western Shikoku drilled in an area considered to be part of the Jurassic to Early Cretaceous part of the Sanbagawa Belt. Dating of single zircon grains using the LA-ICP-MS U-Pb dating method shows that all but one sample contain zircons younger than 100 Ma and thus the protoliths are younger than the previously accepted age of metamorphism of the Sanbagawa Belt at ca. 110 Ma. The single sample that contains only zircons dated at 136 ± 3 Ma, apparently is of volcanic origin and could be a clast representing the source of 130-140 Ma zircons of the sample taken about 120m above this sample. In addition, three surface samples were analyzed. Two of these also contain zircons younger than 100 Ma, whereas the third sample contains only zircons older than 159 Ma. Hf-isotope values for the younger age group 82-116 Ma, ɛHf(T) range from -2.4 to +9.6. Zircon grains of 127-146 Ma ages have more positive ɛHf(T) values of +11.5 to +19.0 indicating depleted mantle source. We envisage these zircons to have been derived from the ocean side of a magmatic arc. All grains in the range 215-250 Ma are characterized by negative ɛHf(T) ranging from -2.3 to -15.2, suggesting re-melting of already existent crust. Within the detrital zircon populations contained in the Sanbagawa meta-sediments age groups are recognized that are also known from SE China. However, compared to those from mainland China, zircons from the Sanbagawa meta-sediments are usually characterized by higher ɛHf(T) values suggesting higher input of material derived from the depleted mantle.

  15. Neoproterozoic granitic magmatism along the Ailao Shan-Red River belt: U-Pb zircon geochronology, Lu-Hf isotopes and tectonic implications

    Science.gov (United States)

    Chen, Xiaoyu; Liu, Junlai; Qi, Yinchuan; Fan, Wenkui; Burg, Jean-Pierre

    2017-04-01

    The Neoproterozoic tectonic characteristics of the high grade metamorphic massifs along the Ailao Shan-Red River belt are debated. Controversies are on 1) whether the massifs were parts of the Yangtze block to the northeast or 2) parts of the Indochina block to the southwest and 3) the magmatic rocks represent arc magmatism or rifting linked to break-up of the Rodinia supercontinent. This study presents new and precise LA-ICP-MS U-Pb age dating and geochemical and Hf isotopic analyses of granitic intrusions along the Ailao Shan-Red River belt in an attempt to elucidate the Neoproterozoic magmatic evolution of this belt. In general, zircon U-Pb ages of the studied granitic rocks are between 804 and 724Ma, with a weighted mean of ca. 770 Ma, thus confirming Neoproterozoic magmatism. All samples plot into the peraluminous domain, indicating a major crustal resource. In consistency with these conclusions, most of the Neoproterozoic granitoids show negative ɛHf (t) values near the chondrite line. A few samples possess low positiveɛ Hf (t) values, being signatures of mantle sources. It is therefore concluded that the Neoproterozoic magmatism along the ASRR belt originated from mantle sources with important contributions through anatexis of ancient lower crust. Discrimination diagrams of tectonic settings suggest continental arc magmatism. Neoproterozoic magmatism is widely reported along the margins of the Yangtze block, especially in the northern margin. However, there are fewer reports about Neoproterozoic magmatic activity along the southern and southwestern margins. The geochronology spectrum and geochemisty of the studied Neoproterozoic granitic rocks are similar to those along the western margin of the Yangtze block. The present study, combined with previous results, suggests that oceanic subduction contributed to the generation of the arc magmatisms along the western and southwestern margin of the Yangtze plate and along the ASRR belt (as part of the

  16. Coupled Hf-Nd-Pb isotope co-variations of HIMU oceanic island basalts suggest an Archean source component in the mantle transition zone

    NARCIS (Netherlands)

    Nebel, O.; Arculus, R.J.; van Westrenen, W.; Woodhead, J.D.; Jenner, F.E.; Nebel-Jacobsen, Y.J.; Wille, M.; Eggins, S.M.

    2013-01-01

    Although it is widely accepted that oceanic island basalts (OIB) sample geochemically distinct mantle reservoirs including recycled oceanic crust, the composition, age, and locus of these reservoirs remain uncertain. OIB with highly radiogenic Pb isotope signatures are grouped as HIMU (high-μ, with

  17. Oxygen isotope composition of mafic magmas at Vesuvius

    Science.gov (United States)

    Dallai, L.; Cioni, R.; Boschi, C.; D'Oriano, C.

    2009-12-01

    The oxygen isotope composition of olivine and clinopyroxene from four plinian (AD 79 Pompeii, 3960 BP Avellino), subplinian (AD 472 Pollena) and violent strombolian (Middle Age activity) eruptions were measured to constrain the nature and evolution of the primary magmas of the last 4000 years of Mt. Vesuvius activity. A large set of mm-sized crystals was accurately separated from selected juvenile material of the four eruptions. Crystals were analyzed for their major and trace element compositions (EPMA, Laser Ablation ICP-MS), and for 18O/16O ratios. As oxygen isotope composition of uncontaminated mantle rocks on world-wide scale is well constrained (δ18Oolivine = 5.2 ± 0.3; δ18Ocpx = 5.6 ± 0.3 ‰), the measured values can be conveniently used to monitor the effects of assimilation/contamination of crustal rocks in the evolution of the primary magmas. Instead, typically uncontaminated mantle values are hardly recovered in Italian Quaternary magmas, mostly due to the widespread occurrence of crustal contamination of the primary magmas during their ascent to the surface (e.g. Alban Hills, Ernici Mts., and Aeolian Islands). Low δ18O values have been measured in olivine from Pompeii eruption (δ18Oolivine = 5.54 ± 0.03‰), whereas higher O-compositions are recorded in mafic minerals from pumices or scoria of the other three eruptions. Measured olivine and clinopyroxene share quite homogeneous chemical compositions (Olivine Fo 85-90 ; Diopside En 45-48, respectively), and represent phases crystallized in near primary mafic magmas, as also constrained by their trace element compositions. Data on melt inclusions hosted in crystals of these compositions have been largely collected in the past demonstrating that they crystallized from mafic melt, basaltic to tephritic in composition. Published data on volatile content of these melt inclusions reveal the coexistence of dissolved water and carbon dioxide, and a minimum trapping pressure around 200-300 MPa, suggesting

  18. Nitrogen isotope composition of organically and conventionally grown crops.

    Science.gov (United States)

    Bateman, Alison S; Kelly, Simon D; Woolfe, Mark

    2007-04-04

    Authentic samples of commercially produced organic and conventionally grown tomatoes, lettuces, and carrots were collected and analyzed for their delta15N composition in order to assemble datasets to establish if there are any systematic differences in nitrogen isotope composition due to the method of production. The tomato and lettuce datasets suggest that the different types of fertilizer commonly used in organic and conventional systems result in differences in the nitrogen isotope composition of these crops. A mean delta15N value of 8.1 per thousand was found for the organically grown tomatoes compared with a mean value of -0.1 per thousand for those grown conventionally. The organically grown lettuces had a mean value of 7.6 per thousand compared with a mean value of 2.9 per thousand for the conventionally grown lettuces. The mean value for organic carrots was not significantly different from the mean value for those grown conventionally. Overlap between the delta15N values of the organic and conventional datasets (for both tomatoes and lettuces) means that it is necessary to employ a statistical methodology to try and classify a randomly analyzed "off the shelf" sample as organic/conventional, and such an approach is demonstrated. Overall, the study suggests that nitrogen isotope analysis could be used to provide useful "intelligence" to help detect the substitution of certain organic crop types with their conventional counterparts. However, delta15N analysis of a "test sample" will not provide unequivocal evidence as to whether synthetic fertilizers have been used on the crop but could, for example, in a situation when there is suspicion that mislabeling of conventionally grown crops as "organic" is occurring, be used to provide supporting evidence.

  19. Palaeoproterozoic continental arc magmatism, and Neoproterozoic metamorphism in the Aravalli-Delhi orogenic belt, NW India: New constraints from in situ zircon U-Pb-Hf isotope systematics, monazite dating and whole-rock geochemistry

    Science.gov (United States)

    Kaur, Parampreet; Zeh, Armin; Chaudhri, Naveen

    2017-04-01

    Presently, the extent, origin and petrogenesis of late Palaeoproterozoic (ca. 1.85 Ga) magmatism in the north-central Aravalli-Delhi orogenic belt, NW India and subsequent metamorphic overprints are poorly constrained. Results of new in situ zircon U-Pb-Hf isotope analyses in combination with whole-rock elemental and isotopic data provide the first hard evidence that granitoid magmatism occurred in a continental magmatic arc setting between 1.86 and 1.81 Ga. The Hf-Nd model ages of 3.0-2.6 Ga and inherited zircon grains of 3.3-2.5 Ga indicate abundant reworking of Archaean crust. Flat HREE patterns with negative Eu anomalies furthermore reveal that the granitoids were generated from garnet-free and plagioclase-rich sources at shallow depths. Significant isotope variation among granitoid samples (εHft = -3.7 to -9.0; εNdt = -4.8 to -7.9) indicate that the reworked Archaean crust was not completely homogenised during the Palaeoproterozoic. This is best reflected by zircon Hf-isotope variation of ca. 9.5 epsilon units within the oldest granitoid sample. Zircon grains from this sample define three discrete Hf-isotope groups at εHf1.86Ga = -8.9, -4.8 and -1.6. These are interpreted to result from mixing of zircon-saturated magmas derived from three distinct sources within the crust prior to solidification. A monazite U-Pb isochron age of 868 ± 4 Ma from one of the granitoid samples furthermore indicates that the Aravalli fold belt was affected by an important post-magmatic overprint, perhaps related to the widespread metasomatic, granulite metamorphic and/or magmatic events during the same time span.

  20. In situ isotopic analyses of U and Pb in zircon by remotely operated SHRIMP II, and Hf by LA-ICP-MS: an example of dating and genetic evolution of zircon by {sup 176}Hf/{sup 177}Hf from the Ita Quarry in the Atuba Complex, SE, Brazil; Analises in situ de U e Pb em zircao por SRIMP II por controle remoto e de Hf por LA-ICP-MS: um exemplo de datacao e da evolucao genetica de zircao atraves da razao {sup 176}Hf/{sup 177} em amostra da Pedreira Ita no Complexo Atuba, SE, Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Siga Junior, Oswaldo; McReath, Ian; Sproesser, Walter; Basei, Miguel Angelo Stipp [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Geociencias. Centro de Pesquisas Geocronologicas], e-mail: keisato@usp.br, e-mail: osigajr@usp.br, e-mail: ianmcr@usp.br, e-mail: wmspres@usp.br, e-mail: baseimas@usp.br; Silva, Josiane Aline da [Universidade de Sao Paulo (USP), SP (Brazil). Programa de Pos-graduacao em Geoquimica e Geotectonica; Dunyi, Liu [Institute of Geology, Beijing (China); Iizuka, Takafumi; Rino, Shuji; Hirata, Takafumi [Tokyo Institute of Technology, Tokyo (Japan)

    2009-10-15

    Remotely-operated SHRIMP dating of zircon is an interesting alternative for dating of zircon crystals. Although it does not represent any technical progress of the geochronological method using the U-Pb system in zircon it is a very useful and cheap facility. The procedure was first used for mass spectrometric analyses involving two international laboratories in Sao Paulo, Brazil and Beijing, China. It was applied to samples of three gneiss-migmatitic rocks from the Ita quarry in the Atuba Complex (located between the Luis Alves and the Apiai Domain) to test previous controversial hypotheses about its evolution. The presence of important archaean and paleo proterozoic components in the complex is confirmed by analyses of zircon found in probably neo proterozoic leucosomes. Diorite intrusion also occurred during the neo proterozoic, associated with the 0.6Ga continental collisions involved in the assembly of Gondwana. The determination of Hf isotope ratios by LA-ICP/MS represents a new option for checking the relative importance of mantle ({epsilon}{sub Hf} > 0) and crustal contributions (({epsilon}{sub Hf} < 0) during the growth of the zircon crystals. While the archaean component in the complex was derived from the mantle ({epsilon}{sub Hf} + 1.5 to + 8.7) the paleo proterozoic component had a crustal contribution ({epsilon}{sub Hf} - 9.1 to -10.1). (author)

  1. Recent insights into intramolecular 13C isotope composition of biomolecules

    Science.gov (United States)

    Gilbert, A.; Yamada, K.; Julien, M.; Yoshida, N.; Remaud, G.; Robins, R.

    2016-12-01

    In 1961 Abelson & Hoering shown that the intramolecular 13C distribution in amino acids was not homogeneous, namely the carboxylic acid positions were 13C-enriched compared with the mean of the remaining C-atoms in the molecule [1]. Nearly 20 years later, Monson & Hayes were able to demonstrate that even and odd positions in acetogenic fatty acids also showed non-statistical 13C isotope distributions, and that the pattern varied depending on the organism [2]. It took a further decade for the intramolecular 13C distribution in the key metabolite, glucose, to be defined [3]. Although informative, much of this work was incomplete, a number of positions having to be deduced by difference. This limitation arose mainly due to the lack of techniques enabling the separation and quantification of 13C isotopomers of the target molecule. In the past decade, quantitative 13C NMR has been developed for the determination of the intramolecular isotope composition of a given molecule with a precision of 1‰ or better [4]. This breakthrough has made possible a comprehensive view of the determinants governing intramolecular isotope composition of biological molecules. In particular, it can be shown that intramolecular pattern in sugars is influenced by the C-assimilation pathway and by post-photosynthetic fractionation associated with carbohydrate metabolism [5]. In addition, analysis by NMR of the alkyl chain of acetogenic lipids (fatty acids, n-alkanes) shows an alternation between odd and even C-atom positions, as observed by Monson& Hayes [2], throughout the molecule [6]. Overall, it is becoming apparent that this pattern is influenced by two principal metabolic factors: (i) the 13C pattern extant in the starting compounds; (ii) isotope fractionation associated with the enzymes involved in the biosynthetic pathway. On the whole, the determination of intramolecular isotope patterns in biomolecules allows better insights into the conditions and pathways by which they are formed

  2. Oxygen Isotopic composition of nitrate trapped in Vostok ice core

    Science.gov (United States)

    Savarino, J.; Michalski, G.; Thiemens, M. H.

    2001-05-01

    It is well known that NOx plays a key role in the mediation of the oxidative capacity of the atmosphere. Our ability to model and understand pre-industrial atmospheric chemistry is mainly limited by our lack of knowledge of past NOx emissions. For years, the hope was that HNO3 trapped in ice cores would probe NOx emissions the during glacial/interglacial climate oscillations. However, it was soon realized that post depositional effects in the snow pack obscure the original atmospheric signal of this end product of NOx oxidation. So far, none of the concentration profiles of nitrate obtained from ice cores has been used to constrain NOx emissions. Recent observations of the oxygen isotopic composition of nitrate have opened a possible new way to link the nitrate ice core profile and past atmospheric chemistry. For \\17O, thermodynamic, kinetic, and equilibrium isotope effects dictate that δ 17O = .52 x δ 18O . Certain photochemical processes violate this rule due to quantum effects and are quantified by Δ 17O = δ 17O -.52 x δ 18O which are termed mass independent fractionations (MIF). Atmospheric nitrates have now been measured and have been found to have a large MIF; Δ 17O ~ 29 ‰ and a small range +/- 2‰ . The large variations in δ 18O of atmospheric nitrate are due to mass dependent fractions from transport and source ratios, and do not effect the Δ 17O. In addition, post depositional fractionations associated with remobilization (condensation/evaporation, phase changes .) in the snow pack are processes known for years to be mass dependent processes. The Δ 17O can then be used as a conservative trace of atmospheric nitrate deposition and chemistry. Experiments performed in our lab show that the oxygen isotopic anomaly of nitrate derives from the ozone-NOx catalytic cycle. During this process, the ozone transfer to the NOx inscribes its unique isotopic signature. Antarctic soils have a Δ 17O ~ 30 ‰ , acknowledging they are purely atmospheric in

  3. The Malvinas (Falkland) Islands revisited: The tectonic evolution of southern Gondwana based on U-Pb and Lu-Hf detrital zircon isotopes in the Paleozoic cover

    Science.gov (United States)

    Ramos, Victor A.; Cingolani, Carlos; Junior, Farid Chemale; Naipauer, Maximiliano; Rapalini, Augusto

    2017-07-01

    The first U-Pb and Hf-Lu isotopic data of detrital zircons from Devonian strata of the Malvinas (Falkland) Islands allow re-evaluation of different hypotheses regarding their location before the breakup of Gondwana. Of the various published hypotheses there are only two that have gained support. Adie's hypothesis involves a rotation of 180 degrees of the islands and a large displacement of Patagonia, independently of South America, whereas Borrello's hypothesis assumes a relative fixed position of the islands with respect to South America over time. The first hypothesis has traditionally been evaluated by highlighting the similarities of the geology of the Malvinas Islands with similar rocks cropping out in South Africa. In this paper we test those hypotheses that led to correlate the islands with the Cape System, based on geological, paleomagnetic and geochronological data. However, new isotopic data compared with contemporaneous Patagonian rocks, together with the present knowledge of offshore features of the Malvinas Plateau, suggest that its correlation with South Africa is not as compelling. Although there is no conclusive evidence, the simplest hypothesis based on the present available datasets, favors a closer relationship with Patagonia. No doubt that more research is needed in order to elucidate the paleogeography of the Malvinas Islands before the opening of the South Atlantic Ocean. xml:lang="es"

  4. Pressure-dependent Isotopic Composition of Iron Alloys

    Science.gov (United States)

    Reagan, M. M.; Shahar, A.; Schauble, E. A.; Caracas, R.; Gleason, A. E.; Elardo, S. M.; Xiao, Y.; Shu, J.; Mao, W. L.

    2016-12-01

    Understanding core formation, the main differentiation event in Earth's history, has important implications for our planet's geochemical and geophysical evolution, including the volatile cycle. Our current knowledge of core including formation processes as well as its composition is poorly constrained. For example, the identity of the light element present is still the subject of much debate and thus limits our understanding of the volatile cycle within the deep Earth. As carbon, hydrogen, and oxygen are all cosmochemically abundant and have been proposed as possible candidates for the main light element in planetary cores, iron isotope fractionation could be a powerful tracer of the light-element composition in the core. It has the potential to shed light on whether these volatiles are sequestered in the core or remained in the magma ocean. This talk will focus on how pressure affects fractionation factors for these iron compounds relative to the silicate mantle. We collected high pressure synchrotron nuclear resonant inelastic x-ray scattering data at Sector 16-ID-D of the Advanced Photon Source on 57Fe enriched Fe, FeO, FeHx and Fe3C from which we calculated iron isotope fractionation factors for these compounds. Our results suggest that core formation could leave an isotopic imprint on the silicate portion of Earth, which may be seen in natural samples. Moreover, the addition of different light elements or varying core formation conditions would modulate this imprint. Additionally, our results indicate that hydrogen or carbon is not likely the major light element in the core.

  5. Continuous measurements of isotopic composition of water vapour on the East Antarctic Plateau

    Directory of Open Access Journals (Sweden)

    M. Casado

    2016-07-01

    Full Text Available Water stable isotopes in central Antarctic ice cores are critical to quantify past temperature changes. Accurate temperature reconstructions require one to understand the processes controlling surface snow isotopic composition. Isotopic fractionation processes occurring in the atmosphere and controlling snowfall isotopic composition are well understood theoretically and implemented in atmospheric models. However, post-deposition processes are poorly documented and understood. To quantitatively interpret the isotopic composition of water archived in ice cores, it is thus essential to study the continuum between surface water vapour, precipitation, surface snow and buried snow. Here, we target the isotopic composition of water vapour at Concordia Station, where the oldest EPICA Dome C ice cores have been retrieved. While snowfall and surface snow sampling is routinely performed, accurate measurements of surface water vapour are challenging in such cold and dry conditions. New developments in infrared spectroscopy enable now the measurement of isotopic composition in water vapour traces. Two infrared spectrometers have been deployed at Concordia, allowing continuous, in situ measurements for 1 month in December 2014–January 2015. Comparison of the results from infrared spectroscopy with laboratory measurements of discrete samples trapped using cryogenic sampling validates the relevance of the method to measure isotopic composition in dry conditions. We observe very large diurnal cycles in isotopic composition well correlated with temperature diurnal cycles. Identification of different behaviours of isotopic composition in the water vapour associated with turbulent or stratified regime indicates a strong impact of meteorological processes in local vapour/snow interaction. Even if the vapour isotopic composition seems to be, at least part of the time, at equilibrium with the local snow, the slope of δD against δ18O prevents us from identifying

  6. Nd-Sr-Hf-Pb Isotopic Evidence for a Mantle Plume Origin for the Mafic Rocks from the Palaeotethyan Karakaya Complex, Turkey

    Science.gov (United States)

    Sayit, K.; Hanan, B. B.; Göncüoglu, M.; Furman, T.

    2010-12-01

    The Karakaya Subduction/Accretion Complex consists of various pre-Liassic melange units that record the closing of the Palaeotethys ocean basin. One of these melange units, the Nilufer Unit, is composed of variably metamorphosed (dominantly prehnite-pumpellyite to greenschist facies), mafic rock assemblages that are primarily associated with neritic/pelagic limestones, mudstones and chert. The metabasic rocks are thought to represent oceanic islands/seamounts formed on the Palaeotethyan oceanic crust, fed by a mantle plume. The mafic rocks within the Nilufer Unit have mainly alkaline OIB-type geochemical signature, with marked enrichment in the most incompatible elements, relative to N-MORB. A subset of the mafic rocks are characterized by tholeiitic E-MORB-type signatures. Trace element modelling of elements least effected by metamorphism shows that the mafic rocks have been generated across a source region where garnet- and spinel-facies melts were variably mixed. The Sr isotopic values of the Nilufer mafic rocks are highly variable, indicative of post-magmatic redistribution of Sr and/or Rb. In contrast, the Nd-Hf-Pb systematics provide consistent isotope variations and source affinities in multi-isotope plots. The variations in these rocks cannot be explained solely by a single end-member or binary mixing. Instead, a multi-component mixing between three enriched sources, C-, EM II- and HIMU is required. The modelling suggests an ordered sequence of mixing initially between EM II and HIMU, followed by mixing between the C-like mantle source and the hybrid mantle. In terms of a physical model, the plume may have derived from a heterogeneous deep mantle source, or alternatively, result from the interaction of C-like plume material, upwelling from the margins of the African superplume, with continental lithosphere mantle adjacent to Palaeotethys ocean basin.

  7. Spectroscopic metrology for isotope composition measurements and transfer standards

    Science.gov (United States)

    Anyangwe Nwaboh, Javis; Balslev-Harder, David; Kääriäinen, Teemu; Richmond, Craig; Manninen, Albert; Mohn, Joachim; Kiseleva, Maria; Petersen, Jan C.; Werhahn, Olav; Ebert, Volker

    2017-04-01

    The World Meteorological Organization (WMO) has identified greenhouse gases such as CO2, CH4 and N2O as critical for global climate monitoring. Other molecules such as CO that has an indirect effect of enhancing global warming are also monitored. WMO has stated compatibility goals for atmospheric concentration and isotope ratio measurements of these gases, e.g. 0.1 ppm for CO2 concentration measurements in the northern hemisphere and 0.01 ‰ for δ13C-CO2. For measurements of the concentration of greenhouse gases, gas analysers are typically calibrated with static gas standards e.g. traceable to the WMO scale or to the International System of Units (SI) through a national metrology institute. However, concentrations of target components, e.g. CO, in static gas standards have been observed to drift, and typically the gas matrix as well as the isotopic composition of the target component does not always reflect field gas composition, leading to deviations of the analyser response, even after calibration. The deviations are dependent on the measurement technique. To address this issue, part of the HIGHGAS (Metrology for high-impact greenhouse gases) project [1] focused on the development of optical transfer standards (OTSs) for greenhouse gases, e.g. CO2 and CO, potentially complementing gas standards. Isotope ratio mass spectrometry (IRMS) [2] is currently used to provide state-of-the-art high precision (in the 0.01 ‰ range) measurements for the isotopic composition of greenhouse gases. However, there is a need for field-deployable techniques such as optical isotope ratio spectroscopy (OIRS) that can be combined with metrological measurement methods. Within the HIGHGAS project, OIRS methods and procedures based on e.g. cavity enhanced spectroscopy (CES) and tunable diode laser absorption spectroscopy (TDLAS), matched to metrological principles have been established for the measurement of 13C/12C and 18O/16O ratios in CO2, 15N/14N ratios in N2O, and 13C/12C and 2H

  8. Zircon Lu-Hf isotope systematics and U-Pb geochronology, whole-rock Sr-Nd isotopes and geochemistry of the early Jurassic Gokcedere pluton, Sakarya Zone-NE Turkey: a magmatic response to roll-back of the Paleo-Tethyan oceanic lithosphere

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2017-05-01

    The early Mesozoic was a critical era for the geodynamic evolution of the Sakarya Zone as transition from accretion to collision events in the region. However, its complex evolutionary history is still debated. To address this issue, we present new in situ zircon U-Pb ages and Lu-Hf isotope data, whole-rock Sr-Nd isotopes, and mineral chemistry and geochemistry data of plutonic rocks to better understand the magmatic processes. The Gokcedere pluton is mainly composed of gabbro and gabbroic diorite. LA-ICP-MS zircon U-Pb dating reveals that the pluton was emplaced in the early Jurassic (177 Ma). These gabbros and gabbroic diorites are characterized by relatively low SiO2 content of 47.09 to 57.15 wt% and high Mg# values varying from 46 to 75. The samples belong to the calc-alkaline series and exhibit a metaluminous I-type character. Moreover, they are slightly enriched in large ion lithophile elements (Rb, Ba, Th and K) and light rare earth elements and depleted in high field strength elements (Nb and Ti). Gabbroic rocks of the pluton have a depleted Sr-Nd isotopic composition, including low initial 87Sr/86Sr ranging from 0.705124 to 0.705599, relatively high ɛ Nd ( t) values varying from 0.1 to 3.5 and single-stage Nd model ages ( T DM1 = 0.65-0.95 Ga). In situ zircon analyses show that the rocks have variable and positive ɛ Hf ( t) values (4.6 to 13.5) and single-stage Hf model ages ( T DM1 = 0.30 to 0.65 Ga). Both the geochemical signature and Sr-Nd-Hf isotopic composition of the gabbroic rocks reveal that the magma of the studied rocks was formed by the partial melting of a depleted mantle wedge metasomatized by slab-derived fluids. The influence of slab fluids is mirrored by their trace-element characteristics. Trace-element modeling suggests that the primary magma was generated by a low and variable degree of partial melting ( 5-15%) of a depleted and young lithospheric mantle wedge consisting of phlogopite- and spinel-bearing lherzolite. Heat to melt the

  9. Isotope composition of Cd, Ca and Mg in the Brownfield chondrite

    Energy Technology Data Exchange (ETDEWEB)

    Rosman, K.J.R.; Barnes, I.L.; Moore, L.J.; Gramlich, J.W. (National Bureau of Standards, Washington, DC (USA))

    1980-01-01

    The isotopic composition of cadmium, calcium and magnesium in the Brownfield chondrite have been measured. The measurements on cadmium show that this element is isotopically fractionated with the heavier isotopes relatively enriched to the extent of 0.27% per mass unit. This confirms earlier reports by ROSMAN and DE LAETER (1976, 1978). Calcium and magnesium show no evidence of isotope fractionation, indicating that the process responsible for fractionating cadmium dose not seem to have affected these more refractory elements.

  10. Hafnium isotope results from mid-ocean ridges and Kerguelen.

    Science.gov (United States)

    Patchett, P.J.

    1983-01-01

    176Hf/177Hf ratios are presented for oceanic volcanic rocks representing both extremes of the range of mantle Hf-Nd-Sr isotopic variation. Hf from critical mid-ocean ridge basalts shows that 176Hf/177Hf does indeed have a greater variability than 143Nd/144Nd and 87Sr/86Sr in the depleted mantle. This extra variation is essentially of a random nature, and can perhaps be understood in terms of known Rb/Sr-Sm/Nd-Lu/Hf fractionation relationships. At the other extreme of mantle isotopic compositions, 176Hf/177Hf ratios for igneous rocks from the Indian Ocean island of Kerguelen show a closely similar variation to published 143Nd/144Nd ratios for the same samples. Comparison of Hf-Nd-Sr isotopic relatonships for Tristan da Cunha, Kerguelen and Samoa reveals divergences in the mantle array for ocean-island magma sources, and perhaps suggests that these irregularities are largely the result of an extra component of 87Sr/86Sr variation.-G.R.

  11. An autochthonous Avalonian basement source for the latest Ordovician Brenton Pluton in the Meguma terrane of Nova Scotia: U-Pb-Hf isotopic constraints and paleogeographic implications

    Science.gov (United States)

    Duncan Keppie, J.; Gregory Shellnutt, J.; Dostal, Jaroslav; Fraser Keppie, D.

    2017-06-01

    The Ediacaran-Ordovician Meguma Supergroup was thrust over Avalonia basement prior to the intrusion of post-Acadian, ca. 370 Ma, S-type granitic batholiths. This has led to two main hypotheses regarding the original location of the Meguma terrane, a continental rise prism bordering either NW Africa or Avalonia. On the other hand, the pre-Acadian, ca. 440 Ma Brenton pluton has yielded the following U/Pb LA-ICP-MS zircon data: (1) 448 ± 3 Ma population peak inferred to be the intrusive age and (2) ca. 550 and 700 Ma inherited ages common to both Avalonia and NW Africa. In contrast, Hf isotopic analyses of zircon yielded model ages ranging from 814 to 1127 Ma with most between 940 and 1040 Ma: such ages are typical of Avalonia and not NW Africa. The ages of the inherited zircons found within the Brenton pluton suggest that it was probably derived by partial melting of sub-Meguma, mid-crustal Avalonian rocks, upon which the Meguma Supergroup was deposited. Although Avalonia is commonly included in the peri-Gondwanan terranes off NW Africa or Amazonia, paleomagnetic data, faunal provinciality, and Hf data suggest that, during the Ediacaran-Early Cambrian, it was an island chain lying near the tropics (ca. 20-30 °S) and was possibly a continuation of the Bolshezemel volcanic arc accreted to northern Baltica during the Ediacaran Timanide orogenesis. This is consistent with the similar derital zircon population in the Ediacaran-Cambrian Meguma Supergroup and the Dividal Group in northeastern Baltica.

  12. Zircon U-Pb age, Lu-Hf isotope, mineral chemistry and geochemistry of Sundamalai peralkaline pluton from the Salem Block, southern India: Implications for Cryogenian adakite-like magmatism in an aborted-rift

    Science.gov (United States)

    Renjith, M. L.; Santosh, M.; Li, Tang; Satyanarayanan, M.; Korakoppa, M. M.; Tsunogae, T.; Subba Rao, D. V.; Kesav Krishna, A.; Nirmal Charan, S.

    2016-01-01

    The Sundamalai peralkaline pluton is one among the Cryogenian alkaline plutons occurring in the Dharmapuri Rift Zone (DRZ) of the Salem Block in the Southern Granulite Terrane (SGT) of India. Here we present zircon U-Pb age and Lu-Hf isotopic composition, mineral chemistry and geochemistry of the pluton to explore the petrogenesis and geodynamic implications. Systematic modal variation of orthoclase, Na-plagioclase, Ca-amphibole (ferro-edenite and hastingsite) and quartz developed quartz-monzonite and granite litho units in the Sundamalai pluton. Thermometry based on amphibole-plagioclase pair suggests that the pluton was emplaced and solidified at around 4.6 kbar pressure with crystallization of the major phases between 748 and 661 °C. Estimated saturation temperature of zircon (712-698 °C) is also well within this range. However, apatite saturation occurred at higher temperatures between 835 and 870 °C, in contrast with monazite saturation (718-613 °C) that continued up to the late stage of crystallization. Estimated oxygen fugacity values (log fO2: -14 to -17) indicate high oxidation state for the magma that stabilized titanite and magnetite. The magmatic zircons from Sundamalai pluton yielded a weighted mean 206Pb/238U age of 832.6 ± 3.2 Ma. Geochemically, the Sundamalai rocks are high-K to shoshonitic, persodic (Na2O/K2O ratio > 1), silica-saturated (SiO2:65-72 wt.%), and peralkaline in composition (aluminum saturation index, ASI peralkaline as result of fractional crystallization (plagioclase effect) controlled differentiation between quartz-monzonite and granite. Both rock types have high content of Na2O (5.1-6.3 wt.%), Ba (350-2589 ppm) and Sr (264-1036 ppm); low content of Y (8.7-17 ppm) and Yb (0.96-1.69 ppm); elevated ratios of La/Yb (11-46) and Sr/Y (46-69) and are depleted in Ti, with a positive Sr anomaly suggesting an adakite-like composition and garnet controlled melting of a plagioclase-poor source. The low content of MgO (zircon εHf

  13. Zircon U-Pb ages, Hf isotope data, and tectonic implications of Early-Middle Triassic granitoids in the Ailaoshan high-grade metamorphic belt of Southeast Tibet

    Science.gov (United States)

    Wu, Wenbin; Liu, Junlai; Chen, Xiaoyu; Zhang, Lisheng

    2017-04-01

    The Ailaoshan tectonic belt, where the effects of the Paleo-Tethyan ocean evolution and Indian-Eurasian plate collision are superimposed, is one of the most significant geological discontinuities in western Yunnan province of southeast Tibet. An Ailaoshan micro-block within the belt is bounded by the Ailaoshan suture zone to the west and the Red River Fault to the east, and consists of low- and high-grade metamorphic belts. Late Permian-Middle Triassic granitoids that are widely distributed to the west of the Ailaoshan suture zone and within the Ailaoshan micro-block may yield significant information on the Tethyan tectonic evolution of the Ailaoshan tectonic belt. This study reports new LA-ICP-MS zircon U-Pb geochronology and Hf isotope data of four granitoids from the Ailaoshan high-grade metamorphic belt. Zircon grains from the Yinjie granitoid do not have inherited cores and yield a weighted mean U-Pb age of 247.1 ± 2.0 Ma. The zircon ɛ Hf( t) values range from 7.8 to 12.1, and Hf model ages from 775 to 546 Ma, indicating that the granitoid was derived from juvenile crust. The rims of zircons from the Majie and Yuanjiang granitoids yield weighted mean U-Pb ages of 239.5 ± 1.8 and 237.9 ± 2.6 Ma, respectively, whereas the cores yield ages of 1608-352 Ma. The ɛ Hf( t) values of zircon rims range from -20.4 to -5.3, yielding Hf model ages from 2557 to 1606 Ma and suggesting that the source magma of the Majie and Yuanjiang granitoids was derived from ancient crust. An additional granitoid located near the Majie Village yields a zircon U-Pb age of 241.2 ± 1.0 Ma. Based on our geochronological and geochemical data, combined with geological observations, we propose that the Ailaoshan micro-block was derived from the western margin of the Yangtze block, and is comparable to the Zhongzan and Nam Co micro-blocks. The presence of late Permian mafic rocks with rift-related geochemical characteristics within the Ailaoshan micro-block, together with granitoids derived

  14. Metasedimentary melting in the formation of charnockite: Petrological and zircon U-Pb-Hf-O isotope evidence from the Darongshan S-type granitic complex in southern China

    Science.gov (United States)

    Jiao, Shu-Juan; Li, Xian-Hua; Huang, Hui-Qing; Deng, Xi-Guang

    2015-12-01

    Charnockites are Opx-bearing igneous rocks commonly found in high-grade metamorphic terranes. Despite being volumetrically minor, they show a wide range in both bulk geochemistry and intensive parameters. They form a characteristic component of the AMCG (anorthosite-mangerite-charnockite-granite) suite, but their association with typical S-type granites is less well-known. The Darongshan S-type granitic complex (DSGC) in Guangxi Province, southern China, contains granites varying in mafic silicate mineral assemblages from Bt + Crd (Darongshan suite) to Opx + Grt + Bt + Crd (Jiuzhou suite) and Opx + Crd ± Bt (Taima suite), corresponding to a geochemical transition from magnesian calc-alkalic to ferroan calc-alkalic. However, its genesis, even the accurate age of intrusion, remains highly contentious despite intensive research. In order to understand the genesis of charnockite and its genetic relationship with S-type granite; here, we first determined zircon U-Pb ages of each suite using a SIMS on the basis of a detailed petrological study. Zircon U-Pb ages show that all suites of the complex were emplaced contemporaneously at ca. 249 Ma. Monazite apparent U-Pb ages are indistinguishable from zircon U-Pb ages within analytical error. Further in situ zircon Hf-O isotope analyses reveal that the granitic complex was dominantly derived from reduced melting metasedimentary rocks (δ18Ozircon = ca. 11‰; εHf(t)zircon = ca. - 10; Δlog FMQ ≤ 0; Mn in apatite oxybarometer) with rare material input from the mantle. The variation in δ18O (7.8‰-12.9‰) is more likely a result of hybridization, whereas that in εHf(t) (- 31.9 to - 1.8) is a result of both hybridization and disequilibrium melting. The variation in mineralogy and geochemistry may be interpreted as a result of entrainment of peritectic garnets from biotite-dehydration melting. Nevertheless, heat input from mantle through basaltic intrusion/underplating is considered to play a major role in high

  15. Spatial patterns of throughfall isotopic composition at the event and seasonal timescales

    Science.gov (United States)

    Scott T. Allen; Richard F. Keim; Jeffrey J. McDonnell

    2015-01-01

    Spatial variability of throughfall isotopic composition in forests is indicative of complex processes occurring in the canopy and remains insufficiently understood to properly characterize precipitation inputs to the catchment water balance. Here we investigate variability of throughfall isotopic composition with the objectives: (1) to quantify the spatial variability...

  16. Terminal suturing of Gondwana along the southern margin of South China Craton: Evidence from detrital zircon U-Pb ages and Hf isotopes in Cambrian and Ordovician strata, Hainan Island

    Science.gov (United States)

    Xu, Yajun; Cawood, Peter A.; Du, Yuansheng; Zhong, Zengqiu; Hughes, Nigel C.

    2014-12-01

    Hainan Island, located near the southern end of mainland South China, consists of the Qiongzhong Block to the north and the Sanya Block to the south. In the Cambrian, these blocks were separated by an intervening ocean. U-Pb ages and Hf isotope compositions of detrital zircons from the Cambrian succession in the Sanya Block suggest that the unit contains detritus derived from late Paleoproterozoic and Mesoproterozoic units along the western margin of the West Australia Craton (e.g., Northampton Complex) or the Albany-Fraser-Wilkes orogen, which separates the West Australia and Mawson cratons. Thus, in the Cambrian the Sanya Block was not part of the South China Craton but rather part of the West Australian Craton and its environs. In contrast, overlying Late Ordovician strata display evidence for input of detritus from the Qiongzhong Block, which constituted part of the southeastern convergent plate margin of the South China Craton in the early Paleozoic. The evolving provenance record of the Cambrian and Ordovician strata suggests that the juxtaposition of South China and West Australian cratons occurred during the early to mid-Ordovician. The event was linked with the northern continuation of Kuungan Orogeny, with South China providing a record of final assembly of Gondwana.

  17. Changes in stable isotope composition in Lake Michigan trout ...

    Science.gov (United States)

    Researchers have frequently sought to use environmental archives of sediment, peat and glacial ice to try and assess historical trends in atmospheric mercury (Hg) deposition to aquatic ecosystems. While this information is valuable in the context of identifying temporal source trends, these types of assessments cannot account for likely changes in bioavailability of Hg sources that are tied to the formation of methylmercury (MeHg) and accumulation in fish tissues. For this study we propose the use of long-term fish archives and Hg stable isotope determination as an improved means to relate temporal changes in fish Hg levels to varying Hg sources in the Great Lakes. For this study we acquired 180 archived fish composites from Lake Michigan over a 40-year time period (1975 to 2014) from the Great Lakes Fish Monitoring and Surveillance Program, which were analyzed for their total Hg content and Hg isotope abundances. The results reveal that Hg sources to Lake Michigan trout (Salvelinus namaycush) have encountered considerable changes as well as a large shift in the food web trophic position as a result of the introduction of several invasive species, especially the recent invasion of dreissenid mussels. Total Hg concentrations span a large range (1,600 to 150 ng g-1) and exhibit large variations from 1975 to 1985. Ä199Hg signatures similarly exhibit large variation (3.2 to 6.9‰) until 1985, followed by less variation through the end of the data record in 2014.

  18. Volatile Concentrations and H-Isotope Composition of Unequilibrated Eucrites

    Science.gov (United States)

    Sarafian, Adam R.; Nielsen, Sune G.; Marschall, Horst R.; Gaetani, Glenn A.; Hauri, Erik H.; Righter, Kevin; Berger, Eve L.

    2017-01-01

    Eucrites are among the oldest and best studied asteroidal basalts (1). They represent magmatism that occurred on their parent asteroid, likely 4-Vesta, starting at 4563 Ma and continuing for approx. 30 Myr. Two hypotheses are debated for the genesis of eucrites, a magma ocean model (2), and a mantle partial melting model. In general, volatiles (H, C, F, Cl) have been ignored for eucrites and 4-Vesta, but solubility of wt% levels of H2O are possible at Vestan interior PT conditions. Targeted measurements on samples could aid our understanding considerably. Recent studies have found evidence of volatile elements in eucrites, but quantifying the abundance of volatiles remains problematic (6). Volatile elements have a disproportionately large effect on melt properties and phase stability, relative to their low abundance. The source of volatile elements can be elucidated by examining the hydrogen isotope ratio (D/H), as different H reservoirs have drastically different H isotope compositions. Recent studies of apatite in eucrites have shown that the D/H of 4-Vesta matches that of Earth and carbonaceous chondrites, however, the D/H of apatites may not represent the D/H of a primitive 4-Vesta melt due to the possibility of degassing prior to the crystallization of apatite. Therefore, the D/H of early crystallizing phases must be measured to determine if the D/H of 4-Vesta is equal to that of the Earth and carbonaceous chondrites.

  19. Baseline shifts in coral skeletal oxygen isotopic composition: a signature of symbiont shuffling?

    Science.gov (United States)

    Carilli, J. E.; Charles, C. D.; Garren, M.; McField, M.; Norris, R. D.

    2013-06-01

    Decades-long records of the stable isotopic composition of coral skeletal cores were analyzed from four sites on the Mesoamerican Reef. Two of the sites exhibited baseline shifts in oxygen isotopic composition after known coral bleaching events. Changes in pH at the calcification site caused by a change in the associated symbiont community are invoked to explain the observed shift in the isotopic composition. To test the hypothesis that changes in symbiont clade could affect skeletal chemistry, additional coral samples were collected from Belize for paired Symbiodinium identification and skeletal stable isotopic analysis. We found some evidence that skeletal stable isotopic composition may be affected by symbiont clade and suggest this is an important topic for future investigation. If different Symbiodinium clades leave consistent signatures in skeletal geochemical composition, the signature will provide a method to quantify past symbiont shuffling events, important for understanding how corals are likely to respond to climate change.

  20. Nitrate isotopic composition and ancillary variables (land use, redox, excess N2, age, water isotopics) in California groundwater

    Science.gov (United States)

    Veale, Nathan; Moran, Jean; Visser, Ate; Singleton, Michael; Esser, Bradley

    2017-04-01

    Nitrate is a critical water quality issue in California, the United States and the world. Lawrence Livermore National Laboratory (LLNL) has compiled a large, unique database of California groundwater nitrate isotopic compositions (δ15N-NO3 and δ18O-NO3), acquired largely through more than a decade of coordination with the State of California Groundwater Ambient Monitoring and Assessment (GAMA) program. The water samples are predominantly from shallow aquifers accessed by domestic and monitoring wells. The database of >1,300 nitrate isotopic compositions includes a number of important ancillary parameters: DO, ORP and DOC (measured for 18% of samples); excess air and dissolved N2 (24%); water isotopic composition (δ18O-H2O and δD-H2O) (43%); and tritium/3He groundwater age (27%). Methods used at LLNL include sample preparation by the denitrifier method (for δ15N-NO3 and δ18O-NO3) and Isotope Ratio Mass Spectrometry with (δ15N-NO3 and δ18O-NO3 and δ18O-H2O and δD-H2O), Noble Gas Mass Spectrometry (NGMS; for excess air and groundwater age), and Membrane Inlet Mass Spectrometry (MIMS; for major dissolved gases and excess N2). Redox indicators (DO, ORP and DOC) in conjunction with excess N2, groundwater age, and nitrate isotopic composition are used to assess the presence or absence, and potentially the rate of, saturated-zone denitrification. Comparison of δ18O-NO3 to δ18O-H2O isotopic composition is used to distinguish synthetic nitrate from nitrification of reduced forms of nitrogen as a source of groundwater nitrate. Groundwater age is used to discern timing and temporal trends in groundwater nitrate isotopic composition. The relationship of nitrate isotopic composition to ancillary parameters (redox, excess N2, water isotopic composition and groundwater age) is explored, along with its relationship to well location, screened interval, and land use, with a focus on the extent of saturated-zone denitrification and the significance of synthetic nitrate as

  1. Stable isotope composition of atmospheric carbon monoxide. A modelling study

    Energy Technology Data Exchange (ETDEWEB)

    Gromov, Sergey S.

    2014-11-01

    This study aims at an improved understanding of the stable carbon and oxygen isotope composition of the carbon monoxide (CO) in the global atmosphere by means of numerical simulations. At first, a new kinetic chemistry tagging technique for the most complete parameterisation of isotope effects has been introduced into the Modular Earth Submodel System (MESSy) framework. Incorporated into the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model, an explicit treatment of the isotope effects on the global scale is now possible. The expanded model system has been applied to simulate the chemical system containing up to five isotopologues of all carbon- and oxygen-bearing species, which ultimately determine the δ{sup 13}C, δ{sup 18}O and Δ{sup 17}O isotopic signatures of atmospheric CO. As model input, a new stable isotope-inclusive emission inventory for the relevant trace gases has been compiled. The uncertainties of the emission estimates and of the resulting simulated mixing and isotope ratios have been analysed. The simulated CO mixing and stable isotope ratios have been compared to in-situ measurements from ground-based observatories and from the civil-aircraft-mounted CARIBIC-1 measurement platform. The systematically underestimated {sup 13}CO/{sup 12}CO ratios of earlier, simplified modelling studies can now be partly explained. The EMAC simulations do not support the inferences of those studies, which suggest for CO a reduced input of the highly depleted in {sup 13}C methane oxidation source. In particular, a high average yield of 0.94 CO per reacted methane (CH{sub 4}) molecule is simulated in the troposphere, to a large extent due to the competition between the deposition and convective transport processes affecting the CH{sub 4} to CO reaction chain intermediates. None of the other factors, assumed or disregarded in previous studies, however hypothesised to have the potential in enriching tropospheric CO in {sup 13}C, were found significant

  2. Iron and nickel isotope compositions of presolar silicon carbide grains from supernovae

    Science.gov (United States)

    Kodolányi, János; Stephan, Thomas; Trappitsch, Reto; Hoppe, Peter; Pignatari, Marco; Davis, Andrew M.; Pellin, Michael J.

    2018-01-01

    We report the carbon, silicon, iron, and nickel isotope compositions of twenty-five presolar SiC grains of mostly supernova (SN) origin. The iron and nickel isotope compositions were measured with the new Chicago Instrument for Laser Ionization, CHILI, which allows the analysis of all iron and nickel isotopes without the isobaric interferences that plagued previous measurements with the NanoSIMS. Despite terrestrial iron and nickel contamination, significant isotopic anomalies in 54Fe/56Fe, 57Fe/56Fe, 60Ni/58Ni, 61Ni/58Ni, 62Ni/58Ni, and 64Ni/58Ni were detected in nine SN grains (of type X). Combined multi-isotope data of three grains with the largest nickel isotope anomalies (>100‰ or isotope ratio, when expressed as deviation from the solar value) are compared with the predictions of two SN models, one with and one without hydrogen ingestion in the He shell prior to SN explosion. One grain's carbon-silicon-iron-nickel isotope composition is consistent with the prediction of the model without hydrogen ingestion, whereas the other two grains' isotope anomalies could not be reproduced using either SN models. The discrepancies between the measured isotope compositions and model predictions may indicate element fractionation in the SN ejecta prior to or during grain condensation, and reiterate the need for three-dimensional SN models.

  3. The isotopic composition of CO in vehicle exhaust

    Science.gov (United States)

    Naus, S.; Röckmann, T.; Popa, M. E.

