WorldWideScience

Sample records for hexavalent chromium solutions

  1. Optimization and Modeling of Hexavalent Chromium Removal from Aqueous Solution Via Adsorption on Multiwalled Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mina Gholipour

    2011-09-01

    Full Text Available Hexavalent chromium and its derivatives are potential pollutant due to their mortal affects. Therefore, It is essential to remove these components from wastewaters before disposal. Adsorption can be effective and versatile method for removing of hexavalent chromium. In this article, removal of hexavalent chromium via adsorption on multiwalled carbon nanotubes was investigated as a function of adsorbent dosage, initial solution pH, initial Cr(VI concentrations, contact time and temperature. The batch experiments were conducted at 3 different temperatures (17, 27 and 37ºC and shows that Cr (VI removal obeys pseudo-second order rate equation. Rate constant (K values in 3 temperatures, pre-exponential factor and adsorption activation energy (E was also obtained. The sorption data fitted well with Freundlich isotherm adsorption model. Thermodynamic parameters such as Gibbs free energy (ΔGº, enthalpy (ΔHº and entropy (ΔSº for Cr(VI adsorption were estimated and Results suggest that the adsorption process is a spontaneous and endothermic.

  2. Hexavalent chromium removal from aqueous solutions by a novel powder prepared from Colocasia esculenta leaves.

    Science.gov (United States)

    Nakkeeran, E; Saranya, N; Giri Nandagopal, M S; Santhiagu, A; Selvaraju, N

    2016-08-01

    In this study, batch removal of hexavalent chromium from aqueous solutions by powdered Colocasia esculenta leaves was investigated. Batch experiments were conducted to study the effects of adsorption of Cr(VI) at different pH values, initial concentrations, agitation speeds, temperatures, and contact times. The biosorbent was characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Fourier transform infrared spectrometer analysis. The biosorptive capacity of the adsorbent was dependent on the pH of the chromium solution in which maximum removal was observed at pH 2. The adsorption equilibrium data were evaluated for various adsorption isotherm models, kinetic models, and thermodynamics. The equilibrium data fitted well with Freundlich and Halsey models. The adsorption capacity calculated was 47.62 mg/g at pH 2. The adsorption kinetic data were best described by pseudo-second-order kinetic model. Thus, Colocasia esculenta leaves can be considered as one of the efficient and cheap biosorbents for hexavalent chromium removal from aqueous solutions.

  3. Groundwater contaminant by hexavalent chromium

    Energy Technology Data Exchange (ETDEWEB)

    Parsons, C. [Univ. of Texas, Austin, TX (United States)

    1995-11-01

    Oxidation of trivalent chromium to hexavalent chromium has been investigated as a function of total manganese in soils as well as various incubation conditions. Chromium and manganese contents were analyzed by atomic absorption (graphite furnace and flame emission respectively) following acid digestion. Total hexavalent chromium generation capacity was determined by addition of 0.001 M CrCL3, incubation, and analysis by s-diphenyl carbazide. Samples were then leached with CaSO{sub 4} and MgSO{sub 4} and incubated in various environments (oven, freeze-drier, field moist, ultrafreeze) to test for geogenic generation of Cr(IV). The degree of geogenic generation of hexavalent chromium was compared with total Mn and Cr content as well as hexavalent generational capacity.

  4. Application of modified bentonite using sulfuric acid for the removal of hexavalent chromium from aqueous solutions

    Directory of Open Access Journals (Sweden)

    Masoud Moradi

    2015-09-01

    Full Text Available Background: Environmental contamination by chromium (Cr has become an important issue due to its adverse effects on human health and environment. This study was done to evaluate the application of modified bentonite using sulfuric acid as an adsorbent in the removal of hexavalent Cr from aqueous solution. Methods: Adsorbent features were determined using x-ray diffraction (XRD, fourier transformed infrared spectroscopy (FTIR and scanning electron microscope (SEM techniques. Thereafter, the effect of pH, contact time, adsorbent dosage and different concentrations of Cr was investigated. The experimental data was fitness in terms of kinetic and equilibrium adsorption processes. Results: The maximum capacity (Qm of Cr(VI according to Langmuir model was obtained at 4.21 mg/g. The experimental data properly obeyed the Longmuir and pseudo-second-order models. The highest percentage of Cr(VI adsorption was observed at pH = 3 and the process after 60 minutes reached the equilibrium state. Conclusion: In Langmuir expression, the dimensionless constant separation term (RL values for the adsorption of Cr onto the modified bentonite was in the range of 0-1, indicating that the adsorption is a favorable process and the modified bentonite has good potential in removing hexavalent Cr using sulfuric acid.

  5. Biosorption of hexavalent chromium from aqueous solutions by Macadamia nutshell powder

    Science.gov (United States)

    Pakade, Vusumzi Emmanuel; Ntuli, Themba Dominic; Ofomaja, Augustine Enakpodia

    2016-04-01

    Macadamia nutshell biosorbents treated in three different activating agents [raw Macadamia nutshell powder (RMN), acid-treated Macadamia nutshell (ATMN) and base-treated Macadamia nutshell (BTMN)] were investigated for the adsorption of hexavalent chromium [Cr(VI)] from aqueous solutions. Fourier transform infrared spectroscopy spectra of free and Cr(VI)-loaded sorbents as well as thermogravimetric analysis revealed that the acid and base treatments modified the surface properties of the sorbent. Surface characteristics were also evaluated by the scanning electron microscopy and surface area analyzer. The optimum conditions for the adsorption of Cr(VI) by sorbents were pH 2, contact time 10 h, adsorbent mass 0.2 g and concentration 100 mg L-1. The equilibrium data were fitted into the Langmuir, Freundlich, Redlich-Peterson and Sips isotherms, and no single model could clearly explain the sorption mechanism. Maximum binding capacities of 45.23, 44.83 and 42.44 mg g-1 for RMN, ATMN and BTMN, respectively, were obtained. The kinetic data were analyzed using the pseudo-first, pseudo-second and Elovich kinetic models, and it was observed that the pseudo-second-order model produced the best fit for the experimental data. Macadamia nutshell sorbents showed potential as low-cost adsorbent for the removal of Cr(VI) from aqueous solution.

  6. HEXAVALENT CHROMIUM REMOVAL FROM AQUEOUS SOLUTIONS BY PLEUROTUS OSTREATUS SPENT BIOMASS.

    Directory of Open Access Journals (Sweden)

    D.CAROL

    2012-01-01

    Full Text Available The Pleurotus ostreatus spent biomass after the harvest, is a waste which was used as a potential sorbent after coating it with chitosan an deacetylated derivative from chitin the most abundant carbohydratesecond to cellulose .The study is an attempt to elaborate and justify the optional utility of Spent Pleurotus ostreatus biomass for hexavalent chromium removal from aqueous industrial effluents. The effect of experimental parameters such as pH, biosorbent dosage, biosorbent dosage, initial metal concentration, temperature and sorption time is very striking from the obtained results .The Freundlich isotherm and Langmuir isotherm fitted well to the data of Cr (VI sorption capacity of Spent Pleurotus biomass. The intraparticle diffusion plot suggest that the sorption process proceeds by surface adsorption alone in case of activated spentbiomass but when coated with chitosan the process is sorption along with intra particle diffusion or pore diffusion. The overall adsorption process was endothermic and spontaneous innature.EDX analysis indicated the presence of hexavalent chromium ions on the surface of chitosan coated spent Pleurotus biomass. The resultssuggest that the enhanced spent biomass could be employed as an efficient adsorbent for the removal of hexavalent chromium from industrial effluents as well as from contaminated water sources.

  7. Removal of hexavalent chromium from aqueous solution using Cassava peel (Manihot Esculenta: column experiments

    Directory of Open Access Journals (Sweden)

    Alberto Ricardo Albis Arrieta

    2017-01-01

    Full Text Available Introduction: Hexavalent chromium is a highly toxic metal and it is considered one of the contaminants with the highest environmental impact. Bioadsorbents have been considered as a viable option for chromium removal, leading to the necessity to study the behavior of these adsorbents in unit operations similar to the ones employed in the industry. Objective: To study the potential of cassava peels as bio-sorbent in the adsorption of hexavalent chromium in a semi-continuous process in fixed bed columns. Methodology: The effect of parameters such as feed flow rate, initial concentration and bed column height on the response variables rupture time and removal capacity was analyzed using a laboratory scale experimental set-up. Results: Low feed flow rates, low initial concentrations, and higher bed height produce the best conditions for chromium removal. Additionally, three classical models for removal on the packed column were used to fit the dynamic behavior of this process and to obtain significantly physical parameters. However, the best fitting was obtained using the model of the response surface. Conclusions: The concentration of chromium in the feed stream is the experimental factor that has the most influence on removal capacity and rupture time in fixed bed columns packed with cassava peel.

  8. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, V.K. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)], E-mail: vinodfcy@iitr.ernet.in; Rastogi, A. [Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247 667 (India)

    2009-04-15

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH{sub 2} groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions.

  9. Biosorption of hexavalent chromium by raw and acid-treated green alga Oedogonium hatei from aqueous solutions.

    Science.gov (United States)

    Gupta, V K; Rastogi, A

    2009-04-15

    The hexavalent chromium, Cr(VI), biosorption by raw and acid-treated Oedogonium hatei were studied from aqueous solutions. Batch experiments were conducted to determine the biosorption properties of the biomass. The optimum conditions of biosorption were found to be: a biomass dose of 0.8 g/L, contact time of 110 min, pH and temperature 2.0 and 318 K respectively. Both Langmuir and Freundlich isotherm equations could fit the equilibrium data. Under the optimal conditions, the biosorption capacities of the raw and acid-treated algae were 31 and 35.2 mg Cr(VI) per g of dry adsorbent, respectively. Thermodynamic parameters showed that the adsorption of Cr(VI) onto algal biomass was feasible, spontaneous and endothermic under studied conditions. The pseudo-first-order kinetic model adequately describe the kinetic data in comparison to second-order model and the process involving rate-controlling step is much complex involving both boundary layer and intra-particle diffusion processes. The physical and chemical properties of the biosorbent were determined and the nature of biomass-metal ions interactions were evaluated by FTIR analysis, which showed the participation of -COOH, -OH and -NH(2) groups in the biosorption process. Biosorbents could be regenerated using 0.1 M NaOH solution, with up to 75% recovery. Thus, the biomass used in this work proved to be effective materials for the treatment of chromium bearing aqueous solutions.

  10. Removal of hexavalent chromium [Cr(VI)] from aqueous solutions by the diatomite-supported/unsupported magnetite nanoparticles.

    Science.gov (United States)

    Yuan, Peng; Liu, Dong; Fan, Mingde; Yang, Dan; Zhu, Runliang; Ge, Fei; Zhu, JianXi; He, Hongping

    2010-01-15

    Diatomite-supported/unsupported magnetite nanoparticles were prepared by co-precipitation and hydrosol methods, and characterized by X-ray diffraction, nitrogen adsorption, elemental analysis, differential scanning calorimetry, transmission electron microscopy and X-ray photoelectron spectroscopy. The average sizes of the unsupported and supported magnetite nanoparticles are around 25 and 15 nm, respectively. The supported magnetite nanoparticles exist on the surface or inside the pores of diatom shells, with better dispersing and less coaggregation than the unsupported ones. The uptake of hexavalent chromium [Cr(VI)] on the synthesized magnetite nanoparticles was mainly governed by a physico-chemical process, which included an electrostatic attraction followed by a redox process in which Cr(VI) was reduced into trivalent chromium [Cr(III)]. The adsorption of Cr(VI) was highly pH-dependent and the kinetics of the adsorption followed a pseudo-second-order model. The adsorption data of diatomite-supported/unsupported magnetite fit well with the Langmuir isotherm equation. The supported magnetite showed a better adsorption capacity per unit mass of magnetite than unsupported magnetite, and was more thermally stable than their unsupported counterparts. These results indicate that the diatomite-supported/unsupported magnetite nanoparticles are readily prepared, enabling promising applications for the removal of Cr(VI) from aqueous solution.

  11. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.

    Science.gov (United States)

    Gheju, M; Iovi, A; Balcu, I

    2008-05-01

    The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using long-term column experiments, for aqueous Cr(VI) solutions having low buffering capacities, over the pH range of 2.00-7.30. The results showed that the initial pH of Cr(VI) solution significantly affects the reduction capacity of scrap iron. The highest reduction capacity was determined to be 19.2 mg Cr(VI)/g scrap iron, at pH 2.50, and decreased with increasing the initial pH of Cr(VI) solution. A considerable decrease in scrap iron reduction capacity (25%) was also observed at pH 2.00, as compared to pH 2.50, due to the increased contribution of H(+) ions to the corrosion of scrap iron, which leads to a rapid decrease in time of the scrap iron volume. Over the pH range of 2.50-7.30, hexavalent chromium concentration increases slowly in time after its breakthrough in column effluent, until a steady-state concentration was observed; similarly, over the same pH range, the amount of solubilized Cr(III) in treated column effluent decreases in time, until a steady-state concentration was observed. The steady-state concentration in column effluent decreased for Cr(VI) and increased for Cr(III) with decreasing the initial pH of Cr(VI) solution. No steady-state Cr(VI) or Cr(III) concentrations in column effluent were observed at pH 2.00. Over the entire studied pH range, the amount of Fe(total) in treated solution increases as the initial pH of column influent is decreased; the results show also a continuously decrease in time of Fe(total) concentration, for a constant initial pH, due to a decrease in time of iron corrosion rate. Cr(III) concentration in column effluent also continuously decreased in time, for a constant initial pH, over the pH range of 2.50-7.30. This represents an advantage, because the amount of precipitant agent used to remove Fe(total) and Cr(III) from the column effluent will also decrease in time. The optimum pH for Cr(VI) reduction with scrap iron in

  12. Application of Fe-Cu binary oxide nanoparticles for the removal of hexavalent chromium from aqueous solution.

    Science.gov (United States)

    Khan, Saif Ullah; Zaidi, Rumman; Hassan, Saeikh Z; Farooqi, I H; Azam, Ameer

    2016-01-01

    The adsorption process has been used as an effective technique for the removal of metal ions from aqueous solutions. Groundwater remediation by nanoparticles has received interest in recent years. In the present study, a binary metal oxide of Fe-Cu was prepared and used for the removal of hexavalent chromium from aqueous solution. Batch experiments were performed to investigate the effects of initial Cr (VI) concentration, dose of adsorbent, and pH of solution on the removal efficiency of Cr (VI). The prepared nanostructured Fe-Cu binary oxides were able to reduce the concentration of Cr (VI) in aqueous solution. Binary metal oxides nanoparticle exhibited an outstanding ability to remove Cr (VI) due to high surface area, low particle size, and high inherent activity. The percentage removal efficiency of Cr (VI) increased with nanoparticles doses (0.1 g L(-1)-2.5 g L(-1)), whereas it decreased with initial Cr (VI) concentration (1 mg L(-1)-25 mg L(-1)) and with pH (3-9). The Freundlich model was found to be the better fit for adsorption isotherm. The prepared nanomaterial was characterized using powder X-ray diffraction, scanning electron microscopy (SEM), and ultraviolet (UV)-visible spectroscopy. It showed that the Fe-Cu binary oxides were formed in single phase. SEM micrograph showed aggregates with many nano-sized particles. UV-visible spectroscopy showed quantum confinement effect.

  13. Chromium isotopes as indicators of hexavalent chromium reduction

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas M.

    2012-03-20

    This is the final report for a university research project which advanced development of a new technology for identifying chemical reduction of hexavalent chromium contamination in groundwater systems. Reduction renders mobile and toxic hexavalent chromium immobile and less toxic. The new method uses stable isotope ratio measurements, which are made using multicollector ICP-mass spectrometry. The main objectives of this project were completed during the project period and two peer-reviewed articles were published to disseminate the information gained.

  14. Removal of hexavalent chromium from aqueous solutions using micro zero-valent iron supported by bentonite layer.

    Science.gov (United States)

    Daoud, Waseem; Ebadi, Taghi; Fahimifar, Ahmad

    2015-01-01

    Hexavalent chromium Cr(VI) is of particular environmental concern due to its toxicity, mobility, and challenging removal from industrial wastewater. It is a strong oxidizing agent that is carcinogenic and mutagenic and diffuses quickly through soil and aquatic environments. Moreover, it does not form insoluble compounds in aqueous solutions; therefore, separation by precipitation is not feasible. While Cr(VI) oxyanions are very mobile and toxic in the environment, trivalent Cr(III) cations are the opposite and, like many metal cations, Cr(III) forms insoluble precipitates. Thus, reducing Cr(VI)-Cr(III) simplifies its removal from effluent and also reduces its toxicity and mobility. Permeable reactive barriers (PRBs) with zero-valent iron (ZVI) have been used to remediate contaminated groundwater with metals, but using ZVI in remediation of contaminated groundwater or wastewater is limited due to its lack of stability, easy aggregation, and difficulty in separation of iron from the treated solution. Thus, the technology used in the present study is developed to address these problems by placing a layer of bentonite after the PRB layer to remove iron from the treated water. The removal rates of Cr(VI) under different values of pH were investigated, and the results indicated the highest adsorption capacity at low pH.

  15. Self-assembly modified-mushroom nanocomposite for rapid removal of hexavalent chromium from aqueous solution with bubbling fluidized bed

    Science.gov (United States)

    Xu, Fei; Liu, Xu; Chen, Yijiao; Zhang, Ke; Xu, Heng

    2016-05-01

    A self-assembled modified Pleurotus Cornucopiae material (SMPM) combined with improved Intermittent Bubbling Fluidized Bed (IBFB) was investigated to remove the hexavalent chromium ions in aqueous solution. After the modification, the powder-like raw material gradually self-assembled together to SMPM, which had crinkly porous structure, improved the Cr-accommodation ability in a sound manner. Optimized by Taguchi method, Cr(VI) removal efficiency was up to 75.91% and 48.01% for 100 mg/L and 500 mg/L initial concentration of Cr(VI), respectively. Results indicated that the metal removal was dependent on dosage of adsorbent, particle diameter and treatment time. The experimental data obtained from the biosorption process was successfully correlated with Freundlich isotherm model. Thermodynamic study indicated the endothermic nature of the process. The results confirmed that self-assembly modified Pleurotus Cornucopiae material could be applied for the removal of heavy metal from wastewater in continuous fluidized bed process.

  16. Effective removal of hexavalent chromium from aqueous solutions by adsorption on mesoporous carbon microspheres.

    Science.gov (United States)

    Zhou, Jianguo; Wang, Yuefeng; Wang, Jitong; Qiao, Wenming; Long, Donghui; Ling, Licheng

    2016-01-15

    High-surface-area mesoporous carbon microspheres were successfully synthesized by a spraying method with the purpose of removing Cr(VI) from waste water. Various factors influencing the adsorption of Cr(VI), including pH, adsorption temperature, and contact time were studied. As the adsorption process was pH dependent, it showed maximum removal efficiency of Cr(VI) at pH 3.0. Pseudo-second-order model was found to best represent the kinetics of Cr(VI) adsorption. The adsorption parameters were determined using both Langmuir and Freundlich isotherm models, and Qm value was as high as 165.3mg/g. The thermodynamic parameters including standard Gibb's free energy (ΔG(0)), standard enthalpy (ΔH(0)) and standard entropy (ΔS(0)) were investigated for predicting the nature of adsorption, which suggested the adsorption was an endothermic and a spontaneous thermodynamically process. Furthermore, Fe3O4-loaded MCMs were prepared to rapidly separate the adsorbent from the solution by a simple magnetic process. Fe3O4-loaded MCMs had a high adsorption capacity of 156.3mg/g, and a good regeneration ability with a capacity of 123.9mg/g for the fifth adsorption-desorption cycle. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Hexavalent and trivalent chromium in leather: What should be done?

    Science.gov (United States)

    Moretto, Angelo

    2015-11-01

    Trivalent chromium compounds are used for leather tanning, and chromium may be released during use of leather goods. In certain instances, small amounts of hexavalent chromium can be formed and released. Both trivalent and hexavalent chromium can elicit allergic skin reaction in chromium sensitised subjects, the latter being significantly more potent. Induction of sensitisation only occurs after exposure to hexavalent chromium. A minority of subjects are sensitised to chromium, and in a fraction of these subjects allergic skin reaction have been described after wearing leather shoes or, less frequently, other leather goods. The evidence that in all these cases the reaction is related to hexavalent chromium is not always strong. The content of hexavalent chromium in leather is regulated in European Union, but rate of release rather than content is relevant for allergic skin reaction. The role of trivalent chromium appear much less relevant if at all. Modern tanning procedure do not pose significant risk due to either hexavalent or trivalent chromium. Dismissing bad quality and worn-off leather goods is relevant in reducing or eliminating the skin reaction. It should also be pointed out that shoe components or substances other than chromium in leather may cause allergic/irritative skin reactions.

  18. Origin of hexavalent chromium in groundwater

    DEFF Research Database (Denmark)

    Kazakis, N.; Kantiranis, N.; Kalaitzidou, K.

    2017-01-01

    Hexavalent chromium constitutes a serious deterioration factor for the groundwater quality of several regions around the world. High concentrations of this contaminant have been also reported in the groundwater of the Sarigkiol hydrological basin (near Kozani city, NW Greece). Specific interest....... Accordingly, detailed geochemical, mineralogical, hydro-chemical, geophysical and hydrogeological studies were performed on the rocks, soils, sediments and water resources of this basin. Cr(VI) concentrations varied in the different aquifers, with the highest concentration (up to 120 μg L− 1) recorded...

  19. Fabrication of Unique Magnetic Bionanocomposite for Highly Efficient Removal of Hexavalent Chromium from Water

    Science.gov (United States)

    Zhong, Yunlei; Qiu, Xun; Chen, Dongyun; Li, Najun; Xu, Qingfeng; Li, Hua; He, Jinghui; Lu, Jianmei

    2016-08-01

    Biotreatment of hexavalent chromium has attracted widespread interest due to its cost effective and environmental friendliness. However, the difficult separation of biomass from aqueous solution and the slow hexavalent chromium bioreduction rate are bottlenecks for biotechnology application. In this approach, a core-shell structured functional polymer coated magnetic nanocomposite was prepared for enriching the hexavalent chromium. Then the nanocomposite was connected to the bacteria via amines on bacterial (Bacillus subtilis ATCC-6633) surface. Under optimal conditions, a series of experiments were launched to degrade hexavalent chromium from the aqueous solution using the as-prepared bionanocomposite. Results showed that B. subtilis@Fe3O4@mSiO2@MANHE (BFSM) can degrade hexavalent chromium from the water more effectively (a respectable degradation efficiency of about 94%) when compared with pristine B. subtilis and Fe3O4@mSiO2@MANHE (FSM). Moreover, the BFSM could be separated from the wastewater by magnetic separation technology conveniently due to the Fe3O4 core of FSM. These results indicate that the application of BFSM is a promising strategy for effective treating wastewater containing hexavalent chromium.

  20. Pilot Scale Production of Activated Carbon Spheres Using Fluidized Bed Reactor and Its Evaluation for the Removal of Hexavalent Chromium from Aqueous Solutions

    Science.gov (United States)

    Tripathi, Nagesh Kumar; Sathe, Manisha

    2017-06-01

    Large scale production of activated carbon is need of ongoing research due to its excellent adsorption capacity for removal of heavy metals from contaminated solutions. In the present study, polymeric precursor polystyrene beads [Brunauer Emmett Teller (BET) surface area, 46 m2/g; carbon content, 40.64%; crushing strength, 0.32 kg/sphere] were used to produce a new variant of activated carbon, Activated Carbon Spheres (ACS) in a pilot scale fluidized bed reactor. ACS were prepared by carbonization of polymeric precursor at 850 °C followed by activation of resultant material with steam. Prepared ACS were characterized using scanning electron microscope, CHNS analyzer, thermogravimetric analyzer, surface area analyzer and crushing strength tester. The produced ACS have 1009 m2/g BET surface area, 0.89 cm3/g total pore volume, 92.32% carbon content and 1.1 kg/sphere crushing strength with less than 1% of moisture and ash content. The ACS were also evaluated for its potential to remove hexavalent chromium [Cr(VI)] from contaminated solutions. The chromium removal is observed to be 99.1% at initial concentration 50 mg/l, pH 2, ACS dose 1 g/l, contact time 2 h, agitation 120 rpm and temperature 30 °C. Thus ACS can be used as an adsorbent material for the removal of Cr(VI) from contaminated solutions.

  1. TREATMENT OF HEXAVALENT CHROMIUM IN CHROMITE ORE PROCESSING SOLID WASTE USING A MIXED REDUCTANT SOLUTION OF FERROUS SULFATE AND SODIUM DITHIONITE

    Science.gov (United States)

    We developed a method for disseminating ferrous iron in the subsurface to enhance chemical reduction of hexavalent chromium (Cr(VI)) in a chromite ore processing solid waste derived from the production of ferrochrome alloy. The method utilizes ferrous sulfate (FeSO4) in combinati...

  2. NAVAIR Hexavalent Chromium Minimization Status

    Science.gov (United States)

    2010-11-01

    Adhesion, filiform, humidity, and fluid resistance properties Policy and Technology Drivers • Environmental Regulatory – – OSHA PEL, RoHS,  WEEE ... Silver ” Standard – MIL‐DTL‐5541 Type II/MIL‐PRF‐23377 Type I – – Most applications covered – 95+% solution – Next Gen Primer needed...NESDI – Current “ silver ‐standard” approach – support DEM/VAL  – Best available technology, limited/lower risk implementation • ESTCP WP 0731

  3. Quantification of total chromium and hexavalent chromium in UHT milk by ETAAS.

    Science.gov (United States)

    Lameiras, J; Soares, M E; Bastos, M L; Ferreira, M

    1998-10-01

    Procedures for the quantification of total chromium and hexavalent chromium in UHT milk samples are presented. Total chromium was determined directly in milk with the addition of a surfactant and a mixture of Pd and Mg as a chemical modifier. For the selective separation of hexavalent chromium, the sample pre-treatment consisted in precipitation of proteins and elution of the supernatant through a Chromabond NH2 column. The metal was eluted with nitric acid. Both total chromium and hexavalent chromium were evaluated by atomic absorption spectrometry with electrothermal atomization using the same instrumental conditions. The detection limits were 0.2 and 0.15 microgram l-1 for total chromium and hexavalent chromium, respectively. The linearity ranges under the optimized conditions were 0.2-20 and 0.15-50 micrograms l-1. For total chromium the precision was 4.9 and 5.7% for the analytical and the over-all procedure, respectively, and for hexavalent chromium 4.3 and 4.9%, respectively. The validation of both procedures was performed by the standard additions method and the recoveries were higher than 93% in all cases. For total chromium, a certified reference material was also used to validate the methodology. The methods were applied to the determination of total chromium and hexavalent chromium in 60 UHT milk samples.

  4. Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations.

    Science.gov (United States)

    Mamais, Daniel; Noutsopoulos, Constantinos; Kavallari, Ioanna; Nyktari, Eleni; Kaldis, Apostolos; Panousi, Eleni; Nikitopoulos, George; Antoniou, Kornilia; Nasioka, Maria

    2016-06-01

    The objective of this work is to develop and evaluate biological groundwater treatment systems that will achieve hexavalent chromium reduction and total chromium removal from groundwater at hexavalent chromium (Cr(VI)) groundwater concentrations in the 0-200 μg/L range. Three lab-scale units operated, as sequencing batch reactors (SBR) under aerobic, anaerobic and anaerobic-aerobic conditions. All systems received groundwater with a Cr(VI) content of 200 μg/L. In order to support biological growth, groundwater was supplemented with milk, liquid cheese whey or a mixture of sugar and milk to achieve a COD concentration of 200 mg/L. The results demonstrate that a fully anaerobic system or an anaerobic-aerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III). The temperature dependency of maximum Cr(VI) removal rates can be described by the Arrhenius relationship. Total chromium removal in the biological treatment systems was not complete because a significant portion of Cr(III) remained in solution. An integrated system comprising of an anaerobic SBR followed by a sand filter achieved more than 95% total chromium removal thus resulting in average effluent total and dissolved chromium concentrations of 7 μg/L and 3 μg/L, respectively.

  5. Investigation of hexavalent chromium sorption in serpentine sediments

    Science.gov (United States)

    Mpouras, Thanasis; Chrysochoou, Maria; Dermatas, Dimitris

    2017-02-01

    In this study the removal of hexavalent chromium (Cr6 +) by serpentine sediments was investigated in order to delineate Cr6 + sorption behavior in aquifers with ultramafic geologic background. Batch experiments were conducted in order to determine the influence of several parameters on Cr6 + removal, including the pH of the sediment solution, mineralogy, sediment's particle size and Cr6 + initial concentration. The results showed that Cr6 + removal was due to both adsorption and reduction phenomena. Reduction was attributed to the presence of a magnetic fraction in the sediment, mostly related to magnetite, which contributed almost 50% of the total removal in the pH range 3-7. Adsorption behavior was dominated by the finer sediment fraction (d transport modeling.

  6. Recovery and reuse of hexavalent chromium from aqueous solutions by a hybrid technique of electrodialysis and ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Gayathri, R. [Sengunthar Engineering College, Tiruchengode (India). Dept. of Civil Engineering], e-mail: gay3civil@gmail.com; Senthil Kumar, P. [SSN College of Engineering, Chennai (India). Dept. of Chemical Engineering], E-mail: senthilkumarp@ssn.edu.in

    2010-01-15

    The chrome plating industry is one of the highly polluting industries whose effluent mainly consists of chromium(VI). This compound is highly toxic to aquatic life and human health. The rinse water constituents reflect the chrome plating bath characteristics; generally dead tank wash water contains about 1% of the plating bath concentration. Other metals and metal compounds usually considered as toxic can be precipitated out by suitably adjusting the pH of the wastewaters. However, Cr(VI) is soluble in almost all pH ranges and therefore an efficient treatment is required for the removal and recovery of chromium, and also for the reuse of wastewaters. The present study aims to recover the chromium by a hybrid technique of electrodialysis and ion exchange for the removal and concentration of chromate ions from the effluent. The different modes of operation like batch recirculation process, batch recirculation process with continuous dipping and continuous process were carried out to remove and recover the chromium from the effluent and the percentage reductions of chromium were found to be 98.69%, 99.18% and 100%, respectively. (author)

  7. Adsorption of hexavalent chromium onto sisal pulp/polypyrrole composites

    Science.gov (United States)

    Tan, Y. Y.; Wei, C.; Gong, Y. Y.; Du, L. L.

    2017-02-01

    Sisal pulp/polypyrrole composites(SP/PPy) utilized for the removal of hexavalent chromium [Cr(VI)] from wastewater, were prepared via in-situ chemical oxidation polymerization approach. The structure and morphology of the SP/PPy were analyzed by polarizing optical microscopy (POM), field-emission scanning electron microscopy (SEM)), Energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS), the results indicated SP could be efficient dispersion of PPy. The hexavalent chromium adsorption results indicate adsorption capacity of the SP/PPy were dependent on the initial pH, with an optimum pH of 2.0. The sorption kinetic data fitted well to the pseudo-second order model and isotherm data fitted well to the Langmuir isotherm model. The maximum adsorption capacity determined from the Langmuir isotherm is 336.70 mg/g at 25° C.

  8. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI) by an indigenously isolated bacterial strain

    National Research Council Canada - National Science Library

    Das, Alok Prasad; Mishra, Susmita

    2010-01-01

    Hexavalent chromium [Cr(VI)], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing...

  9. Polyacrylonitrile/polyaniline core/shell nanofiber mat for removal of hexavalent chromium from aqueous solution: mechanism and applications

    KAUST Repository

    Wang, Jianqiang

    2013-01-01

    Polyacrylonitrile/polyaniline core/shell nanofibers were prepared via electrospinning followed by in situ polymerization of aniline. Nanofibers with different morphology were obtained by changing the polymerization temperature. When used as absorbent for Cr(vi) ions, the core/shell nanofiber mats exhibit excellent adsorption capability. The equilibrium capacity is 24.96, 37.24, and 52.00 mg g-1 for 105, 156, and 207 mg L-1 initial Cr(vi) solution, respectively, and the adsorption capacity increases with temperature. The adsorption follows a pseudo second order kinetics model and is best fit using the Langmuir isotherm model. The mats show excellent selectivity towards Cr(vi) ions in the presence of competing ions albeit a small decrease in adsorption is observed. The mats can be regenerated and reused after treatment with NaOH making them promising candidates as practical adsorbents for Cr(vi) removal. © The Royal Society of Chemistry 2013.

  10. A study of the process of desorption of hexavalent chromium

    Directory of Open Access Journals (Sweden)

    W.B. Amorim

    2003-09-01

    Full Text Available In this work the process of desorption of hexavalent chromium, a toxic metal ion, from the marine algae Sargassum sp, following biosorption experiments 2³ factorial design was studied. A technique was applied to three eluents: HCl, H2SO4 and EDTA. Three factors of importance were evaluated: concentration of eluent, the ratio between mass of biosorbent and volume of eluent (S/L and process time. A statistical analysis of the experimental results showed that the three variables evaluated are significant for all three eluents. The models for chromium desorption were validated, as the results agreed well with the observed values. Through use of the response surface methodology, a factorial design based optimization technique; it was possible to identify the most suitable eluent and the interval of values for the process variables that resulted in the most significant desorption of chromium, which is relevant information for work aiming at process optimization.

  11. Study on anaerobic treatment of wastewater containing hexavalent chromium

    Institute of Scientific and Technical Information of China (English)

    XU Yan-bin; XIAO Hua-hua; SUN Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr ofwastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L,the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  12. Study on anaerobic treatment of wastewater containing hexavalent chromium.

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-06-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and COD(Cr) of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms.

  13. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    Science.gov (United States)

    Xu, Yan-bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment time was prolonged to 7.5 h. Compared with the contrast system, the system with trace metals showed clear superiority in that the Cr6+ removal rate increased by 21.26%. Some analyses also showed that hexavalent chromium could probably be bio-reduced to trivalent chromium, and that as a result, the chrome hydroxide sediment was formed on the surface of microorganisms. PMID:15909347

  14. ADVANCES IN HEXAVALENT CHROMIUM REMOVAL AT HANFORD

    Energy Technology Data Exchange (ETDEWEB)

    NESHEM DO; RIDDELLE J

    2012-01-30

    At the Hanford Site, chromium was used as a corrosion inhibitor in the reactor cooling water and was introduced into the groundwater as a result of planned and unplanned discharges from reactors during plutonium production since 1944. Beginning in 1995, groundwater treatment methods were evaluated leading to the use of pump and treat facilities with ion exchange using Dowex 21 K, a regenerable strong base anion exchange resin. This required regeneration of the resin, which is currently performed offsite. Resin was installed in a 4 vessel train, with resin removal required from the lead vessel approximately once a month. In 2007, there were 8 trains (32 vessels) in operation. In 2008, DOE recognized that regulatory agreements would require significant expansion in the groundwater chromium treatment capacity. Previous experience from one of the DOE project managers led to identification of a possible alternative resin, and the contractor was requested to evaluate alternative resins for both cost and programmatic risk reductions. Testing was performed onsite in 2009 and 2010, using a variety of potential resins in two separate facilities with groundwater from specific remediation sites to demonstrate resin performance in the specific groundwater chemistry at each site. The testing demonstrated that a weak base anion single-use resin, ResinTech SIR-700, was effective at removing chromium, had a significantly higher capacity, could be disposed of efficiently on site, and would eliminate the complexities and programmatic risks from sampling, packaging, transportation and return of resin for regeneration. This resin was installed in Hanford's newest groundwater treatment facility, called 100-DX, which began operations in November, 2010, and used in a sister facility, 100-HX, which started up in September of 2011. This increased chromium treatment capacity to 25 trains (100 vessels). The resin is also being tested in existing facilities that utilize Dowex 21 K for

  15. Study on anaerobic treatment of wastewater containing hexavalent chromium*

    OpenAIRE

    Xu, Yan-Bin; Xiao, Hua-hua; Sun, Shui-yu

    2005-01-01

    A self-made anaerobic bio-filter bed which was inoculated with special sludge showed high efficiency in removing hexavalent chromium. When pump flow was 47 ml/min and CODCr of wastewater was about 140 mg/L, it took 4 h to decrease the Cr6+ concentrations from about 60 mg/L to under 0.5 mg/L, compared with 14 h without carbon source addition. Cr6+ concentrations ranged from 64.66 mg/L to 75.53 mg/L, the system efficiency was excellent. When Cr6+ concentration reached 95.47 mg/L, the treatment ...

  16. Hexavalent chromium removal from wastewater using aniline formaldehyde condensate coated silica gel.

    Science.gov (United States)

    Kumar, P Albino; Ray, Manabendra; Chakraborty, Saswati

    2007-05-08

    A resinous polymer, aniline formaldehyde condensate (AFC) coated on silica gel was used as an adsorbent in batch system for removal of hexavalent chromium from aqueous solution by considering the effects of various parameters like reaction pH, dose of AFC coated silica gel, initial Cr(VI) concentration and aniline to formaldehyde ratio in AFC synthesis. The optimum pH for total chromium [Cr(VI) and Cr(III)] adsorption was observed as 3. Total chromium adsorption was second order and equilibrium was achieved within 90-120 min. Aniline to formaldehyde ratio of 1.6:1 during AFC synthesis was ideal for chromium removal. Total chromium adsorption followed Freundlich's isotherm with adsorption capacity of 65 mg/g at initial Cr(VI) 200mg/L. Total chromium removal was explained as combinations of electrostatic attraction of acid chromate ion by protonated AFC, reduction of Cr(VI) to Cr(III) and bond formation of Cr(III) with nitrogen atom of AFC. Almost 40-84% of adsorbed chromium was recovered during desorption by NaOH, EDTA and mineral acids. AFC coated silica gel can be effectively used for treatment of chromium containing wastewaters as an alternative.

  17. DANGER OF HEXAVALENT CHROMIUM AND STRATEGY FOR THE REMEDITATION

    Directory of Open Access Journals (Sweden)

    Aniruddha Roy

    2013-02-01

    Full Text Available Some metals as micronutrients have a major role in the life and growth process of plants and animals. However, certain forms of some metals may also act as toxic material even in relatively small quantities. Chromium is such a metal, whose concentration above a certain limit may cause a serious problem to the health of living organisms. Chromium (Cr may occur in several chemical forms in organic and inorganic systems. In biological systems only Cr (III and Cr (VI are significant. Among these two states, trivalent chromium (Cr-III is considered as an essential component, while hexavalent Chromium (Cr-VI in biological system has been detected as responsible for so many diseases, even some specific forms of cancer. This paper intends to present the adverse effect of Cr(VI on environment as well as on human beings and also try to find a way out to dissolve the problem by a newly developed efficient and cost effective technique.

  18. 40 CFR 749.68 - Hexavalent chromium-based water treatment chemicals in cooling systems.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hexavalent chromium-based water treatment chemicals in cooling systems. 749.68 Section 749.68 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT WATER TREATMENT CHEMICALS Air Conditioning and Cooling Systems § 749.68 Hexavalent...