    2018-03-01

    We investigated the isotopic composition of CO in the exhaust of individual vehicles. Additionally, the CO2 isotopes, and the CO:CO2, CH4:CO2 and H2:CO gas ratios were measured. This was done under idling and revving conditions, and for three vehicles in a full driving cycle on a testbench. The spread in the results, even for a single vehicle, was large: for δ13 C in CO ∼ -60 to 0‰, for δ18 O in CO ∼ +10 to +35‰, and for all gas ratios several orders of magnitude. The results show an increase in the spread of isotopic values for CO compared to previous studies, suggesting that increasing complexity of emission control in vehicles might be reflected in the isotopic composition. When including all samples, we find a weighted mean for the δ13 C and δ18 O in CO of -28.7 ± 0.5‰ and +24.8 ± 0.3‰ respectively. This result is dominated by cold petrol vehicles. Diesel vehicles behaved as a distinct group, with CO enriched in 13C and depleted in 18O, compared to petrol vehicles. For the H2:CO ratio of all vehicles, we found a value of 0.71 ± 0.31 ppb:ppb. The CO:CO2 ratio, with a mean of 19.4 ± 6.8 ppb:ppm, and the CH4:CO2 ratio, with a mean of 0.26 ± 0.05 ppb:ppm, are both higher than recent literature indicates. This is likely because our sampling distribution was biased towards cold vehicles, and therefore towards higher emission situations. The CH4:CO2 ratio was found to behave similarly to the CO:CO2 ratio, suggesting that the processes affecting CO and CH4 are similar. The δ13 C values in CO2 were close to the expected δ13 C in fuel, with no significant difference between petrol and diesel vehicles. The δ18 O values in CO2 for petrol vehicles covered a range of 20-35‰, similar to the δ18 O of CO. The δ18 O values in CO2 for diesel vehicles were close to the δ18 O in atmospheric oxygen. A set of polluted atmospheric samples, taken near a highway and inside parking garages, showed an isotopic signature of CO and a H2:CO ratio that were

  4. Petrology, zircon U-Pb ages, geochemistry and Sr-Nd-Hf isotopes of the Late Paleozoic gold-bearing magmatic rocks (porphyry intrusions) in Jiamante area, Northwest Tianshan: Implications for petrogenesis and mineralization

    Science.gov (United States)

    Zhang, Tongliang; Cai, Keda; Wang, Xiangsong

    2017-04-01

    A series of Cu-Au-Mo deposits distributed from east to west in the Northwestern Tianshan Orogenic Belt (NTOB), which is located in the northwestern China. The tectonic settings and associated geodynamic processes of these deposits have been disputed. This paper presents whole-rock geochemical data, in-situ U-Th-Pb ages and Sr-Nd-Hf isotopic composition for granite porphyry and quartz porphyry in the Jiamante gold deposit from the Yelimodun Basin, in the NTOB. These two type representative high potassium granitic intrusions have the LA-ICP-MS zircon U-Pb ages of 350.8±4 Ma, 351.7±3 Ma and 350.4±5 Ma, 353.9±2.5 Ma, interpreted as the crystallization ages. High contents of SiO2 ( 71.1-75.2wt.%), K2O (4.96-6.33 wt.%), Al2O3 (12.45-14.35 wt.%) and low contents of Fe2O3T (1.47-3.25 wt.%), MgO (0.3-0.5 wt.% ), and CaO (0.49-1.29wt.%), High ASI (Alumina Saturation Index, Al2O3/(CaO+Na2O+K2O)=1.37-1.80 molecular ratios) can be found in these rocks. These porphyries are enriched in both large ion lithophile and light rare earth elements, but deplet in high field strength elements and are characterized by moderately negative Eu anomalies (Eu/Eu*=0.27-0.66) and strong depletion in Ba, Nb,Ti and Sr elements. These two porphyries have negative and positive zircon ɛHf(t) (-11.6 to +6.7) values, low Mg# ratios (21.85-35.51wt%), and low Cr (3.24ppm -11.35ppm) and Ni (1.88ppm-13.41ppm) contents. The regional geological and geochemical characteristics of the Early Carboniferous rocks in the Northwestern Tianshan show that peraluminous granitoids, with hybrid Sr-Nd-Hf isotopic signatures, suggesting that their parental magmas could be derived from the subduction of Paleo-Junggar Ocean beneath the Yili Block and the sediments from the Yili Block. In combination with the compositions of the volcanic rocks and basic lavas in the region in the Early Carboniferous, we suggest that the Jiamante peraluminous granitic porphyries and quartz porphyries were generated by the interaction

  5. Light element isotopic compositions of cometary matter returned by the STARDUST mission

    Energy Technology Data Exchange (ETDEWEB)

    McKeegan, K D; Aleon, J; Bradley, J; Brownlee, D; Busemann, H; Butterworth, A; Chaussidon, M; Fallon, S; Floss, C; Gilmour, J; Gounelle, M; Graham, G; Guan, Y; Heck, P R; Hoppe, P; Hutcheon, I D; Huth, J; Ishii, H; Ito, M; Jacobsen, S B; Kearsley, A; Leshin, L A; Liu, M; Lyon, I; Marhas, K; Marty, B; Matrajt, G; Meibom, A; Messenger, S; Mostefaoui, S; Nakamura-Messenger, K; Nittler, L; Palma, R; Pepin, R O; Papanastassiou, D A; Robert, F; Schlutter, D; Snead, C J; Stadermann, F J; Stroud, R; Tsou, P; Westphal, A; Young, E D; Ziegler, K; Zimmermann, L; Zinner, E

    2006-10-10

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild2 particle fragments, however extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Non-terrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is {sup 16}O-enriched like refractory inclusions in meteorites, suggesting formation in the hot inner solar nebula and large-scale radial transport prior to comet accretion in the outer solar system.

  6. A continuous flow isotope ratio mass spectrometry method for high precision determination of dissolved gas ratios and isotopic composition

    DEFF Research Database (Denmark)

    Charoenpong, C. N.; Bristow, L. A.; Altabet, M. A.

    2014-01-01

    Dissolved gas ratios and isotopic compositions provide essential information about the biological and physical mechanisms influencing N-2, O-2, and Ar in aquatic systems. Current methods available are either limited by overall cost, labor-intensive sample collection and analysis, or insufficient...... precision. Here, we present a new highly accurate and robust method for sample collection and subsequent simultaneous measurement of the dissolved gas ratios (N-2/Ar and O-2/Ar) and isotopic compositions (delta N-15(2) and delta O-18(2)) in seawater. The relatively simple sampling procedure using low cost...

  7. Modelling and interpreting the isotopic composition of water vapour in convective updrafts

    Directory of Open Access Journals (Sweden)

    M. Bolot

    2013-08-01

    Full Text Available The isotopic compositions of water vapour and its condensates have long been used as tracers of the global hydrological cycle, but may also be useful for understanding processes within individual convective clouds. We review here the representation of processes that alter water isotopic compositions during processing of air in convective updrafts and present a unified model for water vapour isotopic evolution within undiluted deep convective cores, with a special focus on the out-of-equilibrium conditions of mixed-phase zones where metastable liquid water and ice coexist. We use our model to show that a combination of water isotopologue measurements can constrain critical convective parameters, including degree of supersaturation, supercooled water content and glaciation temperature. Important isotopic processes in updrafts include kinetic effects that are a consequence of diffusive growth or decay of cloud particles within a supersaturated or subsaturated environment; isotopic re-equilibration between vapour and supercooled droplets, which buffers isotopic distillation; and differing mechanisms of glaciation (droplet freezing vs. the Wegener–Bergeron–Findeisen process. As all of these processes are related to updraft strength, particle size distribution and the retention of supercooled water, isotopic measurements can serve as a probe of in-cloud conditions of importance to convective processes. We study the sensitivity of the profile of water vapour isotopic composition to differing model assumptions and show how measurements of isotopic composition at cloud base and cloud top alone may be sufficient to retrieve key cloud parameters.

  8. Tungsten isotope composition of the Acasta Gneiss Complex

    Science.gov (United States)

    Willbold, M.; Mojzsis, S. J.; Chen, H.-W.; Elliott, T.

    2015-06-01

    High-precision tungsten (182W/184W) isotope measurements on well-characterised mafic and felsic samples of the ca. 3960 Ma Acasta Gneiss Complex (AGC; Northwest Territories, Canada) show radiogenic ε182W values between +0.06 to +0.15. Two ca. 3600 Ma felsic samples from this terrane have ε182W ∼ 0 and are the oldest samples so far documented to have a W isotopic composition indistinguishable from that of the modern mantle. The ε182W data are correlated with ε142Nd (Roth et al., 2014) and we attribute this variability to incomplete metamorphic homogenisation of the 3960 Ma protolith with more recent material in a 3370 Ma tectono-thermal event. Notably, the value of the positive ε182W anomalies seen in the 3960 Ma AGC samples that are least affected by metamorphic homogenisation is comparable to that observed in other early Archean rocks (Isua Supracrustal Belt, Greenland; Nuvvuagittuq Supracrustal Belt, Canada) and the late Archean Kostomuksha komatiites (Karelia). This demonstrates a globally constant signature. We infer that the presence of a pre-late veneer mantle represents the most straightforward interpretation of a uniform distribution of ε182W ∼ + 0.15 value in Archean rocks of different ages. We show that such a notion is compatible with independent constraints from highly siderophile element abundances in mafic and ultra-mafic Archean mantle-derived rocks. The absence of anomalous ε182W and ε142Nd so far measured in samples younger than ca. 2800 Ma suggests progressive convective homogenisation of silicate reservoirs. The downward mixing of an upper mantle rich in late-delivered meteoritic material might account for these combined observations.

  9. Seasonality of Oxygen isotope composition in cow (Bos taurus) hair and its model interpretation

    Science.gov (United States)

    Chen, Guo; Schnyder, Hans; Auerswald, Karl

    2017-04-01

    Oxygen isotopes in animal and human tissues are expected to be good recorders of geographical origin and migration histories based on the isotopic relationship between hair oxygen and annual precipitation and the well-known spatial pattern of oxygen isotope composition in meteoric water. However, seasonal variation of oxygen isotope composition may diminish the origin information in the tissues. Here the seasonality of oxygen isotope composition in tail hair was investigated in a domestic suckler cow (Bos taurus) that underwent different ambient conditions, physiological states, and keeping and feeding strategies during five years. A detailed mechanistic model involving in ambient conditions, soil properties and animal physiology was built to explain this variation. The measured oxygen isotope composition in hair was significantly related (panalysis. Modelling suggested that this relation was only partly derived from the direct influence of feed moisture. Ambient conditions (temperature, moisture) did not only influence the isotopic signal of precipitation but also affected the animal itself (drinking water demand, transcutaneous vapor etc.). The clear temporal variation thus resulted from complex interactions with multiple influences. The twofold influence of ambient conditions via the feed and via the animal itself is advantageous for tracing the geographic origin because the oxygen isotope composition is then less influenced by variations in moisture uptake; however, it is unfavorable for indicating the production system, e.g. to distinguish between milk produced from fresh grass or from silage.

  10. Estimation of neonatal body composition: isotope dilution versus total-body electrical conductivity.

    Science.gov (United States)

    Hashimoto, Kazumasa; Wong, William W; Thomas, Alicia J; Uvena-Celebrezze, Jennifer; Huston-Pressley, Larriane; Amini, Saeid B; Catalano, Patrick M

    2002-01-01

    The objective of the study is to evaluate neonatal body composition determined by the isotope dilution method compared with the total-body electrical conductivity (TOBEC) method. An oral dose of 18O- and 2H-labeled water was given to 40 healthy term newborns, and 26 infants successfully completed the protocol. The isotope concentrations in urine samples were measured by gas-isotope ratio mass spectrometry. Fat and percent body fat (%F) estimated by isotope dilution were correlated with fat and %F estimated. Total body water measured by isotope dilution of 18O and 2H was 2.44 +/- 0.36 and 2.49 +/- 0.35 kg, respectively (p water content in individuals, the isotope dilution method may not be the optimal way of assessing body composition, and specifically body fat, in newborns. Copyright 2002 S. Karger AG, Basel

  11. Effect of HF concentration on the composition and distribution of Ge species in the framework of ITQ-13 and ITQ-17 zeolites

    KAUST Repository

    Liu, Xiaolong

    2013-04-01

    Two germanosilicates with zeolitic structures, namely ITQ-13 and ITQ-17, have been synthesized from gels containing various amounts of hydrofluoric acid. Although both zeolites possess similar compositions, they differ not only by their pore size and framework topology but also by the nature of the cavities surrounding fluoride species in the structure. For ITQ-17, in which fluoride is almost exclusively located in D4R units, a decrease in HF concentration in the gel has no influence on the fluoride content in the zeolite. However, it favors the incorporation of germanium species in the framework, particularly in D4R units. Zeolites obtained at low HF concentrations are characterized by high Ge contents and Si/Ge atomic ratios close to 1 in D4R units. In the case of ITQ-13, the possibility for fluoride to reside not only in D4R units but also in the larger [415262] cages minimizes the influence of the HF concentration on the zeolite framework composition. Reducing the HF concentration in the gel has no effect on the Si/Ge ratio in the final zeolite but it decreases the fluoride content in the structure. At low HF concentration, fluoride is absent from [415262] cages and is almost exclusively present in all-silica D4R units. As the concentration increases, fluoride starts to occupy Ge-rich D4R and [415 262] cages, as clearly evidenced by 19F NMR. By contrast to ITQ-17, the amount of HF in the gel does not influence the distribution of Ge species in the framework. © 2012 Published by Elsevier Inc.

  12. Hydrogen and oxygen in brine shrimp chitin reflect environmental water and dietary isotopic composition

    Science.gov (United States)

    Nielson, Kristine E.; Bowen, Gabriel J.

    2010-03-01

    Hydrogen and oxygen isotope ratios of the common structural biopolymer chitin are a potential recorder of ecological and environmental information, but our understanding of the mechanisms of incorporation of H and O from environmental substrates into chitin is limited. We report the results of a set of experiments in which the isotopic compositions of environmental water and diet were varied independently in order to assess the contribution of these variables to the H and O isotopic composition of Artemia franciscana chitin. Hydrogen isotope ratios of chitin were strongly linearly correlated with both food and water, with approximately 26% of the hydrogen signal reflecting food and approximately 38% reflecting water. Oxygen isotopes were also strongly correlated with the isotopic composition of water and food, but whereas 69% of oxygen in chitin exchanged with environmental water, only 10% was derived from food. We propose that these observations reflect the position-specific, partial exchange of H and O atoms with brine shrimp body water during the processes of digestion and chitin biosynthesis. Comparison of culture experiments with a set of natural samples collected from the Great Salt Lake, UT in 2006 shows that, with some exceptions, oxygen isotope compositions of chitin track those of water, whereas hydrogen isotopes vary inversely with those of lake water. The different behavior of the two isotopic systems can be explained in terms of a dietary shift from allochthonous particulate matter with relatively higher δ 2H values in the early spring to autochthonous particulate matter with significantly lower δ 2H values in the late summer to autumn. These results suggest oxygen in chitin may be a valuable proxy for the oxygen isotopic composition of environmental water, whereas hydrogen isotope values from the same molecule may reveal ecological and biogeochemical changes within lakes.

  13. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    NARCIS (Netherlands)

    Röckmann, Thomas; Eyer, Simon; Van Der Veen, Carina; Popa, Maria E.; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2016-01-01

    High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in

  14. The isotopic composition of present-day Antarctic snow in a Lagrangian atmospheric simulation

    NARCIS (Netherlands)

    Helsen, M.M.|info:eu-repo/dai/nl/325802459; van de Wal, R.S.W.|info:eu-repo/dai/nl/101899556; van den Broeke, M.R.|info:eu-repo/dai/nl/073765643

    2007-01-01

    The isotopic composition of present-day Antarctic snow is simulated for the period September 1980–August 2002 using a Rayleigh-type isotope distillation model in combination with backward trajectory calculations with 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis

  15. On the equilibrium isotopic composition of the thorium–uranium–plutonium fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Marshalkin, V. Ye., E-mail: marshalkin@vniief.ru; Povyshev, V. M. [Russian Federal Nuclear Center—All-Russian Scientific Research Institute of Experimental Physics (Russian Federation)

    2016-12-15

    The equilibrium isotopic compositions and the times to equilibrium in the process of thorium–uranium–plutonium oxide fuel recycling in VVER-type reactors using heavy water mixed with light water are estimated. It is demonstrated thEhfat such reactors have a capacity to operate with self-reproduction of active isotopes in the equilibrium mode.

  16. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  17. Late Cretaceous back-arc extension and arc system evolution in the Gangdese area, southern Tibet: Geochronological, petrological, and Sr-Nd-Hf-O isotopic evidence from Dagze diabases

    Science.gov (United States)

    Ma, Lin; Wang, Qiang; Wyman, Derek A.; Jiang, Zi-Qi; Wu, Fu-Yuan; Li, Xian-Hua; Yang, Jin-Hui; Gou, Guo-Ning; Guo, Hai-Feng

    2015-09-01

    Back-arc extension and asthenosphere upwelling associated with oceanic lithospheric subduction affect the structure and thermal regime of the arc lithosphere, which often triggers widespread extension-related mafic magmatism. Although it is commonly accepted that the Neo-Tethyan oceanic lithosphere subducted beneath the southern Lhasa block, resulting in the well-known Late Mesozoic Gangdese magmatic arc, the possible role of contemporary back-arc extension and asthenosphere upwelling has been disputed due to a lack of evidence for extension-related mafic magmatism. Here, we report detailed petrological, geochronological, geochemical, and Sr-Nd-Hf-O isotopic data for the Dagze diabases located in the north of the Gangdese district, southern Lhasa block. The zircon U-Pb analyses indicate that they were generated in the Late Cretaceous (ca. 92 Ma) instead of the Eocene (42-38 Ma) as previously believed. These mafic rocks are characterized by variable MgO (4.0-12.2 wt %) and Mg# (42 to 71) values combined with flat to slightly enriched ([La/Yb]N = 1.87-5.23) light rare earth elements (REEs) and relative flat heavy REEs ([Gd/Yb]N = 1.36-1.87) with negative Ta, Nb, and Ti anomalies (e.g., [Nb/La]PM = 0.16-0.51). They also have slightly variable ɛNd(t) (-1.25 to +4.71) and low initial 87Sr/86Sr (0.7045-0.7058) values with strong positive igneous zircon ɛHf(t) (+8.0 to +12.1) and low δ18O (5.31-6.12‰) values. The estimated primary melt compositions are similar to peridotite-derived experimental melts. Given their high melting temperature (1332 to 1372°C) and hybrid geochemical characteristics, we propose that the Dagze mafic magmas likely represent mixtures of asthenospheric and enriched lithospheric mantle-derived melts that underwent minor crustal assimilation and fractional crystallization of clinopyroxene. Taking into account the spatial and temporal distribution of Mesozoic mafic-felsic magmatic rocks and regional paleomagnetic and basin data, we suggest that

  18. Investigation of various properties of HfO2-TiO2 thin film composites deposited by multi-magnetron sputtering system

    Science.gov (United States)

    Mazur, M.; Poniedziałek, A.; Kaczmarek, D.; Wojcieszak, D.; Domaradzki, J.; Gibson, D.

    2017-11-01

    In this work the properties of hafnium dioxide (HfO2), titanium dioxide (TiO2) and mixed HfO2-TiO2 thin films with various amount of titanium addition, deposited by magnetron sputtering were described. Structural, surface, optical and mechanical properties of deposited coatings were analyzed. Based on X-ray diffraction and Raman scattering measuremets it was observed that there was a significant influence of titanium concentration in mixed TiO2-HfO2 thin films on their microstructure. Increase of Ti content in prepared mixed oxides coatings caused, e.g. a decrease of average crystallite size and amorphisation of the coatings. As-deposited hafnia and titania thin films exhibited nanocrystalline structure of monoclinic phase and mixed anatase-rutile phase for HfO2 and TiO2 thin films, respectively. Atomic force microscopy investigations showed that the surface of deposited thin films was densely packed, crack-free and composed of visible grains. Surface roughness and the value of water contact angle decreased with the increase of Ti content in mixed oxides. Results of optical studies showed that all deposited thin films were well transparent in a visible light range. The effect of the change of material composition on the cut-off wavelength, refractive index and packing density was also investigated. Performed measurements of mechanical properties revealed that hardness and Young's elastic modulus of thin films were dependent on material composition. Hardness of thin films increased with an increase of Ti content in thin films, from 4.90 GPa to 13.7 GPa for HfO2 and TiO2, respectively. The results of the scratch resistance showed that thin films with proper material composition can be used as protective coatings in optical devices.

  19. Isotopic composition of Pb and Th in interplinian volcanics from Somma-Vesuvius volcano, Italy

    Science.gov (United States)

    Cortini, M.; Ayuso, R.A.; de Vivo, B.; Holden, P.; Somma, R.

    2004-01-01

    We present a detailed isotopic study of volcanic rocks emitted from Somma-Vesuvius volcano during three periods of interplinian activity: "Protohistoric" (3550 y B.P. to 79 A.D.), "Ancient Historic" (79 to 472 A.D.) and "Medieval" (472 to 1631 A.D.). Pb isotopic compositions of two acid leached fractions and whole rock residues of 37 whole rock samples (determined by Somma et al., 2001) show that each of the three interplinian periods is distinguished by small, systematic, and unique uranogenic and thorogenic Pb isotopic trends. This key and novel feature is compatible with the notion that the Pb isotopic data reflect small-scale source heterogeneity operating over relatively short periods of time. From this representative group of samples, a selected set of nine whole rocks were analysed for Th isotopes. 232Th/238U ratios in the source can be obtained independently from Pb and from Th isotopes. Those obtained from Pb isotopes represent source ratios, time-integrated over the whole age of the Earth; they range from 3.9 to 4.1. 232Th/238U obtained from Th isotopes are those of the present source. They are lower, and cluster around 3.5; this difference probably indicates recent U enrichment of the present source. The behaviour of Pb, as inferred by its isotopic ratios, is quite distinct from that of Sr and Nd isotopes: Pb isotope variations are not correlated to Sr or Nd isotope variations. The isotopic contrast is compatible with the idea that the isotopes were decoupled during magmatic production, evolution, and ascent through the crust. Thus, the Pb isotopes do not reflect the effects of the same processes as in the case of the Sr and Nd isotopes, or, as we also favor, they do not necessarily reflect the same source contributions into the magmas. Moreover, the Pb isotopic evolution of the interplinian rocks chiefly reflects mixing, driven by processes that are superimposed on, and independent of, other source contributions that determine the isotopic compositions

  20. Detrital zircon U-Pb and Hf isotopic data for meta-sedimentary rocks from the Heilongjiang Complex, northeastern China and tectonic implications

    Science.gov (United States)

    Zhu, Chloe Yanlin; Zhao, Guochun; Sun, Min; Han, Yigui; Liu, Qian; Eizenhöfer, Paul R.; Zhang, Xiaoran; Hou, Wenzhu

    2017-06-01

    The Heilongjiang Complex is a blueschist facies metamorphic belt located within the Zhangguangcailing Orogen between the Jiamusi and Songliao blocks in Northeast China. This complex has been regarded as an accretionary belt related to the subduction of an intervening oceanic domain between the two blocks. However, the timing of ocean closure and final amalgamation has not been well constrained, with different models arguing for a period of 210-180 Ma or sometime after 140 Ma. This work reports in-situ detrital zircon U-Pb and Hf isotopic analyses of meta-sedimentary rocks from the Heilongjiang Complex. Detrital zircons from seven meta-sedimentary rocks samples yield U-Pb ages spanning from 1690 to 167 Ma, with main populations matching those of multi-phase magmatism in the Jiamusi and Songliao blocks. Several Precambrian age groups (600 Ma, 700 Ma, 900 Ma, 960 Ma, 1200 Ma, and 1300 Ma) are consistent with the inherited zircons from the mafic rocks in the Heilongjiang Complex. A comparison with compiled data of magmatic rocks suggests that the two blocks may have been connected to each other during Permian time. Detrital zircon dating of all siliciclastic rocks yielded the youngest age component of 170 Ma, suggesting that the latest deposition of the mica schists happened at some time after 170 Ma. We propose that the Jiamusi and Songliao blocks once existed as a single block around Late Permian, which underwent a rifting event in the Permian to form a rifting basin that was subsequently evolved into an oceanic domain (Heilongjiang Ocean). The closure of the Heilongjiang Ocean occurred after 170 Ma.

  1. Conceptual model: possible changes of the seawater uranium isotopic composition through time

    Energy Technology Data Exchange (ETDEWEB)

    Nowitzki, Hannah; Frank, Norbert; Fohlmeister, Jens [Universitaet Heidelberg (Germany)

    2015-07-01

    U behaves in seawater like a conservative element. More than 99% of the oceanic U content is {sup 238}U, whereas {sup 234}U is only present in trace amounts. As the residence time of U is significantly longer than the mixing time of the ocean, the ocean is well mixed with respect to U and its isotopic composition (Dunk 2002). Moreover, living corals incorporate U without isotopic fractionation. Therefore, the past seawater isotopic evolution of ({sup 234}U/{sup 238}U) can be accessed via U/Th age-dating of corals and the subsequent calculation of the initial ({sup 234}U/{sup 238}U) value. The isotopic ({sup 234}U/{sup 238}U) composition of seawater during the last 360 ka scatters around the modern seawater value (δ{sup 234}U ∼ (145±15) %, Henderson 2002). As these variations in the δ{sup 234}U value are rather small, a 'constant seawater isotopic composition hypothesis' is often used to validate U/Th ages of fossil corals. However, some authors find that the variability of the isotopic composition exceeds the expected range and suggest that it provides valuable information on variations in continental weathering and global run-off fluctuations or sea-level changes. This work will attempt to compare literature data of the seawater U isotopic composition to the results of a conceptual box-model of the oceanic U budget.

  2. Monitoring the water vapor isotopic composition in the temperate North Atlantic

    Science.gov (United States)

    Sveinbjörnsdottir, Arny E.; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Johnsen, Sigfus J.

    2013-04-01

    Water stable isotopes have during many decades been used as climate proxies and indicators for variations in the hydrological cycle. However we are to a great extent still using simple empirical relationships without any deeper theoretical understanding. In order to properly relate changes in the climate and hydrological cycle to changes in the observed stable water isotopic signal we must understand the underlying physical processes. Furthermore it is a challenge for General Climate Models to adequately represent the isotopes in the hydrological cycle because of lack of in-situ measurements of the atmospheric water-vapor composition in the source regions. During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (from Los Gatos Research) in a lighthouse on the South Coast of Iceland (63.83 N 21.47W) with the plan to be operational for several years. The purpose of this installation was through monitoring of the water vapor isotopic composition to understand the physical processes governing the isotopic composition of the water vapor evaporated from the ocean as well as the processes of mixing between the free troposphere and marine boundary layer. Because of the remoteness of the monitoring site and simple topography we are able to isolate the 'fingerprint' on the isotopic signal in the water vapor from respectively the ocean and the interior highland leading to a near perfect case-study area. Using back-trajectories we find a strong influence of the origin of the air masses on the measured isotopic composition. The mixing of the marine-boundary layer is found to strongly influence the measured isotopic composition. The second order isotopic parameter, d-excess, is contrary to theory and previous observations found not to depend on the relative humidity. However we do find a good correlation between the d-excess and the measured isotopic composition. We speculate that the lack of correlation between d-excess and relative humidity can be

  3. Natural isotopic composition of nitrogen in suspended particulate matter in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Bhosle, N.B.; Sardessai, S.; Sheshshayee, M.S.

    The first measurements of nitrogen isotopic composition (delta sup(15) N) in suspended particulate matter (SPM) of the surface Bay of Bengal (BOB) at 24 different locations during pre- (April-May 2003) and post- (September-October 2002) monsoon...

  4. CARVE: Fire-Related Aerosol and Soil Elemental and Isotopic Composition, Alaska, 2013

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of the isotopic composition of black carbon and organic carbon aerosols collected at two locations in interior Alaska during the...

  5. Converting isotope values to diet composition: the use of mixing models

    National Research Council Canada - National Science Library

    Donald L. Phillips

    2012-01-01

    ...) measured in tissues and food sources of a consumer. Mathematical mixing models are used to estimate the proportional contributions of food sources to the isotopic composition of the tissues of a consumer, which reflect the assimilated diet...

  6. Non-destructive measurement of carbonic anhydrase activity and the oxygen isotope composition of soil water

    Science.gov (United States)

    Jones, Sam; Sauze, Joana; Ogée, Jérôme; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    Carbonic anhydrases are a group of metalloenzymes that catalyse the hydration of aqueous carbon dioxide (CO2). The expression of carbonic anhydrase by bacteria, archaea and eukarya has been linked to a variety of important biological processes including pH regulation, substrate supply and biomineralisation. As oxygen isotopes are exchanged between CO2 and water during hydration, the presence of carbonic anhydrase in plants and soil organisms also influences the oxygen isotope budget of atmospheric CO2. Leaf and soil water pools have distinct oxygen isotope compositions, owing to differences in pool sizes and evaporation rates, which are imparted on CO2during hydration. These differences in the isotopic signature of CO2 interacting with leaves and soil can be used to partition the contribution of photosynthesis and soil respiration to net terrestrial CO2 exchange. However, this relies on our knowledge of soil carbonic anhydrase activity and currently, the prevalence and function of these enzymes in soils is poorly understood. Isotopic approaches used to estimate soil carbonic anhydrase activity typically involve the inversion of models describing the oxygen isotope composition of CO2 fluxes to solve for the apparent, potentially catalysed, rate of oxygen exchange during hydration. This requires information about the composition of CO2 in isotopic equilibrium with soil water obtained from destructive, depth-resolved soil water sampling. This can represent a significant challenge in data collection given the considerable potential for spatial and temporal variability in the isotopic composition of soil water and limited a priori information with respect to the appropriate sampling resolution and depth. We investigated whether we could circumvent this requirement by constraining carbonic anhydrase activity and the composition of soil water in isotopic equilibrium with CO2 by solving simultaneously the mass balance for two soil CO2 steady states differing only in the

  7. Spatiotemporal variation of stable isotopic composition in precipitation

    DEFF Research Database (Denmark)

    Müller, Sascha; Stumpp, Christine; Sørensen, Jens Havskov

    2017-01-01

    gradient and predominant westerly winds. Data showed the local meteoric water line for this region is expressed by the equation δ2H = 7.4δ18O + 5.4‰. A significant trend correlating enriched isotopic values to humidities around 70% during dry season and more depleted isotopic values to humidities around 90...

  8. Long-term data set analysis of stable isotopic composition in German rivers

    Science.gov (United States)

    Reckerth, Anne; Stichler, Willibald; Schmidt, Axel; Stumpp, Christine

    2017-09-01

    Stable isotopes oxygen-18 (18O) and deuterium (2H) are commonly used to investigate hydrological processes in catchments. However, only a few isotope studies have been conducted on a large scale and rarely over long time periods. The objective of this study was to identify the spatial and seasonal variability of isotopic composition in river water and how it is affected by geographical and hydrological factors. The stable isotopic composition of river water has been measured in nine large river catchments in Germany for a time period of 12 years or 26 years. We conducted time series and correlation analyses to identify spatial and temporal patterns of the isotopic composition in the rivers. Further, we compared it to isotopic composition in local precipitation and catchments characteristics. In the majority of the rivers, the spatial and temporal patterns of precipitation were directly reflected in river water. The isotopic signals of the river water were time shifted and show attenuated amplitudes. Further deviations from isotopic compositions in local precipitation were observed in catchments with complex flow systems. These deviations were attributed to catchment processes and influences like evaporation, damming and storage. The seasonality of the isotopic composition was mainly determined by the discharge regimes of the rivers. We found correlations between isotopic long-term averages and catchment altitude as well as latitude and longitude, resulting in a northwest-southeast gradient. Furthermore, it was shown that long-term averages of d-excess were inversely related to flow length and catchment size, which indicates that evaporation enrichment has an impact on the isotopic composition even in catchments of humid climates. This study showed that isotopic composition in rivers can serve as a proxy for the local precipitation and can be utilized as an indicator for hydrological processes even in large river basins. In future, such long time series will help to

  9. Sulphur and carbon isotopic composition of power supply coals in the Pannonian Basin, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Hamor-Vido, Maria [Eoetvoes Lorand Geophysical Institute of Hungary, H-1145 Budapest, Kolumbusz st. 17-23 (Hungary); Hamor, Tamas [Hungarian Geological Survey, H-1143 Budapest, Stefania st. 14 (Hungary)

    2007-08-01

    The present work is an attempt to establish the stable isotope database for Mesozoic to Tertiary coals from the Pannonian Basin, Hungary. Maceral composition, proximate analysis, sulphur form, sulphur isotopes (organic and pyritic), and carbon isotopes were determined. This database supports the assessment of the environmental risks associated with energy generation, the characterization of the formation and the distribution of sulphur in the coals used. The maceral composition, the sulphur composition, the C, S isotopic signatures, and some of the geological evidences published earlier show that the majority of these coals were deposited in freshwater and brackish water environments, despite the relatively high average sulphur content. However, the Upper Cretaceous, Eocene, and Lower Miocene formations also contain coal seams of marine origin, as indicated by their maceral composition and sulphur and carbon chemistry. The majority of the sulphur in these coals occurs in the organic form. All studied sulphur phases are relatively rich in {sup 34}S isotopes ({delta}{sup 34}S{sub organic} = + 12.74 permille, {delta}{sup 34}S{sub pyrite} = + 10.06 permille, on average). This indicates that marine bacterial sulphate reduction played a minor role in their formation, in the sense that isotopic fractionation was limited. It seems that the interstitial spaces of the peat closed rapidly during early diagenesis due to a regime of high depositional rate, leading to a relative enrichment of the heavy sulphur isotopes. (author)

  10. Dating the Indo-Asia collision in NW Himalaya: constraints from Sr-Nd isotopes and detrital zircon (U-Pb) and Hf isotopes of Paleogene-Neogene rocks in the Katawaz basin, NW Pakistan

    Science.gov (United States)

    Zhuang, Guangsheng; Najman, Yani; Millar, Ian; Chauvel, Catherine; Guillot, Stephane; Carter, Andrew

    2015-04-01

    The time of collision between the Indian and Asian plates is key for understanding the convergence history and the impact on climatic systems and marine geochemistry. Despite much active research, the fundamental questions still remain elusive regarding when and where the Indian plate collided with the Asian plate. Especially in the west Himalaya, the questions become more complex due to disputes on the amalgamation history of interoceanic Kohistan-Ladakh arcs (KLA) with Karakoram of the Asian plate and the Indian plate. Here, we present a result of multiple-isotopic geochemistry and geochronology study in the Katawaz Basin in NW Pakistan, a remnant oceanic basin on the western Indian plate which was the repository for the sediments eroded from the west Himalaya ( Qayyum et al., 1996, 1997a, 1997b, 2001; Carter et al., 2010), to evaluate the time and character of collision in this region. In this study, we analyzed 22 bulk mudstone samples for Sr-Nd isotopes and 11 medium-grained sandstones for detrital zircon (U-Pb) geochronology and Hf isotopes. We constructed the Cenozoic chronology in the Katawaz Basin based on our newly collected detrital zircon U-Pb ages and fission track ages. We present the first record of Katawaz chronology that constrained the Khojak Formation to be current study revealed that the Katawaz sedimentary sequence ranges in age from Eocene to the earliest Miocene. The samples from the Nisai Formation show the 87Sr/86Sr - ɛNd values overlapping those of the end member of the Karakoram of Asian origin, revealing the arrival of Asian detritus on the Indian plate prior to 50 Ma. There are two parallel lines of evidence supporting this conclusion: (1) young zircon grains (Journal of the Geological Society 154, 753-756. Qayyum, M., Lawrence, R.D., Niem, A.R., 1997b. Molasse-Delta-flysch continuum of the Himalayan orogeny and closure of the Paleogene Katawaz Remnant Ocean, Pakistan. International geology review 39, 861-875. Qayyum, M., Niem, A

  11. Problem of soot aggregates separation and purification for Carbon isotopic composition analyses - burning experiment and real black layers from speleothems examples

    Science.gov (United States)

    Hercman, Helena; Zawidzki, Pawel; Majewska, Agata

    2015-04-01

    Sciences in Warsaw. Measurements were performed using a Finnigan MAT 253 Mass Spectrometer coupled with a Flash 1112HT Elemental Analyser in continuous flow mode. Three international isotope standards were used to calculate the results: USGS 40, USGS 41 and IAEA 600. Significant differences of carbon isotopic composition in wood and different burning products were found. Carbon isotopic composition of wood fragments, "charcoal" and soot aggregates pre-treated (HCl and HF) before isotopic composition analysis was between -26 to -29‰. Black layer material with no pre-treatment had a δ13C at the level -22‰.

  12. Analysis of the site-specific carbon isotope composition of propane by gas source isotope ratio mass spectrometer

    Science.gov (United States)

    Piasecki, Alison; Sessions, Alex; Lawson, Michael; Ferreira, A. A.; Neto, E. V. Santos; Eiler, John M.

    2016-09-01

    Site-specific isotope ratio measurements potentially provide valuable information about the formation and degradation of complex molecules-information that is lost in conventional bulk isotopic measurements. Here we discuss the background and possible applications of such measurements, and present a technique for studying the site-specific carbon isotope composition of propane at natural abundance based on mass spectrometric analysis of the intact propane molecule and its fragment ions. We demonstrate the feasibility of this approach through measurements of mixtures of natural propane and propane synthesized with site-specific 13C enrichment, and we document the limits of precision of our technique. We show that mass balance calculations of the bulk δ13C of propane based on our site-specific measurements is generally consistent with independent constraints on bulk δ13C. We further demonstrate the accuracy of the technique, and illustrate one of its simpler applications by documenting the site-specific carbon isotope signature associated with gas phase diffusion of propane, confirming that our measurements conform to the predictions of the kinetic theory of gases. This method can be applied to propane samples of moderate size (tens of micromoles) isolated from natural gases. Thus, it provides a means of studying the site-specific stable isotope systematics of propane at natural isotope abundances on sample sizes that are readily recovered from many natural environments. This method may also serve as a model for future techniques that apply high-resolution mass spectrometry to study the site-specific isotopic distributions of larger organic molecules, with potential applications to biosynthesis, forensics and other geochemical subjects.

  13. Late Paleoproterozoic charnockite suite within post-collisional setting from the North China Craton: Petrology, geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    Science.gov (United States)

    Yang, Qiong-Yan; Santosh, M.; Rajesh, H. M.; Tsunogae, T.

    2014-11-01

    Charnockites (pyroxene-bearing granitoids) of magmatic origin in diverse tectonic settings and ranging in age from Mesoarchean to Cretaceous constitute important components of the continental crust. Here we report charnockites displaying both magnesian and ferroan compositions associated with gabbros from an AMCG (anorthosite-mangerite-charnockite-granite) suite in the North China Craton. The orthopyroxene in the magnesian charnockite is characterized by moderate XMg of 0.63-0.65 (Wo1-2En62-63Fs35-36), and low Al2O3 content of 0.59-0.71 wt.%. The magnesian charnockites show medium- to high-K contents, and high Mg# (~ 47-69) similar to that of gabbros, whereas the Mg# of the ferroan charnockites is low (~ 6-28). The ferroan charnockites are alkali-calcic to alkalic, and weakly peralkaline to metaluminous, whereas the magnesian charnockites are calcic to calc-alkalic, and metaluminous. Although magnesian charnockites are in general considered to have formed in subduction setting, the medium- to high-K contents, high Mg# values with a wide range, and the highly negative εHf values of the zircons in these rocks (- 8. 4 to - 13.6), suggest inheritance of the arc signature from the melting of ancient arc-related crustal material. The ferroan charnockites show tholeiitic affinity and define a common differentiation trend with the gabbroic anorthosites and likely represent fractionated end-members with or without crustal interaction in a post-collisional rift setting. We present U-Pb age data from zircon grains on seven samples including two ferroan charnockites, three magnesian charnockites, one gabbroic enclave in magnesian charnockite and one gabbroic anorthosite which show emplacement ages of 1748.8 ± 6.4 Ma, 1747.1 ± 9.5 Ma, 1756.4 ± 7.3 Ma, 1756.7 ± 9.2 Ma, 1731 ± 17 Ma, 1731.6 ± 8.2 Ma and 1746.5 ± 7.3 Ma respectively. The negative εHf values (- 1.2 to - 13.6) of zircon grains from these rocks and the older crustal model ages ranging from Mesoarchean to

  14. Stable isotopic composition of perchlorate and nitrate accumulated in plants: Hydroponic experiments and field data

    Science.gov (United States)

    Estrada, Nubia Luz; Böhlke, John Karl; Sturchio, Neil C.; Gu, Baohua; Harvey, Greg; Burkey, Kent O.; Grantz, David A.; McGrath, Margaret T.; Anderson, Todd A.; Rao, Balaji; Sevanthi, Ritesh; Hatzinger, Paul B.; Jackson, W. Andrew

    2017-01-01

    Natural perchlorate (ClO4−) in soil and groundwater exhibits a wide range in stable isotopic compositions (δ37Cl, δ18O, and Δ17O), indicating that ClO4− may be formed through more than one pathway and/or undergoes post-depositional isotopic alteration. Plants are known to accumulate ClO4−, but little is known about their ability to alter its isotopic composition. We examined the potential for plants to alter the isotopic composition of ClO4− in hydroponic and field experiments conducted with snap beans (Phaseolus vulgaris L.). In hydroponic studies, anion ratios indicated that ClO4− was transported from solutions into plants similarly to NO3− but preferentially to Cl− (4-fold). The ClO4− isotopic compositions of initial ClO4− reagents, final growth solutions, and aqueous extracts from plant tissues were essentially indistinguishable, indicating no significant isotope effects during ClO4− uptake or accumulation. The ClO4− isotopic composition of field-grown snap beans was also consistent with that of ClO4− in varying proportions from irrigation water and precipitation. NO3− uptake had little or no effect on NO3− isotopic compositions in hydroponic solutions. However, a large fractionation effect with an apparent ε (15N/18O) ratio of 1.05 was observed between NO3− in hydroponic solutions and leaf extracts, consistent with partial NO3− reduction during assimilation within plant tissue. We also explored the feasibility of evaluating sources of ClO4− in commercial produce, as illustrated by spinach, for which the ClO4− isotopic composition was similar to that of indigenous natural ClO4−. Our results indicate that some types of plants can accumulate and (presumably) release ClO4− to soil and groundwater without altering its isotopic characteristics. Concentrations and isotopic compositions of ClO4−and NO3− in plants may be useful for determining sources of fertilizers and sources of ClO4− in their growth environments and

  15. Geochemistry, geochronology and zircon Hf isotopic study of peralkaline-alkaline intrusions along the northern margin of the North China Craton and its tectonic implication for the southeastern Central Asian Orogenic Belt

    Science.gov (United States)

    Zhao, Pan; Jahn, Bor-ming; Xu, Bei; Liao, Wen; Wang, Yanyang

    2016-09-01

    A giant Permian alkaline magmatic belt has recently been identified in southern Inner Mongolia, along the northern margin of the North China Craton (NCC). This belt is mainly composed of syenite, quartz syenite, alkaline granite and mafic microgranular enclaves (MME)-bearing granodiorite. In order to study the petrogenesis and tectonic implications of these rocks, we undertook zircon U-Pb dating and geochemical analysis of two Permian alkaline plutons. The first Guangxingyuan Pluton occurs in the Hexigten area and is composed of MME-bearing tonalite, K-feldspar granite and syenite. The second Durenwuliji Pluton, located in the Xianghuangqi area, comprises syenite, quartz syenite and K-feldspar granite. Zircon U-Pb dating on tonalite, K-feldspar granite, syenite and quartz syenite from the two plutons yielded a tight range of ages from 259 to 267 Ma. The peralkaline-alkaline rocks show high abundance of total alkalis (K2O + Na2O = 7.9-12.9%) and K2O contents (3.9-8.0%), enrichment in large ion lithophile elements (LILE) and light rare earth element (LREE), and depletion of high field strength elements (HFSE). The associated tonalite and MMEs display I-type granitic geochemical affinity, with less total abundance of trace elements than the peralkaline-alkaline rocks. Zircon Hf isotopic analysis of the Guangxingyuan pluton yielded a large range of εHf(t) values from - 15.5 to + 6.7 and model ages (TDMC) from 781 to 2012 Ma. By contrast, the Hf isotopic data of the Durenwuliji pluton shows a small range of εHf(t) from + 6.2 to + 8.9 and TDMC from 667 to 816 Ma. The geochemical and Hf isotopic characteristics indicate that the parental magma was derived from a mixing of metasomatic mantle-derived mafic magma with different amount of crust-derived felsic magma, and followed by fractional crystallization. Considering previous tectonic studies in Inner Mongolia, a Permian post-orogenic extension was proposed to account for these peralkaline-alkaline intrusions following

  16. Normal variations in the isotopic composition of metabolically relevant transition metals in human blood

    Science.gov (United States)

    Van Heghe, L.; Cloquet, C.; Vanhaecke, F.

    2012-04-01

    Cu, Fe and Zn are transition metals with great catalytic, structural and regulating importance in the human body. Hence, an aberrant metabolism of these elements can have serious implications on the health of a person. It is assumed that, due to differences in isotope fractionation, the isotopic composition of these elements in whole blood of patients can be different from that in blood of healthy subjects. Therefore, isotopic analysis of the element affected by the disease can be a promising approach for early diagnosis. A method for isotopic analysis of Cu, Fe and Zn in human whole blood was developed. The simultaneous chromatographic isolation of these elements and the conditions for isotope ratio measurement via multi-collector ICP - mass spectrometry (MC-ICP-MS) were optimized. So far, only whole blood of supposedly healthy volunteers (reference population) was analyzed. Results for Fe confirmed the known differences in isotopic composition between male and female blood. It is also shown that other parameters can have influence as well, e.g., the isotopic composition of Zn seems to be governed by the diet.

  17. Origin of heavy Fe isotope compositions in high-silica igneous rocks: A rhyolite perspective

    Science.gov (United States)

    Du, De-Hong; Wang, Xiao-Lei; Yang, Tao; Chen, Xin; Li, Jun-Yong; Li, Weiqiang

    2017-12-01

    The origin of heavy Fe isotope compositions in high-silica (>70 wt% SiO2) igneous rocks remains a highly controversial topic. Considering that fluid exsolution in eruptive rocks is more straight-forward to constrain than in plutonic rocks, this study addresses the problem of Fe isotope fractionation in high-silica igneous rocks by measuring Fe isotope compositions of representative rhyolitic samples from the Neoproterozoic volcanic-sedimentary basins in southern China and the Triassic Tu Le Basin in northern Vietnam. The samples show remarkably varied δ56FeIRMM014 values ranging from 0.05 ± 0.05‰ to 0.55 ± 0.05‰, which is among the highest values reported from felsic rocks. The extensional tectonic setting and short melt residence time in magma chambers for the studied rhyolites rule out Soret diffusion and thermal migration processes as causes of the high δ56Fe values. Effects of volcanic degassing and fluid exsolution on bulk rock δ56Fe values for the rhyolites are also assessed using bulk rock geochemical indicators and Rayleigh fractionation models, and these processes are found to be insufficient to produce resolvable changes in Fe isotope compositions of the residual melt. The most probable mechanism accounting for heavy Fe isotope compositions in the high-silica rhyolites is narrowed down to fractional crystallization processes in the magma before rhyolite eruption. Removal of isotopically light Fe-bearing minerals (i.e. ulvöspinel-rich titanomagnetite, ilmenite and biotite) is proposed as the main cause of Fe isotope variation in silicic melts during magmatic evolution. This study implies that crystal fractionation is the dominant mechanism that controls Fe isotope fractionation in eruptive rocks and Fe isotopes could be used to study magmatic differentiation of high-silica magmas.

  18. One year observation of water vapour isotopic composition at Ivittuut, Southern Greenland

    Science.gov (United States)

    Bonne, Jean-Louis; Masson-Delmotte, Valérie; Delmotte, Marc; Cattani, Olivier; Sodemann, Harald; Risi, Camille

    2013-04-01

    In September 2011, an automatic continuous water vapour isotopic composition monitoring instrument has been installed in the atmospheric station of Ivittuut (61.21° N, 48.17° W), southern Greenland. Precipitation has been regularly sampled on site at event to weekly scales and analysed in our laboratory for isotopic composition. Meteorological parameters (temperature, pressure, relative humidity, wind speed and direction) and atmospheric composition (CO2, CH4, Atmospheric Potential Oxygen) are also continuously monitored at Ivittuut. The meteorological context of our observation period will be assessed by comparison with the local climatology. The water vapour analyser is a Picarro Wavelength Scanned Cavity Ring-Down Spectrometer (WS-CRDS, model L2120i). It is automatically and regularly calibrated on the VSMOW scale using measurements of the isotopic composition of vaporized reference water standards using the Picarro Syringe Delivery Module (SDM). As measurements are sensitive to humidity level, an experimentally estimated calibration response function is used to correct our isotopic measurements. After data treatment, successive isotopic measurements of reference waters have a standard deviation of around 0.35 per mil for δ18O and 2.3 per mil for δD. Our instrumentation protocol and data quality control method will be presented, together with our one year δ18O, δD and d-excess measurements in water vapour and precipitation. The relationship between surface water vapour isotopic composition and precipitation isotopic composition will be investigated based on a distillation model. Specific difficulties linked to our low maintenance remote station will also be discussed. The processes responsible for the synoptic variability of Ivittuut water vapour isotopic composition will be investigated by comparing our observational dataset with (i) atmospheric back-trajectories and (ii) results from an isotopically-enabled atmospheric general circulation model (AGCM

  19. Trihalomethanes formed from natural organic matter isolates: Using isotopic and compositional data to help understand sources

    Science.gov (United States)

    Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Aiken, G.R.; Kendall, C.; Silva, S.R.

    2000-01-01

    Over 20 million people drink water from the Sacramento-San Joaquin Delta despite problematic levels of natural organic matter (NOM) and bromide in Delta water, which can form trihalomethanes (THMs) during the treatment process. It is widely believed that NOM released from Delta peat islands is a substantial contributor to the pool of THM precursors present in Delta waters. Dissolved NOM was isolated from samples collected at five channel sites within the Sacramento-San Joaquin Rivers and Delta, California, USA, and from a peat island agricultural drain. To help understand the sources of THM precursors, samples were analyzed to determine their chemical and isotopic composition, their propensity to form THMs, and the isotopic composition of the THMs. The chemical composition of the isolates was quite variable, as indicated by significant differences in carbon-13 nuclear magnetic resonance spectra and carbon-to-nitrogen concentration ratios. The lowest propensity to form THMs per unit of dissolved organic carbon was observed in the peat island agricultural drain isolate, even though it possessed the highest fraction of aromatic material and the highest specific ultraviolet absorbance. Changes in the chemical and isotopic composition of the isolates and the isotopic composition of the THMs suggest that the source of the THMs precursors was different between samples and between isolates. The pattern of variability in compositional and isotopic data for these samples was not consistent with simple mixing of river- and peat-derived organic material.

  20. Investigation of microstructural and electrical properties of composition dependent co-sputtered Hf1‑x Ta x O2 thin films

    Science.gov (United States)

    Das, K. C.; Tripathy, N.; Ghosh, S. P.; Mohanta, S. K.; Nakamura, A.; Kar, J. P.

    2017-11-01

    Tantalum doped HfO2 gate dielectric thin films were deposited on silicon substrates using RF reactive co-sputtering by varying RF power of Ta target from 15 W to 90 W. The morphological, compositional and electrical properties of Hf1‑x Ta x O2 films were systematically investigated. The Ta content was found to be increased up to 21% for a Ta target power of 90 W. The evolution of monoclinic phase of Hf1‑x Ta x O2 was seen from XRD study upto RF power of 60 W and afterwards, the amorphous like behaviour is appeared. The featureless smooth surface with the decrease in granular morphology has been observed from FESEM micrographs of the doped films at higher RF powers of Ta. The flatband voltage is found to be shifted towards negative voltage in the capacitance–voltage plot, which was attributed to the enhancement in positive oxide charge density with rise in RF power. The interface charge density has a minimum value of 7.85  ×  1011 eV‑1 cm‑2 for the film deposited at Ta RF power of 75 W. The Hf1‑x Ta x O2 films deposited at Ta target RF power of 90 W has shown lower leakage current. The high on/off ratio of the current during the set process in Hf1‑x Ta x O2 based memristors is found suitable for bipolar resistive switching memory device applications.

  1. Measurement of natural carbon isotopic composition of acetone in human urine.

    Science.gov (United States)

    Yamada, Keita; Ohishi, Kazuki; Gilbert, Alexis; Akasaka, Mai; Yoshida, Naohiro; Yoshimura, Ryoko

    2016-02-01

    The natural carbon isotopic composition of acetone in urine was measured in healthy subjects using gas chromatography-combustion-isotope ratio mass spectrometry combined with headspace solid-phase microextraction (HS-SPME-GC-C-IRMS). Before applying the technique to a urine sample, we optimized the measurement conditions of HS-SPME-GC-C-IRMS using aqueous solutions of commercial acetone reagents. The optimization enabled us to determine the carbon isotopic compositions within ±0.2 ‰ of precision and ±0.3‰ of error using 0.05 or 0.2 mL of aqueous solutions with acetone concentrations of 0.3-121 mg/L. For several days, we monitored the carbon isotopic compositions and concentrations of acetone in urine from three subjects who lived a daily life with no restrictions. We also monitored one subject for 3 days including a fasting period of 24 h. These results suggest that changes in the availability of glucose in the liver are reflected in changes in the carbon isotopic compositions of urine acetone. Results demonstrate that carbon isotopic measurement of metabolites in human biological samples at natural abundance levels has great potential as a tool for detecting metabolic changes caused by changes in physiological states and disease.

  2. Classification of Chinese Honeys According to Their Floral Origins Using Elemental and Stable Isotopic Compositions.

    Science.gov (United States)

    Wu, Zhaobin; Chen, Lanzhen; Wu, Liming; Xue, Xiaofeng; Zhao, Jing; Li, Yi; Ye, Zhihua; Lin, Guanghui

    2015-06-10

    The objective of this study is to test the feasibility of multi-isotopic and elemental analyses combined with chemometric techniques for differentiating the botanical origins of major honey products in China. The stable isotope and elemental compositions of 57 honey samples from four major floral origins in China (i.e., rape honey, acacia honey, vitex honey, and jujube honey) were analyzed using stable isotope ratio mass spectrometry (IRMS) and inductively coupled plasma mass spectrometry (ICP-MS), respectively. The results showed that hydrogen and oxygen isotopes could be more suitable than the carbon isotope for discriminating the floral origins of major honeys in China. There were significant differences in the contents of most elements between or among different floral origins. The combination of IRMS and ICP-MS methods provides the most effective and accurate approach (in most cases close to 100% accuracy) for classifying Chinese honeys according to their floral origins.

  3. The isotopic composition of dissolved cadmium in the water column of the West Philippine Sea

    Directory of Open Access Journals (Sweden)

    Shun-Chung eYang

    2014-11-01

    Full Text Available The dissolved concentration and isotopic compositions of cadmium (Cd in the seawater of the West Philippine Sea were determined. In general, Cd isotopic composition in the water column decreased with depth, with ε114/110Cd (ε114/110Cd = [(114Cd/110Cdsample / (114Cd/110CdNIST 3108 - 1]×10000 ranging from +7.2 to +10.1 in the top 60 m, from +4.8 to +5.1 between 100 and 150 m, peaking at +8.2 at 200 m, decreasing from +4.5 to +3.3 from 400 to 1000 m, and remaining constant at +3.0 from 1000 m and deeper. Different to a Rayleigh fractionation model, the isotopic composition and log scale concentrations of Cd do not exhibit a linear relationship. However, from the deep water to thermocline, the variations in Cd concentration and ε114/110Cd are relevant to the variations of temperature and salinity, indicating that water mixing is the dominant processes determining the concentration and isotopic composition in the interval. At 200 m where North Pacific Tropic Water dominates the water mass, the elevated ε114/110Cd could be linked to the composition in the upper portions of the water mass. In the top 150 m, the ε114/110Cd varies similarly to the phytoplankton community structures, implying that Cd uptake by various phytoplankton species may be associated with the isotopic variation. However, the effects of atmospheric inputs to the ε114/110Cd in the surface water cannot be excluded. A box model calculation is used to constrain the contributions of various processes to the Cd isotopes of surface water, and the results indicate that the Cd concentration and isotopic composition in most of the water body of the region are controlled by physical mixing, while the effects of biological fractionation and atmospheric inputs are limited in the euphotic zone.

  4. A lower limit of atmospheric pressure on early Mars inferred from nitrogen and argon isotopic compositions

    Science.gov (United States)

    Kurokawa, Hiroyuki; Kurosawa, Kosuke; Usui, Tomohiro

    2018-01-01

    We examine the history of the loss and replenishment of the Martian atmosphere using elemental and isotopic compositions of nitrogen and noble gases. The evolution of the atmosphere is calculated by taking into consideration various processes: impact erosion and replenishment by asteroids and comets, atmospheric escape induced by solar radiation and wind, volcanic degassing, and gas deposition by interplanetary dust particles. Our model reproduces the elemental and isotopic compositions of N and noble gases (except for Xe) in the Martian atmosphere, as inferred from exploration missions and analyses of Martian meteorites. Other processes such as ionization-induced fractionation, which are not included in our model, are likely to make a large contribution in producing the current Xe isotope composition. Since intense impacts during the heavy bombardment period greatly affect the atmospheric mass, the atmospheric pressure evolves stochastically. Whereas a dense atmosphere preserves primitive isotopic compositions, a thin atmosphere on early Mars is severely influenced by stochastic impact events and following escape-induced fractionation. The onset of fractionation following the decrease in atmospheric pressure is explained by shorter timescales of isotopic fractionation under a lower atmospheric pressure. The comparison of our numerical results with the less fractionated N (15N/14N) and Ar (38Ar/36Ar) isotope compositions of the ancient atmosphere recorded in the Martian meteorite Allan Hills 84001 provides a lower limit of the atmospheric pressure in 4 Ga to preserve the primitive isotopic compositions. We conclude that the atmospheric pressure was higher than approximately 0.5 bar at 4 Ga.

  5. Stable isotopic composition of water vapor in the tropics

    Science.gov (United States)

    Lawrence, James Robert; Gedzelman, Stanley David; Dexheimer, Darielle; Cho, Hye-Khung; Carrie, Gordon D.; Gasparini, Robert; Anderson, Casey R.; Bowman, Kenneth P.; Biggerstaff, Mike I.

    2004-03-01

    Water vapor samples collected during tropical field experiments at Puerto Escondido, Mexico, near Kwajalein (KWAJEX), and near Key West, Florida (CAMEX 4), were analyzed for their stable isotope contents, 1H218O:1H216O and 2H1H16O:1H216O. Highest δ18O values approached isotopic equilibrium with seawater during quiescent weather or in regions of isolated or disorganized convection. Lowest δ18O values occurred in or downwind from regions of organized mesoscale weather disturbances and ranged as low as 15‰ below isotopic equilibrium with seawater. The mean δ18O value of vapor over the sea surface therefore decreases as storm activity and organization increases.

  6. Hafnium at subduction zones: isotopic budget of input and output fluxes; L'hafnium dans les zones de subduction: bilan isotopique des flux entrant et sortant

    Energy Technology Data Exchange (ETDEWEB)

    Marini, J.Ch

    2004-05-15

    Subduction zones are the primary regions of mass exchanges between continental crust and mantle of Earth through sediment subduction toward the earth's mantle and by supply of mantellic magmas to volcanic arcs. We analyze these mass exchanges using Hafnium and Neodymium isotopes. At the Izu-Mariana subduction zone, subducting sediments have Hf and Nd isotopes equivalent to Pacific seawater. Altered oceanic crust has Hf and Nd isotopic compositions equivalent to the isotopic budget of unaltered Pacific oceanic crust. At Luzon and Java subduction zones, arc lavas present Hf isotopic ratios highly radiogenic in comparison to their Nd isotopic ratios. Such compositions of the Luzon and Java arc lavas are controlled by a contamination of their sources by the subducted oceanic sediments. (author)

  7. Factors that control the stable carbon isotopic composition of methane produced in an anoxic marine sediment

    Science.gov (United States)

    Alperin, M. J.; Blair, Neal E.; Albert, D. B.; Hoehler, T. M.; Martens, C. S.

    1993-01-01

    The carbon isotopic composition of methane produced in anoxic marine sediment is controlled by four factors: (1) the pathway of methane formation, (2) the isotopic composition of the methanogenic precursors, (3) the isotope fractionation factors for methane production, and (4) the isotope fractionation associated with methane oxidation. The importance of each factor was evaluated by monitoring stable carbon isotope ratios in methane produced by a sediment microcosm. Methane did not accumulate during the initial 42-day period when sediment contained sulfate, indicating little methane production from 'noncompetitive' substrates. Following sulfate depletion, methane accumulation proceeded in three distinct phases. First, CO2 reduction was the dominant methanogenic pathway and the isotopic composition of the methane produced ranged from -80 to -94 per thousand. The acetate concentration increased during this phase, suggesting that acetoclastic methanogenic bacteria were unable to keep pace with acetate production. Second, acetate fermentation became the dominant methanogenic pathway as bacteria responded to elevated acetate concentrations. The methane produced during this phase was progressively enriched in C-13, reaching a maximum delta(C-13) value of -42 per thousand. Third, the acetate pool experienced a precipitous decline from greater than 5 mM to less than 20 micro-M and methane production was again dominated by CO2 reduction. The delta(C-13) of methane produced during this final phase ranged from -46 to -58 per thousand. Methane oxidation concurrent with methane production was detected throughout the period of methane accumulation, at rates equivalent to 1 to 8 percent of the gross methane production rate. Thus methane oxidation was too slow to have significantly modified the isotopic signature of methane. A comparison of microcosm and field data suggests that similar microbial interactions may control seasonal variability in the isotopic composition of methane

  8. Isotopic composition of high-activity particles released in the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Osuch, S.; Dabrowska, M.; Jaracz, P.; Kaczanowski, J.; Le Van Kho; Mirowski, S.; Piasecki, E.; Szeflinska, G.; Szeflinski, Z.; Tropilo, J.; (Warsaw Univ. (Poland))

    1989-11-01

    Gamma spectra were measured and activities of the detected isotopes were analyzed for 206 high-activity particles (hot particles, HPs) found in northeastern Poland after the Chernobyl accident. The isotopic composition of HPs observed in gamma-activity is compared with that of the general fallout and core inventory calculations. Particle formation and a process of depletion in Ru and Cs isotopes are discussed. On the basis of a search performed a year later, some comments on the behavior of HPs in the soil are made.

  9. Carbon and oxygen isotope compositions of the carbonate facies in ...

    Indian Academy of Sciences (India)

    The Vindhyan sedimentary succession in central India spans a wide time bracket from the Paleopro- terozoic to the Neoproterozoic period.Chronostratigraphic significance of stable carbon and oxygen isotope ratios of the carbonate phase in Vindhyan sediments has been discussed in some recent studies.However,the ...

  10. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    Stable carbon isotope analysis of fossil leaves from the Bhuj Formation, western India was carried out to infer the prevailing environmental conditions. Compression fossil leaves such as Pachypteris indica, Otozamite kachchhensis, Brachyphyllum royii and Dictyozamites sp. were recovered from three sedimentary ...

  11. Xenon isotopic composition of the Mid Ocean Ridge Basalt (MORB) source

    Science.gov (United States)

    Peto, M. K.; Mukhopadhyay, S.

    2012-12-01

    Although convection models do not preclude preservation of smaller mantle regions with more pristine composition throughout Earth's history, it has been widely assumed that the moon forming giant impact likely homogenizes the whole mantle following a magma ocean that extended all the way to the bottom of the mantle. Recent findings of tungsten and xenon heterogeneities in the mantle [1,2,3,4], however, imply that i) the moon forming giant impact may not have homogenized the whole mantle and ii) plate tectonics was inefficient in erasing early formed compositional differences, particularly for the xenon isotopes. Therefore, the xenon isotope composition in the present day mantle still preserves a memory of early Earth processes. However, determination of the xenon isotopic composition of the mantle source is still scarce, since the mantle composition is overprinted by post-eruptive atmospheric contamination in basalts erupted at ocean islands and mid ocean ridges. The xenon composition of the depleted upper mantle has been defined by the gas rich sample, 2πD43 (also known as "popping rock"), from the North Atlantic (13° 469`N). However, the composition of a single sample is not likely to define the composition of the upper mantle, especially since popping rock has an "enriched" trace element composition. We will present Ne, Ar and Xe isotope data on MORB glass samples with "normal" helium isotope composition (8±1 Ra) from the Southeast Indian Ridge, the South Atlantic Ridge, the Sojourn Ridge, the Juan de Fuca, the East Pacific Rise, and the Gakkel Ridge. Following the approach of [1], we correct for syn- and post-eruptive atmosphere contamination, and determine the variation of Ar and Xe isotope composition of the "normal" MORB source. We investigate the effect of atmospheric recycling in the variation of MORB mantle 40Ar/36Ar and 129Xe/130Xe ratios, and attempt to constrain the average upper mantle argon and xenon isotopic compositions. [1] Mukhopadhyay, Nature

  12. Correspondence between human diet, body composition and stable isotopic composition of hair and breath in Fijian villagers.

    Science.gov (United States)

    Hedges, Robert; Rush, Elaine; Aalbersberg, William

    2009-03-01

    The main aim of this work was to describe the relationship between diet, and hair and breath isotopic composition. From one Fijian rural village, hair and breath samples were procured from 20 women. Physical anthropometrics were made, and hair (13)C/(12)C and (15)N/(14)N and breath (13)C/(12)C were measured. Individual diet diaries were kept for two of the four preceding weeks, and isotopic compositions of items which accounted for most of the diet were measured. Individual average diets were analysed for macronutrient and energy content and conform to reasonable nutritional expectation. Characteristics of the diet are described in terms of protein and energy, their patterning with respect to different clusters of food items and their relationship to individuals' anthropometry. Breath CO(2) is depleted in (13)C by 1-2 per thousand on average with respect to the total diet. Hair was enriched on average by 4.1 per thousand in nitrogen and 4.5 per thousand in carbon with respect to the total diet. There was insufficient population variation in hair isotopic composition to establish individual hair-diet isotopic differences. The definite relationship that we establish in this work, between dietary and tissue isotopic values for a human community, provides a basis for determining and validating dietary regimes more generally within non-industrial, non-global-'supermarket' economies.

  13. Plutonium isotopes in the atmosphere of Central Europe: Isotopic composition and time evolution vs. circulation factors

    Energy Technology Data Exchange (ETDEWEB)

    Kierepko, Renata, E-mail: Renata.Kierepko@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Mietelski, Jerzy W. [Institute of Nuclear Physics, Polish Academy of Sciences, Krakow (Poland); Ustrnul, Zbigniew [Jagiellonian University, Krakow (Poland); Institute of Meteorology and Water Management, National Research Institute, Krakow (Poland); Anczkiewicz, Robert [Institute of Geological Sciences, Polish Academy of Sciences, Krakow (Poland); Wershofen, Herbert [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Holgye, Zoltan [National Radiation Protection Institute, Prague (Czech Republic); Kapała, Jacek [Medical University of Bialystok (Poland); Isajenko, Krzysztof [Central Laboratory for Radiological Protection, Warsaw (Poland)

    2016-11-01

    This paper reports evidence of Pu isotopes in the lower part of the troposphere of Central Europe. The data were obtained based on atmospheric aerosol fraction samples collected from four places in three countries (participating in the informal European network known as the Ring of Five (Ro5)) forming a cell with a surface area of about 200,000 km{sup 2}. We compared our original data sets from Krakow (Poland, 1990–2007) and Bialystok (Poland, 1991–2007) with the results from two other locations, Prague (Czech Republic; 1997–2004) and Braunschweig (Germany; 1990–2003) to find time evolution of the Pu isotopes. The levels of the activity concentration for {sup 238}Pu and for {sup (239} {sup +} {sup 240)}Pu were estimated to be a few and some tens of nBq m{sup −} {sup 3}, respectively. However, we also noted some results were much higher (even about 70 times higher) than the average concentration of {sup 238}Pu in the atmosphere. The achieved complex data sets were used to test a new approach to the problem of solving mixing isotopic traces from various sources (here up to three) in one sample. Results of our model, supported by mesoscale atmospheric circulation parameters, suggest that Pu from nuclear weapon accidents or tests and nuclear burnt-up fuel are present in the air. - Highlights: • Evidence of Pu isotopes in the lower part of the troposphere of Central Europe • The effective annual doses associated with Pu inhalation • New approach to the problem of solving mixed Pu origins in one sample (3SM) • Relationship between Pu isotopes activity concentration and circulation factors.

  14. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle

    Science.gov (United States)

    Wang, Ze-Zhou; Liu, Sheng-Ao; Liu, Jingao; Huang, Jian; Xiao, Yan; Chu, Zhu-Yin; Zhao, Xin-Miao; Tang, Limei

    2017-02-01

    compositions of MORB. Therefore, preferential melting of spinel in the peridotites may account for the Zn isotopic difference between spinel peridotites and basalts. By contrast, the absence of Zn isotope fractionation between silicate minerals suggests that Zn isotopes are not significantly fractionated during partial melting of spinel-free garnet-facies mantle. If the studied non-metasomatized peridotites represent the refractory upper mantle, mass balance calculation shows that the depleted MORB mantle (DMM) has a δ66Zn value of +0.20 ± 0.05‰ (2SD), which is lighter than the primitive upper mantle (PUM) estimated in previous studies (+0.28 ± 0.05‰, 2SD, Chen et al., 2013b; +0.30 ± 0.07‰, 2SD, Doucet et al., 2016). This indicates that the Earth's upper mantle has a heterogeneous Zn isotopic composition vertically, which is probably due to shallow mantle melting processes.

  15. Thallium-isotopic compositions of euxinic sediments as a proxy for global manganese-oxide burial

    Science.gov (United States)

    Owens, Jeremy D.; Nielsen, Sune G.; Horner, Tristan J.; Ostrander, Chadlin M.; Peterson, Larry C.

    2017-09-01

    Thallium (Tl) isotopes are a new and potentially powerful paleoredox proxy that may track bottom water oxygen conditions based on the global burial flux of manganese oxides. Thallium has a residence time of ∼20 thousand years, which is longer than the ocean mixing time, and it has been inferred that modern oxic seawater is conservative with respect to both concentration and isotopes. Marine sources of Tl have nearly identical isotopic values. Therefore, the Tl sinks, adsorption onto manganese oxides and low temperature oceanic crust alteration (the dominant seawater output), are the primary controls of the seawater isotopic composition. For relatively short-term, ∼million years, redox events it is reasonable to assume that the dominant mechanism that alters the Tl isotopic composition of seawater is associated with manganese oxide burial because large variability in low temperature ocean crust alteration is controlled by long-term, multi-million years, average ocean crust production rates. This study presents new Tl isotope data for an open ocean transect in the South Atlantic, and depth transects for two euxinic basins (anoxic and free sulfide in the water column), the Cariaco Basin and Black Sea. The Tl isotopic signature of open ocean seawater in the South Atlantic was found to be homogeneous with ε205Tl = -6.0 ± 0.3 (±2 SD, n = 41) while oxic waters from Cariaco and the Black Sea are -5.6 and -2.2, respectively. Combined with existing data from the Pacific and Arctic Oceans, our Atlantic data establish the conservatism of Tl isotopes in the global ocean. In contrast, partially- and predominantly-restricted basins reveal Tl isotope differences that vary between open-ocean (-6) and continental material (-2) ε205Tl, scaling with the degree of restriction. Regardless of the differences between basins, Tl is quantitatively removed from their euxinic waters below the chemocline. The burial of Tl in euxinic sediments is estimated to be an order of magnitude

  16. Avian embryonic development does not change the stable isotope composition of the calcite eggshell.

    Science.gov (United States)

    Maurer, G; Portugal, S J; Boomer, I; Cassey, P

    2011-01-01

    The avian embryo resorbs most of the calcium for bone formation from the calcite eggshell but the exact mechanisms of the resorption are unknown. The present study tested whether this process results in variable fractionation of the oxygen and carbon isotopes in shell calcium carbonate, which could provide a detailed insight into the temporal and spatial use of the eggshell by the developing embryo. Despite the uncertainty regarding changes in stable isotope composition of the eggshell across developmental stages or regions of the shell, eggshells are a popular resource for the analysis of historic and extant trophic relationships. To clarify how the stable isotope composition varies with embryonic development, the δ(13)C and δ(18)O content of the carbonate fraction in shells of black-headed gull (Larus ridibundus) eggs were sampled at four different stages of embryonic development and at five eggshell regions. No consistent relationship between the stable isotope composition of the eggshell and embryonic development, shell region or maculation was observed, although shell thickness decreased with development in all shell regions. By contrast, individual eggs differed significantly in isotope composition. These results establish that eggshells can be used to investigate a species' carbon and oxygen sources, regardless of the egg's developmental stage.

  17. SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Directory of Open Access Journals (Sweden)

    Olivier Chapleur

    Full Text Available In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH and nanoscale secondary ion mass spectrometry (nanoSIMS imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13C uptake during labelled methanol anaerobic degradation.

  18. Spurious and functional correlates of the isotopic composition of a generalist across a tropical rainforest landscape

    Directory of Open Access Journals (Sweden)

    Poirson Evan K

    2009-11-01

    Full Text Available Abstract Background The isotopic composition of generalist consumers may be expected to vary in space as a consequence of spatial heterogeneity in isotope ratios, the abundance of resources, and competition. We aim to account for the spatial variation in the carbon and nitrogen isotopic composition of a generalized predatory species across a 500 ha. tropical rain forest landscape. We test competing models to account for relative influence of resources and competitors to the carbon and nitrogen isotopic enrichment of gypsy ants (Aphaenogaster araneoides, taking into account site-specific differences in baseline isotope ratios. Results We found that 75% of the variance in the fraction of 15N in the tissue of A. araneoides was accounted by one environmental parameter, the concentration of soil phosphorus. After taking into account landscape-scale variation in baseline resources, the most parsimonious model indicated that colony growth and leaf litter biomass accounted for nearly all of the variance in the δ15N discrimination factor, whereas the δ13C discrimination factor was most parsimoniously associated with colony size and the rate of leaf litter decomposition. There was no indication that competitor density or diversity accounted for spatial differences in the isotopic composition of gypsy ants. Conclusion Across a 500 ha. landscape, soil phosphorus accounted for spatial variation in baseline nitrogen isotope ratios. The δ15N discrimination factor of a higher order consumer in this food web was structured by bottom-up influences - the quantity and decomposition rate of leaf litter. Stable isotope studies on the trophic biology of consumers may benefit from explicit spatial design to account for edaphic properties that alter the baseline at fine spatial grains.

  19. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2011-12-01

    Full Text Available The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for δ13C and 119 samples for δD, increasing the previously published dataset for balloon borne samples by an order of magnitude, and more than doubling the total available stratospheric data (including aircraft samples published to date. The samples also cover a large range in mixing ratio from tropospheric values near 1800 ppb down to only 250 ppb, and the strong isotope fractionation processes accordingly increase the isotopic composition up to δ13C = −14‰ and δD = +190‰, the largest enrichments observed for atmospheric CH4 so far. When analyzing and comparing kinetic isotope effects (KIEs derived from single balloon profiles, it is necessary to take into account the residence time in the stratosphere in combination with the observed mixing ratio and isotope trends in the troposphere, and the range of isotope values covered by the individual profile. The isotopic composition of CH4 in the stratosphere is affected by both chemical and dynamical processes. This severely hampers interpretation of the data in terms of the relative fractions of the three important sink mechanisms (reaction with OH, O(1D and Cl. It is shown that a formal sink partitioning using the measured data severely underestimates the fraction removed by OH, which is likely due to the insensitivity of the measurements to the kinetic fractionation in the lower stratosphere. Full quantitative interpretation of the CH4 isotope data in terms of the three sink reactions requires a global model.

  20. Middle Neoproterozoic (ca. 705-716 Ma) arc to rift transitional magmatism in the northern margin of the Yangtze Block: Constraints from geochemistry, zircon U-Pb geochronology and Hf isotopes

    Science.gov (United States)

    Wang, Ruirui; Xu, Zhiqin; Santosh, M.; Xu, Xianbing; Deng, Qi; Fu, Xuehai

    2017-09-01

    The South Qinling Belt in Central China is an important window to investigate the Neoproterozoic tectono-magmatic processes along the northern margin of the Yangtze Block. Here we present whole-rock geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes of a suite of Middle Neoproterozoic intrusion from the Wudang Uplift in South Qinling. Zircon LA-ICP-MS U-Pb ages reveal that these rocks were formed at ca. 705-716 Ma. Geochemical features indicate that the felsic magmatic rocks are I-type granitoids, belong to calcic- to calc-alkaline series, and display marked negative Nb, Ta and Ti anomalies. Moreover, the enrichment of light rare earth elements (LREEs) and large ion lithophile elements (LILEs), combined with depletion of heavy rare earth elements (HREEs) support that these rocks have affinity to typical arc magmatic rocks formed in Andean-type active continental margins. The REE patterns are highly to moderately fractionated, with (La/Yb)N = 5.13-8.10 in meta-granites, and 2.32-2.35 in granodiorite. The granitoids have a wide range of zircon εHf(t) values (-29.91 to 14.76) and zircon Hf two-stage model ages (696-3482 Ma). We suggest that the ca. 705-716 Ma granitoids were sourced from different degrees of magma mixing between partial melting of the overlying mantle wedge triggered by hydrous fluids released from subducted materials and crustal melting. The hybrid magmas were emplaced in the shallow crust accompanied by assimilation and fractional crystallization (AFC). Both isotopic and geochemical data suggest that the ca. 705-716 Ma felsic magmatic rocks were formed along a continental arc. These rocks as well as the contemporary A-type granite may mark a transitional tectonic regime from continental arc to rifting, probably related to slab rollback during the oceanic subduction beneath the northern margin of Yangtze Block.

  1. Detrital Zircons U-Pb Age and Hf Isotope from the Western Side of the Taiwan Strait: Implications for Sediment Provenance and Crustal Evolution of the Northeast Cathaysia Block

    Directory of Open Access Journals (Sweden)

    Yonghang Xu

    2014-01-01

    Full Text Available In situ detrital zircons U-Pb and Hf isotope analyses from the Min and Jiulong River of Southeast China were carried out to identify sediment provenance and crustal evolution of the northeast Cathaysia Block. Detrital zircons from both rivers displayed similar spectrum peaks at 236, 155, and 110 Ma, but samples from the Min River displayed a distinct Caledonian peak (ca. 460 Ma and contained more Precambrian particles (ca. 1.8 Ga, which likely stemmed from the upstream area of the Wuyishan terrain. Interestingly, because Taiwan Island cannot supply Caledonian and Paleoproterozoic detrital materials and because the Ou and Jiulong River also lack components from these two populations, it is highly likely that the sediment in the western Taiwan coast partially originates from the Min River. The sediments from the Min River in Fujian are also considered the most likely source of the beach sands of western Taiwan (Chen et al. 2006. However, we stress that the ~1.8 Ga age source in the western Taiwan sediments was found and recognized. Combining U-Pb dating and Hf-isotope suggests that the northeast Cathaysia Block contains some Neoarchean detrital zircons, which derived from the incorporation of juvenile mantle materials and re-melting of ancient crustal substances. The wide ranges of εHf(t value in the Paleoproterozoic and Neoproterozoic demonstrate the re-melting of ancient crustal materials with minor juvenile mantle materials. Phanerozoic zircons stemmed from re-melting and recycling of Proterozoic crustal materials with or without the invasion of juvenile mantle-derived magmas.

  2. Zircon U-Pb ages, geochemistry, and Nd-Hf isotopes of the TTG gneisses from the Jiaobei terrane: Implications for Neoarchean crustal evolution in the North China Craton

    Science.gov (United States)

    Shan, Houxiang; Zhai, Mingguo; Wang, Fang; Zhou, Yanyan; Santosh, M.; Zhu, Xiyan; Zhang, Huafeng; Wang, Wei

    2015-02-01

    The Precambrian basement in the Jiaobei terrane is largely composed of Tonalite-Trondhjemite-Granodiorite (TTG) suite of rocks and offers important insights into the crustal evolution history of the North China Craton (NCC). The LA-ICP-MS zircon U-Pb age data presented in this study show that the magmatic protoliths of the TTG gneisses formed during 2508-2547 Ma and recorded the Paleoproterozoic metamorphism (∼1905 Ma). The rocks are enriched in LILE (Rb, Ba and Sr) and depleted in HFSE (Nb, Ta, Zr and Hf). They are characterized by high Sr contents (406-2906 ppm), Sr/Y ratios (31.3-355) and subchondritic Nb/Ta ratios (18.5-68.9). The TTGs show relatively high ΣREE contents (72.0-266 ppm) with strongly enriched LREE ((La/Yb)N = 11.5-121) and positive or negligible negative Eu anomalies (Eu/Eu∗ = 0.84-1.89). These geochemical features suggest that the magma source might have been rutile-bearing amphibole eclogite. Their high Mg# numbers (42-56) and high Cr (153-285 ppm) and Ni contents (22.2-74.5 ppm) indicate interaction with the mantle wedge during magma ascent. The whole rock εNd (t) values (+2.6 to +3.8) and most of the magmatic zircon εHf (t) values (+1.3 to +7.6) suggest juvenile to evolved isotopic signatures. All these lines of evidence suggest that the TTG rocks in this study formed through partial melting of subducted oceanic slab in a continental arc environment. The drill holes in the Jiaobei terrane are dominated by ∼2.5 Ga TTG gneisses, suggesting that the TTG magma at ∼2.5 Ga is more widely distributed deep underground than that of ∼2.7-2.9 Ga, at least within the approachable depth range of our research. Some zircon grains from Jiaobei TTGs give high εHf (t) values plotting above the curve of 0.75 ∗ εHf of DM, and their TCDM ages are very close to the time of the zircon crystallization. However, the majority of the εHf (t) values fall below the curve of 0.75 ∗ εHf of DM and their TCDM ages are concentrated between ∼2.7-2.9 Ga

  3. [Carbon Isotope Composition in Landscape Components and Its Changes under Different Ecological Conditions].

    Science.gov (United States)

    Kovda, I V; Morgun, E G; Gongalskii, K B; Balandin, S A; Erokhina, A I

    2016-01-01

    The composition of stable carbon isotopes in plants, plant litter, leaf litter, and soil organic matter was studied experimentally in the western part of the northern foothills of the Caucasus and mountainsides. It was found that the changes in carbon isotope composition depending on the vertical zonation do not exceed 8 per thousand and depend on the type of C3 plant communities, its presence in biogeocenosis components (living matter, plant litter, soil organic matter), and the degree of moistening of the plot studied.

  4. Nitrate distribution and isotopic composition in vadose-zone sediments underlying large dairy operations

    Science.gov (United States)

    Esser, B. K.; Singleton, M. J.; Moran, J. E.; Roberts, S. K.; Barton, C. G.; Watanabe, N.; Harter, T.

    2009-12-01

    Understanding the transport and cycling of nitrate in the vadose zone is essential to 1) linking agronomic models of nitrate flux out of the root zone to groundwater models of nitrate loading at the water table, 2) quantifying the impact of vadose-zone biogeochemical processes on nitrate isotopic composition for the purpose of source attribution, and 3) constraining transport time scales through the vadose zone in order to assess the impact of changes in agricultural nutrient management on underlying groundwater quality. In this study, we have investigated the isotopic composition of water-leachable nitrate extracted from sediment cores underlying three dairy operations in the southern San Joaquin Valley of California. One of the dairy operations is new (less than ten years old) and is sited on former range land; the other two operations are older (with one having been continuously operated for over a century). All use dairy wastewater for irrigation, and have vadose zones of 25-60 meters thickness developed in sedimentary sequences dominated by alluvial fan deposits. Sediment core samples from a UC-Davis monitor well drilling program were extracted with an equal amount of ultrapure water, and analyzed for nitrate isotopic composition using the denitrifying bacteria method at LLNL. The range in nitrate isotopic composition (δ15N,air = 4.8 to 26.6 permil, δ18O,VSMOW = -0.3 to 16.2 permil) is large, comparable to isotopic compositions observed in dairy wastewater-impacted groundwaters (Singleton et al., 2007, ES&T 41:759-765), and varies from site to site. The range is the largest on the oldest operation (δ15N = 5.2 to 26.6), and most tightly clustered on the youngest operation (δ15N = 4.8 to 7.8). Leachable nitrate-δ18O correlates with nitrate-δ15N along a characteristic denitrification trend for individual cores. Leachable nitrate-δ15N is not simply correlated with leachable nitrate concentration (which is generally high in shallow sediments and decreases

  5. Paleoproterozoic magmatism across the Archean-Proterozoic boundary in central Fennoscandia: Geochronology, geochemistry and isotopic data (Sm-Nd, Lu-Hf, O)

    Science.gov (United States)

    Lahtinen, Raimo; Huhma, Hannu; Lahaye, Yann; Lode, Stefanie; Heinonen, Suvi; Sayab, Mohammad; Whitehouse, Martin J.

    2016-10-01

    The central Fennoscandia is characterized by the Archean-Proterozoic (AP) boundary and the Central Finland Granitoid Complex (CFGC), a roundish area of approximately 40,000 km2 surrounded by supracrustal belts. Deep seismic reflection profile FIRE 3A runs across these units, and we have re-interpreted the profile and crustal evolution along the profile using 1.92-1.85 Ga plutonic rocks as lithospheric probes. The surface part of the profile has been divided into five subareas: Archean continent (AC) in the east, AP, CFGC, boundary zone (BZ) and the Bothnian Belt (BB) in the west. There are 12 key samples from which zircons were studied for inclusions and analyzed (core-rim) by ion probe for U-Pb dating and oxygen isotopes, followed by analyzes for Lu-Hf by LA-MC-ICP-MS. The AC plutonic rocks (1.87-1.85 Ga) form a bimodal suite, where the proposed mantle source for the mafic rocks is 2.1-2.0 Ga metasomatized lower part of the Archean subcontinental lithospheric mantle (SCLM) and the source for the felsic melts is related plume-derived underplated mafic material in the lower crust. Variable degrees of contamination of the Archean lower crust have produced ;subduction-like; Nb-Ta anomalies in spidergrams and negative εNd (T) values in the mafic-intermediate rocks. The felsic AC granitoids originate from a low degree melting of eclogitic or garnet-bearing amphibolites with titanite ± rutile partly prevailing in the residue (Nb-Ta fractionation) followed by variable degree of assimilation/melting of the Archean lower crust. The AP plutonic rocks (ca. 1.88 Ga) can be divided into I-type and A-type granitoids (AP/A), where the latter follow the sediment assimilation trend in ASI diagram, have high δ18O values (up to 8‰) in zircons and exhibit negative Ba anomalies (Rb-Ba-Th in spidergram), as found in sedimentary rocks. A mixing/assimilation of enriched mantle-derived melts with melts from already migmatized sedimentary rocks ± amphibolites is proposed. The CFGC is

  6. Lead isotope studies of the Guerrero composite terrane, west-central Mexico: implications for ore genesis

    Science.gov (United States)

    Potra, Adriana; Macfarlane, Andrew W.

    2014-01-01

    New thermal ionization mass spectrometry and multi-collector inductively coupled plasma mass spectrometry Pb isotope analyses of three Cenozoic ores from the La Verde porphyry copper deposit located in the Zihuatanejo-Huetamo subterrane of the Guerrero composite terrane are presented and the metal sources are evaluated. Lead isotope ratios of 3 Cenozoic ores from the El Malacate and La Esmeralda porphyry copper deposits located in the Zihuatanejo-Huetamo subterrane and of 14 ores from the Zimapan and La Negra skarn deposits from the adjoining Sierra Madre terrane are also presented to look for systematic differences in the lead isotope trends and ore metal sources among the proposed exotic tectonostratigraphic terranes of southern Mexico. Comparison among the isotopic signatures of ores from the Sierra Madre terrane and distinct subterranes of the Guerrero terrane supports the idea that there is no direct correlation between the distinct suspect terranes of Mexico and the isotopic signatures of the associated Cenozoic ores. Rather, these Pb isotope patterns are interpreted to reflect increasing crustal contribution to mantle-derived magmas as the arc advanced eastward onto a progressively thicker continental crust. The lead isotope trend observed in Cenozoic ores is not recognized in the ores from Mesozoic volcanogenic massive sulfide and sedimentary exhalative deposits. The Mesozoic ores formed prior to the amalgamation of the Guerrero composite terrane to the continental margin, which took place during the Late Cretaceous, in intraoceanic island arc and intracontinental marginal basin settings, while the Tertiary deposits formed after this event in a continental arc setting. Lead isotope ratios of the Mesozoic and Cenozoic ores appear to reflect these differences in tectonic setting of ore formation. Most Pb isotope values of ores from the La Verde deposit (206Pb/204Pb = 18.674-18.719) are less radiogenic than those of the host igneous rocks, but plot within the

  7. Isotopic composition of Murchison organic compounds: Intramolecular carbon isotope fractionation of acetic acid. Simulation studies of cosmochemical organic syntheses

    Science.gov (United States)

    Yuen, G. U.; Cronin, J. R.; Blair, N. E.; Desmarais, D. J.; Chang, S.

    1991-01-01

    Recently, in our laboratories, samples of Murchison acetic acid were decarboxylated successfully and the carbon isotopic composition was measured for the methane released by this procedure. These analyses showed significant differences in C-13/C-12 ratios for the methyl and carboxyl carbons of the acetic acid molecule, strongly suggesting that more than one carbon source may be involved in the synthesis of the Murchison organic compounds. On the basis of this finding, laboratory model systems simulating cosmochemical synthesis are being studied, especially those processes capable of involving two or more starting carbon sources.

  8. Uncertainties in the oxygen isotopic composition of barium sulfate induced by coprecipitation of nitrate.

    Science.gov (United States)

    Michalski, Greg; Kasem, Michelle; Rech, Jason A; Adieu, Sabine; Showers, William S; Genna, Bernie; Thiemens, Mark

    2008-10-01

    Coprecipitation of nitrate and sulfate by barium has probably resulted in significant error in numerous studies dealing with the oxygen isotopic composition of natural sulfates using chemical/thermal conversion of BaSO(4) and analysis by isotope ratio mass spectrometry. In solutions where NO(3) (-)/SO(4) (2-) molar ratios are above 2 the amount of nitrate coprecipitated with BaSO(4) reaches a maximum of approximately 7% and decreases roughly linearly as the molar ratio decreases. The fraction of coprecipitated nitrate appears to increase with decreasing pH and is also affected by the nature of the cations in the precipitating solution. The size of the oxygen isotope artifact in sulfate depends both on the amount of coprecipitated nitrate and the delta(18)O and Delta(17)O values of the nitrate, both of which can be highly variable. The oxygen isotopic composition of sulfate extracted from atmospheric aerosols or rain waters are probably severely biased because photochemical nitrate is usually also present and it is highly enriched in (18)O (delta(18)O approximately 50-90 per thousand) and has a large mass-independent isotopic composition (Delta(17)O approximately 20-32 per thousand). The sulfate delta(18)O error can be 2-5 per thousand with Delta(17)O artifacts reaching as high as 4.0 per thousand.

  9. Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long-term culture of Porites spp.

    Science.gov (United States)

    Omata, Tamano; Suzuki, Atsushi; Sato, Takanori; Minoshima, Kayo; Nomaru, Eriko; Murakami, Akio; Murayama, Shohei; Kawahata, Hodaka; Maruyama, Tadashi

    2008-06-01

    Whereas the oxygen isotope ratio of the coral skeleton is used for reconstruction of past information on seawater, the carbon isotope ratio is considered a proxy for physiological processes, principally photosynthesis and respiration. However, the fractionation of carbon isotopes in biogenic carbonate such as coral skeleton is still unclear. We conducted a long-term culture experiment of Porites spp. corals at different light dosages (light intensity, 100, 300, or 500 μmol m-2 s-1; daily light period, 10 or 12 h) at 25 ± 0.6°C to examine the contribution of photosynthetic activity to skeletal carbon isotope composition. Corals were grown in sand-filtered seawater and not fed; thus, they subsisted from photosynthesis of symbiotic algae. As the daily dose of photosynthetically active radiation increased, the rate of annual extension also increased. Mean isotope compositions shifted; the carbon isotope compositions (δ13C) became heavier and the oxygen isotope compositions (δ18O) became lighter at higher radiation dose. Skeletal δ18O decrease coincided with increasing skeletal growth rate, indicating the influence of so-called kinetic isotope effects. The observed δ13C increase should be subject to both kinetic and metabolic isotope effects, with the latter reflecting skeletal δ13C enrichment due to photosynthesis by symbiotic algae. Using a vector approach in the δ13C-δ18O plane, we discriminated between kinetic and metabolic isotope effects on δ13C. The calculated δ13C changes from metabolic isotope effects were light dose dependent. The δ13C fractionation curve related to metabolic isotope effects is very similar to the photosynthesis-irradiance curve, indicating the direct contribution of photosynthetic activity to metabolic isotope effects. In contrast, δ13C fractionation related to kinetic isotope effects gradually increased as the growth rate increased. Our experiment demonstrated that the kinetic and metabolic isotope effects in coral skeleton

  10. Boron and calcium isotope composition in Neoproterozoic carbonate rocks from Namibia: evidence for extreme environmental change

    Science.gov (United States)

    Kasemann, Simone A.; Hawkesworth, Chris J.; Prave, Anthony R.; Fallick, Anthony E.; Pearson, Paul N.

    2005-02-01

    The level and evolution of atmospheric carbon dioxide throughout Earth's history are key issues for palaeoclimate reconstructions, especially during times of extreme climate change such as those that marked the Neoproterozoic. The carbon isotope ratios of marine carbonates are crucial in the correlation and identification of Neoproterozoic glacial deposits, and they are also used as a record for biogeochemical cycling and potential proxy for atmospheric pCO 2. Likewise, the boron and calcium isotope compositions of marine carbonates are potential proxies for palaeo-seawater pH and the ratio of calcium fluxes into and out of seawater, respectively, and together they may be used to estimate atmospheric carbon dioxide. Here we use B and Ca isotopes to estimate palaeoenvironmental conditions in the aftermath of a major Neoproterozoic glaciation in Namibia. The validity of the B and Ca isotope variation in the ancient marine carbonates is evaluated using the oxygen isotope composition of the carbonates and its correlation to the carbon isotope variation. A negative (2.7 to -6.2‰) δ 11B excursion occurs in the postglacial carbonates and is interpreted to reflect a temporary decrease in seawater pH. Associated variations in δ 44Ca values (ranging between 0.35 and 1.14‰) are linearly coupled with the carbon isotope ratios and imply enhanced postglacial weathering rates. The reconstructed seawater pH and weathering profiles indicates that high atmospheric CO 2 concentrations were likely during the melt back of Neoproterozoic glaciations and precipitation of cap carbonates. However, the B isotope trend suggests that these concentrations rapidly ameliorated and they do not co-vary with δ 13C. Thus models attempting to link long-lived negative δ 13C excursions to elevated pCO 2 need to be reconsidered.

  11. Constraints on Galactic Cosmic-Ray Origins from Elemental and Isotopic Composition Measurements

    Science.gov (United States)

    Binns, W. R.; Christian, E. R.; Cummings, A. C.; deNolfo, G. A.; Israel, M. H.; Leske, R. A.; Mewaldt, R. A,; Stone, E. C.; vonRosevinge, T. T.; Wiedenbeck, M. E.

    2013-01-01

    The most recent measurements by the Cosmic Ray Isotope Spectrometer (CRIS) aboard the Advanced Composition Explorer (ACE) satellite of ultra-heavy cosmic ray isotopic and elemental abundances will be presented. A range of isotope and element ratios, most importantly Ne-22/Ne-20, Fe-58/Fe-56, and Ga-31/Ge -32 show that the composition is consistent with source material that is a mix of approx 80% ISM (with Solar System abundances) and 20% outflow/ejecta from massive stars. In addition, our data show that the ordering of refractory and volatile elements with atomic mass is greatly improved when compared to an approx 80%/20% mix rather than pure ISM, that the refractory and volatile elements have similar slopes, and that refractory elements are preferentially accelerated by a factor of approx 4. We conclude that these data are consistent with an OB association origin of GCRs.

  12. Subduction-related Late Carboniferous to Early Permian Magmatism in the Eastern Pontides, the Camlik and Casurluk plutons: Insights from geochemistry, whole-rock Sr-Nd and in situ zircon Lu-Hf isotopes, and U-Pb geochronology

    Science.gov (United States)

    Karsli, Orhan; Dokuz, Abdurrahman; Kandemir, Raif

    2016-12-01

    Late Carboniferous to early Permian granitoid rocks represent a volumetrically minor component of the Eastern Pontide lithosphere, but they preserve useful information about the region's tectonomagmatic history. The Casurluk and Camlik plutons primarily consist of gabbro, gabbroic diorite, diorite, monzogabbro, monzodiorite and monzonite, which intrude early to middle Carboniferous granitic basement rocks in the region. In this study, we use in situ zircon U-Pb ages and Lu-Hf isotopic values, whole-rock Sr-Nd isotopic values, and mineral chemistry and geochemistry of these plutons to determine petrogenesis and crustal evolution; we also discuss geodynamic implications. LA-ICP-MS zircon U-Pb dating of magmatic zircons from the rocks suggests that the plutons were emplaced during the late Carboniferous to early Permian (302 Ma). The metaluminous and I-type intrusive rocks belong to the high-K calc-alkaline series. In addition, they are relatively enriched in light rare earth elements (LREEs) and large-ion lithophile elements (LILEs); they are depleted in heavy rare earth elements (HREEs) and high field strength elements (HFSEs), such as Nb and Ti. All of the samples have homogeneous initial ISr values (0.70675 to 0.70792) and low εNd (t) values (- 5.1 to - 3.3). Zircons from the rocks of both plutons have uniform negative to slightly positive εHf (t) values (- 3.5 to 1.4) and old Hf two-stage model ages (1323 to 1548 Ma), implying that they have the same source, as well as suggesting the involvement of old enriched lithospheric mantle materials during their magma genesis. These results, combined with the εHf (t) values and two-stage model ages, demonstrate that the primary magmas were derived from partial melting of old lithospheric mantle material metasomatized by subduction-related fluids. Considering other regional geological data from the Sakarya Zone where these plutons formed, we conclude that late Carboniferous to early Permian magmatism in the area

  13. Petrogenesis of Jurassic tungsten-bearing granites in the Nanling Range, South China: Evidence from whole-rock geochemistry and zircon U-Pb and Hf-O isotopes

    Science.gov (United States)

    Zhang, Yang; Yang, Jin-Hui; Chen, Jing-Yuan; Wang, Hao; Xiang, Yuan-Xin

    2017-05-01

    The Nanling Range (NLR) is the largest tungsten metallogenic province in China and perhaps in the world. The tungsten mineralization is believed to be related to Jurassic granitic magmatism. However, the petrogenesis of these granites and their relation to the tungsten mineralization are still debated. Whole-rock geochemical and Sr-Nd-Hf isotopic data and zircon in situ U-Pb ages and Hf-O isotopes are reported for W-bearing granitic intrusions from the southern Jiangxi Province in the NLR, in order to constrain their magmatic sources and petrogenesis. The NLR granites include biotite granites, two-mica granites and garnet muscovite granites. SIMS and LA-ICPMS U-Pb dating of zircons and monazites give emplacement ages of 161-154 Ma for these rocks. The granites are metaluminous to strongly peraluminous with high SiO2 (> 72.3 wt.%) and high K2O (> 3.7 wt.%). Petrographic and geochemical features show that they are highly fractionated I-type granites. The biotite granites are enriched in light rare earth elements (LREEs) relative to heavy REEs, have weakly negative Eu anomalies and are depleted in Nb, Ba, P and Ti. In contrast, the two-mica and garnet-bearing muscovite granites have tetrad-type REE patterns with strongly negative Eu anomalies and are extremely depleted in Ba, Nb, Sr, P and Ti. Magmatic garnets are mainly almandine and spessartine, and have low-Mn cores and high-Mn rims. Their (Y + HREE) contents are high and generally decrease from core (1.2 wt.%) to rim (average = 4955 ppm). All of these granites are characterized by variable whole-rock initial 87Sr/86Sr (0.7053-0.8000), εNd(t) (- 12.6 to - 9.4) and εHf(t) (- 12.3 to - 8.5), as well as variable zircon εHf(t) and δ18O, with values of - 16.3 to - 7.4 and 7.6 to 10.0‰, respectively. They contain abundant zircon xenocrysts and xenoliths of micaceous schist. All of these features are consistent with a process of crystal fractionation of crustally-derived magmas coupled with strong assimilation of

  14. Stable water isotopic composition of the Antarctic subglacial Lake Vostok: implications for understanding the lake's hydrology.

    Science.gov (United States)

    Ekaykin, Alexey A; Lipenkov, Vladimir Y; Kozachek, Anna V; Vladimirova, Diana O

    2016-01-01

    We estimated the stable isotopic composition of water from the subglacial Lake Vostok using two different sets of samples: (1) water frozen on the drill bit immediately after the first lake unsealing and (2) water frozen in the borehole after the unsealing and re-drilled one year later. The most reliable values of the water isotopic composition are: -59.0 ± 0.3 ‰ for oxygen-18, -455 ± 1 ‰ for deuterium and 17 ± 1 ‰ for d-excess. This result is also confirmed by the modelling of isotopic transformations in the water which froze in the borehole, and by a laboratory experiment simulating this process. A comparison of the newly obtained water isotopic composition with that of the lake ice (-56.2 ‰ for oxygen-18, -442.4 ‰ for deuterium and 7.2 ‰ for d-excess) leads to the conclusion that the lake ice is very likely formed in isotopic equilibrium with water. In turn, this means that ice is formed by a slow freezing without formation of frazil ice crystals and/or water pockets. This conclusion agrees well with the observed physical and chemical properties of the lake's accreted ice. However, our estimate of the water's isotopic composition is only valid for the upper water layer and may not be representative for the deeper layers of the lake, so further investigations are required.