  19. Electrochemical reduction of hexavalent chromium in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Bansal, S. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Electrochemical reduction of hexavalent chromium (Cr{sup +6}) to its trivalent state (Cr{sup +3}) is showing promising results in treating ground water at Lawrence Livermore National Laboratory`s (LLNL`s) Main Site. An electrolytic cell using stainless-steel and brass electrodes has been found to offer the most efficient reduction while yielding the least amount of precipitate. Trials have successfully lowered concentrations of Cr{sup +6} to below 11 parts per billion (micrograms/liter), the California state standard. We ran several trials to determine optimal voltage for running the cell; each trial consisted of applying a voltage between 6V and 48V for ten minutes through samples obtained at Treatment Facility C(TFC). No conclusive data has been obtained yet.

  20. Adsorption of hexavalent chromium by graphite–chitosan binary composite

    Indian Academy of Sciences (India)

    RAJENDRA S DONGRE

    2016-06-01

    Graphite chitosan binary (GCB) composite was prepared for hexavalent chromium adsorption from studied water. GCB was characterized by TGA, FTIR, SEM and X-ray diffraction techniques.Wide porous sorptive surface of 3.89 m$^2$ g$^{−1}$ and absorptive functionalities of GCB was due to 20% (w/w) graphite support on chitosan evidenced from FTIR and SEM that impart maximum adsorption at pH 4, agitation with 200 rpm for 180 min. Adsorption studies revealed intraparticle diffusion models and best-fitted kinetics was pseudo 2nd order one. A wellfitted Langmuir isotherm model suggested monolayer adsorption with an adsorption capacity ($q_m$) of 105.6 mg g$^{−1}$ and $R^2 = 0.945$. Sorption mechanisms based on metal ionic interactions, intrusion/diffusion and chemisorptions onto composite. This graphite chitosan binary composite improve sorbent capacity for Cr(VI).

  1. Microbial reduction of hexavalent chromium by landfill leachate.

    Science.gov (United States)

    Li, Yarong; Low, Gary K-C; Scott, Jason A; Amal, Rose

    2007-04-02

    The reduction of hexavalent chromium (Cr(VI)) in municipal landfill leachates (MLL) and a non-putrescible landfill leachate (NPLL) was investigated. Complete Cr(VI) reduction was achieved within 17 days in a MLL when spiked with 100 mg l(-1) Cr(VI) or less. In the same period, negligible Cr(VI) reduction was observed in NPLL. In MLL, Cr(VI) reduction was demonstrated to be a function of initial Cr(VI) concentration and bacterial biomass and organic matter concentrations. The bacteria were observed to tolerate 250 mg l(-1) Cr(VI) in MLL and had an optimal growth activity at pH 7.4 in a growth medium. The MLL also possessed an ability to sequentially reduce Cr(VI) over three consecutive spiking cycles.

  2. Polyaniline coating with various substrates for hexavalent chromium removal

    Science.gov (United States)

    Qiu, Bin; Xu, Cuixia; Sun, Dezhi; Wang, Qiang; Gu, Hongbo; Zhang, Xin; Weeks, Brandon L.; Hopper, Jack; Ho, Thomas C.; Guo, Zhanhu; Wei, Suying

    2015-04-01

    Hexavalent chromium (Cr(VI)) contamination is increasingly serious in surface water and groundwater, therefore, its removal attracts increasing attention due to its highly toxic to human health. The cost effective and sustainable adsorbents are urgently needed for the remediation of Cr(VI) pollution. Polyanline (PANI), a conductive polymer, has demonstrated a great performance on Cr(VI) removal. But the recycling is the challenge for its application due to its small size. The PANI coating with various substrates is an effective approach to solve this problem. The synthesis methods and applications of the PANI coated magnetic Fe3O4, carbon fabric and cellulose composites for the Cr(VI) removal were reviewed. Finally, this review analyzed the Cr(VI) removal mechanisms by the PANI composites considering the substrate and the PANI coating.

  3. Effective Management of Hexavalent Chromium (Cr+6) in DoD Organic and Inorganic Coatings Operations

    Science.gov (United States)

    2014-11-19

    Vinay V. Gadkari Battelle gadkariv@battelle.org 614-424-5751 Effective Management of Hexavalent Chromium (Cr+6) in DoD Organic and Inorganic...Coatings Operations Enhancing worker safety by minimizing health risks in hexavalent chromium environment 1 11/19/2014 John T. Stropki Battelle ...ADDRESS(ES) Battelle ,505 King Avenue,Columbus,OH,43201 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

  4. Treatment of Wastewater Containing Hexavalent Chromium Using Zeolite Ceramic Adsorbent in Adsorption Column

    Directory of Open Access Journals (Sweden)

    Tuty Emilia Agustina

    2017-04-01

    Full Text Available Natural Zeolites in powdered form have commonly used as adsorbent and one of the most crucial compound in water treatment plant, in filter system of petrochemicals or other processes under environmentally, physically and chemically conditions.  But in the form of powder, zeolites are easily washed out in liquid or gas stream. Therefore, a modification would be necessary to solve this problem. Zeolites and clay were modified into ceramic adsorbent to adsorb heavy metal pollutant that is hexavalent chromium Cr (VI contained in electroplating industrial effluents. Zeolite and clay were mixed evenly and molded into small balls with 5-6 mm diameter and dried at 1000oC for 48 hrs. This adsorbent was activated with HCl 32% solution for 1 hr to enhance its adsorption potential. Ten samples with various ratios of zeolite:clay (3:37-12:28 with the total adsorbent mass of 1000 g was examined.  Cr (VI uptake in liquid wastewater was studied by varying contact time and the ratio of zeolite and clay. The effect of activation treatment with HCl 32% solution on adsorption performance of zeolite ceramic adsorbent was also investigated. Analysis of wastewater output indicates a reduction of hexavalent chromium concentration reaches 99.45% at contact time 10 h with 12:28 ratio of activated adsorbent. This shown that the process of adsorption had greatly reduced the contamination of Cr (VI and may have been a solution for environment problem regarding wastewater containing Cr (VI. 

  5. Reduction of Hexavalent Chromium Using Sorbaria sorbifolia Aqueous Leaf Extract

    Directory of Open Access Journals (Sweden)

    Shashi Prabha Dubey

    2017-07-01

    Full Text Available Aqueous plant leaves extract (PLE of an abundant shrub, Sorbaria sorbifolia, was explored for the reduction of hexavalent chromium, Cr(VI, to trivalent chromium, Cr(III. The effect of contact time, pH, PLE quantity, ionic strength, hardness, temperature and effective initial Cr(VI ion concentration were tested; Cr(VI reduction followed the pseudo-first order rate kinetics and maximum reduction was observed at pH 2. Significantly, Cr(VI reduction efficacies varied from 97 to 66% over the pH range of 2 to 10, which bodes well for PLE to be used for the reduction of Cr(VI also at a higher pH. PLE-mediated Cr(VI reduction displays considerable efficiency at various ionic strengths; however, hardness strongly affects the reduction ability. Higher temperature significantly enhances the Cr(VI reduction. This study reveals the potential use of PLE as a green reducing agent in aqueous extract for the efficient reduction of Cr(VI to Cr(III.

  6. Natural and induced reduction of hexavalent chromium in soil

    Science.gov (United States)

    Leita, Liviana; Margon, Alja; Sinicco, Tania; Mondini, Claudio; Valentini, Massimiliano; Cantone, Pierpaolo

    2013-04-01

    Even though naturally elevated levels of chromium can be found naturally in some soils, distressing amounts of the hexavalent form (CrVI) are largely restricted to sites contaminated by anthropogenic activities. In fact, the widespread use of chromium in various industries and the frequently associated inadequate disposal of its by-products and wastes have created serious environmental pollution problems in many parts of the world. CrVI is toxic to plants, animals and humans and exhibits also mutagenic effects. However, being a strong oxidant, CrVI can be readily reduced to the much less harmful trivalent form (CrIII) when suitable electron donors are present in the environment. CrIII is relatively insoluble, less available for biological uptake, and thus definitely less toxic for web-biota. Various electron donors in soil can be involved in CrVI reduction in soil. The efficiency of CrVI reducing abiotic agents such as ferrous iron and sulphur compounds is well documented. Furthermore, CrVI reduction is also known to be significantly enhanced by a wide variety of cell-produced monosaccharides, including glucose. In this study we evaluated the dynamics of hexavalent chromium (CrVI) reduction in contaminated soil amended or not with iron sulphate or/and glucose and assessed the effects of CrVI on native or glucose-induced soil microbial biomass size and activity. CrVI negatively affected both soil microbial activity and the size of the microbial biomass. During the incubation period, the concentration of CrVI in soil decreased over time whether iron sulphate or/and glucose was added or not, but with different reduction rates. Soil therefore displayed a natural attenuation capacity towards chromate reduction. Addition of iron sulphate or/and glucose, however, increased the reduction rate by both abiotic and biotic mechanisms. Our data suggest that glucose is likely to have exerted an indirect role in the increased rate of CrVI reduction by promoting growth of

  7. Replacement for Cadmium Plating and Hexavalent Chromium on Fasteners and Electrical Connectors

    Science.gov (United States)

    2010-02-10

    radioactive materials, hexavalent chromium, (electroplating and coatings), cadmium (electroplating), mercury, or other highly toxic or carcinogenic...eliminate both UNCLASSIFIED: Dist A. Approved for public release Background - Alternative Choices • Numerous alternatives – Zinc nickel (Zn/Ni) – Tin...Plating • Aluminum Corrosion Performance –equivalent at same thickness • Heat Resistance – Trivalent Chrome protects up to about 400 F; Hexavalent

  8. Survey of Nano filtration Performance for Hexavalent Chromium Removal fromWater Containing Sulfate

    Directory of Open Access Journals (Sweden)

    Gh.R Moussavi

    2010-10-01

    Full Text Available "n "n "nBackgrounds and Objectives: Geological situation and/or anthropogenic contamination contain an increased concentration of ions such as hexavalent chromium as well as some other dissolved components such as sulfate in the upper of the establishedMCLs (50µg/L. In this paper, simultaneous removal of Cr (VI and sulfate from water was investigated using nanofiltration as a promising method for reaching drinking water standards."nMaterials and Methods: For varying pressure, pH , anion and cation solution effect, Sulfate and Cr (VI concentration which have chosen were levels found in drinking water sources (Cr=0.1- 0.5mg/L and (SO4-2= 100-800mg/L.Experiments were performed using NaCl, Na2SO4,K2 Cr2O7and anhydrous CrCl3. 6H2O which prepared with de mineralized water on procedure detailed in standard methods. All salts were purchased from Merck Corporation with purity over 99'."nResults: The results for hexavalent chromium experiments showed that when the concentration decreases, the chromate anions were given a better retention to 4 bars (96'. But when the concentration increases, concentration polarization led to increased removal of Cr (VI (98'. For Cr (III the influences of the ionic strength as well as the concentrations were strongly dependant on rejection but operating pressure were found weak. In addition, with increasing total dissolved solids, perfect rejection of chromium was seen. The effect of pH showed that better retention was obtained at natural and basic pH."nConclusion: This study indicates that the nature of anions and cations, driven pressure and pH have significant effect on nano filtration operation. Research findings show that it seems nano filtration is a very good promising method of simultaneous removal of Cr (VI and sulfate from water.

  9. Microbial reduction of hexavalent chromium under vadose zone conditions.

    Science.gov (United States)

    Oliver, Douglas S; Brockman, Fred J; Bowman, Robert S; Kieft, Thomas L

    2003-01-01

    Hexavalent chromium [Cr(VI)] is a common contaminant associated with nuclear reactors and fuel processing. Improper disposal at facilities in and and semiarid regions has contaminated underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those in the vadose zone, and to evaluate the potential for enhancing biological Cr(VI) reduction through nutrient addition. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic C (molasses). Nutrient amendments resulted in up to 87% reduction of the initial 67 mg L(-1) Cr(VI) in an unsaturated batch experiment. Molasses and nitrate additions to 15 cm long unsaturated flow columns receiving 65 mg L(-1) Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-d experiment. All of the immobilized Cr was in the form of Cr(III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy, and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.

  10. Microbial reduction of hexavalent Chromium under vadose zone conditions

    Energy Technology Data Exchange (ETDEWEB)

    Oliver, D S.(unknown); Brockman, Fred J.(BATTELLE (PACIFIC NW LAB)); Bowman, Robert (VISITORS); Kieft, Thomas L.(BATTELLE (PACIFIC NW LAB))

    2003-01-01

    Hexavalent chromium[Cr(VI)] is a common constituent of wastes associated with nuclear reactor operation and fuel processing. Improper disposal at facilities in arid and semi-arid regions has led to contamination of underlying vadose zones and aquifers. The objectives of this study were to assess the potential for immobilizing Cr(VI) contamination using a native microbial community to reduce soluble Cr(VI) to insoluble Cr(III) under conditions similar to those found in the vadose zone, and to evaluate the potential for enhancing biological reduction of Cr(VI) through the addition of nutrients. Batch microcosm and unsaturated flow column experiments were performed. Native microbial communities in subsurface sediments with no prior Cr(VI) exposure were shown to be capable of Cr(VI) reduction. In both the batch and column experiments, Cr(VI) reduction and loss from the aqueous phase were enhanced by adding high levels of both nitrate (NO3-) and organic carbon (molasses). Nutrient amendments resulted in up to 87% Cr(VI) reduction in unsaturated batch experiments. Molasses and nitrate additions to 15-cm length unsaturated flow columns receiving 65 mg L-1 Cr(VI) resulted in microbially mediated reduction and immobilization of 10% of the Cr during a 45-day experiment. All of the immobilized Cr was in the form of Cr (III), as shown by XANES analysis. This suggests that biostimulation of microbial Cr(VI) reduction in vadose zones by nutrient amendment is a promising strategy; and that immobilization of close to 100% of Cr contamination could be achieved in a thick vadose zone with longer flow paths and longer contact times than in this experiment.

  11. Effect of some non functional surfactants and electrolytes on the hexavalent chromium reduction by glycerol. A mechanistic study

    Energy Technology Data Exchange (ETDEWEB)

    Basu, A.; Ghosh, S.K.; Saha, R.; Nandi, R.; Saha, B. [Burdwan Univ., WB (India). Dept. of Chemistry; Gosh, T. [A.B.N. Seal College, Coochbehar, WB (India). Dept. of Chemistry

    2011-11-15

    Hexavalent chromium is a widespread environmental contaminant and a known human carcinogen. Kinetics of reduction of hexavalent chromium by bio-molecule glycerol in micellar media have been studied spectrophotometrically. The cytoplasmic reduction of hexavalent chromium to trivalent chromium occurs in micro-heterogeneous systems. In vitro, the micelles are considered to mimic the cellular membranes. The electron transfer processes occurring in the micellar systems is considered as model to obtain insight into the electron transport process prevailing in biological systems. Micellar media is also a probe to establish the mechanistic paths of reduction of hexavalent chromium to trivalent chromium. Effects of electrolytes common to biological system are studied to establish the proposed reaction mechanism strongly. (orig.)

  12. Isolation, identification and characterization of indigenous fungi for bioremediation of hexavalent chromium, nickel and cobalt

    Science.gov (United States)

    Hernahadini, Nelis; Suhandono, Sony; Choesin, Devi N.; Chaerun, Siti K.; Kadarusman, Ade

    2014-03-01

    Waste from nickel mining of Sorowako in South Sulawesi contains hexavalent chromium, nickel and cobalt metals in high concentration and may have a negative impact to the environment. Common waste treatment systems such as chemical treatment using a reducing reagent may still have a negative impact. Bioremediation using fungi or bacteria becomes more popular because it is an environmentally friendly alternative. The purposes of this study are to isolate and identify indigenous fungi that are resistant to heavy metals (hexavalent chromium, nickel, and cobalt) and are capable of reducing the concentration of metals in mining wastes. Ten fungal isolates were successfully isolated from the soils and pond sediments in the area of nickel mining in Sorowako. Selection of superior isolate was carried out by growing all the isolates on PDA medium, which contained all of the three metals. One superior isolate was identified to be able to grow on medium with concentrations of 6400 ppm hexavalent chromium, 200 ppm nickel and 50 ppm cobalt. Molecular identification and phylogenetic studies of the isolate using fungal PCR primers developed to amplify the ITS (internal transcribed spacer) region showed that the isolate sequence was very close to Trichoderma atroviride with 99.8% similarity. Optimum incubation time for the uptake of hexavalent chromium was 3 days, nickel and cobalt was 5 days, respectively, with an optimum pH of 4.

  13. An assessment of the environmental toxicity of hexavalent chromium in fish

    NARCIS (Netherlands)

    Putte, van der I.

    1981-01-01

    At present chromium is a common contaminant in surface waters in many countries. In water the metal may be present in the trivalent form (CrIII) or in the hexavalent form (CrVI), the latter of which is more toxic to aquatic organisms.The investigations presented in this thesis were aimed at a thorou

  14. An assessment of the environmental toxicity of hexavalent chromium in fish

    NARCIS (Netherlands)

    Putte, van der I.

    1981-01-01

    At present chromium is a common contaminant in surface waters in many countries. In water the metal may be present in the trivalent form (CrIII) or in the hexavalent form (CrVI), the latter of which is more toxic to aquatic organisms.
    The investigations presented in this thesis

  15. Investigation of total and hexavalent chromium in filtered and unfiltered groundwater samples at the Tucson International Airport Superfund Site

    Science.gov (United States)

    Tillman, Fred; McCleskey, R. Blaine; Hermosillo, Edyth

    2016-01-01

    Potential health effects from hexavalent chromium in groundwater have recently become a concern to regulators at the Tucson International Airport Area Superfund site. In 2016, the U.S. Geological Survey sampled 46 wells in the area to characterize the nature and extent of chromium in groundwater, to understand what proportion of total chromium is in the hexavalent state, and to determine if substantial differences are present between filtered and unfiltered chromium concentrations. Results indicate detectable chromium concentrations in all wells, over 75 % of total chromium is in the hexavalent state in a majority of wells, and filtered and unfiltered results differ substantially in only a few high-turbidity total chromium samples.

  16. Hexavalent chromium exposure and control in welding tasks.

    Science.gov (United States)

    Meeker, John D; Susi, Pam; Flynn, Michael R

    2010-11-01

    Studies of exposure to the lung carcinogen hexavalent chromium (CrVI) from welding tasks are limited, especially within the construction industry where overexposure may be common. In addition, despite the OSHA requirement that the use of engineering controls such as local exhaust ventilation (LEV) first be considered before relying on other strategies to reduce worker exposure to CrVI, data on the effectiveness of LEV to reduce CrVI exposures from welding are lacking. The goal of the present study was to characterize breathing zone air concentrations of CrVI during welding tasks and primary contributing factors in four datasets: (1) OSHA compliance data; (2) a publicly available database from The Welding Institute (TWI); (3) field survey data of construction welders collected by the Center for Construction Research and Training (CPWR); and (4) controlled welding trials conducted by CPWR to assess the effectiveness of a portable LEV unit to reduce CrVI exposure. In the OSHA (n = 181) and TWI (n = 124) datasets, which included very few samples from the construction industry, the OSHA permissible exposure level (PEL) for CrVI (5 μg/m(3)) was exceeded in 9% and 13% of samples, respectively. CrVI concentrations measured in the CPWR field surveys (n = 43) were considerably higher, and 25% of samples exceeded the PEL. In the TWI and CPWR datasets, base metal, welding process, and LEV use were important predictors of CrVI concentrations. Only weak-to-moderate correlations were found between total particulate matter and CrVI, suggesting that total particulate matter concentrations are not a good surrogate for CrVI exposure in retrospective studies. Finally, in the controlled welding trials, LEV reduced median CrVI concentrations by 68% (p = 0.02). In conclusion, overexposure to CrVI in stainless steel welding is likely widespread, especially in certain operations such as shielded metal arc welding, which is commonly used in construction. However, exposure could be

  17. The Growth of Gypsum in the Presence of Hexavalent Chromium: A Multiscale Study

    Directory of Open Access Journals (Sweden)

    Juan Morales

    2016-03-01

    Full Text Available The sorption of dissolved inorganic pollutants into the structure of minerals is an important process that controls the mobility and fate of these pollutants in the Earth’s crust. It also modifies the surface structure and composition of the host mineral, affecting its crystallization kinetics. Here, we investigate the effect of hexavalent chromium, Cr(VI, on the nucleation and growth of gypsum by conducting two types of experiments: (i in situ atomic force microscopy (AFM observations of the growth of gypsum {010} surfaces in the presence of Cr(VI and (ii gypsum precipitation experiments by mixing aqueous solutions containing variable amounts of Cr(VI. Gypsum precipitation is progressively delayed when occurring from solutions bearing increasing Cr(VI concentrations. Chemical analyses of gypsum precipitates show that gypsum incorporates small Cr(VI amounts that correlate with the content of this ion in the aqueous solution. Gypsum cell parameters variation reflects this incorporation. At the molecular scale, Cr(VI induces a slowdown of step advance rates on gypsum {010} surfaces accompanied by the roughening of nanostep edges and the so-called “template effect”. This effect involves the reproduction of the original nanotopography after the completion of individual advancing monolayers and appears as a general nanoscale phenomenon occurring during growth of solid solutions from aqueous solutions even in the case of compositionally-restricted solid solutions.

  18. Hexavalent chromium removal in contaminated water using reticulated chitosan micro/nanoparticles from seafood processing wastes.

    Science.gov (United States)

    Dima, Jimena Bernadette; Sequeiros, Cynthia; Zaritzky, Noemi E

    2015-12-01

    Chitosan particles (CH) were obtained from seafood processing wastes (shrimp shells) and physicochemically characterized; deacetylation degree of CH was measured by Infrared Spectroscopy (FTIR) and potentiometric titration; polymer molecular weight was determined by intrinsic viscosity measurements. Reticulated micro/nanoparticles of chitosan (MCH) with an average diameter close to 100nm were synthesized by ionic gelation of chitosan using tripolyphosphate (TPP), and characterized by SEM, size distribution and Zeta-potential. Detoxification capacities of CH and MCH were tested analyzing the removal of hexavalent chromium Cr(VI) from contaminated water, at different initial chromium concentrations. The effect of pH on adsorption capacity of CH and MCH was experimentally determined and analyzed considering the Cr(VI) stable complexes (anions) formed, the presence of protonated groups in chitosan particles and the addition of the reticulating agent (TPP). Chitosan crosslinking was necessary to adsorb Cr(VI) at pHremoved from the solution was reduced and bound to the MCH as Cr(III). The reduction of toxic Cr(VI) to the less or nontoxic Cr(III) by the reticulated chitosan micro/nanoparticles can be considered a very efficient detoxification technique for the treatment of Cr(VI) contaminated water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Hexavalent Chromium Removal by Litchi chinensis Sonn Peel

    Directory of Open Access Journals (Sweden)

    Ismael Acosta-Rodriguez

    2012-01-01

    Full Text Available Problem statement: We studied the Chromium (VI removal capacity in aqueous solution by the litchi peel. Approach: We use the diphenylcarbazide method to evaluate the metal concentration. Results: The highest biosorption of the metal (50 mg L-1 occurs within 6 min, at pH of 1 and 28°C. According to temperature, the highest removal was observed at 40 and 50°C, in 45 min, when the metal (1 g L-1 was completely adsorbed. At the analyzed concentrations of Cr (VI, litchi peel, showed excellent removal capacity, besides it removes efficiently the metal in situ (100% removal, 5 days of incubation, 5 and 10 g of biomass. After 1 h of incubation the studied biomass reduces 1.0 g of Cr (VI with the simultaneous production of Cr (III. Conclusion: The shell can be used to eliminate it from industrial wastewater."

  20. Genesis and transport of hexavalent chromium in the system ophiolitic rocks - groundwater

    Science.gov (United States)

    Shchegolikhina, Anastasia; Guadagnini, Laura; Guadagnini, Alberto

    2015-04-01

    Our study aims at contributing to the quantification and characterization of chromium transport processes from host rocks and soil matrices to groundwater. We focus on dissolved hexavalent chromium detected in groundwaters of geological regions with ophiolitic rocks (ophiolites and serpentinites) inclusions due to its critical ecological impact. (Oze et al., 2004). Despite the large number of analyses on the occurrence of high concentrations of hazardous hexavalent chromium ions in natural waters, only few studies were performed with the objective of identifying and investigating the geochemical reactions which could occur in the natural system rock - groundwater - dissolved chromium (Fantoni et al., 2002, Stephen and James, 2004, Lelli et al., 2013). In this context, there is a need for integration of results obtained from diverse studies in various regions and settings to improve our knowledge repository. Our theoretical analyses are grounded and driven by practical scenarios detected in subsurface reservoirs exploited for civil and industrial use located in the Emilia-Romagna region (Italy). Available experimental datasets are complemented with data from other international regional-scale settings (Altay mountains region, Russia). Modeling of chromium transformation and migration particularly includes characterization of the multispecies geochemical system. A key aspect of our study is the analysis of the complex competitive sorption processes governing heavy metal evolution in groundwater. The results of the research allow assessing the critical qualitative features of the mechanisms of hexavalent chromium ion mobilization from host rocks and soils and the ensuing transformation and migration to groundwater under the influence of diverse environmental factors. The study is then complemented by the quantification of the main sources of uncertainty associated with prediction of heavy metal contamination levels in the groundwater system explored. Fantoni, D

  1. Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    OpenAIRE

    Somenahally, Anil C.; Mosher, Jennifer J; Tong Yuan; Mircea Podar; Phelps, Tommy J.; Brown, Steven D.; Yang, Zamin K.; Hazen, Terry C.; Arkin, Adam P.; Palumbo, Anthony V.; Joy D Van Nostrand; Jizhong Zhou; Elias, Dwayne A.

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to ...

  2. Exploring Bioelectrochemical Systems for Removal and Recovery of Hexavalent Chromium or Nutrients

    OpenAIRE

    2016-01-01

    Bioelectrochemical systems (BES) is a platform technology that is able to realize versatile engineering functions and recover valuable resources in an energy-efficient manner. One of the potential applications of BES is to remove and recover nutrients simultaneously from nutrient-rich wastewater, such as digested manure from livestock. A four-chamber BES was developed and used in this study to explore the potential to remove and recover hexavalent Chromium from synthetic wastewater, and ammon...

  3. A Comparative Survey on Parameters Influencing on Hexavalent Chromium Measurement as an Occupational Carcinogen

    Directory of Open Access Journals (Sweden)

    A. Tirgar

    2008-07-01

    Full Text Available Introduction & Objective: Hexavalent chromium, Cr+6, is a very harmful pollutant and a relatively unstable compound that is present in many industries. It is a known human respiratory carcinogen and occupational exposure to this chemical is associated with different health hazards. The purpose of this study was to evaluate the effects of four parameters including: type of sampling head, sampling height from the surface of electroplating solution, sampling duration, and sample storage duration on Cr+6 mist monitoring.Materials & Methods: To evaluate the influence of the main parameters as an experimental study, the 24 factorial design was applied at constant electroplating condition. A chromium electroplating bath with the ability to produce homogenous mist was used to create Cr+6 mist in laboratory setting. The National Institute for Occupational Safety and Health (NIOSH method 7600 was used to determine the Cr+6 concentration. Results: The results of 48 Cr+6 mist samples showed that Cr+6 concentration was higher: (1 for sampling by closed-face filter cassettes than for sampling by open-face filter cassettes (P<0.001; (2 for samples collected at 35 cm above the electroplating solution surface than for samples collected at 50 cm (P <0.001; (3 for sampling duration of 30 minutes than for sampling duration of 180 minutes (P <0.001; and, (4 for samples extracted immediately after sampling than for samples with delayed extraction (24 hours after sampling (P <0.001. Conclusion: It is concluded that the accuracy of Cr+6 mist sampling in electroplating shops will be enhanced when: (1 a closed-face filter cassette is used to prevent liquid splash contamination; (2 the sampling height is suitable as determined by further research; (3 the sampling duration is short (approximately 30 minutes; and, (4 the extraction of the Cr+6 sample is performed as soon as the sampling is completed.

  4. Biodegradation of hexavalent chromium (Cr+6) in wastewater using Pseudomonas sp. and Bacillus sp. bacterial strains

    Energy Technology Data Exchange (ETDEWEB)

    Qasim, Muhammad [Department of Chemical Engineering, American University of Sharjah (United Arab Emirates)

    2013-07-01

    The recovery of toxic metal compounds is a deep concern in all industries. Hexavalent chromium is particularly worrying because of its toxic influence on human health. In this paper, biodegradation of hexavalent chromium (Cr+6) present in wastewater has been studied using two different bacterial strains; Pseudomonas sp. and Bacillus sp. A chemostat (with and without recycle of cells) with 10 L liquid culture volume was used to study the substrate and the biomass cell concentrations with time. Also, the degree of substrate conversion was studied by the varying the dilution rate as an independent parameter. The dilution rate (ratio of feed flow rate to the culture volume) was varied by varying the feed volumetric rate from 110-170 mL/h for inlet hexavalent chromium concentrations of 70 mg/dm3. The results show that a chemostat with recycle gives a better performance in terms of substrate conversion than a chemostat without a recycle. Moreover, the degree of substrate conversion decreases as the dilution rate is increased. Also, Bacillus sp. was found to give higher conversions compared to pseudomonas sp.

  5. Evaluation of extraction methods for hexavalent chromium determination in dusts, ashes, and soils

    Science.gov (United States)

    Wolf, Ruth E.; Wilson, Stephen A.

    2010-01-01

    One of the difficulties in performing speciation analyses on solid samples is finding a suitable extraction method. Traditional methods for extraction of hexavalent chromium, Cr(VI), in soils, such as SW846 Method 3060A, can be tedious and are not always compatible with some determination methods. For example, the phosphate and high levels of carbonate and magnesium present in the U.S. Environmental Protection Agency (USEPA) Method 3060A digestion for Cr(VI) were found to be incompatible with the High Performance Liquid Chromatography-Inductively Coupled Plasma-Mass Spectrometry (HPLC-ICP-MS) detection method used by our laboratory. Modification of Method 3060A by eliminating the use of the phosphate buffer provided improved performance with the detection method, however dilutions are still necessary to achieve good chromatographic separation and detection of Cr(VI). An ultrasonic extraction method using a 1 mM Na2CO3 - 9 mM NaHCO3 buffer solution, adapted from Occupational Safety and Health Administration (OSHA) Method ID215, has been used with good results for the determination of Cr(VI) in air filters. The average recovery obtained for BCR-545 - Welding Dust Loaded on Filter (IRMM, Belgium) using this method was 99 percent (1.2 percent relative standard deviation) with no conversion of Cr(VI) to Cr(III) during the extraction process. This ultrasonic method has the potential for use with other sample matrices, such as ashes and soils. Preliminary investigations using NIST 2701 (Hexavalent Chromium in Contaminated Soil) loaded onto quartz filters showed promising results with approximately 90 percent recovery of the certified Cr(VI) value. Additional testing has been done using NIST 2701 and NIST 2700 using different presentation methods. Extraction efficiency of bulk presentation, where small portions of the sample are added to the bottom of the extraction vessel, will be compared with supported presentation, where small portions of the sample are loaded onto a

  6. Removal of hexavalent chromium by using red mud activated with cetyltrimethylammonium bromide.

    Science.gov (United States)

    Li, Deliang; Ding, Ying; Li, Lingling; Chang, Zhixian; Rao, Zhengyong; Lu, Ling

    2015-01-01

    The removal of hexavalent chromium [Cr(VI)] from aqueous solution by using red mud activated with cetyltrimethylammonium bromide (CTAB) was studied. The optimum operation parameters, such as CTAB concentration, pH values, contact time, and initial Cr(VI) concentration, were investigated. The best concentration of CTAB for modifying red mud was found to be 0.50% (mCTAB/VHCl,0.6 mol/L). The lower pH (Red mud activated with CTAB can greatly improve the removal ratio of Cr(VI) as high as four times than that of original red mud. Adsorption equilibrium was reached within 30 min under the initial Cr(VI) concentration of 100 mg L(-1). The isotherm data were analysed using Langmuir and Freundlich models. The adsorption of Cr(VI) on activated red mud fitted well to the Langmuir isotherm model, and the maximum adsorption capacity was estimated as 22.20 mg g(-1) (Cr/red mud). The adsorption process could be well described using the pseudo-second-order model. The result shows that activated red mud is a promising agent for low-cost water treatment.

  7. Characterization and recovery of hexavalent chromium salts of an environmental liability; Caracterizacion y recuperacion de sales de cromo hexavalente de un pasivo ambiental

    Energy Technology Data Exchange (ETDEWEB)

    Rangel C, A. A.; Isarain C, E. [Centro de Innovacion Aplicada en Tecnologias Competitivas, Omega 201, Fracc. Industrial Delta, 37545 Leon, Guanajuato (Mexico); Maldonado V, M., E-mail: r.cordova.alexander@gmail.com [Hospital Regional de Alta Especialidad del Bajio, Bulevard Milenio No. 130, San Carlos la Roncha, 37660 Leon, Guanajuato (Mexico)

    2015-07-01

    The purpose of this study was to examine a diverse group of washing solutions for its use in the recovery of the industrial waste hexavalent chromium, in compliance with the Mexican regulation NOM-147-SEMARNAT/SSA1-2004. The recovery process consisted of a simple random sampling and a physical-chemical characterization with consideration to the high solubility of hexavalent chromium compounds. A test was performed which implemented five different washing solutions (water, sulfuric acid, citric acid, sodium hydroxide, calcium and hydroxide). This was followed by a factorial experimental design to optimize resources with a removal efficiency of 80% and hence a recovery of 33 g/kg as CaCrO{sub 4} (calcium chromate). Chromium hexavalent concentration in the leachate was quantified using UV-Vis spectrometry at a wavelength λ = 540 nm, while the salts recovered by evaporation were characterized using X-ray fluorescence analysis, leading to the conclusion that precipitate can be used as raw material, the main elements are Cr, Ca, Fe and Mg, and their concentration depends on the washing solution. (Author)

  8. Anticlastogenic Effect of Redistilled Cow's Urine Distillate in Human Peripheral Lymphocytes Challenged With Manganese Dioxide and Hexavalent Chromium

    Institute of Scientific and Technical Information of China (English)

    DIPANWITA DUTTA; S.SARAVANA DEVI; K. KRISHNAMURTHI; T. CHAKRABARTI

    2006-01-01

    Objective To study the anticlastogenic effect of redistilled cow's urine distillate (RCUD) in human peripheral lymphocytes (HLC) challenged with manganese dioxide and hexavalent chromium. Methods The anticlastogenic activity of redistilled cow's urine distillate was studied in human polymorphonuclear leukocytes (HPNLs) and human peripheral lymphocytes in vitro challenged with manganese dioxide and hexavalent chromium as established genotoxicants and clastogens which could cause induction of DNA strand break, chromosomal aberration and micronucleus. Three different levels of RCUD: 1 μL/mL, 50 μL/mL and 100μL/mL, were used in the study. Results Manganese dioxide and hexavalent chromium caused statistically significant DNA strand break, chromosomal aberration and micronucleus formation, which could be protected by redistilled cow's urine distillate. Conclusion The redistilled cow's urine distillate posseses strong antigenotoxic and anticlastogenic properties against HPNLs and HLC treated with Cr+6 and MnO2. This property is mainly due to the antioxidants present in RCUD.

  9. Hexavalent chromium affects sperm motility by influencing protein tyrosine phosphorylation in the midpiece of boar spermatozoa.

    Science.gov (United States)

    Zhen, Linqing; Wang, Lirui; Fu, Jieli; Li, Yuhua; Zhao, Na; Li, Xinhong

    2016-01-01

    Hexavalent chromium reportedly induces reproductive toxicity and further inhibits male fertility in mammals. In this study, we investigated the molecular mechanism by which hexavalent chromium affects motility signaling in boar spermatozoa in vitro. The results indicated that Cr(VI) decreased sperm motility, protein phosphorylation, mitochondrial membrane potential (ΔΨm) and metabolic enzyme activity starting at 4μmol/mL following incubation for 1.5h. Notably, all parameters were potently inhibited by 10μmol/mL Cr, while supplementation with the dibutyryl-cAMP (dbcAMP) and the 3-isobutyl-1-methylxanthine (IBMX) prevented the inhibition of protein phosphorylation. Interestingly, high concentrations of Cr (>10μmol/mL) increased the tyrosine phosphorylation of some high-molecular-weight proteins in the principle piece but decreased that in the middle piece associated with an extreme reduction of sperm motility. These results suggest that chromium affects boar sperm motility by impairing tyrosine phosphorylation in the midpiece of sperm by blocking the cAMP/PKA pathway in boar sperm in vitro.

  10. Toxic hexavalent chromium reduction by Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium

    Science.gov (United States)

    Rehman, Fatima; Faisal, Muhammad

    2015-05-01

    Three bacterial strains Bacillus pumilis, Cellulosimicrobium cellulans and Exiguobacterium were investigated when grown in Luria-Bertani (LB) medium at 500 μg/mL Cr(VI). The hexavalent chromium reduction was measured by growing the strains in DeLeo and Ehrlich (1994) medium at 200 and 400 μg/mL K2CrO4. The optimal Cr (VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 51%, 39%, and 41%, respectively, at an initial K2CrO4 concentration of 200 μg/mL at pH 3 and temperature 37°C. At an initial chromate concentration of 400 μg/mL, the Cr(VI) reduction by strains B. pumilis, Exigubacterium and C. cellulans was 24%, 19%, and 18%, respectively at pH 3 at 37°C after 24 h. These strains have ability to reduce toxic hexavalent chromium to the less mobile trivalent chromium at a wide range of different environmental conditions and can be useful for the treatment of contaminated wastewater and soils.

  11. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    Science.gov (United States)

    Ahmad, Hasan; Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar; Minami, Hideto; Tauer, Klaus; Gafur, Mohammad Abdul; Rahman, Mohammad Mahbubor

    2016-08-01

    A combination of maghemite polypyrrole (PPy/γ-Fe2O3) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe2O3 nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl3 as a oxidant and p-toluene sulfonic acid (p-TSA) as a dopant. In the reaction system FeCl3 functioned as a source of Fe(III) for the formation of γ-Fe2O3. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl2. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV-visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water.

  12. MODELING THE RATE-CONTROLLED SORPTION OF HEXAVALENT CHROMIUM.

    Science.gov (United States)

    Grove, D.B.; Stollenwerk, K.G.

    1985-01-01

    Sorption of chromium VI on the iron-oxide- and hydroxide-coated surface of alluvial material was numerically simulated with rate-controlled reactions. Reaction kinetics and diffusional processes, in the form of film, pore, and particle diffusion, were simulated and compared with experimental results. The use of empirically calculated rate coefficients for diffusion through the reacting surface was found to simulate experimental data; pore or particle diffusion is believed to be a possible rate-controlling mechanism. The use of rate equations to predict conservative transport and rate- and local-equilibrium-controlled reactions was shown to be feasible.

  13. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  14. Ferrous sulphate mono and heptahydrate reduction of hexavalent chromium in cement: effectiveness and storability

    Directory of Open Access Journals (Sweden)

    Valverde, J. L.

    2005-09-01

    Full Text Available In Community legislation, substances containing hexavalent chromium are classified as carcinogenic, mutagenic and sensitizing. In cement, hexavalent chromium intensifies sensitization and may set off severe allergic reactions in workers in routine contact with the product, whether in the factory or on construction sites. The allergic or contact dermatitis causes is a very painful disease that may lead to permanent worker disability. According to Directive 2003/53/EC of the European Parliament and the Council, Governments of all member countries will be required to prohibit the marketing and use, as of 17 January 2005, of any cement or cement preparation containing more than 2 ppm of chromium (VI. Hexavalent chromium can be reduced with ferrous sulphate to trivalent chromium, which is water-insoluble and therefore innocuous to the skin. The present paper reports the effects of adding ferrous sulphate mono- or heptahydrate to a commercial cement and the storage time of the mix on the concentration of hexavalent chromium. The salts studied were found to effectively reduce hexavalent chromium in cement for at least three months.