  15. Soil moisture effects on the carbon isotope composition of soil respiration

    Science.gov (United States)

    Claire L. Phillips; Nick Nickerson; David Risk; Zachary E. Kayler; Chris Andersen; Alan Mix; Barbara J. Bond

    2010-01-01

    The carbon isotopic composition (δ13C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the δ13C of soil respiration, which suggests indirectly that recently fixed photosynthates...

  16. Impact of metabolism and growth phase on the hydrogen isotopic composition of microbial fatty acids

    NARCIS (Netherlands)

    Heinzelmann, S.M.; Villanueva, Laura; Sinke-Schoen, Daniëlle; Sinninghe Damste, J.S.|info:eu-repo/dai/nl/07401370X; Schouten, Stefan|info:eu-repo/dai/nl/137124929; Van der Meer, Marcel T J

    2015-01-01

    Microorganisms are involved in all elemental cycles and therefore it is important to study their metabolism in the natural environment. A recent technique to investigate this is the hydrogen isotopic composition of microbial fatty acids, i.e., heterotrophic microorganisms produce fatty acids

  17. The isotopic composition of methane in the stratosphere: high-altitude balloon sample measurements

    NARCIS (Netherlands)

    Röckmann, T.|info:eu-repo/dai/nl/304838233; Brass, M.|info:eu-repo/dai/nl/304823600; Borchers, R.; Engel, A.

    2011-01-01

    The isotopic composition of stratospheric methane has been determined on a large suite of air samples from stratospheric balloon flights covering subtropical to polar latitudes and a time period of 16 yr. 154 samples were analyzed for 13C and 119 samples for D, increasing the previously published

  18. Interpretation of groundwater origin in the Velenje coal mine on the basis of isotope composition

    Directory of Open Access Journals (Sweden)

    Janko Urbanc

    2002-12-01

    Full Text Available The aim of the investigation was to determine the isotopic properties of cave waters from the Velenje coal mine and define the recharge areas of individual aquifers. With regard to the oxygen isotope composition, groundwater in the Velenje coal mine can beclassified into three types. Typical d18O values of the first type are around -9 ‰ and are found in surface waters in the vicinity of the mine, therefore it is supposed that these waters are recharged locally. The second type is represented mainly by waters from thelower part of the pliocene aquifer. The average oxygen composition of these waters is about -11 ‰. This isotope composition is considerably different from the isotope composition of recent waters from the mine’s vicinity, which leads to the conclusion that these are older, fossile waters. These waters also have a very high degree of mineralization and consequently conductivity. Waters of the third type have average δ18O values around -10 ‰ and originate mainly from triassic dolomites. These waters could be a mixture of recentand old waters, but it is also possible that they flow into the coal mine from the higher areas of Paški Kozjak.

  19. Single-molecule fluorescence autocorrelation experiments on pentacene : The dependence of intersystem crossing on isotopic composition

    NARCIS (Netherlands)

    Brouwer, A.C.J.; Köhler, J.; Oijen, A.M. van; Groenen, E.J.J.; Schmidt, J.

    1999-01-01

    Single pentacene molecules containing 13C or 1H in a pentacene-d14 doped p-terphenyl crystal have been studied by fluorescence autocorrelation. The triplet dynamics has been analyzed and a systematic dependence of the S1→T1 intersystem crossing rate on isotopic composition was found. This variation

  20. High-precision measurements of seawater Pb isotope compositions by double spike thermal ionization mass spectrometry.

    Science.gov (United States)

    Paul, Maxence; Bridgestock, Luke; Rehkämper, Mark; van DeFlierdt, Tina; Weiss, Dominik

    2015-03-10

    A new method for the determination of seawater Pb isotope compositions and concentrations was developed, which combines and optimizes previously published protocols for the separation and isotopic analysis of this element. For isotopic analysis, the procedure involves initial separation of Pb from 1 to 2L of seawater by co-precipitation with Mg hydroxide and further purification by a two stage anion exchange procedure. The Pb isotope measurements are subsequently carried out by thermal ionization mass spectrometry using a (207)Pb-(204)Pb double spike for correction of instrumental mass fractionation. These methods are associated with a total procedural Pb blank of 28±21 pg (1sd) and typical Pb recoveries of 40-60%. The Pb concentrations are determined by isotope dilution (ID) on 50 mL of seawater, using a simplified version of above methods. Analyses of multiple aliquots of six seawater samples yield a reproducibility of about ±1 to ±10% (1sd) for Pb concentrations of between 7 and 50 pmol/kg, where precision was primarily limited by the uncertainty of the blank correction (12±4 pg; 1sd). For the Pb isotope analyses, typical reproducibilities (±2sd) of 700-1500 ppm and 1000-2000 ppm were achieved for (207)Pb/(206)Pb, (208)Pb/(206)Pb and (206)Pb/(204)Pb, (207)Pb/(204)Pb, (208)Pb/(204)Pb, respectively. These results are superior to literature data that were obtained using plasma source mass spectrometry and they are at least a factor of five more precise for ratios involving the minor (204)Pb isotope. Both Pb concentration and isotope data, furthermore, show good agreement with published results for two seawater intercomparison samples of the GEOTRACES program. Finally, the new methods were applied to a seawater depth profile from the eastern South Atlantic. Both Pb contents and isotope compositions display a smooth evolution with depth, and no obvious outliers. Compared to previous Pb isotope data for seawater, the (206)Pb/(204)Pb ratios are well correlated

  1. The Influence of Kinetic Growth Factors on the Clumped Isotope Composition of Calcite

    Science.gov (United States)

    Hunt, J. D.; Watkins, J. M.; Tripati, A.; Ryerson, F. J.; DePaolo, D. J.

    2014-12-01

    Clumped isotope paleothermometry is based on the association of 13C and 18O within carbonate minerals. Although the influence of temperature on equilibrium 13C-18O bond ordering has been studied, recent oxygen isotope studies of inorganic calcite demonstrate that calcite grown in laboratory experiments and in many natural settings does not form in equilibrium with water. It is therefore likely that the carbon and clumped isotope composition of these calcite crystals are not representative of true thermodynamic equilibrium. To isolate kinetic clumped isotope effects that arise at the mineral-solution interface, clumped isotopic equilibrium of DIC species must be maintained. This can be accomplished by dissolving the enzyme carbonic anhydrase (CA) into the solution, thereby reducing the time required for isotopic equilibration of DIC species by approximately two orders of magnitude between pH 7.7 and 9.3. We conduct calcite growth experiments aimed specifically at measuring the pH-dependence of kinetic clumped isotope effects during non-equilibrium precipitation of calcite. We precipitated calcite from aqueous solution at a constant pH and controlled supersaturation over the pH range 7.7-9.3 in the presence of CA. For each experiment, a gas mixture of N2 and CO2 is bubbled through a beaker of solution without seed crystals. As CO2 from the gas dissolves into solution, calcite crystals grow on the beaker walls. The pH of the solution is maintained by use of an autotitrator with NaOH as the titrant. We control the temperature, pH, the pCO2 of the gas inflow, and the gas inflow rate, and monitor the total alkalinity, the pCO2 of the gas outflow, and the amount of NaOH added. A constant crystal growth rate of ~1.6 mmol/m2/hr is maintained over all experiments. Results from these experiments are compared to predictions from a recently-developed isotopic ion-by-ion growth model of calcite. The model describes the rate, temperature and pH dependence of oxygen isotope uptake

  2. Zircon Lu-Hf systematics and the evolution of the Archean crust in the southern Superior Province, Canada

    Science.gov (United States)

    Smith, P.E.; Tatsumoto, M.; Farquhar, R.M.

    1987-01-01

    A combined Lu-Hf and U-Th-Pb isotopic study was made of 25 zircons and 2 whole rocks from the late Archean crust (2,888-2,668 Ma) in the southern Superior Province, Canada. The relative abundances of U, Th, Lu and Hf in zircons from the low grade Michipicoten and Gamitagama greenstone belts show variable patterns which in part reflect the bulk compositional differences of their parent rocks. Zircons from the high grade lower crustal regions adjacent to these belts (Kapuskasing Structural Zone) are distinguished from the low grade zircons by their strong depletions of Lu and Hf. The low Hf contents imply that the growth of metamorphic zircon involves a significant fractionation of the Zr/Hf ratio. Initial Hf isotope ratios for Hf in zircons from the low grade rocks are correlated with silica enrichment of their host rocks. eHf varies from +9.2 to -1.3 and data from similar rock types exhibit correlations of eHf with time. Whole rock basalt analyses yield eHf values of +8.7 and +11.3 suggesting their derivation from a depleted mantle. The basalt data fall on an evolution trend which implies that differentiation from a chondritic mantle occurred at 3,100-2,900 Ma. Low eHf values (-1.3 to +1.4) for rhyolites and granites are consistent with a derivation involving remelting of old crust similar to a 2,888 Ma granite with eHF of +0.5. Significantly higher values (+1.4 to +3.9) are found in zircons from 2,748-2,682 Ma dacites and tonalites suggesting that their parent rocks had higher Lu/Hf ratios. This may indicate that their parent rocks were mafic. However, there is some evidence that the possible lower crustal source reservoirs of these rocks may have undergone processes early in their histories which increased their Lu/ Hf ratios. This would give rise to the higher eHf values observed in their derivatives. ?? 1987 Springer-Verlag.

  3. Variable Isotopic Compositions of Host Plant Populations Preclude Assessment of Aphid Overwintering Sites

    Directory of Open Access Journals (Sweden)

    Michael S. Crossley

    2017-12-01

    Full Text Available Soybean aphid (Aphis glycines Matsumura is a pest of soybean in the northern Midwest whose migratory patterns have been difficult to quantify. Improved knowledge of soybean aphid overwintering sites could facilitate the development of control efforts with exponential impacts on aphid densities on a regional scale. In this preliminary study, we explored the utility of variation in stable isotopes of carbon and nitrogen to distinguish soybean aphid overwintering origins. We compared variation in bulk 13C and 15N content in buckthorn (Rhamnus cathartica L. and soybean aphids in Wisconsin, among known overwintering locations in the northern Midwest. Specifically, we looked for associations between buckthorn and environmental variables that could aid in identifying overwintering habitats. We detected significant evidence of correlation between the bulk 13C and 15N signals of soybean aphids and buckthorn, despite high variability in stable isotope composition within and among buckthorn plants. Further, the 15N signal in buckthorn varied predictably with soil composition. However, lack of sufficient differentiation of geographic areas along axes of isotopic and environmental variation appears to preclude the use of carbon and nitrogen isotopic signals as effective predictors of likely aphid overwintering sites. These preliminary data suggest the need for future work that can further account for variability in 13C and 15N within/among buckthorn plants, and that explores the utility of other stable isotopes in assessing likely aphid overwintering sites.

  4. Calcium isotopic fractionation in mantle peridotites by melting and metasomatism and Ca isotope composition of the Bulk Silicate Earth

    Science.gov (United States)

    Kang, Jin-Ting; Ionov, Dmitri A.; Liu, Fang; Zhang, Chen-Lei; Golovin, Alexander V.; Qin, Li-Ping; Zhang, Zhao-Feng; Huang, Fang

    2017-09-01

    To better constrain the Ca isotopic composition of the Bulk Silicate Earth (BSE) and explore the Ca isotope fractionation in the mantle, we determined the Ca isotopic composition of 28 peridotite xenoliths from Mongolia, southern Siberia and the Siberian craton. The samples are divided in three chemical groups: (1) fertile, unmetasomatized lherzolites (3.7-4.7 wt.% Al2O3); (2) moderately melt-depleted peridotites (1.3-3.0 wt.% Al2O3) with no or very limited metasomatism (LREE-depleted cpx); (3) strongly metasomatized peridotites (LREE-enriched cpx and bulk rock) further divided in subgroups 3a (harzburgites, 0.1-1.0% Al2O3) and 3b (fertile lherzolites, 3.9-4.3% Al2O3). In Group 1, δ44/40Ca of fertile spinel and garnet peridotites, which experienced little or no melting and metasomatism, show a limited variation from 0.90 to 0.99‰ (relative to SRM 915a) and an average of 0.94 ± 0.05‰ (2SD, n = 14), which defines the Ca isotopic composition of the BSE. In Group 2, the δ44/40Ca is the highest for three rocks with the lowest Al2O3, i.e. the greatest melt extraction degrees (average 1.06 ± 0.04 ‰, i.e. ∼0.1‰ heavier than the BSE estimate). Simple modeling of modal melting shows that partial melting of the BSE with 103 ln ⁡αperidotite-melt ranging from 0.10 to 0.25 can explain the Group 2 data. By contrast, δ44/40Ca in eight out of nine metasomatized Group 3 peridotites are lower than the BSE estimate. The Group 3a harzburgites show the greatest δ44/40Ca variation range (0.25-0.96‰), with δ44/40Ca positively correlated with CaO and negatively correlated with Ce/Eu. Chemical evidence suggests that the residual, melt-depleted, low-Ca protoliths of the Group 3a harzburgites were metasomatized, likely by carbonate-rich melts/fluids. We argue that such fluids may have low (≤0.25‰) δ44/40Ca either because they contain recycled crustal components or because Ca isotopes, similar to trace elements and their ratios, may be fractionated by kinetic and

  5. Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park

    Science.gov (United States)

    Estep, Marilyn L. F.

    1984-03-01

    Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO 2 concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55° to 70°C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in 12C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and δ 13C of organic carbon was ˜ -12%., whereas at 900 ppm total inorganic C, the δ 13C of similar species was ˜ -25%.. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40°-55°C. In older, broader conophytons, Chloroflexus was the dominant organism. Their δ 13C values were ˜ -18%. in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative δ 13C values (to -30%.). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the δ 13C of the original organic matter. The hydrogen isotopic fractionation between thermophilic organisms and water is 0 to -74 for temperatures of 85° to 46°C, respectively. Acidophilic algae fractionated hydrogen isotopes to a lesser extent than did the photosynthetic organisms inhabiting neutral pH springs. Because organic matter retains some of its original isotopic signature, relationships of CO 2 levels, pH, temperature, and species composition between modern stromatolites and their environment and those of

  6. Influence of sea ice cover on evaporation and water vapour isotopic composition in the Arctic

    Science.gov (United States)

    Bonne, Jean-Louis; Werner, Martin; Meyer, Hanno; Kipfstuhl, Sepp; Rabe, Benjamin; Behrens, Melanie; Schönicke, Lutz; Steen-Larsen, Hans Christian

    2017-04-01

    Since July 2015, water stable isotopes (HDO and H218O) have been measured at two Arctic facilities: during the summer on board of the research vessel Polarstern, and year-round at the Siberian coastal site of Samoylov, situated in the Lena delta (N 72°22', E 126°29'), close to the Laptev Sea. In both places, the isotopic composition of water vapour is analysed continuously in surface air. Additional isotopic measurements are performed on a daily basis in ocean surface water samples taken on Polarstern and on an event basis from precipitation sampled in Samoylov. The two Polarstern summer campaigns cover a large region of the western Artic Ocean, including a one-month campaign in the central and eastern Arctic crossing the North Pole in September 2015, with very cold conditions (up to -20°C). Combining ocean and atmospheric observations from Polarstern allows an evaluation of local surface water evaporation and its isotopic fingerprint relative to the oceanic and meteorological conditions as well as the partial sea ice cover. In the central and eastern Arctic, a large area of complete sea ice cover also revealed a strong impact on the advected moisture above the ice cap under very cold conditions. A first year of Siberian observations at Samoylov depicted a large seasonal variability, with extremely dry and isotopically depleted winter values. Contrasted seasonal isotopic regimes might be utilized for identifying moisture sources changes in the region, such as ocean surface closure by sea ice, or freezing of the Lena River. Besides documenting the present meteorology and changes in the Arctic, our measurements will contribute to a better interpretation of regional paleoclimate records based on water isotopes and to the evaluation of climate models in the Arctic. A first model-data comparison of our measurements with simulation results by the isotope-enabled atmospheric general circulation model ECHAM5-wiso have revealed relevant model biases in the Arctic realm.

  7. The Oxygen Isotopic Composition of MIL 090001: A CR2 Chondrite with Abundant Refractory Inclusions

    Science.gov (United States)

    Keller, Lindsay P.; McKeegan, K. D.; Sharp, Z. D.

    2012-01-01

    MIL 090001 is a large (>6 kg) carbonaceous chondrite that was classified as a member of the CV reduced subgroup (CVred) that was recovered during the 2009-2010 ANSMET field season [1]. Based on the abundance of refractory inclusions and the extent of aqueous alteration, Keller [2] suggested a CV2 classification. Here we report additional mineralogical and petrographic data for MIL 090001, its whole-rock oxygen isotopic composition and ion microprobe analyses of individual phases. The whole rock oxygen isotopic analyses show that MIL 090001 should be classified as a CR chondrite.

  8. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts

    Science.gov (United States)

    Rizo, Hanika; Walker, Richard J.; Carlson, Richard W.; Horan, Mary F.; Mukhopadhyay, Sujoy; Manthos, Vicky; Francis, Don; Jackson, Matthew G.

    2016-05-01

    How much of Earth's compositional variation dates to processes that occurred during planet formation remains an unanswered question. High-precision tungsten isotopic data from rocks from two large igneous provinces, the North Atlantic Igneous Province and the Ontong Java Plateau, reveal preservation to the Phanerozoic of tungsten isotopic heterogeneities in the mantle. These heterogeneities, caused by the decay of hafnium-182 in mantle domains with high hafnium/tungsten ratios, were created during the first ~50 million years of solar system history, indicating that portions of the mantle that formed during Earth’s primary accretionary period have survived to the present.

  9. A non-terrestrial 16O-rich isotopic composition for the protosolar nebula.

    Science.gov (United States)

    Hashizume, Ko; Chaussidon, Marc

    2005-03-31

    The discovery in primitive components of meteorites of large oxygen isotopic variations that could not be attributed to mass-dependent fractionation effects has raised a fundamental question: what is the composition of the protosolar gas from which the host grains formed? This composition is probably preserved in the outer layers of the Sun, but the resolution of astronomical spectroscopic measurements is still too poor to be useful for comparison with planetary material. Here we report a precise determination of the oxygen isotopic composition of the solar wind from particles implanted in the outer hundreds of nanometres of metallic grains in the lunar regolith. These layers of the grains are enriched in 16O by >20 +/- 4 per thousand relative to the Earth, Mars and bulk meteorites, which implies the existence in the solar accretion disk of reactions--as yet unknown--that were able to change the 17O/16O and 18O/16O ratios in a way that was not dependent strictly on the mass of the isotope. Photochemical self-shielding of the CO gas irradiated by ultraviolet light may be one of these key processes, because it depends on the abundance of the isotopes, rather than their masses.

  10. Mineralogy and Oxygen Isotope Compositions of Two C-Rich Hydrated Interplanetary Dust Particles

    Science.gov (United States)

    Snead, C. J.; McKeegan, K. D.; Messenger, S.; Nakamura-Messenger, K.

    2012-01-01

    Oxygen isotopic compositions of chondrites reflect mixing between a O-16-rich reservoir and a O-17,O-18-rich reservoir produced via mass-independent fractionation. The composition of the O-16-rich reservoir is reasonably well constrained, but material representing the O-17,O-18-rich end-member is rare. Self-shielding models predict that cometary water, presumed to represent this reservoir, should be enriched in O-17 and O-18 18O by > 200%. Hydrated interplanetary dust particles (IDPs) rich in carbonaceous matter may be derived from comets; such particles likely contain the products of reaction between O-16-poor water and anhydrous silicates that formed in the inner solar system. Here we present mineralogy and oxygen isotope compositions of two C-rich hydrated IDPs, L2083E47 and L2071E35.

  11. The boron and lithium isotopic composition of mid-ocean ridge basalts and the mantle

    Science.gov (United States)

    Marschall, Horst R.; Wanless, V. Dorsey; Shimizu, Nobumichi; Pogge von Strandmann, Philip A. E.; Elliott, Tim; Monteleone, Brian D.

    2017-06-01

    A global selection of 56 mid-ocean ridge basalt (MORB) glasses were analysed for Li and B abundances and isotopic compositions. Analytical accuracy and precision of analyses constitute an improvement over previously published MORB data and allow a more detailed discussion of the Li and B systematics of the crust-mantle system. Refined estimates for primitive mantle abundances ([ Li ] = 1.39 ± 0.10 μg/g and [ B ] = 0.19 ± 0.02 μg/g) and depleted mantle abundances ([ Li ] = 1.20 ± 0.10 μg/g and [ B ] = 0.077 ± 0.010 μg/g) are presented based on mass balance and on partial melting models that utilise observed element ratios in MORB. Assimilation of seawater (or brine) or seawater-altered material beneath the ridge, identified by high Cl / K , causes significant elevation of MORB δ11 B and variable elevation in δ7 Li . The B isotope ratio is, hence, identified as a reliable indicator of assimilation in MORB and values higher than -6‰ are strongly indicative of shallow contamination of the magma. The global set of samples investigated here were produced at various degrees of partial melting and include depleted and enriched MORB from slow and fast-spreading ridge segments with a range of radiogenic isotope signatures and trace element compositions. Uncontaminated (low- Cl / K) MORB show no significant boron isotope variation at the current level of analytical precision, and hence a homogenous B isotopic composition of δ11 B = - 7.1 ± 0.9 ‰ (mean of six ridge segments; 2SD). Boron isotope fractionation during mantle melting and basalt fractionation likely is small, and this δ11 B value reflects the B isotopic composition of the depleted mantle and the bulk silicate Earth, probably within ±0.4‰. Our sample set shows a mean δ7 Li = + 3.5 ± 1.0 ‰ (mean of five ridge segments; 2SD), excluding high- Cl / K samples. A significant variation of 1.0-1.5‰ exists among various ridge segments and among samples within individual ridge segments, but this

  12. The evolution of the Bangong-Nujiang Neo-Tethys ocean: Evidence from zircon U-Pb and Lu-Hf isotopic analyses of Early Cretaceous oceanic islands and ophiolites

    Science.gov (United States)

    Fan, Jian-Jun; Li, Cai; Xie, Chao-Ming; Wang, Ming; Chen, Jing-Wen

    2015-08-01

    We conducted in situ U-Pb analyses of zircons from three basalts and one gabbro from the Zhonggang oceanic island, one basalt from the Zhaga oceanic island, and one gabbro from the Kangqiong ophiolite (all located in the middle segments of the Bangong-Nujiang suture zone of Tibetan Plateau), as well as in situ Hf isotope analyses of zircons from one gabbro from the Zhonggang oceanic island to constrain the tectonic evolution of the Bangong-Nujiang Neo-Tethys ocean. All samples contain numerous inherited zircons, and all the zircons contain magmatic oscillatory zoning and have Th/U ratios exceeding 0.4. Moreover, the average ΣREE content of these zircons is less than 2000 ppm, and they display clear negative Eu and variable positive Ce anomalies, indicating a magmatic origin. LA-ICP-MS U-Pb dating of the zircons revealed three clear peaks in the age distribution, at 248-255, 162-168, and 117-120 Ma; Lu-Hf isotopic analyses of zircons from the gabbro of the Zhonggang oceanic island yielded a 269 Ma crust-mantle separation age. Taking into account the regional geology, previous data, and our new analyses, we infer that the middle and western segments of the Bangong-Nujiang Neo-Tethys ocean had initially opened in the late Permian (254-269 Ma) and that the ocean opened substantially between the late Permian and the Early Triassic (248-255 Ma). In addition, we infer that the initiation of subduction of the Bangong-Nujiang Neo-Tethys ocean took place at ~ 162-168 Ma, which is Middle Jurassic. The 117-120 Ma age is the time when the oceanic islands and ophiolites were formed, indicating that the Bangong-Nujiang Neo-Tethys ocean was, to some extent, still open at that time.

  13. Carbon isotope composition of latex does not reflect temporal variations of photosynthetic carbon isotope discrimination in rubber trees (Hevea brasiliensis).

    Science.gov (United States)

    Kanpanon, Nicha; Kasemsap, Poonpipope; Thaler, Philippe; Kositsup, Boonthida; Gay, Frédéric; Lacote, Régis; Epron, Daniel

    2015-11-01

    Latex, the cytoplasm of laticiferous cells localized in the inner bark of rubber trees (Hevea brasiliensis Müll. Arg.), is collected by tapping the bark. Following tapping, latex flows out of the trunk and is regenerated, whereas in untapped trees, there is no natural exudation. It is still unknown whether the carbohydrates used for latex regeneration in tapped trees is coming from recent photosynthates or from stored carbohydrates, and in the former case, it is expected that latex carbon isotope composition of tapped trees will vary seasonally, whereas latex isotope composition of untapped trees will be more stable. Temporal variations of carbon isotope composition of trunk latex (δ(13)C-L), leaf soluble compounds (δ(13)C-S) and bulk leaf material (δ(13)C-B) collected from tapped and untapped 20-year-old trees were compared. A marked difference in δ(13)C-L was observed between tapped and untapped trees whatever the season. Trunk latex from tapped trees was more depleted (1.6‰ on average) with more variable δ(13)C values than those of untapped trees. δ(13)C-L was higher and more stable across seasons than δ(13)C-S and δ(13)C-B, with a maximum seasonal difference of 0.7‰ for tapped trees and 0.3‰ for untapped trees. δ(13)C-B was lower in tapped than in untapped trees, increasing from August (middle of the rainy season) to April (end of the dry season). Differences in δ(13)C-L and δ(13)C-B between tapped and untapped trees indicated that tapping affects the metabolism of both laticiferous cells and leaves. The lack of correlation between δ(13)C-L and δ(13)C-S suggests that recent photosynthates are mixed in the large pool of stored carbohydrates that are involved in latex regeneration after tapping. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Radium isotopes in the Polish Outer Carpathian mineral waters of various chemical composition.

    Science.gov (United States)

    Chau, Nguyen Dinh; Lucyna, Rajchel; Jakub, Nowak; Paweł, Jodłowski

    2012-10-01

    The paper presents the activity concentrations of radium isotopes ((226)Ra, (228)Ra) and chemical compositions of above 70 mineral water samples collected from several dozens of springs and boreholes localized in the Polish Outer Carpathians. The activity concentrations of both radium isotopes clearly increase with the increase of water TDS, but decrease when the SO(4)(2-) content increases. These concentrations vary in the broad interval from a few to near 1000 mBq/L. The coefficient of the linear correlation between concentrations of these isotopes amounts to 0.85, and the activity ratio (226)Ra/(228)Ra is >1 for chloride-sodium waters, being ≈1 for hydrogen-carbonate and <1 for the sulfate ones. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Stable isotope study of a new chondrichthyan fauna (Kimmeridgian, Porrentruy, Swiss Jura): an unusual freshwater-influenced isotopic composition for the hybodont shark Asteracanthus

    Science.gov (United States)

    Leuzinger, L.; Kocsis, L.; Billon-Bruyat, J.-P.; Spezzaferri, S.; Vennemann, T.

    2015-12-01

    Chondrichthyan teeth (sharks, rays, and chimaeras) are mineralized in isotopic equilibrium with the surrounding water, and parameters such as water temperature and salinity can be inferred from the oxygen isotopic composition (δ18Op) of their bioapatite. We analysed a new chondrichthyan assemblage, as well as teeth from bony fish (Pycnodontiformes). All specimens are from Kimmeridgian coastal marine deposits of the Swiss Jura (vicinity of Porrentruy, Ajoie district, NW Switzerland). While the overall faunal composition and the isotopic composition of bony fish are generally consistent with marine conditions, unusually low δ18Op values were measured for the hybodont shark Asteracanthus. These values are also lower compared to previously published data from older European Jurassic localities. Additional analyses on material from Solothurn (Kimmeridgian, NW Switzerland) also have comparable, low-18O isotopic compositions for Asteracanthus. The data are hence interpreted to represent a so far unique, freshwater-influenced isotopic composition for this shark that is classically considered a marine genus. While reproduction in freshwater or brackish realms is established for other hybodonts, a similar behaviour for Asteracanthus is proposed here. Regular excursions into lower salinity waters can be linked to the age of the deposits and correspond to an ecological adaptation, most likely driven by the Kimmeridgian transgression and by the competition of the hybodont shark Asteracanthus with the rapidly diversifying neoselachians (modern sharks).

  16. Emplacement ages, geochemical and Sr-Nd-Hf isotopic characterization of Mesozoic to early Cenozoic granitoids of the Sikhote-Alin Orogenic Belt, Russian Far East: Crustal growth and regional tectonic evolution

    Science.gov (United States)

    Jahn, Bor-ming; Valui, Galina; Kruk, Nikolai; Gonevchuk, V.; Usuki, Masako; Wu, Jeremy T. J.

    2015-11-01

    The Sikhote-Alin Range of the Russian Far East is an important accretionary orogen of the Western Pacific Orogenic Belt. In order to study the formation and tectonic evolution of the orogen, we performed zircon U-Pb dating, as well as geochemical and Sr-Nd-Hf isotopic analyses on 24 granitoid samples from various massifs in the Primorye and Khabarovsk regions. The zircon dating revealed that the granitoids were emplaced from 131 to 56 Ma (Cretaceous to Paleogene). In the Primorye Region, granitoids in the coastal Sikhote-Alin intruded the Cretaceous Taukha Accretionary Terrane from ca. 90 to 56 Ma, whereas those along the Central Sikhote-Alin Fault zone intruded the Jurassic Samarka Accretionary Terrane during ca. 110-75 Ma. The "oldest" monzogranite (131 Ma) was emplaced in the Lermontovka area of the NW Primorye Region. Granitoid massifs along the Central Sikhote-Alin Fault zone in the Khabarovsk Region formed from 109 to 58 Ma. Thus, the most important tectonothermal events in the Sikhote-Alin orogen took place in the Cretaceous. Geochemical analysis indicates that most samples are I-type granitoids. They have initial 87Sr/86Sr ratios ranging from 0.7040 to 0.7083, and initial Nd isotopic ratios, expressed as εNd(t) values, from +3.0 to -5.0 (mostly 0 to -5). The data suggest that the granitoid magmas were generated by partial melting of sources with mixed lithologies, including the subducted accretionary complex ± hidden Paleozoic-Proterozoic basement rocks. Based on whole-rock Nd isotopic data, we estimated variable proportions (36-77%) of juvenile component (=mantle-derived basaltic rocks) in the generation of the granitic magmas. Furthermore, zircon Hf isotopic data (εHf(t) = 0 to +15) indicate that the zircon grains crystallized from melts of mixed sources and that crustal assimilation occurred during magmatic differentiation. The quasi-continuous magmatism in the Sikhote-Alin orogen suggests that the Paleo-Pacific plate subduction was very active in the

  17. Cd Isotopic Composition Measured by Plasma Source Mass Spectrometry on Natural and Anthropogenic Materials. A Preliminary Outline of Cd Isotope Systematics

    Science.gov (United States)

    Innocent, C.

    2004-05-01

    Cadmium is a trace metal that is used as a geochemical tracer of natural processes, like biological productivity and paleoproductivity, and also of anthropogenic pollution, as Cd is known to be a toxic heavy metal that has become a major environmental and health concern. For these purposes, an outstanding issue is to determine whether Cd, like a number of metallic elements (e.g. Fe, Cu, Zn, Mo, Tl), may display variable isotopic compositions in natural and/or industrial compounds. It is known that Cd may display variable isotopic composition. Indeed, isotopic fractionation processes have been documented in some meteorites and in lunar soils. Consequently, due to its relatively low boiling point (767\\deg C) and also to the large mass range covered by its isotopes (10 mass units), Cd might fractionate isotopically, for example during the outpouring of acidic volcanic magmas and/or the emplacement of granitoids. On another hand, isotopic fractionation could also occur during human activities like refuse incineration or industrial manufacturing, for instance. Finally, biologically-induced isotopic fractionation should not be ruled out, as it is clearly evidenced for other metals, like Fe. A high precision method has been developed for determining the isotopic composition of Cd by plasma source mass spectrometry (Neptune). This method holds on the standard-bracketing technique, owing to the availability of Cd solutions of known isotopic composition provided by the University of M\\H{u}nster. This allows to correct precisely for mass fractionation that occurs in the plasma source mass spectrometer. It is also critical for the analysis to be possible to work with Cd solutions of very high purity. Chemical isolation of Cd involves 3 steps, and may be also suitable for Cd isotopic measurements using solid source mass spectrometry. Preliminary results suggest that Cd is likely to fractionate during smelting activities, as indicated by measurements on mining waste. The

  18. Carbon isotopic composition of fossil leaves from the Early ...

    Indian Academy of Sciences (India)

    composition of atmospheric CO2 that varied bet- ween 0.5 and −10% and estimated an average δ13C of atmospheric CO2 in the order of −3.0% . Since no single proxy record is able to provide this infor- mation with sufficient temporal and spatial reso- lution, it is thus essential to analyze fossil plants at various stratigraphic ...

  19. Geochronology, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Zhunsujihua granitoid intrusions associated with the molybdenum deposit, northern Inner Mongolia, China: implications for petrogenesis and tectonic setting

    Science.gov (United States)

    Zhang, Xiaojun; Lentz, David R.; Yao, Chunliang; Liu, Rui; Yang, Zhen; Mei, Yanxiong; Fan, Xianwang; Huang, Fei; Qin, Ying; Zhang, Kun; Zhang, Zhenfei

    2017-08-01

    The Zhunsujihua porphyry molybdenum deposit, located in northern Inner Mongolia of China that belongs to Central-Asian Orogenic Belt (CAOB), is the only Mo deposit formed in the late Carboniferous in this area so far. Its mineralization is mainly restricted to the Zhunsujihua granitoid intrusions, which are composed of the main granodiorite (GD) and crosscutting, virtually coeval minor syn-ore leucogranite (LG) and diorite porphyry (DP) dykes. LA-ICP-MS zircon U-Pb dating yields crystallization ages of 300.0 ± 2.0, 299.3 ± 2.0, and 299.0 ± 2.6 Ma for the GD, LG, and DP, respectively. The major and trace element lithogeochemical data show that the GD and LG are metaluminous to weakly peraluminous, high-K calc-alkaline series with I-type granite characteristics, strongly oxidized, with low concentrations of Ba, Nb, Sr, P, and Ti and elevated K and Rb contents, indicating typical arc magmatic features. The LG is a product derived by extensive fractional crystallization of a parental magma similar to the GD as evident from the lower Eu/Eu*, Nb/Ta, Zr/Hf, and T Zr. The moderately altered DP exhibits high concentrations of K, Rb, Cs, LREE, Y, and low Sr/Y, with a positive ɛ Nd (300 Ma), which indicates a mantle or juvenile source associated with an arc setting. The Sr-Nd-Hf isotope data show low I Sr (0.70406-0.70461) and moderate ɛ Nd (300 Ma) (-0.9 to 1.5) for the GD and LG, and relatively high ɛ Hf (300 Ma) values (-3.6 to +11.2) for the GD, suggesting the magma mainly originated from the juvenile lower crust that was derived from depleted mantle, with a minor component of ancient continental crust. Lead isotope data have characteristics of a lower crust source with minor contamination by upper crustal material. Combined with previous research, the Zhunsujihua granitoid intrusions developed in an intracontinental volcanic arc (Uliastai) associated with northward subduction of the Paleo-Asian Ocean plate during late Carboniferous to early Permian; this suggests

  20. "Taconic" arc magmatism in the central Brooks Range, Alaska: New U-Pb zircon geochronology and Hf isotopic data from the lower Paleozoic Apoon assemblage of the Doonerak fenster

    Science.gov (United States)

    Strauss, J. V.; Hoiland, C. W.; Ward, W.; Johnson, B.; McClelland, W.

    2015-12-01

    The Doonerak fenster in the central Brooks Range, AK, exposes an important package of early Paleozoic volcanic and sedimentary rocks called the Apoon assemblage, which are generally interpreted as para-autochthonous basement to the Mesozoic-Cenozoic Brookian fold-thrust belt. Recognition in the 1970's of a major pre-Mississippian unconformity within the window led to correlations between Doonerak and the North Slope (sub-) terrane of the Arctic Alaska Chukotka microplate (AACM); however, the presence of arc-affinity volcanism and the apparent lack of pre-Mississippian deformation in the Apoon assemblage makes this link tenuous and complicates Paleozoic tectonic reconstructions of the AACM. Previous age constraints on the Apoon assemblage are limited to a handful of Middle Cambrian-Silurian paleontological collections and five K-Ar and 40Ar/39Ar hornblende ages from mafic dikes ranging from ~380-520 Ma. We conducted U-Pb geochronologic and Hf isotopic analyses on igneous and sedimentary zircon from the Apoon assemblage to test Paleozoic links with the North Slope and to assess the tectonic and paleogeographic setting of the Doonerak region. U-Pb analyses on detrital zircon from Apoon rocks yield a spectrum of unimodal and polymodal age populations, including prominent age groups of ca. 420-490, 960-1250, 1380­-1500, 1750-1945, and 2650-2830 Ma. Hf isotopic data from the ca. 410-490 Ma age population are generally juvenile (~7-10 ɛHf), implying a distinct lack of crustal assimilation during Ordovician-Silurian Doonerak arc magmatism despite its proximity to a cratonic source terrane as indicated by an abundance of Archean and Proterozoic zircon in the interbedded siliciclastic strata. These data are in stark contrast to geochronological data from the non-Laurentian portions of the AACM, highlighting a prominent tectonic boundary between Laurentian- and Baltic-affinity rocks at the Doonerak window and implying a link to "Taconic"-age arc magmatism documented along

  1. Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from Rumuruti (R) chondrites

    Science.gov (United States)

    Rout, S. S.; Bischoff, A.; Nagashima, K.; Krot, A. N.; Huss, G. R.; Keil, K.

    2009-07-01

    We report oxygen- and magnesium-isotope compositions of Ca,Al-rich inclusions (CAIs) from several Rumuruti (R) chondrites measured in situ using a Cameca ims-1280 ion microprobe. On a three-isotope oxygen diagram, δ 17O vs. δ 18O, compositions of individual minerals in most R CAIs analyzed fall along a slope-1 line. Based on the variations of Δ 17O values (Δ 17O = δ 17O - 0.52 × δ 18O) within individual inclusions, the R CAIs are divided into (i) 16O-rich (Δ 17O ˜ -23-26‰), (ii) uniformly 16O-depleted (Δ 17O ˜ -2‰), and (iii) isotopically heterogeneous (Δ 17O ranges from -25‰ to +5‰). One of the hibonite-rich CAIs, H030/L, has an intermediate Δ 17O value of -12‰ and a highly fractionated composition (δ 18O ˜ +47‰). We infer that like most CAIs in other chondrite groups, the R CAIs formed in an 16O-rich gaseous reservoir. The uniformly 16O-depleted and isotopically heterogeneous CAIs subsequently experienced oxygen-isotope exchange during remelting in an 16O-depleted nebular gas, possibly during R chondrite chondrule formation, and/or during fluid-assisted thermal metamorphism on the R chondrite parent asteroid. Three hibonite-bearing CAIs and one spinel-plagioclase-rich inclusion were analyzed for magnesium-isotope compositions. The CAI with the highly fractionated oxygen isotopes, H030/L, shows a resolvable excess of 26Mg ( 26Mg ∗) corresponding to an initial 26Al/ 27Al ratio of ˜7 × 10 -7. Three other CAIs show no resolvable excess of 26Mg ( 26Mg ∗). The absence of 26Mg ∗ in the spinel-plagioclase-rich CAI from a metamorphosed R chondrite NWA 753 (R3.9) could have resulted from metamorphic resetting. Two other hibonite-bearing CAIs occur in the R chondrites (NWA 1476 and NWA 2446), which appear to have experienced only minor degrees of thermal metamorphism. These inclusions could have formed from precursors with lower than canonical 26Al/ 27Al ratio.

  2. Isotope composition of winter precipitation and snow cover in the foothills of the Altai

    Directory of Open Access Journals (Sweden)

    N. S. Malygina

    2017-01-01

    Full Text Available Over the past three decades, several general circulation models of the atmosphere and ocean (atmospheric and oceanic general circulation models  – GCMs have been improved by modeling the hydrological cycle with the use of isotopologues (isotopes of water HDO and H2 18O. Input parameters for the GCM models taking into account changes in the isotope composition of atmospheric precipitation were, above all, the results obtained by the network GNIP – Global Network of Isotopes in Precipitation. At different times, on the vast territory of Russia there were only about 40 simultaneously functioning stations where the sampling of atmospheric precipitation was performed. In this study we present the results of the isotope composition of samples taken on the foothills of the Altai during two winter seasons of 2014/15 and 2015/16. Values of the isotope composition of precipitation changed in a wide range and their maximum fluctuations were 25, 202 and 18‰ for δ18О, dexc and δD, respectively. The weighted-mean values of δ18О and δD of the precipitation analyzed for the above two seasons were close to each other (−21.1 and −158.1‰ for the first season and −21.1 and −161.9‰ for the second one, while dexc values differed significantly. The comparison of the results of isotope analysis of the snow cover integral samples with the corresponding in the time interval the weighted-mean values of precipitation showed high consistency. However, despite the similarity of values of δ18О and δD, calculated for precipitation and snow cover, and the results, interpolated in IsoMAP (from data of the GNIP stations for 1960–2010, the dexc values were close to mean annual values of IsoMAP for only the second winter season. According to the trajectory analysis (the HYSPLIT model, the revealed differences between both, the seasons, and the long-term average values of IsoMAP, were associated with a change of main regions where the air masses

  3. The neodymium stable isotope composition of the silicate Earth and chondrites

    Science.gov (United States)

    McCoy-West, Alex J.; Millet, Marc-Alban; Burton, Kevin W.

    2017-12-01

    The non-chondritic neodymium (Nd) 142Nd/144Nd ratio of the silicate Earth potentially provides a key constraint on the accretion and early evolution of the Earth. Yet, it is debated whether this offset is due to the Earth being formed from material enriched in s-process Nd isotopes or results from an early differentiation process such as the segregation of a late sulfide matte during core formation, collisional erosion or a some combination of these processes. Neodymium stable isotopes are potentially sensitive to early sulfide segregation into Earth's core, a process that cannot be resolved using their radiogenic counterparts. This study presents the first comprehensive Nd stable isotope data for chondritic meteorites and terrestrial rocks. Stable Nd measurements were made using a double spike technique coupled with thermal ionisation mass spectrometry. All three of the major classes of chondritic meteorites, carbonaceous, enstatite and ordinary chondrites have broadly similar isotopic compositions allowing calculation of a chondritic mean of δ146/144Nd = -0.025 ± 0.025‰ (±2 s.d.; n = 39). Enstatite chondrites yield the most uniform stable isotope composition (Δ146/144Nd = 26 ppm), with considerably more variability observed within ordinary (Δ146/144Nd = 72 ppm) and carbonaceous meteorites (Δ146/144Nd = 143 ppm). Terrestrial weathering, nucleosynthetic variations and parent body thermal metamorphism appear to have little measurable effect on δ146/144Nd in chondrites. The small variations observed between ordinary chondrite groups most likely reflect inherited compositional differences between parent bodies, with the larger variations observed in carbonaceous chondrites being linked to varying modal proportions of calcium-aluminium rich inclusions. The terrestrial samples analysed here include rocks ranging from basaltic to rhyolitic in composition, MORB glasses and residual mantle lithologies. All of these terrestrial rocks possess a broadly similar Nd

  4. Elemental and isotopic fingerprint of Argentinean wheat. Matching soil, water, and crop composition to differentiate provenance.

    Science.gov (United States)

    Podio, Natalia S; Baroni, María V; Badini, Raúl G; Inga, Marcela; Ostera, Héctor A; Cagnoni, Mariana; Gautier, Eduardo A; García, Pilar Peral; Hoogewerff, Jurian; Wunderlin, Daniel A

    2013-04-24

    The aim of this study was to investigate if elemental and isotopic signatures of Argentinean wheat can be used to develop a reliable fingerprint to assess its geographical provenance. For this pilot study we used wheat cultivated at three different regions (Buenos Aires, Córdoba, and Entre Ríos), together with matching soil and water. Elemental composition was determined by ICP-MS. δ(13)C and δ(15)N were measured by isotopic ratio mass spectrometry, while (87)Sr/(86)Sr ratio was determined using thermal ionization mass spectrometry. Wheat samples from three sampling sites were differentiated by the combination of 11 key variables (K/Rb, Ca/Sr, Ba, (87)Sr/(86)Sr, Co, Mo, Zn, Mn, Eu, δ(13)C, and Na), demonstrating differences among the three studied regions. The application of generalized Procrustes analysis showed 99.2% consensus between cultivation soil, irrigation water, and wheat samples, in addition to clear differences between studied areas. Furthermore, canonical correlation analysis showed significant correlation between the elemental and isotopic profiles of wheat and those corresponding to both soil and water (r(2) = 0.97, p soil, water, and wheat samples using different statistical methods, showing that wheat elemental and isotopic compositions are mainly related to soil and irrigation water characteristics of the site of growth.

  5. Isotopic composition of strontium in volcanic rocks from oahu.

    Science.gov (United States)

    Powell, J L; Delong, S E

    1966-09-09

    Analysis of several well-documented specimens from each of the three volcanic series on Oahu gives the following mean ratios of Sr(87) to Sr(86): the Waianae series, 0.7030 +/- 0.00010 (sigma); the Koolau series, 0.70385+/- 0.00009 (sigma); and the Honolulu series, 0.7029 ++/- 0.00006 ( sigma). The mean ratio of Sr(87) to Sr(86) of the Koolau series specimens is significantly higher than the means of the other two series. With one exception, significant differences in Sr(87)/ Sr(86) within a series were not found, even though some large compositional differences existed.

  6. Testing alternative tectonic models of Palaeotethys in the E Mediterranean region: new U-Pb and Lu-Hf isotopic analyses of detrital zircons from Late Carboniferous and Late Triassic sandstones associated with the Anatolide and Tauride blocks (S Turkey)

    Science.gov (United States)

    Ustaömer, Timur; Ayda Ustaömer, Petek; Robertson, Alastair; Gerdes, Axel

    2016-04-01

    Alternative tectonic models of Palaeotethys during Late Palaeozoic-Early Mesozoic time infer: 1. southward subduction beneath the north margin of Gondwana; 2. northward subduction beneath the south margin of Eurasia, or 3. double subduction (northwards and southwards), at least during Late Carboniferous. U-Pb and Lu-Hf isotopic analysis of detrital zircons, extracted from sandstones, can provide strong indications of age and identity of source terranes. Here, we consider the provenance of both Late Carboniferous and Late Triassic sandstones from both relatively allochthonous and relatively autochthonous units that are all spatially associated with the Anatolide and Tauride continental blocks. The relatively allochthonous units are sandstones (3 samples) from the Late Carboniferous Aladaǧ Nappe (Tauride; in the east), the Konya Complex (Anatolide; central area) and the Karaburun Mélange (Tauride-related; in the west). The relatively autochthonous units are Late Triassic sandstones (4 samples) from the Üzümdere Formation, the Kasımlar Formation (both western Taurides) and the Güvercinlik Formation (Karaburun Peninsula-Tauride related; far west). The Late Carboniferous sandstones from the three relatively allochthonous units are dominated by Precambrian zircon populations, the age distribution of which suggests derivation from two contrasting source regions: First, a NE African-type source (i.e. Saharan craton) for the sandstones of the Konya Mélange and the Aladaǧ Nappe because these sediments have prominent zircon populations dated at 0.5-0.7, 0.8 and 0.9-1.1 Ga. Palaeozoic zircons are minimal in the sandstones of the Aladaǧ Nappe and the Konya Complex (3 and 5% of the whole data, respectively) and are confined to Cambrian to Ordovician. Secondly, a contrasting NW African-type source is inferred for sandstone from the Karaburun Mélange because of the marked absence of Tonian-Stenian zircons and the predominance of ~2 Ga zircons over ~2.5 Ga zircons. In

  7. Large discrepancies between garnet Lu-Hf and Sm-Nd isochron ages: the problem of inherited Hf

    Science.gov (United States)

    Raimondo, Tom; Payne, Justin; Hand, Martin; Clark, Chris; Anczkiewicz, Robert

    2017-04-01

    A commonly observed phenomenon in garnet geochronology is that Lu-Hf isochron ages are consistently older than Sm-Nd ages from the same sample, a relationship explained by differences in closure temperature and REE zoning that are then used as the basis for constraining mineral growth and/or cooling rates. We report Lu-Hf and Sm-Nd age discrepancies of up to 40 Myr from three samples of garnet-chlorite-magnetite schist from the Walter-Outalpa Shear Zone, Curnamona Province, South Australia. Lu-Hf and Sm-Nd isochron ages vary between 531-515 Ma and 500-479 Ma, respectively, spanning the entire duration of the 514-490 Ma Delamerian Orogeny. U-Pb monazite ages from matrix-hosted grains are within error of the youngest Sm-Nd ages (c. 480 Ma), whereas monazite inclusions in garnet return age estimates coeval with the oldest Sm-Nd age (c. 500 Ma). LA-ICP-MS trace element mapping reveals that Nd is strongly partitioned into garnet rims for samples with the youngest ages, suggesting that REE zoning biases these estimates towards the latter stages of garnet growth. Conversely, Lu-Hf ages largely reflect Hf distributions that are strongly concentrated in core domains, most likely representing the earlier timing of garnet nucleation in prograde zoned grains. However, all samples contain zircon present either as a matrix accessory phase or as inclusions in garnet, often as micron-scale grains difficult to detect without detailed SEM/LA-ICP-MS imaging. This calls into question the implicit assumption that the Lu-Hf isochron has an initial gradient of zero, i.e. that the 176Hf/177Hf ratio of newly grown garnet is in equilibrium with the whole rock composition. We demonstrate that this assumption is invalid in circumstances where the whole-rock Hf budget is dominated by minerals that do not enter diffusional exchange with garnet, a common occurrence in metapelitic and felsic rocks that contain significant amounts of inherited zircon. Such problems are exacerbated by mineral

  8. Hydrogen isotope composition of leaf wax n-alkanes in Arabidopsis lines with different transpiration rates

    Science.gov (United States)

    Pedentchouk, N.; Lawson, T.; Eley, Y.; McAusland, L.