    Las sustancias que contienen cromo hexavalente están clasificadas en la legislación comunitaria como sustancias carcinogénicas, mutagénicas y sensibilizantes. El cromo hexavalente del cemento potencia la sensibilización y provoca graves reacciones alérgicas que sufren bastante a menudo los trabajadores que lo manipulan habitualmente, ya sea en fábrica o en el sector de la construcción. La dermatitis alérgica o de contacto que produce es muy dolorosa y puede dejar a los trabajadores en estado de discapacidad. La Directiva 2003/53/CE del Parlamento Europeo y del Consejo, exige a los Gobiernos de los países miembros, que a partir del 17 de enero de 2005, prohiban el uso y la comercialización de todos aquellos cementos y preparados que contengan cemento, cuyo contenido en cromo (VI soluble, una vez hidratados

  15. Hexavalent Chromium Reduction and Its Distribution in the Cell and Medium by Chromium Resistant Fusarium solani

    Directory of Open Access Journals (Sweden)

    Mousumi Sen

    2013-01-01

    Full Text Available In the present work, batch biosorption of Cr(VI was studied using the fungal strain isolated from soil. The fungal strain was characterized as Fusarium solani. The total Cr distribution in the biomass (fungus and in the media obtained from the experiment conducted at 500 mg l -1 initial Cr(VI concentration and pH 5.0. The results indicated both intracellular and extracellular accumulation and enzymatic reduction of Cr(VI and this was supported by the Transmission Electron Microscopic (TEM observation at the same Cr(VI concentration and pH value. Chromium elution from Fusarium solani containing Cr was then tried out using a number of chromium eluting reagents and a maximum Cr could be eluted using 0.5N sodium hydroxide solution without destructing the biomass structure. The total Cr was recovered by pH adjustment from both biomass and media was found to be 44% of the initial Cr(VI concentration (500 mg l-1.

  16. Recovery of hexavalent chromium from water using photoactive TiO2-montmorillonite under sunlight

    Directory of Open Access Journals (Sweden)

    Ridha Djellabi

    2016-04-01

    Full Text Available Hexavalent chromium was removed from water under sunlight using a synthesized TiO2-montmorillonite (TiO2-M employing tartaric acid as a hole scavenger. Cr(VI species was then reduced to Cr(III species by electrons arising from TiO2 particles. After that, the produced Cr(III species  was transferred to montmorillonite  due to electrostatic attractions leading to  set free TiO2 particles for a further Cr(VI species reduction. Furthermore, produced Cr(III, after Cr(VI reduction, does not  penetrate into the solution. The results indicate that no dark adsorption of Cr(VI species on TiO2-M is present, however, the reduction of Cr(VI species under sunlight increased strongly as a function of tartaric acid concentration up to 60 ppm, for which the extent of reduction is maximum within 3 h. On the other hand, the reduction extent of Cr(VI species is maximum with an initial concentration of Cr(VI species lower than 30 ppm by the use of 0.2 g/L of TiO2-M. Nevertheless, the increase of the Cr(VI initial concentration led to increase the amount of Cr(VI species reduced (capacity of reduction until a Cr(VI concentration of 75 and 100 ppm, for which  it remained constant at around 221 mg/g. For comparison, the increase of Cr(VI species concentration in the case of the commercial TiO2 P25 under the same conditions exhibited its deactivation when the reduced amount decreased from 198.1 to 157.6 mg/g as the concentration increased from 75 to 100 ppm.

  17. Adsorption and Reduction of Hexavalent Chromium on the Surface of Vivianite at Acidic Environment

    Science.gov (United States)

    HA, S.; Hyun, S. P.; Lee, W.

    2016-12-01

    Due to the rapid increase of chemical use in industrial activities, acid spills have frequently occurred in Korea. The acid spill causes soil and water acidification and additional problems such as heavy metal leaching from the soil. Hexavalent chromium (Cr(VI)) is relatively mobile in the environment and toxic and mutagenic. Monoclinic octa-hydrated ferrous phosphate, vivianite, is one of commonly found iron-bearing soil minerals occurring in phosphorous-enriched reducing environments. We have investigated reductive sorption of Cr(VI) on the vivianite surfaces using batch experimental tests under diverse groundwater conditions. Cr(VI) (5 mg/L) was added in 6.5 g/L vivianite suspension buffered at pH 5, 7, and 9, using 0.05 M HEPES or tris buffer solution, to check the effect of pH on the reductive sorption of Cr(VI) on the vivianite surface. The aqueous Cr(VI) removal was fastest at pH 5, followed by pH 7, and pH 9. The effect of ionic strength on the removal kinetics of Cr(VI) was negligible. It could be subsequently removed via sorption and reduction on the surface of vivianite of which reactive chemical species could be aqueous Fe(II), iron oxides, and metavivianite. Adsorption test was conducted using the same amount of Cr(III) to check the selectivity of chromium species on the vivianite surface for the reductive adsorption. Through Cr extraction test, amount of strong-bound Cr to vivianite is similar for Cr(III) and Cr(VI) injection but amount of weak-bound Cr is bigger for Cr(VI) injection. Reaction mechanism for the sorption and reductive transformation of Cr(VI) to Cr(III) species at reactive sites of vivianite surface are discussed based on surface complexation modeling and K-edge Fe X-ray absorption near edge structure (XANES) results. Since vivianite is reacted with Cr(VI), two smooth peaks of absorption edge changed to one sharp peak. Pre-edge that contains 1s-3d transition information tends to show high peak when reaction time is increased and pH is

  18. Kinetics of hexavalent chromium reduction by iron metal

    Institute of Scientific and Technical Information of China (English)

    Huijing QIAN; Yanjun WU; Yong LIU; Xinhua XU

    2008-01-01

    The kinetics of Cr(Ⅵ) reduction to Cr(Ⅲ) by metallic iron (Fe0) was studied in batch reactors for a range of reactant concentrations, pH and temperatures. Nearly 86.8% removal efficiency for Cr(Ⅵ) was achieved when Fe0 concentration was 6 g/L (using commercial iron powder (200 mesh) I n 120 min). The reduction ofhexavalent chro-mium took place on the surface of the iron particles following pseudo-first order kinetics. The rate of Cr(Ⅵ) reduction increased with increasing Fe0 addition and temperature but inversely with initial pH. The pseudo-first-order rate coeffi-cients (kobs) were determined as 0.0024, 0.010, 0.0268 and 0.062 8 min-1 when iron powder dosages were 2, 6, 10 and 14 g/L at 25℃ and pH 5.5, respectively. According to the Arrehenius equation, the apparent activation energy of 26.5 kJ/mol and pre-exponential factor of 3 330 min-1 were obtained at the temperature range of 288-308 K. Different Fe0 types were compared in this study. The reactivity was in the order starch-stabilized Fe0 nanoparticlesFe0 nano-particlesFe0 powderFe0 filings. Electrochemical analysis of the reaction process showed that Cr(Ⅲ) and Fe(Ⅲ) hydroxides should be the dominant final products.

  19. A simple route to synthesize conductive stimuli-responsive polypyrrole nanocomposite hydrogel particles with strong magnetic properties and their performance for removal of hexavalent chromium ions from aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Hasan, E-mail: samarhass@yahoo.com [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Rahman, Mohammad Mostafizar; Ali, Mohammad Azgar [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh); Minami, Hideto [Graduate School of Engineering, Kobe University, Kobe 657-8501 (Japan); Tauer, Klaus [Max Planck Institute of Colloid and Interfaces, Am Mühlenberg, 14476 Golm (Germany); Gafur, Mohammad Abdul [Pilot Plant and Process Development Centre, BCSIR, Dhaka 1205 (Bangladesh); Rahman, Mohammad Mahbubor [Department of Chemistry, Rajshahi University, Rajshahi 6205 (Bangladesh)

    2016-08-15

    A combination of maghemite polypyrrole (PPy/γ-Fe{sub 2}O{sub 3}) and stimuli-responsive properties in the same hydrogel microspheres is expected to enhance their application potential in various fields such as tissue engineering, regenerative medicine, biosensors, biomedical applications and removal of heavy metals from waste water, catalysis etc. In this investigation a simple two step process is used to prepare conductive stimuli-responsive polypyrrole (PPy) composite hydrogel particles with strong magnetic properties. Poly(styrene-methacrylic acid-N-isopropylacrylamide-polyethelene glycol methacrylate) or P(S-NIPAM-MAA-PEGMA) hydrogel seed particles are first prepared by soap-free precipitation copolymerization. The copolymer hydrogel particles exhibited both temperature- and pH-responsive volume phase transition. Conductive P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles are then prepared by seeded chemical oxidative polymerization of pyrrole in the presence of P(S-NIPAM-MAA-PEGMA) hydrogel seed particles using FeCl{sub 3} as a oxidant and p-toluene sulfonic acid ( p-TSA) as a dopant. In the reaction system FeCl{sub 3} functioned as a source of Fe(III) for the formation of γ-Fe{sub 2}O{sub 3}. This reaction also requires the initial presence of Fe(II) provided by the addition of FeCl{sub 2}. The size and size distribution, surface structure, and morphology of the prepared conductive composite hydrogel particles are confirmed by FTIR, electron micrographs, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV–visible spectroscopy. The performance of nanocomposite hydrogel particles has been evaluated for the removal of hexavalent chromium (Cr) ions from water. - Highlights: • P(S-NIPAM-MAA-PEGMA) hydrogel particles were prepared. • P(S-NIPAM-MAA-PEGMA)/PPy/γ-Fe{sub 2}O{sub 3} nanocomposite hydrogel particles were prepared. • Oxidative polymerization of pyrrole and precipitation of γ-Fe{sub 2}O{sub 3

  20. The Survey of Melia Azaderach L. ash in Removal of Hexavalent Chromium from Synthetic Electroplating Industry Wastewater

    Directory of Open Access Journals (Sweden)

    MT Ghaneian

    2014-11-01

    Conclusion: Melia azedarach ash is an effective adsorbent in removal of hexavalent chromium from synthetic electroplating industries wastewater. In addition, the use of this biosorbent in preparation and application aspects is simple and cheap compared to many other natural and man-made adsorbent.

  1. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach

    Energy Technology Data Exchange (ETDEWEB)

    Sasso, A.F., E-mail: sasso.alan@epa.gov; Schlosser, P.M., E-mail: schlosser.paul@epa.gov

    2015-09-15

    Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastric juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses. - Highlights: • We outline a new in vivo model for hexavalent chromium reduction in the stomach. • We examine in vivo reduction for mice, rats, and humans under varying conditions. • Species differences in toxicokinetics may explain susceptibility. • We show that a simplified stomach reduction model is adequate for extrapolation. • Internal dose uncertainties still exist.

  2. Pharmacokinetic Modeling of Trivalent and Hexavalent Chromium Based on Ingestion and Inhalation of Soluble Chromium Compounds.

    Science.gov (United States)

    1991-12-01

    be largely Cr(III) although some Cr(VI) exposure probably also occurs. Stainless-steel welders are exposed to nickel as well as to chromium compounds...welders are equivocal with respect to involvement of chromium, particularly since nickel in some chemical forms is an established lung carcinogen (Stern...microglobulin (Lindberg and Vesterberg, 1983), retinol-binding protein (Franchini and Mutti , 1988), B-glucuronidase ( Mutti et al., 1979), and kidney brush border

  3. Hexavalent chromium removal by chitosan modified-bioreduced nontronite

    Science.gov (United States)

    Singh, Rajesh; Dong, Hailiang; Zeng, Qiang; Zhang, Li; Rengasamy, Karthikeyan

    2017-08-01

    Recent efforts have focused on structural Fe(II) in chemically or biologically reduced clay minerals to immobilize Cr(VI) from aqueous solution, but the coulombic repulsion between the negatively charged clay surface and the polyanionic form of Cr(VI), e.g., dichromate, can hinder the effectiveness of this process. The purpose of this study was to investigate the efficiency and mechanism of Cr(VI) removal by a charge-reversed nontronite (NAu-2), an Fe-rich smectite. Chitosan, a linear polysaccharide derived from chitin found in soil and groundwater, was used to reverse the charge of NAu-2. Intercalation of chitosan into NAu-2 interlayer increased the basal d-spacing of NAu-2 from 1.23 nm to 1.83 nm and zeta potential from -27.17 to +34.13 mV, with the amount of increase depending on chitosan/NAu-2 ratio. Structural Fe(III) in chitosan-exchanged NAu-2 was then biologically reduced by an iron-reducing bacterium Shewanella putrefaciens CN32 in bicarbonate buffer with lactate as the sole electron donor, with and without electron shuttle, AQDS. Without AQDS, the extent of Fe(III) reduction increased from the lowest (∼9%) for the chitosan-free NAu-2 to the highest (∼12%) for the highest chitosan loaded NAu-2 (3:1 ratio). This enhancement of Fe(III) reduction was likely due to the attachment of negatively charged bacterial cells to charge-reversed (e.g., positively charged) NAu-2 surfaces, facilitating the electron transfer between cells and structural Fe(III). With AQDS, Fe(III) reduction extent doubled relative to those without AQDS, but the enhancement effect was similar across all chitosan loadings, suggesting that AQDS was more important than chitosan in enhancing Fe(III) bioreduction. Chitosan-exchanged, biologically reduced NAu-2 was then utilized for removing Cr(VI) in batch experiments with three consecutive spikes of 50 μM Cr. With the first Cr spike, the rate of Cr(VI) removal by charged-reversed NAu-2 that was bioreduced without and with AQDS was ∼1

  4. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER: VOLUME 3 MULTICOMPONENT REACTIVE TRANSPORT MODELING

    Science.gov (United States)

    Reactive transport modeling has been conducted to describe the performance of the permeable reactive barrier at the Coast Guard Support Center near Elizabeth City, NC. The reactive barrier was installed to treat groundwater contaminated by hexavalent chromium and chlorinated org...

  5. Adsorption characteristics of hexavalent chromium on HCB/TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Zhang, Yonggang, E-mail: 13502182420@163.com

    2014-10-15

    Graphical abstract: - Highlights: • Sol–gel method was adopted to prepare HCB/TiO{sub 2}. • Its adsorption performance of Cr(VI) was investigated. • The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium. • The value is worth comparable with other low-cost adsorbents. - Abstract: Sol–gel method was adopted to prepare HCB/TiO{sub 2} and its adsorption ability of hexavalent chromium, Cr(VI), and removal from aqueous solution were investigated. The samples were characterized by Power X-ray diffraction (XRD) and a transmission electron microscope (TEM) which showed that the TiO{sub 2} was deposited on the surface of HCB. FTIR was used to identify the changes of the surface functional groups before and after adsorption. Potentiometric titration method was used to characterize the zero charge (pH{sub pzc}) characteristics of the surface of HCB/TiO{sub 2} which showed more acidic functional groups containing. Batch experiments showed that initial pH, absorbent dosage, contact time and initial concentration of Cr(VI) were important parameters for the Cr(VI) adsorption studies. The Freundlich isotherm model better reflected the experimental data better. Cr(VI) adsorption process followed the pseudo-second order kinetic model, which illustrated chemical adsorption. The thermodynamic parameters, such as Gibbs free energy (ΔG), changes in enthalpy change (ΔH) and changes in entropy change (ΔS) were also evaluated. Negative value of free energy occurred at temperature range of 25–45 °C, so Cr(VI) adsorption by HCB/TiO{sub 2} is spontaneous. Desorption results showed that the adsorption capacity could maintain 80% after five cycles. The maximum adsorption capacity for Cr(VI) was at 27.33 mg g{sup −1} in an acidic medium, of which the value is worth comparable with other low-cost adsorbents.

  6. The role of EDTA in phytoextraction of hexavalent and trivalent chromium by two willow trees.

    Science.gov (United States)

    Yu, Xiao-Zhang; Gu, Ji-Dong

    2008-04-01

    Effects of the synthetic chelator ethylenediamine tetraacetate (EDTA) on uptake and internal translocation of hexavalent and trivalent chromium by plants were investigated. Two different concentrations of EDTA were studied for enhancing the uptake and translocation of Cr from the hydroponic solution spiked with K(2)CrO(4) or CrCl(3) maintained at 24.0 +/- 1 degrees C. Faster removal of Cr(3+) than Cr(6+) by hybrid willows (Salix matsudana Koidz x Salix alba L.) from the plant growth media was observed. Negligible effect of EDTA on the uptake of Cr(6+) was found, but significant decrease of the Cr concentration in roots was measured. Although the translocation of Cr(6+) within plant materials was detected in response to EDTA concentration, the amount of Cr(6+) translocated to the lower stems was considerably small. EDTA in the nutrient media showed a negative effect on the uptake of Cr(3+ )by hybrid willows; the removal rates of Cr(3+ )were significantly decreased. Translocation of Cr(3+) into the stems and leaves was undetectable, but roots were the exclusive sink for Cr(3+) accumulation. Weeping willows (Salix babylonica L.) showed lower removal rates for both chemical forms of Cr than hybrid willows. Although EDTA had a minor effect on Cr(6+ )uptake by weeping willows, positive effect on Cr(6+ )translocation within plant materials was observed. It was also determined that EDTA in plant growth media significantly decreased the amount of Cr(3+) taken up by plants, but significantly increased Cr(3+) mobilization from roots to stems. Results indicated that EDTA was unable to increase the uptake of Cr(6+) by both plant species, but translocation of Cr(6+)-EDTA within plant materials was possible. Addition of EDTA in the nutrient media showed a strong influence on the uptake and translocation of Cr(3+) in both willows. Cr(3+)-EDTA in tissues of weeping willows was more mobile than that in hybrid willows. The information has important implications for the use of metal

  7. Assessment of Hexavalent Chromium Natural Attenuation for the Hanford Site 100 Area

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Szecsody, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Qafoku, Nikolla P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhong, Lirong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lawter, Amanda R. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-09-01

    Hexavalent chromium (Cr(VI)) plumes are present in the 100 Area at the Hanford Site. Remediation efforts are under way with objectives of restoring the groundwater to meet the drinking-water standard (48 µg/L) and protecting the Columbia River by ensuring that discharge of groundwater to the river is below the surface-water quality standard (10 µg/L). Current remedies include application of Pump-and-Treat (P&T) at the 100-D, 100-H, and 100-K Areas and Monitored Natural Attenuation (MNA) at the 100-F/IU Area. Remedy selection is still under way at the other 100 Areas. Additional information about the natural attenuation processes for Cr(VI) is important in all of these cases. In this study, laboratory experiments were conducted to demonstrate and quantify natural attenuation mechanisms using 100 Area sediments and groundwater conditions.

  8. Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell.

    Science.gov (United States)

    Wu, Xiayuan; Zhu, Xujun; Song, Tianshun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2015-03-01

    A simple acclimatization method for the reduction of hexavalent chromium (Cr(VI)) at a biocathode by first enriching an exoelectrogenic biofilm on a microbial fuel cell (MFC) anode, followed by direct inversion of the anode to function as the biocathode, has been established. This novel method significantly enhanced the Cr(VI) reduction efficiency of the MFC, which was mainly attributed to the higher microbial density and less resistive Cr(III) precipitates on the cathode when compared with a common biocathode acclimatization method (control). The biocathode acclimatization period was shortened by 19days and the Cr(VI) reduction rate was increased by a factor of 2.9. Microbial community analyses of biocathodes acclimatized using different methods further verified the feasibility of this electrode inversion method, indicating similar dominant bacteria species in biofilms, which mainly consist of Gamma-proteobacteria and Bacteria.

  9. Quantification of total and hexavalent chromium in lager beers: variability between styles and estimation of daily intake of chromium from beer.

    Science.gov (United States)

    Vieira, Elsa; Soares, M Elisa; Kozior, Marta; Krejpcio, Zbigniew; Ferreira, Isabel M P L V O; Bastos, M Lourdes

    2014-09-17

    A survey of the presence of total and hexavalent chromium in lager beers was conducted to understand the variability between different styles of lager beer packaged in glass or cans and to estimate daily intake of total Cr and hexavalent chromium from beer. Graphite-furnace atomic absorption spectroscopy using validated methodologies was applied. Selective extraction of hexavalent chromium was performed using a Chromabond NH2/500 mg column and elution with nitric acid. The detection limits were 0.26 and 0.68 μg L(-1) for total Cr and Cr(VI), respectively. The mean content of total Cr ranged between 1.13 μg L(-1) in canned pale lager and 4.32 μg L(-1) in low-alcohol beers, whereas the mean content of Cr(VI) was beer, beer consumption can contribute approximately 2.28-8.64 and 1.6-6.17% of the recommended daily intake of chromium for women and men, respectively.

  10. Diffusion of hexavalent chromium in chromium-containing slag as affected by microbial detoxification.

    Science.gov (United States)

    Wang, Yunyan; Yang, Zhihui; Chai, Liyuan; Zhao, Kun

    2009-09-30

    An electrochemical method was used to determine the diffusion coefficient of chromium(VI) in chromium-containing slag. A slag plate was prepared from the original slag or the detoxified slag by Achromobacter sp. CH-1. The results revealed that the apparent diffusion coefficient of Cr(VI) was 4.4 x 10(-9)m(2)s(-1) in original slag and 2.62 x 10(-8)m(2)s(-1) in detoxified slag. The results implied that detoxification of chromium-containing slag by Achromobacter sp. CH-1 could enhance Cr(VI) release. Meanwhile, the results of laboratory experiment showed that the residual total Cr(VI) in slag decreased from an initial value of 6.8 mg g(-1) to 0.338 mg g(-1) at the end of the detoxification process. The Cr(VI) released from slag was also reduced by Achromobacter sp. CH-1 strain since water soluble Cr(VI) in the leachate was not detected after 4 days. Therefore, Achromobacter sp. CH-1 has potential application for the bio-detoxification of chromium-containing slag.

  11. Simulation on reduction of hexavalent chromium from groundwater using zero valent iron%Fe0去除地下水中六价铬的研究

    Institute of Scientific and Technical Information of China (English)

    李雅; 张增强; 唐次来; 易磊

    2011-01-01

    为了研究零价铁去除水中Cr(Ⅵ)的效果及影响因素.在实验室条件下,通过批试验,考察了铁粉预处理、铁粉用量、初始pH及阳离子对六价铬去除的影响.结果表明:零价铁能够有效、快速的去除污染水体中的六价铬,机理为氧化还原和共沉淀;其去除率受铁粉预处理、铁粉投加量、初始pH及阳离子的影响;在酸性条件下,Fe2+浓度可以作为六价铬是否完全去除的指示剂.%In order to provide guidance for practical application in the remediation of groundwater pollution, the influencing factors of reduction of hexavalent chromium from solution were studied by batch experiment at laboratory scale, such as pretreated, amount of iron, initial pH and cation. The results showed that hexavalent chromium was removed quickly and effectively by zero valent iron, removal mechanism was redox and coprecipitation;the removal ratio was effected by the pretreatment with acid and nickelaqe,the amount of iron,initial pH and cation;Fe2+ could be used as an indicator for complete reduction of hexavalent chromium in the acidic condition.

  12. Equilibrium and dynamic study on hexavalent chromium adsorption onto activated carbon.

    Science.gov (United States)

    Di Natale, F; Erto, A; Lancia, A; Musmarra, D

    2015-01-08

    In this work, the results of equilibrium and dynamic adsorption tests of hexavalent chromium, Cr (VI), on activated carbon are presented. Adsorption isotherms were determined at different levels of pH and temperature. Dynamic tests were carried out in terms of breakthrough curves of lab-scale fixed bed column at different pH, inlet concentration and flow rate. Both the adsorption isotherms and the breakthrough curves showed non-linear and unconventional trends. The experimental results revealed that chromium speciation played a key role in the adsorption process, also for the occurrence of Cr(VI)-to-Cr(III) reduction reactions. Equilibrium tests were interpreted in light of a multi-component Langmuir model supported by ion speciation analysis. For the interpretation of the adsorption dynamic tests, a mass transfer model was proposed. Dynamic tests at pH 11 were well described considering the external mass transfer as the rate controlling step. Differently, for dynamic tests at pH 6 the same model provided a satisfying description of the experimental breakthrough curves only until a sorbent coverage around 1.6mgg(-1). Above this level, a marked reduction of the breakthrough curve slope was observed in response to a transition to an inter-particle adsorption mechanism.

  13. An evaluation of in vivo models for toxicokinetics of hexavalent chromium in the stomach.

    Science.gov (United States)

    Sasso, A F; Schlosser, P M

    2015-09-15

    Hexavalent chromium (Cr6) is a drinking water contaminant that has been detected in most of the water systems throughout the United States. In 2-year drinking water bioassays, the National Toxicology Program (NTP) found clear evidence of carcinogenic activity in male and female rats and mice. Because reduction of Cr6 to trivalent chromium (Cr3) is an important detoxifying step in the gastrointestinal (GI) tract prior to systemic absorption, models have been developed to estimate the extent of reduction in humans and animals. The objective of this work was to use a revised model of ex vivo Cr6 reduction kinetics in gastric juice to analyze the potential reduction kinetics under in vivo conditions for mice, rats and humans. A published physiologically-based pharmacokinetic (PBPK) model was adapted to incorporate the new reduction model. This paper focuses on the toxicokinetics of Cr6 in the stomach compartment, where most of the extracellular Cr6 reduction is believed to occur in humans. Within the range of doses administered by the NTP bioassays, neither the original nor revised models predict saturation of stomach reducing capacity to occur in vivo if applying default parameters. However, both models still indicate that mice exhibit the lowest extent of reduction in the stomach, meaning that a higher percentage of the Cr6 dose may escape stomach reduction in that species. Similarly, both models predict that humans exhibit the highest extent of reduction at low doses.

  14. Hexavalent Chromium Removal by a Paecilomyces sp. Fungal Strain Isolated from Environment

    Directory of Open Access Journals (Sweden)

    Juan F. Cárdenas-González

    2010-01-01

    Full Text Available A resistant and capable fungal strain in removing hexavalent chromium was isolated from an environment near of Chemical Science Faculty, located in the city of San Luis Potosí, Mexico. The strain was identified as Paecilomyces sp., by macro- and microscopic characteristics. Strain resistance of the strain to high Cr (VI concentrations and its ability to reduce chromium were studied. When it was incubated in minimal medium with glucose, another inexpensive commercial carbon source like unrefined and brown sugar or glycerol, in the presence of 50 mg/L of Cr (VI, the strain caused complete disappearance of Cr (VI, with the concomitant production of Cr (III in the growth medium after 7 days of incubation, at 28∘C, pH 4.0, 100 rpm, and an inoculum of 38 mg of dry weight. Decrease of Cr (VI levels from industrial wastes was also induced by Paecilomyces biomass. These results indicate that reducing capacity of chromate resistant filamentous fungus Cr (VI could be useful for the removal of Cr (VI pollution.

  15. Reduction of Hexavalent Chromium Using L-Cysteine Capped Nickel Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Razium Ali Soomro

    2013-06-01

    Full Text Available The aim of this study was to reduce the highly toxic hexavalent chromium Cr(VI into less toxic chromium Cr(III species by using nickel nanoparticles (Ni NPs as catalysts in order to provide safety to the aqueous environment. In the first phase Ni NPs were synthesized in ethylene glycol and capped with l-cysteine by a modified microwave irradiation method using NaOH as the accelerator. The formed Ni NPs were characterized by various techniques such as UV-Visible spectroscopy, Fourier Transform Infra-red (FTIR spectroscopy and Scanning Electron Microscopy (SEM. In the second phase the formed Ni NPs were immobilized on glass surfaces and employed as catalyst for the reduction of Cr(VI ions. According to observations, 99% reduction of Cr(VI ions was achieved in the presence of 0.5 mg of Ni NPs catalyst in just five minutes as compared to nickel powder that showed only 16% reduction in 15 minutes. The study has a great impact on the aqueous pollution control of Cr(VI especially caused by the discharge of waste water from several industries utilizing Cr(VI containing salt as one of the essential gradients.

  16. Effects of hexavalent chromium on performance and microbial community of an aerobic granular sequencing batch reactor.

    Science.gov (United States)

    Wang, Zichao; Gao, Mengchun; She, Zonglian; Jin, Chunji; Zhao, Yangguo; Yang, Shiying; Guo, Liang; Wang, Sen

    2015-03-01

    The performance and microbial community of an aerobic granular sequencing batch reactor (GSBR) were investigated at different hexavalent chromium (Cr(VI)) concentrations. The COD and NH4 (+)-N removal efficiencies decreased with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific oxygen utilization rate (SOUR) decreased from 34.86 to 12.18 mg/(g mixed liquor suspended sludge (MLSS)·h) with the increase in Cr(VI) concentration from 0 to 30 mg/L. The specific ammonium oxidation rate (SAOR), specific nitrite oxidation rate (SNOR), and specific nitrate reduction rate (SNRR) decreased with the increase in Cr(VI) concentration, whereas the SNRR was always higher than the sum of SAOR and SNOR at 0-30 mg/L Cr(VI). The scanning electron micrographs (SEM) showed some undefined particles on the surface of filamentous bacteria that might be the chelation of chromium and macromolecular organics at 30 mg/L Cr(VI). The denaturing gradient gel electrophoresis (DGGE) profiles revealed that some microorganisms adapting to high Cr(VI) concentration gradually became the predominant bacteria, while others without Cr(VI)-tolerance capacity tended to deplete or weaken. Some bacteria could tolerate the toxicity of high Cr(VI) concentration in the aerobic GSBR, such as Propionibacteriaceae bacterium, Ochrobactrum anthropi, and Micropruina glycogenica.

  17. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    OpenAIRE

    Guey-Horng Wang; Chiu-Yu Cheng; Man-Hai Liu; Tzu-Yu Chen; Min-Chi Hsieh; Ying-Chien Chung

    2016-01-01

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of t...

  18. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    Directory of Open Access Journals (Sweden)

    Amine Mnif

    2017-01-01

    Full Text Available Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ, and the solute permeability coefficient (Ps. The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution.

  19. Hexavalent Chromium Removal from Model Water and Car Shock Absorber Factory Effluent by Nanofiltration and Reverse Osmosis Membrane

    Science.gov (United States)

    Bejaoui, Imen; Mouelhi, Meral; Hamrouni, Béchir

    2017-01-01

    Nanofiltration and reverse osmosis are investigated as a possible alternative to the conventional methods of Cr(VI) removal from model water and industrial effluent. The influences of feed concentration, water recovery, pH, and the coexisting anions were studied. The results have shown that retention rates of hexavalent chromium can reach 99.7% using nanofiltration membrane (NF-HL) and vary from 85 to 99.9% using reverse osmosis membrane (RO-SG) depending upon the composition of the solution and operating conditions. This work was also extended to investigate the separation of Cr(VI) from car shock absorber factory effluent. The use of these membranes is very promising for Cr(VI) water treatment and desalting industry effluent. Spiegler-Kedem model was applied to experimental results in the aim to determine phenomenological parameters, the reflection coefficient of the membrane (σ), and the solute permeability coefficient (Ps). The convective and diffusive parts of the mass transfer were quantified with predominance of the diffusive contribution. PMID:28819360

  20. Precursor preparation for Ca-Al layered double hydroxide to remove hexavalent chromium coexisting with calcium and magnesium chlorides

    Science.gov (United States)

    Zhong, Lihua; He, Xiaoman; Qu, Jun; Li, Xuewei; Lei, Zhiwu; Zhang, Qiwu; Liu, Xinzhong

    2017-01-01

    Al(OH)3 and Ca(OH)2 powders are co-ground to prepare a precursor which hydrates into a layered double hydroxide (LDH) phase by agitation in aqueous solution with target hexavalent chromium (Cr(VI)) at room temperature, to achieve an obvious improvement in removal efficiency of Cr(VI) through an easy incorporation into the structure. Although the prepared precursor transforms into LDH phases also when agitated in the solutions of calcium and magnesium chlorides, it incorporates Cr(VI) preferentially to the chloride salts when they coexist. The adsorption isotherm and kinetic studies show that the phenomena occurring on the Al-Ca precursor fit a pseudo-second-order kinetics with a Langmuir adsorption capacity of 59.45 mg/g. Besides, characterizations of the prepared precursor and the samples after adsorption are also performed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Transmission electron microscope (TEM) to understand the reason of the preferential incorporation of Cr(VI) to the coexisting chloride salts during the LDH phase formation.

  1. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    OpenAIRE

    Thompson Vicki S; Apel William A; Horton Rene' N; Sheridan Peter P

    2006-01-01

    Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III)] and hexavalent [Cr(VI)] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm). Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade) year round. It is important to evaluate the possibility of microbial remediation of Cr(VI) contamination using microorganisms adapted to these l...

  2. On the removal of hexavalent chromium from a Class F fly ash.

    Science.gov (United States)

    Huggins, F E; Rezaee, M; Honaker, R Q; Hower, J C

    2016-05-01

    Coarse and fine samples of a Class F fly ash obtained from commercial combustion of Illinois bituminous coal have been exposed to two long-term leaching tests designed to simulate conditions in waste impoundments. ICP-AES analysis indicated that the coarse and fine fly ash samples contained 135 and 171mg/kg Cr, respectively. Measurements by XAFS spectroscopy showed that the ash samples originally contained 5 and 8% of the chromium, respectively, in the hexavalent oxidation state, Cr(VI). After exposure to water for more than four months, the percentage of chromium as Cr(VI) in the fly-ash decreased significantly for the coarse and fine fly-ash in both tests. Combining the XAFS data with ICP-AES data on the concentration of chromium in the leachates indicated that, after the nineteen-week-long, more aggressive, kinetic test on the coarse fly ash, approximately 60% of the Cr(VI) had been leached, 20% had been reduced to Cr(III) and retained in the ash, and 20% remained as Cr(VI) in the ash. In contrast, during the six-month-long baseline test, very little Cr was actually leached from either the coarse or the fine fly-ash (ash was retained in the ash in that form, while the remainder, 34% and 80%, respectively, was reduced and retained in the ash as Cr(III). The results are interpreted as indicating that Cr(VI) present in Class F fly-ash can be reduced to Cr(III) when in contact with water and that such chemical reduction can compete with physical removal of Cr(VI) from the ash by aqueous leaching.

  3. Microcalorimetric study the toxic effect of hexavalent chromium on microbial activity of Wuhan brown sandy soil: an in vitro approach.

    Science.gov (United States)

    Yao, Jun; Tian, Lin; Wang, Yanxin; Djah, Atakora; Wang, Fei; Chen, Huilun; Su, Chunli; Zhuang, Rensheng; Zhou, Yong; Choi, Martin M F; Bramanti, Emilia

    2008-02-01

    A multi-channel thermal activity monitor was applied to study soil microbial activity in Wuhan brown sandy soil in the presence of different concentrations of hexavalent chromium (K(2)Cr(2)O(7)). In order to stimulate the soil microbial activity, 5.0mg of glucose and 5.0mg of ammonium sulfate were added to a 1.20-g soil sample under a controlled humidity of 35%. The results show that the poisonous species of K(2)Cr(2)O(7) at an half inhibitory concentration (IC(50)) value of 4.27 microg mL(-1) against soil microbe, and an increase of the amount of hexavalent chromium is associated to a decrease in the microbial activity of the soil, probably due to an increase in the toxicity of hexavalent chromium, affecting strongly the life in this soil microbial environment. Our work also suggests that microcalorimetry is a fast, simple and more sensitive method that can be easily performed to study the toxicity of different species of heavy metals on microorganism compared to other biological methods.

  4. Biosorption of hexavalent chromium in a tannery industry wastewater using fungi species

    Directory of Open Access Journals (Sweden)

    D. Sivakumar

    2016-03-01

    Full Text Available The isolated fungi species of different kinds from chromium contaminated soil sites located in Nagalkeni, Chennai were used for reducing chromium(VI in a tannery industry wastewater of Nagalkeni, Chennai.  The experiments were conducted to know biosorption potential of isolated fungi species for removing chromium(VI in a tannery industry wastewater against the different pH, fungi biomass and chromium(VI concentration (dilution ratio.  The results of this study indicated that the order of maximum removal of chromium(VI by an isolated fungi species at an optimum pH of 3, fungi biomass of 4g andan initial chromium(VI concentration of 18.125 mg/L (dilution ratio 4is A. niger > A. flavus > A. fumigatus > A. nidulans > A. heteromorphus > A. foetidus > A. viridinutans.  This study found that the maximum removal of chromium(VI was achieved by Aspergillus niger (96.3 % than other fungi species at chromium(VI concentration of 18.125 mg/Lin a tannery industry wastewater. The chromium removal from tannery industry wastewater was validated by checking chromium removal in an aqueous solution and by checking the removal efficiency of other parameters in a tannery industry wastewater using same isolated A. niger.  Biosorption model was proposed to simulate the experimental condition for removing chromium(VI in a tannery industry wastewater by all isolated fungi species. The R2 and  values of the proposed model predicted that the proposed biosorption model is very much useful for predicting the trend of reduction potential of chromium(VI in a tannery industry wastewater by all isolated fungi species.  This study suggested that one could select the type of fungi species, ion concentration level, selection of treatment period, quantity of biomass to be used, and pH level of the medium, to achieve the highest reduction of any toxic metals from any contaminated water, wastewater and soil environment.

  5. Effects of Dentifrice Containing Hydroxyapatite on Dentinal Tubule Occlusion and Aqueous Hexavalent Chromium Cations Sorption: A Preliminary Study

    Science.gov (United States)

    Liu, Jing; Hou, Yarong; Zhu, Manqun; Huang, Jiansheng; Xu, Pingping

    2012-01-01

    In order to endow environmental protection features to dentifrice, hydroxyapatite (HA) was added to ordinary dentifrice. The effects on dentinal tubule occlusion and surface mineralization were compared after brushing dentine discs with dentifrice with or without HA. The two types of dentifrice were then added to 100 µg/ml of hexavalent chromium cation (Cr6+) solution in order to evaluate their capacities of adsorbing Cr6+ from water. Our results showed that the dentifrice containing HA was significantly better than the ordinary dentifrice in occluding the dentinal tubules with a plugging rate greater than 90%. Moreover, the effect of the HA dentifrice was persistent and energy-dispersive spectrometer (EDS) revealed that the atomic percentages of calcium and phosphorus on the surface of dentine discs increased significantly. Adding HA to ordinary dentifrice significantly enhanced the ability of dentifrice to adsorb Cr6+ from water with the removal rate up to 52.36%. In addition, the sorption was stable. Our study suggests that HA can be added to ordinary dentifrice to obtain dentifrice that has both relieving dentin hypersensitivity benefits and also helps to control environmental pollution. PMID:23300511

  6. Analysis of hexavalent chromium in Colla corii asini with on-line sample pretreatment valve-switching ion chromatography.