    2012-04-01

    Stable isotopic compositions of oxygen and hydrogen are used widely to investigate modern and ancient water cycles. The D/H composition of organic compounds derived from terrestrial plants has recently attracted significant attention as a proxy for palaeohydrology. However, the role of various plant physiological and biochemical factors in controlling the D/H signature of leaf wax lipids in extant plants remains unclear. The focus of this study is to investigate the effect of plant transpiration on the D/H composition of n-alkanes in terrestrial plants. This experiment includes 4 varieties of Arabidopsis thaliana that differ with respect to stomatal density and stomatal geometry. All 4 varieties were grown indoors under identical temperature, relative humidity, light and watering regimes and then sampled for leaf wax and leaf water stable isotopic measurements. During growth, stomatal conductance to carbon dioxide and water vapour were also determined. We found that the plants varied significantly in terms of their transpiration rates. Transpiration rates were significantly higher in Arabidopsis ost1 and ost1-1 varieties (2.4 and 3.2 mmol m-2 s-1, respectively) than in Arabidopsis RbohD and Col-0 (1.5 and 1.4). However, hydrogen isotope measurements of n-alkanes extracted from leaf waxes revealed a very different pattern. Varieties ost1, ost1-1, and RbohD have very similar deltaD values of n-C29 alkane (-125, -128, and -127 per mil), whereas the deltaD value of Col-0 is more negative (-137 per mil). The initial results of this work suggest that plant transpiration is decoupled from the D/H composition of n-alkanes. In other words, physical processes that affect water vapour movement between the plant and its environment apparently cannot account for the stable hydrogen isotope composition of organic compounds that comprise leaf waxes. Additional, perhaps biochemical, processes that affect hydrogen isotope fractionation during photosynthesis might need to be invoked

  9. Modelling the isotopic composition of snow using backward trajectories : a particular precipitation event in Dronning Maud Land, Antarctica

    NARCIS (Netherlands)

    Helsen, MM; Van de Wal, RSW; Van den Broeke, MR; Kerstel, ERT; Masson-Delmotte, [No Value; Meijer, HAJ; Reijmer, CH; Scheele, MP; Jacka, J

    2004-01-01

    We consider a specific accumulation event that occurred in January 2002 in western Dronning Maud Land, Antarctica. Snow samples were obtained a few days after accumulation. We combine meteorological analyses and isotopic modelling to describe the isotopic composition of moisture during transport.

  10. The effects of growth phase and salinity on the hydrogen isotopic composition of alkenones produced by coastal haptophyte algae

    NARCIS (Netherlands)

    Chivall, D.; M'Boule, D.; Sinke-Schoen, D.; Sinninghe Damsté, J.S.; Schouten, S.; van der Meer, M.T.J.

    2014-01-01

    The isotopic fractionation of hydrogen during the biosynthesis of alkenones produced by marine haptophyte algae has been shown to depend on salinity and, as such, the hydrogen isotopic composition of alkenones is emerging as a palaeosalinity proxy. The relationship between fractionation and salinity

  11. Comprehensive analysis for major, minor and trace element contents and Sr-Nd-Pb-Hf isotope ratios in sediment reference materials, JSd-1 and MAG-1

    Digital Repository Service at National Institute of Oceanography (India)

    Nath, B.N.; Makishima, A.; Noordmann, J.; Tanaka, R.; Nakamura, E.

    -internal standardization (ID-IS) methods. The aliquot of the sample solution was passed through 3-step column chemistry for isotope ratio determination of Pb by multiple collector (MC) ICP-MS and thermal ionization mass spectrometry (TIMS), and Sr and Nd by TIMS. For Group...

  12. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    DEFF Research Database (Denmark)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.

    2017-01-01

    of the specific carbon atom sites was determined using positionspecific isotope analysis (PSIA). The PSIA analysis showed variations at individual positions from -6.9 to +10:5% relative to the bulk composition. SOA was formed from α-pinene and ozone in a constant-flow chamber under dark, dry, and low......-NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100....... The observation of a number of components that occurred across the full range of desorption temperatures suggests that they are generated by thermal decomposition of oligomers. The isotopic composition of SOA was more or less independent of desorption temperature above 100 °C. TC analysis showed that SOA...

  13. In-situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Science.gov (United States)

    Röckmann, Thomas; Eyer, Simon; van der Veen, Carina; E Popa, Maria; Tuzson, Béla; Monteil, Guillaume; Houweling, Sander; Harris, Eliza; Brunner, Dominik; Fischer, Hubertus; Zazzeri, Giulia; Lowry, David; Nisbet, Euan G.; Brand, Willi A.; Necki, Jaroslav M.; Emmenegger, Lukas; Mohn, Joachim

    2017-04-01

    High precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS) based technique for in-situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in-situ, high-frequency (approx. hourly) measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of +0.05 ± 0.03 ‰ for δ13C-CH4 and -3.6 ± 0.4 ‰ for δD-CH4. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high precision and temporal resolution dataset does not only reveal the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site, but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget, when they are performed at multiple sites that are representative for the entire European

  14. In situ observations of the isotopic composition of methane at the Cabauw tall tower site

    Directory of Open Access Journals (Sweden)

    T. Röckmann

    2016-08-01

    Full Text Available High-precision analyses of the isotopic composition of methane in ambient air can potentially be used to discriminate between different source categories. Due to the complexity of isotope ratio measurements, such analyses have generally been performed in the laboratory on air samples collected in the field. This poses a limitation on the temporal resolution at which the isotopic composition can be monitored with reasonable logistical effort. Here we present the performance of a dual isotope ratio mass spectrometric system (IRMS and a quantum cascade laser absorption spectroscopy (QCLAS-based technique for in situ analysis of the isotopic composition of methane under field conditions. Both systems were deployed at the Cabauw Experimental Site for Atmospheric Research (CESAR in the Netherlands and performed in situ, high-frequency (approx. hourly measurements for a period of more than 5 months. The IRMS and QCLAS instruments were in excellent agreement with a slight systematic offset of (+0.25 ± 0.04 ‰ for δ13C and (−4.3 ± 0.4 ‰ for δD. This was corrected for, yielding a combined dataset with more than 2500 measurements of both δ13C and δD. The high-precision and high-temporal-resolution dataset not only reveals the overwhelming contribution of isotopically depleted agricultural CH4 emissions from ruminants at the Cabauw site but also allows the identification of specific events with elevated contributions from more enriched sources such as natural gas and landfills. The final dataset was compared to model calculations using the global model TM5 and the mesoscale model FLEXPART-COSMO. The results of both models agree better with the measurements when the TNO-MACC emission inventory is used in the models than when the EDGAR inventory is used. This suggests that high-resolution isotope measurements have the potential to further constrain the methane budget when they are performed at multiple sites that are representative for

  15. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Directory of Open Access Journals (Sweden)

    T. J. Griffis

    2016-04-01

    Full Text Available Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle – an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL over a 3-year period (2010 to 2012. These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from −40.2 to −15.9 ‰ and δ2Hv ranged from −278.7 to −113.0 ‰ and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( >  25 mmol mol−1

  16. Investigating the source, transport, and isotope composition of water vapor in the planetary boundary layer

    Science.gov (United States)

    Griffis, Timothy J.; Wood, Jeffrey D.; Baker, John M.; Lee, Xuhui; Xiao, Ke; Chen, Zichong; Welp, Lisa R.; Schultz, Natalie M.; Gorski, Galen; Chen, Ming; Nieber, John

    2016-04-01

    Increasing atmospheric humidity and convective precipitation over land provide evidence of intensification of the hydrologic cycle - an expected response to surface warming. The extent to which terrestrial ecosystems modulate these hydrologic factors is important to understand feedbacks in the climate system. We measured the oxygen and hydrogen isotope composition of water vapor at a very tall tower (185 m) in the upper Midwest, United States, to diagnose the sources, transport, and fractionation of water vapor in the planetary boundary layer (PBL) over a 3-year period (2010 to 2012). These measurements represent the first set of annual water vapor isotope observations for this region. Several simple isotope models and cross-wavelet analyses were used to assess the importance of the Rayleigh distillation process, evaporation, and PBL entrainment processes on the isotope composition of water vapor. The vapor isotope composition at this tall tower site showed a large seasonal amplitude (mean monthly δ18Ov ranged from -40.2 to -15.9 ‰ and δ2Hv ranged from -278.7 to -113.0 ‰) and followed the familiar Rayleigh distillation relation with water vapor mixing ratio when considering the entire hourly data set. However, this relation was strongly modulated by evaporation and PBL entrainment processes at timescales ranging from hours to several days. The wavelet coherence spectra indicate that the oxygen isotope ratio and the deuterium excess (dv) of water vapor are sensitive to synoptic and PBL processes. According to the phase of the coherence analyses, we show that evaporation often leads changes in dv, confirming that it is a potential tracer of regional evaporation. Isotope mixing models indicate that on average about 31 % of the growing season PBL water vapor is derived from regional evaporation. However, isoforcing calculations and mixing model analyses for high PBL water vapor mixing ratio events ( > 25 mmol mol-1) indicate that regional evaporation can account

  17. The molybdenum isotopic compositions of I-, S- and A-type granitic suites

    Science.gov (United States)

    Yang, Jie; Barling, Jane; Siebert, Christopher; Fietzke, Jan; Stephens, Ed; Halliday, Alex N.

    2017-05-01

    This study reports Mo isotopic compositions for fifty-two Palaeozoic granitic rocks with contrasting source affinities (A-, I- and S-type) from the Lachlan Fold Belt (LFB) and the New England Batholith (NEB), both in SE Australia, and three compositionally zoned plutons (Loch Doon, Criffell, and Fleet) located in the Southern Uplands of Scotland. The results show relatively large variations in δ98Mo for igneous rocks ranging from -1.73‰ to 0.59‰ with significant overlaps between different types. No relationships between δ98Mo and δ18O or ASI (Alumina Saturation Index) are observed, indicating that Mo isotopes do not clearly distinguish igneous vs. sedimentary source types. Instead, effects of igneous processes, source mixing, regional geology, as well as hydrothermal activity control the Mo isotope compositions in these granites. It is found that Mo is mainly accommodated in biotite and to a lesser extent in hornblende. Hornblende and Fe3+-rich minerals may preferentially incorporate light isotopes, as reflected by negative correlations between δ98Mo and K/Rb and [Fe2O3]. There is a positive correlation between initial 87Sr/86Sr and δ98Mo in I-type granitic rocks, reflecting the admixing of material from isotopically distinct sources. Granitic rocks from Scotland and Australia display strikingly similar curvilinear trends in δ98Mo vs. initial 87Sr/86Sr despite the differing regional geology. Localized hydrothermal effects can result in low δ98Mo in granite, as seen in three samples from Loch Doon and Criffell which have anomalously light δ98Mo of <-1‰. Based on this study, an estimate of δ98Mo = 0.14 ± 0.07‰ (95% s.e.) for the Phanerozoic upper crust is proposed. This is slightly heavier than basalts indicating an isotopically light lower crust and/or a systematic change to the crust resulting from subduction of isotopically light dehydrated slab and/or pelagic sediment over time.

  18. Secular changes in the oxygen isotopic composition of Devonian biogenic apatite

    Science.gov (United States)

    Breisig, S.; Joachimski, M. M.; Buggisch, W.

    2003-04-01

    Oxygen isotopes are a key tool for quantifying temperature and salinity of ancient sea water. Initially, pristine skeletal carbonates (preferentially LMC) have been utilized to monitor variations in the oxygen isotopic composition of past oceans. A high preservation potential of the primordial isotopic signature may also be awarded to conodonts. These microfossils consist of fluor-apatite (francolite) with a dense microcrystalline structure and therefore are comparatively insensitive with regard to diagenetic overprinting. Because conodonts are frequent in Devonian rocks and widely used as index fossils, their application for oxygen isotope analysis is espe-cially promising for this specific geological time interval. Laser-based microsampling or high-temperature combustion techniques (TC/EA) allows us to analyse microsamples of conodont apatite (0.5 to 1 mg). The oxygen isotope measurements are performed on trisilverphosphate after dissolving conodont apatite (0.5 to 1 mg) in nitric acid and precipitating the phosphate group as Ag_3PO_4. Conodont samples from different locations in Germany (Rheinisches Schieferge-birge) and the Czech Republic (Prague Basin) as well as from the United States (Iowa) and Morocco (Anti-Atlas) have been analysed. δ18Oapatite values are presented for the Lochkovian, Middle and Late Devonian. δ18Oapatite values for the Lochkovian (Prague Basin) vary between 18.5 and 19.0 ppm (δ18Oapatite values given in V-SMOW). Assuming an oxygen isotopic composition for Devonian seawater of -1 ppm (ice-free world), the δ18Oapatite values translate into tem-peratures of 26^o to 28^oC for the tropical Lochkovian ocean. Eifelian to Givetian conodonts (Rheinisches Schiefergebirge, Prague Basin) show δ18Oapatite values from 18.5 to 20.4 ppm, corresponding to paleotemperatures of 20 to 28^o C. The Middle to Late Devonian transition is mainly documented by conodonts from Iowa with δ18Oapatite values of 18 to 20 ppm (21-30^o C). Conodont δ18Oapatite

  19. Mineralogy and Oxygen Isotope Compositions of an Unusual Hibonite-Perovskite Refractory Inclusion from Allende

    Science.gov (United States)

    Keller, L. P.; Snead, C.; Rahman, Z.; McKeegan, K. D.

    2012-01-01

    Hibonite-rich Ca- and Al-rich inclusions (CAIs) are among the earliest formed solids that condensed in the early nebula. We discovered an unusual refractory inclusion from the Allende CV3 chondrite (SHAL) containing an approx 500 micron long single crystal of hibonite and co-existing coarse-grained perovskite. The mineralogy and petrography of SHAL show strong similarities to some FUN inclusions, especially HAL. Here we report on the mineralogy, petrography, mineral chemistry and oxygen isotopic compositions in SHAL.

  20. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-11-01

    Rhyolites of the Picabo volcanic field (10.4-6.6 Ma) in eastern Idaho are preserved as thick ignimbrites and lavas along the margins of the Snake River Plain (SRP), and within a deep (>3 km) borehole near the central axis of the Yellowstone hotspot track. In this study we present new O and Hf isotope data and U-Pb geochronology for individual zircons, O isotope data for major phenocrysts (quartz, plagioclase, and pyroxene), whole rock Sr and Nd isotope ratios, and whole rock geochemistry for a suite of Picabo rhyolites. We synthesize our new datasets with published Ar-Ar geochronology to establish the eruptive framework of the Picabo volcanic field, and interpret its petrogenetic history in the context of other well-studied caldera complexes in the SRP. Caldera complex evolution at Picabo began with eruption of the 10.44±0.27 Ma (U-Pb) Tuff of Arbon Valley (TAV), a chemically zoned and normal-δ18O (δ18O magma=7.9‰) unit with high, zoned 87Sr/86Sri (0.71488-0.72520), and low-ɛNd(0) (-18) and ɛHf(0) (-28). The TAV and an associated post caldera lava flow possess the lowest ɛNd(0) (-23), indicating ˜40-60% derivation from the Archean upper crust. Normal-δ18O rhyolites were followed by a series of lower-δ18O eruptions with more typical (lower crustal) Sr-Nd-Hf isotope ratios and whole rock chemistry. The voluminous 8.25±0.26 Ma West Pocatello rhyolite has the lowest δ18O value (δ18Omelt=3.3‰), and we correlate it to a 1,000 m thick intracaldera tuff present in the INEL-1 borehole (with published zircon ages 8.04-8.35 Ma, and similarly low-δ18O zircon values). The significant (4-5‰) decrease in magmatic-δ18O values in Picabo rhyolites is accompanied by an increase in zircon δ18O heterogeneity from ˜1‰ variation in the TAV to >5‰ variation in the late-stage low-δ18O rhyolites, a trend similar to what is characteristic of Heise and Yellowstone, and which indicates remelting of variably hydrothermally altered tuffs followed by rapid batch

  1. Crustal-scale recycling in caldera complexes and rift zones along the Yellowstone hotspot track: O and Hf isotopic evidence in diverse zircons from voluminous rhyolites of the Picabo volcanic field, Idaho

    Science.gov (United States)

    Drew, Dana L.; Bindeman, Ilya N.; Watts, Kathryn E.; Schmitt, Axel K.; Fu, Bin; McCurry, Michael

    2013-01-01

    Rhyolites of the Picabo volcanic field (10.4–6.6 Ma) in eastern Idaho are preserved as thick ignimbrites and lavas along the margins of the Snake River Plain (SRP), and within a deep (>3 km) borehole near the central axis of the Yellowstone hotspot track. In this study we present new O and Hf isotope data and U–Pb geochronology for individual zircons, O isotope data for major phenocrysts (quartz, plagioclase, and pyroxene), whole rock Sr and Nd isotope ratios, and whole rock geochemistry for a suite of Picabo rhyolites. We synthesize our new datasets with published Ar–Ar geochronology to establish the eruptive framework of the Picabo volcanic field, and interpret its petrogenetic history in the context of other well-studied caldera complexes in the SRP. Caldera complex evolution at Picabo began with eruption of the 10.44±0.27 Ma (U–Pb) Tuff of Arbon Valley (TAV), a chemically zoned and normal-δ18O (δ18O magma=7.9‰) unit with high, zoned 87Sr/86Sri (0.71488–0.72520), and low-εNd(0) (−18) and εHf(0) (−28). The TAV and an associated post caldera lava flow possess the lowest εNd(0) (−23), indicating ∼40–60% derivation from the Archean upper crust. Normal-δ18O rhyolites were followed by a series of lower-δ18O eruptions with more typical (lower crustal) Sr–Nd–Hf isotope ratios and whole rock chemistry. The voluminous 8.25±0.26 Ma West Pocatello rhyolite has the lowest δ18O value (δ18Omelt=3.3‰), and we correlate it to a 1,000 m thick intracaldera tuff present in the INEL-1 borehole (with published zircon ages 8.04–8.35 Ma, and similarly low-δ18O zircon values). The significant (4–5‰) decrease in magmatic-δ18O values in Picabo rhyolites is accompanied by an increase in zircon δ18O heterogeneity from ∼1‰ variation in the TAV to >5‰ variation in the late-stage low-δ18O rhyolites, a trend similar to what is characteristic of Heise and Yellowstone, and which indicates remelting of variably hydrothermally altered tuffs

  2. Limitations of the isotopic composition of nitrates as a tracer of their origin

    Science.gov (United States)

    Kloppmann, Wolfram; Mayer, Bernhard; Otero, Neus; Sebilo, Mathieu; Gooddy, Daren; Lapworth, Dan; Surridge, Ben; Petelet Giraud, Emmanuelle; Flehoc, Christine; Baran, Nicole

    2017-04-01

    Nitrogen and oxygen isotopes are traditionally considered and frequently used as tracers of nitrate sources in watersheds used for drinking water production. The enrichment of synthetic nitrate-containing fertilizers in 18O due to the contribution of atmospheric oxygen in the production process confers a specific isotopic fingerprint to mineral fertilizers. In spite of the still widespread use on nitrate-containing synthetic fertilizers, their characteristic N and O isotope signatures are rarely unambiguously observed in nitrate-contaminated groundwater. We postulate, in line with Mengis et al. (2001), that fertilizer-derived nitrate is not directly and rapidly transferred to groundwater but rather retained in the soil-plant system as organic N and then mineralized and re-oxidized (termed the mineralization-immobilization turnover, MIT) thereby re-setting the oxygen isotope composition of nitrate and also changing its N isotope ratios. We show examples from watersheds on diverse alluvial/clastic and carbonate aquifers in eastern and northern France where, in spite of the use of mineral fertilizers, evidenced also through other isotopic tracers (boron isotopes), both N and O-isotope ratios are very homogeneous and compatible with nitrification of ammonium where 2/3 of oxygen is derived from soil water and 1/3 from atmospheric O2. These field data are corroborated by lysimeter data from Canada. Even if in areas where ammonium is derived from chemical fertilizers, N values still tend to be lower than in areas where ammonium is derived from manure/sewage, this is clearly a limitation to the dual isotope method (N, O) for nitrate source identification, but has important implications for the nitrogen mobility and residence time in soils amended with synthetic fertilizers (Sebilo et al., 2013). Mengis M., Walther U., Bernasconi S. M., Wehrli B. (2001) Limitations of Using δ18O for the Source Identification of Nitrate in Agricultural Soils. Environmental Science

  3. Geochemical, zircon U-Pb and Hf isotopic study on metabasalt in the Cathaysia Block: Implications of Paleozoic migmatization of Precambrian crustal and mantle materials in South China

    Science.gov (United States)

    Zeng, Wen; Zhou, Hanwen; Li, Zheng-Xiang; Fitzsimons, Ian C. W.; Zhong, Zengqiu; Xiang, Hua; Liu, Rui; Jin, Song

    2017-04-01

    Metamorphic rocks scattered in northeastern Cathaysia Block experienced upper-amphibolite to granulite facies metamorphism. This study focuses on the mafic metamorphic rocks (including biotite-amphibolite and amphibolite) found in migmatite. The whole rock geochemical characteristics of ten mafic metamorphic rock samples suggest that their protoliths are subalkaline basalts, including tholeiites and calc-alkaline basalts resemble those in E-MORB, within-plate and volcanic-arc tectonic settings. Eighty zircon grains from three representative samples (samples FJ39-1, FJ61-3 and FJ125-4) were picked for geochronology analyses. Cathodo-luminescence images show that most zircons are elongated subhedral to eueuhedral crystals with oscillatory zoning. Some of them are surrounded by thin, homogeneous luminescent overgrowth rims, which may present a later thermal event. LA-ICP-MS analyses indicate that most analyzed zircon grains have high Th/U ratios (0.16-1.41, n = 69) and yield U-Pb zircon ages of 444 ± 3 Ma (FJ39-1), 445 ± 2 Ma (FJ61-3), 448 ± 3 Ma and 473 ± 4 Ma (FJ125-4), respectively for each sample. The Hf model ages calculated for these zircons ranges from ˜3613 to ˜853 Ma with ɛHf(t) values from -20.0 to +7.1; zircons with model ages of 1121-853 Ma show positive ɛHf(t) values (+0.2 - +7.1). This implies that the protoliths of the mafic metamorphic rocks contain diverse basalts erupted in various tectonic settings during the Precambrian, rather than being Ordovician new crustal addition. The data suggest that there could be an Archaean basement component in the Cathaysia Block and the basement possibly had crustal additions during the Meso- to Neoproterozoic. The zircon U-Pb ages of the mafic metamorphic rocks are the same as those of leucosomes (471 ± 4 Ma and 445 ± 3 Ma). The metamorphic P-T conditions are constrained by the zircon Ti-content thermometer, the Amp-Pl thermobarometer and mineral stability fields of titanite and garnet to be 722-779

  4. Tracking nitrous oxide emission processes at a suburban site with semicontinuous, in situ measurements of isotopic composition

    Science.gov (United States)

    Harris, Eliza; Henne, Stephan; Hüglin, Christoph; Zellweger, Christoph; Tuzson, Béla; Ibraim, Erkan; Emmenegger, Lukas; Mohn, Joachim

    2017-02-01

    The isotopic composition of atmospheric nitrous oxide (N2O) was measured semicontinuously, at ˜35 min frequency in intermittent periods of 1-6 days over one and a half years, using preconcentration coupled to a quantum cascade laser spectrometer at the suburban site of Dübendorf, Switzerland. The achieved measurement repeatability was 0.08‰, 0.11‰, and 0.10‰ for δ18O, site preference, and δ15Nbulk respectively, which is better than or equal to standard flask sampling-based isotope ratio mass spectrometry performance. The observed mean diurnal cycle reflected the buildup of N2O from isotopically light sources on an isotopically heavy tropospheric background. The measurements were used to determine the source isotopic composition, which varied significantly compared to chemical and meteorological parameters monitored at the site. FLEXPART-COSMO transport modeling in combination with modified Emissions Database for Global Atmospheric Research inventory emissions was used to model N2O mole fractions at the site. Additionally, isotopic signatures were estimated for different source categories using literature data and used to simulate N2O isotopic composition over the measurement period. The model was able to capture variability in N2O mole fraction well, but simulations of isotopic composition showed little agreement with observations. In particular, measured source isotopic composition exhibited one magnitude larger variability than simulated, clearly indicating that the range of isotopic source signatures estimated from literature significantly underestimates true variability of source signatures. Source δ18O signature was found to be the most sensitive tracer for urban/industry versus agricultural N2O. δ15Nbulk and site preference may provide more insight into microbial and chemical emission processes than partitioning of anthropogenic source categories.

  5. LU-HF Age of Martian Meteorite Larkman Nunatek 06319

    Science.gov (United States)

    Shafer, J. T.; Brandon, A. D.; Lapen, T. J.; Righter, M.; Beard, B.; Peslier, A. H.

    2009-01-01

    Lu-Hf isotopic data were collected on mineral separates and bulk rock powders of LAR 06319, yielding an age of 197+/- 29 Ma. Sm-Nd isotopic data and in-situ LA-ICP-MS data from a thin section of LAR 06319 are currently being collected and will be presented at the 2009 LPSC. These new data for LAR 06319 extend the existing data set for the enriched shergottite group. Martian meteorites represent the only opportunity for ground truth investigation of the geochemistry of Mars [1]. At present, approximately 80 meteorites have been classified as Martian based on young ages and distinctive isotopic signatures [2]. LAR 06319 is a newly discovered (as part of the 2006 ANSMET field season) martian meteorite that represents an important opportunity to further our understanding of the geochemical and petrological constraints on the origin of Martian magmas. Martian meteorites are traditionally categorized into the shergottite, nakhlite, and chassignite groups. The shergottites are further classified into three distinct isotopic groups designated depleted, intermediate, and enriched [3,4] based on the isotope systematics and compositions of their source(s).

  6. Probing Upper Mantle Heterogeneity: Os and Pb Isotopic Compositions of Individual Sulfide Grains in Abyssal Peridotites

    Science.gov (United States)

    Warren, J. M.; Shirey, S. B.

    2008-12-01

    Abyssal peridotites from mid-ocean ridges are unique samples of the depleted upper mantle that can be used to understand a variety of processes from melting and melt extraction to the compositional evolution of the interior of the earth. Traditional work on abyssal peridotites has focused on either bulk rock compositions or on the compositions of clinopyroxenes, which are the main repository of trace elements in these rocks. However, recent (e.g., Alard et al., 2000; Luguet et al., 2003; Harvey et al., 2006) and previous (Meijer, 1980; Morgan, 1985) works on peridotites have indicated that Fe-Ni-Cu sulfides, present at trace levels in abyssal peridotites, may contain a significant proportion of both the Pb and Os budget of the upper mantle. As the isotopic compositions of Pb and Os provide important information about the long term evolution of the mantle, analysis of single sulfide grains can provide unique information not available from basalt or whole-rock peridotite studies: the spatial scale is small compared to basaltic melt sampling, adjacent silicate mineralogy can be evaluated, and secondary sulfide and alteration minerals can be avoided. Thus, while sulfides represent chalcopyrite. We have adapted single grain sulfide techniques from studies of sulfide inclusions in diamonds, to allow us to extract Os, Pb and transition metals from sulfides down to 5 μg. Os concentrations in pentlandites are ~0.4-5 ppm, 2-3 orders of magnitude higher than bulk rock abyssal peridotite concentrations. In contrast, chalcopyrites, associated with veins in the peridotites, do not contain measurable quantities of Os. Preliminary Pb data indicates that pentlanditic sulfides have Pb concentrations close to ~9 ppm. 187Os/188Os isotopic compositions range from 0.1209 to 0.1278 in sulfides away from hotspots, typical of depleted mantle and in agreement with the depleted Sr and Nd isotopic composition of clinopyroxenes from the same samples. To date, we have not found any anomalously

  7. The oxygen isotope composition of nitrate generated by nitrification in acid forest floors

    Science.gov (United States)

    Mayer, Bernhard; Bollwerk, Sandra M.; Mansfeldt, Tim; Hütter, Birgit; Veizer, Jan

    2001-08-01

    The oxygen isotope composition of nitrate is used increasingly for identifying the origin of nitrate in terrestrial and aquatic ecosystems. This novel isotope tracer technique is based on the fact that nitrate in atmospheric deposition, in fertilizers, and nitrate generated by nitrification in soils appear to have distinct oxygen isotope ratios. While the typical ranges of δ18O values of nitrate in atmospheric deposition and fertilizers are comparatively well known, few experimental data exist for the oxygen isotope composition of nitrate generated by nitrification in soils. The objective of this study was to determine δ18O values of nitrate formed by microbial nitrification in acid forest floors. Evidence from laboratory incubation experiments and field studies suggests that during microbial nitrification in acid forest floor horizons, up to two of the three oxygen atoms in newly formed nitrate are derived from water, particularly if ammonium is abundant and nitrification rates are high. It was, however, also observed that in ammonium-limited systems with low nitrification rates, significantly less than two thirds of the oxygen in newly formed nitrate can be derived from water oxygen, presumably as a result of heterotrophic nitrification. It can be concluded from the presented data that the δ18O values of nitrate formed by microbial nitrification in acid forest floors typically range between +2 and +14‰, assuming that soil water δ18O values vary between -15 and -5‰. Hence, oxygen isotope ratios of nitrate formed by nitrification in forest floors are usually distinct from those of other nitrate sources such as atmospheric deposition and synthetic fertilizers and, therefore, constitute a valuable qualitative tracer for distinguishing among these sources of nitrate. A quantitative source apportionment appears, however, difficult because of the wide range of δ18O values, particularly for atmospheric nitrate deposition and for nitrate from microbial

  8. Discrimination of the Cigarettes Geographical Origin by DRC-ICP-MS Measurements of Pb Isotope Compositions

    Science.gov (United States)

    Guo, W.; Hu, S.; Jin, L.

    2014-12-01

    Trace Pb are taken up with the same isotopic ratios as is present in the source soil, and the isotopic composition of Pb could used to reflect these sources and provide powerful indicators of the geographic origin of agriculture products derived from vegetative matter. We developed a simple and high throughput method, which based on DRC-ICP-MS for determination of Pb isotope ratios for discriminating the geographic origin of cigarettes. After acid digestion procedure, the cigarette digested solutions were directly analyzed by ICP-QMS with a DRC pressurized by the non-reactive gas Ne. In the DRC, Ne molecules collision with Pb ions and improves Pb isotope ratios precision 3-fold, which may be due to the collisional dampling smoothes out the ion beam fluctuations. Under the optimum DRC rejection parameter Q (RPq = 0.45), the main matrix components (K, Na, Ca, Mg, Al, Fe etc.) originating from cigarettes were filtered out. Mass discrimination of 208Pb/206Pb ratio in Ne DRC mode increased 0.3% compared to the standard mode, the mass bias due to the in-cell Ne gas collision can be accurately corrected by NIST 981 Pb isotope standard. This method was verified by a tobacco reference material CTV-OTL-2. Results of 208Pb/206Pb and 207Pb/206Pb were 2.0848 ± 0.0028 (2δ) and 0.8452 ± 0.0011 (2δ) for CTA-VTL-2, which were agreed with the literature values (208Pb/206Pb = 2.0884 ± 0.0090 and 207Pb/206Pb = 0.8442 ± 0.0032). The precision of Pb isotope ratios (208Pb/206Pb and 207Pb/206Pb) for the cigarette samples are ranged from 0.01 to 0.08% (N = 5). It has sufficient precision to discriminate 91 different brand cigarettes originated from four different geographic regions (Shown in Fig).

  9. Ca. 890 Ma magmatism in the northwest Yangtze block, South China: SIMS U-Pb dating, in-situ Hf-O isotopes, and tectonic implications

    Science.gov (United States)

    Zhou, Jiu-Long; Li, Xian-Hua; Tang, Guo-Qiang; Gao, Bing-Yu; Bao, Zhi-An; Ling, Xiao-Xiao; Wu, Li-Guang; Lu, Kai; Zhu, Yu-Sheng; Liao, Xin

    2018-01-01

    Early Neoproterozoic tectonics of the Yangtze block remains poorly understood because very limited igneous records are available from the time interval of ∼1000-870 Ma. In this paper, our new SIMS U-Pb dating results demonstrate that the Liushudian mafic intrusion and Pinghe alkaline complex in the northwest Yangtze block were emplaced at 888 ± 6 Ma and 891 ± 7 Ma, respectively, representing the products of a ∼890 Ma igneous event. Gabbros from the Liushudian intrusion have rather depleted zircon ɛHf(t) (mean = 10.4) and normal mantle-like zircon δ18O (mean = 5.97‰). Their parental magma was thus probably derived from asthenospheric mantle. Geochemically, these mafic rocks have an affinity to continental flood tholeiitic basalts rather than ocean island basalts, as previously thought. In contrast, an ijolite sample from the Pinghe complex has less depleted zircon ɛHf(t) (mean = 5.7) and anomalously high zircon and apatite δ18O (mean = 13.76‰ and 13.80‰, respectively). Such a characteristic δ18O signal, among the highest yet known for igneous zircons, could be either inherited from a magma source in metasomatized lithospheric mantle or acquired by assimilation of high-δ18O supracrustal materials (e.g., limestone, chert) during magma evolution. An intra-plate extensional environment is suggested for the ∼890 Ma igneous event in the northwest Yangtze block, although it is as yet unclear whether this igneous event is related to a mantle plume or not. It could be concluded that magmatism on the western periphery of the Yangtze block was not shut down between ∼1000 and ∼870 Ma, and the ∼890 Ma intra-plate igneous event may mark either the onset of Neoproterozoic continental rifting or the ending of Late Mesoproterozoic to Early Neoproterozoic lithospheric extension.

  10. Assessing the ability of isotope-enabled General Circulation Models to simulate the variability of Iceland water vapor isotopic composition

    Science.gov (United States)

    Erla Sveinbjornsdottir, Arny; Steen-Larsen, Hans Christian; Jonsson, Thorsteinn; Ritter, Francois; Riser, Camilla; Messon-Delmotte, Valerie; Bonne, Jean Louis; Dahl-Jensen, Dorthe

    2014-05-01

    During the fall of 2010 we installed an autonomous water vapor spectroscopy laser (Los Gatos Research analyzer) in a lighthouse on the Southwest coast of Iceland (63.83°N, 21.47°W). Despite initial significant problems with volcanic ash, high wind, and attack of sea gulls, the system has been continuously operational since the end of 2011 with limited down time. The system automatically performs calibration every 2 hours, which results in high accuracy and precision allowing for analysis of the second order parameter, d-excess, in the water vapor. We find a strong linear relationship between d-excess and local relative humidity (RH) when normalized to SST. The observed slope of approximately -45 o/oo/% is similar to theoretical predictions by Merlivat and Jouzel [1979] for smooth surface, but the calculated intercept is significant lower than predicted. Despite this good linear agreement with theoretical calculations, mismatches arise between the simulated seasonal cycle of water vapour isotopic composition using LMDZiso GCM nudged to large-scale winds from atmospheric analyses, and our data. The GCM is not able to capture seasonal variations in local RH, nor seasonal variations in d-excess. Based on daily data, the performance of LMDZiso to resolve day-to-day variability is measured based on the strength of the correlation coefficient between observations and model outputs. This correlation coefficient reaches ~0.8 for surface absolute humidity, but decreases to ~0.6 for δD and ~0.45 d-excess. Moreover, the magnitude of day-to-day humidity variations is also underestimated by LMDZiso, which can explain the underestimated magnitude of isotopic depletion. Finally, the simulated and observed d-excess vs. RH has similar slopes. We conclude that the under-estimation of d-excess variability may partly arise from the poor performance of the humidity simulations.

  11. Isotopic Composition of the Neolithic Alpine Iceman's Tooth Enamel and Clues to his Origin

    Science.gov (United States)

    Muller, W.; Muller, W.; Halliday, A. N.

    2001-12-01

    Five small enamel fragments from three teeth of the upper right jaw from the mummy of the Neolithic Alpine Iceman have been investigated for their isotopic composition in order to shed light on his geographic origins. Soils from approximately contemporaneous sites were sampled for comparison. Tooth enamel forms ontogenetically very early and is not re-mineralized during later lifetime (unlike with bone material). Therefore, unique insights into the Iceman's childhood can be acquired. Enamel also is the densest tissue of a human body and is thus less susceptible to post-mortem alteration. Both radiogenic (Sr, Pb, Nd) and stable isotopes (O, C) are investigated. Radiogenic isotopes allow reconstruction of the local geological background, because humans incorporate Sr, Pb and Nd from their local environment by eating local food. Stable isotopes provide information about altitude and/or position relative to the main Alpine watershed. High spatial-resolution laser-ablation ICPMS profiles reveal that most elements are distributed in a manner that is essentially similar to modern human teeth except of that La, Ce, Nd (LREE) show up to a 100-fold enrichment towards the outer enamel surface. These uptake-profiles may reflect interaction with melt water, consistent with data for the composition of samples of the Iceman's skin. Biogenic apatites (enamel, bone) have very low in-vivo LREE concentrations, but take up LREEs post-mortem from the burial environment. Ice core samples from the finding site show concentrations up to 400 ppt Ce. Such high uptake of the LREEs precludes the derivation of an in-vivo Nd isotopic signal, but both other radiogenic tracers, Sr and Pb, show pristine (in-vivo) concentrations of 87 ppm and 0.1 ppm, respectively. Strontium isotopic compositions were determined on fragments from the canine, the first and second premolar (1 - 9 mg) and two hip bone samples, utilizing three sequential leaching steps for each sample to detect possible alteration

  12. Uranium isotope composition of a laterite profile during extreme weathering of basalt in Guangdong, South China

    Science.gov (United States)

    Huang, J.; Zhou, Z.; Gong, Y.; Lundstrom, C.; Huang, F.

    2015-12-01

    Rock weathering and soil formation in the critical zone are important for material cycle from the solid Earth to superficial system. Laterite is a major type of soil in South China forming at hot-humid climate, which has strong effect on the global uranium cycle. Uranium is closely related to the environmental redox condition because U is stable at U(Ⅳ) in anoxic condition and U(Ⅵ) as soluble uranyl ion (UO22+) under oxic circumstance. In order to understand the behavior of U isotopes during crust weathering, here we report uranium isotopic compositions of soil and base rock samples from a laterite profile originated from extreme weathering of basalt in Guangdong, South China. The uranium isotopic data were measured on a Nu Plasma MC-ICP-MS at the University of Illinois at Urbana-Champaign using the double spike method. The δ238U of BCR-1 is -0.29±0.03‰ (relative to the international standard CRM-112A), corresponding to a 238U/235U ratio of 137.911±0.004. Our result of BCR-1 agrees with previous analyses (e.g., -0.28‰ in Weyer et al. 2008) [1]. U contents of the laterite profile decrease from 1.9 ppm to 0.9 ppm with depth, and peak at 160 - 170 cm (2.3 ppm), much higher than the U content of base rocks (~0.5 ppm). In contrary, U/Th of laterites is lower than that of base rock (0.27) except the peak at the depth of 160-170 cm (0.38), indicating significant U loss during weathering. Notably, U isotope compositions of soils show a small variation from -0.38 to -0.28‰, consistent with the base rock within analytical error (0.05‰ to 0.08‰, 2sd). Such small variation can be explained by a "rind effect" (Wang et al., 2015) [2], by which U(Ⅳ) can be completely oxidized to U(VI) layer by layer during basalt weathering by dissolved oxygen. Therefore, our study indicates that U loss during basalt weathering at the hot-humid climate does not change U isotope composition of superficial water system. [1] Weyer S. et al. (2008) Natural fractionation of 238U/235

  13. U-Pb zircon, geochemical and Sr-Nd-Hf isotopic constraints on the age and origin of Early Palaeozoic I-type granite from the Tengchong-Baoshan Block, Western Yunnan Province, SW China

    Science.gov (United States)

    Liu, Shen; Hu, RuiZhong; Gao, Shan; Feng, CaiXia; Huang, Zhilong; Lai, Shaocong; Yuan, Honglin; Liu, Xiaoming; Coulson, Ian M.; Feng, Guangying; Wang, Tao; Qi, YouQiang

    2009-09-01

    Herein we present new U-Pb zircon ages, whole-rock geochemical data and Nd-Sr-Hf isotopic data for an Early Palaeozoic monzogranite batholith from the Tengchong-Baoshan Block, Western Yunnan Province, China. Mineralogical and geochemical features suggest that this granitoid is a high-K, calc-alkaline, I-type granite. SHRIMP and laser ablation ICP-MS (LA-ICP-MS) analysis of zircon yields ages of between 499 ± 5 Ma and 502 ± 5 Ma, for three samples from the batholith. The monzogranite is characterised by high initial 87Sr/ 86Sr (0.7132-0.7144), negative ɛNd( t) (-9.7 to -9.40) and ɛHf( t) (-10 to -13.1), and is interpreted to derive from remelting of pre-existing Palaeoproterozoic, high-K, metabasaltic rocks of the upper crust. The granitoid magma underwent extensive fractional crystallisation of biotite ± hornblende, ilmenite, titanite, K-feldspar and plagioclase during emplacement. The crystallisation temperature of the magma lies in the range 633-733 °C, however, there is no evidence to suggest crustal assimilation occurred during its ascent. Like the ˜500 Ma, I-type granite of this study, there occur numerous granitoid rocks of Early Palaeozoic age (490-470 Ma) in adjacent regions across the entire Tengchong-Baoshan Block ( Chen et al., 2004, 2005; Song et al., 2007). This episode of plutonism is coeval with the widespread granitoid magmatism found throughout the Indian Plate and the Himalayan Orogenic Belt that are both subordinate parts of the ancient, Gondwana supercontinent. We infer, therefore, that the Tengchong-Baoshan Block may also have formed part of Gondwana, and that it separated from this supercontinent along with other crustal blocks during the Late Palaeozoic. Moreover, based on the findings of this study, we document the occurrence of arc-related magmatism in the Tengchong-Baoshan Block during the late Palaeoproterozoic.

  14. Paleo- to Eoarchean crustal evolution in eastern Hebei, North China Craton: New evidence from SHRIMP U-Pb dating and in-situ Hf isotopic study of detrital zircons from paragneisses

    Science.gov (United States)

    Liu, Shoujie; Wan, Yusheng; Sun, Huiyi; Nutman, Allen P.; Xie, Hangqiang; Dong, Chunyan; Ma, Mingzhu; Liu, Dunyi; Jahn, Bor-ming

    2013-12-01

    In the Caozhuang complex in eastern Hebei, North China Craton, the Paleo- to Eoarchean crustal evolution was earlier revealed by the preservation of detrital zircon grains older than (or as old as) 3.8 Ga in fuchsite-quartzite. In order to test if the Eoarchean antiquity is also preserved in rocks other than the fuchsite quartzite, we collected two paragneisses, a hornblende gneiss and a garnet-biotite gneiss, from Huangbaiyu village and dated their detrital zircon grains. The zircon dating of the hornblende gneiss yielded concordant 207Pb/206Pb ages ranging from 3684 to 3354 Ma. However, an older date of 3782 Ma with 18% discordancy was also obtained. Detrital zircon grains from the garnet-biotite gneiss gave a similar 207Pb/206Pb age range, from 3838 to 3342 Ma. The metamorphic domains of the zircon grains from both samples, including the strongly recrystallized cores and rims, recorded an overprinting metamorphism at ca. 2.5 Ga, which correlates with the most widespread tectono-thermal event in the North China Craton. In situ zircon Hf-isotope analyses on the dated zircon grains yielded a wide range of model ages (TDM1) from 4.0 to 3.3 Ga with corresponding ɛHf(T) from -36.0 to +4.8. This suggests that the evolution of the crustal segment in this area has involved multiple phases of juvenile crustal addition as well as recycling of older crustal rocks. The new geochronological results imply the presence of a significant amount of Eoarchean crustal fragments in the eastern Hebei area. The sedimentary protoliths of the paragneisses and other high-grade metamorphic rocks in the Caozhuang complex were probably deposited between 3.4 and 2.5 Ga.

  15. The isotope composition of inorganic germanium in seawater and deep sea sponges

    Science.gov (United States)

    Guillermic, Maxence; Lalonde, Stefan V.; Hendry, Katharine R.; Rouxel, Olivier J.

    2017-09-01

    Although dissolved concentrations of germanium (Ge) and silicon (Si) in modern seawater are tightly correlated, uncertainties still exist in the modern marine Ge cycle. Germanium stable isotope systematics in marine systems should provide additional constraints on marine Ge sources and sinks, however the low concentration of Ge in seawater presents an analytical challenge for isotopic measurement. Here, we present a new method of pre-concentration of inorganic Ge from seawater which was applied to measure three Ge isotope profiles in the Southern Ocean and deep seawater from the Atlantic and Pacific Oceans. Germanium isotopic measurements were performed on Ge amounts as low as 2.6 ng using a double-spike approach and a hydride generation system coupled to a MC-ICP-MS. Germanium was co-precipitated with iron hydroxide and then purified through anion-exchange chromatography. Results for the deep (i.e. >1000 m depth) Pacific Ocean off Hawaii (nearby Loihi Seamount) and the deep Atlantic off Bermuda (BATS station) showed nearly identical δ74/70Ge values at 3.19 ± 0.31‰ (2SD, n = 9) and 2.93 ± 0.10‰ (2SD, n = 2), respectively. Vertical distributions of Ge concentration and isotope composition in the deep Southern Ocean for water depth > 1300 m yielded an average δ74/70Ge = 3.13 ± 0.25‰ (2SD, n = 14) and Ge/Si = 0.80 ± 0.09 μmol/mol (2SD, n = 12). Significant variations in δ74/70Ge, from 2.62 to 3.71‰, were measured in the first 1000 m in one station of the Southern Ocean near Sars Seamount in the Drake Passage, with the heaviest values measured in surface waters. Isotope fractionation by diatoms during opal biomineralization may explain the enrichment in heavy isotopes for both Ge and Si in surface seawater. However, examination of both oceanographic parameters and δ74/70Ge values suggest also that water mass mixing and potential contribution of shelf-derived Ge also could contribute to the variations. Combining these results with new Ge isotope data

  16. Possible effects of diagenesis on the stable isotope composition of amino acids in carbonaceous meteorites

    Science.gov (United States)

    Engel, Michael H.

    2015-09-01

    The initial report of indigenous, non-racemic protein amino acids (L-enantiomer excess) in the Murchison meteorite was based on the fact that only eight of the twenty amino acids characteristic of all life on Earth was present in this stone1. The absence of the other protein amino acids indicated that contamination subsequent to impact was highly unlikely. The development of new techniques for determining the stable isotope composition of individual amino acid enantiomers in the Murchison meteorite further documented the extraterrestrial origins of these compounds2,3. The stable isotope approach continues to be used to document the occurrence of an extraterrestrial L-enantiomer excess of protein amino acids in other carbonaceous meteorites4. It has been suggested that this L-enantiomer excess may result from aqueous reprocessing on meteorite parent bodies4,5. Preliminary results of simulation experiments are presented that are used to determine the extent to which the stable isotope compositions of amino acid constituents of carbonaceous meteorites may have been altered by these types of diagenetic processes subsequent to synthesis.

  17. RECONSTRUCTION OF PAST CLIMATE BASING ON THE ISOTOPIC COMPOSITION OF CARBON FROM FOSSIL REMAINS

    Directory of Open Access Journals (Sweden)

    Vladimir Nikolaev

    2012-01-01

    Full Text Available The areas of Northern Eurasia and the Far North regions with a sharply continental climate are of particular interest to paleoclimatologists. The nature of these areas preserves many features of the Late Glacial period. However, the reliability of the classical paleoclimatic methods in these areas is low. It is known that climate may affect the δ13C value of plants, causing isotopic variations of up to 3‰. The authors propose to use the carbon isotope compositions of bone carbonate of herbivorous animals as a paleoclimatic indicator for the Polar Regions.To test the potential of the proposed paleoclimatic indicator, the authors studied the carbon isotopic composition of carbonate of bone (reliably dated by the radiocarbon method of Late Pleistocene mammals (mammoth mostly from the area of the Lena River delta—the New Siberian Islands—Oyagossky Yar (the total of 43 samples. These data suggest that the Late Pleistocene climate in North Yakutia was not stable. Instability was expressed in the sharp, short-term (500–2000 years, occasional episodes of relatively warm climate that may be ranked as interstadials based on their intensity.

  18. Tracing the secular evolution of the UCC using the iron isotope composition of ancient glacial diamictites

    Science.gov (United States)

    Liu, X. M.; Gaschnig, R. M.; Rudnick, R. L.; Hazen, R. M.; Shahar, A.