    Science.gov (United States)

    Yang, Yuling; He, Jie; Huang, Zhongping; Zhong, Naifei; Zhu, Zuoyi; Jiang, Renyu; You, Jinghua; Lu, Xiuyang; Zhu, Yan; He, Shiwei

    2013-08-30

    An ion chromatography (IC) system with on-line sample pretreatment using valve-switching technique was developed for the determination of hexavalent chromium (Cr(VI)) in Colla corii asini. Colla corii asini is a complicated sample with organics as main matrix. In this work, a polymer-based reversed-phase column was used as a pretreatment column. Via valve-switching technique, sample solution with target ions were eluted from a collection loop to analytical columns, with matrix eliminated on-line. Under the optimized separation conditions, the method showed good linearity (r=0.9998) in the range of 0.004-1.0mg/L and satisfactory repeatability (RSD<3%, n=6). The limit of detection (LOD) was 1.4μg/L (S/N=3). The average spiked recoveries of Cr(VI) were 93.4-102.0%. The result showed that the on-line sample pretreatment IC system was convenient and practical for the determination of trace Cr(VI) in Colla corii asini samples.

  7. On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry

    DEFF Research Database (Denmark)

    Long, Xiangbao; Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    A novel and miniaturized micro-sequential injection bead injection lab-on-valve (μSI-BI-LOV) fractionation system was developed for in-line microcolumn soil extraction under simulated environmental scenarios and accurate monitoring of the content of easily mobilisable hexavalent chromium in soil...... environments at the sub-low parts-per-million level. The flow system integrates dynamic leaching of hexavalent chromium using deionized water as recommended by the German Standard DIN 38414-S4 method; on-line pH adjustment of the extract by a 0.01 mol L-1 Tris-HNO3 buffer solution; isolation of the chromate......). The effect of simulated acidic rain on the accessibility of chromate forms for plant uptake was also investigated. The proposed approach offers several advantages over conventional speciation/fractionation protocols in the batch mode, including immediate separation with concomitant preconcentration...

  8. Mitigation of Hexavalent Chromium in Storm Water Resulting from Demolition of Large Concrete Structure at the East Tennessee Technology Park - 12286

    Energy Technology Data Exchange (ETDEWEB)

    Britto, Ronnie; Brown, Bridget; Hale, Timothy B.; Hensley, Janice L.; Johnson, Robert T.; Patel, Madhu [Tetra Tech, Inc. (United States); Emery, Jerry A. [Energy Solutions, Inc. (United States); Gaston, Clyde [LATA-SHARP Remediation Services - LSRS (United States); Queen, David C. [U.S. DOE-ORO (United States)

    2012-07-01

    American Recovery and Reinvestment Act (ARRA) funding was provided to supplement the environmental management program at several DOE sites, including the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Demolition of the ETTP K-33 Building, the largest building to be demolished to date in Oak Ridge, was awarded to LSRS in FY-2010 under the ARRA program. The K-33 building was an 82 foot tall 2-story structure covering approximately 32 acres. Once this massive building was brought down to the ground, the debris was segregated and consolidated into piles of concrete rubble and steel across the remaining pad. The process of demolishing the building, tracking across concrete debris with heavy equipment, and stockpiling the concrete rubble caused it to become pulverized. During and after storm events, hexavalent chromium leached from the residual cement present in the large quantities of concrete. Storm water control measures were present to preclude migration of contaminants off-site, but these control measures were not designed to control hexavalent chromium dissolved in storm water from reaching nearby receiving water. The following was implemented to mitigate hexavalent chromium in storm water: - Steel wool was distributed around K-33 site catch basins and in water pools as an initial step in addressing hexavalent chromium. - Since the piles of concrete were too massive and unsafe to tarp, they were placed into windrows in an effort to reduce total surface area. - A Hach colorimetric field meter was acquired by the K-33 project to provide realtime results of hexavalent chromium in site surface water. - Three hexavalent chromium treatment systems were installed at three separate catch basins that receive integrated storm water flow from the K-33 site. Sodium bisulfite is being used as a reducing agent for the immobilization of hexavalent chromium while also assisting in lowering pH. Concentrations initially were 310 - 474 ppb of hexavalent chromium in

  9. Hexavalent chromium reduction with scrap iron in continuous-flow system. Part 2: Effect of scrap iron shape and size.

    Science.gov (United States)

    Gheju, M; Balcu, I

    2010-10-15

    Hexavalent chromium reduction with scrap iron has the advantage that two wastes are treated simultaneously. The reduction of hexavalent chromium by scrap iron was investigated in continuous system, using as reducing agent the following scrap iron shapes and sizes: (1) spiral fibers, (2) shavings, and (3) powder. The shape and size of scrap iron were found to have a significant influence on chromium and iron species concentration in column effluent, on column effluent pH and on Cr(VI) reduction mechanism. While for large scrap iron particles (spiral fibers) homogeneous reduction is the dominant Cr(VI) reduction process, for small scrap iron particles (powder) heterogeneous reduction appears to be the dominant reaction contributing to Cr(VI) reduction. All three shapes and sizes investigated in this work have both advantages and disadvantages. If found in sufficient quantities, scrap iron powder seem to be the optimum shape and size for the continuous reduction of Cr(VI), due to the following advantages: (1) the greatest reduction capacity, (2) the most important pH increase in column effluent (up to 6.3), (3) no chromium was detected in the column effluent during the first 60 h of the experiment, and (4) the lowest steady-state Cr(VI) concentration observed in column effluent (3.7 mg/L). But, despite of a lower reduction capacity in comparison with powder particles, spiral fibers and shavings have the advantage to result in large quantities from the mechanic processing of steel.

  10. Electrochemical removal of hexavalent chromium from wastewater using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes

    Directory of Open Access Journals (Sweden)

    Hoshyar Hossini

    2015-01-01

    Full Text Available Background: In recent decades, electrocoagulation (EC has engrossed much attention as an environmental-friendly and effectiveness process. In addition, the EC process is a potential suitable way for treatment of wastewater with concern to costs and environment. The object of this study was electrochemical evaluation of chromium removal from industrial wastewater using Platinum and carbon nanotubes electrodes. Materials and Methods: The effect of key variables including pH (3–9, hexavalent chromium concentration (50–300 mg/l, supporting electrolyte (NaCl, KCl, Na2CO3 and KNO3 and its dosage, Oxidation-Reduction variations, sludge generation rate and current density (2–20 mA/cm2 was determined. Results: Based on experimental data, optimum conditions were determined in 20, 120 min, pH 3, NaCl 0.5% and 100 mg/L initial concentration of chromium. Conclusions: Removal of hexavalent chromium from the wastewater could be successfully performanced using Platinum-Iron/Iron-carbon nanotubes and bipolar Electrodes.

  11. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.

    Science.gov (United States)

    Choudhary, Bharat; Paul, Debajyoti; Singh, Abhas; Gupta, Tarun

    2017-07-01

    Chromium pollution of soil and water is a serious environmental concern due to potential carcinogenicity of hexavalent chromium [Cr(VI)] when ingested. Eucalyptus bark biochar (EBB), a carbonaceous black porous material obtained by pyrolysis of biomass at 500 °C under oxygen-free atmosphere, was used to investigate the removal of aqueous Cr(VI) upon interaction with the EBB, the dominant Cr(VI) removal mechanism(s), and the applicability to treat Cr(VI)-contaminated wastewater. Batch experiments showed complete removal of aqueous Cr(VI) at pH 1-2; sorption was negligible at pH 1, but ~55% of total Cr was sorbed onto the EBB surface at pH 2. Detailed investigations on unreacted and reacted EBB through Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry (XPS) indicate that the carboxylic groups in biochar played a dominant role in Cr(VI) sorption, whereas the phenolic groups were responsible for Cr(VI) reduction. The predominance of sorption-reduction mechanism was confirmed by XPS studies that indicated ~82% as Cr(III) and ~18% as Cr(VI) sorbed on the EBB surface. Significantly, Cr(VI) reduction was also facilitated by dissolved organic matter (DOM) extracted from biochar. This reduction was enhanced by the presence of biochar. Overall, the removal of Cr(VI) in the presence of biochar was affected by sorption due to electrostatic attraction, sorption-reduction mediated by surface organic complexes, and aqueous reduction by DOM. Relative dominance of the aqueous reduction mechanism depended on a critical biochar dosage for a given electrolyte pH and initial Cr(VI) concentration. The low-cost EBB developed here successfully removed all Cr(VI) in chrome tanning acidic wastewater and Cr(VI)-contaminated groundwater after pH adjustment, highlighting its potential applicability in effective Cr(VI) remediation.

  12. Biodegradation of the metallic carcinogen hexavalent chromium Cr(VI by an indigenously isolated bacterial strain

    Directory of Open Access Journals (Sweden)

    Das Alok

    2010-01-01

    Full Text Available Background : Hexavalent chromium [Cr(VI], a potential mutagen and carcinogen, is regularly introduced into the environment through diverse anthropogenic activities, including electroplating, leather tanning, and pigment manufacturing. Human exposure to this toxic metal ion not only causes potential human health hazards but also affects other life forms. The World Health Organization, the International Agency for Research on Cancer, and the Environmental Protection Agency have determined that Cr(VI compounds are known human carcinogens. The Sukinda valley in Jajpur District, Orissa, is known for its deposit of chromite ore, producing nearly 98% of the chromite ore in India and one of the prime open cast chromite ore mines in the world (CES, Orissa Newsletter. Materials and Methods: Our investigation involved microbial remediation of Cr(VI without producing any byproduct. Bacterial cultures tolerating high concentrations of Cr were isolated from the soil sample collected from the chromite-contaminated sites of Sukinda, and their bioaccumulation properties were investigated. Strains capable of growing at 250 mg/L Cr(VI were considered as Cr resistant. Results: The experimental investigation showed the maximum specific Cr uptake at pH 7 and temperature 30oC. At about 50 mg/L initial Cr(VI concentrations, uptake of the selected potential strain exceeded 98% within 12 h of incubation. The bacterial isolate was identified by 16S rRNA sequencing as Brevebacterium casei. Conclusion: Results indicated promising approach for microbial remediation of effluents containing elevated levels of Cr(VI.

  13. Soil microbial community response to hexavalent chromium in planted and unplanted soil.

    Science.gov (United States)

    Ipsilantis, Ioannis; Coyne, Mark S

    2007-01-01

    Theories suggest that rapid microbial growth rates lead to quicker development of metal resistance. We tested these theories by adding hexavalent chromium [Cr(VI)] to soil, sowing Indian mustard (Brassica juncea), and comparing rhizosphere and bulk soil microbial community responses. Four weeks after the initial Cr(VI) application we measured Cr concentration, microbial biomass by fumigation extraction and soil extract ATP, tolerance to Cr and growth rates with tritiated thymidine incorporation, and performed community substrate use analysis with BIOLOG GN plates. Exchangeable Cr(VI) levels were very low, and therefore we assumed the Cr(VI) impact was transient. Microbial biomass was reduced by Cr(VI) addition. Microbial tolerance to Cr(VI) tended to be higher in the Cr-treated rhizosphere soil relative to the non-treated systems, while microorganisms in the Cr-treated bulk soil were less sensitive to Cr(VI) than microorganisms in the non-treated bulk soil. Microbial diversity as measured by population evenness increased with Cr(VI) addition based on a Gini coefficient derived from BIOLOG substrate use patterns. Principal component analysis revealed separation between Cr(VI) treatments, and between rhizosphere and bulk soil treatments. We hypothesize that because of Cr(VI) addition there was indirect selection for fast-growing organisms, alleviation of competition among microbial communities, and increase in Cr tolerance in the rhizosphere due to the faster turnover rates in that environment.

  14. Reduction of hexavalent chromium by a novel Ochrobactrum sp. - microbial characteristics and reduction kinetics.

    Science.gov (United States)

    Narayani, M; Vidya Shetty, K

    2014-04-01

    A Gram negative hexavalent chromium (Cr(VI)) reducing bacteria, Ochrobactrum sp. Cr-B4 (genbank accession number: JF824998) was isolated from the aerator water of an activated sludge process of a wastewater treatment facility of a dye and pigment based specialty chemical industry. It showed a resistance for 1000 mg L(-1) Cr(VI). It exhibited resistance against other heavy metal ions like Ni(2+) (900 mg L(-1) ), Cu(2+) (500 mg L(-1) ), Pb(2+) (800 mg L(-1) ), and Cd(2+) (250 mg L(-1) ), Zn(2+) (700 mg L(-1) ), Fe(3+) (800 mg L(-1) ), and against selected antibiotics. Cr-B4 could efficiently reduce 200 mg L(-1) Cr(VI) completely in nutrient and LB media and could convert Cr(VI) to Cr(III) efficiently. Cr(VI) reduction in nutrient media followed allosteric enzyme kinetics with Km values of 59.39 mg L(-1) and Vmax values of 47.03 mg L(-1)  h(-1) . The reduction in LB media followed Michaelis-Menten kinetics with Km values of 99.52 mg L(-1) and Vmax of 77.63 mg L(-1)  h(-1) . Scanning electron micrograms revealed the presence of extracellular polymeric secretions.

  15. Hexavalent chromium reduction and energy recovery by using dual-chambered microbial fuel cell.

    Science.gov (United States)

    Gangadharan, Praveena; Nambi, Indumathi M

    2015-01-01

    Microbial fuel cell (MFC) technology is utilized to treat hexavalent chromium (Cr(VI)) from wastewater and to generate electricity simultaneously. The Cr(VI) is bioelectrochemically reduced to non-toxic Cr(III) form in the presence of an organic electron donor in a dual-chambered MFC. The Cr(VI) as catholyte and artificial wastewater inoculated with anaerobic sludge as anolyte, Cr(VI) at 100 mg/L was completely removed within 48 h (initial pH value 2.0). The total amount of Cr recovered was 99.87% by the precipitation of Cr(III) on the surface of the cathode. In addition to that 78.4% of total organic carbon reduction was achieved at the anode chamber within 13 days of operation. Furthermore, the maximum power density of 767.01 mW/m² (2.08 mA/m²) was achieved by MFCs at ambient conditions. The present work has successfully demonstrated the feasibility of using MFCs for simultaneous energy production from wastewater and reduction of toxic Cr(VI) to non-toxic Cr(III).

  16. Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.; Fritz, Brad G.; Mackley, Rob D.; Horner, Jacob A.; Johnson, Christian D.; Newcomer, Darrell R.

    2012-11-16

    Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity.

  17. The Photocatalytic Reduction of Hexavalent Chromium by Controllable Mesoporous Anatase TiO2 Nanoparticles

    Directory of Open Access Journals (Sweden)

    Vorrada Loryuenyong

    2014-01-01

    Full Text Available Titania (TiO2 nanoparticles with periodical mesopore size (up to 150 Å have successfully been synthesized by sol-gel template method, using titanium(IV tetraisopropoxide as a starting precursor and isopropanol as a solvent. Different quantities of activated carbon (0%, 5%, and 10% by weight were used as templates to control the porosity and particle size of titania nanoparticles. The templates were completely removed during the calcination in air at 500°C for 3 hr. The results showed that the specific surface area of titania is increased with increasing activated carbon content. The optical bandgap of synthesized titania exhibits a blue shift by 0.3–0.6 eV when compared to the reported value for the bulk anatase and rutile phases. The photocatalytic activity of porous titania is determined with its reduction efficiency of hexavalent chromium (Cr6+. The reduction efficiency is optimized under ultraviolet illumination.

  18. INFLUENCE OF HEXAVALENT CHROMIUM INITIAL CONCENTRATION ON RETARDATION FACTOR AND CONTAMINANT VELOCITY IN A SOIL MEDIA

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2016-02-01

    Full Text Available Sources of soil and ground water contamination are many and include many folds of accidental spills and leaks of toxic and hazardous chemicals. Preparation of ground water contamination model needs good understanding of the behavior of contaminant transport through soil media for predicting the level of contamination of ground water in the near future at the intended site conditions. Sorption is a natural process; due to its presence, the contaminant can move slowly as compared to the ground water and hence the effects of sorption must be taken into consideration while predicting the travel time of the contaminant to reach the ground water sources. This paper discusses the results of column test studies carried out in the laboratory under controlled conditions about the spreading of contaminant (Hexavalent chromium, Cr (VI through the clay mixed red soil at two different initial concentrations (800 mg/L and 4200 mg/L. The variations of the contaminant flow velocity and retardation factor for two different initial concentrations of contaminant were brought out and discussed. The contaminant flow velocity drastically coming down for a relative concentration of 0 to 0.2 and beyond this range, the contaminant flow velocity value is decreasing in a slow rate for both the lower and higher initial contaminant concentrations tested. At the lower relative concentration, the higher retardation factor was observed and it may be due to slowly filling the available sorption sites in the soil column.

  19. Reduction and immobilization of hexavalent chromium by microbially reduced Fe-bearing clay minerals

    Science.gov (United States)

    Bishop, Michael E.; Glasser, Paul; Dong, Hailiang; Arey, Bruce; Kovarik, Libor

    2014-05-01

    Hexavalent chromium (Cr6+) is a major contaminant in the environment. As a redox-sensitive element, the fate and toxicity of chromium is controlled by reduction-oxidation (redox) reactions. Previous research has shown the ability of structural Fe(II) in naturally present and chemically reduced clay minerals to reduce Cr6+ to Cr(III) as a way of immobilization and detoxification. However, it is still poorly known whether or not structural Fe(II) in biologically reduced clay minerals exhibits a similar reactivity and if so, what the kinetics and mechanisms of Cr6+ reduction are. The objective of this study was to determine the kinetics and possible mechanisms of Cr6+ reduction by structural Fe(II) in microbially reduced clay minerals and the nature of reduced Cr(III). Structural Fe(III) in nontronite (NAu-2), montmorillonite (SWy-2), chlorite (CCa-2), and clay-rich sediments from the Ringold Formation of the Hanford site of Washington State, USA was first bioreduced to Fe(II) by an iron-reducing bacterium Geobacter sulfurreducens with acetate as the sole electron donor and anthraquinone-2,6-disulfonate (AQDS) as electron shuttle in synthetic groundwater (pH 7). Biogenic Fe(II) was then used to reduce aqueous Cr6+ at three different temperatures, 10, 20, and 30 °C, in order to determine the temperature dependence of the redox reaction between Cr6+ and clay-Fe(II). The results showed that nontronite and montmorillonite were most effective in reducing aqueous Cr6+ at all three temperatures. In contrast, most Fe(II) in chlorite was not reactive towards Cr6+ reduction at 10 °C, though at 30 °C there was some reduction. For all the clay minerals, the ratio of total Fe(II) oxidized to Cr6+ reduced was close to the expected stoichiometric value of 3. Characterization of the Cr-clay reaction product with scanning electron microscopy with focused ion beam and transmission electron microscopy with electron energy loss spectroscopy revealed that reduced chromium was possibly

  20. Hexavalent Chromium: Analysis of the Mechanism of Groundwater Contamination in a Former Industrial Site in the Province of Vicenza (Northern Italy

    Directory of Open Access Journals (Sweden)

    Valentina Accoto

    2017-01-01

    Full Text Available The study consisted in the analysis of the mobilization mechanisms of hexavalent chromium (Cr(VI into groundwater from a decommissioned contaminated factory. The site is located in the Province of Vicenza and formerly was a chrome-plating plant. The subsoil consists predominantly of gravelly deposits with a thickness of at least one hundred meters. An unconfined aquifer is present with water table at about 23 m depth bgl. During the seven years of monitoring (2008-2014, the fluctuation of groundwater level was more than 6 m; hydraulic conductivity is about 1.0E-03 m/s and groundwater seepage velocity about 12 m/day. At the area of the source of contamination, the unsaturated soil is contaminated by hexavalent chromium throughout the thickness: concentrations range from 200 to 500 mg/kg. At the bottom of zone of groundwater level fluctuation, the hexavalent chromium concentration decreases to below the detection limit. The available data (e.g. hexavalent chromium concentrations in groundwater, groundwater level, local rainfall give the opportunity to assess the effects, on the magnitude of groundwater contamination, of the effective infiltration versus the fluctuation of groundwater level. The main analysis was performed on a statistical basis, in order to find out which of the two factors was most likely related to the periodic peaks of hexavalent chromium concentration in groundwater. Statistical analysis results were verified by a mass balance. Data show that at the site both the effective infiltration through the unsaturated zone and the leaching of soil contaminated by groundwater, when it exceeds a certain piezometric level, lead to peak concentrations of hexavalent chromium, even if with characteristics and effects different.

  1. Double shroud delivery of silica precursor for reducing hexavalent chromium in welding fume.

    Science.gov (United States)

    Wang, Jun; Kalivoda, Mark; Guan, Jianying; Theodore, Alexandros; Sharby, Jessica; Wu, Chang-Yu; Paulson, Kathleen; Es-Said, Omar

    2012-01-01

    The welding process yields a high concentration of nanoparticles loaded with hexavalent chromium (Cr(6+)), a known human carcinogen. Previous studies have demonstrated that using tetramethylsilane (TMS) as a shielding gas additive can significantly reduce the Cr(6+) concentration in welding fume particles. In this study, a novel insulated double shroud torch (IDST) was developed to further improve the reduction of airborne Cr(6+) concentration by separating the flows of the primary shielding gas and the TMS carrier gas. Welding fumes were collected from a welding chamber in the laboratory and from a fixed location near the welding arc in a welding facility. The Cr(6+) content was analyzed with ion chromatography and X-ray photoelectron spectroscopy (XPS). Results from the chamber sampling demonstrated that the addition of 3.2 ≈ 5.1% of TMS carrier gas to the primary shielding gas resulted in more than a 90% reduction of airborne Cr(6+) under all shielding gas flow rates. The XPS result confirmed complete elimination of Cr(6+) inside the amorphous silica shell. Adding 100 ≈ 1000 ppm of nitric oxide or carbon monoxide to the shielding gas could also reduce Cr(6+) concentrations up to 57% and 35%, respectively; however, these reducing agents created potential hazards from the release of unreacted agents. Results of the field test showed that the addition of 1.6% of TMS carrier gas to the primary shielding gas reduced Cr(6+) concentration to the limitation of detection (1.1 μg/m(3)). In a worst-case scenario, if TMS vapor leaked into the environment without decomposition and ventilation, the estimated TMS concentration in the condition of field sampling would be a maximum 5.7 ppm, still well below its flammability limit (1%). Based on a previously developed cost model, the use of TMS increases the general cost by 3.8%. No visual deterioration of weld quality caused by TMS was found, although further mechanical testing is necessary.

  2. Hexavalent Chromium Reduction under Fermentative Conditions with Lactate Stimulated Native Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Van Nostrand, Dr. Joy D. [Oklahoma University; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  3. Hexavalent chromium reduction under fermentative conditions with lactate stimulated native microbial communities.

    Science.gov (United States)

    Somenahally, Anil C; Mosher, Jennifer J; Yuan, Tong; Podar, Mircea; Phelps, Tommy J; Brown, Steven D; Yang, Zamin K; Hazen, Terry C; Arkin, Adam P; Palumbo, Anthony V; Van Nostrand, Joy D; Zhou, Jizhong; Elias, Dwayne A

    2013-01-01

    Microbial reduction of toxic hexavalent chromium (Cr(VI)) in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI)] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI) concentrations on community structure and on the Cr(VI)-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM) and continuously amended with Cr(VI) at 0.0 (No-Cr), 0.1 (Low-Cr) and 3.0 (High-Cr) mg/L. Microbial growth, metabolites, Cr(VI), 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%), Methanosarcina (17%) and others, to mostly Methanosarcina spp. (95%). Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result 3.0 mg/L Cr(VI) did not impact the overall bacterial community structure.

  4. Hexavalent chromium reduction under fermentative conditions with lactate stimulated native microbial communities.

    Directory of Open Access Journals (Sweden)

    Anil C Somenahally

    Full Text Available Microbial reduction of toxic hexavalent chromium (Cr(VI in-situ is a plausible bioremediation strategy in electron-acceptor limited environments. However, higher [Cr(VI] may impose stress on syntrophic communities and impact community structure and function. The study objectives were to understand the impacts of Cr(VI concentrations on community structure and on the Cr(VI-reduction potential of groundwater communities at Hanford, WA. Steady state continuous flow bioreactors were used to grow native communities enriched with lactate (30 mM and continuously amended with Cr(VI at 0.0 (No-Cr, 0.1 (Low-Cr and 3.0 (High-Cr mg/L. Microbial growth, metabolites, Cr(VI, 16S rRNA gene sequences and GeoChip based functional gene composition were monitored for 15 weeks. Temporal trends and differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI levels were below detection from week 1 until week 15. With lactate enrichment, native bacterial diversity substantially decreased as Pelosinus spp., and Sporotalea spp., became the dominant groups, but did not significantly differ between Cr concentrations. The Archaea diversity also substantially decreased after lactate enrichment from Methanosaeta (35%, Methanosarcina (17% and others, to mostly Methanosarcina spp. (95%. Methane production was lower in High-Cr reactors suggesting some inhibition of methanogens. Several key functional genes were distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant microbes, Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI reduction, and as a result 3.0 mg/L Cr(VI did not impact the overall bacterial community structure.

  5. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Sandra S., E-mail: sandra.wise@maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Xie, Hong, E-mail: hongxie@usm.maine.edu [Wise Laboratory of Environmental and Genetic Toxicology, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Fukuda, Tomokazu, E-mail: tomofukuda009@gmail.com [Graduate School of Agricultural Sciences, Tohoku University, Laboratory of Animal Breeding and Genetics, Second Research Building, Rm 112, 1-1 Amamiyamachi, Aoba-ku, Sendai 981-8555 (Japan); Douglas Thompson, W., E-mail: dougt@usm.maine.edu [Maine Center for Toxicology and Environmental Health, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); Department of Applied Medical Science, University of Southern Maine, Science Building, 96 Falmouth Street, Portland, ME 04103 (United States); and others

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5 μg/cm{sup 2} lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5 μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general. - Highlights: • Particulate Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Soluble Cr(VI) is cytotoxic and clastogenic to hawksbill sea turtle cells. • Cr(VI) may be a risk factor for hawksbill sea turtle health.

  6. Hexavalent chromium is cytotoxic and genotoxic to hawksbill sea turtle cells.

    Science.gov (United States)

    Wise, Sandra S; Xie, Hong; Fukuda, Tomokazu; Douglas Thompson, W; Wise, John Pierce

    2014-09-01

    Sea turtles are a charismatic and ancient ocean species and can serve as key indicators for ocean ecosystems, including coral reefs and sea grass beds as well as coastal beaches. Genotoxicity studies in the species are absent, limiting our understanding of the impact of environmental toxicants on sea turtles. Hexavalent chromium (Cr(VI)) is a ubiquitous environmental problem worldwide, and recent studies show it is a global marine pollutant of concern. Thus, we evaluated the cytotoxicity and genotoxicity of soluble and particulate Cr(VI) in hawksbill sea turtle cells. Particulate Cr(VI) was both cytotoxic and genotoxic to sea turtle cells. Concentrations of 0.1, 0.5, 1, and 5μg/cm(2) lead chromate induced 108, 79, 54, and 7% relative survival, respectively. Additionally, concentrations of 0, 0.1, 0.5, 1, and 5μg/cm(2) lead chromate induced damage in 4, 10, 15, 26, and 36% of cells and caused 4, 11, 17, 30, and 56 chromosome aberrations in 100 metaphases, respectively. For soluble Cr, concentrations of 0.25, 0.5, 1, 2.5, and 5μM sodium chromate induced 84, 69, 46, 25, and 3% relative survival, respectively. Sodium chromate induced 3, 9, 9, 14, 21, and 29% of metaphases with damage, and caused 3, 10, 10, 16, 26, and 39 damaged chromosomes in 100 metaphases at concentrations of 0, 0.25, 0.5, 1, 2.5, and 5μM sodium chromate, respectively. These data suggest that Cr(VI) may be a concern for hawksbill sea turtles and sea turtles in general.

  7. About the performance of Sphaerotilus natans to reduce hexavalent chromium in batch and continuous reactors

    Energy Technology Data Exchange (ETDEWEB)

    Caravelli, Alejandro H., E-mail: alejandrocaravelli@hotmail.com [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA), CCT - CONICET - La Plata. Fac., Ciencias Exactas, Universidad Nacional de La Plata, 47 y 116 La Plata (1900) (Argentina); Zaritzky, Noemi E., E-mail: zaritzky@ing.unlp.edu.ar [Centro de Investigacion y Desarrollo en Criotecnologia de Alimentos (CIDCA), CCT - CONICET - La Plata. Fac., Ciencias Exactas, Universidad Nacional de La Plata, 47 y 116 La Plata (1900) (Argentina); Fac. de Ingenieria, Universidad Nacional de La Plata, 48 y 115 La Plata (1900) (Argentina)

    2009-09-15

    The hexavalent chromium biological reduction constitutes a safe and economical detoxification procedure of wastewaters containing Cr(VI). However, little research has been done to evaluate Cr(VI) tolerance and reduction capacity of microbial cultures under different growth conditions. The aims of this work were (a) to evaluate the capacity of Sphaerotilus natans to reduce Cr(VI) to Cr(III) in a continuous system limited in carbon and energy source or in nitrogen source, (b) to evaluate the toxic effect of Cr(VI) on this microorganism, (c) to carry out a complete analysis of Cr(VI) reduction by S. natans not only in continuous regime but also in batch system, and (d) to model the obtained results mathematically. S. natans exhibited great resistance to Cr(VI) (19-78 mg l{sup -1}) and optimal growth in continuous and batch systems using a mineral medium supplemented only with citric acid as organic substrate. In carbon- and energy-limited continuous systems, a maximum percentual decrease in Cr(VI) by 13% was reached for low influent Cr(VI) concentration (4.3-5.32 mgCr(VI) l{sup -1}); the efficiency of the process did not notoriously increase as the length of cellular residence time was increased from 4.16 to 50 h. A nitrogen-limited continuous operation with a cellular residence time of 28.5 h resulted in a Cr(VI) decrease of approximately 26-32%. In batch system, a mathematical model allowed to predict the Cr(VI) concentration as a function of time and the ratio between the initial Cr(VI) concentration and that of the biomass. High concentrations of initial Cr(VI) and biomass produced the highest performance of the process of Cr(VI) reduction reached in batch system, aspects which should be considered in detoxification strategies of wastewaters.

  8. Remediation of hexavalent chromium spiked soil by using synthesized iron sulfide particles.

    Science.gov (United States)

    Li, Yujie; Wang, Wanyu; Zhou, Liqiang; Liu, Yuanyuan; Mirza, Zakaria A; Lin, Xiang

    2017-02-01

    Carboxymethyl cellulose (CMC) stabilized microscale iron sulfide (FeS) particles were synthesized and applied to remediate hexavalent chromium (Cr(VI)) spiked soil. The effects of parameters including dosage of FeS particles, soil moisture, and natural organic matter (NOM) in soil were investigated with comparison to iron sulfate (FeSO4). The results show that the stabilized FeS particles can reduce Cr(VI) and immobilize Cr in soil quickly and efficiently. The soil moisture ranging from 40% to 70% and NOM in soil had no significant effects on Cr(VI) remediation by FeS particles. When molar ratio of FeS to Cr(VI) was 1.5:1, about 98% of Cr(VI) in soil was reduced by FeS particles in 3 d and Cr(VI) concentration decreased from 1407 mg kg(-1) to 16 mg kg(-1). The total Cr and Cr(VI) in Toxicity Characteristic Leaching Procedure (TCLP) leachate were reduced by 98.4% and 99.4%, respectively. In FeS particles-treated soil, the exchangeable Cr fraction was mainly converted to Fe-Mn oxides bound fraction because of the precipitation of Cr(III)-Fe(III) hydroxides. The physiologically based extraction test (PBET) bioaccessibility of Cr was decreased from 58.67% to 6.98%. Compared to FeSO4, the high Cr(VI) removal and Cr immobilization efficiency makes prepared FeS particles a great potential in field application of Cr(VI) contaminated soil remediation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Fixed-bed column study for hexavalent chromium removal and recovery by short-chain polyaniline synthesized on jute fiber.

    Science.gov (United States)

    Kumar, Potsangbam Albino; Chakraborty, Saswati

    2009-03-15

    Fixed-bed column studies were conducted to evaluate performance of a short-chain polymer, polyaniline, synthesized on the surface of jute fiber (PANI-jute) for the removal of hexavalent chromium [Cr(VI)] in aqueous environment. Influent pH, column bed depth, influent Cr(VI) concentrations and influent flow rate were variable parameters for the present study. Optimum pH for total chromium removal was observed as 3 by electrostatic attraction of acid chromate ion (HCrO(4)(-)) with protonated amine group (NH(3)(+)) of PANI-jute. With increase in column bed depth from 40 to 60 cm, total chromium uptake by PANI-jute increased from 4.14 to 4.66 mg/g with subsequent increase in throughput volume from 9.84 to 12.6L at exhaustion point. The data obtained for total chromium removal were well described by BDST equation till 10% breakthrough. Adsorption rate constant and dynamic bed capacity at 10% breakthrough were observed as 0.01 L/mgh and 1069.46 mg/L, respectively. Adsorbed total chromium was recovered back from PANI-jute as non-toxic Cr(III) after ignition with more than 97% reduction in weight, minimizing the problem of solid waste disposal.

  10. Influence of pH Value on the Determination of Hexavalent Chromium by Diphenylcarbazide Spectrophotometry%pH值对二苯碳酰二肼分光光度法测定六价铬的影响

    Institute of Scientific and Technical Information of China (English)

    王海云; 李敏锐; 廖涛; 谭飞帆; 邓杰

    2012-01-01

    Based on the 1,5 -diphenylcarbazide spectrophotometry, we researched on the influence of pH value on the determination of hexavalent chromium. By adding different amounts of acid into two water samples with different volumes and concentrations, we measured the absorbances of the solutions so as to determine the hexavalent chromium. Through analysis by EXCEL on the measured data, we found that the absorbance reduced with the decrease of pH value. In the presence of high acidity, which means small pH value, the measured hexavalent chromium was smaller than the original value before adding acid. Therefore, the variation of pH value had an impact on the measurement of hexavalent chromium. Moreover, we employed the gray system model GM( 1,1) to process the experimental data, and derived a linear equation for the absorbance under different acidities. Through t test and F test, no significant difference was found between calculated absorbance and measured absorbance. This research is helpful to quantitatively looking into the influence of pH value on hexavalent chromium determination.%为获得不同pH值对测定六价铬(Cr(Ⅵ))的影响,以标准分析方法二苯碳酰二肼(C13H14N4O)分光光度法为基础,选用2种体积浓度的水样,分别加入不同的酸量,测定吸光度.经EXCEL软件对实测数据分析,得出加酸量与吸光度具有紧密的相关性,发现吸光度随着溶液pH值的减小而减小,酸度偏大,测定的实际结果比真实值小,pH值的不同对Cr(Ⅵ)测定结果具有影响.采用灰色系统模型GM(1,1)对实验数据进行处理,推导出不同酸度下的吸光度直线方程式.经t检验和F检验证明,计算出的吸光度值与测定值不存在显著性差异,可帮助定量掌握不同酸度条件下对测定Cr(Ⅵ)产生影响具有一定的作用.

  11. Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch)

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, Ashish K. [Department of Zoology, University of Allahabad, Allahabad-211002 (India); Mohanty, Banalata, E-mail: drbana_mohanty@rediffmail.com [Department of Zoology, University of Allahabad, Allahabad-211002 (India)

    2009-09-01

    Effects of chronic exposures (one and two months) to sublethal doses of hexavalent chromium (2 and 4 mg/L potassium dichromate) on organ histopathology and serum cortisol profile were investigated and their overall impact on growth and behavior of a teleost fish, Channa punctatus was elucidated. Histopathological lesions were distinct in the vital organs gill, kidney and liver. The gill lamellae became lifted, fused, and showed oedema. Hyperplasia and hypertrophy of lamellar epithelial cells were distinct with desquamation. Hypertrophy of epithelial cells of renal tubules and reduction in tubular lumens were observed in the trunk kidney. The atrophy of the head kidney interrenal cells and decreased serum cortisol level indicated exhaustion of interrenal activity. Hepatocyte vacuolization and shrinkage, nuclear pyknosis and increase of sinusoidal spaces were observed in the liver. Abnormal behavioral patterns and reduced growth rate were also noticed in the exposed fish. The chronic hexavalent chromium exposure thus by affecting histopathology of gill, kidney (including interrenal tissue) and liver could impair the vital functions of respiration, excretion, metabolic regulation and maintenance of stress homeostasis which in the long-run may pose serious threat to fish health and affect their population.

  12. Chronic exposure to sublethal hexavalent chromium affects organ histopathology and serum cortisol profile of a teleost, Channa punctatus (Bloch).

    Science.gov (United States)

    Mishra, Ashish K; Mohanty, Banalata

    2009-09-01

    Effects of chronic exposures (one and two months) to sublethal doses of hexavalent chromium (2 and 4 mg/L potassium dichromate) on organ histopathology and serum cortisol profile were investigated and their overall impact on growth and behavior of a teleost fish, Channa punctatus was elucidated. Histopathological lesions were distinct in the vital organs gill, kidney and liver. The gill lamellae became lifted, fused, and showed oedema. Hyperplasia and hypertrophy of lamellar epithelial cells were distinct with desquamation. Hypertrophy of epithelial cells of renal tubules and reduction in tubular lumens were observed in the trunk kidney. The atrophy of the head kidney interrenal cells and decreased serum cortisol level indicated exhaustion of interrenal activity. Hepatocyte vacuolization and shrinkage, nuclear pyknosis and increase of sinusoidal spaces were observed in the liver. Abnormal behavioral patterns and reduced growth rate were also noticed in the exposed fish. The chronic hexavalent chromium exposure thus by affecting histopathology of gill, kidney (including interrenal tissue) and liver could impair the vital functions of respiration, excretion, metabolic regulation and maintenance of stress homeostasis which in the long-run may pose serious threat to fish health and affect their population.

  13. AN IN SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUNDWATER:VOLUME 2 PERFORMANCE MONITORING

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  14. AN IN-SITU PERMEABLE REACTIVE BARRIER FOR THE TREATMENT OF HEXAVALENT CHROMIUM AND TRICHLOROETHYLENE IN GROUND WATER: VOLUME 1 DESIGN AND INSTALLATION

    Science.gov (United States)

    A 46 m long, 7.3 m deep, and 0.6 m wide permeable subsurface reactive wall was installed at the U.S. Coast Guard (USCG) Support Center, near Elizabeth City, North Carolina, in June 1996. The reactive wall was designed to remediate hexavalent chromium [Cr(VI)] contaminated ground ...

  15. Cancer mortality in a Chinese population exposed to hexavalent chromium in drinking water

    Science.gov (United States)

    Beaumont, J.J.; Sedman, R.M.; Reynolds, S.D.; Sherman, C.D.; Li, L.-H.; Howd, R.A.; Sandy, M.S.; Zeise, L.; Alexeeff, G.V.