    2015-12-01

    Iron is the fourth most abundant element in the continental crust and influences global climate and biogeochemical cycles in the ocean1. Continental inputs, including river waters, sediments and atmospheric dust are dominant sources (>95%) of iron into the ocean2. Therefore, understanding how continental inputs may have changed through time is important in understanding the secular evolution of the marine Fe cycle. We analysed the Fe isotopic composition of twenty-four glacial diamictite composites, upper continental crust (UCC) proxies, with ages ranging from the Mesoarchean to the Paleozoic eras to characterize the secular evolution of the UCC. The diamictites all have elevated chemical index of alteration (CIA) and other characteristics of weathered regolith (e.g., strong depletion in soluble elements such as Sr), which they inherited from their upper crustal source region3. δ56Fe in the diamictite composites range from -0.59 to +0.23‰, however, most diamictites cluster with an average δ56Fe of 0.11± 0.20 (2s), overlapping juvenile continental material such as island arc basalts (IABs), which show a narrow range in δ56Fe from -0.04 to +0.14 ‰4. There is no obvious correlation between δ56Fe of the glacial diamictites and the CIA, except that the diamictite with the lowest δ56Fe at -0.59 ‰ also has the highest CIA = 89 (the Paleoproterozoic Makganyene Fm.). The data suggest that the Fe isotope compositions in the upper continental crust did not vary throughout Earth history. Interestingly, chemical weathering and sedimentary transport likely play only a minor role in producing Fe isotope variations in the upper continental crust. Anoxic weathering pre-GOE (Great Oxidation Event) does not seem to generate different Fe isotopic signatures from the post-GOE oxidative weathering environment in the upper continental crust. Therefore, large Fe isotopic fractionations observed in various marine sedimentary records are likely due to other processes occurring

  19. Iron isotopic compositions of adakitic and non-adakitic granitic magmas: Magma compositional control and subtle residual garnet effect

    Science.gov (United States)

    He, Yongsheng; Wu, Hongjie; Ke, Shan; Liu, Sheng-Ao; Wang, Qiang

    2017-04-01

    Here we present iron (Fe) isotopic compositions of 51 well-characterized adakitic and non-adakitic igneous rocks from the Dabie orogen, Central China and Panama/Costa Rica, Central America. Twelve I-type non-adakitic granitoid samples from the Dabie orogen yield δ56Fe ranging from -0.015‰ to 0.184‰. The good correlations between δ56Fe and indices of magma differentiation (e.g., SiO2, FeOt, Mg#, and Fe3+/ΣFe) suggest Fe2+-rich silicate and oxide minerals dominated fractional crystallization with Δ56Femelt-crystal ∼ 0.06‰ may account for the δ56Fe variation in these samples. One A-type granite sample from the Dabie orogen has δ56Fe as high as 0.447‰, likely indicating less magnetite crystallization and an increase in 103lnβmelt with magma (Na + K)/(Ca + Mg). Combined with the literature data, most high silica (SiO2 ⩾ 71 wt.%) granitic rocks define a good positive linear correlation between δ56Fe and (Na + K)/(Ca + Mg): δ56Fe = 0.0062‰ × (Na + K)/(Ca + Mg) + 0.130‰ (R2 = 0.66). Given that fractional crystallization also tends to increase δ56Fe with (Na + K)/(Ca + Mg), this correlation can serve as the maximum estimate of the magma compositional control on Fe isotope fractionation. Low-Mg adakitic samples (LMA) have δ56Fe ranging from 0.114‰ to 0.253‰. The melt compositional control on LMA δ56Fe could be insignificant due to their limited (Na + K)/(Ca + Mg) variation. Except for one sample that may be affected by late differentiation, 14 out of 15 LMA have δ56Fe increasing with (Dy/Yb)N, reflecting a subtle but significant effect of residual garnet proportion. This serves as evidence for that source mineralogy may play an important role in fractionating Fe isotopes during partial melting. Dabie and Central America high-Mg adakitic samples have homogeneous Fe isotopic compositions with mean δ56Fe of 0.098 ± 0.038‰ (2SD, N = 11) and 0.085 ± 0.045‰ (2SD, N = 11), respectively. These samples have undergone melt-mantle interaction

  20. Chlorine isotopic compositions of deep saline fluids in Ibusuki coastal geothermal region, Japan : using B–Cl isotopes to interpret fluid sources

    NARCIS (Netherlands)

    Musashi, Masaaki; Oi, Takao; Kreulen, Rob

    2015-01-01

    We report chlorine stable isotopic compositions (δ37Cl, expressed in ‰ relative to the standard mean ocean chloride) as well as δ2H and δ18O values of deep saline fluids taken at eight drill-holes reaching from 73 to 780 m below sea level in the Ibusuki coastal geothermal region, Japan. Analytical

  1. Mid-Neoproterozoic intraplate magmatism in the northern margin of the Southern Granulite Terrane, India: Constraints from geochemistry, zircon U-Pb geochronology and Lu-Hf isotopes

    Science.gov (United States)

    Deeju, T. R.; Santosh, M.; Yang, Qiong-Yan; Pradeepkumar, A. P.; Shaji, E.

    2016-11-01

    The northern margin of the Southern Granulite Terrane in India hosts a number of mafic, felsic and alkaline magmatic suites proximal to major shear/paleo-suture zones and mostly represents magmatism in rift-settings. Here we investigate a suite of gabbros and granite together with intermediate (dioritic) units generated through mixing and mingling of a bimodal magmatic suite. The massive gabbro exposures represent the cumulate fraction of a basic magma whereas the granitoids represent the product of crystallization in felsic magma chambers generated through crustal melting. Diorites and dioritic gabbros mostly occur as enclaves and lenses within host granitoids resembling mafic magmatic enclaves. Geochemistry of the felsic units shows volcanic arc granite and syn-collisional granite affinity. The gabbro samples show mixed E-MORB signature and the magma might have been generated in a rift setting. The trace and REE features of the rocks show variable features of subduction zone enrichment, crustal contamination and within plate enrichment, typical of intraplate magmatism involving the melting of source components derived from both depleted mantle sources and crustal components derived from older subduction events. The zircons in all the rock types show magmatic crystallization features and high Th/U values. Their U-Pb data are concordant with no major Pb loss. The gabbroic suite yields 206Pb/238U weighted mean ages in the range of 715 ± 4-832.5 ± 5 Ma marking a major phase of mid Neoproterozoic magmatism. The diorites crystallized during 206Pb/238U weighted mean age of 724 ± 6-830 ± 2 Ma. Zircons in the granite yield 206Pb/238U weighted mean age of 823 ± 4 Ma. The age data show broadly similar age ranges for the mafic, intermediate and felsic rocks and indicate a major phase of bi-modal magmatism during mid Neoproterozoic. The zircons studied show both positive and negative εHf(t) values for the gabbros (-6.4 to 12.4), and negative values for the diorites (-7

  2. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    Science.gov (United States)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.

    2017-06-01

    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  3. High temporal resolution measurements of the isotopic composition of CH4 at the Lutjewad station, The Netherlands

    Science.gov (United States)

    Röckmann, Thomas; van der Veen, Carina; Chen, Huilin; Scheeren, Bert

    2017-04-01

    Isotope measurements can help constraining the atmospheric budget of the greenhouse gas methane (CH4) because different sources emit CH4 with slightly different isotopic composition. In the past, high precision isotope measurements have primarily been carried out by isotope ratio mass spectrometry on flask samples that are usually collected at relatively low temporal resolution. We have recently developed a fully automated gas chromatography - isotope ratio mass spectrometry system (GC-IRMS) for autonomous and unattended CH4 isotope measurements (δD and δ13C) in the field. The first deployment at the Cabauw Experimental Site for Atmospheric Research (CESAR) indicated that CH4 emissions from fossil fuel sources are overestimated in this region [1]. To further exploit the potential of this approach, the in situ system has been installed in November 2016 at the Lutjewad atmospheric monitoring and sampling site in the North of the Netherlands. This site is expected to sample also emissions from the large Groningen gas fields. The isotope measurements are expected to allow distinguishing these emissions from the agricultural emissions, which are also strong in this region. We will present the results from these ongoing measurements of δD and δ13C in CH4.. 1. Röckmann, T., et al., In situ observations of the isotopic composition of methane at the Cabauw tall tower site, Atmos. Chem. Phys., 2016. 16: 10469-10487.

  4. Tracing Altiplano-Puna plateau surface uplift via radiogenic isotope composition of Andean arc lavas

    Science.gov (United States)

    Scott, E. M.; Allen, M. B.; Macpherson, C.; McCaffrey, K. J. W.; Davidson, J.; Saville, C.

    2016-12-01

    We have compiled published geochemical data for Jurassic to Holocene Andean arc lavas from 5oN to 47oS, covering the current extent of the northern, central and southern volcanic zones. Using this dataset we evaluate the spatial and temporal evolution of age corrected Sr- and Nd-radiogenic isotopes in arc lavas at a continental-scale, in order to understand the tectonic and surface uplift histories of the Andean margin. It has long been noted that baseline 87Sr/86Sr and 143Nd/144Nd ratios of Quaternary lavas from the central volcanic zone, located within the Altiplano-Puna plateau, are distinct from volcanic rocks to the north and south. This is commonly attributed to greater crustal thickness, which increases to roughly twice that of the average continental crust within the Altiplano-Puna plateau. By comparing 87Sr/86Sr and 143Nd/144Nd ratios in Quaternary lavas to published crustal thickness models, present day topography and the compositions of basement terranes, we note that Sr- and Nd-isotope values of Quaternary lavas are an effective proxy for present day regional elevation. In contrast, variation in basement terranes has only a small, second order effect on isotopic composition at the scale of our study. Using this isotopic proxy, we infer the spatial extent of the plateau and its surface uplift history from the Jurassic to the present. Our results concur with a crustal thickening model of continued surface uplift, which initiated in the Altiplano, with deformation propagating southwards into the Puna throughout the Neogene and then continuing in central Chile and Argentina up to the present day.

  5. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China

    Science.gov (United States)

    Pang, J.; Wen, X.; Sun, X.

    2016-12-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ13C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ13C and the isotopic composition of source CO2 (δ13CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ13C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ13C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83 ± 14.11% and 86.84 ± 12.27% and that natural gas had average contributions of 16.17 ± 14.11% and 13.16 ± 12.27%, respectively. The δ13C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ13C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing.

  6. Altitude effect on leaf wax carbon isotopic composition in humid tropical forests

    Science.gov (United States)

    Wu, Mong Sin; Feakins, Sarah J.; Martin, Roberta E.; Shenkin, Alexander; Bentley, Lisa Patrick; Blonder, Benjamin; Salinas, Norma; Asner, Gregory P.; Malhi, Yadvinder

    2017-06-01

    The carbon isotopic composition of plant leaf wax biomarkers is commonly used to reconstruct paleoenvironmental conditions. Adding to the limited calibration information available for modern tropical forests, we analyzed plant leaf and leaf wax carbon isotopic compositions in forest canopy trees across a highly biodiverse, 3.3 km elevation gradient on the eastern flank of the Andes Mountains. We sampled the dominant tree species and assessed their relative abundance in each tree community. In total, 405 sunlit canopy leaves were sampled across 129 species and nine forest plots along the elevation profile for bulk leaf and leaf wax n-alkane (C27-C33) concentration and carbon isotopic analyses (δ13C); a subset (76 individuals, 29 species, five forest plots) were additionally analyzed for n-alkanoic acid (C22-C32) concentrations and δ13C. δ13C values display trends of +0.87 ± 0.16‰ km-1 (95% CI, r2 = 0.96, p families, suggesting the biochemical response to environment is robust to taxonomic turnover. We calculate fractionations and compare to adiabatic gradients, environmental variables, leaf wax n-alkane concentrations, and sun/shade position to assess factors influencing foliar chemical response. For the 4 km forested elevation range of the Andes, 4-6‰ higher δ13C values are expected for upland versus lowland C3 plant bulk leaves and their n-alkyl lipids, and we expect this pattern to be a systematic feature of very wet tropical montane environments. This elevation dependency of δ13C values should inform interpretations of sedimentary archives, as 13C-enriched values may derive from C4 grasses, petrogenic inputs or upland C3 plants. Finally, we outline the potential for leaf wax carbon isotopes to trace biomarker sourcing within catchments and for paleoaltimetry.

  7. Mixing ratio and carbon isotopic composition investigation of atmospheric CO2 in Beijing, China.

    Science.gov (United States)

    Pang, Jiaping; Wen, Xuefa; Sun, Xiaomin

    2016-01-01

    The stable isotope composition of atmospheric CO2 can be used as a tracer in the study of urban carbon cycles, which are affected by anthropogenic and biogenic CO2 components. Continuous measurements of the mixing ratio and δ(13)C of atmospheric CO2 were conducted in Beijing from Nov. 15, 2012 to Mar. 8, 2014 including two heating seasons and a vegetative season. Both δ(13)C and the isotopic composition of source CO2 (δ(13)CS) were depleted in the heating seasons and enriched in the vegetative season. The diurnal variations in the CO2 mixing ratio and δ(13)C contained two peaks in the heating season, which are due to the effects of morning rush hour traffic. Seasonal and diurnal patterns of the CO2 mixing ratio and δ(13)C were affected by anthropogenic emissions and biogenic activity. Assuming that the primary CO2 sources at night (22:00-04:00) were coal and natural gas combustion during heating seasons I and II, an isotopic mass balance analysis indicated that coal combustion had average contributions of 83.83±14.11% and 86.84±12.27% and that natural gas had average contributions of 16.17±14.11% and 13.16±12.27%, respectively. The δ(13)C of background CO2 in air was the main error source in the isotopic mass balance model. Both the mixing ratio and δ(13)C of atmospheric CO2 had significant linear relationships with the air quality index (AQI) and can be used to indicate local air pollution conditions. Energy structure optimization, for example, reducing coal consumption, will improve the local air conditions in Beijing. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. The Influence of Source Biases on Sedimentary Leaf Waxes and Their Stable Isotope Compositions

    Science.gov (United States)

    Diefendorf, A. F.; Freimuth, E. J.; Lowell, T. V.; Wiles, G. C.

    2015-12-01

    Leaf waxes and their carbon (δ13C) and hydrogen (δD) isotopic compositions are an important tool to understand past changes in paleoclimate and paleovegetation. Important recent advances in our understanding about the isotopic signal preserved in sedimentary leaf waxes have been inferred from studies made on individual modern plants. However, paleoreconstructions are based on sedimentary leaf waxes, which reflect mixing between multiple sources, such as ablated leaf waxes from nearby or from afar, wind blown leaf litter, and riverine transported leaf waxes. Each of these sources integrates leaf waxes from different species and growth forms, likely resulting in source-specific taphonomic biases on sedimentary leaf wax isotopes. To better understand source biases in sedimentary leaf waxes, we investigated n-alkanes and n-alkanoic acids and their carbon and hydrogen isotopes in vegetation and lake sediments at Brown's Lake and Bog, a 'simple' forested closed-basin lake in northeastern Ohio. Interestingly, we found that tree n-alkane δD varied substantially during the growing season, broadly tracking changes in source water composition. However, δD values of n-alkanes in the tree leaf litter did not match that of the most recent sedimentary n-alkanes. Instead, surface sediment n-alkane δD more closely matched that of the woody shrubs and grasses growing right around the lake. n-Alkanoic acid data is forthcoming. We are currently exploring lake sediment n-alkane accumulation rates against midwestern flux rates of wind blown leaf waxes from afar. Our preliminary results suggest that although studies made on individual leaves are indeed important, we may need to consider additional leaf wax sources that potentially influence sedimentary archives.

  9. Iron isotope composition of particles produced by UV-femtosecond laser ablation of natural oxides, sulfides, and carbonates.

    Science.gov (United States)

    d'Abzac, Francois-Xavier; Beard, Brian L; Czaja, Andrew D; Konishi, Hiromi; Schauer, James J; Johnson, Clark M

    2013-12-17

    The need for femtosecond laser ablation (fs-LA) systems coupled to MC-ICP-MS to accurately perform in situ stable isotope analyses remains an open question, because of the lack of knowledge concerning ablation-related isotopic fractionation in this regime. We report the first iron isotope analysis of size-resolved, laser-induced particles of natural magnetite, siderite, pyrrhotite, and pyrite, collected through cascade impaction, followed by analysis by solution nebulization MC-ICP-MS, as well as imaging using electron microscopy. Iron mass distributions are independent of mineralogy, and particle morphology includes both spheres and agglomerates for all ablated phases. X-ray spectroscopy shows elemental fractionation in siderite (C-rich agglomerates) and pyrrhotite/pyrite (S-rich spheres). We find an increase in (56)Fe/(54)Fe ratios of +2‰, +1.2‰, and +0.8‰ with increasing particle size for magnetite, siderite, and pyrrhotite, respectively. Fe isotope differences in size-sorted aerosols from pyrite ablation are not analytically resolvable. Experimental data are discussed using models of particles generation by Hergenröder and elemental/isotopic fractionation by Richter. We interpret the isotopic fractionation to be related to the iron condensation time scale, dependent on its saturation in the gas phase, as a function of mineral composition. Despite the isotopic variations across aerosol size fractions, total aerosol composition, as calculated from mass balance, confirms that fs-LA produces a stoichiometric sampling in terms of isotopic composition. Specifically, both elemental and isotopic fractionation are produced by particle generation processes and not by femtosecond laser-matter interactions. These results provide critical insights into the analytical requirements for laser-ablation-based stable isotope measurements of high-precision and accuracy in geological samples, including the importance of quantitative aerosol transport to the ICP.

  10. Lu-Hf and Sm-Nd garnet geochronology

    DEFF Research Database (Denmark)

    Smit, Matthijs Arjen; Scherer, Erik E.; Mezger, Klaus

    2013-01-01

    To investigate the systematics of the 176Lu–176Hf and 147Sm–143Nd garnet chronometers, we performed REE and isotope analyses on garnet crystals of different size (0.55–3.1 mm radius) from a single granulite specimen (Archean Pikwitonei Granulite Domain, Manitoba, Canada). The Lu–Hf dates...

  11. Isotopic composition of snow and ice on the glaciers of Novaya Zemlya

    Directory of Open Access Journals (Sweden)

    V. N. Mikhalenko

    2017-01-01

    Full Text Available In 2015–2016 during the research expeditions of Institute of Oceanology, Russian Academy of Sciences the study of stable water isotopes (18O and D was conducted on glaciers of Novaya Zemlya. As a result, first data on isotopic composition of seasonal snow cover and glacial ice of different ages were obtained and its connection to recent climate change has been shown. The first studies of the isotopic composition of snow cover and glacial ice at Novaya Zemlya allowed determine the average values and the range of variability of δ18O and δD. It shown that for the Northern ice cap glacial ice δ18O vary within −13.91 ÷ −15.83 ‰ with an average value of −14.93 ‰ and −103,95 ÷ −116.75 ‰ for δD at −109.88 ‰ mean value. The maximum variations were recorded for summer snow samples (−8.35 ‰ for δ18O and −55.79 ‰ for δD, as well as for the horizon of superimposed ice (−20.67 ‰ for δ18O and −151.48 ‰ for δD where isotopic composition has been inherited from winter precipitation. Insignificant differences in the coefficients of the meteoric water regression equation for precipitation on GNIP stations and glacial ice at Novaya Zemlya indicate similar conditions of air masses and precipitation formation both at GNIP station and on glaciers. Deuterium excess showed no seasonal fluctuations, and its values did not exceed 15 ‰, which shows that the proportion of continental precipitation of moisture is very low. Analysis of isotopic profiles obtained on the glaciers of Novaya Zemlya indicated the presence of significant melting. This applies not only to the modern shallow horizons, but also to the part of the glacial strata that formed in the highest part of the archipelago close to ice divide and came to the surface at the Serp i Molot Glacier tongue. Therefore, in terms of ice core palaeogeographic reconstructions the most interesting site is the highest part of the Northern ice cap where it is possible to assume

  12. Sulfide in the core and the Nd isotopic composition of the silicate Earth

    Science.gov (United States)

    McCoy-West, A.; Millet, M. A.; Nowell, G. M.; Wohlers, A.; Wood, B. J.; Burton, K. W.

    2016-12-01

    The chemical composition of the Earth is traditionally explained in terms of evolution from a solar-like composition, similar to that found in primitive chondritic meteorites. It now appears, however, that the silicate Earth is not chondritic, but depleted in incompatible elements and a resovable 20 ppm excess is observed in 142Nd relative to chondirtes [1, 2]. This anomaly requires a process that occurred within 30 Myr of solar system formation and has been variably ascribed to: a complementary enriched reservoir in the deep Earth [1]; loss to space through collisional erosion [3]; or the inhertence of nucleosynthetic anomalies [4]. Sulfide in the core may provide a reservoir capable of balancing the composition of the silicate Earth. Recent experimental work suggests that the core contains a significant proportion of sulfide, added during the final stages of accretion and new data suggests that at high pressures sulfide can incorporate a substantial amount of refractory lithophile and heat-producing elements [5]. The drawback of the short-lived 146Sm-142Nd radiogenic isotope system is that it is not possible to distinguish between fractionations of Sm/Nd that occurs during silicate melting or segregation of a sulfide-melt. Neodymium stable isotopes have the potential to provide just such a tracer of sulfide segregation, because there is a significant contrast in bonding environment between sulfide and silicate, where heavy isotopes should be preferentially incorporated into high force-constant bonds involving REE3+ (i.e. the silicate mantle). Preliminary data indicate that mantle rocks do indeed possess heavier 146Nd/144Nd values than chondritic meteorites by 0.3 ‰, consistent with the removal of light Nd into sulfide in the core, driving the residual mantle to heavier values. Overall, our isotope and elemental data indicate that the rare earths and other incompatible elements are substantially incorporated into sulfide. While Nd stable isotope data for

  13. Titanium isotopic compositions of rare presolar SiC grain types from the Murchison meteorite

    Science.gov (United States)

    Nguyen, Ann N.; Nittler, Larry R.; Alexander, Conel M. O'D.; Hoppe, Peter

    2018-01-01

    We report the Ti isotopic compositions of 8 mainstream, 22 Y, 9 Z, and 26 AB presolar SiC grains from two SiC-rich residues of the Murchison CM2 meteorite together with Si, C and some Mg-Al isotopic data for the same grains. Mainstream, Y and Z grains are believed to originate in asymptotic giant branch (AGB) stars of varying metallicities, but the stellar sources of AB grains are poorly understood. We find that the 46,47,49Ti/48Ti ratios are correlated with 29Si/28Si for all of the grain types, indicating that these ratios are mainly dominated by Galactic chemical evolution (GCE). The mainstream, Y and Z grains all show enrichments in 50Ti from neutron capture nucleosynthesis. However, AGB models predict smaller excesses in 50Ti (and 49Ti) than are observed in these grains. For Z grains and especially for Y grains, the enhancement of 50Ti is greater than the enhancement in 30Si, indicating that the 13C neutron source produced a greater total fluence of neutrons than the 22Ne source in the low metallicity parent AGB stars. The Z grains plot below the mainstream correlation lines at more 48Ti- and 28Si-rich compositions in plots of 46,47,49Ti/48Ti vs. 29Si/28Si. On the other hand, the Y grains plot close to the mainstream correlation line. This could imply that the Ti isotopes evolved non-linearly at metallicities below ∼1/3 solar. The AB grains in this study have Ti isotopic compositions that fall along correlation lines defined by the mainstream grains, suggesting origins in close to solar metallicity stars. However, these grains fall below the mainstream correlation lines in plots of 46,49,50Ti/48Ti vs. 29Si/28Si and do not show enhancements in 50Ti, indicating that their parent stars did not undergo significant s-process nucleosynthesis. These data support origins of AB grains in J-type C stars rather than born-again AGB stars that undergo s-process nucleosynthesis. AB grains that do not have 50Ti excesses may provide the best measure of Si and Ti isotope GCE

  14. Effect of amino acids on the precipitation kinetics and Ca isotopic composition of gypsum

    Science.gov (United States)

    Harouaka, Khadouja; Kubicki, James D.; Fantle, Matthew S.

    2017-12-01

    Stirred gypsum (CaSO4 · 2H2O) precipitation experiments (initial Ωgypsum = 2.4 ± 0.14, duration ≈ 1.0-1.5 h) were conducted in the presence of the amino acids glycine (190 μM), L-alanine (190 μM), D- and L-arginine (45 μM), and L-tyrosine (200 μM) to investigate the effect of simple organic compounds on both the precipitation kinetics and Ca isotopic composition of gypsum. Relative to abiotic controls, glycine, tyrosine, and alanine inhibited precipitation rates by ∼22%, 27%, and 29%, respectively, while L- and D-arginine accelerated crystal growth by ∼8% and 48%, respectively. With the exception of tyrosine, amino acid induced inhibition resulted in fractionation factors (αs-f) associated with precipitation that were no more than 0.3‰ lower than amino acid-free controls. In contrast, the tyrosine and D- and L-arginine experiments had αs-f values associated with precipitation that were similar to the controls. Our experimental results indicate that Ca isotopic fractionation associated with gypsum precipitation is impacted by growth inhibition in the presence of amino acids. Specifically, we propose that the surface-specific binding of amino acids to gypsum can change the equilibrium fractionation factor of the bulk mineral. We investigate the hypothesis that amino acids can influence the growth of gypsum at specific crystal faces via adsorption and that different faces have distinct fractionation factors (αface-fluid). Accordingly, preferential sorption of amino acids at particular faces changes the relative, face-specific mass fluxes of Ca during growth, which influences the bulk isotopic composition of the mineral. Density functional theory (DFT) calculations suggest that the energetic favorability of glycine sorption onto gypsum crystal faces occurs in the order: (1 1 0) > (0 1 0) > (1 2 0) > (0 1 1), while glycine sorption onto the (-1 1 1) face was found to be energetically unfavorable. Face-specific fractionation factors constrained by

  15. δ 18O of carbonate, quartz and phosphate from belemnite guards: implications for the isotopic record of old fossils and the isotopic composition of ancient seawater

    Science.gov (United States)

    Longinelli, Antonio; Iacumin, Paola; Ramigni, Michele

    2002-10-01

    Belemnite guards of Cretaceous and Jurassic age were found to contain varying amounts of quartz deposited both on the external surface and inside the rostrum. The oxygen isotopic composition of coexisting carbonate, quartz and phosphate from the same rostrum was measured according to well-established techniques. None of these compounds showed isotopic values in equilibrium with one another. Assuming δ18O values of the diagenetic water within the range of meteoric waters, the δ18O(SiO2) yield temperatures in agreement with the apparent secondary origin of this phase. The δ18O(CO32-) range, with a certain continuity, between -10.8 and +0.97 PDB-1 with most of the intermediate values being within the range of the carbonate isotopic values of Mesozoic fossils. The most positive isotopic results obtained from phosphate are close to +23/+24‰ (V-SMOW). They can hardly be related to a secondary origin of the phosphate, or to the presence of diagenetic effects, since these results are among the most positive ever measured on phosphate. As far as we know there is no widespread diagenetic process determining an 18O enrichment of phosphate. The very low concentration of phosphate did not allow the determination of its mineralogical composition. All the available δ18O(PO43-) values from belemnite and non-belemnite fossils of marine origin of Tertiary and Mesozoic age are reported along with the newly measured belemnites. The following conclusions may be drawn from the data reported: (1) the pristine oxygen isotope composition of fossil marine organisms (either carbonate or phosphate) may easily undergo fairly large changes because of oxygen isotope exchange processes with diagenetic water; this process is apparent even in the case of geologically recent fossils; (2) the δ18O(PO43-) of belemnite rostra seems to be, at least in the case of the most positive results, in isotopic equilibrium with environmental water because of the similarity between the results from

  16. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Science.gov (United States)

    Hemingway, Jordon D.; Rothman, Daniel H.; Rosengard, Sarah Z.; Galy, Valier V.

    2017-11-01

    Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC) chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E), a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO) analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  17. Technical note: An inverse method to relate organic carbon reactivity to isotope composition from serial oxidation

    Directory of Open Access Journals (Sweden)

    J. D. Hemingway

    2017-11-01

    Full Text Available Serial oxidation coupled with stable carbon and radiocarbon analysis of sequentially evolved CO2 is a promising method to characterize the relationship between organic carbon (OC chemical composition, source, and residence time in the environment. However, observed decay profiles depend on experimental conditions and oxidation pathway. It is therefore necessary to properly assess serial oxidation kinetics before utilizing decay profiles as a measure of OC reactivity. We present a regularized inverse method to estimate the distribution of OC activation energy (E, a proxy for bond strength, using serial oxidation. Here, we apply this method to ramped temperature pyrolysis or oxidation (RPO analysis but note that this approach is broadly applicable to any serial oxidation technique. RPO analysis directly compares thermal reactivity to isotope composition by determining the E range for OC decaying within each temperature interval over which CO2 is collected. By analyzing a decarbonated test sample at multiple masses and oven ramp rates, we show that OC decay during RPO analysis follows a superposition of parallel first-order kinetics and that resulting E distributions are independent of experimental conditions. We therefore propose the E distribution as a novel proxy to describe OC thermal reactivity and suggest that E vs. isotope relationships can provide new insight into the compositional controls on OC source and residence time.

  18. PORE-WATER ISOTOPIC COMPOSITION AND UNSATURATED-ZONE FLOW, YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Yang

    2000-10-23

    Site characterization at Yucca Mountain, Nevada, the site of a potential high-level radioactive waste repository, has included studies of recharge, flow paths, percolation flux, perched water bodies, and chemical compositions of the water in the thick unsaturated zone (UZ). Samples of pore water from cores of two recently drilled boreholes, USW SD-6 near the ridge top of Yucca Mountain and USW WT-24 north of Yucca mountain, were analyzed for isotopic compositions as part of a study by the US Geological Survey (USGS), in cooperation with the US Department of Energy, under Interagency Agreement DE-AI08-97NV12033. The purpose of this report is to interpret {sup 14}C, {delta}{sup 13}C, {sup 3}H, {delta}D and {delta}{sup 18}O isotopic compositions of pore water from the core of boreholes USW SD-6 and USW WT-24 in relation to sources of recharge and flow paths in the UZ at Yucca Mountain. Borehole designation USW SD-6 and USW WT-24 subsequently will be referred to as SD-6 and WT-24. The sources of recharge and flow paths are important parameters that can be used in a UZ flow model, total system performance assessment (TSPA), and the license application (LA) for the potential repository at Yucca Mountain.

  19. The Late Paleozoic magmatic evolution of the Aqishan-Yamansu belt, Eastern Tianshan: Constraints from geochronology, geochemistry and Sr-Nd-Pb-Hf isotopes of igneous rocks

    Science.gov (United States)

    Zhao, Liandang; Chen, Huayong; Zhang, Li; Zhang, Weifeng; Yang, Juntao; Yan, Xuelu

    2018-03-01

    The Aqishan-Yamansu belt in the Eastern Tianshan (Xinjiang, NW China) is an important mineralization belt. The belt mainly comprises Carboniferous volcanic, volcaniclastic and clastic rocks, and hosts many intermediate-felsic intrusions and Fe (-Cu) deposits. The biotite diorite, felsic brecciated tuff, granodiorite and syenite from the western Aqishan-Yamansu belt are newly zircon U-Pb dated to be 316.7 ± 1.4 Ma, 315.6 ± 2.6 Ma, 305.8 ± 1.9 Ma and 252.5 ± 1.4 Ma, respectively. The mafic rocks (mafic brecciated tuff and diabase porphyry) are tholeiitic to calc-alkaline series, LILE-rich (e.g., Rb, Ba and Pb), HFSE-depleted (e.g., Nb and Ta), and have high Mg#(44-60), Nb/Ta (15.0-20.0), Ba/La (>30) and Ba/Nb (>57) values/ratios, and low Th/Yb ratios (2.10) and positive εNd(t) (>5.7), combined with variable Nb/Ta ratios (9.52-21.4), Y/Nb ratios (1.47-39.7) and Pb isotopes (206Pb/204Pb = 16.225-17.640, 207Pb/204Pb = 15.454-15.520, 208Pb/204Pb = 37.097-38.025) suggest that these rocks were magma mixing products between juvenile crustal-derived magmas and minor mantle-derived magmas. Combined published works with our new ages, geochemical and isotopic data, we propose that the Aqishan-Yamansu belt was an Early Carboniferous fore-arc basin during the southward subduction of the Kangguer oceanic slab beneath the Yili-Central Tianshan block. With the continuing southward subduction, the Aqishan-Yamansu fore-arc basin initiated to close, which generated the mafic and intensive intermediate-felsic magmatism associated with regional Fe (-Cu) mineralization.

  20. Measurement of the Carbon Isotopic Composition of Methane Using Helicoidal Laser Eigenstates

    Science.gov (United States)

    Jacob, D.; Le Floch, A.; Bretenaker, F.; Guenot, P.

    1996-06-01

    The spatially generalized Jones matrix formalism is used to design a laser cavity to make intracavity measurements of the carbon isotopic composition of methane. the method is based on a double optical lever effect for helicoidally polarized eigenstates, permitting to measure successively the ^{12}CH_4 and ^{13}CH_4 concentrations. To choose the probed isotope, one simply tunes the frequency of the laser by Zeeman effect. The experiment exhibits a good agreement with the predictions and permits to measure the ^{13}CH4/^{12}CH_4 composition ratio of methane with an uncertainty of the order of ± 0.07% for a sample containing only 6× 10^{-9} mole of methane. On utilise le formalisme des matrices de Jones généralisées spatialement pour concevoir une cavité laser permettant la mesure intra-cavité de la composition isotopique du carbone présent dans le méthane. La méthode est fondée sur une double application de l'effet de levier optique pour les états propres hélicoïdaux, permettant de mesurer successivement les concentrations de ^{12}CH_4 et de ^{13}CH_4. Pour passer d'un isotope à l'autre, on ajuste simplement la fréquence du laser par effet Zeeman. L'expérience est en bon accord avec les prédictions et permet d'effectuer la mesure du rapport isotopique ^{13}CH4/^{12}CH_4 avec une fourchette d'incertitude de ± 0,07% pour des échantillons de gaz ne contenant que 6× 10^{-9} mole de méthane.

  1. Oxygen isotopic composition of relict olivine grains in cosmic spherules: Links to chondrules from carbonaceous chondrites

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Nagashima, K.; Jones, R.H.

    and isotopic compositions. Three of the spherules, AAS38-43- P55, AAS62-61-P22 and AAS38-188-P43, are fine-grained and vesicular and are classified as relict bearing (Figs. 1 and 2 b, f, g). The vesicular texture indicates escape of volatile elements, mostly... likely as a result of heating during atmospheric entry. The other nine particles have porphyritic textures, similar to textures of porphyritic chondrules. AAS38-43-P38 and AAS62-51-P8 (Figs. 1 and 2 a, h) both contain larger vesicles, located around...

  2. The Oxygen Isotope Composition of Dark Inclusions in HEDs, Ordinary and Carbonaceous Chondrites

    Science.gov (United States)

    Greenwood, R. C.; Zolensky, M. E.; Buchanan, P. C.; Franchi, I. A.

    2015-01-01

    Dark inclusions (DIs) are lithic fragments that form a volumetrically small, but important, component in carbonaceous chondrites. Carbonaceous clasts similar to DIs are also found in some ordinary chondrites and HEDs. DIs are of particular interest because they provide a record of nebular and planetary processes distinct from that of their host meteorite. DIs may be representative of the material that delivered water and other volatiles to early Earth as a late veneer. Here we focus on the oxygen isotopic composition of DIs in a variety of settings with the aim of understanding their formational history and relationship to the enclosing host meteorite.

  3. Signature of terrestrial influence on nitrogen isotopic composition of suspended particulate

    Digital Repository Service at National Institute of Oceanography (India)

    Kumar, S.; Ramesh, R.; Sheshshayee, M.S.; Sardessai, S.; Patel, P.P.

    Institute of Oceanography, Goa 403 004, I n dia 4 M.S. University of Baroda, Vadodara 390 002, India Nitrogen concentration and its isotopic composition in surface su spended matter have been measured at 24 di f- ferent loc a tions during..., primarily the aste r oids and occasionally Mars and the Moon. They also pr o vide information about the energetic environment in the inte r- planetary space where they spend a considerable p e riod of time, ranging from less than a million years to a few...

  4. The stable isotopic and chemical composition of pedogenic carbonate in the Minusinsk Basin, South Siberia

    Science.gov (United States)

    Vasilchuk, Jessica; Ivanova, Elena; Krechetov, Pavel; Litvinskiy, Vladimir; Budantseva, Nadine; Chizhova, Julia; Vasil'chuk, Yurij

    2017-04-01

    Stable isotope composition of carbonate neoformations can be used as a proxy for the reconstructons of environmental conditions of the past. Carbonate coatings on coarse rock framents are studied in order to indicate the climatic conditions and predominant vegetation under which they were formed. Such coatings commonly occur in different types of soils and paleosols of South Siberian intermountain basins mainly in relatively dry modern conditions. The purpose of the research is to characterize the isotopic composition and chemical composition of carbonate pedofeatures in soils of Minusink Hollow and estimate its correlation with defferent factors. The samples of pedogenic carbonates, vegetation, carbonate parent material, soil water and precipitation water were analyzed using the Delta-V mass spectrometer with options of a gas bench and element analyser. The soils we studied are mainly Kastanozems that are poorly moisturized; therefore, soil pore water was extracted by ethanol. Minor and major elements content was also measured by ICP-MS. Carbonates mostly contain calcuim (37-45%) and highly enriched in Pb, Tl and Ba. Oxygen and carbon isotopic composition of pedogenic carbonates was analyzed in 3 key sites. Kazanovka Khakass state national reserve, Hankul salt lake, region of Sayanogorsk aluminum smelter. Vegetation photosynthetic pathway in the region is mainly C3. δ18O values of carbonate coatings in soils of Kazanovka vary in a range from -7.49 to -10.5‰ (vs V-PDB). The lowest values corresponds the coatings found between two buried mid-Holocene soil horizons. That may indicate cooler conditions of late Holocene than nowadays. In Sayanogorsk carbonates' δ18O values' range is -8.3...-11.1‰ and near the Hankul Lake is -9.0...-10.2‰ all ranges are quite similar and may indicate close conditions of pendants formation. δ13C values of carbonate coatings in Kazanovka vary from -2.5 to -6.7‰, the highest values correspond to the soils of Askiz and Syglygkug

  5. Chlorine isotopic composition of perchlorate in human urine as a means of distinguishing among exposure sources.

    Science.gov (United States)

    Poghosyan, Armen; Morel-Espinosa, Maria; Valentin-Blasini, Liza; Blount, Benjamin C; Ferreccio, Catterina; Steinmaus, Craig M; Sturchio, Neil C

    2016-01-01

    Perchlorate (ClO4(-)) is a ubiquitous environmental contaminant with high human exposure potential. Natural perchlorate forms in the atmosphere from where it deposits onto the surface of Earth, whereas synthetic perchlorate is manufactured as an oxidant for industrial, aerospace, and military applications. Perchlorate exposure can potentially cause adverse health effects in humans by interfering with the production of thyroid hormones through competitively blocking iodide uptake. To control and reduce perchlorate exposure, the contributions of different sources of perchlorate exposure need to be quantified. Thus, we demonstrate a novel approach for determining the contribution of different perchlorate exposure sources by quantifying stable and radioactive chlorine isotopes of perchlorate extracted from composite urine samples from two distinct populations: one in Atlanta, USA and one in Taltal, Chile (Atacama region). Urinary perchlorate from the Atlanta region resembles indigenous natural perchlorate from the western USA (δ(37)Cl=+4.1±1.0‰; (36)Cl/Cl=1 811 (±136) × 10(-15)), and urinary perchlorate from the Taltal, Chile region is similar to natural perchlorate in nitrate salt deposits from the Atacama Desert of northern Chile (δ(37)Cl=-11.0±1.0‰; (36)Cl/Cl=254 (±40) × 10(-15)). Neither urinary perchlorate resembled the isotopic pattern found in synthetic perchlorate. These results indicate that natural perchlorate of regional provenance is the dominant exposure source for the two sample populations, and that chlorine isotope ratios provide a robust tool for elucidating perchlorate exposure pathways.

  6. Validation of the scale system for PWR spent fuel isotopic composition analyses

    Energy Technology Data Exchange (ETDEWEB)

    Hermann, O.W.; Bowman, S.M.; Parks, C.V. [Oak Ridge National Lab., TN (United States); Brady, M.C. [Sandia National Laboratories, Las Vegas, NV (United States)

    1995-03-01

    The validity of the computation of pressurized-water-reactor (PWR) spent fuel isotopic composition by the SCALE system depletion analysis was assessed using data presented in the report. Radiochemical measurements and SCALE/SAS2H computations of depleted fuel isotopics were compared with 19 benchmark-problem samples from Calvert Cliffs Unit 1, H. B. Robinson Unit 2, and Obrigheim PWRs. Even though not exhaustive in scope, the validation included comparison of predicted and measured concentrations for 14 actinides and 37 fission and activation products. The basic method by which the SAS2H control module applies the neutron transport treatment and point-depletion methods of SCALE functional modules (XSDRNPM-S, NITAWL-II, BONAMI, and ORIGEN-S) is described in the report. Also, the reactor fuel design data, the operating histories, and the isotopic measurements for all cases are included in detail. The underlying radiochemical assays were conducted by the Materials Characterization. Center at Pacific Northwest Laboratory as part of the Approved Testing Material program and by four different laboratories in Europe on samples processed at the Karlsruhe Reprocessing Plant.

  7. Continuous monitoring of summer surface water vapor isotopic composition above the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    H. C. Steen-Larsen

    2013-05-01

    Full Text Available We present here surface water vapor isotopic measurements conducted from June to August 2010 at the NEEM (North Greenland Eemian Drilling Project camp, NW Greenland (77.45° N, 51.05° W, 2484 m a.s.l.. Measurements were conducted at 9 different heights from 0.1 m to 13.5 m above the snow surface using two different types of cavity-enhanced near-infrared absorption spectroscopy analyzers. For each instrument specific protocols were developed for calibration and drift corrections. The inter-comparison of corrected results from different instruments reveals excellent reproducibility, stability, and precision with a standard deviations of ~ 0.23‰ for δ18O and ~ 1.4‰ for δD. Diurnal and intraseasonal variations show strong relationships between changes in local surface humidity and water vapor isotopic composition, and with local and synoptic weather conditions. This variability probably results from the interplay between local moisture fluxes, linked with firn–air exchanges, boundary layer dynamics, and large-scale moisture advection. Particularly remarkable are several episodes characterized by high (> 40‰ surface water vapor deuterium excess. Air mass back-trajectory calculations from atmospheric analyses and water tagging in the LMDZiso (Laboratory of Meteorology Dynamics Zoom-isotopic atmospheric model reveal that these events are associated with predominant Arctic air mass origin. The analysis suggests that high deuterium excess levels are a result of strong kinetic fractionation during evaporation at the sea-ice margin.

  8. Variation in the isotopic composition of striped weakfish Cynoscion guatucupa of the Southwest Atlantic Ocean in response to dietary shifts

    Directory of Open Access Journals (Sweden)

    M. N. Paso Viola

    2017-08-01

    Full Text Available Abstract The aim of this study was to analyze the isotopic composition in muscle of striped weakfish Cynoscion guatucupa from Southwest Atlantic Ocean in order to evaluate a possible variation in δ13C and δ15N in response to dietary shifts that occur as animals grow. We also explored for isotopic evidence of differences between sample locations. The results showed an agreement between isotope analysis and previous conventional studies. Differences in the isotope composition between sampling location were not observed. A positive relation exists between isotope values and total body length of the animals. The Cluster analysis defined three groups of size classes, validated by the MDS. Differences in the relative consumption of prey species in each size class were also observed performing isotope mixing models (SIAR. Variation in δ15N among size classes would be associated with the consumption of a different type of prey as animals grow. Small striped weakfish feed on small crustaceans and progressively increase their consumption of fish (anchovy, Engraulis anchoita, increasing by this way their isotope values. On the other hand, differences in δ13C values seemed to be related to age-class specific spatial distribution patterns. Therefore, large and small striped weakfish remain specialized but feeding on different prey at different trophic levels. These results contribute to the study of the diet of striped weakfish, improve the isotopic ecology models and highlight on the importance of accounting for variation in the isotopic composition in response to dietary shifts with the size of one of the most important fishery resources in the region.

  9. Variation in the isotopic composition of striped weakfish Cynoscion guatucupa of the Southwest Atlantic Ocean in response to dietary shifts.

    Science.gov (United States)

    Viola, M N Paso; Riccialdelli, L; Jaureguizar, A; Panarello, H O; Cappozzo, H L

    2017-08-17

    The aim of this study was to analyze the isotopic composition in muscle of striped weakfish Cynoscion guatucupa from Southwest Atlantic Ocean in order to evaluate a possible variation in δ13C and δ15N in response to dietary shifts that occur as animals grow. We also explored for isotopic evidence of differences between sample locations. The results showed an agreement between isotope analysis and previous conventional studies. Differences in the isotope composition between sampling location were not observed. A positive relation exists between isotope values and total body length of the animals. The Cluster analysis defined three groups of size classes, validated by the MDS. Differences in the relative consumption of prey species in each size class were also observed performing isotope mixing models (SIAR). Variation in δ15N among size classes would be associated with the consumption of a different type of prey as animals grow. Small striped weakfish feed on small crustaceans and progressively increase their consumption of fish (anchovy, Engraulis anchoita), increasing by this way their isotope values. On the other hand, differences in δ13C values seemed to be related to age-class specific spatial distribution patterns. Therefore, large and small striped weakfish remain specialized but feeding on different prey at different trophic levels. These results contribute to the study of the diet of striped weakfish, improve the isotopic ecology models and highlight on the importance of accounting for variation in the isotopic composition in response to dietary shifts with the size of one of the most important fishery resources in the region.

  10. Computational-Experimental Processing of Boride/Carbide Composites by Reactive Infusion of Hf Alloy Melts into B4C

    Science.gov (United States)

    2015-09-16

    PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) UNIVERSITY OF TEXAS AT EL PASO 500 UNIV ST ADMIN BLDG 209 EL PASO, TX 79968-0001 US 8. PERFORMING...Arturo Bronson UNIVERSITY OF TEXAS AT EL PASO Final Report 09/16/2015 DISTRIBUTION A: Distribution approved for public release. AF Office Of Scientific...University of Texas at El Paso July 2015 Bronson-Kumar (University of Texas at El Paso) 1 Computational-Experimental Processing of Boride/Carbide Composites

  11. Geochemistry, mineralogy, and zircon U-Pb-Hf isotopes in peraluminous A-type granite xenoliths in Pliocene-Pleistocene basalts of northern Pannonian Basin (Slovakia)

    Science.gov (United States)

    Huraiová, Monika; Paquette, Jean-Louis; Konečný, Patrik; Gannoun, Abdel-Mouhcine; Hurai, Vratislav

    2017-08-01

    Anorogenic granite xenoliths occur in alkali basalts coeval with the Pliocene-Pleistocene continental rifting of the Pannonian Basin. Observed granite varieties include peraluminous, calcic to peralkalic, magnesian to ferroan types. Quartz and feldspars are dominant rock-forming minerals, accompanied by minor early ilmenite and late magnetite-ulvöspinel. Zircon and Nb-U-REE minerals (oxycalciopyrochlore, fergusonite, columbite) are locally abundant accessory phases in calc-alkalic types. Absence of OH-bearing Fe, Mg-silicates and presence of single homogeneous feldspars (plagioclase in calcic types, anorthoclase in calc-alkalic types, ferrian Na-sanidine to anorthoclase in alkalic types) indicate water-deficient, hypersolvus crystallization conditions. Variable volumes of interstitial glass, absence of exsolutions, and lacking deuteric hydrothermal alteration and/or metamorphic/metasomatic overprint are diagnostic of rapid quenching from hypersolidus temperatures. U-Pb zircon ages determined in calcic and calc-alkalic granite xenoliths correspond to a time interval between 5.7 and 5.2 Ma. Positive ɛHf values (14.2 ± 3.9) in zircons from a 5.2-Ma-old calc-alkalic granite xenolith indicate mantle-derived magmas largely unaffected by the assimilation of crustal material. This is in accordance with abundances of diagnostic trace elements (Rb, Y, Nb, Ta), indicating A1-type, OIB-like source magmas. Increased accumulations of Nb-U-REE minerals in these granites indicate higher degree of the magmatic differentiation reflected in Rb-enrichment, contrasting with Ba-enrichment in barren xenoliths. Incipient charnockitization, i.e. orthopyroxene and ilmenite crystallization from interstitial silicate melt, was observed in many granite xenoliths. Thermodynamic modeling using pseudosections showed that the orthopyroxene growth may have been triggered by water exsolution from the melt during ascent of xenoliths in basaltic magma. Euhedral-to-skeletal orthopyroxene growth

  12. Tetrathionate and Elemental Sulfur Shape the Isotope Composition of Sulfate in Acid Mine Drainage

    Directory of Open Access Journals (Sweden)

    Nurgul Balci

    2017-08-01

    Full Text Available Sulfur compounds in intermediate valence states, for example elemental sulfur, thiosulfate, and tetrathionate, are important players in the biogeochemical sulfur cycle. However, key understanding about the pathways of oxidation involving mixed-valance state sulfur species is still missing. Here we report the sulfur and oxygen isotope fractionation effects during the oxidation of tetrathionate (S4O62− and elemental sulfur (S° to sulfate in bacterial cultures in acidic conditions. Oxidation of tetrathionate by Acidithiobacillus thiooxidans produced thiosulfate, elemental sulfur and sulfate. Up to 34% of the tetrathionate consumed by the bacteria could not be accounted for in sulfate or other intermediate-valence state sulfur species over the experiments. The oxidation of tetrathionate yielded sulfate that was initially enriched in 34S (ε34SSO4−S4O6 by +7.9‰, followed by a decrease to +1.4‰ over the experiment duration, with an average ε34SSO4−S4O6 of +3.5 ± 0.2‰ after a month of incubation. We attribute this significant sulfur isotope fractionation to enzymatic disproportionation reactions occurring during tetrathionate decomposition, and to the incomplete transformation of tetrathionate into sulfate. The oxygen isotope composition of sulfate (δ18OSO4 from the tetrathionate oxidation experiments indicate that 62% of the oxygen in the formed sulfate was derived from water. The remaining 38% of the oxygen was either inherited from the supplied tetrathionate, or supplied from dissolved atmospheric oxygen (O2. During the oxidation of elemental sulfur, the product sulfate became depleted in 34S between −1.8 and 0‰ relative to the elemental sulfur with an average for ε34SSO4−S0 of −0.9 ± 0.2‰ and all the oxygen atoms in the sulfate derived from water with an average normal oxygen isotope fractionation (ε18OSO4−H2O of −4.4‰. The differences observed in δ18OSO4 and the sulfur isotope composition of sulfate (δ34SSO4

  13. Effect of varying frontal systems on stable oxygen and carbon isotopic compositions of modern planktic foraminifera of Southern Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Tiwari, M.; Mohan, R.; Meloth, T.; Naik, S.S.; Sudhakar, M.

    SCIENCE, VOL. 100, NO. 6, 25 MARCH 2011 881 *For correspondence. (e-mail: manish@ncaor.org) Effect of varying frontal systems on stable oxygen and carbon isotopic compositions of modern planktic foraminifera of Southern Ocean Manish Tiwari 1...: Carbon isotopes, foraminifera, oxygen iso- topes, Southern Ocean. PLANKTIC foraminifera thrive in various environments of the upper water column and are sensitive to changes occurring in the temperature, salinity, nutrients, food availability...

  14. Distribution of uranium, thorium, and isotopic composition of uranium in soil samples of south Serbia: Evidence of depleted uranium

    OpenAIRE

    Sahoo Sarata Kumar; Fujimoto Kenzo; Čeliković Igor; Ujić Predrag; Žunić Zora S.

    2004-01-01

    Inductively coupled plasma mass spectrometry and thermal ionization mass spectrom - etry were used to measure concentration of uranium and thorium as well as isotopic composition of uranium respectively in soil samples collected around south Serbia. An analytical method was established for a routine sample preparation procedure for uranium and thorium. Uranium was chemically separated and purified from soil samples by anion exchange resin and UTEVA extraction chromatography and its isotopic c...