    2008-01-01

    BACKGROUND: In 1987, investigators in Liaoning Province, China, reported that mortality rates for all cancer, stomach cancer, and lung cancer in 1970-1978 were higher in villages with hexavalent chromium (Cr)-contaminated drinking water than in the general population. The investigators reported rates, but did not report statistical measures of association or precision. METHODS: Using reports and other communications from investigators at the local Jinzhou Health and Anti-Epidemic Station, we obtained data on Cr contamination of groundwater and cancer mortality in 9 study regions near a ferrochromium factory. We estimated:(1) person-years at risk in the study regions, based on census and population growth rate data, (2) mortality counts, based on estimated person-years at risk and previously reported mortality rates, and (3) rate ratios and 95% confidence intervals. RESULTS: The all-cancer mortality rate in the combined 5 study regions with Cr-contaminated water was negligibly elevated in comparison with the rate in the 4 combined study regions without contaminated water (rate ratio = 1.13; 95% confidence interval = 0.86-1.46), but was somewhat more elevated in comparison with the whole province (1.23; 0.97-1.53). Stomach cancer mortality in the regions with contaminated water was more substantially elevated in comparison with the regions without contaminated water (1.82; 1.11-2.91) and the whole province (1.69; 1.12-2.44). Lung cancer mortality was slightly elevated in comparison with the unexposed study regions (1.15; 0.62-2.07), and more strongly elevated in comparison with the whole province (1.78; 1.03-2.87). Mortality from other cancers combined was not elevated in comparison with either the unexposed study regions (0.86; 0.53-1.36) or the whole province (0.92; 0.58-1.38). CONCLUSIONS: While these data are limited, they are consistent with increased stomach cancer risk in a population exposed to Cr in drinking water. ?? 2008 Lippincott Williams & Wilkins, Inc.

  16. Equilibrium and kinetics study on hexavalent chromium adsorption onto diethylene triamine grafted glycidyl methacrylate based copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Maksin, Danijela D., E-mail: dmaksin@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, Belgrade (Serbia); Nastasovic, Aleksandra B., E-mail: anastaso@chem.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade (Serbia); Milutinovic-Nikolic, Aleksandra D., E-mail: snikolic@nanosys.ihtm.bg.ac.rs [University of Belgrade, Institute of Chemistry, Technology and Metallurgy, Njegoseva 12, Belgrade (Serbia); Surucic, Ljiljana T., E-mail: ljilja_m@yahoo.com [University of Belgrade, Faculty of Forestry, Kneza Viseslava 1, Belgrade (Serbia); Sandic, Zvjezdana P., E-mail: zvjezdana.sandic@gmail.com [Faculty of Science, Mladena Stojanovica 2, Banja Luka, Bosnia and Herzegovina (Bosnia and Herzegowina); Hercigonja, Radmila V., E-mail: radah@ffh.bg.ac.rs [University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11001 Belgrade (Serbia); Onjia, Antonije E., E-mail: onjia@vinca.rs [University of Belgrade, Vinca Institute of Nuclear Sciences, P.O. Box 522, Belgrade (Serbia)

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Methacrylate based copolymers grafted with diethylene triamine as Cr(VI) sorbents. Black-Right-Pointing-Pointer Chemisorption and pore diffusion are characteristics of this sorption system. Black-Right-Pointing-Pointer Langmuir isotherm provided best fit and maximum adsorption capacity was 143 mg g{sup -1}. Black-Right-Pointing-Pointer Cr(VI) sorption onto amino-functionalized copolymer was endothermic and spontaneous. Black-Right-Pointing-Pointer A simple, efficient and cost-effective hexavalent chromium removal method. - Abstract: Two porous and one non-porous crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [abbreviated PGME] were prepared by suspension copolymerization and functionalized with diethylene triamine [abbreviated PGME-deta]. Samples were characterized by elemental analysis, mercury porosimetry, scanning electron microscopy with energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Kinetics of Cr(VI) sorption by PGME-deta were investigated in batch static experiments, in the temperature range 25-70 Degree-Sign C. Sorption was rapid, with the uptake capacity higher than 80% after 30 min. Sorption behavior and rate-controlling mechanisms were analyzed using five kinetic models (pseudo-first order, pseudo-second order, Elovich, intraparticle diffusion and Bangham model). Kinetic studies showed that Cr(VI) adsorption adhered to the pseudo-second-order model, with definite influence of pore diffusion. Equilibrium data was tested with Langmuir, Freundlich and Tempkin adsorption isotherm models. Langmuir model was the most suitable indicating homogeneous distribution of active sites on PGME-deta and monolayer sorption. The maximum adsorption capacity from the Langmuir model, Q{sub max}, at pH 1.8 and 25 Degree-Sign C was 143 mg g{sup -1} for PGME2-deta (sample with the highest amino group concentration) while at 70 Degree-Sign C Q{sub max} reached the high value of 198

  17. Modeling hexavalent chromium reduction in groundwater in field-scale transport and laboratory batch experiments

    Science.gov (United States)

    Friedly, J.C.; Davis, J.A.; Kent, D.B.

    1995-01-01

    A plausible and consistent model is developed to obtain a quantitative description of the gradual disappearance of hexavalent chromium (Cr(VI)) from groundwater in a small-scale field tracer test and in batch kinetic experiments using aquifer sediments under similar chemical conditions. The data exhibit three distinct timescales. Fast reduction occurs in well-stirred batch reactors in times much less than 1 hour and is followed by slow reduction over a timescale of the order of 2 days. In the field, reduction occurs on a timescale of the order of 8 days. The model is based on the following hypotheses. The chemical reduction reaction occurs very fast, and the longer timescales are caused by diffusion resistance. Diffusion into the secondary porosity of grains causes the apparent slow reduction rate in batch experiments. In the model of the field experiments, the reducing agent, heavy Fe(II)-bearing minerals, is heterogeneously distributed in thin strata located between larger nonreducing sand lenses that comprise the bulk of the aquifer solids. It is found that reducing strata of the order of centimeters thick are sufficient to contribute enough diffusion resistance to cause the observed longest timescale in the field. A one-dimensional advection/dispersion model is formulated that describes the major experimental trends. Diffusion rates are estimated in terms of an elementary physical picture of flow through a stratified medium containing identically sized spherical grains. Both reduction and sorption reactions are included. Batch simulation results are sensitive to the fraction of reductant located at or near the surface of grains, which controls the amount of rapid reduction, and the secondary porosity, which controls the rate of slow reduction observed in batch experiments. Results of Cr(VI) transport simulations are sensitive to the thickness and relative size of the reducing stratum. Transport simulation results suggest that nearly all of the reductant must be

  18. A revised model of ex-vivo reduction of hexavalent chromium in human and rodent gastric juices

    Energy Technology Data Exchange (ETDEWEB)

    Schlosser, Paul M., E-mail: schlosser.paul@epa.gov; Sasso, Alan F.

    2014-10-15

    Chronic oral exposure to hexavalent chromium (Cr-VI) in drinking water has been shown to induce tumors in the mouse gastrointestinal (GI) tract and rat oral cavity. The same is not true for trivalent chromium (Cr-III). Thus reduction of Cr-VI to Cr-III in gastric juices is considered a protective mechanism, and it has been suggested that the difference between the rate of reduction among mice, rats, and humans could explain or predict differences in sensitivity to Cr-VI. We evaluated previously published models of gastric reduction and believe that they do not fully describe the data on reduction as a function of Cr-VI concentration, time, and (in humans) pH. The previous models are parsimonious in assuming only a single reducing agent in rodents and describing pH-dependence using a simple function. We present a revised model that assumes three pools of reducing agents in rats and mice with pH-dependence based on known speciation chemistry. While the revised model uses more fitted parameters than the original model, they are adequately identifiable given the available data, and the fit of the revised model to the full range of data is shown to be significantly improved. Hence the revised model should provide better predictions of Cr-VI reduction when integrated into a corresponding PBPK model. - Highlights: • Hexavalent chromium (Cr-VI) reduction in gastric juices is a key detoxifying step. • pH-dependent Cr-VI reduction rates are explained using known chemical speciation. • Reduction in rodents appears to involve multiple pools of electron donors. • Reduction appears to continue after 60 min, although more slowly than initial rates.

  19. Mesoporous BaTiO₃@SBA-15 derived via solid state reaction and its excellent adsorption efficiency for the removal of hexavalent chromium from water.

    Science.gov (United States)

    Kumari, Vandana; Sasidharan, Manickam; Bhaumik, Asim

    2015-01-28

    We report the synthesis of a barium-titanate/mesoporous silica nanocomposite material BaTiO3@SBA-15 via aerosol assisted solid state reaction using SBA-15 as a hard template. Hexavalent chromium is one of the most harmful contaminants of industrial waste-water. We have used BaTiO3@SBA-15 nanocomposite as an adsorbent for the removal of chromium(vi)-contaminated water and it showed an adsorption capacity of 98.2 wt% within only 40 min contact time in a batch reactor. This mesoporous composite has retained this excellent adsorption efficiency of hexavalent chromium for several repetitive cycles, suggesting its future potential for the remediation of water contaminated with Cr(vi).

  20. Effect of hexavalent chromium on proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts.

    Science.gov (United States)

    Martini, Claudia N; Brandani, Javier N; Gabrielli, Matías; Vila, María del C

    2014-06-01

    Heavy metals contamination has become an important risk factor for public health and the environment. Chromium is a frequent industrial contaminant and is also used in orthopaedic joint replacements made from cobalt-chromium-alloy. Since hexavalent chromium (Cr(VI)) was reported as genotoxic and carcinogenic in different mammals, to further evaluate its cytotoxicity, we investigated the effect of this heavy metal in the proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts. These cells, after the addition of a mixture containing insulin, dexamethasone and methylisobutylxanthine, first proliferate, a process known as mitotic clonal expansion (MCE), and then differentiate to adipocytes. In this differentiation process a key transcription factor is induced: peroxisome proliferator-activated receptor gamma (PPAR gamma). We found that treatment of 3T3-L1 fibroblasts with potassium chromate inhibited proliferation in exponentially growing cells and MCE as well as differentiation. A decrease in PPAR gamma content, evaluated by western blot and immunofluorescence, was found in cells differentiated in the presence of chromium. On the other hand, after inhibition of differentiation with chromium, when the metal was removed, differentiation was recovered, which indicates that this may be a reversible effect. We also found an increase in the number of micronucleated cells after treatment with Cr(VI) which is associated with genotoxic effects. According to our results, Cr(VI) is able to inhibit proliferation and differentiation to adipocytes of 3T3-L1 fibroblasts and to increase micronucleated cells, which are all indicative of alterations in cellular physiology and therefore, contributes to further elucidate the cytotoxic effects of this heavy metal. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Hexavalent chromium reduction in contaminated soil: A comparison between ferrous sulphate and nanoscale zero-valent iron.

    Science.gov (United States)

    Di Palma, L; Gueye, M T; Petrucci, E

    2015-01-01

    Iron sulphate (FeSO4) and colloidal nano zero-valent iron (nZVI) as reducing agents were compared, with the aim of assessing their effectiveness in hexavalent chromium [Cr(VI)] removal from a contaminated industrial soil. Experiments were performed on soil samples collected from an industrial site where a nickel contamination, caused by a long-term productive activity, was also verified. The influence of reducing agents amount with respect to chromium content and the effectiveness of deoxygenation of the slurry were discussed. The soil was fully characterized before and after each test, and sequential extractions were performed to assess chemico-physical modifications and evaluate metals mobility induced by washing. Results show that both the reducing agents successfully lowered the amount of Cr(VI) in the soil below the threshold allowed by Italian Environmental Regulation for industrial reuse. Cr(VI) reduction by colloidal nZVI proved to be faster and more effective: the civil reuse of soil [Cr(VI)hydroxide fraction, thus confirming a mechanism of chromium-iron hydroxides precipitation. In addition, a decrease of nickel (Ni) and lead (Pb) content in soil was also observed when acidic conditions were established.

  2. Coals as sorbents for the removal and reduction of hexavalent chromium from aqueous waste streams

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Brown, S.D.; Snape, C.E. [University of Miskolc, Miskolc (Hungary). Dept. of Analytical Chemistry

    2002-03-01

    The aim of this study is to demonstrate the potential of coals as a low-cost reactive barrier material for environmental protection applications, with the ability to prevent leaching of toxic Cr(VI) and other transition metals. Depending upon the type of ion and the surface functionalities, the uptake can involve ion sorption, ion exchange, chelation and redox mechanisms with the surface functionalities being considered as partners in electron transfer processes. The capacity for Cr(VI) uptake of low rank coals and oxidized bituminous coals has been found to lie within the range 02-0.6 mM g{sup -1}. Air oxidation of bituminous coals can increase their Cr(VI) removal capacities. The effect of air oxidation of coals on uptake capacity was more pronounced for Cr(VI) than Cr(III) but less than for Hg(II) and the other ions (Ca{sup 2+}, Ba{sup 2+}, Zn{sup 2+}, Cd{sup 2}) investigated. As previously found for Hg(II), redox mechanisms plays an important role in Cr(VI) uptake, with resultant Cr(III) is exchanged back into solution by hydrogen ions, but some of the sorbed chromium is irreversibly bound to the coal. The reduction of Cr(VI) alone is often considered a satisfactory solution in view of Cr(III) being essentially nontoxic. 56 refs., 11 figs., 1 tab.

  3. Assessment of Tri- and Hexavalent Chromium Phytotoxicity on Oats (Avena sativa L.) Biomass and Content of Nitrogen Compounds.

    Science.gov (United States)

    Wyszkowski, Mirosław; Radziemska, Maja

    2013-07-01

    The purpose of this study was to determine the effect of soil contamination with tri- and hexavalent chromium and soil application of compost, zeolite, and CaO on the mass of oats and content of nitrogen compounds in different organs of oats. The oats mass and content of nitrogen compounds in the crop depended on the type and dose of chromium and alleviating substances incorporated to soil. In the series without neutralizing substances, Cr(VI), unlike Cr(III), had a negative effect on the growth and development of oats. The highest doses of Cr(VI) and Cr(III) stimulated the accumulation of total nitrogen but depressed the content of N-NO3(-) in most of organs of oats. Among the substances added to soil in order to alleviate the negative impact of Cr (VI) on the mass of plants, compost had a particularly beneficial effect on the growth and development of oats. The application of compost, zeolite, and CaO to soil had a stronger effect on the content of nitrogen compounds in grain and straw than in roots. Soil enrichment with either of the above substances usually raised the content of nitrogen compounds in oats grain and straw, but decreased it in roots.

  4. Assessment of the mutagenic potential of hexavalent chromium in the duodenum of big blue® rats.

    Science.gov (United States)

    Thompson, Chad M; Young, Robert R; Dinesdurage, Harshini; Suh, Mina; Harris, Mark A; Rohr, Annette C; Proctor, Deborah M

    2017-09-01

    A cancer bioassay on hexavalent chromium Cr(VI) in drinking water reported increased incidences of duodenal tumors in B6C3F1 mice at exposures of 30-180ppm, and oral cavity tumors in F344 rats at 180ppm. A subsequent transgenic rodent (TGR) in vivo mutation assay in Big Blue® TgF344 rats found that exposure to 180ppm Cr(VI) in drinking water for 28days did not increase cII transgene mutant frequency (MF) in the oral cavity (Thompson et al., 2015). Herein, we extend our analysis to the duodenum of these same TgF344 rats. At study termination, duodenum chromium levels were below either the limit of detection or quantification in control rats, but were 24.6±3.8μg/g in Cr(VI)-treated rats. The MF in control (23.2×10(-6)) and Cr(VI)-treated rats (22.7×10(-6)) were nearly identical. In contrast, the MF in the duodenum of rats exposed to 1-ethyl-1-nitrosourea for six days (study days 1, 2, 3, 12, 19, 26) increased 24-fold to 557×10(-6). These findings indicate that mutagenicity is unlikely an early initiating event in Cr(VI)-induced intestinal carcinogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Enhanced adsorption of hexavalent chromium by a biochar derived from ramie biomass (Boehmeria nivea (L.) Gaud.) modified with β-cyclodextrin/poly(L-glutamic acid).

    Science.gov (United States)

    Jiang, Luhua; Liu, Shaobo; Liu, Yunguo; Zeng, Guangming; Guo, Yiming; Yin, Yicheng; Cai, Xiaoxi; Zhou, Lu; Tan, Xiaofei; Huang, Xixian

    2017-08-29

    This paper explored biochar modification to enhance biochar's ability to adsorb hexavalent chromium from aqueous solution. The ramie stem biomass was pyrolyzed and then treated by β-cyclodextrin/poly(L-glutamic acid) which contained plentiful functional groups. The pristine and modified biochar were characterized by FTIR, X-ray photoelectron spectroscopy, specific surface area, and zeta potential measurement. Results indicated that the β-cyclodextrin/poly(L-glutamic acid) was successfully bound to the biochar surface. Batch experiments were conducted to investigate the kinetics, isotherm, thermodynamics, and adsorption/desorption of Cr(VI). Adsorption capacities of CGA-biochar were significantly higher than that of the untreated biochar, and its maximum adsorption capacity could reach up to 197.21 mg/g at pH 2.0. Results also illustrated that sorption performance depended on initial solution pH; in addition, acidic condition was beneficial to the Cr(VI) uptake. Furthermore, the Cr(VI) uptake was significantly affected by the ion strength and cation species. This study demonstrated that CGA-biochar could be a potential adsorbent for Cr(VI) pollution control.

  6. Removal of chromium hexavalent of residual water from tannery using hydrotalcite; Remocion de cromo hexavalente de aguas residuales de teneria utilizando hidrotalcita

    Energy Technology Data Exchange (ETDEWEB)

    Martinez G, S.; Martinez, V.; Bulbulian, S. [Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, C.P. 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main problems of leather tanned is the treatment that must be give to the waste water polluted with chrome which stays in trivalent form, but it is easily oxidated at chromium hexavalent. This work pretends to find an elimination media for chromium (VI) from water using the original synthetic hydrotalcite and calcined as sorbent by its anion exchange and memory effect properties. The tannery water was characterized by X-ray diffraction, thermal gravimetric analysis, specific surface and infrared spectroscopy. (Author)

  7. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: Estimates from the German MEGA database.

    Science.gov (United States)

    Pesch, Beate; Kendzia, Benjamin; Hauptmann, Kristin; Van Gelder, Rainer; Stamm, Roger; Hahn, Jens-Uwe; Zschiesche, Wolfgang; Behrens, Thomas; Weiss, Tobias; Siemiatycki, Jack; Lavoué, Jerome; Jöckel, Karl-Heinz; Brüning, Thomas

    2015-07-01

    This study aimed to estimate occupational exposure to inhalable hexavalent chromium (Cr(VI)) using the exposure database MEGA. The database has been compiling Cr(VI) concentrations and ancillary data about measurements at German workplaces. We analysed 3659 personal measurements of inhalable Cr(VI) collected between 1994 and 2009. Cr(VI) was determined spectrophotometrically at 540 nm after reaction with diphenylcarbazide. We assigned the measurements to pre-defined at-risk occupations using the information provided about the workplaces. Two-thirds of the measurements were below the limit of quantification (LOQ) and multiply imputed according to the distribution above LOQ. The 75th percentile value was 5.2 μg/m(3) and the 95th percentile was 57.2 μg/m(3). We predicted the geometric mean for 2h sampling in the year 2000, and the time trend of Cr(VI) exposure in these settings with and without adjustment for the duration of measurements. The largest dataset was available for welding (N = 1898), which could be further detailed according to technique. The geometric means were above 5 μg/m(3) in the following situations: spray painting, shielded metal arc welding, and flux-cored arc welding if applied to stainless steel. The geometric means were between 1 μg/m(3) and 5 μg/m(3) for gas metal arc welding of stainless steel, cutting, hard-chromium plating, metal spraying and in the chemical chromium industry. The exposure profiles described here are useful for epidemiologic and industrial health purposes. Exposure to Cr(VI) varies not only between occupations, but also within occupations as shown for welders. In epidemiologic studies, it would be desirable to collect exposure-specific information in addition to the job title.

  8. Reduction of hexavalent chromium by ferrous iron: A process of chromium isotope fractionation and its relevance to natural environments

    DEFF Research Database (Denmark)

    Døssing, Lasse Nørbye; Dideriksen, Knud; Stipp, Susan Louise Svane

    2011-01-01

    Stable chromium (Cr) isotopes can be used as a tracer for changing redox conditions in modern marine systems and in the geological record. We have investigated isotope fractionation during reduction of Cr(VI)aq by Fe(II)aq. Reduction of Cr(VI)aq by Fe(II)aq in batch experiments leads to significa...

  9. Escherichia coli NemA is an efficient chromate reductase that can be biologically immobilized to provide a cell free system for remediation of hexavalent chromium.

    Directory of Open Access Journals (Sweden)

    Katherine J Robins

    Full Text Available Hexavalent chromium is a serious and widespread environmental pollutant. Although many bacteria have been identified that can transform highly water-soluble and toxic Cr(VI to insoluble and relatively non-toxic Cr(III, bacterial bioremediation of Cr(VI pollution is limited by a number of issues, in particular chromium toxicity to the remediating cells. To address this we sought to develop an immobilized enzymatic system for Cr(VI remediation. To identify novel Cr(VI reductase enzymes we first screened cell extracts from an Escherichia coli library of soluble oxidoreductases derived from a range of bacteria, but found that a number of these enzymes can reduce Cr(VI indirectly, via redox intermediates present in the crude extracts. Instead, activity assays for 15 candidate enzymes purified as His6-tagged proteins identified E. coli NemA as a highly efficient Cr(VI reductase (k(cat/K(M= 1.1×10(5 M(-1 s(-1 with NADH as cofactor. Fusion of nemA to the polyhydroxyalkanoate synthase gene phaC from Ralstonia eutropha enabled high-level biosynthesis of functionalized polyhydroxyalkanoate granules displaying stable and active NemA on their surface. When these granules were combined with either Bacillus subtilis glucose dehydrogenase or Candida boidinii formate dehydrogenase as a cofactor regenerating partner, high levels of chromate transformation were observed with only low initial concentrations of expensive NADH cofactor being required, the overall reaction being powered by consumption of the cheap sacrificial substrates glucose or formic acid, respectively. This system therefore offers promise as an economic solution for ex situ Cr(VI remediation.

  10. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies.

    Science.gov (United States)

    Mishra, Sandhya; Bharagava, Ram Naresh

    2016-01-01

    Chromium is one of the major inorganic environmental pollutants, which is added in the environment through various natural and anthropogenic activities and exists mainly in two forms: Cr(III) and Cr(VI). Cr(VI) is considered to be more toxic than Cr(III) due to its high solubility and mobility. It is a well-reported occupational carcinogen associated with lung, nasal, and sinus cancers. Thus, this review article provides the detailed information on the occurrence, sources of chromium contamination in the environment and their toxicological effects in human, animal, plants as well as in microorganisms, and bioremediation strategies to minimize the toxic effects.

  11. Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE analysis uncovers broad changes in chromatin structure resulting from hexavalent chromium exposure.

    Directory of Open Access Journals (Sweden)

    Jerald L Ovesen

    Full Text Available The ability of chromatin to switch back and forth from open euchromatin to closed heterochromatin is vital for transcriptional regulation and genomic stability, but its dynamic structure is subject to disruption by exposure to environmental agents such as hexavalent chromium. Cr(VI exposure disrupts chromatin remodeling mechanisms and causes chromosomal damage through formation of free radicals, Cr-DNA adducts, and DNA-Cr-protein cross-links. In addition, acute, high-concentration, and chronic, low-concentration exposures to Cr(VI lead to significantly different transcriptional and genomic stability outcomes. We used mouse hepatoma Hepa-1c1c7 cells to investigate how transcriptional responses to chromium treatment might correlate with structural chromatin changes. We used Formaldehyde-Assisted Isolation of Regulatory Elements (FAIRE analysis coupled with deep sequencing to identify regions of the genome that may switch between open and closed chromatin in response to exposure to varying Cr(VI concentrations. At either Cr(VI concentration, chromatin domains surrounding binding sites for AP-1 transcription factors become significantly open, whereas BACH2 and CTCF binding sites are open solely at the low and high concentrations, respectively. Parallel gene expression profiling using RNA-seq indicates that the structural chromatin changes caused by Cr(VI affect gene expression levels in the target areas that vary depending on Cr(VI concentration, but show no correlation between global changes in the overall transcriptional response and Cr(VI concentration. Our results suggest that FAIRE may be a useful technique to map chromatin elements targeted by DNA damaging agents for which there is no prior knowledge of their specificity, and to identify subsequent transcriptomic changes induced by those agents.

  12. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium

    Directory of Open Access Journals (Sweden)

    Yang Yuan

    2012-06-01

    Full Text Available This study explored the reduction of adenosine triphosphate (ATP levels in L-02 hepatocytes by hexavalent chromium (Cr(VI using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%. The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI group (P < 0.05. The results suggest that the chi-square test can be applied to analyze the interference effects of Cr(VI on ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  13. Chi-square analysis of the reduction of ATP levels in L-02 hepatocytes by hexavalent chromium.

    Science.gov (United States)

    Yuan, Yang; Peng, Li; Gong-Hua, Hu; Lu, Dai; Xia-Li, Zhong; Yu, Zhou; Cai-Gao, Zhong

    2012-06-01

    This study explored the reduction of adenosine triphosphate (ATP) levels in L-02 hepatocytes by hexavalent chromium (Cr(VI)) using chi-square analysis. Cells were treated with 2, 4, 8, 16, or 32 μM Cr(VI) for 12, 24, or 36 h. Methyl thiazolyl tetrazolium (MTT) experiments and measurements of intracellular ATP levels were performed by spectrophotometry or bioluminescence assays following Cr(VI) treatment. The chi-square test was used to determine the difference between cell survival rate and ATP levels. For the chi-square analysis, the results of the MTT or ATP experiments were transformed into a relative ratio with respect to the control (%). The relative ATP levels increased at 12 h, decreased at 24 h, and increased slightly again at 36 h following 4, 8, 16, 32 μM Cr(VI) treatment, corresponding to a "V-shaped" curve. Furthermore, the results of the chi-square analysis demonstrated a significant difference of the ATP level in the 32-μM Cr(VI) group (P ATP levels in L-02 hepatocytes. The decreased ATP levels at 24 h indicated disruption of mitochondrial energy metabolism and the slight increase of ATP levels at 36 h indicated partial recovery of mitochondrial function or activated glycolysis in L-02 hepatocytes.

  14. Groundwater contaminated with hexavalent chromium [Cr (VI]: a health survey and clinical examination of community inhabitants (Kanpur, India.

    Directory of Open Access Journals (Sweden)

    Priti Sharma

    Full Text Available BACKGROUND: We assessed the health effects of hexavalent chromium groundwater contamination (from tanneries and chrome sulfate manufacturing in Kanpur, India. METHODS: The health status of residents living in areas with high Cr (VI groundwater contamination (N = 186 were compared to residents with similar social and demographic features living in communities having no elevated Cr (VI levels (N = 230. Subjects were recruited at health camps in both the areas. Health status was evaluated with health questionnaires, spirometry and blood hematology measures. Cr (VI was measured in groundwater samples by diphenylcarbazide reagent method. RESULTS: Residents from communities with known Cr (VI contamination had more self-reports of digestive and dermatological disorders and hematological abnormalities. GI distress was reported in 39.2% vs. 17.2% males (AOR = 3.1 and 39.3% vs. 21% females (AOR = 2.44; skin abnormalities in 24.5% vs. 9.2% males (AOR = 3.48 and 25% vs. 4.9% females (AOR = 6.57. Residents from affected communities had greater RBCs (among 30.7% males and 46.1% females, lower MCVs (among 62.8% males and less platelets (among 68% males and 72% females than matched controls. There were no differences in leucocytes count and spirometry parameters. CONCLUSIONS: Living in communities with Cr (VI groundwater is associated with gastrointestinal and dermatological complaints and abnormal hematological function. Limitations of this study include small sample size and the lack of long term follow-up.

  15. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination

    Directory of Open Access Journals (Sweden)

    Guey-Horng Wang

    2016-08-01

    Full Text Available Fast hexavalent chromium (Cr(VI determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI concentration and voltage output for various Cr(VI concentration ranges (0.0125–0.3 mg/L and 0.3–5 mg/L. The MFC biosensor is a simple device that can accurately measure Cr(VI concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%. The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  16. Effect of NaX zeolite-modified graphite felts on hexavalent chromium removal in biocathode microbial fuel cells.

    Science.gov (United States)

    Wu, Xiayuan; Tong, Fei; Yong, Xiaoyu; Zhou, Jun; Zhang, Lixiong; Jia, Honghua; Wei, Ping

    2016-05-05

    Two kinds of NaX zeolite-modified graphite felts were used as biocathode electrodes in hexavalent chromium (Cr(VI))-reducing microbial fuel cells (MFCs). The one was fabricated through direct modification, and the other one processed by HNO3 pretreatment of graphite felt before modification. The results showed that two NaX zeolite-modified graphite felts are excellent bio-electrode materials for MFCs, and that a large NaX loading mass, obtained by HNO3 pretreatment (the HNO3-NaX electrode), leads to a superior performance. The HNO3-NaX electrode significantly improved the electricity generation and Cr(VI) removal of the MFC. The maximum Cr(VI) removal rate increased to 10.39±0.28 mg/L h, which was 8.2 times higher than that of the unmodified control. The improvement was ascribed to the strong affinity that NaX zeolite particles, present in large number on the graphite felt, have for microorganisms and Cr(VI) ions.

  17. Utility of Ochrobactrum anthropi YC152 in a Microbial Fuel Cell as an Early Warning Device for Hexavalent Chromium Determination.

    Science.gov (United States)

    Wang, Guey-Horng; Cheng, Chiu-Yu; Liu, Man-Hai; Chen, Tzu-Yu; Hsieh, Min-Chi; Chung, Ying-Chien

    2016-08-16

    Fast hexavalent chromium (Cr(VI)) determination is important for environmental risk and health-related considerations. We used a microbial fuel cell-based biosensor inoculated with a facultatively anaerobic, Cr(VI)-reducing, and exoelectrogenic Ochrobactrum anthropi YC152 to determine the Cr(VI) concentration in water. The results indicated that O. anthropi YC152 exhibited high adaptability to pH, temperature, salinity, and water quality under anaerobic conditions. The stable performance of the microbial fuel cell (MFC)-based biosensor indicated its potential as a reliable biosensor system. The MFC voltage decreased as the Cr(VI) concentration in the MFC increased. Two satisfactory linear relationships were observed between the Cr(VI) concentration and voltage output for various Cr(VI) concentration ranges (0.0125-0.3 mg/L and 0.3-5 mg/L). The MFC biosensor is a simple device that can accurately measure Cr(VI) concentrations in drinking water, groundwater, and electroplating wastewater in 45 min with low deviations (<10%). The use of the biosensor can help in preventing the violation of effluent regulations and the maximum allowable concentration of Cr(VI) in water. Thus, the developed MFC biosensor has potential as an early warning detection device for Cr(VI) determination even if O. anthropi YC152 is a possible opportunistic pathogen.

  18. Biological reduction of hexavalent chromium and mechanism analysis of detoxification by enterobacter sp. HT1 isolated from tannery effluents, Mongolia

    Directory of Open Access Journals (Sweden)

    N Marjangul

    2014-12-01

    Full Text Available Enterobacter sp. HT1, Cr (VI resistant bacterial strain was isolated from the wastewater sample of the tannery in Mongolia. Batch experiments on hexavalent chromium removal was carried out at 10, 20, and 30 mg/L of Cr (VI added as potassium dichromate (K2Cr2O7, at pH 7 and temperature of 30 °C using pure culture of Enterobacter sp. HT1 as inoculum.  The isolated HT1 is capable of reduction nearly 100% of Cr (VI resulting in the decrease of Cr (VI from 10 to 0.2 mg/L within 20 hours. When the concentration of Cr (VI increased to 20 and 30mg/L, almost complete reduction of Cr (VI could achieve after 72 and 96 hours, respectively.DOI: http://doi.dx.org/10.5564/mjc.v15i0.322 Mongolian Journal of Chemistry 15 (41, 2014, p47-52

  19. Hexavalent chromium reduction by aerobic heterotrophic bacteria indigenous to chromite mine overburden

    Directory of Open Access Journals (Sweden)

    Dey Satarupa

    2013-01-01

    Full Text Available Microbiological analysis of overburden samples collected from chromite mining areas of Orissa, India revealed that they are rich in microbial density as well as diversity and dominated by Gramnegative (58% bacteria. The phenotypically distinguishable bacterial isolates (130 showed wide degree of tolerance to chromium (2-8 mM when tested in peptone yeast extract glucose agar medium. Isolates (92 tolerating 2 mM chromium exhibited different degrees of Cr+6 reducing activity in chemically defined Vogel Bonner (VB broth and complex KSC medium. Three potent isolates, two belonging to Arthrobacter spp. and one to Pseudomonas sp. were able to reduce more than 50 and 80% of 2 mM chromium in defined and complex media respectively. Along with Cr+6 (MIC 8.6-17.8 mM, the isolates showed tolerance to Ni+2, Fe+3, Cu+2 and Co+2 but were extremely sensitive to Hg+2 followed by Cd+2, Mn+2 and Zn+2. In addition, they were resistant to antibiotics like penicillin, methicillin, ampicillin, neomycin and polymyxin B. During growth under shake-flask conditions, Arthrobacter SUK 1201 and SUK 1205 showed 100% reduction of 2 mM Cr+6 in KSC medium with simultaneous formation of insoluble precipitates of chromium salts. Both the isolates were also equally capable of completely reducing the Cr+6 present in mine seepage when grown in mine seepage supplemented with VB concentrate.

  20. A plan for study of hexavalent chromium, CR(VI) in groundwater near a mapped plume, Hinkley, California, 2016

    Science.gov (United States)

    Izbicki, John A.; Groover, Krishangi

    2016-01-22

    The Pacific Gas and Electric Company (PG&E) Hinkley compressor station, in the Mojave Desert 80 miles northeast of Los Angeles, is used to compress natural gas as it is transported through a pipeline from Texas to California. Between 1952 and 1964, cooling water used at the compressor station was treated with a compound containing chromium to prevent corrosion. After cooling, the wastewater was discharged to unlined ponds, resulting in contamination of soil and groundwater in the underlying alluvial aquifer (Lahontan Regional Water Quality Control Board, 2013). Since 1964, cooling-water management practices have been used that do not contribute chromium to groundwater.In 2007, a PG&E study of the natural background concentrations of hexavalent chromium, Cr(VI), in groundwater estimated average concentrations in the Hinkley area to be 1.2 micrograms per liter (μg/L), with a 95-percent upper-confidence limit of 3.1 μg/L (CH2M-Hill, 2007). The 3.1 μg/L upper-confidence limit was adopted by the Lahontan Regional Water Quality Control Board (RWQCB) as the maximum background concentration used to map the plume extent. In response to criticism of the study’s methodology, and an increase in the mapped extent of the plume between 2008 and 2011, the Lahontan RWQCB (Lahontan Regional Water Quality Control Board, 2012) agreed that the 2007 PG&E background-concentration study be updated.The purpose of the updated background study is to evaluate the presence of natural and man-made Cr(VI) near Hinkley, Calif. The study also is to estimate natural background Cr(VI) concentrations in the aquifer upgradient and downgradient from the mapped Cr(VI) contamination plume, as well as in the plume and near its margins. The study was developed by the U.S. Geological Survey (USGS) in collaboration with a technical working group (TWG) composed of community members, the Independent Review Panel (IRP) Manager (Project Navigator, Ltd.), the Lahontan RWQCB, PG&E, and consultants for PG&E.&E.

  1. Evaluation of consortia of microorganisms for efficient removal of hexavalent chromium from industrial wastewater.

    Science.gov (United States)

    Muneer, Bushra; Rehman, Abdul; Shakoori, Farah R; Shakoori, Abdul R

    2009-05-01

    The Chromium (Cr) uptake ability of Cr-resistant bacterium Bacillus thuringiensis, yeast Candida etschellsii, and a protozoan Stylonychia mytilus, isolated from industrial waste water, was evaluated individually and in different combinations. It was found that the three types of microorganisms grown together in a culture medium could collectively uptake 90% of Cr(6+) from the culture medium as against 82% by bacterium + protozoan or yeast + protozoan combined culture, each. Consortium of bacterium, yeast and ciliates therefore could make much more efficient inoculum for remediation of Cr-contaminated industrial waste water.

  2. Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali).

    Science.gov (United States)

    Gardea-Torresdey, J L; de la Rosa, G; Peralta-Videa, J R; Montes, M; Cruz-Jimenez, G; Cano-Aguilera, I

    2005-02-01

    Experiments were conducted to determine the differential absorption of Cr species by tumbleweed (Salsola kali) as well as the effect of this heavy metal on plant growth and nutrient uptake. Tumbleweed seeds were grown in an agar-based media containing different concentrations of either Cr(III) or Cr(VI). The results demonstrated that the uptake of Cr was influenced by the Cr concentration in the growth medium and the speciation of this heavy metal. When supplied in the hexavalent form, the concentration of Cr in the different plant parts (2900, 790, and 600 mg kg(-1) for roots, stems, and leaves, respectively) was between 10 and 20 times higher than the amounts found when Cr was supplied in the trivalent form. In addition, it was found that in most of the experiments, Cr(III) exhibited more toxic effects on tumbleweed plants than Cr(VI). The size of roots of plants grown in 20 mg L(-1) Cr(III) were significantly smaller (p < 0.05) than those grown in 20 mg L(-1) Cr(VI). Plants exposed to 20 mg L(-1) Cr(III) produced shoots significantly shorter (p < 0.05) compared with the size of control plants and with those grown in 20 mg L(-1) Cr(VI). In addition, the absorption of macronutrients and microelements was in general lower when the plants were grown in the medium containing Cr(III). The amounts of Cr concentrated in the aerial plant parts under experimental conditions may indicate tumbleweed as a new option for the phytoremediation of Cr-contaminated soil.

  3. Inhibition of CO poisoning on Pt catalyst coupled with the reduction of toxic hexavalent chromium in a dual-functional fuel cell.

    Science.gov (United States)

    Chung, Dong Young; Kim, Hyoung-il; Chung, Young-Hoon; Lee, Myeong Jae; Yoo, Sung Jong; Bokare, Alok D; Choi, Wonyong; Sung, Yung-Eun

    2014-12-12

    We propose a method to enhance the fuel cell efficiency with the simultaneous removal of toxic heavy metal ions. Carbon monoxide (CO), an intermediate of methanol oxidation that is primarily responsible for Pt catalyst deactivation, can be used as an in-situ reducing agent for hexavalent chromium (Cr (VI)) with reactivating the CO-poisoned Pt catalyst. Using electro-oxidation measurements, the oxidation of adsorbed CO molecules coupled with the concurrent conversion of Cr (VI) to Cr (III) was confirmed. This concept was also successfully applied to a methanol fuel cell to enhance its performance efficiency and to remove toxic Cr (VI) at the same time.

  4. Simultaneously photocatalytic treatment of hexavalent chromium (Cr(VI)) and endocrine disrupting compounds (EDCs) using rotating reactor under solar irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youngji [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Yonsei University, Department of Chemical and Biomolecular Engineering, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749 (Korea, Republic of); Joo, Hyunku [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Her, Namguk [Korea Army Academy at Young-Cheon, Department of Chemistry and Environmental Science, 135-1 Changhari, Kokyungmeon, Young-cheon, Gyeongbuk 770-849 (Korea, Republic of); Yoon, Yeomin [University of South Carolina, Department of Civil and Environmental Engineering, Columbia, SC 29208 (United States); Sohn, Jinsik [Kookmin University, School of Civil and Environmental Engineering, 77 Jeongneung-ro, Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Kim, Sungpyo [Korea University, Department of Environmental Engineering, Sejong 339-700 (Korea, Republic of); Yoon, Jaekyung, E-mail: jyoon@kier.re.kr [Korea Institute of Energy Research, New and Renewable Energy Research Division, Hydrogen Laboratory, 152 Gajeong-ro, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2015-05-15

    Highlights: • Self-rotating reactor including TiO{sub 2} NTs is applied under solar irradiation. • Simultaneously photocatalysis of Cr(VI) and EDCs is observed to be up to 95%. • Photocatalytic reactions of Cr(VI) and EDCs are favorable under acidic pH. • Charge interaction and hole scavenge between TiO{sub 2} and pollutants are synergy factors. - Abstract: In this study, simultaneous treatments, reduction of hexavalent chromium (Cr(VI)) and oxidation of endocrine disrupting compounds (EDCs), such as bisphenol A (BPA), 17α-ethinyl estradiol (EE2) and 17β-estradiol (E2), were investigated with a rotating photocatalytic reactor including TiO{sub 2} nanotubes formed on titanium mesh substrates under solar UV irradiation. In the laboratory tests with a rotating type I reactor, synergy effects of the simultaneous photocatalytic reduction and oxidation of inorganic (Cr(VI)) and organic (BPA) pollutants were achieved. Particularly, the concurrent photocatalytic reduction of Cr(VI) and oxidation of BPA was higher under acidic conditions. The enhanced reaction efficiency of both pollutants was attributed to a stronger charge interaction between TiO{sub 2} nanotubes (positive charge) and the anionic form of Cr(VI) (negative charge), which are prevented recombination (electron–hole pair) by the hole scavenging effect of BPA. In the extended outdoor tests with a rotating type II reactor under solar irradiation, the experiment was extended to examine the simultaneous reduction of Cr(VI) in the presence of additional EDCs, such as EE2 and E2 as well as BPA. The findings showed that synergic effect of both photocatalytic reduction and oxidation was confirmed with single-component (Cr(VI) only), two-components (Cr(VI)/BPA, Cr(VI)/EE2, and Cr(VI)/E2), and four-components (Cr(VI)/BPA/EE2/E2) under various solar irradiation conditions.

  5. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells

    Directory of Open Access Journals (Sweden)

    Xuan Liu

    2015-05-01

    Full Text Available Hexavalent chromium (Cr(VI is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI detoxification in mammalian cells.

  6. Chromate Reductase YieF from Escherichia coli Enhances Hexavalent Chromium Resistance of Human HepG2 Cells.

    Science.gov (United States)

    Liu, Xuan; Wu, Gaofeng; Zhang, Yanli; Wu, Dan; Li, Xiangkai; Liu, Pu

    2015-05-26

    Hexavalent chromium (Cr(VI)) is a serious environmental pollutant and human toxicant. Mammalian cells are very sensitive to chromate as they lack efficient chromate detoxifying strategy, e.g., chromate-reducing genes that are widely present in prokaryotes. To test whether introduction of prokaryotic chromate-reducing gene into mammalian cells could render higher chromate resistance, an Escherichia coli chromate-reducing gene yieF was transfected into human HepG2 cells. The expression of yieF was measured in stably transfected cells HepG2-YieF by quantitative RT-PCR and found up-regulated by 3.89-fold upon Cr(VI) induction. In chromate-reducing ability test, HepG2-YieF cells that harbored the reductase showed significantly higher reducing ability of Cr(VI) than HepG2 control cells. This result was further supported by the evidence of increased Cr(VI)-removing ability of crude cell extract of HepG2-YieF. Moreover, HepG2-YieF demonstrated 10% higher viability and decreased expression of GSH synthesizing enzymes under Cr(VI) stress. Subcellular localization of YieF was determined by tracing GFP-YieF fusion protein that was detected in both nucleus and cytoplasm by laser confocal microscopy. Altogether, this study successfully demonstrated that the expression of a prokaryotic Cr(VI)-reducing gene yieF endowed mammalian cell HepG2 with enhanced chromate resistance, which brought new insight of Cr(VI) detoxification in mammalian cells.

  7. Cytotoxicity and genome-wide microarray analysis of intestinal smooth muscle cells in response to hexavalent chromium induction

    Institute of Scientific and Technical Information of China (English)

    Li-Fang JIN; Yuan-Yuan WANG; Zi-Dong ZHANG; Yi-Meng YUAN; Yi-Rui HU; Yang-Feng WEI; Jian NI

    2013-01-01

    Chronic ingestion of high concentrations of hexavalent chromium [Cr(Ⅵ)] in drinking water induces intestinal tumors in mice; however,information on its toxicity on intestinal smooth muscle cells is limited.The present study aimed to assess the in vitro and in vivo toxicological effects of Cr(Ⅵ) on intestinal smooth muscle cells.Human intestinal smooth muscle cells (HISM cells) were cultured with different concentrations of Cr(Ⅵ) to evaluate effects on cell proliferation ability,oxidative stress levels,and antioxidant system.Furthermore,tissue sections in Cr(Ⅵ) exposed rabbits were analyzed to evaluate toxicity on intestinal muscle cells in vivo.Gene chips were utilized to assess differential gene expression profiles at the genome-wide level in 1 μmol/L Cr(Ⅵ) treated cells.Intestinal tissue biopsy results showed that Cr(Ⅵ) increased the incidences of diffuse epithelial hyperplasia in intestinal jejunum but caused no obvious damage to the structure of the muscularis.Cell proliferation analysis revealed that high concentrations (≥64 μmol/L) but not low concentrations of Cr(Ⅵ) (≤16 μmol/L) significantly inhibited the growth of HISM cells.For oxidative stress levels,the expression of reactive oxygen species (ROS) and nitric oxide (NO) was elevated at high concentrations (≥64 μmol/L) but not at low concentrations of Cr(Ⅵ) (≤ 16 μmol/L).In addition,dose-dependent increases in the activity of oxidized glutathione (GSSH)/total-glutathione (T-GSH) were also observed.Gene chip screened 491 differentially expressed genes including genes associated with cell apoptosis,oxidations,and cytoskeletons.Some of these differentially expressed genes may be unique to smooth muscle cells in response to Cr(Ⅵ) induction.

  8. Aberration of mitosis by hexavalent chromium in some Fabaceae members is mediated by species-specific microtubule disruption.

    Science.gov (United States)

    Eleftheriou, Eleftherios P; Michalopoulou, Vasiliki A; Adamakis, Ioannis-Dimosthenis S

    2015-05-01

    Because the detrimental effects of chromium (Cr) to higher plants have been poorly investigated, the present study was undertaken to verify the toxic attributes of hexavalent chromium [Cr(VI)] to plant mitotic microtubules (MTs), to determine any differential disruption of MTs during mitosis of taxonomically related species and to clarify the relationship between the visualized chromosomal aberrations and the Cr(VI)-induced MT disturbance. For this purpose, 5-day-old uniform seedlings of Vicia faba, Pisum sativum, Vigna sinensis and Vigna angularis, all belonging to the Fabaceae family, were exposed to 250 μM Cr(VI) supplied as potassium dichromate (K₂Cr₂O₇) for 24, 72 and 120 h and others in distilled water serving as controls. Root tip samples were processed for tubulin immunolabelling (for MT visualization) and DNA fluorescent staining (for chromosomal visualization). Microscopic preparations of cell squashes were then examined and photographed by confocal laser scanning microscopy (CLSM). Cr(VI) halted seedling growth turning roots brown and necrotic. Severe chromosomal abnormalities and differential disturbance of the corresponding MT arrays were found in all mitotic phases. In particular, in V. faba MTs were primarily depolymerized and replaced by atypical tubulin conformations, whereas in P. sativum, V. sinensis and V. angularis they became bundled in a time-dependent manner. In P. sativum, the effects were milder compared to those of the other species, but in all cases MT disturbance adversely affected the proper aggregation of chromosomes on the metaphase plate, their segregation at anaphase and organization of the new nuclei at telophase. Cr(VI) is very toxic to seedling growth. The particular effect depends on the exact stage the cell is found at the time of Cr(VI) entrance and is species-specific. Mitotic MT arrays are differentially deranged by Cr(VI) in the different species examined, even if they are taxonomically related, while their

  9. Profiling stainless steel welding processes to reduce fume emissions, hexavalent chromium emissions and operating costs in the workplace.

    Science.gov (United States)

    Keane, Michael; Siert, Arlen; Stone, Samuel; Chen, Bean T

    2016-01-01

    Nine gas metal arc welding (GMAW) processes for stainless steel were assessed for fume generation rates, fume generation rates per g of electrode consumed, and emission rates for hexavalent chromium (Cr(6+)). Elemental manganese, nickel, chromium, iron emissions per unit length of weld, and labor plus consumables costs were similarly measured. Flux-cored arc welding and shielded metal arc (SMAW) processes were also studied. The objective was to identify the best welding processes for reducing workplace exposures, and estimate costs for all processes. Using a conical chamber, fumes were collected, weighed, recovered, and analyzed by inductively coupled atomic emission spectroscopy for metals, and by ion chromatography for Cr(6+). GMAW processes used were Surface Tension Transfer, Regulated Metal Deposition, Cold Metal Transfer, short-circuit, axial spray, and pulsed spray modes. Flux-cored welding used gas shielding; SMAW used E308 rods. Costs were estimated as dollars per m length of a ¼ in (6.3 mm) thick horizontal butt weld; equipment costs were estimated as ratios of new equipment costs to a 250 ampere capacity SMAW welding machine. Results indicate a broad range of fume emission factors for the processes studied. Fume emission rates per g of electrode were lowest for GMAW processes such as pulsed-spray mode (0.2 mg/g), and highest for SMAW (8 mg fume/g electrode). Emission rates of Cr(6+) ranged from 50-7800 µg/min, and Cr(6+) generation rates per g electrode ranged from 1-270 µg/g. Elemental Cr generation rates spanned 13-330 µg/g. Manganese emission rates ranged from 50-300 µg/g. Nickel emission rates ranged from 4-140 µg/g. Labor and consumables costs ranged from $3.15 (GMAW pulsed spray) to $7.40 (SMAW) per meter of finished weld, and were measured or estimated for all 11 processes tested. Equipment costs for some processes may be as much as five times the cost of a typical SMAW welding machine. The results show that all of the GMAW processes in this

  10. Low temperature reduction of hexavalent chromium by a microbial enrichment consortium and a novel strain of Arthrobacter aurescens

    Directory of Open Access Journals (Sweden)

    Thompson Vicki S

    2006-01-01

    Full Text Available Abstract Background Chromium is a transition metal most commonly found in the environment in its trivalent [Cr(III] and hexavalent [Cr(VI] forms. The EPA maximum total chromium contaminant level for drinking water is 0.1 mg/l (0.1 ppm. Many water sources, especially underground sources, are at low temperatures (less than or equal to 15 Centigrade year round. It is important to evaluate the possibility of microbial remediation of Cr(VI contamination using microorganisms adapted to these low temperatures (psychrophiles. Results Core samples obtained from a Cr(VI contaminated aquifer at the Hanford facility in Washington were enriched in Vogel Bonner medium at 10 Centigrade with 0, 25, 50, 100, 200, 400 and 1000 mg/l Cr(VI. The extent of Cr(VI reduction was evaluated using the diphenyl carbazide assay. Resistance to Cr(VI up to and including 1000 mg/l Cr(VI was observed in the consortium experiments. Reduction was slow or not observed at and above 100 mg/l Cr(VI using the enrichment consortium. Average time to complete reduction of Cr(VI in the 30 and 60 mg/l Cr(VI cultures of the consortium was 8 and 17 days, respectively at 10 Centigrade. Lyophilized consortium cells did not demonstrate adsorption of Cr(VI over a 24 hour period. Successful isolation of a Cr(VI reducing organism (designated P4 from the consortium was confirmed by 16S rDNA amplification and sequencing. Average time to complete reduction of Cr(VI at 10 Centigrade in the 25 and 50 mg/l Cr(VI cultures of the isolate P4 was 3 and 5 days, respectively. The 16S rDNA sequence from isolate P4 identified this organism as a strain of Arthrobacter aurescens, a species that has not previously been shown to be capable of low temperature Cr(VI reduction. Conclusion A. aurescens, indigenous to the subsurface, has the potential to be a predominant metal reducer in enhanced, in situ subsurface bioremediation efforts involving Cr(VI and possibly other heavy metals and radionuclides.

  11. Determination of hexavalent chromium concentration in industrial waste incinerator stack gas by using a modified ion chromatography with post-column derivatization method.

    Science.gov (United States)

    Miyake, Yuichi; Tokumura, Masahiro; Iwazaki, Yuta; Wang, Qi; Amagai, Takashi; Horii, Yuichi; Otsuka, Hideyuki; Tanikawa, Noboru; Kobayashi, Takeshi; Oguchi, Masahiro

    2017-06-16

    An ion chromatography with post-column derivatization with 1,5-diphenylcarbazide (IC-DPC) analytical method was modified to enable measurement of trace-level hexavalent chromium (Cr(VI)) in air. One of the difficulties in determining trace levels of Cr(VI) in air with conventional IC-DPC methods is co-elution of the solvent and ion peaks due to high concentrations of ionic compounds in the extract. However, by using gradient elution rather than isocratic elution we were able to fully resolve the Cr(VI) ion peak from the solvent peak without the need for diluting the extract, which would have reduced the minimum quantifiable level of the method. With this method, we were able to detect Cr(VI) in air at concentrations of 5.3ng/m(3) (assuming a sampling volume of 1m(3) and a final solution volume of 10mL). Recovery tests at three different concentrations of Cr(VI) (50, 250, 1000ng) were performed with or without fly ash; recovery rates at all the concentrations of Cr(VI), with or without fly ash, ranged from 68% to 110% (mean±relative standard deviation, 96%±11%), and there were no differences in recovery rates with respect to the presence or absence of fly ash. Finally, we used the developed method to determine the concentration of Cr(VI) in stack gases collected from eight industrial waste incinerators located in Japan. The concentration of Cr(VI) in the stack gases ranged from below the method quantification limit to 3100ng/m(3). The highest concentrations of Cr(VI) detected in the stack gases were two to three orders of magnitude higher than that in ambient air in Japan. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Zainul Akmar [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Zakaria, Zainoha [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia); Surif, Salmijah [Department of Environmental Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Ahmad, Wan Azlina [Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor (Malaysia)]. E-mail: azlina@kimia.fs.utm.my

    2007-07-19

    Possible application of a locally isolated environmental isolate, Acinetobacter haemolyticus to remediate Cr(VI) contamination in water system was demonstrated. Cr(VI) reduction by A. haemolyticus seems to favour the lower concentrations (10-30 mg/L). However, incomplete Cr(VI) reduction occurred at 70-100 mg/L Cr(VI). Initial specific reduction rate increased with Cr(VI) concentrations. Cr(VI) reduction was not affected by 1 or 10 mM sodium azide (metabolic inhibitor), 10 mM of PO{sub 4} {sup 3-}, SO{sub 4} {sup 2-}, SO{sub 3} {sup 2-}, NO{sub 3} {sup -} or 30 mg/L of Pb(II), Zn(II), Cd(II) ions. However, heat treatment caused significant dropped in Cr(VI) reduction to less than 20% only. A. haemolyticus cells loses its shape and size after exposure to 10 and 50 mg Cr(VI)/L as revealed from TEM examination. The presence of electron-dense particles in the cytoplasmic region of the bacteria suggested deposition of chromium in the cells.

  13. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    Energy Technology Data Exchange (ETDEWEB)

    Goldoni, Matteo [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Caglieri, Andrea [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); Poli, Diana [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Vettori, Maria Vittoria [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Corradi, Massimo [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy); National Institute of Occupational Safety and Prevention, Research Centre at University of Parma, Parma (Italy); Apostoli, Pietro [Laboratory of Industrial Hygiene, Department of Experimental and Applied Medicine, University of Brescia (Italy); Mutti, Antonio [Laboratory of Industrial Toxicology, Department of Clinical Medicine, Nephrology and Health Sciences, University of Parma, Via Gramsci 14, 43100 Parma (Italy)]. E-mail: antonio.mutti@unipr.it

    2006-03-15

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI)

  14. Natural occurrence of hexavalent chromium in serpentinite hosted spring waters from Western Tuscany (Italy)

    Science.gov (United States)

    Chiarantini, Laura; Agostini, Samuele; Baneschi, Ilaria; Guidi, Massimo; Natali, Claudio; Tonarini, Sonia

    2013-04-01

    , able to rapid oxidise Cr(III) into Cr (VI ), implies that local presence of Cr (VI) in waters have to be ascribed to other processes. Some serpentinites contain significant amount of Fe-rich brucite and show evidences of its dissolution during surface weathering. This process could lead to the formation of both of hydrous magnesium carbonates and of Mg-rich members of "layered double hydroxide" group, which can contain high contents of Cr(III) that can be easily oxidized and mobilized during weathering reactions (Langone et al., in press). Cr isotopes analyses, able to record any occurrence of Cr redox reactions, are analysed in order to better understand which are the mineralogical, chemical and thermodynamic parameters responsible for Cr(III)-Cr(VI) oxidation during water-rock interactions. Langone A., Baneschi I., Boschi C., Dini A., Guidi M, and Cavallo A., (in press), Serpentinite-water interaction and chromium (VI) release in spring waters: examples from Tuscan ophiolites, Ofioliti.

  15. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    Directory of Open Access Journals (Sweden)

    Richard J. Venedam

    2005-02-01

    Full Text Available The capabilities of a “universal platform” for the deployment of analyticalsensors in the field for long-term monitoring of environmental contaminants were expandedin this investigation. The platform was previously used to monitor trichloroethene inmonitoring wells and at groundwater treatment systems (1,2. The platform was interfacedwith chromium (VI and conductivity analytical systems to monitor shallow wells installedadjacent to the Columbia River at the 100-D Area of the Hanford Site, Washington. Agroundwater plume of hexavalent chromium is discharging into the Columbia River throughthe gravels beds used by spawning salmon. The sampling/analytical platform was deployedfor the purpose of collecting data on subsurface hexavalent chromium concentrations atmore frequent intervals than was possible with the previous sampling and analysis methodsemployed a the Site.

  16. Evaluation of sustained release polylactate electron donors for removal of hexavalent chromium from contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Brodie, E.L.; Joyner, D. C.; Faybishenko, B.; Conrad, M. E.; Rios-Velazquez, C.; Mork, B.; Willet, A.; Koenigsberg, S.; Herman, D.; Firestone, M. K.; Hazen, T. C.; Malave, Josue; Martinez, Ramon

    2011-02-15

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  17. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell.

    Science.gov (United States)

    Huang, Liping; Chen, Jingwen; Quan, Xie; Yang, Fenglin

    2010-10-01

    Enhancement of Cr (VI) reduction rate and power production from biocathode microbial fuel cells (MFCs) was achieved using indigenous bacteria from Cr (VI)-contaminated site as inoculum and MFC architecture with a relatively large cathode-specific surface area of 340-900 m2 m(-3). A specific Cr (VI) reduction rate of 2.4 ± 0.2 mg g(-1)VSS h(-1) and a power production of 2.4 ± 0.1 W m(-3) at a current density of 6.9 A m(-3) were simultaneously achieved at an initial Cr (VI) concentration of 39.2 mg L(-1). Initial Cr (VI) concentration and solution conductivity affected Cr (VI) reduction rate, power production and coulombic efficiency. These findings demonstrate the importance of inoculation and MFC architecture in the enhancement of Cr (VI) reduction rate and power production. This study is a beneficial attempt to improve the efficiency of biocathode MFCs and provide a good candidate of bioremediation process for Cr (VI)-contaminated sites.

  18. Microbial community response to addition of polylactate compounds to stimulate hexavalent chromium reduction in groundwater.

    Science.gov (United States)

    Brodie, Eoin L; Joyner, Dominique C; Faybishenko, Boris; Conrad, Mark E; Rios-Velazquez, Carlos; Malave, Josue; Martinez, Ramon; Mork, Benjamin; Willett, Anna; Koenigsberg, Steven; Herman, Donald J; Firestone, Mary K; Hazen, Terry C

    2011-10-01

    To evaluate the efficacy of bioimmobilization of Cr(VI) in groundwater at the Department of Energy Hanford site, we conducted a series of microcosm experiments using a range of commercial electron donors with varying degrees of lactate polymerization (polylactate). These experiments were conducted using Hanford Formation sediments (coarse sand and gravel) immersed in Hanford groundwater, which were amended with Cr(VI) and several types of lactate-based electron donors (Hydrogen Release Compound, HRC; primer-HRC, pHRC; extended release HRC) and the polylactate-cysteine form (Metal Remediation Compound, MRC). The results showed that polylactate compounds stimulated an increase in bacterial biomass and activity to a greater extent than sodium lactate when applied at equivalent carbon concentrations. At the same time, concentrations of headspace hydrogen and methane increased and correlated with changes in the microbial community structure. Enrichment of Pseudomonas spp. occurred with all lactate additions, and enrichment of sulfate-reducing Desulfosporosinus spp. occurred with almost complete sulfate reduction. The results of these experiments demonstrate that amendment with the pHRC and MRC forms result in effective removal of Cr(VI) from solution most likely by both direct (enzymatic) and indirect (microbially generated reductant) mechanisms.

  19. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil.

    Science.gov (United States)

    Su, Huijie; Fang, Zhanqiang; Tsang, Pokeung Eric; Fang, Jianzhang; Zhao, Dongye

    2016-07-01

    In this study, a biochar-supported nanoscale zero-valent iron (nZVI@BC) material was used for in situ remediation of hexavalent chromium-contaminated soil. Sedimentation tests and column experiments were used to compare the stability and mobility of nZVI@BC and bare-nZVI. The immobilisation efficiency of chromium, toxic effect of chromium and the content of iron were assessed through leaching tests and pot experiments. Sedimentation tests and transport experiments indicated that nZVI@BC with nZVI to BC mass ratio of 1:1 exhibited better stability and mobility than that of bare-nZVI. The immobilisation efficiency of Cr(VI) and Crtotal was 100% and 92.9%, respectively, when the soil was treated with 8 g/kg of nZVI@BC for 15 days. Moreover, such remediation effectively reduced the leachability of Fe caused by bare-nZVI. In addition, pot experiments showed that such remediation reduced the phytotoxicity of Cr and the leachable Fe and was favourable for plant growth.

  20. Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanism in lung epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Song-Ze, E-mail: dingsongze@hotmail.com [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Yang, Yu-Xiu; Li, Xiu-Ling [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Michelli-Rivera, Audrey [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States); Han, Shuang-Yin [Department of Internal Medicine, Henan Provincial People’s Hospital, Zhengzhou University, Wei-Wu Road, Zhengzhou, Henan 450000 (China); Wang, Lei; Pratheeshkumar, Poyil; Wang, Xin; Lu, Jian; Yin, Yuan-Qin; Budhraja, Amit; Hitron, Andrew J. [Graduate Center for Toxicology, College of Medicine, University of Kentucky, Lexington, KY 40536 (United States)

    2013-05-15

    Hexavalent chromium [Cr(VI)] is an important human carcinogen associated with pulmonary diseases and lung cancer. Exposure to Cr(VI) induces DNA damage, cell morphological change and malignant transformation in human lung epithelial cells. Despite extensive studies, the molecular mechanisms remain elusive, it is also not known if Cr(VI)-induced transformation might accompany with invasive properties to facilitate metastasis. We aimed to study Cr(VI)-induced epithelial–mesenchymal transition (EMT) and invasion during oncogenic transformation in lung epithelial cells. The results showed that Cr(VI) at low doses represses E-cadherin mRNA and protein expression, enhances mesenchymal marker vimentin expression and transforms the epithelial cell into fibroblastoid morphology. Cr(VI) also increases cell invasion and promotes colony formation. Further studies indicated that Cr(VI) uses multiple mechanisms to repress E-cadherin expression, including activation of E-cadherin repressors such as Slug, ZEB1, KLF8 and enhancement the binding of HDAC1 in E-cadherin gene promoter, but DNA methylation is not responsible for the loss of E-cadherin. Catalase reduces Cr(VI)-induced E-cadherin and vimentin protein expression, attenuates cell invasion in matrigel and colony formation on soft agar. These results demonstrate that exposure to a common human carcinogen, Cr(VI), induces EMT and invasion during oncogenic transformation in lung epithelial cells and implicate in cancer metastasis and prevention. - Graphical abstract: Epithelial–mesenchymal transition during oncogenic transformation induced by hexavalent chromium involves reactive oxygen species-dependent mechanisms in lung epithelial cells. - Highlights: • We study if Cr(VI) might induce EMT and invasion in epithelial cells. • Cr(VI) induces EMT by altering E-cadherin and vimentin expression. • It also increases cell invasion and promotes oncogenic transformation. • Catalase reduces Cr(VI)-induced EMT, invasion and

  1. Application of artificial neural network (ANN in Biosorption modeling of Chromium (VI from aqueous solutions

    Directory of Open Access Journals (Sweden)

    F Mohammadi

    2016-03-01

    Full Text Available Background and Objectives: In this work, biosorption of hexavalent chromium from aqueous solution with excess municipal sludge was studied. Moreover, the performance of neural networks to predict the biosorption rate was investigated. Materials and Methods: The effect of operational parameters including initial metal concentration, initial pH, agitation speed, adsorbent dosage, and agitation time on the biosorption of chromium was assessed in a batch system. A part of the experimental results was modeled using Feed-Forward Back propagation Neural Network (FFBP-ANN. Another part of the test results was simulated to assess the model accuracy. Transfer function in the hidden layers and output layers and the number of neurons in the hidden layers were optimized. Results: The maximum removal of chromium obtained from batch studies was more than 96% in 90 mg/L initial concentration, pH 2, agitation speed 200 rpm and adsorbent dosage 4 g/L. Maximum biosorption capacity was 41.69 mg/g. Biosorption data of Cr(VI are described well by Freundlich isotherm model and adsorption kinetic followed pseudo-second order model.  Tangent sigmoid function determined was the most appropriate transfer function in the hidden and output layer. The optimal number of neurons in hidden layers was 13. Predictions of model showed excellent correlation (R=0.984 with the target vector. Simulations performed by the developed neural network model showed good agreement with experimental results. Conclusion: Overall, it can be concluded that excess municipal sludge performs well for the removal of Cr ions from aqueous solution as a biological and low cost biosorbent. FFBP-ANN is an appropriate technique for modeling, estimating, and prediction of biosorption process If the Levenberg-Marquardt training function, tangent sigmoid transfer function in the hidden and output layers and the number of neurons is between 1.6 to 1.8 times the input data, proper predication results could be

  2. The protective and toxic effects of rhubarb tannins and anthraquinones in treating hexavalent chromium-injured rats: the Yin/Yang actions of rhubarb.

    Science.gov (United States)

    Zeng, Ling-na; Ma, Zhi-jie; Zhao, Yan-ling; Zhang, Lin-dong; Li, Rui-sheng; Wang, Jia-bo; Zhang, Ping; Yan, Dan; Li, Qi; Jiang, Bing-qian; Pu, Shi-biao; Lü, Yang; Xiao, Xiao-he

    2013-02-15

    Chromium nephrotoxicity (CrNT) is thought to occur through the oxidant lesion mechanism. There is still a lack of specific remedies against CrNT. We primarily screened Chinese herbal medicines with a potential protective effect against CrNT, e.g., rhubarb (Rheum palmatum L.). However, the active constituents in rhubarb and its mechanisms remain unclear. In this study, the total rhubarb extract (TR) was successively separated into three parts: total anthraquinone extract (TA), total tannin extract (TT) and remaining component extract (RC). The effects of each extract on the potassium dichromate (K(2)Cr(2)O(7))-induced nephrotoxicity in rats were comparatively assessed. The results showed that only the administration of TT protected the kidney function in K(2)Cr(2)O(7)-injured rats. Besides, TT showed significant activity to scavenge hydroxyl radicals, which is considered to be the dominant lesion product generated by hexavalent chromium. TT also showed a reduced ability to transform toxic high valence chromium ions into non-toxic low valence ions. And TT was able to further precipitate chromium ions. These results suggested that rhubarb tannins treat CrNT as a free radical scavenger, reductant, and metal precipitant. The multiple protective routes of the plant tannins reveal a superior option for development into a promising natural remedy against CrNT. In addition, the opposite effects of rhubarb anthraquinones in treating CrNT were observed compared to rhubarb tannins, which suggested the duo-directional effects (Yin and Yang) of herbal medicines should be addressed.

  3. N-acetylcysteine attenuates hexavalent chromium-induced hypersensitivity through inhibition of cell death, ROS-related signaling and cytokine expression.

    Directory of Open Access Journals (Sweden)

    Yu-Hsuan Lee

    Full Text Available Chromium hypersensitivity (chromium-induced allergic contact dermatitis is an important issue in occupational skin disease. Hexavalent chromium (Cr (VI can activate the Akt, Nuclear factor κB (NF-κB, and Mitogen-activated protein kinase (MAPK pathways and induce cell death, via the effects of reactive oxygen species (ROS. Recently, cell death stimuli have been proposed to regulate the release of inflammatory cytokines, such as tumor necrosis factor-α (TNF-α and interleukin-1 (IL-1. However, the exact effects of ROS on the signaling molecules and cytotoxicity involved in Cr(VI-induced hypersensitivity have not yet been fully demonstrated. N-acetylcysteine (NAC could increase glutathione levels in the skin and act as an antioxidant. In this study, we investigated the effects of NAC on attenuating the Cr(VI-triggered ROS signaling in both normal keratinocyte cells (HaCaT cells and a guinea pig (GP model. The results showed the induction of apoptosis, autophagy and ROS were observed after different concentrations of Cr(VI treatment. HaCaT cells pretreated with NAC exhibited a decrease in apoptosis and autophagy, which could affect cell viability. In addition, Cr (VI activated the Akt, NF-κB and MAPK pathways thereby increasing IL-1α and TNF-α production. However, all of these stimulation phenomena could be inhibited by NAC in both of in vitro and in vivo studies. These novel findings indicate that NAC may prevent the development of chromium hypersensitivity by inhibiting of ROS-induced cell death and cytokine expression.

  4. Synthesis, physical properties and application of the zero-valent iron/titanium dioxide heterocomposite having high activity for the sustainable photocatalytic removal of hexavalent chromium in water.

    Science.gov (United States)

    Petala, Eleni; Baikousi, Maria; Karakassides, Michael A; Zoppellaro, Giorgio; Filip, Jan; Tuček, Jiří; Vasilopoulos, Konstantinos C; Pechoušek, Jiří; Zbořil, Radek

    2016-04-21

    A magnetic photocatalytic material composed of nanoscale zero-valent iron (nZVI) homogeneously distributed over a mesoporous nanocrystalline TiO2 matrix has been prepared by a multistage chemical process, including sol-gel technique, wet impregnation, and chemical reduction. X-ray powder diffraction and Raman spectroscopy were used for the structural and chemical characterization of the magnetic photocatalyst, while bulk magnetization measurements and scanning/transmission electron microscopy were employed to determine the physical and textural properties of the photocatalyst. The synthesized nZVI@TiO2 photocatalyst shows very high efficiency in the removal of hexavalent chromium, Cr(vi), from water. The degradation rate follows a pseudo-first-order kinetic model. Most importantly, the remarkable efficiency of the photocatalyst is found to be due to the synergistic contributions of both counterparts, nZVI and TiO2, as validated by comparative experiments with neat TiO2 and nZVI@TiO2 under UV-C irradiation and without irradiation. New insights into the mechanism of synergistic degradation of chromium(vi) and suppressed oxidation of nZVI particles in the composite material are proposed and therein discussed.

  5. Application of ICP-MS and HPLC-ICP-MS for diagnosis and therapy of a severe intoxication with hexavalent chromium and inorganic arsenic.

    Science.gov (United States)

    Heitland, Peter; Blohm, Martin; Breuer, Christian; Brinkert, Florian; Achilles, Eike Gert; Pukite, Ieva; Köster, Helmut Dietrich

    2017-05-01

    ICP-MS and HPLC-ICP-MS were applied for diagnosis and therapeutic monitoring in a severe intoxication with a liquid containing hexavalent chromium (Cr(VI)) and inorganic arsenic (iAs). In this rare case a liver transplantation of was considered as the only chance of survival. We developed and applied methods for the determination of Cr(VI) in erythrocytes and total chromium (Cr) and arsenic (As) in blood, plasma, urine and liver tissue by ICP-MS. Exposure to iAs was diagnosed by determination of iAs species and their metabolites in urine by anion exchange HPLC-ICP-MS. Three days after ingestion of the liquid the total Cr concentrations were 2180 and 1070μg/L in whole blood and plasma, respectively, and 4540μg/L Cr(VI) in erythrocytes. The arsenic concentration in blood was 206μg/L. The urinary As species concentrations were <0.5, 109, 115, 154 and 126μg/L for arsenobetaine, As(III), As(V), methylarsonate (V) and dimethylarsinate (V), respectively. Total Cr and As concentrations in the explanted liver were 11.7 and 0.9mg/kg, respectively. Further analytical results of this case study are tabulated and provide valuable data for physicians and toxicologists. Copyright © 2017. Published by Elsevier GmbH.

  6. Removal of toxic chromium from aqueous solution, wastewater and saline water by marine red alga Pterocladia capillacea and its activated carbon

    Directory of Open Access Journals (Sweden)

    Ahmed El Nemr

    2015-01-01

    Full Text Available Pterocladia capillacea, a red marine macroalgae, was tested for its ability to remove toxic hexavalent chromium from aqueous solution. A new activated carbon obtained from P. capillacea via acid dehydration was also investigated as an adsorbent for toxic chromium. The experiments were conducted to study the effect of important parameters such as pH, chromium concentration and adsorbent weight. Batch equilibrium tests at different pH conditions showed that at pH 1.0, a maximum chromium uptake was observed for both inactivated dried red alga P. capillacea and its activated carbon. The maximum sorption capacities for dried red alga and its activated carbon were about 12 and 66 mgg−1, respectively, as calculated by Langmuir model. The ability of inactivated red alga P. capillacea and developed activated carbon to remove chromium from synthetic sea water, natural sea water and wastewater was investigated as well. Different isotherm models were used to analyze the experimental data and the models parameters were evaluated. This study showed that the activated carbon developed from red alga P. capillacea is a promising activated carbon for removal of toxic chromium.

  7. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review.

    Science.gov (United States)

    Dhal, B; Thatoi, H N; Das, N N; Pandey, B D

    2013-04-15

    Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed.

  8. Inhibition effect on the Allium cepa L. root growth when using hexavalent chromium-doped river waters.

    Science.gov (United States)

    Espinoza-Quiñones, F R; Szymanski, N; Palácio, S M; Módenes, A N; Rizzutto, M A; Silva, F G; Oliveira, A P; Oro, A C P; Martin, N

    2009-06-01

    The effect of Cr(6+) on Allium cepa root length was studied using both clean and polluted river waters. Seven series of Cr(6+)-doped polluted and non-polluted river waters were used to grow onions. Chromium concentration (Cr(6+)) of 4.2 mg L(-1)(EC(50) value), doped in clean river water caused a 50% reduction of root length, while in organically polluted samples similar root growth inhibition occurred at 12.0 mg Cr(6+) L(-1). The results suggested that there was a dislocation to higher values in toxic chromium concentration in polluted river water due to the eutrophization level of river water.

  9. Apparatus and method for time-integrated, active sampling of contaminants in fluids demonstrated by monitoring of hexavalent chromium in groundwater.

    Science.gov (United States)

    Roll, Isaac B; Driver, Erin M; Halden, Rolf U

    2016-06-15

    Annual U.S. expenditures of $2B for site characterization invite the development of new technologies to improve data quality while reducing costs and minimizing uncertainty in groundwater monitoring. This work presents a new instrument for time-integrated sampling of environmental fluids using in situ solid-phase extraction (SPE). The In Situ Sampler (IS2) is an automated submersible device capable of extracting dissolved contaminants from water (100s-1000smL) over extended periods (hours to weeks), retaining the analytes, and rejecting the processed fluid. A field demonstration of the IS2 revealed 28-day average concentration of hexavalent chromium in a shallow aquifer affected by tidal stresses via sampling of groundwater as both liquid and sorbed composite samples, each obtained in triplicate. In situ SPE exhibited 75±6% recovery and an 8-fold improvement in reporting limit. Relative to use of conventional methods (100%), beneficial characteristics of the device and method included minimal hazardous material generation (2%), transportation cost (10%), and associated carbon footprint (2%). The IS2 is compatible with commercial SPE resins and standard extraction methods, and has been certified for more general use (i.e., inorganics and organics) by the Environmental Security Technology Certification Program (ESTCP) of the U.S. Department of Defense.

  10. Control of exposure to hexavalent chromium and ozone in gas metal arc welding of stainless steels by use of a secondary shield gas.

    Science.gov (United States)

    Dennis, John H; French, Michael J; Hewitt, Peter J; Mortazavi, Seyed B; Redding, Christopher A J

    2002-01-01

    Previous work has demonstrated that the shield gas composition in gas metal arc welding can have a considerable effect on hexavalent chromium [Cr(VI)] concentration in the fume and on ozone concentrations near the arc. Normally a single shield gas is used. This paper describes a double shroud torch that allows used of concentric shield gases of different compositions. A solid stainless steel wire was used for welding. The double shroud torch used secondary shield gases containing small amounts of the reducing agents NO and C2H4. The Cr(VI) concentration in the fume and ozone concentration at a fixed point relative to the arc were measured and compared with results when using a single shield gas. Use of the reducing agents in secondary shielding using the double shroud torch was found to offer advantages for ozone concentration reduction compared with use in a conventional torch, but this was not found to be an advantage for reducing Cr(VI) concentrations.

  11. Carbothermal synthesis of ordered mesoporous carbon-supported nano zero-valent iron with enhanced stability and activity for hexavalent chromium reduction.

    Science.gov (United States)

    Dai, Ying; Hu, Yuchen; Jiang, Baojiang; Zou, Jinlong; Tian, Guohui; Fu, Honggang

    2016-05-15

    Composites of nano zero-valent iron (nZVI) and ordered mesoporous carbon (OMC) are prepared by using simultaneous carbothermal reduction methods. The reactivity and stability of nZVI are expected to be enhanced by embedding it in the ordered pore channels. The structure characteristics of nZVI/OMC and the removal pathway for hexavalent chromium (Cr(VI)) by nZVI/OMC are investigated. Results show that nZVI/OMC with a surface area of 715.16 m(2) g(-1) is obtained at 900 °C. nZVI with particle sizes of 20-30 nm is uniformly embedded in the OMC skeleton. The stability of nZVI is enhanced by surrounding it with a broad carbon layer and a little γ-Fe is derived from the passivation of α-Fe. Detection of ferric state (Fe 2p3/2, around 711.2eV) species confirms that part of the nZVI on the outer surface is inevitably oxidized by O2, even when unused. The removal efficiency of Cr(VI) (50 mg L(-1)) by nZVI/OMC is near 99% within 10 min through reduction (dominant mechanism) and adsorption. nZVI/OMC has the advantage in removal efficiency and reusability in comparison to nZVI/C, OMC and nZVI. This study suggests that nZVI/OMC has the potential for remediation of heavy metal pollution in water.

  12. Large scale groundwater flow and hexavalent chromium transport modeling under current and future climatic conditions: the case of Asopos River Basin.