  15. The Boron Isotopic Composition of Elephant Dung: Inputs to the Global Boron Budget

    Science.gov (United States)

    Williams, L. B.; Hervig, R. L.

    2011-12-01

    A survey of boron in kerogen showed isotopically light δ11B values (0 to -50%) that are distinctly different from most mineral and natural water B reservoirs. Diagenesis releases this isotopically light B into pore fluids when hydrocarbons are generated, thus enriching oilfield brines in 10B. This observation suggests that borated biomolecules (BM) are primarily tetrahedral favoring 10B, whereas 11B is preferred in trigonal coordination. Plants, with optimal concentrations up to 100ppm, contribute more B than animal remains to sediment. Elephants are one of the largest herbivores on earth, consuming 200 - 250 kg of plant material/day and producing 50 kg of manure/day. They are inefficient at digestion, thus the manure contains >50% undigested plant material. Dung samples are therefore ideal for studying the δ11B of both the food input and digested output of a significant B supply to sedimentary systems. Horse and rabbit manure were studied for comparison to evaluate B isotope variations in the food supply and potential vital effects on the output. B-content and isotopic composition of dung plant material and digested fractions were measured in the solid state by secondary ion mass spectrometry. The digests were rinsed in 1.8% mannitol, a B-complexing agent, to remove surface adsorbed-B, then air dried and Au-coated for charge compensation. Results showed that the elephant diet contains 3-13 ppm B, with an average δ11B of -20 ± 0.8% (1σ), while rabbit food had 88 ppm B with a δ11B of -50 ± 1.3 %. The digested fraction of the elephant dung contains 4-10ppm B with average δ11B values of -12 ± 1.2%. In comparison, horse manure with 11-21 ppm B has a δ11B of -10.7 ± 0.5% and rabbit manure contains 2-3 ppm B with a δ11B of -8.8 ± 1%. Boron isotope compositions of these manures are indistinguishable (within error). Clearly plant material is a major contributor of isotopically light B to sediments. The herbivores studied fractionate their total B intake in

  16. The Effect of Phytase on the Oxygen Isotope Composition of Phosphate

    Science.gov (United States)

    von Sperber, C.; Tamburini, F.; Bernasconi, S. M.; Frossard, E.

    2013-12-01

    Plants and microorganisms under phosphorus (P) stress release extracellular phosphatases as a strategy to acquire inorganic phosphate (Pi) (1-2). These enzymes catalyze the hydrolysis of phosphoesters leading to a release of Pi. The enzymatic hydrolysis leads, via a nucleophilic attack, to the incorporation of one oxygen atom from the water into the newly formed Pi molecule. During the incorporation, an isotopic fractionation occurs, which might be used to identify the origin of Pi in the environment (3-6). While the effect of phosphomonoesterases and phosphodiesterases on the oxygen isotope composition of phosphate has been examined, there are, so far, no studies dealing with the effect of phytases (4-6). Phytases catalyze the hydrolysis of myo-inositol-hexakis-phosphate (IP6), which is an important component of organic P in many ecosystems (7). Enzymatic assays with phytase from wheat germ and Aspergillus niger were prepared under sterile and temperature controlled conditions in order to determine the effect of phytases on the oxygen isotope composition of phosphate, which has been liberated from IP6 via enzymatic hydrolysis. Assays with phytase from wheat germ lead to a turnover of the substrate close to 100%, while assays with phytase from Aspergillus niger lead to a turnover of the substrate close to 80%. In the case of the assays with phytase from wheat germ, our results indicate that one sixth of the total 24 oxygen which are associated to the phosphates in IP6 are exchanged with oxygen from water. From this we conclude that the incorporation of one oxygen atom from water occurs only at four phosphate molecules of IP6, while two phosphate molecules do not experience an incorporation of oxygen. This suggests that during the enzymatic hydrolysis, four P-O bonds and two C-O bonds are broken. Provided that, the isotopic fractionation can be calculated with an isotopic mass balance resulting in -8.4‰ (×3.6 SD). This is a value very similar to those reported

  17. MEASUREMENT OF THE ISOTOPIC COMPOSITION OF HYDROGEN AND HELIUM NUCLEI IN COSMIC RAYS WITH THE PAMELA EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Adriani, O.; Bongi, M. [Department of Physics, University of Florence, I-50019 Sesto Fiorentino, Florence (Italy); Barbarino, G. C. [Department of Physics, University of Naples ' ' Federico II' ' , I-80126 Naples (Italy); Bazilevskaya, G. A. [Lebedev Physical Institute, RU-119991, Moscow (Russian Federation); Bellotti, R.; Bruno, A. [Department of Physics, University of Bari, I-70126 Bari (Italy); Boezio, M.; Bonvicini, V.; Carbone, R. [INFN, Sezione di Trieste, I-34149 Trieste (Italy); Bogomolov, E. A. [Ioffe Physical Technical Institute, RU-194021 St. Petersburg (Russian Federation); Borisov, S.; Casolino, M.; De Pascale, M. P. [INFN, Sezione di Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); Bottai, S. [INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence (Italy); Cafagna, F. [INFN, Sezione di Bari, I-70126 Bari (Italy); Campana, D. [INFN, Sezione di Naples, I-80126 Naples (Italy); Carlson, P. [KTH, Department of Physics, and the Oskar Klein Centre for Cosmoparticle Physics, AlbaNova University Centre, SE-10691 Stockholm (Sweden); Castellini, G. [IFAC, I-50019 Sesto Fiorentino, Florence (Italy); Danilchenko, I. A. [National Research Nuclear University MEPhI, RU-115409 Moscow (Russian Federation); De Santis, C. [Department of Physics, University of Rome ' ' Tor Vergata' ' , I-00133 Rome (Italy); and others

    2013-06-10

    The satellite-borne experiment PAMELA has been used to make new measurements of cosmic ray H and He isotopes. The isotopic composition was measured between 100 and 600 MeV/n for hydrogen and between 100 and 900 MeV/n for helium isotopes over the 23rd solar minimum from 2006 July to 2007 December. The energy spectrum of these components carries fundamental information regarding the propagation of cosmic rays in the galaxy which are competitive with those obtained from other secondary to primary measurements such as B/C.

  18. Monitoring of Pb Contamination in Loire Estuary: Trends, Distribution and Isotopic composition

    Science.gov (United States)

    Brach-Papa, Christophe; Chiffoleau, Jean-François; Knoery, Joel; Chouvelon, Tiphaine; Auger, Dominique; Bretaudeau, Jane; Crochet, Sylvette; Rozuel, Emmanuelle; Thomas, Batien; Vasileva, Emilia; Oriani, Anna Maria

    2014-05-01

    The Loire River is one of the largest river systems in Western Europe and constitutes a major continental input to marine environment in the Bay of Biscay. Its catchment area flows through agricultural, industrial areas and through a more and more urbanized estuary. Even if Loire River is not considered as a highly polluted system, some studies identified a Pb contamination of its estuary due to industrial inputs and combustion of leaded gasoline up to the mid 90's. A retrospective study, based on the analysis (Pb contents and isotopic composition) of Mytilus edulis samples collected by the French mussel watch program (RNO/ROCCH) has highlighted this contamination and its trend between 1985-2005 (Couture et al., 2010). This poster will first complete the work initiated by Couture et al. Pb contents and isotopic signatures in mussel samples collected by RNO/ROCCH over the last 10 years will be presented and discussed. Results will be compared to measurements performed on various environmental samples (sediment, biota…) collected in the frame of the environmental monitoring project RS2E started in 2012 by the "Observatoire des Sciences de l'Univers Nantes-Atlantique" (OSUNA). This new data will contribute to a better characterisation of Pb contents and distribution along the Loire Estuary. Moreover, some key samples will be submitted to HR-ICP-MS for Pb isotopic analysis. Discrimination of anthropic Pb sources requires both precise and accurate isotope ratio determination and also high versatility due to the complex matrix, which is typical for marine and estuarine samples. These measurements will contribute to a more accurate definition and characterisation of main actual anthropic Pb sources (urban, agricultural, industrial or atmospheric deposition). Couture R.- M., Chiffoleau J.-F., Auger D., Claisse D., Gobeil C. and Cossa D. (2010) Seasonal and decadal variation in lead sources to eastern north Atlantic mussels. Environ. Sci. Technol. 44, 1211-1216.

  19. U-Pb geochronology, geochemistry, and H-O-S-Pb isotopic compositions of the Leqingla and Xin'gaguo skarn Pb-Zn polymetallic deposits, Tibet, China

    Science.gov (United States)

    Wang, Liqiang; Cheng, Wenbin; Tang, Juxing; Kang, Haoran; Zhang, Yan; Li, Zhuang

    2016-01-01

    The Leqingla and Xin'gaguo deposits are two representative skarn Pb-Zn polymetallic deposits of the Gangdese Pb-Zn polymetallic belt, Tibet, China. LA-ICP-MS zircon U-Pb dating of the mineralization-related biotite granites from both the Leqingla and Xin'gaguo deposits yielded weighted mean ages of 60.8 Ma and 56.5 Ma, respectively, which can be inferred as their mineralization ages. The Leqingla biotite granite is characterized by high Al2O3, total Fe, Na2O, and low K2O. In comparison, the Xin'gaguo biotite granite is characterized by relative higher K2O but lower Al2O3, total Fe, and Na2O. Geochemical and mineralogical characteristics indicate that the Leqingla and Xin'gaguo biotite granites are calc-alkaline I-type granite and High K calc-alkaline I-type granite, respectively. Both the Leqingla and Xin'gaguo biotite granites are enrichment in LREE and LILEs and depletion in HFSEs, and they were formed at the India-Asia collision stage. δ18O and δD values for the Leqingla and Xin'gaguo deposits are -8.8‰ to 5.3‰ and -140.4‰ to -90.1‰, -4.5‰ to 7.0‰ and -117.3‰ to -81.0‰, respectively, indicating magma fluids mixed with meteoric water in ore-forming fluids. δ34S values (-11.6‰ to -0.3‰) of ore sulfides from the Leqingla deposit show characteristics of biogenetic sulfur isotope compositions, suggesting sulfur for the Leqingla deposit were sourced from wall rocks of the Mengla and Luobadui Formation, which are rich in organic materials. δ34S values of ore sulfides from the Xin'gaguo deposits show bimodal distribution (-5.0‰ to -1.6‰ and 1.6-2.1‰), indicating sulfur in the Xin'gaguo deposit were derived from both wall rocks and magma. In the Leqingla deposit, most ore sulfides have the similar Pb isotopic compositions with that of the mineralization-related biotite granite, suggesting the biotite granite supplied most of the ore-forming metals. Pb isotopic compositions of ore sulfides and Hf isotopic compositions of biotite granite show

  20. Compositional impact of acidification and warming on Fucus vesiculosus: First biogeochemical and stable isotope results from coastal benthocosm experiments

    Science.gov (United States)

    Winde, Vera; Al-Janabi, Balsam; Sokol, Steffani; Buchholz, Björn; Escher, Peter; Voss, Maren; Schneider, Bernd; Wahl, Martin; Böttcher, Michael E.

    2014-05-01

    In the frame of the German BIOACID II project, the separate and combined effects of warming and acidification on the elemental and stable isotope composition of Fucus vesiculosus are investigated by means of benthic mesocosm experiments in brackish waters of the Baltic Sea. We aim for a calibration of the composition of Fucus in response to single and combined temperature and pCO2 elevation. Benthocosm experiments are carried out in the Kiel Fjord with a fully crossed array of 2 globally importnant stressors: an increase in temperature and an increase in atmospheric CO2 partial pressure. The experiments run for almost 3 months per season (winter, spring, summer, autumn). There are analyses from the experiments of the aquatic chemistry (TA, pH, salinity, carbon isotope composition of DIC, main and trace elements and nutrients) as well as the composition of the Fucus vesiculosus organic tissues (C-N-S-P contents, and C and N stable isotope composition, as well as major and trace elements). The composition of the aqueous solution in the mesocosms was recovered two times a week and for the Fucus tissue at the start and the end of the experiments. In addition several 24h cycles were followed in high temporal resolution to characterize the community response to diurnal light cycles. It was found, that seasonal variations in the composition of the input solutions (brackish water from the Kiel Fjord) were reflected by changes in the experiments with short time delay. The changes in the aquatic chemistry of the mesocosms, however, were strongly superimposed for most parameters during daytime by biological activity. The response of the communities to light conditions was clearly observed during the 24h-campaigns, when alternating phases of net respiration and photosynthesis were creating strong variations in the dissolved carbonate system. These variations were accompanied by significant changes in the carbon isotope composition of DIC. The atmosphere of some experimental

  1. A revision in hydrogen isotopic composition of USGS42 and USGS43 human-hair stable isotopic reference materials for forensic science

    Science.gov (United States)

    Coplen, Tyler B.; Qi, Haiping

    2016-01-01

    The hydrogen isotopic composition (δ2HVSMOW-SLAP) of USGS42 and USGS43 human hair stable isotopic reference materials, normalized to the VSMOW (Vienna-Standard Mean Ocean Water)–SLAP (Standard Light Antarctic Precipitation) scale, was originally determined with a high temperature conversion technique using an elemental analyzer (TC/EA) with a glassy carbon tube and glassy carbon filling and analysis by isotope-ratio mass spectrometer (IRMS). However, the TC/EA IRMS method can produce inaccurate δ2HVSMOW-SLAPresults when analyzing nitrogen-bearing organic substances owing to the formation of hydrogen cyanide (HCN), leading to non-quantitative conversion of a sample into molecular hydrogen (H2) for IRMS analysis. A single-oven, chromium-filled, elemental analyzer (Cr-EA) coupled to an IRMS substantially improves the measurement quality and reliability of hydrogen isotopic analysis of hydrogen- and nitrogen-bearing organic material because hot chromium scavenges all reactive elements except hydrogen. USGS42 and USGS43 human hair isotopic reference materials have been analyzed with the Cr-EA IRMS method, and the δ2HVSMOW-SLAP values of their non-exchangeable hydrogen fractions have been revised:where mUr = 0.001 = ‰. On average, these revised δ2HVSMOW-SLAP values are 5.7 mUr more positive than those previously measured. It is critical that readers pay attention to the δ2HVSMOW-SLAP of isotopic reference materials in publications as they may need to adjust the δ2HVSMOW–SLAP measurement results of human hair in previous publications to ensure all results are on the same isotope-delta scale.

  2. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    Science.gov (United States)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenørn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Röckmann, Thomas; Johnson, Matthew S.

    2017-05-01

    Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C of the specific carbon atom sites was determined using position-specific isotope analysis (PSIA). The PSIA analysis showed variations at individual positions from -6.9 to +10. 5 ‰ relative to the bulk composition. SOA was formed from α-pinene and ozone in a constant-flow chamber under dark, dry, and low-NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100 to 400 °C to desorb organic compounds that were (i) detected using PTR-MS for chemical analysis and to determine the O : C ratio, and (ii) converted to CO2 for 13C analysis. More than 400 ions in the mass range 39-800 Da were detected from the desorbed material and quantified using a PTR-MS. The largest amount desorbed at 150 °C. The O : C ratio of material from the front filter increased from 0.18 to 0.25 as the desorption temperature was

  3. Processes controlling the Si-isotopic composition in the Southern Ocean and application for paleoceanography

    Directory of Open Access Journals (Sweden)

    F. Fripiat

    2012-07-01

    Full Text Available Southern Ocean biogeochemical processes have an impact on global marine primary production and global elemental cycling, e.g. by likely controlling glacial-interglacial pCO2 variation. In this context, the natural silicon isotopic composition30Si of sedimentary biogenic silica has been used to reconstruct past Si-consumption:supply ratios in the surface waters. We present a new dataset in the Southern Ocean from a IPY-GEOTRACES transect (Bonus-GoodHope which includes for the first time summer δ30Si signatures of suspended biogenic silica (i for the whole water column at three stations and (ii in the mixed layer at seven stations from the subtropical zone up to the Weddell Gyre. In general, the isotopic composition of biogenic opal exported to depth was comparable to the opal leaving the mixed layer and did not seem to be affected by any diagenetic processes during settling, even if an effect of biogenic silica dissolution cannot be ruled out in the northern part of the Weddell Gyre. We develop a mechanistic understanding of the processes involved in the modern Si-isotopic balance, by implementing a mixed layer model. We observe that the accumulated biogenic silica (sensu Rayleigh distillation should satisfactorily describe the δ30Si composition of biogenic silica exported out of the mixed layer, within the limit of the current analytical precision on the δ30Si. The failures of previous models (Rayleigh and steady state become apparent especially at the end of the productive period in the mixed layer, when biogenic silica production and export are low. This results from (1 a higher biogenic silica dissolution:production ratio imposing a lower net fractionation factor and (2 a higher Si-supply:Si-uptake ratio supplying light Si-isotopes into the mixed layer. The latter effect is especially expressed when the summer mixed layer becomes strongly Si-depleted, together with a large

  4. Australian atmospheric lead deposition reconstructed using lead concentrations and isotopic compositions of archival lichen and fungi.

    Science.gov (United States)

    Wu, Liqin; Taylor, Mark Patrick; Handley, Heather K; Wu, Michael

    2016-01-01

    Lead concentrations and their isotopic compositions were measured in lichen genera Cladonia and Usnea and fungi genus Trametes from the Greater Sydney region (New South Wales, Australia) that had been collected and archived over the past 120 years. The median lead contents were elevated in lichens and fungi prior to the introduction of leaded petrol (Cladonia 12.5 mg/kg; Usnea 15.6 mg/kg; Trametes 1.85 mg/kg) corresponding to early industrial development. During the use of leaded petrol for automobiles in Australia from 1932 to 2002, total median lead concentrations rose: Cladonia 18.8 mg/kg; Usnea 21.5 mg/kg; Trametes 4.3 mg/kg. Following the cessation of leaded petrol use, median total lead concentrations decreased sharply in the 2000s: Cladonia 4.8 mg/kg; Usnea 1.7 mg/kg. The lichen and fungi isotopic compositions reveal a significant decrease in (206)Pb/(207)Pb values from the end of 19th century to the 1970s. The following decades were characterised by lower allowable levels of lead additive in fuel and the introduction of unleaded petrol in 1985. The environmental response to these regulatory changes was that lichen and fungi (206)Pb/(207)Pb values increased, particularly from 1995 onwards. Although the lead isotope ratios of lichens continued to increase in the 2000s they do not return to pre-leaded petrol values. This demonstrates that historic leaded petrol emissions, inter alia other sources, remain a persistent source of anthropogenic contamination in the Greater Sydney region. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Carbon and hydrogen isotopic compositions of algae and bacteria from hydrothermal environments, Yellowstone National Park

    Energy Technology Data Exchange (ETDEWEB)

    Estep, M.L.E.

    1984-03-01

    Stromatolites forming today on a small scale in hydrothermal environments are chemical and biological analogues of much larger Precambrian formations. Carbon isotopic composition varied as a function of CO/sub 2/ concentration, pH, and species composition. Stratiform, layered stromatolites grew in silica-depositing springs at 55/sup 0/ to 70/sup 0/C; they consisted mainly of a unicellular alga, Synechococcus, and a filamentous, photosynthetic bacterium, Chloroflexus. These thermophiles become enriched in /sup 12/C as the concentration of carbon dioxide in the effluent waters increases. At a concentration of 40 ppm total inorganic C, and delta/sup 13/C of organic carbon was approx. -1.2%, whereas at 900 ppm total inorganic C, the delta/sup 13/C of similar species was approx. -2.5%. Conical stromatolites or conophytons (principally a filamentous, blue-green alga Phormidium and Chloroflexus) grew at 40/sup 0/-55/sup 0/C. In older, broader conophytons, Chloroflexus was the dominant organism. Their delta/sup 13/C values were approx. -1.8% in a variety of hot springs. In carbonate-depositing springs, i.e., carbon dioxide saturated, conophytons and stromatolites consisting of a variety of blue-green algae and photosynthetic bacteria had the most negative delta/sup 13/C values (to -3 %). These carbon isotope ratios are directly comparable to carbon isotope ratios of kerogen from Precambrian stromatolites. The presence and activity of methanogenic bacteria or heterotrophic, aerobic and anaerobic bacteria did not alter significantly the delta/sup 13/C of the original organic matter.

  6. Factors Controlling the Stable Nitrogen Isotopic Composition (δ15N of Lipids in Marine Animals.

    Directory of Open Access Journals (Sweden)

    Elisabeth Svensson

    Full Text Available Lipid extraction of biomass prior to stable isotope analysis is known to cause variable changes in the stable nitrogen isotopic composition (δ15N of residual biomass. However, the underlying factors causing these changes are not yet clear. Here we address this issue by comparing the δ15N of bulk and residual biomass of several marine animal tissues (fish, crab, cockle, oyster, and polychaete, as well as the δ15N of the extracted lipids. As observed previously, lipid extraction led to a variable offset in δ15N of biomass (differences ranging from -2.3 to +1.8 ‰. Importantly, the total lipid extract (TLE was highly depleted in 15N compared to bulk biomass, and also highly variable (differences ranging from -14 to +0.7 ‰. The TLE consisted mainly of phosphatidylcholines, a group of lipids with one nitrogen atom in the headgroup. To elucidate the cause for the 15N-depletion in the TLE, the δ15N of amino acids was determined, including serine because it is one of the main sources of nitrogen to N-containing lipids. Serine δ15N values differed by -7 to +2 ‰ from bulk biomass δ15N, and correlated well with the 15N depletion in TLEs. On average, serine was less depleted (-3‰ than the TLE (-7 ‰, possibly due to fractionation during biosynthesis of N-containing headgroups, or that other nitrogen-containing compounds, such as urea and choline, or recycled nitrogen contribute to the nitrogen isotopic composition of the TLE. The depletion in 15N of the TLE relative to biomass increased with the trophic level of the organisms.

  7. U-Pbdating on detrital zircon and Nd and Hf isotopes related to the provenance of siliciclastic rocks of the Amazon Basin: Implications for the origin of Proto-Amazonas River

    Science.gov (United States)

    Dantas, Elton Luiz; Silva Souza, Valmir; Nogueira, Afonso C. R.; Ventura Santos, Roberto; Poitrasson, Franck; Vieira Cruz, Lucieth; Mendes Conceição, Anderson

    2014-05-01

    Previous provenance studies along the Amazonas river have demonstrated that the Amazon drainage basin has been reorganized since the Late Cretaceous with the uplift of the Andes and the establishment of the transcontinental Amazon fluvial system from Late Miocene to Late Pleistocene (Hoorn et al., 1995; Potter, 1997, Wesselingh et al., 2002; Figueiredo et al. 2009, Campbell et al., 2006, Nogueira et al. 2013).There is a lack of data from Eastern and Central Amazonia and only limited core data from the Continental Platform near to current Amazonas river mouth. Central Amazonia is strategic to unveil the origin of Amazonas River because it represents the region where the connection of the Solimões and Amazonas basin can be studied through time (Nogueira et al. 2013). Also, there is a shortage of information on the old Precambrian and Paleozoic sediment sources relative to Cretaceous and Miocene siliciclastic deposits of the Solimões and Amazonas basins. We collected stratigraphic data, detrital zircon U-Pb ages and Nd and Hf isotopes from Precambrian, Paleozoic, Cretaceous and Miocene siliciclastic deposits of the Northwestern border of Amazonas Basin. They are exposed in the Presidente Figueiredo region and in the scarps of Amazon River, and occur to the east of the Purus Arch. This Northwest-Southeast trending structural feature that divides the Solimões and Amazonas basin was active at various times since the Paleozoic. Detrital zircon ages for the Neoproterozoic Prosperança Formation yielded a complex signature, with different populations of Neoproterozoic (550, 630 and 800 Ma) and Paleoproterozoic to Archean sources (1.6, 2.1 and 2.6 Ga). Also Nd and Hf isotopes show two groups of TDM model ages between 1.4 to 1.53 Ga and 2.2 and 3.1 Ga. Sediments typical of Paleozoic sedimentary rocks of the Nhamundá and Manacapuru Formations revealed NdTDM model ages of 1.7, 2.2 and 2.7 Ga, but Hf isotopes and U-Pb zircon ages are more varied. They characterize a

  8. Mechanisms controlling the carbon stable isotope composition of phytoplankton in karst reservoirs

    Directory of Open Access Journals (Sweden)

    Baoli Wang

    2013-02-01

    Full Text Available In order to systematically understand the mechanisms controlling the carbon stable isotope composition of phytoplankton (δ13CPHYin freshwater ecosystems, seasonal changes in δ13CPHY and related environmental factors were determined in karst reservoirs from the Wujiang river basin, China. Substantial and systematic differences within seasons and reservoirs were observed for δ13CPHY, which ranged from -39.2‰ to -15.1‰. An increase in water temperature triggered fast growth of phytoplankton which assimilated more dissolved inorganic carbon (DIC, resulting in the increase of δ13CPHY, δ13CDIC and pH. When the concentration of dissolved carbon dioxide (CO2 was less than 10 mmol L–1, phytoplankton shifted to using HCO3– as a carbon source. This resulted in the sharp increase of δ13CPHY. The carbon stable isotope composition of phytoplankton tended to decrease with the increase of Bacillariophyta, which dominated in January and April, but tended to increase with the increase of Chlorophyta and Dinophyta, which dominated in July. Multiple regression equations suggested that the influence of biological factors such as taxonomic difference on δ13CPHY could be equal or more important than that of physical and chemical factors. Thus, the effect of taxonomic differences on δ13CPHY must be considered when explaining the δ13C of organic matter in lacustrine ecosystem.

  9. Unsaturated zone carbon dioxide flux, mixing, and isotopic composition at the USGS Amargosa Desert Research Site

    Science.gov (United States)

    Conaway, C. H.; Thordsen, J. J.; Thomas, B.; Haase, K.; Moreo, M. T.; Walvoord, M. A.; Andraski, B. J.; Stonestrom, D. A.

    2015-12-01

    Elevated concentrations of tritium, radiocarbon, and volatile organic compounds at the USGS Amargosa Desert Research Site, adjacent to a low-level radioactive waste disposal facility, have stimulated research on factors affecting transport of these contaminants. This research includes an examination of unsaturated zone carbon dioxide (CO2) fluxes, mixing, and isotopic composition, which can help in understanding these factors. In late April 2015 we collected 76 soil-gas samples in multi-layer foil bags from existing 1.5-m deep tubes, both inside and outside the low-level waste area, as well as from two 110-m-deep multilevel gas-sampling boreholes and a distant background site. These samples were analyzed for carbon dioxide concentration and isotopic composition by direct injection into a cavity ring-down spectrometer. Graphical analysis of results indicates mixing of CO2 characteristic of the root zone (δ13C -18 ‰ VPDB), deep soil gas of the capillary fringe (-20‰), and CO2 produced by microbial respiration of organic matter disposed in the waste area trenches (-28‰). Land-surface boundary conditions are being constrained by the application of a novel non-dispersive infrared sensor and traditional concentration and flux measurements, including discrete CO2 flux data using a gas chamber method to complement continuous data from surface- and tower-based CO2 sensors. These results shed light on radionuclide and VOC mobilization and transport mechanisms from this and similar waste disposal facilities.

  10. TRANSFORMATION OF THE INITIAL ISOTOPIC COMPOSITION OF PRECIPITATION IN CAVES OF THE SOUTH-WESTERN CAUCASUS

    Directory of Open Access Journals (Sweden)

    Vladimir Mikhalenko

    2015-01-01

    Full Text Available The paper presents preliminary results and interpretation from an ongoing research project in the Novy Afon and Abrskil caves of Abkhazia. The research have demonstrated that δ18O and δD analyses of drip and ground waters in two caves in the South-Western Caucasian region allows to better understand interaction between isotopic composition of precipitation, soil, and vadose zone. Drip and ground water samples from the caves were compared with the present-day Global (GMWL and the Local Meteoric Water Lines (LMWL. They fall along the GMWL and LMWL and are tied by equation δD = 5.74δ18O - 6.98 (r2 = 0.94. Drip water isotopic composition is similar to that from lakes and pools. The incline of δ18O - δD line differs from GMWL and LMWL. It reflects a possible result from secondary condensation and evaporation and water-rock interaction, and depends on the climate aridity level.

  11. Using trace element content and lead isotopic composition to assess sources of PM in Tijuana, Mexico

    Science.gov (United States)

    Salcedo, D.; Castro, T.; Bernal, J. P.; Almanza-Veloz, V.; Zavala, M.; González-Castillo, E.; Saavedra, M. I.; Perez-Arvízu, O.; Díaz-Trujillo, G. C.; Molina, L. T.

    2016-05-01

    PM2.5 samples were collected at two urban sites (Parque Morelos (PQM) and CECyTE (CEC)) in Tijuana during the Cal-Mex campaign from May 24 to June 5, 2010. Concentration of trace elements (Mg, Al, Ti, V, Mn, Fe, Co, Ni, Zn, Cu, Ga, As, Se, Rb, Sr, Mo, Cd, Sn, Sb, Ba, La, Ce, and Pb), and Pb isotopic composition were determined in order to study the sources of PM impacting each site. Other chemical analysis (gravimetric, elemental and organic carbon (EC/OC), and polycyclic aromatic hydrocarbons (PAHs)), were also performed. Finally, back-trajectories were calculated to facilitate the interpretation of the chemical data. Trace elements results show that CEC is a receptor site affected by mixed regional sources: sea salt, mineral, urban, and industrial. On the other hand, PQM seems to be impacted mainly by local sources. In particular, Pb at CEC is of anthropogenic, as well as crustal origin. This conclusion is supported by the lead isotopic composition, whose values are consistent with a combination of lead extracted from US mines, and lead from bedrocks in the Mexican Sierras. Some of the time variability observed can be explained using the back-trajectories.

  12. HF i dag

    DEFF Research Database (Denmark)

    Lindstrøm, Maria Duclos; Simonsen, Birgitte

    2008-01-01

    Notatet er lavet på baggrund af uddannelsesbiografiske dybdeinterviews med kursister på toårigt HF. Indenfor rammerne af en pilotundersøgelse identificerer notatet fire gennemgående profiler: De pragmatiske, de fagligt usikre, second chance-kursisterne, og de HF-kursister, som har HF som first...... choice. Således synliggør undersøgelsen HF som et sammensat uddannelsesmiljø, hvor sammensætningen af kursister i forskellige aldre og med forskellige baggrunde, erfaringer og motivationer er HF's unikke styrke og særpræg - men også rummer udfordringer og konfliktstof....

  13. The Ellsworth terrane, coastal Maine: Geochronology, geochemistry, and Nd-Pb isotopic composition - Implications for the rifting of Ganderia

    Science.gov (United States)

    Schulz, K.J.; Stewart, D.B.; Tucker, R.D.; Pollock, J.C.; Ayuso, R.A.

    2008-01-01

    The Ellsworth terrane is one of a number of fault-bounded blocks that occur along the eastern margin of Ganderia, the western-most of the peri-Gondwanan domains in the northern Appalachians that were accreted to Laurentia in the Paleozoic. Geologic relations, detrital zircon ages, and basalt geochemistry suggest that the Ellsworth terrane is part of Ganderia and not an exotic terrane. In the Penobscot Bay area of coastal Maine, the Ellsworth terrane is dominantly composed of bimodal basalt-rhyolite volcanic sequences of the Ellsworth Schist and unconformably overlying Castine Volcanics. We use new U-Pb zircon geochronology, geochemistry, and Nd and Pb isotopes for these volcanic sequences to constrain the petrogenetic history and paleotectonic setting of the Ellsworth terrane and its relationship with Ganderia. U-Pb zircon geochronology for rhyolites indicates that both the Ellsworth Schist (508.6 ?? 0.8 Ma) and overlying Castine Volcanics (503.5 ?? 2.5 Ma) are Middle Cambrian in age. Two tholefitic basalt types are recognized. Type Tb-1 basalt, present as pillowed and massive lava flows and as sills in both units, has depleted La and Ce ([La/Nd]N = 0.53-0.87) values, flat heavy rare earth element (REE) values, and no positive Th or negative Ta anomalies on primitive mantle-normalized diagrams. In contrast, type Th-2 basalt, present only in the Castine Volcanics, has stightly enriched LREE ([La/Yb]N = 1.42-2.92) values and no Th or Th anomalies. Both basalt types have strongly positive ??Nd (500) values (Th-1 = +7.9-+8.6; Th-2 = +5.6-+7.0) and relatively enriched Pb isotopic compositions (206Ph/204Pb = 18.037-19.784; 207/204Pb = 15.531-15.660; 2088Pb/204Pb = 37.810-38.817). The basalts have compositions transitional between recent normal and enriched mid-ocean-ridge basalt, and they were probably derived by partial melting of compositionatly heterogeneous asthenosphenc mantle. Two types of rhyolite also are present. Type R-1 rhyolite, which mostly occurs as tuffs

  14. Constant Molybdenum Isotope Composition of Ocean Water and Fe-Mn crusts for the Last 70 Myr

    Science.gov (United States)

    Siebert, C.; Nagler, T. F.; von Blankenburg, F.; Kramers, J. D.

    2001-12-01

    In the relatively new field of heavy stable isotope geochemistry, molybdenum (Mo) is one of the very promising elements. Molybdenum is a redox-sensitive trace metal. Isotope fractionation during terrestrial processes such as low-temperature redox transitions, chemical weathering, changes in the composition of the atmosphere, hydrothermal activity and sedimentary cycling is likely. Molybdenum is also an essential element for biological nitrogen fixation. Therefore, biogeochemical Mo isotope fractionation is also probable. The oceans represent an important terrestrial Mo reservoir. Dissolved concentrations in seawater are relatively high (0.01 ppm). The global ocean residence time is corresponding high with 800 kyr. The aim of this study is to characterise the principle present day oceanic Mo reservoirs and their changes with time. Molybdenum isotopic compositions were determined precisely using a Nu instruments MC-ICP-MS. Instrumental and laboratory mass fractionation is separated from natural mass dependent fractionation by addition of a molybdenum double spike prior to chemical separation (Siebert et al., 2001). The external standard reproducibility is at or below 0.1 per mil for the 98Mo/95Mo ratio (2s.d.). We analysed ocean water samples from the Atlantic (n=3, 0m-2400m depth), the Pacific and the Indian Ocean (deep water). These yield a homogeneous Mo isotopic composition as would be expexted from the long residence time of Mo in the oceans. Ocean water has the heaviest Mo isotopic composition measured to date (+2.3 per mil on the 98Mo/95Mo ratio relative to a Johnson Mattey ICP standard solution, lot 602332B). In view of the homogeneous ocean water ratios, we propose the use of present day ocean water as an reference standard (Mean Ocean Molybdenum: MOMO). Significantly lighter compositions from -2.7 to -3.1 per mil on the 98Mo/95Mo ratio relative to MOMO were determined for six Fe-Mn crust surface layers. Pelagic clay (-2.7 per mil) and clastic sediments (-2

  15. Variogram analysis of stable oxygen isotope composition of daily precipitation over the British Isles

    Science.gov (United States)

    Kohán, Balázs; Tyler, Jonathan; Jones, Matthew; Kern, Zoltán

    2017-04-01

    Water stable isotopes are important natural tracers in the hydrological cycle on global, regional and local scales. Daily precipitation water samples were collected from 70 sites over the British Isles on the 23rd, 24th, and 25th January, 2012 [1]. Samples were collected as part of a pilot study for the British Isotopes in Rainfall Project, a community engagement initiative, in collaboration with volunteer weather observers and the UK Met Office. Spatial correlation structure of daily precipitation stable oxygen isotope composition (δ18OP) has been explored by variogram analysis [2]. Since the variograms from the raw data suggested a pronounced trend, owing to the spatial trend discussed in the original study [1], a second order polynomial trend was removed from the raw δ18OP data and variograms were calculated on the residuals. Directional experimental semivariograms were calculated (steps: 10°, tolerance: 30°) and aggregated into variogram surface plots to explore the spatial dependence structure of daily δ18OP. Each daily data set produced distinct variogram plots. -A well expressed anisotropic structure can be seen for Jan 23. The lowest and highest variance was observed in the SW-NE and NNE-SSW direction, respectively. Meteorological observations showed that the majority of the atmospheric flow was SW on this day, so the direction of low variance seems to reflect this flow direction, while the maximum variance might reflect the moisture variance near the elongation of the frontal system. -A less characteristic but still expressed anisotropic structure was found for Jan 24 when a warm front passed the British Isles perpendicular to the east coast, leading to a characteristic east-west δ18OP gradient suggestive of progressive rainout. The low variance central zone has a 100 km radius which might correspond well to the width of the warm front zone. Although, the axis of minimum variance was similarly SW-NE, the zone of maximum variance was broader and

  16. Hydrogen Isotopic Composition of Particulate-Bound Fatty Acids From the California Borderland Basins

    Science.gov (United States)

    Jones, A. A.; Sessions, A. L.; Campbell, B. J.; Valentine, D. L.

    2006-12-01

    We examined the hydrogen-isotopic composition of fatty acids associated with particulate organic matter (POM) from depth transects in three California Borderland stations. Our goals were to determine (1) the natural variability of δD values in POM-associated fatty acids and (2) the magnitude of isotopic fractionations associated with fatty acid degradation in the marine environment. Some differences in molecular abundance were observed between completely ventilated and occasionally suboxic sites, but no corresponding shifts in δD values were measured. Values of δD for specific fatty acids were generally consistent between stations. Saturated fatty acids (C14, C16, and C18) yielded δD values ranging from -230‰ to -132‰, with δD values generally decreasing with chain length. We found no evidence of extreme D-enrichment of the C18 fatty acid as has been observed in studies of isolated macroalgae (Chikaraishi, et al, 2004). The unsaturated C16 and C18 fatty acids showed a similar trend while the polyunsaturated fatty acid 22:6 was somewhat enriched in D (δD values ranging from -186‰ to -68‰) relative to 20:5 (-208‰ to -93‰). Unsaturated fatty acids tended to have more positive δD values than their saturated counterparts, opposite the trend observed in sediments from the same location. The bacterial fatty acid C15 showed even greater deuterium enrichment with δD values ranging from - 145‰ to -88‰. This offset can likely be attributed to differences in biosynthetic fractionation between bacteria and eukaryotes, to differences in hydrogen isotopic composition of the food sources of these organisms, or some combination of these two factors. Within the surface waters, fatty acids become enriched with depth by an average of 25‰. The C18:0 acid is a significant exception, becoming depleted by 48‰ over that same interval. Below 100 meters depth, all fatty acids tend to become slightly depleted in D with increasing depth. The difference in δD values

  17. Fluid evolution in CM carbonaceous chondrites tracked through the oxygen isotopic compositions of carbonates

    Science.gov (United States)

    Lindgren, P.; Lee, M. R.; Starkey, N. A.; Franchi, I. A.

    2017-05-01

    The oxygen isotopic compositions of calcite grains in four CM carbonaceous chondrites have been determined by NanoSIMS, and results reveal that aqueous solutions evolved in a similar manner between parent body regions with different intensities of aqueous alteration. Two types of calcite were identified in Murchison, Mighei, Cold Bokkeveld and LaPaz Icefield 031166 by differences in their petrographic properties and oxygen isotope values. Type 1 calcite occurs as small equant grains that formed by filling of pore spaces in meteorite matrices during the earliest stages of alteration. On average, the type 1 grains have a δ18O of ∼32-36‰ (VSMOW), and Δ17O of between ∼2‰ and -1‰. Most grains of type 2 calcite precipitated after type 1. They contain micropores and inclusions, and have replaced ferromagnesian silicate minerals. Type 2 calcite has an average δ18O of ∼21-24‰ (VSMOW) and a Δ17O of between ∼-1‰ and -3‰. Such consistent isotopic differences between the two calcite types show that they formed in discrete episodes and from solutions whose δ18O and δ17O values had changed by reaction with parent body silicates, as predicted by the closed-system model for aqueous alteration. Temperatures are likely to have increased over the timespan of calcite precipitation, possibly owing to exothermic serpentinisation. The most highly altered CM chondrites commonly contain dolomite in addition to calcite. Dolomite grains in two previously studied CM chondrites have a narrow range in δ18O (∼25-29‰ VSMOW), with Δ17O ∼-1‰ to -3‰. These grains are likely to have precipitated between types 1 and 2 calcite, and in response to a transient heating event and/or a brief increase in fluid magnesium/calcium ratios. In spite of this evidence for localised excursions in temperature and/or solution chemistry, the carbonate oxygen isotope record shows that fluid evolution was comparable between many parent body regions. The CM carbonaceous chondrites

  18. Effect of Wood Aging on Wine Mineral Composition and 87Sr/86Sr Isotopic Ratio.

    Science.gov (United States)

    Kaya, Ayse D; Bruno de Sousa, Raúl; Curvelo-Garcia, António S; Ricardo-da-Silva, Jorge M; Catarino, Sofia

    2017-06-14

    The evolution of mineral composition and wine strontium isotopic ratio 87Sr/86Sr (Sr IR) during wood aging were investigated. A red wine was aged in stainless steel tanks with French oak staves (Quercus sessiliflora Salisb.), with three industrial scale replicates. Sampling was carried out after 30, 60, and 90 days of aging, and the wines were evaluated in terms of general analysis, phenolic composition, total polysaccharides, multielement composition, and Sr IR. Li, Be, Mg, Al, Sc, Ti, V, Mn, Co, Ni, Cu, Zn, Ga, Ge, As, Rb, Sr, Y, Zr, Mo, Sb, Cs, Ba, Pr, Nd, Sm, Eu, Dy, Ho, Er, Yb, Lu, Tl, and Pb elements and 87Sr/86Sr were determined by quadrupole inductively coupled plasma mass spectrometry (Q-ICP-MS) and Na, K, Ca, and Fe by flame atomic absorption spectrometry (FAAS). Two-way ANOVA was applied to assess wood aging and time effect on Sr IR and mineral composition. Wood aging resulted in significantly higher concentrations of Mg, V, Co, Ni, and Sr. At the end of the aging period, wine exhibited statistically identical Sr IR compared to control. Study suggests that wood aging does not affect 87Sr/86Sr, not precluding the use of this parameter for wine traceability purposes.

  19. Determination of the isotopic composition of evapotranspiration in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Meijide, Ana; Knohl, Alexander

    2017-04-01

    Evapotranspiration (ET) is defined as the sum of the water vapor fluxes from evaporation (E) and transpiration (T). The relative proportion between these two quantities depends on the species, on their age and on the structure of the stand and canopy. Evaporation represents the fraction of water that doesn't contribute to plants growth hence it often considered as "unused" water by the plants root system. For this reason, in a fast changing environment like Indonesia where, since almost 30 years, tropical rainforests are gradually converted into extensive oil palm plantation, it is important to quantify the amount of evaporated water to improve agricultural practices and water quality. As powerful tracers of the hydrological cycle, water stable isotopes represent an important tool to estimate the isotopic composition of the evapotranspiration flux and they can be used as a starting point for the determination of the T/ET ratio, which can be considered as a plant water uptake efficiency indicator. The isotopic composition (δDvand δ18Ov) and the mixing ratio (qv) of water vapor measured in a stand is the result of the isotopic mixing between two members; ecosystem evapotranspiration (δET) and background air (δa). With the implementation of laser-based isotopic analysers we are now able to improve the measurement frequency of δDvand δ18Ov that leads us to an improved estimation of δET. Here we present the results of a measurement campaign, performed with a Picarro L-2120i and conducted in a mature oil palm plantation in the province of Jambi, Indonesia. We measured the atmospheric water vapor mixing ratio and isotopic composition at 5 sampling heights (21 m, 16 m, 9 m, 3.5 and 0.3 m) along a flux tower throughout the oil palm canopy (average height 10 m). The range of the water vapor isotopic composition was between -19 and -11 and -134 and -82 ‰ for δ18Ov and δDvrespectively. A fairly open canopy structure resulted in small mixing ratio gradients along the

  20. [Identification of using organic carbon isotopic composition of soil pollution process].

    Science.gov (United States)

    Guo, Qing-Jun; Chen, Tong-Bin; Yang, Jun; Strauss, Harald; Lei, Mei; Zhu, Guang-Xu; Li, Yan-Mei; Zhou, Xiao-Yong; Li, Xiao-Yan

    2011-10-01

    This study has taken advantage of the characteristics of concentration of soil organic matter (SOC) and delta13 C(SOC) values to provide proofs for environment quality assessment and to know more about polluted sources, sizes and processes in Beijing steel company area. delta13C values of SOC is good for tracing sources and documenting shifts in community composition and distribution. Two sections (Beijing steel company area and Yongledian, Tongzhou) which belong to two different soil types collected in Beijing, and organic carbon isotopic composition and total soil organic carbon were analyzed. These results shows that SOC of soil samples from Beijing steel company area are quite high, and even 9.7% at the surface sample, however SOC from unpolluted area (Yongledian area) is lower than those of industrial area. delta13 C(SOC) from soils of Beijing steel company area and Yongledian area respectively vary from -24.8 per thousand to -23.1 per thousand and -26.4 per thousand to -20.5 per thousand, the results are quite different. The results reflect that there are different organic carbon sources in different types' soil: Organic carbon from Beijing steel company area has been mainly affected by coal burning, soil organic carbon concentrations are quite high, and pollution can affect on soils 70 cm deep underground; and soils from Yongledian area, have been not polluted, and organic matter is from natural litter (C3 plants). Although there are different soil organic carbon concentrations and isotope compositions, two soil sections have similar variation trends. This study provides proofs for environment quality assessment and know more about polluted and natural sources, sizes in Beijing.

  1. Wet degradation of keratin proteins: linking amino acid, elemental and isotopic composition.

    Science.gov (United States)

    von Holstein, I C C; Penkman, K E H; Peacock, E E; Collins, M J

    2014-10-15

    Archaeological keratin samples are increasingly the subject of palaeodietary, provenancing and dating studies. Keratin samples from wet archaeological contexts are microbiologically and chemically degraded, causing differential diagenesis of protein structures in hair fibres. The effects of these processes on the analytical parameters of interest are currently unknown. This study examined the impact of degradation of wool fibres on isotopic (δ(13)C, δ(15)N, un-exchangeable δ(2)H and δ(18)O values) composition. It compared two models of archaeological protein degradation in wet burial environments: (1) short term (up to 8 years) experimental burial in three contrasting soil environments; and (2) laboratory wet conditions, in which elevated temperature (80 °C, 110 °C, and 140 °C) and pressure simulated longer exposure. Elemental and amino acid (AA) composition were also measured. In experimentally soil-buried samples, AA, elemental and isotopic composition changes were small, despite extensive macroscopic alteration. Isothermally heated samples showed preferential loss of hydrophilic AAs (Asx, Glx, Ser, Gly) from wool residues, with depletion in (2)H and (18)O at higher temperatures (up to -73‰ change in δ(2)H and -2.6‰ in δ(18)O values). The δ(13)C and δ(15)N values showed little change except in densely pigmented samples at low temperatures only. Samples dyed with madder/alum were better preserved than undyed samples. Diagenesis in experimentally soil-buried wool textiles was consistent with microbiological, non-protein-selective activity, in contrast to highly AA-selective hydrolytic behaviour under laboratory wet conditions. Changes in δ(2)H and δ(18)O values were correlated with degree of AA change, but the δ(13)C and δ(15)N values were not. The results contribute to a baseline for interpreting analytical data from archaeological hair samples preserved by burial in wet environments. Copyright © 2014 John Wiley & Sons, Ltd.

  2. Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion

    Science.gov (United States)

    Pringle, Emily A.; Moynier, Frédéric

    2017-09-01

    Understanding the origin of volatile element variations in the inner Solar System has long been a goal of cosmochemistry, but many early studies searching for the fingerprint of volatile loss using stable isotope systems failed to find any resolvable variations. An improved method for the chemical purification of Rb for high-precision isotope ratio measurements by multi-collector inductively-coupled-plasma mass-spectrometry. This method has been used to measure the Rb isotopic composition for a suite of planetary materials, including carbonaceous, ordinary, and enstatite chondrites, as well as achondrites (eucrite, angrite), terrestrial igneous rocks (basalt, andesite, granite), and Apollo lunar samples (mare basalts, alkali suite). Volatile depleted bodies (e.g. HED parent body, thermally metamorphosed meteorites) are enriched in the heavy isotope of Rb by up to several per mil compared to chondrites, suggesting volatile loss by evaporation at the surface of planetesimals. In addition, the Moon is isotopically distinct from the Moon in Rb. The variations in Rb isotope compositions in the volatile-poor samples are attributed to volatile loss from planetesimals during accretion. This suggests that either the Rb (and other volatile elements) were lost during or following the giant impact or by evaporation earlier during the accretion history of Theia.

  3. Oxygen- and magnesium-isotope compositions of calcium-aluminum-rich inclusions from CR2 carbonaceous chondrites

    Science.gov (United States)

    Makide, Kentaro; Nagashima, Kazuhide; Krot, Alexander N.; Huss, Gary R.; Hutcheon, Ian D.; Bischoff, Addi

    2009-09-01

    We report both oxygen- and magnesium-isotope compositions measured in situ using a Cameca ims-1280 ion microprobe in 20 of 166 CAIs identified in 47 polished sections of 15 CR2 (Renazzo-type) carbonaceous chondrites. Two additional CAIs were measured for oxygen isotopes only. Most CR2 CAIs are mineralogically pristine; only few contain secondary phyllosilicates, sodalite, and carbonates - most likely products of aqueous alteration on the CR2 chondrite parent asteroid. Spinel, hibonite, grossite, anorthite, and melilite in 18 CAIs have 16O-rich (Δ 17O = -23.3 ± 1.9‰, 2 σ error) compositions and show no evidence for postcrystallization isotopic exchange commonly observed in CAIs from metamorphosed CV carbonaceous chondrites. The inferred initial 26Al/ 27Al ratios, ( 26Al/ 27Al) 0, in 15 of 16 16O-rich CAIs measured are consistent with the canonical value of (4.5-5) × 10 -5 and a short duration (magnesium and lower-than-canonical 26Al abundance. Another 16O-enriched (Δ 17O = -20.3 ± 1.2‰) inclusion, a spinel-melilite CAI fragment Gao-Guenie (b) #3, has highly-fractionated oxygen- and magnesium-isotope compositions (˜11 and 23‰/amu, respectively), a deficit of 26Mg, and a relatively low ( 26Al/ 27Al) 0 = (2.0 ± 1.7) × 10 -5. This could be the first FUN ( Fractionation and Unidentified Nuclear effects) CAI found in CR2 chondrites. Because this inclusion is slightly 16O-depleted compared to most CR2 CAIs and has lower than the canonical ( 26Al/ 27Al) 0, it may have experienced multistage formation from precursors with nonsolar magnesium-isotope composition and recorded evolution of oxygen-isotope composition in the early solar nebula over 0.9+2.2-0.7 My. Eight of the 166 CR2 CAIs identified are associated with chondrule materials, indicating that they experienced late-stage, incomplete melting during chondrule formation. Three of these CAIs show large variations in oxygen-isotope compositions (Δ 17O ranges from -23.5‰ to -1.7‰), suggesting dilution by

  4. Rubidium Isotope Composition of the Earth and the Moon: Evidence for the Origin of Volatile Loss During Planetary Accretion

    Science.gov (United States)

    Pringle, E. A.; Moynier, F.