    Science.gov (United States)

    Dokou, Zoi; Karagiorgi, Vasiliki; Karatzas, George P; Nikolaidis, Nikolaos P; Kalogerakis, Nicolas

    2016-03-01

    In recent years, high concentrations of hexavalent chromium, Cr(VI), have been observed in the groundwater system of the Asopos River Basin, raising public concern regarding the quality of drinking and irrigation water. The work described herein focuses on the development of a groundwater flow and Cr(VI) transport model using hydrologic, geologic, and water quality data collected from various sources. An important dataset for this goal comprised an extensive time series of Cr(VI) concentrations at various locations that provided an indication of areas of high concentration and also served as model calibration locations. Two main sources of Cr(VI) contamination were considered in the area: anthropogenic contamination originating from Cr-rich industrial wastes buried or injected into the aquifer and geogenic contamination from the leaching process of ophiolitic rocks. The aquifer's response under climatic change scenario A2 was also investigated for the next two decades. Under this scenario, it is expected that rainfall, and thus infiltration, will decrease by 7.7 % during the winter and 15 % during the summer periods. The results for two sub-scenarios (linear and variable precipitation reduction) that were implemented based on A2 show that the impact on the study aquifer is moderate, resulting in a mean level decrease less than 1 m in both cases. The drier climatic conditions resulted in higher Cr(VI) concentrations, especially around the industrial areas.

  13. Reevaluation and Classification of Duodenal Lesions in B6C3F1 Mice and F344 Rats from 4 Studies of Hexavalent Chromium in Drinking Water.

    Science.gov (United States)

    Cullen, John M; Ward, Jerrold M; Thompson, Chad M

    2016-02-01

    Thirteen-week and 2-year drinking water studies conducted by the National Toxicology Program (NTP) reported that hexavalent chromium (Cr(VI)) induced diffuse epithelial hyperplasia in the duodenum of B6C3F1 mice but not F344 rats. In the 2-year study, Cr(VI) exposure was additionally associated with duodenal adenomas and carcinomas in mice only. Subsequent 13-week Cr(VI) studies conducted by another group demonstrated non-neoplastic duodenal lesions in B6C3F1 mice similar to those of the NTP study as well as mild duodenal hyperplasia in F344 rats. Because intestinal lesions in mice are the basis for proposed safety standards for Cr(VI), and the histopathology data are relevant to the mode of action, consistency (an important Hill criterion for causality) was assessed across the aforementioned studies. Two veterinary pathologists applied uniform diagnostic criteria to the duodenal lesions in rats and mice from the 4 repeated-dose studies. Comparable non-neoplastic intestinal lesions were evident in mice and rats from all 4 studies; however, the incidence and severity of intestinal lesions were greater in mice than rats. These findings demonstrate consistency across studies and species and highlight the importance of standardized nomenclature for intestinal pathology. The differences in the severity of non-neoplastic lesions also likely contribute to the differential tumor response.

  14. Loss of fructose-1,6-bisphosphatase induces glycolysis and promotes apoptosis resistance of cancer stem-like cells: an important role in hexavalent chromium-induced carcinogenesis.

    Science.gov (United States)

    Dai, Jin; Ji, Yanli; Wang, Wei; Kim, Donghern; Fai, Leonard Yenwong; Wang, Lei; Luo, Jia; Zhang, Zhuo

    2017-09-15

    Hexavalent chromium (Cr(VI)) compounds are confirmed human carcinogens for lung cancer. Our previous studies has demonstrated that chronic exposure of human bronchial epithelial BEAS-2B cells to low dose of Cr(VI) causes malignant cell transformation. The acquisition of cancer stem cell-like properties is involved in the initiation of cancers. The present study has observed that a small population of cancer stem-like cells (BEAS-2B-Cr-CSC) exists in the Cr(VI)-transformed cells (BEAS-2B-Cr). Those BEAS-2B-Cr-CSC exhibit extremely reduced capability of generating reactive oxygen species (ROS) and apoptosis resistance. BEAS-2B-Cr-CSC are metabolic inactive as evidenced by reductions in oxygen consumption, glucose uptake, ATP production, and lactate production. Most importantly, BEAS-2B-Cr-CSC are more tumorigenic with high levels of cell self-renewal genes, Notch1 and p21. Further study has found that fructose-1,6-bisphosphatase (FBP1), an rate-limiting enzyme driving glyconeogenesis, was lost in BEAS-2B-Cr-CSC. Forced expression of FBP1 in BEAS-2B-Cr-CSC restored ROS generation, resulting in increased apoptosis, leading to inhibition of tumorigenesis. In summary, the present study suggests that loss of FBP1 is a critical event in tumorigenesis of Cr(VI)-transformed cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Automated Ground-Water Sampling and Analysis of Hexavalent Chromium using a “Universal” Sampling/Analytical System

    OpenAIRE

    Venedam, Richard J.; Hartman, Mary J.; Hoffman, Dave A.; Scott R. Burge

    2005-01-01

    The capabilities of a “universal platform” for the deployment of analytical sensors in the field for long-term monitoring of environmental contaminants were expanded in this investigation. The platform was previously used to monitor trichloroethene in monitoring wells and at groundwater treatment systems (1,2). The platform was interfaced with chromium (VI) and conductivity analytical systems to monitor shallow wells installed adjacent to the Columbia River at the 100-D Area of the Hanford Si...

  16. Supercritical CO2 Assisted Synthesis of EDTA-Fe3O4 Nanocomposite with High Adsorption Capacity for Hexavalent Chromium

    Directory of Open Access Journals (Sweden)

    Gunjan Bisht

    2016-01-01

    Full Text Available Efficiency of EDTA functionalized nanoparticles in adsorption of chromium (VI from water was investigated in this study. Magnetic iron oxide nanoparticles (IONPs were synthesized by a simple chemical coprecipitation route and EDTA coating onto IONPs was attained via supercritical carbon dioxide (Sc CO2, a technology with green sustainable properties. The obtained nanoparticles were then characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR, X-ray powder diffraction (XRD, transmission electron microscopy (TEM, scanning electron microscopy (SEM, and vibrating magnetometric analysis (VSM. The synthesized nanoparticle and its modified variant were evaluated as adsorbent for chromium (VI removal from water through batch adsorption technique and the effect of analytic concentration; contact time and adsorbent concentration were studied at pH 2. The results showed higher removal efficiency for modified magnetic iron oxide nanoparticles (MIONPs (i.e., 99.9% than their nonmodified variant IONPs, that is, 34.06% for the same concentration after 18 hours of incubation. Also maximum adsorption capacity (qe = 452.26 mg/g of MIONPs attained can be related to their preparation in Sc CO2 as qe calculated from IONPs, that is, 170.33 mg/g, is lower than that of MIONPs. The adsorption data fit well with Freundlich isotherm equation while kinetic adsorption studies of chromium (VI were modeled by pseudo-second-order model.

  17. IN-VIVO EVALUATION OF HEXAVALENT CHROMIUM INDUCED DNA DAMAGE BY ALKALINE COMET ASSAY AND OXIDATIVE STRESS IN CATLA CATLA

    Directory of Open Access Journals (Sweden)

    Kantha Deivi Arunachalam

    2013-01-01

    Full Text Available In the present study, the acute toxicity of Chromium in fingerlings of Catla catla, an Indian major carp, was evaluated with renewal bioassay method. In vivo studies were designed to assess the extent of Micronucleus Assay, Comet Assay under the exposure of common heavy-metal compounds, namely, Chromium Nitrate, using Catla catla (2n = 20, as a test model. The laboratory acclimatized fishes were divided into four groups. Group I served as positive control and the other three as exposed groups for three different time durations of 7, 14 and 21 days and were subjected to uninterrupted sub lethal concentrations (50% of 96 h LC50. The experiments were planned in such a way that fish from all the groups were sacrificed on the same day. The frequencies of micronuclei and bi-nuclei were evaluated comparatively in peripheral erythrocytes. As a result, it was observed that, the fishes and different tissues showed differential sensitivity to the heavy-metal treatment. A significant increase in the frequencies of micronucleated and binucleated cells and percentage increase in DNA tail (pCatla catla during sub lethal toxicity study was also calculated.

  18. Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation.

    Science.gov (United States)

    Liao, Yingping; Min, Xiaobo; Yang, Zhihui; Chai, Liyuan; Zhang, Shujuan; Wang, Yangyang

    2014-01-01

    Chemical and microbial methods are the main remediation technologies for chromium-contaminated soil. These technologies have progressed rapidly in recent years; however, there is still a lack of methods for evaluating the chemical and biological quality of soil after different remediation technologies have been applied. In this paper, microbial remediation with indigenous bacteria and chemical remediation with ferrous sulphate were used for the remediation of soils contaminated with Cr(VI) at two levels (80 and 1,276 mg kg(-1)) through a column leaching experiment. After microbial remediation with indigenous bacteria, the average concentration of water-soluble Cr(VI) in the soils was reduced to less than 5.0 mg kg(-1). Soil quality was evaluated based on 11 soil properties and the fuzzy comprehensive assessment method, including fuzzy mathematics and correlative analysis. The chemical fertility quality index was improved by one grade using microbial remediation with indigenous bacteria, and the biological fertility quality index increased by at least a factor of 6. Chemical remediation with ferrous sulphate, however, resulted in lower levels of available phosphorus, dehydrogenase, catalase and polyphenol oxidase. The result showed that microbial remediation with indigenous bacteria was more effective for remedying Cr(VI)-contaminated soils with high pH value than chemical remediation with ferrous sulphate. In addition, the fuzzy comprehensive evaluation method was proven to be a useful tool for monitoring the quality change in chromium-contaminated soils.

  19. Hexavalent chromium induces energy metabolism disturbance and p53-dependent cell cycle arrest via reactive oxygen species in L-02 hepatocytes.

    Science.gov (United States)

    Xiao, Fang; Feng, Xiaotao; Zeng, Ming; Guan, Lan; Hu, Qingqing; Zhong, Caigao

    2012-12-01

    Hexavalent chromium [Cr(VI)] has become a non-negligible pollutant in the world. Cr(VI) exposure leads to severe damage to the liver, but the mechanisms involved in Cr(VI)-mediated toxicity in the liver are unclear. The present study aimed to explore whether Cr(VI) induces energy metabolism disturbance and cell cycle arrest in human L-02 hepatocytes. We showed that Cr(VI) inhibited state 3 respiration, respiratory control rate (RCR), and subsequently induced energy metabolism disturbance with decreased ATP production. Interestingly, cell cycle analysis by flow cytometry and protein expression analysis by western blotting revealed that low dose of Cr(VI) (4 uM) exposure induced S phase cell cycle arrest with decreased mediator of replication checkpoint 1 (Mrc1) and cyclin-dependent kinase 2 (CDK2), while higher doses of Cr(VI) (16, 32 uM) exposure resulted in G2/M phase arrest with decreased budding uninhibited by benzimidazoles-related 1 (BubR1) and cell division cycle 25 (CDC25). Mechanism study revealed that Cr(VI) decreased the activities of mitochondrial respiratory chain complex (MRCC) I and II, thus leading to ROS accumulation. Moreover, inhibiting ROS production by antioxidant N-acetyl-L-cysteine (NAC) rescued Cr(VI)-induced ATP depletion and cell cycle arrest. ROS-mediated p53 activation was found to involve in Cr(VI)-induced cell cycle arrest, and p53 inhibitor Pifithrin-α (PFT-α) rescued Cr(VI)-induced reduction of check point proteins Mrc1 and BubR1, thus inhibiting cell cycle arrest. In summary, the present study provides experimental evidence that Cr(VI) leads to energy metabolism disturbance and p53-dependent cell cycle arrest via ROS in L-02 hepatocytes.

  20. Methylation levels of P16 and TP53 that are involved in DNA strand breakage of 16HBE cells treated by hexavalent chromium.

    Science.gov (United States)

    Hu, Guiping; Li, Ping; Li, Yang; Wang, Tiancheng; Gao, Xin; Zhang, Wenxiao; Jia, Guang

    2016-05-13

    The correlations between methylation levels of p16 and TP53 with DNA strand breakage treated by hexavalent chromium [Cr(VI)] remain unknown. In this research, Human bronchial epithelial cells (16HBE cells) in vitro and bioinformatics analysis were used to analyze the epigenetic role in DNA damage and potential biomarkers. CCK-8 and single cell gel electrophoresis assay were chosen to detect the cellular biological damage. MALDI-TOF-MS was used to detect the methylation levels of p16 and TP53. qRT-PCR was used to measure their expression levels in different Cr(VI) treatment groups. The transcription factors with target sequences of p16 and TP53 were predicted using various bioinformatics software. The findings showed that the cellular toxicity and DNA strand damage were Cr(VI) concentration dependent. The hypermethylation of CpG1, CpG31 and CpG32 of p16 was observed in Cr(VI) treated groups. There was significant positive correlation between the CpG1 methylation level of p16 and cell damage. In Cr(VI) treated groups, the expression level of p16 was lower than that in control group. The expression level of TP53 increased when the Cr(VI)concentration above 5μM. About p16, there was significant negative correlation between the CpG1 methylation levels with its expression level. A lot of binding sites for transcription factors existed in our focused CpG islands of p16. All the results suggested that the CpG1 methylation level of p16 could be used as a biomarker of epigenetic effect caused by Cr(VI) treatment, which can enhance cell damage by regulating its expression or affecting some transcription factors to combine with their DNA strand sites.

  1. Use of RSM modeling for optimizing decolorization of simulated textile wastewater by Pseudomonas aeruginosa strain ZM130 capable of simultaneous removal of reactive dyes and hexavalent chromium.

    Science.gov (United States)

    Maqbool, Zahid; Hussain, Sabir; Ahmad, Tanvir; Nadeem, Habibullah; Imran, Muhammad; Khalid, Azeem; Abid, Muhammad; Martin-Laurent, Fabrice

    2016-06-01

    Remediation of colored wastewater loaded with dyes and metal ions is a matter of interest nowadays. In this study, 220 bacteria isolated from textile wastewater were tested for their potential to decolorize each of the four reactive dyes (reactive red-120, reactive black-5, reactive yellow-2, and reactive orange-16) in the presence of a mixture of four different heavy metals (Cr, Zn, Pb, Cd) commonly found in textile effluents. Among the tested bacteria, the isolate ZM130 was found to be the most efficient in decolorizing reactive dyes in the presence of the mixture of heavy metals and was identified as Pseudomonas aeruginosa strain ZM130 by 16S rRNA gene analysis. The strain ZM130 was highly effective in simultaneously removing hexavalent chromium (25 mg L(-1)) and the azo dyes (100 mg L(-1)) from the simulated wastewater even in the presence of other three heavy metals (Zn, Pb, Cd). Simultaneous removal of chromium and azo dyes ranged as 76.6-98.7 % and 51.9-91.1 %, respectively, after 180 h incubation. On the basis of quadratic polynomial equation and response surfaces given by the response surface methodology (RSM), optimal salt content, pH, carbon co-substrate content, and level of multi-metal mixtures for decolorization of reactive red-120 in a simulated textile wastewater by the strain ZM130 were predicted to be 19.8, 7.8, and 6.33 g L(-1) and a multi-metal mixture (Cr 13.10 mg L(-1), Pb 26.21 mg L(-1), Cd 13.10 mg L(-1), Zn 26.21 mg L(-1)), respectively. Moreover, the strain ZM130 also exhibited laccase and nicotinamide adenine dinucleotide (reduced)-dichlorophenolindophenol reductase (NADH-DCIP reductase) activity during the decolorization of reactive red-120. However, the laccase activity was found to be maximum in the presence of 300 mg L(-1) of the dye as compared to other concentrations. Hence, the isolation of this strain might serve as a potential bio-resource required for developing the strategies aiming at bioremediation of the

  2. Foam separation of chromium (Ⅵ) from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    JIAO Cai-shan; DING Yan

    2009-01-01

    Removal of chromium (Ⅵ) dissolved in water by intermittent foam separation was implemented with cetyl trimethy-ammonium bromide as surfactant. The influence of various factors on removal efficiency was systematically studied. The removal efficiency has a maximum value near pH 4.0; thus, most experiments were carried out at pH 4.0. The orthogonal experiment was conducted to confirm the optimal operating parameters. The orthogonal experimental results show that when the liquid feed concentration is 10 mg/L, the pH value of feed solution is 4.00, air flow rates 0.9 L/min, surfactant dosage is 300 mg/L, the maximum removal efficiency of chromium (Ⅵ) reaches 97.80%, and condense multiple reaches 1711. The kinetic test indicates that the foam separation of chromium is a first-order process. The equivalent rate constant calculated from the slope is 0.406 4, and the equivalent rate equation is obtained.

  3. CHROMIUM INDUCED CYTOTOXICITY IN BLACKGRAM (VIGNA MUNGO L.

    Directory of Open Access Journals (Sweden)

    A. Chidambaram ، P. Sundaramoorthy ، A. Murugan ، K. Sankar Ganesh ، L. Baskaran

    2009-01-01

    Full Text Available Chromium is known to be highly toxic to biological systems. This study was designed to determine the mutagenic effects of different concentrations (0, 10, 25, 50, 100 and 200 mg/L of hexavalent chromium on root tip cells of blackgram (Vigna mungo L. Hepper. The blackgram seeds were equi-spacially arranged in sterilized petriplates lined with filter paper and they were treated with different concentrations of chromium solution. In germination studies, the morphological growth parameters such as germination percentage, root length, shoot length fresh weight and dry weight of blackgram seedlings were decreased with increasing dose of chromium concentrations. No germination of blackgram seeds was recorded at 300mg/l chromium concentration. Chromosome aberration assay was used to determine the mitotic indices and rate of chromosome aberration in blackgram root tip cells due to chromium treatment. The results showed that the mitotic indices were complicated due to different concentrations of chromium. However, the increase in chromium concentration has led to a gradual increase in the percentage of chromosomal aberration and mitotic index. The chromosome length, absolute chromosome length and average chromosome lengths were gradually found to decrease. There was no considerable change in 2n number of chromosome with the increase in chromium concentrations. It is concluded that the hexavalent chromium has significant mutagenic effect on the root tip cells of blackgram.

  4. Comparative cytotoxicity and genotoxicity of soluble and particulate hexavalent chromium in human and hawksbill sea turtle (Eretmochelys imbricata) skin cells.

    Science.gov (United States)

    Young, Jamie L; Wise, Sandra S; Xie, Hong; Zhu, Cairong; Fukuda, Tomokazu; Wise, John Pierce

    2015-12-01

    Chromium is both a global marine pollutant and a known human health hazard. In this study, we compare the cytotoxicity and genotoxicity of both soluble and particulate chromate in human and hawksbill sea turtle (Eretmochelys imbricata) skin fibroblasts. Our data show that both soluble and particulate Cr(VI) induce concentration-dependent increases in cytotoxicity, genotoxicity, and intracellular Cr ion concentrations in both human and hawksbill sea turtle fibroblasts. Based on administered concentration, particulate and soluble Cr(VI) were more cytotoxic and clastogenic to human cells than sea turtle cells. When the analysis was based on the intracellular concentration of Cr, the data showed that the response of both species was similar. The one exception was the cytotoxicity of intracellular Cr ions from soluble Cr(VI), which caused more cytotoxicity in sea turtle cells (LC50=271μM) than that of human cells (LC50=471μM), but its clastogenicity was similar between the two species. Thus, adjusting for differences in uptake indicated that the explanation for the difference in potency was mostly due to uptake rather than differently affected mechanisms. Overall these data indicate that sea turtles may be a useful sentinel for human health responses to marine pollution.

  5. Aerosol-Assisted Self-Assembly of Reticulated N-Doped Carbonaceous Submicron Spheres for Effective Removal of Hexavalent Chromium.

    Science.gov (United States)

    He, Jiawei; Long, Yuan; Wang, Yiyan; Wei, Chaoliang; Zhan, Jingjing

    2016-07-01

    This Research Article described a facile one-step method to prepare reticulated N-doped carbonaceous submicron spheres. Through a simple aerosol-assisted technology, glucosamine sulfate used as a carbon source was aerosolized and carbonized to functionalized carbonaceous submicron spheres. The electrostatic attraction between protonated amino groups and sulfate in the aerosol droplets induced a self-assembly and led to the formation of reticular structure, avoiding the use of templates. Compared to bare carbonaceous materials produced from glucose, reticulated N-doped carbonaceous spheres exhibit higher efficiency in the removal of Cr(VI), where the doping of element nitrogen led to electrostatic attraction between protonated nitrogen and chromium ions, and reticulated structure created relatively higher surface area and pore volume, facilitating materials to contact with Cr(VI) ions. XPS characterization proved these novel N-doped carbonaceous materials could effectively transform Cr(VI) to less toxic Cr(III) because of the surface reducing groups. For the practical application, several factors including the initial pH, materials dosage and recycle numbers on the removal performance were studied.

  6. Natural occurrence of hexavalent chromium in a sedimentary aquifer in Urânia, State of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Christine Bourotte

    2009-06-01

    Full Text Available Anomalous concentrations of hexavalent chromium have been detected in ground-water of the Adamantina Aquifer inat least 54 municipalities located in the northwestern region of the State of São Paulo, southeast Brazil, occasionallyexceeding the permitted limit for human consumption (0.05 mg.L-1. An investigation was conducted in the municipality of Urânia, where the highest concentrations of chromium were detected regionally. It was defined that the originof this contamination is natural, since high concentrations of chromium were detected in aquifer sandstones (averageof 221 ppm and also in pyroxenes (6000 ppm, one of the main heavy minerals found in the sediments. Besides, noother possible diffuse or point sources of contamination were observed in the study area. Stratification of ground-waterquality was observed and the highest concentrations of Cr6+ were detected at the base of the aquifer (0.12 mg.L-1,where ground-water shows elevated values for redox potential (472.5 mV and pH (8.61. The origin of Cr6+ in water may be associated with the weathering of pyroxene (augite, followed by the oxidation of Cr3+ by manganese oxides. The highest concentrations of Cr6+ are probably related to desorption reactions, due to the anomalous alkaline pHfound in ground-water at the base of the aquifer.Concentrações anômalas de cromo hexavalente foram detectadas em águas subterrâneas do Aqüífero Adamantina em pelo menos 54 municipalidades localizadas na região noroeste do Estado de São Paulo, sudeste do Brasil, algumas vezes ultrapassando o limite máximo permitido para consumo humano (0,05 mg.L-1. Um estudo foi realizado no município de Urânia, onde as mais elevadas concentrações de cromo da região foram detectadas. A origem da contaminação foi definida como natural, pois foram detectadas concentrações de cromonos arenitos do aqüífero (média 221 ppm e em piroxênios (6000 ppm, um dos principais minerais pesados encontrados nos sedimentos

  7. Removal of hexavalent chromium from aqueous solution using polypyrrole-polyaniline nanofibers

    CSIR Research Space (South Africa)

    Bhaumik, M

    2012-02-01

    Full Text Available of Cr(VI) and temperature. The adsorption of Cr(VI) on the nanofibers surface was highly pH dependent and the kinetics of the adsorption followed the Pseudo-second-order model. The adsorption isotherm data fitted well to the Langmuir isothermal model...

  8. Effective Removal of Hexavalent Chromium from Aqueous Solutions Using Ionic Liquid Modified Graphene Oxide Sorbent

    Directory of Open Access Journals (Sweden)

    A. Nasrollahpour

    2017-10-01

    Full Text Available Ionic liquid modified reduced graphene oxide (IL-rGO was prepared and examined for chromate removal. The sorbent was characterized by N2 adsorption-desorption measurement (BET, transmission electron microscopy (TEM, powder X-ray diffraction (XRD, and X-ray photoelectron spectroscopy (XPS analysis. The sorption behavior of chromate on the ionic liquid modified reduced graphene oxide sorbent from an aqueous medium was studied by varying the parameters such as contact time, initial chromate concentration, pH, and agitation speed. The results showed that sorption kinetics of chromate by IL-rGO follows the pseudo second order, which indicates that the sorption mechanism is both chemical and physical interaction. The sorption isotherm studies revealed that Langmuir model provided the best fit to all the experimental data with an adsorption capacity of 232.55 mg g–1 for IL-rGO. Thermodynamic parameters, such as Gibbs free energy (–2.85 kJ mol–1 at 298 K, enthalpy (55.41 kJ mol–1, and entropy (11.64 J mol–1 K–1 of sorption of the chromate on ionic liquid modified reduced graphene oxide was evaluated, and it was found that the reaction was spontaneous and endothermic in nature.

  9. Titanium dioxide-gold nanocomposite materials embedded in silicate sol-gel film catalyst for simultaneous photodegradation of hexavalent chromium and methylene blue

    Energy Technology Data Exchange (ETDEWEB)

    Pandikumar, Alagarsamy [Centre for Photoelectrochemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India); Ramaraj, Ramasamy, E-mail: ramarajr@yahoo.com [Centre for Photoelectrochemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021 (India)

    2012-02-15

    Graphical abstract: Aminosilicate sol-gel supported TiO{sub 2}-Au nanocomposite material photocatalyst was prepared by deposition-precipitation method and used for the simultaneous oxidation and reduction of methyelene blue dye and Cr(VI) ions. Highlights: Black-Right-Pointing-Pointer The EDAS/(TiO{sub 2}-Au){sub nps} is used to design the solid-phase thin film photocatalyst. Black-Right-Pointing-Pointer Au promotes the interfacial electron transfer from TiO{sub 2} to Cr(VI) to form Cr(III). Black-Right-Pointing-Pointer The holes produced at the TiO{sub 2} oxidize the MB dye. Black-Right-Pointing-Pointer The EDAS/(TiO{sub 2}-Au){sub nps} film was used for the simultaneous oxidation and reduction of toxic molecules. Black-Right-Pointing-Pointer The photoinduced simultaneous redox process provides dual benefit for the environment remediation. - Abstract: Aminosilicate sol-gel supported titanium dioxide-gold (EDAS/(TiO{sub 2}-Au){sub nps}) nanocomposite materials were synthesized by simple deposition-precipitation method and characterized. The photocatalytic oxidation and reduction activity of the EDAS/(TiO{sub 2}-Au){sub nps} film was evaluated using hexavalent chromium (Cr(VI)) and methylene blue (MB) dye under irradiation. The photocatalytic reduction of Cr(VI) to Cr(III) was studied in the presence of hole scavengers such as oxalic acid (OA) and methylene blue (MB). The photocatalytic degradation of MB was investigated in the presence and absence of Cr(VI). Presence of Au{sub nps} on the (TiO{sub 2}){sub nps} surface and its dispersion in the silicate sol-gel film (EDAS/(TiO{sub 2}-Au){sub nps}) improved the photocatalytic reduction of Cr(VI) and oxidation of MB due to the effective interfacial electron transfer from the conduction band of the TiO{sub 2} to Au{sub nps} by minimizing the charge recombination process when compared to the TiO{sub 2} and (TiO{sub 2}-Au){sub nps} in the absence of EDAS. The EDAS/(TiO{sub 2}-Au){sub nps} nanocomposite materials provided

  10. Hexavalent chromium at low concentration alters Sertoli cell barrier and connexin 43 gap junction but not claudin-11 and N-cadherin in the rat seminiferous tubule culture model

    Energy Technology Data Exchange (ETDEWEB)

    Carette, Diane [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Perrard, Marie-Hélène, E-mail: marie-helene.durand@ens-lyon.fr [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Prisant, Nadia [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Gilleron, Jérome; Pointis, Georges [INSERM U 1065, Team 5 “Physiopathology of Germ Cell Control: Genomic and Non Genomic Mechanisms” C3M, University of Nice Sophia Antipolis, Nice (France); Segretain, Dominique [University of Versailles/St Quentin-en-Yvelines (France); UMR S775, University Paris Descartes, 45 rue des Saints Pères, 75006, Paris (France); Durand, Philippe [Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon I, CNRS, INRA, Ecole Normale Supérieure de Lyon, Lyon (France); Kallistem SAS Ecole Normale Supérieure de Lyon, Lyon (France)

    2013-04-01

    Exposure to toxic metals, specifically those belonging to the nonessential group leads to human health defects and among them reprotoxic effects. The mechanisms by which these metals produce their negative effects on spermatogenesis have not been fully elucidated. By using the Durand's validated seminiferous tubule culture model, which mimics the in vivo situation, we recently reported that concentrations of hexavalent chromium, reported in the literature to be closed to that found in the blood circulation of men, increase the number of germ cell cytogenetic abnormalities. Since this metal is also known to affect cellular junctions, we investigated, in the present study, its potential influence on the Sertoli cell barrier and on junctional proteins present at this level such as connexin 43, claudin-11 and N-cadherin. Cultured seminiferous tubules in bicameral chambers expressed the three junctional proteins and ZO-1 for at least 12 days. Exposure to low concentrations of chromium (10 μg/l) increased the trans-epithelial resistance without major changes of claudin-11 and N-cadherin expressions but strongly delocalized the gap junction protein connexin 43 from the membrane to the cytoplasm of Sertoli cells. The possibility that the hexavalent chromium-induced alteration of connexin 43 indirectly mediates the effect of the toxic metal on the blood–testis barrier dynamic is postulated. - Highlights: ► Influence of Cr(VI) on the Sertoli cell barrier and on junctional proteins ► Use of cultured seminiferous tubules in bicameral chambers ► Low concentrations of Cr(VI) (10 μg/l) altered the trans-epithelial resistance. ► Cr(VI) did not alter claudin-11 and N-cadherin. ► Cr(VI) delocalized connexin 43 from the membrane to the cytoplasm of Sertoli cells.

  11. Comparative evaluation of five plant extracts and juices for nanoiron synthesis and application for hexavalent chromium reduction.

    Science.gov (United States)

    Mystrioti, C; Xanthopoulou, T D; Tsakiridis, P; Papassiopi, N; Xenidis, A

    2016-01-01

    The effectiveness of five plant extracts and juices, i.e. extracts of Camellia sinensis (green tea, GT), Syzygium aromaticum (clove, CL), Mentha spicata (spearmint, SM), Punica granatum juice (pomegranate, PG) and Red Wine (RW), for the production of nanoiron suspensions and their application for Cr(VI) reduction was investigated. Polyphenols contained in extracts act as reducing agents for iron ions in aqueous solutions, forming thus iron nanoparticles, and stabilize the nanoparticles produced from further oxidation and agglomeration. The maximum amount of polyphenols extracted per g of herbs was obtained at herb mass to water volume ratio varying from 10 to 20g/L. Suspensions of nanoparticles with sizes below 60nm were produced by mixing iron chloride solution with the plant extracts and juices investigated. The maximum concentration of nanoiron in suspensions was estimated to 22mM, obtained using RW and PG at a mixing ratio of iron solution to extract equal to 2. Lower concentrations, up to 18mM, were achieved using GT and CL extracts. Therefore, PG juice and RW were considered as more effective for nanoiron production, and, together with GT extracts, they were selected for the production of nanoiron suspensions, which have been proven effective for Cr(VI) reduction, reaching removal capacity as high as 500mg Cr(VI) per g of iron in nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Development of analytical procedures for the determination of hexavalent chromium in corrosion prevention coatings used in the automotive industry.

    Science.gov (United States)

    Séby, F; Castetbon, A; Ortega, R; Guimon, C; Niveau, F; Barrois-Oudin, N; Garraud, H; Donard, O F X

    2008-05-01

    The European directive 2000/53/EC limits the use of Cr(VI) in vehicle manufacturing. Although a maximum of 2 g of Cr(VI) was authorised per vehicle for corrosion prevention coatings of key components, since July 2007 its use has been prohibited except for some particular applications. Therefore, the objective of this work was to develop direct analytical procedures for Cr(VI) determination in the different steel coatings used for screws. Instead of working directly with screws, the optimisation of the procedures was carried out with metallic plates homogeneously coated to improve the data comparability. Extraction of Cr(VI) from the metallic parts was performed by sonication. Two extraction solutions were tested: a direct water extraction solution used in standard protocols and an ammonium/ammonia buffer solution at pH 8.9. The extracts were further analysed for Cr speciation by high-performance liquid chromatography (HPLC) inductively coupled plasma (ICP) atomic emission spectrometry or HPLC ICP mass spectrometry depending on the concentration level. When possible, the coatings were also directly analysed by solid speciation techniques (X-ray photoelectron spectroscopy, XPS, and X-ray absorption near-edge structure, XANES) for validation of the results. Very good results between the different analytical approaches were obtained for the sample of coating made up of a heated paint containing Zn, Al and Cr when using the extracting buffer solution at pH 8.9. After a repeated four-step extraction procedure on the same portion test, taking into account the depth of the surface layer reached, good agreement with XPS and XANES results was obtained. In contrast, for the coatings composed of an alkaline Zn layer where Cr(VI) and Cr(III) are deposited, only the extraction procedure using water allowed the detection of Cr(VI). To elucidate the Cr(VI) reduction during extraction at pH 8.9, the reactivity of Cr(VI) towards different species of Zn generally present in the

  13. Development of analytical procedures for determination of total chromium by quadrupole ICP-MS and high-resolution ICP-MS, and hexavalent chromium by HPLC-ICP-MS, in different materials used in the automotive industry.

    Science.gov (United States)

    Séby, F; Gagean, M; Garraud, H; Castetbon, A; Donard, O F X

    2003-10-01

    A European directive was recently adopted limiting the use of hazardous substances such as Pb, Hg, Cd, and Cr(VI) in vehicle manufacturing. From July 2003 a maximum of 2 g Cr(VI) will be authorised per vehicle in corrosion-preventing coatings of key components. As no standardised procedures are available to check if produced vehicles are in agreement with this directive, the objective of this work was to develop analytical procedures for total chromium and Cr(VI) determination in these materials. The first step of this study was to optimise digestion procedures for total chromium determination in plastic and metallic materials by inductively coupled plasma mass spectrometry (ICP-MS). High resolution (HR) ICP-MS was used to examine the influence of polyatomic interferences on the detection of the (52)Cr(+) and (53)Cr(+) isotopes. If there was strong interference with m/ z 52 for plastic materials, it was possible to use quadrupole ICP-MS for m/ z 53 if digestions were performed with HNO(3)+H(2)O(2). This mixture was also necessary for digestion of chromium from metallic materials. Extraction procedures in alkaline medium (NH(4)(+)/NH(3) buffer solution at pH 8.9) assisted by sonication were developed for determining Cr(VI) in four different corrosion-preventing coatings by HPLC-ICP-MS. After optimisation and validation with the only solid reference material certified for its Cr(VI) content (BCR 545; welding dusts), the efficiency of this extraction procedure for screw coatings was compared with that described in the EN ISO 3613 standard generally used in routine laboratories. For coatings comprising zinc and aluminium passivated in depth with chromium oxides the extraction procedure developed herein enabled determination of higher Cr(VI) concentrations. This was also observed for the screw covered with a chromium passivant layer on zinc-nickel. For coating comprising a chromium passivant layer on alkaline zinc the standardized extraction procedure was more efficient

  14. Investigation of the adsorption-reduction mechanisms of hexavalent chromium by ramie biochars of different pyrolytic temperatures.

    Science.gov (United States)

    Zhou, Lu; Liu, Yunguo; Liu, Shaobo; Yin, Yicheng; Zeng, Guangming; Tan, Xiaofei; Hu, Xi; Hu, Xinjiang; Jiang, Luhua; Ding, Yang; Liu, Shaoheng; Huang, Xixian

    2016-10-01

    To investigate the relationship between Cr(VI) adsorption mechanisms and physio-chemical properties of biochar, ramie residues were oxygen-limited pyrolyzed under temperature varying from 300 to 600°C. Batch adsorption experiments indicated that higher pyrolysis temperature limits Cr(VI) sorption in terms of capacity and affinity due to a higher aromatic structure and fewer polar functional groups in biochar. Both electrostatic (physical) and ionic (chemical) interactions were involved in the Cr(VI) removal. For low-temperature biochar, the simple physical adsorption was limited and the significant improvement in Cr(VI) sorption was attributed to abundant carboxyl and hydroxyl groups. The adsorption-reduction mechanisms could be concluded that Cr(VI) ions were electrostatically attracted by the positively charged biochar surface and reduced to Cr(III), and then the converted Cr(III) was retained or discharged into the solution. The study demonstrates ramie residues can be converted into biochar as a low-cost and effective sorbent for Cr(VI) removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effect of pH and chloride concentration on the removal of hexavalent chromium in a batch electrocoagulation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Arroyo, M.G. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Perez-Herranz, V., E-mail: vperez@iqn.upv.es [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain); Montanes, M.T.; Garcia-Anton, J.; Guinon, J.L. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera s/n, 46022 Valencia (Spain)

    2009-09-30

    In this work, the effect of pH and chloride ions concentration on the removal of Cr(VI) from wastewater by batch electrocoagulation using iron plate electrodes has been investigated. The initial solution pH was adjusted with different concentrations of H{sub 2}SO{sub 4}. The presence of chloride ions enhances the anode dissolution due to pitting corrosion. Fe{sup 2+} ions formed during the anode dissolution cause the reduction of Cr(VI) to form Cr(III), which are co-precipitated with Fe{sup 3+} ions at relatively low pH. The reduction degree of Cr(VI) to Cr(III) and the solubility of metal hydroxide species (both chromic and iron hydroxides) depend on pH. At higher concentrations of H{sub 2}SO{sub 4}, the reduction of Cr(VI) to Cr(III) by Fe{sup 2+} ions is preferred, but the coagulation of Fe{sup 3+} and Cr(III) is favoured at the lower H{sub 2}SO{sub 4} concentrations.

  16. Adsorption of Chromium(VI) from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins

    OpenAIRE

    2013-01-01

    Removal of chromium(VI) from wastewater is essential as it is toxic. Thus, removal of chromium(VI) was performed using coffee polyphenol-formaldehyde/acetaldehyde resins as adsorbents. Adsorbent resins were prepared by condensation of decaffeinated coffee powder with formaldehyde/acetaldehyde and used for the removal of Cr(VI) ions from aqueous solutions. A simple and sensitive solid phase extraction procedure was applied for the determination of chromium at trace levels by spectroscopic meth...

  17. Solution growth of silicon carbide using unary chromium solvent

    Science.gov (United States)

    Miyasaka, Ryo; Kawanishi, Sakiko; Narumi, Taka; Sasaki, Hideaki; Yoshikawa, Takeshi; Maeda, Masafumi

    2017-02-01

    Solution growth of silicon carbide (SiC) using unary chromium (Cr) solvent was studied because the system enables a high solubility difference and a low degree of supersaturation, which would lead to rapid growth with a stabilized growth interface. The liquidus composition at SiC saturation in a quasi-binary Cr-SiC system was studied at 1823-2173 K. The measured carbon (C) contents are in good agreement with the thermodynamic evaluation using the sub-regular solution model. In addition, growth experiments using a unary Cr solvent were performed by the bottom-seeded travelling solvent method. The obtained growth rates at 1803-1923 K with a temperature difference of 15-70 K were proportional to the solubility difference between the seed and source temperatures, indicating that the growth was controlled by the mass transfer of C in the solution. The maximum growth rate of 720 μm/h at 1803 K was much higher than the growth rate by Si-rich solvents, suggesting that the Cr-rich solvent is suitable for the rapid growth at a low temperature.

  18. Chromium

    Science.gov (United States)

    ... Intern Med 1991;115:917-24. Abraham AS, Brooks BA, Eylath U. The effects of chromium supplementation on serum glucose and lipids in patients with and without non-insulin-dependent diabetes. Metabolism 1992;41:768-71. Hermann J, Arquitt A. ...