    2016-12-01

    The Earth-Moon system has a variety of chemical and isotopic characteristics that provide clues to understanding the mechanism of lunar formation. One important observation is the depletion in moderately volatile elements in the Moon compared to the Earth. This volatile element depletion may be a signature of volatile loss during the Moon-forming Giant Impact. Stable isotopes are powerful tracers of such a process, since volatile loss via evaporation enriches the residue in heavy isotopes. However, early studies searching for the fingerprint of volatile loss failed to find any resolvable variations [1]. Recent work has now revealed heavy isotope enrichments in the Moon relative to the Earth for the moderately volatile elements Zn [2,3] and K [4]. The purely lithophile nature of Rb (in contrast to the chalcophile/lithophile nature of Zn) and the higher volatility of Rb compared to K make Rb an ideal element with which to study the origin of lunar volatile element depletion. We have developed a new method for the high-precision measurement of Rb isotope ratios by MC-ICP-MS. The Rb isotope compositions of terrestrial rocks define a narrow range, indicating that Rb isotope fractionation during igneous differentiation is limited (Comm. 2015. [4] Wang and Jacobsen Nature in press.

  5. Spatial, seasonal, and source variability in the stable oxygen and hydrogen isotopic composition of tap waters throughout the USA

    Science.gov (United States)

    Landwehr, Jurate M.; Coplen, Tyler B.; Stewart, David W.

    2013-01-01

    To assess spatial, seasonal, and source variability in stable isotopic composition of human drinking waters throughout the entire USA, we have constructed a database of δ18O and δ2H of US tap waters. An additional purpose was to create a publicly available dataset useful for evaluating the forensic applicability of these isotopes for human tissue source geolocation. Samples were obtained at 349 sites, from diverse population centres, grouped by surface hydrologic units for regional comparisons. Samples were taken concurrently during two contrasting seasons, summer and winter. Source supply (surface, groundwater, mixed, and cistern) and system (public and private) types were noted. The isotopic composition of tap waters exhibits large spatial and regional variation within each season as well as significant at-site differences between seasons at many locations, consistent with patterns found in environmental (river and precipitation) waters deriving from hydrologic processes influenced by geographic factors. However, anthropogenic factors, such as the population of a tap’s surrounding community and local availability from diverse sources, also influence the isotopic composition of tap waters. Even within a locale as small as a single metropolitan area, tap waters with greatly differing isotopic compositions can be found, so that tap water within a region may not exhibit the spatial or temporal coherence predicted for environmental water. Such heterogeneities can be confounding factors when attempting forensic inference of source water location, and they underscore the necessity of measurements, not just predictions, with which to characterize the isotopic composition of regional tap waters. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  6. Elucidating the controls on the Mg isotopic composition of marine pore fluids

    Science.gov (United States)

    Chanda, P.; Fantle, M.

    2013-12-01

    The Sr and Mg isotopic composition of pore fluids and carbonates from the Neogene section of Ocean Drilling Project Site 806B are reported (87Sr/86Sr and δ26Mg, measured using a Thermo Scientific Neptune Plus multi-collector ICP-MS). Site 806B, located on the northern margin of the Ontong Java Plateau, hosts a thick (776 m cored, depth to basement ~ 1200 m), relatively continuous, carbonate-rich section (between 83 and 96% CaCO3). Our goal in the current study is to use the Sr and Mg isotope data of pore fluids and carbonates to address open questions regarding (1) the extent to which the pore fluid chemistry is overprinted by calcite recrystallization, (2) the effects of diagenesis on bulk carbonate chemistry, and (3) the likelihood of preserving secular seawater δ26Mg trends in pore fluids. Accordingly, the current study compares and contrasts the isotopic and elemental data between adjacent ODP Sites 806B and 807A, which have similar depositional histories, carbonate contents, and pore fluid chemistries. The measured 87Sr/86Sr ratios of pore fluids at 806B range smoothly from 0.70914 at 4.45 mbsf to 0.70851 at 509.3 mbsf, similar (though offset relative) to the bulk carbonate trend (0.70918 to 0.70877 between 1.11 and 501.94 mbsf). The δ26MgDSM3 of 806B pore fluids generally increases from -0.86‰ at 4.45 mbsf to -0.17‰ at 679.0 mbsf. The overall trend is consistent with previously collected δ26Mg data at 807A [1]; there is, however, a significant difference in pore fluid δ26Mg between the two sites at depths of 300 to 600 mbsf. At these depths, 806B pore fluid δ26Mg values are +0.2 to 0.3‰ relative to 807A at similar depths [1]. The application of a depositional reactive transport model to the Sr isotope data suggests that bulk carbonate recrystallization rates at 806B are similar to those at 807A (histories of the sedimentary column (the latter is suggested by the differences in δ26Mg trends at depth). Preliminary model results suggest that

  7. A 15N-poor isotopic composition for the solar system as shown by Genesis solar wind samples.

    Science.gov (United States)

    Marty, B; Chaussidon, M; Wiens, R C; Jurewicz, A J G; Burnett, D S

    2011-06-24

    The Genesis mission sampled solar wind ions to document the elemental and isotopic compositions of the Sun and, by inference, of the protosolar nebula. Nitrogen was a key target element because the extent and origin of its isotopic variations in solar system materials remain unknown. Isotopic analysis of a Genesis Solar Wind Concentrator target material shows that implanted solar wind nitrogen has a (15)N/(14)N ratio of 2.18 ± 0.02 × 10(-3) (that is, ≈40% poorer in (15)N relative to terrestrial atmosphere). The (15)N/(14)N ratio of the protosolar nebula was 2.27 ± 0.03 × 10(-3), which is the lowest (15)N/(14)N ratio known for solar system objects. This result demonstrates the extreme nitrogen isotopic heterogeneity of the nascent solar system and accounts for the (15)N-depleted components observed in solar system reservoirs.

  8. Stable isotopic composition of pedogenic carbonate in soils of Minusinsk Hollow

    Science.gov (United States)

    Vasil'chuk, Jessica; Krechetov, Pavel; Budantseva, Nadine; Chizhova, Julia; Vasil'chuk, Yurij

    2016-04-01

    The purpose of the research is to characterize the isotopic composition of carbonate neoformations in soils and estimate its correlation with isotopic composition of water and parent material. The study site is located in the Minusinsk Hollow that is situated among Kuznetsk Alatau and Sayan Mountains. Three key-sites with in different parts of hollow, under mainly steppe vegetation with calciphilic grasses and diverse parent material were studied including: 1) Kazanovka Khakass state national reserve in foothills of Kuznetsk Alatau 2) Hankul salt lake that is considered as natural monument 3) region of Sayanogorsk aluminum smelter on a left bank of the Yenisei river. The samples of pedogenic and lithogenic carbonates as well as water samples were analyzed using the Delta-V mass spectrometer with a standard option of a gas bench according to standard methods. Carbonate coatings (also called pendants or cutans) is one of the most common types of carbonate neoformations occurring in the region. Fine coatings' layers one over another usually can be found on the bottom sides of rubble and gravel inside the soil profile colour varies from white to brownish and yellowish (probably depending on the impurities of organic matter). In Petric Calcisols, Chernozems and Kastanozems δ18O values of coatings vary in a rather small range from - 8.9 to - 10.1 ‰ PDB. This probably shows that their forming took place approximately in the same climatic conditions. While δ18O values of carbonate parent rocks are close to them and are vary from - 11.1 to - 11.9 ‰ PDB. Also, δ13C values of coatings strongly decrease from inner (older) to outer (younger) layers, that can indicate differences connected with the diffusion of organic material. River waters' δ18O values also show a small range from - 16.62 to - 17.66‰ SMOW, while salt lakes' waters due to the fractionation evaporation effects demonstrate much heavier values from - 4.73 to - 9.22‰ SMOW. The groundwater shows δ18O

  9. Effect of microtopography on isotopic composition of methane in porewater and efflux at a boreal peatland

    Energy Technology Data Exchange (ETDEWEB)

    Dorodnikov, M.; Wilmking, M. [Greifswald Univ. (Georgia). Inst. of Botany and Landscape Ecology; Marushchak, M.; Biasi, C. [Univ. of Eastern Finland, Kuopio (Finland). Dept. of Environmental Science, Bioteknia 2], E-mail: maxim.dorodnikov@uef.fi

    2013-09-01

    The application of stable isotopes is an approach to identify pathways of methanogenesis, methane (CH{sub 4}) oxidation and transport in peatlands. We measured the stable C isotopic characteristics ({delta}C-13) of CH{sub 4} in peat profiles below hummocks, lawns and hollows of a Finnish mire to study the patterns of CH{sub 4} turnover. Porewater CH{sub 4} concentrations ([CH{sub 4}]; at 0.5-2 m) increased with depth below all microforms. Emissions of CH{sub 4} from hummocks were the lowest, and increased with the increasing water-saturated zone, being {approx}10 times higher from hollows. Thus, the microtopography of the peatland did not affect the porewater [CH{sub 4}] in the water-saturated part of the peat profile, but the CH{sub 4} emissions were affected due to differences in the oxidative potential of the microforms. There was a decrease in {delta}C-13-CH{sub 4} with depth below all microforms indicating dominance of CO{sub 2}-reduction over acetate cleavage pathway of methanogenesis at deep peat layers. However, estimated potential portions of transported CH{sub 4} comprised 50%-70% of the {delta}C-13-CH{sub 4} enrichment on microforms at the 0.5-m depth, hereby masking the acetate cleavage pathway of methanogenesis. Stable C composition ({delta}C-13) of CH{sub 4} proved to be a suitable (but not sufficient) tool to differentiate between types of methanogenesis in continuously water-saturated layers below microforms of a peatland. Combined flux-based and multi-isotopic approaches are needed to better understand the CH{sub 4} turnover process. (orig.)

  10. Boron isotopic compositions in growing corals from the South China Sea

    Science.gov (United States)

    Xiao, Jun; Xiao, Yingkai; Jin, Zhangdong; Liu, Congqiang; He, Maoyong

    2013-01-01

    In order to determine incorporation of boron species, boron isotopic fractionation, and influence of trace elements on isotopic compositions of boron in corals (δ11Bcoral), concentrations of Mg, Sr, Na, B and δ11Bcoral in growing corals from the South China Sea were measured. Relative to seawater, Sr enriched while Mg depleted in corals in the South China Sea. Although the δ11Bcoral values were different from various species and were not closely correlated with the element concentrations in corals in the South China Sea, Mg(OH)2 existed in corals can result in high δ11Bcoral. Thus, it is necessary to examine the existence of Mg(OH)2 and to choose the same species when δ11Bcoral is used in the δ11B-pH proxy. Based on the measured δ11B values of corals and coexisting seawater as well as the seawater pH in the South China Sea, a new isotopic fractionation factor a4-3 between B(OH)4- and B(OH)3 was determined to be 0.979. Besides B(OH)4- into corals, our results showed that B(OH)3 may also be incorporated into corals with variable proportions. The incorporation of B(OH)3 into corals may challenge the hypothesis of δ11Bcoral = δ11B4, resulting in increasing uncertainty to the calculated seawater pH values to the δ11B-pH proxy. We suggested that a best-fit empirical equation between δ11B of bio-carbonates and seawater pH needs to be established by the precipitation experiments of inorganic carbonates or culture experiments of corals or foraminifera.

  11. Temporal variation in isotopic composition and diet of Weddell seals in the western Ross Sea

    Science.gov (United States)

    Goetz, Kimberly T.; Burns, Jennifer M.; Hückstӓdt, Luis A.; Shero, Michelle R.; Costa, Daniel P.

    2017-06-01

    Weddell seals (Leptonychotes weddellii) are important predators in the Antarctic marine ecosystem, yet little is known about their diet. Previous studies have used scat and stomach content analyses to examine Weddell seal diet, however, these methods are biased towards prey with indigestible hard parts. To provide a more complete picture of their diet, we analyzed the stable isotope composition (δ13C and δ15N values) of red blood cells (RBC, n=96, representing a time scale of weeks to months) and vibrissae (n=45, representing months to a year) collected over a three year period (2010-2012). Our objectives were to (1) examine isotopic variation in relation to Weddell seal mass, sex, season, location, percent lipid, and age, and (2) quantify the contribution of prey items to overall diet. Body mass was a significant predictor of δ13C and δ15N values for both tissues, though the strength and direction of the relationship varied by year. The prey group consisting of Pleurogramma antarcticum and Trematomus newnesi was found to be an important dietary component, but its proportional contribution to Weddell seal diet varied with the timeframe represented by each tissue type [median RBC (range): 59.2% (40.2-8 1.1%); median mean vibrissae (range): 69.3% (43.9-89.6%)]. Results from mixing models ran for each seal indicate individual variation in diet. Overall, this study presents novel information on the isotopic variation and diet of Weddell seals over two time scales and provides insight into the feeding ecology of an important Antarctic predator.

  12. The sulfur-isotopic compositions of benzothiophenes and dibenzothiophenes as a proxy for thermochemical sulfate reduction

    Science.gov (United States)

    Amrani, Alon; Deev, Andrei; Sessions, Alex L.; Tang, Yongchun; Adkins, Jess F.; Hill, Ronald J.; Moldowan, J. Michael; Wei, Zhibin

    2012-05-01

    Compound-specific analyses of the 34S/32S isotope ratios of individual organosulfur compounds in Upper Jurassic oil and condensate samples from the Smackover Fm. reveal differences of up to ˜50‰ between compounds. There is a clear distinction between oils altered by thermochemical sulfate reduction (TSR) versus those that are not. Oils that did experience TSR exhibit significant 34S enrichment of benzothiophenes (BTs) compared to dibenzothiophenes (DBTs), while in unaltered oils these compounds have similar isotopic compositions. The δ34S values of BTs are close to those of sulfate-bearing evaporites of the Smackover Fm., whereas the δ34S values of DBTs are spread over a wider range and gradually approach those of the BTs. Gold-tube hydrous pyrolysis experiments using three representative oils show that isotopic alteration readily occurs under TSR conditions and can significantly affect the δ34S values of individual compounds. Our results indicate that BTs can be a sensitive tracer for TSR as they form readily under TSR conditions, with large 34S enrichments relative to the bulk oil. In contrast, DBTs exhibit relatively small changes in δ34S, preserving their original δ34S values longer than do BTs because of their greater thermal stability and slow rate of formation. We propose that comparison of the δ34S values of BT and DBT can be used to detect TSR alteration of oils from the very early stages up to highly altered oils. The approach should find numerous uses in petroleum exploration, as well as for understanding the basic reaction mechanisms and kinetics of thermochemical sulfate reduction and secondary sulfur incorporation into oils.

  13. Chemical characterization and stable carbon isotopic composition of particulate Polycyclic Aromatic Hydrocarbons issued from combustion of 10 Mediterranean woods

    Directory of Open Access Journals (Sweden)

    A. Guillon

    2013-03-01

    Full Text Available The objectives of this study were to characterize polycyclic aromatic hydrocarbons from particulate matter emitted during wood combustion and to determine, for the first time, the isotopic signature of PAHs from nine wood species and Moroccan coal from the Mediterranean Basin. In order to differentiate sources of particulate-PAHs, molecular and isotopic measurements of PAHs were performed on the set of wood samples for a large panel of compounds. Molecular profiles and diagnostic ratios were measured by gas chromatography/mass spectrometry (GC/MS and molecular isotopic compositions (δ13C of particulate-PAHs were determined by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS. Wood species present similar molecular profiles with benz(aanthracene and chrysene as dominant PAHs, whereas levels of concentrations range from 1.8 to 11.4 mg g−1 OC (sum of PAHs. Diagnostic ratios are consistent with reference ratios from literature but are not sufficient to differentiate the species of woods. Concerning isotopic methodology, PAH molecular isotopic compositions are specific for each species and contrary to molecular fingerprints, significant variations of δ13C are observed for the panel of PAHs. This work allows differentiating wood combustion (with δ13CPAH = −28.7 to −26.6‰ from others origins of particulate matter (like vehicular exhaust using isotopic measurements but also confirms the necessity to investigate source characterisation at the emission in order to help and complete source assessment models. These first results on woodburnings will be useful for the isotopic approach to source tracking.

  14. A model composition for Mars derived from the oxygen isotopic ratios of martian/SNC meteorites. [Abstract only

    Science.gov (United States)

    Delaney, J. S.

    1994-01-01

    Oxygen is the most abundant element in most meteorites, yet the ratios of its isotopes are seldom used to constrain the compositional history of achondrites. The two major achondrite groups have O isotope signatures that differ from any plausible chondritic precursors and lie between the ordinary and carbonaceous chondrite domains. If the assumption is made that the present global sampling of chondritic meteorites reflects the variability of O reservoirs at the time of planetessimal/planet aggregation in the early nebula, then the O in these groups must reflect mixing between known chondritic reservoirs. This approach, in combination with constraints based on Fe-Mn-Mg systematics, has been used previously to model the composition of the basaltic achondrite parent body (BAP) and provides a model precursor composition that is generally consistent with previous eucrite parent body (EPB) estimates. The same approach is applied to Mars exploiting the assumption that the SNC and related meteorites sample the martian lithosphere. Model planet and planetesimal compositions can be derived by mixing of known chondritic components using O isotope ratios as the fundamental compositional constraint. The major- and minor-element composition for Mars derived here and that derived previously for the basaltic achondrite parent body are, in many respects, compatible with model compositions generated using completely independent constraints. The role of volatile elements and alkalis in particular remains a major difficulty in applying such models.

  15. Deposition of nitrogen and phosphorus on the Baltic Sea: seasonal patterns and nitrogen isotope composition

    Directory of Open Access Journals (Sweden)

    C. Rolff

    2008-12-01

    Full Text Available Atmospheric deposition of nitrogen and phosphorus on the central Baltic Sea (Baltic Proper was estimated monthly at two coastal stations and two isolated islands in 2001 and 2002. Yearly nitrogen deposition ranged between 387 and 727 mg N m−2 yr−1 (average 617 and was composed of ~10% organic N and approximately equal amounts of ammonium and nitrate. Winter nitrate peaks at the isolated islands possibly indicated ship emissions. Load weighted δ15N of deposited N was 3.7‰ and 0.35‰ at the coastal stations and the isolated islands respectively. Winter δ15N was ~3‰ lighter than in summer, reflecting winter dominance of nitrate. The light isotopic composition of deposited nitrogen may cause overestimates of nitrogen fixation in basin-wide isotopic budgeting, whereas relatively heavy deposition of ammonium during summer instead may cause underestimates of fixation in budgets of the upper mixed layer. δ15N in atmospherically deposited nitrate and ammonium was estimated by regression to −7.9 and 13.5‰ respectively. Phosphorus deposition showed no clear seasonal pattern and was considerably lower at the isolated islands. Organic P constituted 20–40% of annual P deposition. P deposition is unlikely to be a major source for cyanobacterial blooms but may potentially prolong an ongoing bloom.

  16. Carbon isotope composition of ambient CO2 and recycling: a matrix simulation model

    Science.gov (United States)

    da Silveira Lobo Sternberg, Leonel; DeAngelis, Donald L.

    2002-01-01

    The relationship between isotopic composition and concentration of ambient CO2 in a canopy and its associated convective boundary layer was modeled. The model divides the canopy and convective boundary layer into several layers. Photosynthesis, respiration, and exchange between each layer can be simulated by matrix equations. This simulation can be used to calculate recycling; defined here as the amount of respired CO2 re-fixed by photosynthesis relative to the total amount of respired CO2. At steady state the matrix equations can be solved for the canopy and convective boundary layer CO2 concentration and isotopic profile, which can be used to calculate a theoretical recycling index according to a previously developed equation. There is complete agreement between simulated and theoretical recycling indices for different exchange scenarios. Recycling indices from a simulation of gas exchange between a heterogeneous vegetation canopy and the troposphere also agreed with a more generalized form of the theoretical recycling equation developed here.

  17. Water Vapor and its Isotopic Composition in the Upper Troposphere and Stratosphere

    Science.gov (United States)

    Dessler, A. E.; Sherwood, S. C.

    2003-01-01

    Any theory of water vapor in the tropical tropopause layer (TTL) must explain both the abundance and isotopic composition of water there. We have previously presented a model of the TTL that simulated the abundance of water vapor as well as the details of the vertical profile. That model included the effects of 'overshooting convection', which injects dry air directly into the TTL. Here, we present results for the model after modifying it to include water's stable isotope HDO. The model is capable of accurately simulating the recently observed, nearly uniform HDO depletion (delta D) in the TTL. We find that lofted ice is necessary to accurately simulate the profile of delta D in the TTL, as has been suggested previously. We also find that vertical mixing due to overshooting convection plays an important role in maintaining the observed profile. Finally, any theory of lofted ice requires a complementary source of dry air in the TTL; without that, the TTL will rapidly saturate and the lofted ice will not evaporate.

  18. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    Science.gov (United States)

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  19. Carbon isotopic compositions of the Cambrian-Ordovician carbonates in Tarim Basin

    Energy Technology Data Exchange (ETDEWEB)

    Peng, S.; He, H.; Shao, L.; Shi, Z.; Gao, Y. [China University of Mining and Technology, Beijing (China). Dept of Resource Exploitation Engineering

    2002-07-01

    Composition features of carbon and oxygen isotopes in marine carbonate rocks of Cambrian-Ordovician in Bachu area of Tarim Basin were researched. Factors influencing the variation of carbon isotope were analysed. The results show that the variation of {delta}{sup 13}C of the Cambrian-Ordovician marine carbonate rocks is closely related to the changes of sea level. The slower organic carbon burial during sea level fall from the Early Cambrian to Middle Cambrian led to a decrease of the {delta}{sup 13}C value of carbonate rocks of this stage. The rise of organic productivity together with a rapid burial of organic carbon during the rise of sea level in Early Ordivician led to an increase of the {delta}{sup 13}C value of carbonate rocks of this stage because of a high sulfate content in seawater in the Middle Cambrian, the reduction by sulfate bacteria caused an oxidation of organic matter, resulting in a decrease of the {delta}{sup 13} values. The negative {delta}{sup 13}C value in some samples may be related to the fractionation of CO{sub 2} emitted from magma activity or volcanism. 14 refs., 2 figs., 2 tabs.

  20. Determining the geographical origin of Chinese cabbages using multielement composition and strontium isotope ratio analyses

    Science.gov (United States)

    BONG, Y.; Shin, W.; Gautam, M. K.; Jeong, Y.; Lee, A.; Jang, C.; Lim, Y.; Chung, G.; Lee, K.

    2012-12-01

    Recently, the Korean market has seen many cases of Chinese cabbage (Brassica rapa ssp. pekinensis) that have been imported from China, yet are sold as a Korean product to illegally benefit from the price difference between the two products. This study aims to establish a method of distinguishing the geographical origin of Chinese cabbage. One hundred Chinese cabbage heads from Korea and 60 cabbage heads from China were subjected to multielement composition and strontium isotope ratio (87Sr/86Sr) analyses. The 87Sr/86Sr ratio differed, based on the geological characteristics of their district of production. In addition, the content of many elements differed between cabbages from Korea and China. In particular, the difference in the content of Sr and Ti alone and the combination of Sr, Ca, and Mg allowed us to distinguish relatively well between Korea and China as the country of origin. The present study demonstrates that the chemical and Sr isotopic analyses exactly reflect the geology of the production areas of Chinese cabbage. Also, multivariate statistical analyses of multiple elements were found to be very effective in distinguishing the geographical origin of Chinese cabbages.

  1. Carbon isotopic composition of Ambrosia and Artemisia pollen: assessment of a C₃-plant paleophysiological indicator.

    Science.gov (United States)

    Nelson, David M

    2012-09-01

    There is limited evidence on how shifts in plant physiological performance influence vegetation variations in the paleorecord. To evaluate δ¹³C of pollen from C₃ plants as an indicator of community-level physiology, small quantities (10-30 grains) of untreated pollen and sporopollenin from herbarium specimens of Ambrosia (A. tomentosa and A. psilostachya) and Artemisia (A. frigida, A. ludoviciana and A. dracunculus), genera abundant in grassland pollen profiles, were isolated by micromanipulation. Their δ¹³C values were measured using a spooling-wire microcombustion device interfaced with an isotope-ratio mass spectrometer. Leaf δ¹³C was also measured. Carbon isotope discrimination (Δ) for untreated pollen, sporopollenin and leaves was compared with historic records of seasonal precipitation amount, vapor pressure deficit and the Palmer Drought Severity Index (PDSI). Each species showed positive correlations between Δ of untreated pollen and sporopollenin. Sporopollenin Δ was most strongly correlated with PDSI. Correlations among leaf Δ and moisture indicators were stronger for Ambrosia than Artemisia. These results suggest that sporopollenin Δ indicates the level of moisture stress in C₃ plants. Therefore, δ¹³C analysis of pollen promises to help address important paleoecological questions, such as how community-level physiology contributes to shifts in vegetation composition. © 2012 The Author. New Phytologist © 2012 New Phytologist Trust.

  2. Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia

    Directory of Open Access Journals (Sweden)

    Magda Mandic

    2013-09-01

    Full Text Available Partial pressure of CO2 (pCO2 and its isotopic composition (δ13CairCO2 were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.

  3. Chemical and boron isotopic composition of tourmaline from the Mariinsky emerald deposit, Central Urals, Russia

    Science.gov (United States)

    Baksheev, Ivan A.; Trumbull, Robert B.; Popov, Mikhail P.; Erokhin, Yuri V.; Kudryavtseva, Olesya E.; Yapaskurt, Vasily O.; Khiller, Vera V.; Vovna, Galina M.; Kiselev, Vladimir I.

    2017-07-01

    Tourmaline is abundant at the Mariinsky schist-hosted emerald deposit in the Central Urals, Russia, both in emerald-bearing phlogopite veins (type 1) and later, emerald-free pockets, lenses, and veinlets cutting the phlogopite veins (type 2). The Ca content in tourmaline is influenced by the host rocks (ultramafic and mafic rocks), associated minerals, and minerals crystallized before tourmaline (amphibole, fluorite, margarite). The Na concentration in tourmaline depends on the presence or absence of paragonite, and the association with micas also strongly influences the contents of Li, Zn, Ni, and Co in tourmaline. Type 1 tourmalines associated with phlogopite are relatively depleted in these elements, whereas type 2 tourmalines associated with margarite or paragonite are enriched. Some differences in isomorphic substitutions along with the trace element composition (Zn, V, Sr, Co, REE) may have value in exploration of emerald-bearing and emerald-free veins in schist-hosted emerald deposits. The δ11B values in tourmaline of all types fall in a narrow total range from -11.3 to -8.4‰. These values, combined with a mineralization temperature of 420-360 °C, yield an estimated δ11B fluid composition of -7.4 to -6.8‰ suggesting a mixed source of boron, likely dominated from the granitic rocks surrounding the emerald belt. The narrow range of B-isotope compositions in tourmaline from throughout the Mariinsky deposit suggests a well-mixed hydrothermal system.

  4. Nitrogen Isotopic Composition of Organic Matter in a Pristine Collection IDP

    Science.gov (United States)

    Messenger, S.; Nakamura-Messenger, K.; Keller, L. P.; Clemett, S. J.; Nguyen, A. N.; Walker, Robert M.

    2012-01-01

    Anhydrous chondritic porous interplanetary dust particles (CP IDPs) are probable cometary materials that show primitive characteristics, such as unequilibrated mineralogy, fragile structure, and abundant presolar grains and organic matter [1-3]. CP IDPs are richer in aliphatic species and N-bearing aromatic hydrocarbons than meteoritic organics and commonly exhibit highly anomalous H and N isotopic compositions [4,5]. Cometary organic matter is of interest in part because it has escaped the hydrothermal processing experienced by meteorites. However, IDPs are collected using silicon oil that must be removed with strong organic solvents such as hexane. This procedure is likely to have removed some fraction of soluble organic phases in IDPs. We recently reported the first stratospheric collection of IDPs without the use of silicone oil [6]. Here we present initial studies of the carbonaceous material in an IDP from this collection.

  5. Experimental evaporation of hyperacid brines: Effects on chemical composition and chlorine isotope fractionation

    Science.gov (United States)

    Rodríguez, Alejandro; van Bergen, Manfred J.; Eggenkamp, H. G. M.

    2018-02-01

    Hyperacid brines from active volcanic lakes are some of the chemically most complex aqueous solutions on Earth. Their compositions provide valuable insights into processes of elemental transfer from a magma body to the surface and interactions with solid rocks and the atmosphere. This paper describes changes in chemical and δ37Cl signatures observed in a 1750 h isothermal evaporation experiment on hyperacid (pH 0.1) sulphate-chloride brine water from the active lake of Kawah Ijen volcano (Indonesia). Although gypsum was the only evaporite mineral identified in the evolving brine, decreasing Si concentrations may ultimately result in amorphous silica precipitation. Geochemical simulations predict the additional formation of elemental sulphur at lower water activities (aH2O ≤ 0.65) that were not reached in the experiment. Absence of other sulphates and halides despite the high load of dissolved elements (initial TDS ca. 100 g/kg) can be attributed to increased solubility of metals, promoted by extensive formation of complexes between the variety of cations and the major anions (HSO4-, Cl-, F-) present. Chlorine deviations from a conservative behaviour point to losses of gaseous hydrogen chloride (HCl(g)) and consequently an increase in Br/Cl ratios. Chlorine isotope fractionation that accompanied the escape of HCl(g) showed a marked change in sign and magnitude in the course of progressive evaporation of the brine. The calculated factor of fractionation between HCl(g) and dissolved Cl for the initial interval (before 500 h) is positive (1000lnαHCl(g)-Cldiss. = + 1.55 ± 0.49‰to + 3.37 ± 1.11‰), indicating that, at first, the escaping HCl(g) was isotopically heavier than the dissolved Cl remaining in the brine. Conversely, fractionation shifted to the opposite direction in the subsequent interval (1000lnαHCl(g)-Cldiss. = 5.67 ± 0.17‰to - 5.64 ± 0.08‰), in agreement with values reported in literature. It is proposed that Cl isotopic fractionation in

  6. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries.

    Science.gov (United States)

    Mazumder, Debashish; Saintilan, Neil; Alderson, Brendan; Hollins, Suzanne

    2015-11-15

    Urban development in coastal settings has increased the input of nitrogen into estuaries globally, in many cases changing the composition of estuarine ecosystems. By focussing on three adjacent estuaries with a gradient of anthropogenic N loadings, we used stable isotopes of N and C to test for changes due to increased anthropogenic N input on the structure of some key trophic linkages in estuaries. We found a consistent enrichment in δ(15)N corresponding to increased anthropogenic N at the three ecosystem levels studied: fine benthic organic matter, grazing invertebrate, and planktivorous fish. The degree of enrichment in δ(15)N between fine benthic organic matter and the grapsid crab Parasesarma erythrodactyla was identical across the three sites. The glassfish Ambassis jacksoniensis showed lower levels of enrichment compared to basal food sources at the higher N-loaded sites, suggesting a possible effect of anthropogenic N in decreasing food-chain length in these estuaries. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Stable hydrogen isotope composition of n-alkanes in urban atmospheric aerosols in Taiyuan, China

    Science.gov (United States)

    Bai, Huiling; Li, Yinghui; Peng, Lin; Liu, Xiangkai; Liu, Xiaofeng; Song, Chongfang; Mu, Ling

    2017-03-01

    The hydrogen isotope compositions (δD) of n-alkanes associated with particulate matter with a diameter of ≤10 μm from Taiyuan, China, during heating and non-heating periods were measured via gas chromatography-isotope ratio mass spectrometry to reveal the spatial and temporal characteristics of five functional zones and to provide another constraint on atmospheric pollutants. The δD values of n-C16 to n-C31 during the heating and non-heating periods ranged from -235.9‰ to -119.8‰ and from -231.3‰ to -129.2‰, respectively, but these similar spans had different distribution features. During the heating period, the δD distributions between non-central heating and commercial districts were consistent, as were those between residential and industrial districts; the n-alkanes came from two or more types of emission sources. Coal soot might be the primary local emission source, but not the only source. During the non-heating period, the n-alkanes of n-C16 to n-C20 were more depleted in D with the increasing carbon number in all functional zones, but there was no rule for n-C21 to n-C31. Specifically, coal soot and vehicle exhaust might be the primary sources of n-alkanes for non-central heating districts in the heating and non-heating periods, respectively, according to the δD distribution of n-C18 to n-C22; gasoline vehicle exhaust might be an n-alkane source, and the hydrogen isotope fractionation effect during the condensation process should be a pollution mechanism for the commercial district during the heating period; the δD distribution difference of n-C16 to n-C18 between the two periods in the residential and industrial districts was consistent, which indicates a similar source of fossil fuel combustion and a similar isotope fractionation effect during the non-heating period.

  8. Nitrogen isotopic composition of enameloid-bound organic matter from modern and fossil shark teeth

    Science.gov (United States)

    Kast, E.; Wang, X. T.; Kim, S.; Kocsis, L.; Sigman, D. M.

    2016-12-01

    The nitrogen isotopic composition of fossil organic matter has been used to reconstruct ocean biogeochemical conditions in the past, and there is the potential for such investigations to be extended to trophic and ecological processes. Organic matter trapped within biogenic minerals is of particular interest for this purpose because of relatively good preservation and specificity when compared to bulk sedimentary organic matter. The approach for measuring mineral bound organic matter δ15N previously applied to diatoms, foraminifera, and coral skeleton has been adapted for use with tooth apatite, with reproducibility within 0.25‰ for modern and fossil shark enameloid. Studies of modern shark enameloid bound δ15N (δ15NEB) show substantial variability ( 3‰) between individuals of a single species and in some cases among teeth from a given individual. δ15NEB is affected by the isotopic composition of nutrient supply, which is a primary determinant of the δ15N at the base of the food web, and progressive 15N enrichment with trophic level due to the metabolism and excretion of low-δ15N N. Among modern shark species studied, patterns in δ15NEB appear to primarily reflect regional variations in subsurface nitrate δ15N, with the trophic effect as a secondary signal, in part because trophic level does not vary greatly across the studied shark species (or, indeed, across many shark species). Teeth from individual jaws can show trends in δ15NEB with the age of the tooth, possibly representing a dietary shift or seasonal migration. The modern measurements suggest that, with care, enameloid bound δ15N can be used to reconstruct past nutrient cycling dynamics. In this context, measurements will be presented of δ15NEB from fossil shark teeth of various Cenozoic ages from the Atlantic basin.

  9. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA

    Science.gov (United States)

    Izbicki, John A.; Bullen, Thomas D.; Martin, Peter; Schroth, Brian

    2012-01-01

    Chromium(VI) concentrations in groundwater sampled from three contaminant plumes in aquifers in the Mojave Desert near Hinkley, Topock and El Mirage, California, USA, were as high as 2600, 5800 and 330 μg/L, respectively. δ53/52Cr compositions from more than 50 samples collected within these plumes ranged from near 0‰ to almost 4‰ near the plume margins. Assuming only reductive fractionation of Cr(VI) to Cr(III) within the plume, apparent fractionation factors for δ53/52Cr isotopes ranged from εapp = 0.3 to 0.4 within the Hinkley and Topock plumes, respectively, and only the El Mirage plume had a fractionation factor similar to the laboratory derived value of ε = 3.5. One possible explanation for the difference between field and laboratory fractionation factors at the Hinkley and Topock sites is localized reductive fractionation of Cr(VI) to Cr(III), with subsequent advective mixing of native and contaminated water near the plume margin. Chromium(VI) concentrations and δ53/52Cr isotopic compositions did not uniquely define the source of Cr near the plume margin, or the extent of reductive fractionation within the plume. However, Cr(VI) and δ53/52Cr data contribute to understanding of the interaction between reductive and mixing processes that occur within and near the margins of Cr contamination plumes. Reductive fractionation of Cr(VI) predominates in plumes having higher εapp, these plumes may be suitable for monitored natural attenuation. In contrast, advective mixing predominates in plumes having lower εapp, the highly dispersed margins of these plumes may be difficult to define and manage.

  10. The chromium isotopic composition of an Early to Middle Ordovician marine carbonate platform, eastern Precordillera, San Juan, Argentina

    DEFF Research Database (Denmark)

    D'Arcy, Joan Mary; Frei, Robert; Gilleaudeau, Geoffrey Jon

    A broad suite of redox proxy data suggest that despite ocean and atmosphere oxygenation in the late Neoproterozoic, euxinic conditions persisted in the global deep oceans until the at least Ordovician [1,2,3]. Major changes in the sulphur isotopic composition of carbonate associated sulphate and ...

  11. In situ oxygen isotope compositions in olivines of different types of cosmic spherules: An assessment of relationships to chondritic particles

    Digital Repository Service at National Institute of Oceanography (India)

    Rudraswami, N.G.; ShyamPrasad, M.; Jones, R.H.; Nagashima, K.

    ‰, -13 to 22‰ and -11 to 6‰. Our results suggest that the oxygen isotope compositions of the scoriaceous, relict-bearing, porphyritic and barred spherules show provenance related to the carbonaceous (CM, CV, CO and CR) chondrites. The different types...

  12. Amphiboles as indicators of mantle source contamination: Combined evaluation of stable H and O isotope compositions and trace element ratios

    NARCIS (Netherlands)

    Demény, A.; Harangi, S.; Vennemann, T.W.; Casillas, R.; Horváth, P.; Milton, A.J.; Mason, P.R.D.; Ulianov, A.

    2012-01-01

    Stable isotope and trace element compositions of igneous amphiboles from different tectonic settings (ocean island basalts, intraplate alkaline basalts, subduction-related andesitic complexes) were compiled to help understand the role of fluids and melts in subduction-related mantle metasomatism

  13. Stable isotope composition of bulk and secondary carbonates from the Quaternary loess-paleosol sequence in Sutto, Hungary

    DEFF Research Database (Denmark)

    Koeniger, Paul; Barta, Gabriella; Thiel, Christine

    2014-01-01

    Stable carbon and oxygen isotope composition of pedogenic carbonates were studied from the Quaternary loess-paleosol sequence of Sutto in Hungary to investigate genetic processes in a paleoenvironmental context and to distinguish subtypes. Bulk carbonate samples taken at 2 cm vertical resolution...

  14. Neodymium isotopic composition and concentration in the western North Atlantic Ocean: Results from the GEOTRACES GA02 section

    NARCIS (Netherlands)

    Lambelet, M.; van de Flierdt, T.; Crocket, K.; Rehkämper, M.; Kreissig, K.; Coles, B.; Rijkenberg, M.J.A.; Gerringa, L.J.A.; de Baar, H.J.W.; Steinfeldt, R.

    2016-01-01

    The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data

  15. Neodymium isotopic composition and concentration in the western North Atlantic Ocean : results from the GEOTRACES GA02 section

    NARCIS (Netherlands)

    Lambelet, Myriam; van de Flierdt, Tina; Crocket, Kirtsty; Rehkämper, Mark; Kreissig, Katharina; Coles, Barry; Rijkenberg, Michaël; Gerringa, Loes J.A.; de Baar, Henricus; Steinfeldt, Reiner

    2016-01-01

    The neodymium (Nd) isotopic composition of seawater is commonly used as a proxy to study past changes in the thermohaline circulation. The modern database for such reconstructions is however poor and the understanding of the underlying processes is incomplete. Here we present new observational data

  16. Lead isotope composition of tree rings as bio-geochemical tracers of air pollution: a case study from Firenze, Italy

    NARCIS (Netherlands)

    Tommasini, S.; Davies, G.R.; Elliott, T.R.

    2000-01-01

    Pb isotope composition of tree rings (Celtis Australis) and urban aerosols have been determined to assess whether arboreal species can be used as bio-geochemical tracers of the evolution of heavy metal pollution to the environment. Particular care was paid to setting up a high quality analytical

  17. [Determination of deuterium concentration in foods and influence of water with modified isotopic composition on oxidation parameters and heavy hydrogen isotopes content in experimental animals].

    Science.gov (United States)

    Basov, A A; Bykov, I M; Baryshev, M G; Dzhimak, S S; Bykov, M I

    2014-01-01

    The article presents the results of the study of the deuterium (D) content in food products as well as the influence of deuterium depleted water (DDW) on the concentration of heavy hydrogen isotopes in the blood and lyophilized tissues of rats. The most significant difference in the content of D was found between potato and pork fat, which indexes the standard delta notation (δ) D in promille, related to the international standard SMOW (Standard Mean Ocean of Water) amounted to -83,2 per thousand and -250,7 per thousand, respectively (pdeuterium concentration ranged from -75,5 per thousand (Narzan) to +72,1 per thousand (Kubai), that indicates the ability of some food products to increase the concentration of heavy hydrogen atoms in the body. The data obtained in the experimental modeling of the diet of male Wistar rats in the age of 5-6 mo (weight 235 ± 16 g) using DDW (δD = -743,2 per thousand) instead of drinking water (δD = -37,0 per thousand) with identical mineral composition showed that after 2 weeks significant (p deuterium-protium, D/H) gradient in the body is possible. Changing the direction of isotopic D/H gradient in laboratory animals in comparison with its physiological indicators (72-127 per thousand, "plasma>tissue") is due to different rates ofisotopic exchange reactions in plasma and tissues (liver, kidney, heart), which can be explained by entering into the composition of a modified diet of organic substrates with more than DDW concentration D, which are involved in the construction of cellular structures and eventually lead to a redistribution of D and change direction of D/H gradient "plasmaisotopic composition, aimed at reducing the level of heavy non-radioactive atoms will allow the targeted nutritional correction of prooxidant-antioxidant status of

  18. The Nd-isotopic composition of late Cretaceous bathyal-abyssal seawater from fossil fish skeletal debris

    Science.gov (United States)

    Robinson, S. A.; Vance, D.

    2009-04-01

    There is currently very little proxy data available for determining the inter-ocean mixing of deep-water masses during the Cretaceous, and thus uncertainty remains as to the importance of deep-water circulation in latitudinal heat transport and bottom-water oxygenation for that time. A solution lies in exploiting a geochemical water-mass tracer, such as the neodymium (Nd) isotopic composition of seawater. It has been shown that the distinct differences in the Nd-isotopic composition observed in modern deep and intermediate waters have persisted since the early Cenozoic, but currently our knowledge of the Cretaceous oceans is poor. Most of the existing Nd-isotope data for the Cretaceous are from shallow-water masses on the continental shelves of the Tethyan and Atlantic Oceans. It has previously been shown that biogenic apatites record the Nd-isotopic composition of bottom-waters during an early diagenetic reaction at the sediment-water interface. We present Nd-isotope data from fish-teeth and skeletal debris picked from deep-ocean sediments recovered by DSDP and ODP drilling in the North and South Atlantic, Indian and Pacific Oceans. The sites chosen for this study were all deposited at bathyal-abyssal water depths. In conjunction with other recent studies, our data establish that the Pacific Ocean has likely maintained a constant range of Nd-isotopic values between ~-5 and -3 since at least 135 Ma. The data from the North Atlantic, South Atlantic and proto-Indian Ocean show that bottom-waters in these basins had relatively radiogenic Nd-isotopic compositions for much of the mid-Cretaceous (~-8 to ~-5), before shifting to less radiogenic values (age for the establishment of the Cenozoic Nd-isotope pattern. However, this shift did not occur at the transition in the Turonian to more oxygenated sedimentation in the North Atlantic, thereby leaving unanswered the question of whether ocean circulation changes and shifting tectonic gateways were responsible for the

  19. Oxygen and Magnesium Isotopic Compositions of Asteroidal Materials Returned from Itokawa by the Hayabusa Mission

    Science.gov (United States)

    Yurimoto, H; Abe, M.; Ebihara, M.; Fujimura, A.; Hashizume, K.; Ireland, T. R.; Itoh, S.; Kawaguchi, K.; Kitajima, F.; Mukai, T.; hide

    2011-01-01

    The Hayabusa spacecraft made two touchdowns on the surface of Asteroid 25143 Itokawa on November 20th and 26th, 2005. The Asteroid 25143 Itokawa is classified as an S-type asteroid and inferred to consist of materials similar to ordinary chondrites or primitive achondrites [1]. Near-infrared spectroscopy by the Hayabusa spacecraft proposed that the surface of this body has an olivine-rich mineral assemblage potentially similar to that of LL5 or LL6 chondrites with different degrees of space weathering [2]. The spacecraft made the reentry into the Earth s atmosphere on June 12th, 2010 and the sample capsule was successfully recovered in Australia on June 13th, 2010. Although the sample collection processes on the Itokawa surface had not been made by the designed operations, more than 1,500 grains were identified as rocky particles in the sample curation facility of JAXA, and most of them were judged to be of extraterrestrial origin, and definitely from Asteroid Itokawa on November 17th, 2010 [3]. Although their sizes are mostly less than 10 microns, some larger grains of about 100 microns or larger were also included. The mineral assembly is olivine, pyroxene, plagioclase, iron sulfide and iron metal. The mean mineral compositions are consistent with the results of near-infrared spectroscopy from Hayabusa spacecraft [2], but the variations suggest that the petrologic type may be smaller than the spectroscopic results. Several tens of grains of relatively large sizes among the 1,500 grains will be selected by the Hayabusa sample curation team for preliminary examination [4]. Each grain will be subjected to one set of preliminary examinations, i.e., micro-tomography, XRD, XRF, TEM, SEM, EPMA and SIMS in this sequence. The preliminary examination will start from the last week of January 2011. Therefore, samples for isotope analyses in this study will start from the last week of February 2011. By the time of the LPSC meeting we will have measured the oxygen and

  20. Underplating generated A- and I-type granitoids of the East Junggar from the lower and the upper oceanic crust with mixing of mafic magma: Insights from integrated zircon U-Pb ages, petrography, geochemistry and Nd-Sr-Hf isotopes

    Science.gov (United States)

    Liu, Wei; Liu, Xiu-Jin; Liu, Li-Juan

    2013-10-01

    Whole rock major and trace element, Nd-Sr and zircon Hf isotopic compositions and secondary-ion mass spectrometry zircon U-Pb ages of eleven granitoid intrusions and dioritic rocks from the East Junggar (NW China) were analyzed in this study. The East Junggar granitoids were emplaced during terminal Early to Late Carboniferous (325-301 Ma) following volcanic eruption of the Batamayi Formation. Zircons from the East Junggar granitoids yielded 210 concordant 206Pb/238U ages which are all younger than 334 Ma and exhibit ɛHf(t) values distinctly higher than Devonian arc volcanic-rocks. Seismic P-wave velocities of deep crust of the East Junggar proper resemble those of oceanic crust (OC). These characteristics suggest absence of volcanic rock and volcano-sedimentary rock of Devonian and Early Carboniferous from the source region. The East Junggar granitoids show ɛNd(t) and initial 87Sr/86Sr values substantially overlapping those of the Armantai ophiolite in the area. The Early Paleozoic OC with seamount-like composition as the Zhaheba-Armantai ophiolites remained in the lower crust and formed main source rock of the East Junggar granitoids. Based on petrography and geochemistry, the East Junggar granitoids are classified into peralkaline A-type in the northern subarea, I-type (I1 and I2 subgroups) mainly in the north and A-type in the south of the southern subarea. The perthitic or argillated core and oligoclasic rim with an argillated boundary of feldspar phenocrysts and inclusion of perthites or its overgrowth by matrix plagioclase, in the monzogranites (northern subarea), suggest mixing of peralkaline granitic magma with mafic magma. In the north of the southern subarea, the presence of magmatic microdioritic enclaves (MMEs) in the I1 subgroup granitoids, transfer of plagioclase phenocrysts and hornblendes between host granodiorite and the MME across the boundary and a prominent resorption surface in the plagioclase phenocrysts indicate mixing of crustal magma (I2

  1. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Scott, F.; Levey, Douglas, J.; Greenberg, Catheryn, H.; Martinez del Rio, Carlos

    2003-02-28

    Pearson, S.F., D.J. Levey, C.H. Greenberg, and C.M. del Rio. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia. 135:516-523. The use of stable isotopes to infer diet requires quantifying the relationship between diet and tissues and, in particular, knowing of how quickly isotopes turnover in different tissues and how isotopic concentrations of different food components change (discriminate) when incorporated into consumer tissues. We used feeding trials with wild-caught yellow-rumped warblers (Dendroica coronata) to determine d15N and d13C turnover rates for blood, d15N and d13C diet-tissue discrimination factors, and diet-tissue relationships for blood and feathers. After 3 weeks on a common diet, 36 warblers were assigned to one of four diets differing in the relative proportion of fruit and insects. Plasma half-life estimates ranged from 0.4 to 0.7 days for d13C and from 0.5 to 1.7 days for d15N. Half-life did not differ among diets. Whole blood half-life for d13C ranged from 3.9 to 6.1 days. Yellow-rumped warbler tissues were enriched relative to diet by 1.7.3.6% for nitrogen isotopes and by 1.2 to 4.3% for carbon isotopes, depending on tissue and diet. Consistent with previous studies, feathers were the most enriched and whole blood and plasma were the least enriched or, in the case of carbon, slightly depleted relative to diet. In general, tissues were more enriched relative to diet for birds with high percentages of insects. For all tissues, carbon and nitrogen isotope discrimination factors increased with carbon and nitrogen concentrations of diets. The isotopic signature of plasma increased linearly with the sum of the isotopic signature of the diet and the discrimination factor. Because the isotopic signature of tissues depends on both elemental concentration and isotopic signature of the diet, attempts to reconstruct diet from stable isotope signatures

  2. Sp