  19. The regeneration and recycle of chromium etching solutions using concentrator cell membrane technology.

    Science.gov (United States)

    Chaudhary, Abdul J; Ganguli, Bijita; Grimes, Susan M

    2006-02-01

    The regeneration of chromium (VI) and the recovery of etched copper from chromium etching solutions by electrodialysis is improved by the addition of a concentrator cell in the catholyte chamber. The concentrator media used are ion-exchange resins or activated carbon cloth. The maximum percentages for the regeneration of chromium and recovery of copper in these systems is however less than 80% and 90% respectively because of the competition between the processes of oxidation of Cr(III) and electrodeposition of copper. A novel combination of electrolysis with electrodialysis and concentrator cell technology is developed that achieves 92% chromium regeneration and 90% copper recovery.

  20. Extractive removal of chromium (VI) from industrial waste solution.

    Science.gov (United States)

    Agrawal, Archana; Pal, Chandana; Sahu, K K

    2008-11-30

    Extractive removal of Cr (VI) was carried out from chloride solutions using cyanex 923 mixed with kerosene. The efficiency of this extractant was studied under various experimental conditions, such as concentration of different mineral acids in the aqueous phase, concentration of cyanex 923 and Cr (VI) present in the initial aqueous feed, temperature and time of extraction, organic to aqueous (O/A) phase ratio. Percentage Cr (VI) extraction decreases with the increase in temperature at varying concentration of cyanex 923. The interference of the impurities usually associated with Cr (VI) such as Cr (III), Cu, Ni, Fe (II), Zn, Chloride and sulphate, etc., were examined under the optimized conditions and only Zn was found to interfere. Under the optimum experimental conditions 98.6-99.9% of Cr (VI) was extracted in 3-5 min at O/A of 2 with the initial feed concentration of 1g/L of Cr (VI). The extracted Cr (VI) was quantitatively stripped with 1M NaOH and the organic phase obtained after the stripping of Cr (VI) was washed with dilute HCl solution to neutralize any NaOH trapped/adhered to the solvent and then with distilled water. This regenerated solvent was reused in succeeding extraction of chromium (VI). Finally a few experiments were performed with the synthetic effluent from an electroplating industry.

  1. Comparison of Field Groundwater Biostimulation Experiments Using Polylactate and Lactate Solutions at the Chromium-Contaminated Hanford 100-H Site

    Science.gov (United States)

    Hazen, T. C.; Faybishenko, B.; Beller, H. R.; Brodie, E. L.; Sonnenthal, E. L.; Steefel, C.; Larsen, J.; Conrad, M. E.; Bill, M.; Christensen, J. N.; Brown, S. T.; Joyner, D.; Borglin, S. E.; Geller, J. T.; Chakraborty, R.; Nico, P. S.; Long, P. E.; Newcomer, D. R.; Arntzen, E.

    2011-12-01

    The primary contaminant of concern in groundwater at the DOE Hanford 100 Area (Washington State) is hexavalent chromium [Cr(VI)] in Hanford coarse-grained sediments. Three lactate injections were conducted in March, August, and October 2010 at the Hanford 100-H field site to assess the efficacy of in situ Cr(VI) bioreductive immobilization. Each time, 55 gal of lactate solution was injected into the Hanford aquifer. To characterize the biogeochemical regimes before and after electron donor injection, we implemented a comprehensive plan of groundwater sampling for microbial, geochemical, and isotopic analyses. These tests were performed to provide evidence of transformation of toxic and soluble Cr(VI) into less toxic and poorly soluble Cr(III) by bioimmobilization, and to quantify critical and interrelated microbial metabolic and geochemical mechanisms affecting chromium in situ reductive immobilization and the long-term sustainability of chromium bioremediation. The results of lactate injections were compared with data from two groundwater biostimulation tests that were conducted in 2004 and 2008 by injecting Hydrogen Release Compound (HRC°), a slow-release glycerol polylactate, into the Hanford aquifer. In all HRC and lactate injection tests, 13C-labeled lactate was added to the injected solutions to track post-injection carbon pathways. Monitoring showed that despite a very low initial total microbial density (from 107 cells/mL (including sulfate- and nitrate-reducing bacteria), resulting in a significant decrease in soluble Cr(VI) concentrations to below the MCL. In all tests, lactate was consumed nearly completely within the first week, much faster than HRC. Modeling of biogeochemical and isotope fractionation processes with the reaction-transport code TOUGHREACT captured the biodegradation of lactate, fermentative production of acetate and propionate, the evolution of 13C in bicarbonate, and the rate of sulfate reduction. In contrast to the slow-release HRC

  2. Study of Removal of Hexavalent Chromium in Textile Wastewater of Phragmites Australis Wetland%芦苇湿地去除印染污水铬离子的研究

    Institute of Scientific and Technical Information of China (English)

    宋惠娟

    2013-01-01

      研究了芦苇人工湿地对印染污水中铬离子的去除和吸附作用,采用了意大利城市普拉托用芦苇人工湿地对印染工业废水处理厂排出的废水进行后处理的净化过程的近10年的研究数据,结果表明:六价铬离子和三价铬离子的去除率分别达到72%和26%,这是一个投入实际使用并且可持续发展方案。%This article studies the removal of chromium ions in textile wastewater in a wetland and analyzes in details based on the data collected from a ten -year study in a full -scale subsurface horizontal flow con-structed wetland planted with Phragmites australis in the city of Prato (Italy) .The results show that the re-moval rate of hexavalent and trivalent chromium reach 72% and 26% ,respectively ,w hich prove that it is a applicable and sustainable method ..

  3. Influence of detergent washing powders on minimal eliciting patch test concentrations of nickel and chromium.

    Science.gov (United States)

    Allenby, C F; Goodwin, B F

    1983-11-01

    Minimum eliciting levels of nickel have been estimated in 25 nickel-sensitive subjects, and of chromium in 14 chromium-sensitive subjects by patch tests with aqueous solutions of the respective metals. The minimum level of each metal required to provoke a patch test reaction was considerably greater than that found in fabric washing powder solutions and was in the majority of patients tested of the order of 112 ppm nickel (0.05% nickel sulphate) or 885 ppm hexavalent chromium (0.25% potassium dichromate). One nickel-sensitive subject and one chromium-sensitive subject reacted to 1 ppm of the respective metal. Fabric washing powder did not significantly alter the patch test reaction to nickel sulphate or provoke reactions in nickel- or chromium-sensitive subjects. EDTA significantly reduced the number and severity of patch test reactions to nickel sulphate but not those to potassium dichromate or trivalent chromium.

  4. Simultaneous determination of chromium(III) and chromium(VI) in aqueous solutions by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Jøns, O; Nielsen, B

    1992-01-01

    A method for the simultaneous determination of chromium(iii) and chromium(vi) in a flow system based on chemiluminescence was developed. A Dionex cation-exchange guard column was used to separate chromium(iii) from chromium(vi), and chromium(vi) was reduced by potassium sulfite, whereupon both...

  5. Comparison of the effects of hexavalent chromium in the alimentary canal of F344 rats and B6C3F1 mice following exposure in drinking water: implications for carcinogenic modes of action.

    Science.gov (United States)

    Thompson, Chad M; Proctor, Deborah M; Suh, Mina; Haws, Laurie C; Hébert, Charles D; Mann, Jill F; Shertzer, Howard G; Hixon, J Gregory; Harris, Mark A

    2012-01-01

    Exposure to high concentrations of hexavalent chromium (Cr[VI]) in drinking water is reported to induce oral mucosa tumors in F344 rats and intestinal tumors in B6C3F1 mice. To investigate the modes of action underlying these tumors, 90-day drinking water studies (with interim necropsy at day 8) were conducted with concentrations of 0.1-182 mg/l Cr(VI), administered as 0.3-520 mg/l sodium dichromate dihydrate. Blood and tissue samples were analyzed for chromium content, oxidative stress, iron levels, and gross and microscopic lesions. Results for the F344 rats are described herein and compared with results from B6C3F1 mice published previously. After 90 days of exposure, total chromium concentrations in the rat and mouse oral mucosae were comparable, yet significant dose-dependent decreases in the reduced-to-oxidized glutathione ratio (GSH/GSSG) were observed only in rats. In the duodenum, changes in GSH/GSSG were only observed in mice. Levels of 8-hydroxydeoxyguanosine were not increased in the oral or duodenal mucosae of either species. Glutathione levels were increased in the duodenum but decreased in the jejunum of both species, indicating potential differential responses in the intestinal segments. Histiocytic infiltration was observed in the duodenum of both species, yet duodenal cytokines were repressed in mice but increased in rats. Serum and bone marrow iron levels were more decreased in rats than mice. Collectively, these data suggest that Cr(VI)-induced carcinogenesis in the rodent alimentary canal involves oxidative stress; however, differences in histopathology, cytokines, and iron status suggest potential contributions from other factors as well.

  6. Hexavalent chromium recovery by liquid–liquid extraction with 2-octylaminopyridine from acidic chloride media and its sequential separation from other heavy toxic metal ions

    OpenAIRE

    C.P. Mane; S.V. Mahamuni; S. S. Kolekar; Han, S. H.; M. A. ANUSE

    2016-01-01

    A systematic study of extraction of chromium(VI) with 2-octylaminopyridine (2-OAP) in xylene at room temperature has been conducted. Quantitative extraction of chromium(VI) was observed in the 0.4–0.8 M concentration range of hydrochloric acid. From the extracted complex species in the organic phase, chromium(VI) was back extracted with 7 N ammonia (3 × 10 mL), and was determined by spectrophotometric method. Various parameters such as 2-OAP concentration, equilibrium period, effect of variou...

  7. Removal of chromium(VI) from aqueous solutions by polymer inclusion membranes.

    Science.gov (United States)

    Kozlowski, Cezary A; Walkowiak, Wladyslaw

    2002-11-01

    The transport through polymer inclusion membranes (PIMs) was found as the effective and selective method of chromium(VI) anions removal from chloride acidic aqueous solutions. The optimal PIMs content was as follows: 41 wt% of cellulose triacetate as the support, 23 wt% of tri-n-octylamine as the ionic carrier, and 36 wt% of o-nitrophenyl pentyl ether as the plasticizer. The results obtained show a linear decrease of permeability coefficient and initial flux values with source phase pH increase. Also linear decrease of initial flux in log-log scale with chromium(VI) concentration increase was observed. Value of slope of this relationship was found to be 0.96 which indicates a first order of chromium(VI) reaction with tri-n-octylamine at membrane/aqueous source interface. Transport of chromium(VI) through PIMs reduces the concentration of chromium(VI) in source aqueous phase from 1.0 to 0.0028 ppm, which is below permissible limit in drinking water in Poland. Competitive transport of chromium(VI), cadmium(II), zinc(II), and iron(III) from acidic aqueous solution across PIMs was found to be efficient for chromium(VI) (99%), and cadmium(II) (99%).

  8. Hexavalent chromium recovery by liquid–liquid extraction with 2-octylaminopyridine from acidic chloride media and its sequential separation from other heavy toxic metal ions

    Directory of Open Access Journals (Sweden)

    C.P. Mane

    2016-11-01

    Full Text Available A systematic study of extraction of chromium(VI with 2-octylaminopyridine (2-OAP in xylene at room temperature has been conducted. Quantitative extraction of chromium(VI was observed in the 0.4–0.8 M concentration range of hydrochloric acid. From the extracted complex species in the organic phase, chromium(VI was back extracted with 7 N ammonia (3 × 10 mL, and was determined by spectrophotometric method. Various parameters such as 2-OAP concentration, equilibrium period, effect of various diluents, aqueous: organic volume ratio, acidity and diverse ions were studied. The extraction reaction proceeds with ion-pair formation and the stoichiometry of extracted species was found to be [(2OAPH+ CrO3Cl−](org. The separation and determination of chromium(VI from associated and toxic metals in binary, ternary and multicomponent mixture were carried out. The method permits the sequential separation of chromium(VI from other toxic metals and has been used to separate and determine chromium(VI from alloys, and effluent water samples from tannery industries.

  9. REMOVAL OF LEAD AND CHROMIUM FROM AQUEOUS SOLUTION BY BACILLUS CIRCULANS BIOFILM

    Directory of Open Access Journals (Sweden)

    A. Khanafari, S. Eshghdoost, A. Mashinchian

    2008-07-01

    Full Text Available The different methods are used for the removal of heavy metals as important contaminants in water and wastewater. Biosorption is an alternative to traditional physicochemical in removing toxic metals from wastewaters and groundwater resources. In this study biosorption of lead and chromium ions from solution was studied using Bacillus circulans isolated from Anzali wetland in batch and biofilter modes and optimum conditions were determined. The experimental results showed 900-950 mg/L and 1050-1100 mg/L, for minimum bactericidal concentration and minimum inhibitory concenteration for lead and chromium, respectively. Results of metal concentration in solution containing 500 mg/L in batch culture showed a reduction about 65% and 48% in five and four days for lead and chromium, respectively. The highest value of lead and chromium uptake in solution with 500 mg/L was 78% and 40% in biofilter mode, respectively. The biosorption of lead and chromium were increased up to pH=5.5, 6, 5.5 and 7, respectively. In the other hand, maximum sorption occurred at neutral pH. There was a significant decreasing of biosorption levels by lowering pH fewer than 3. Accumulation of lead and chromium was determined by scanning electron microscopy analysis of the biofilm exposed to 500 mg/L metal concentration. Based on this analysis, the highest metal concentrations were observed in regions with including bacteria.

  10. A study on treatment of hexavalent chromium containing wastewater by reduction-flocculation process%还原絮凝法处理废水中Cr6+的研究

    Institute of Scientific and Technical Information of China (English)

    汪洋; 刘淼; 刘南; 陈嵩岳

    2011-01-01

    利用阴阳离子聚合物与Na2S和FeSO4结合共同处理含有Cr6+的废水.选择Na2S和FeSO4作为还原剂,明胶、PAM作为絮凝剂.运用正交实验设计方法处理数据,最终得出最佳反应条件:当Cr6+初始浓度为20 mg/L时,Na2S投加反应浓度为24.70 mg/L,FeSO4投加反应浓度为25 mg/L,明胶投加反应浓度为100 mg/L,PAM投加反应浓度为10.0 mg/L;pH值为9.0时,处理后Cr6+浓度可达到0.28 mg/L,去除率为98.6%.%Utilize anionic polymers and cationic polymers combine with sodium sulfide(Na2S) and ferrous sulfate(FeSO4) to deal with hexavalent chromium containing wastewater. Na2S and FeSO4 are selected as reductant while gelatin and PAM are used for sedimentation. As to the data analysis, orthogonal experiments are used to design the whole research. Optimal treatment conditions for wastewater containing hexavalent chromium are determined through this process. The Cr6+ removal rate maintained 98. 6% and the concentration was 0.28 mg/L when experimental conditions were as follows:inlet concentration of Cr6+ was 20 mg/L,Na2S was 24. 70 mg/L,FeSO4 was 25 mg/L,gelatin was 100 mg/L,PAM was 10. 0 mg/L,pH was 9.0.

  11. Removal and Recovery of Chromium from Solutions Simulating Tannery Wastewater by Strong Acid Cation Exchanger

    Directory of Open Access Journals (Sweden)

    Gulten Cetin

    2013-01-01

    Full Text Available The process in this study was conducted on removal of chromium(III in a solution simulating a typical spent chrome tanning bath by the resin having matrix of styrene-divinylbenzene-based macroporous sulphonate, Amberjet 1200Na. The column experiments were carried out with the bed volumes of the resin as 751 mL and 1016 mL for different installation systems of the laboratory-scale pilot plant. The feeding solutions in the bed volumes of 200 and 190 were used for each installation system. The regeneration behaviour of the resin was determined by using reverse regeneration procedure with the solution of hydrogen peroxide in alkaline. The regeneration kinetics of the exhausted resin was examined with a range of the solutions having different concentration series of the alkaline hydrogen peroxide. The solutions of the basic chromium sulphate were recycled for each installation system following the regeneration cycles. The chromium ions in effluent were quantitatively eluted, and satisfactory removal of chromium(III and recovery of chromium(VI were achieved.

  12. Short-term toxicity of hexavalent-chromium to epipsammic diatoms of a microtidal estuary (Río de la Plata): responses from the individual cell to the community structure.

    Science.gov (United States)

    Licursi, M; Gómez, N

    2013-06-15

    Diatoms are an integral and often dominant component of the benthic microalgal assemblage in estuarine and shallow coastal environments. Different toxic substances discharged into these ecosystems persist in the water, sediments, and biota for long periods. Among these pernicious agents, the toxicity in diatoms by metal is linked to different steps in the transmembrane and internal movements of the toxicant, causing perturbations in the normal structural and functional cellular components. These changes constitute an early, nontaxonomic warning signal that could potentially serve as an indicator of this type of pollution. The aim of this work was to study the environment-reflecting short-term responses at different levels of organization of epipsammic diatoms from the Río de la Plata estuary, Argentina that had been exposed to hexavalent chromium within experimental microcosms. To this end we monitored: (i) changes in the proportion of the diatoms in relation to other algal groups at the biofilm community level; (ii) shifts in species composition at the diatom-assemblage level; (iii) projected changes in the densities of the most representative species at the population level through comparison of relative growth rates and generation times; and (iv) the cytological changes at the cellular and subcellular levels as indicated by the appearance of teratological effects on individuals and nuclear alterations. The epipsammic biofilms were exposed for 96 h to chromium at a concentration similar to that measured in highly impacted sites along the coast (80 μg L⁻¹). Chromium pollution, at this concentration and short exposure time did not affect the algal biomass and density of these mature biofilms. The biofilm composition, however, did change, as reflected in a decline in cyanophytes and an increment in the proportions of diatoms and chlorophytes; with Hippodonta hungarica, Navicula novaesiberica, Nitzschia palea, and Sellaphora pupula being the most frequent and

  13. Effect of Ionic and Chelate Assisted Hexavalent Chromium on Mung Bean Seedlings (Vigna radiata L. wilczek. var k-851 During Seedling Growth

    Directory of Open Access Journals (Sweden)

    Mohanty, Monalisa

    2013-04-01

    Full Text Available The effect of Cr+6 with and without chelating agents were assessed in mung bean seedlings grown hydroponically. It was noted that the growth parameters showed a declining trend with increasing Cr+6 concentrations without chelate application. Among the seedlings grown with chelated chromium complexes, Cr+6–DTPA (10µM showed highest growth rate of roots as well as shoots. At higher concentration of Chromium i.e. Cr+6 (100µM, there exhibited high chlorophyll content in mung bean leaves where the seedlings showed stunted growth. The seedlings treated without and with chelated chromium complexes showed increased proline content as compared to control. The enzymatic study showed that, the catalase activity was maximum in shoots as compared to roots and the reverse is true in the case of peroxidase activity i.e. the roots showed higher value than that of the shoots.

  14. EXPERIMENTAL INVESTIGATION ON CHROMIUM(VI REMOVAL FROM AQUEOUS SOLUTION USING ACTIVATED CARBON RESORCINOL FORMALDEHYDE XEROGELS

    Directory of Open Access Journals (Sweden)

    Eghe A. Oyedoh

    2016-10-01

    Full Text Available The adsorption of chromium(VI metal ion in aqueous solutions by activated carbon resorcinol formaldehyde xerogels (ACRF was investigated. The results showed that pore structure, surface area and the adsorbent surface chemistry are important factors in the control of the adsorption of chromium(VI metal ions. The isotherm parameters were obtained from plots of the isotherms and from the application of Langmuir and Freundlich Isotherms. Based on regression analysis, the Langmuir isotherm model was the best fit. The maximum adsorption capacity of ACRF for chromium (VI was 241.9 mg/g. The pseudo-second-order kinetic model was the best fit to the experimental data for the adsorption of chromium metal ions by activated carbon resorcinol formaldehyde xerogels. The thermodynamics of Cr(VI ions adsorption onto ACRF was a spontaneous and endothermic process.

  15. Chromium speciation in human blood samples based on acetyl cysteine by dispersive liquid-liquid biomicroextraction and in-vitro evaluation of acetyl cysteine/cysteine for decreasing of hexavalent chromium concentration.

    Science.gov (United States)

    Shirkhanloo, Hamid; Ghazaghi, Mehri; Mousavi, Hassan Z

    2016-01-25

    A rapid and efficient method based on ionic liquid dispersive liquid-liquid biomicroextraction (IL-DLLBME) was used for speciation and preconcentration of Chromium (III, VI) in human blood samples before determination by electro-thermal atomic absorption spectrometer (ET-AAS). In this method, 1-hexyl-3-methylimidazolium hexafluorophosphate as a ionic liquid was dissolved in acetone as a dispersant solvent and then the binary solution was rapidly injected by a syringe into the blood samples containing Cr(III), which have already complexed by acetyl cysteine (NAC) at optimized pH. Under the optimal conditions, the linear range (LR), limit of detection (LOD) and preconcentration factor (PF) were obtained 0.03-4.4 μg L(-1), 0.005 μg L(-1) and 10 respectively (RSD cysteine (Cys) as a prodrug of NAC can decrease the concentration of Cr(VI) in blood samples and human body. Validation of methodology was confirmed by standard reference material (SRM).

  16. Antigenotoxic and Apoptotic Activity of Green Tea Polyphenol Extracts on Hexavalent Chromium-Induced DNA Damage in Peripheral Blood of CD-1 Mice: Analysis with Differential Acridine Orange/Ethidium Bromide Staining

    Directory of Open Access Journals (Sweden)

    María del Carmen García-Rodríguez

    2013-01-01

    Full Text Available This study was conducted to investigate the modulating effects of green tea polyphenols on genotoxic damage and apoptotic activity induced by hexavalent chromium [Cr (VI] in CD-1 mice. Animals were divided into the following groups: (i injected with vehicle; (ii treated with green tea polyphenols (30 mg/kg via gavage; (iii injected with CrO3 (20 mg/kg intraperitoneally; (iv treated with green tea polyphenols in addition to CrO3. Genotoxic damage was evaluated by examining micronucleated polychromatic erythrocytes (MN-PCEs obtained from peripheral blood at 0, 24, 48, and 72 h after treatment. Induction of apoptosis and cell viability were assessed by differential acridine orange/ethidium bromide (AO/EB staining. Treatment of green tea polyphenols led to no significant changes in the MN-PCEs. However, CrO3 treatment significantly increased MN-PCEs at 24 and 48 h after injection. Green tea polyphenols treatment prior to CrO3 injection led to a decrease in MN-PCEs compared to the group treated with CrO3 only. The average of apoptotic cells was increased at 48 h after treatment compared to control mice, suggesting that apoptosis could contribute to eliminate the DNA damaged cells induced by Cr (VI. Our findings support the proposed protective effects of green tea polyphenols against the genotoxic damage induced by Cr (VI.

  17. Determination of Trace Hexavalent Chromium in Carrageenan Vacant Capsules by Tributyl Phosphate Extracting and Graphite Furnace Atomic Absorption Spectroscopy%磷酸三丁酯萃取-石墨炉原子吸收分光光度法测定海藻多糖空心胶囊中痕量六价铬

    Institute of Scientific and Technical Information of China (English)

    张毅; 郭盈杉

    2014-01-01

    Objective To establish a method of graphite furnace atomic absorption spectroscopy for quantitative determination of trace hexavalent chromium in Carrageenan Vacant Capsules. Methods The sample was extracted with Tributly Phosphate(TBP)and digested by the microwave dissolution system. The trace hexavalent chromium in Carrageenan Vacant Capsules was determined by the graphite furnace atomic absorption spectroscopy. Results The sample concentration of chromium within the range of 0 ~ 40 ng / mL showed the good linear relation with the absorbance( r = 0. 999 7)and the average recovery rate was 88. 08% ,RSD = 0. 78%( n = 9). Conclusion This method is accurate,reliable,easy to operate,highly sensitive and suitable for the quality control of hexavalent chromium in Car-rageenan Vacant Capsules.%目的:建立海藻多糖空心胶囊中痕量六价铬的定量测定方法。方法采用磷酸三丁酯(TBP)萃取、微波消解、石墨炉原子吸收分光光度法,测定海藻多糖空心胶囊中的痕量六价铬。结果铬进样质量浓度在0~40 ng / mL 范围内与吸光度呈良好的线性关系(r =0.9997),平均回收率为88.08%,RSD =0.78%(n =9)。结论该方法定量准确可靠,方法操作简便、灵敏度高,适用于海藻多糖空心胶囊的六价铬质量控制。

  18. Sequestration of chromium by exopolysaccharides of Nostoc and Gloeocapsa from dilute aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mona [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India); Kaushik, Anubha [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)], E-mail: aks_10@yahoo.com; Somvir,; Bala, Kiran; Kamra, Anjana [Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar-125 001 (India)

    2008-09-15

    This article reports the chromium removal potential of exopolysaccharides (EPS) of two indigenously isolated cyanobacterial strains, Gloeocapsa calcarea and Nostoc punctiforme. The biosorption was studied by varying pH from 2 to 6 and initial chromium concentration from 5 to 20 mg/L to find out the optimized conditions for maximum chromium removal by EPS. Two equilibrium models, Langmuir and Freundlich, were used to explain these results. The Freundlich model was found to be better applicable to the experimental data as compared to Langmuir as inferred from high value of coefficient of determination whereas the optimal conditions were found to be same for the two (pH 2 and initial chromium concentration 20 mg/L). EPS production by the two strains was also studied which was found to be higher for Gloeocapsa. On the basis of experimental results and model parameters, it can be inferred that the EPS extracted from Nostoc has comparatively high biosorption capacity and can be utilized for the removal of chromium from dilute aqueous solution. Adsorption of chromium on EPS was further confirmed by surface morphology observed in scanning electron micrographs.

  19. Stabilization and solidification of chromium-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Cherne, C.A.; Thomson, B.M. [Univ. of New Mexico, Albuquerque, NM (United States). Civil Engineering Dept.; Conway, R. [Sandia National Labs., Albuquerque, NM (United States)

    1997-11-01

    Chromium-contaminated soil is a common environmental problem in the United States as a result of numerous industrial processes involving chromium. Hexavalent chromium [Cr(VI)] is the species of most concern because of its toxicity and mobility in groundwater. One method of diminishing the environmental impact of chromium is to reduce it to a trivalent oxidation state [Cr(III)], in which it is relatively insoluble and nontoxic. This study investigated a stabilization and solidification process to minimize the chromium concentration in the Toxicity Characteristic Leaching Procedure (TCLP) extract and to produce a solidified waste form with a compressive strength in the range of 150 to 300 pounds per square inch (psi). To minimize the chromium in the TCLP extract, the chromium had to be reduced to the trivalent oxidation state. The average used in this study was an alluvium contaminated with chromic and sulfuric acid solutions. The chromium concentration in the in the in situ soil was 1212 milligrams per kilogram (mg/kg) total chromium and 275 mg/kg Cr(VI). The effectiveness of iron, ferrous sulfate to reduce Cr(VI) was tested in batch experiments.

  20. The electrochemical aspect of the corrosion of austenitic stainless steels, in nitric acid and in the presence of hexavalent chromium (1961); Aspect electrochimique de la corrosion d'aciers inoxydables austenitiques en milieu nitrique et en presence de chrome hexavalent (1961)

    Energy Technology Data Exchange (ETDEWEB)

    Coriou, H.; Hure, J.; Plante, G. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1961-07-01

    The corrosion of austenitic stainless steels in boiling nitric acid markedly increases when the medium contains hexavalent chromium ions. Because of several redox phenomena, the potential of the steel generally changes in course of time. Measurements show a relation between the weight loss and the potential of specimens. Additions of Mn(VII) and Ce(IV) are compared with that of Cr(VI), and show that the relation is a general one. The attack cf the metal in oxidizing media is largely intergranular, leading to exfoliation of the grains, although the steel studied is not sensitive to the classical Huey and Strauss tests. Also even in the absence of any other oxidizing reaction, the current density observed when the steel is anodically polarized under potentiostatic conditions does not correspond to the actual weight loss of the metal. (authors) [French] La corrosion d'aciers inoxydables austenitiques en milieu nitrique bouillant augmente notablement quand le milieu contient des ions chrome a l'etat hexavalent. Par suite de divers phenomenes d'oxydo-reduction, le potentiel de l'acier evolue generalement au cours du temps. Les mesures effectuees permettent d'etablir une relation entre les pertes de poids et le potentiel des echantillons. L'addition de Mn(VI) et Ce(IV) est compare a celle de Cr(VI) et montre que la relation precedente s'applique de facon generale. L'attaque du metal en milieu oxydant est en grande, partie due a une corrosion intergranulaire conduisant a un dechaussement des grains bien que l'acier etudie ne soit pas sensible aux tests classiques de Huey et de Strauss. Aussi, meme en l'absence de toute autre reaction d'oxydation l'intensite qu l'on observerait en soumettant l'acier a un potentiel anodique dans un montage potentiostatique ne correspondrait pas a la perte de poids reelle du metal. (auteurs)

  1. New technology for comprehensive utilization of aluminum-chromium residue from chromium salts production

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-bin; QI Tian-gui; JIANG Xin-min; ZHOU Qiu-sheng; LIU Gui-hua; PENG Zhi-hong; HAN Deng-lun; ZHANG Zhong-yuan; YANG Kun-shan

    2008-01-01

    Colloidal aluminum-chromium residue(ACR) was mass-produced in chromate production process, and the large energy consumption and high recovery cost existed in traditional methods of utilizing such ACR. To overcome those problems, a new comprehensive method was proposed to deal with the ACR, and was proven valid in industry. In the new process, the chromate was separated firstly from the colloidal ACR by ripening and washing with additives, by which more than 95% hexavalent chromium was recovered. The chromium-free aluminum residue(CFAR), after properly dispersed, was digested at 120-130 ℃ and more than 90% alumina can be recovered. And then the pregnant aluminate solution obtained from digestion was seeded to precipitate aluminum hydroxide. This new method can successfully recover both alumina and sodium chromate, and thus realize the comprehensive utilization of ACR from chromate industry.

  2. The chemical behavior of acidified chromium (3) solutions. B.S. Thesis

    Science.gov (United States)

    Terman, D. K.

    1981-01-01

    A unique energy-storage system has been developed at NASA's Lewis Research Center called REDOX. This NASA-REDOX system is an electrochemical storage device that utilized the oxidation and reduction of two fully soluble redox couples for charging and discharging. The redox couples now being investigated are acidified chloride solutions of chromium (Cr(+2)/Cr(+3)) and iron (Fe(+2)/Fe(+3)).

  3. Research Progress on Remediation of Hexavalent Chromium Contaminated Soil by Nano-materials%纳米材料修复铬污染土壤的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭凯璇; 冀文文; 尚中博; 种瑞峰; 李德亮; 丁颖

    2016-01-01

    With the rapid development of urban industrialization,environmental problems become more and more serious,and the situation of soil pollution is not optimistic.As an important industrial raw material,chromate has been used for the production of various products,while it brings serious chromium pollution.Therefore,a lot of works have been carried out on the decontamination of chromium contaminated soil.The nanomaterials have become a hot research topic because of their unique structures and good performance.Such nano-materials could be divided into six categories, that is, nano-zero-valent metals, carbonaceous nanomaterials, nano-metal oxide (sulfur ) compounds, nano-semiconductors, nano-clay minerals, and nano-polymers. This paper summarized the achievements and the applications of such materials in remediating Cr-contaminated soil at home and abroad.It showed that the nano-zero-valent metals and nano-metal oxide (sulfur)compounds are mainly used for the treatment of hexavalent chromium contaminated soil,while other materials are relatively less.Compared with common iron powder,the reaction rate and efficiency of nanoscaled zero-valent iron are higher,although it is not stable in air.The efficiency of nanometer bimetallic is superior to zero-valent iron with high reactivity and little secondary pollution, but the cost is relatively high.The supported nanoscaled iron has the advantages of the aforementioned materials, such as high efficiency,low cost,high stability,and easy reusability,except the complicated synthesis procedure. Carbonaceous nano-materials possess high adsorption capacities,while they easily cause secondary pollution and high cost.Though nano-metal oxide (sulfur) compounds,with stable chemical properties,have certain adsorption capacities towards Cr(Ⅵ),the types of them are still few.Moreover,the fields of their application are yet narrow. The photocatalytic activities of nano-semiconductors are high,however,the photocatalysts are always high

  4. Removal of chromium from aqueous solution by complexation-ultrafiltration using a water-soluble macroligand.

    Science.gov (United States)

    Aliane, A; Bounatiro, N; Cherif, A T; Akretche, D E

    2001-06-01

    A process for purifying waste waters containing heavy and toxic metal such as chromium has been studied. A batch complexation-ultrafiltration process was used to concentrate and recover chromium from sulphate solution. As the chromium ions are too small to be retained by the filter, they are first complexed with a water-soluble macroligand (polyethylene-imine). Factors affecting the rejection rate and permeate flux such as pH, concentration ligand, chloride and sulphate concentration, membrane pore size, applied pressure and extraction factor were investigated. Best operating conditions can be obtained in order to achieve high levels of removal (> 95%). Then, decomplexation is obtained so that metal can be separated from macroligand by a second ultrafiltration plant to reuse the macroligand.

  5. Solution-phase synthesis of chromium-functionalized single-walled carbon nanotubes

    KAUST Repository

    Kalinina, Irina V.

    2015-03-01

    The solution phase reactions of single-walled carbon nanotubes (SWNTs) with Cr(CO)6 and benzene-Cr(CO)3 can lead to the formation of small chromium clusters. The cluster size can be varied from less than 1 nm to about 4 nm by increasing the reaction time. TEM images suggest that the clusters are deposited predominantly on the exterior walls of the nanotubes. TGA analysis was used to obtain the Cr content and carbon to chromium ratio in the Cr-complexed SWNTs. It is suggested that the carbon nanotube benzenoid structure templates the condensation of chromium atoms and facilitates the loss of carbon monoxide leading to well defined metal clusters.

  6. Trivalent chromium removal from aqueous solutions by a sol–gel synthesized silica adsorbent functionalized with sulphonic acid groups

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Gonzalez, Sergio Efrain [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Carbajal-Arizaga, Gregorio Guadalupe [Departamento de Química, CUCEI, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico); Manriquez-Gonzalez, Ricardo [Departamento de Madera, Celulosa y Papel, CUCEI, Universidad de Guadalajara, Km 15.5, carretera Guadalajara-Nogales, Las Agujas, C.P. 45020 Zapopan, Jalisco (Mexico); De la Cruz-Hernandez, Wencel [Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Km 107 carretera Tijuana-Ensenada, C.P. 22830 Ensenada, Baja California (Mexico); Gomez-Salazar, Sergio, E-mail: sergio.gomez@cucei.udg.mx [Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán # 1421, esq. Calzada Olímpica, C.P. 44430 Guadalajara, Jalisco (Mexico)

    2014-11-15

    Highlights: • Corpuscular sulphonic acid-functionalized silica holds improved uptake of chromium. • Mesopores on adsorbent facilitate (CH{sub 3}COO){sub 2}Cr{sup +} ion uptake on sulphonate sites. • Formation of chromium acetate sulphonate complex proposed from XPS results. • Fixed bed chromium uptake results suggest potential industrial use. - Abstract: A high capacity hybrid silica adsorbent was synthesized via sol–gel processing with sulphonic acid groups as trivalent chromium complex ions chelators from aqueous solutions. The synthesis included co-condensation of tetraethoxysilane (TEOS) with 3-(mercaptopropyl)trimethoxysilane (MPS), and oxidation of thiol to sulphonic acid groups. Chromium uptake kinetic, batch and fixed-bed experiments were performed to assess the removal of this metal from aqueous solutions. {sup 13}C, {sup 29}Si CPMAS NMR, FTIR, XPS were used to characterize the adsorbent structure and the nature of chromium complexes on the adsorbent surface. Chromium maximum uptake was obtained at pH 3 (72.8 mg/g). Elemental analysis results showed ligand density of 1.48 mmol sulphonic groups/g. About 407 mL of Cr(III) solution (311 mg/L) were treated to breakthrough point reaching ≤0.06 mg/L at the effluent. These results comply with USEPA regulation for chromium concentration in drinking water (≤0.1 mg/L). The adsorbent shows potential to be used in chromium separations to the industrial level.

  7. Removal combined with reduction of hexavalent chromium from aqueous solution by Fe-ethylene glycol complex microspheres

    Science.gov (United States)

    Zhang, Yong-Xing; Jia, Yong

    2016-12-01

    Three-dimensional Fe-ethylene glycol (Fe-EG) complex microspheres were synthesized by a facile hydrothermal method, and were characterized by field emission scanning electron microscopy and transmission electron microscopy. The adsorption as well as reduction properties of the obtained Fe-EG complex microspheres towards Cr(VI) ions were studied. The experiment data of adsorption kinetic and isotherm were fitted by nonlinear regression approach. In neutral condition, the maximum adsorption capacity was 49.78 mg g-1 at room temperature, and was increased with the increasing of temperature. Thermodynamic parameters including the Gibbs free energy, standard enthalpy and standard entropy revealed that adsorption of Cr(VI) was a feasible, spontaneous and endothermic process. Spectroscopic analysis revealed the adsorption of Cr(VI) was a physical adsorption process. The adsorbed CrO42- ions were partly reduced to Cr(OH)3 by Fe(II) ions and the organic groups in the Fe-EG complex.

  8. Quantification of the toxic hexavalent chromium content in an organic matrix by X-ray photoelectron spectroscopy (XPS) and ultra-low-angle microtomy (ULAM)

    Science.gov (United States)

    Greunz, Theresia; Duchaczek, Hubert; Sagl, Raffaela; Duchoslav, Jiri; Steinberger, Roland; Strauß, Bernhard; Stifter, David

    2017-02-01

    Cr(VI) is known for its corrosion inhibitive properties and is, despite legal regulations, still a potential candidate to be added to thin (1-3 μm) protective coatings applied on, e.g., electrical steel as used for transformers, etc. However, Cr(VI) is harmful to the environment and to the human health. Hence, a reliable quantification of it is of decisive interest. Commonly, an alkaline extraction with a photometric endpoint detection of Cr(VI) is used for such material systems. However, this procedure requires an accurate knowledge on sample parameters such as dry film thickness and coating density that are occasionally associated with significant experimental errors. We present a comprehensive study of a coating system with a defined Cr(VI) pigment concentration applied on electrical steel. X-ray photoelectron spectroscopy (XPS) was employed to resolve the elemental chromium concentration and the chemical state. Turning to the fact that XPS is extremely surface sensitive (purpose a special sample preparation step performed on an ultra-microtome was required prior to analysis. Since a temperature increase leads to a reduction of Cr(VI) we extend our method on samples, which were subjected to different curing temperatures. We show that our proposed approach now allows to determine the elemental and Cr(VI) concentration and distribution inside the coating.

  9. Effects of Simulated Acid Rain on the Migration and Transformation of Hexavalent Chromium in a Water Spinach-soil System%模拟酸雨对空心菜-土壤系统中六价铬迁移转化的影响

    Institute of Scientific and Technical Information of China (English)

    陈桂葵; 李志鹏; 陈恋; 刘明中; 黎华寿

    2013-01-01

    A pot experiment was conducted to study the effects of acid rain on the distribution, migration and transformation of hexavalent chromium in a water spinach(Ipomoea aquatica) soil system. Results showed that the amount of total chromium in water spinach treated with simulated acid rain was significantly higher than those without acid rain. The content of chromium in the underground part of water spinach was significantly higher than it in the aboveground part in treatments with simulated acid rain. While water spinach could survive and grow normally in soil with 100 mg·kg-1 chromium, they couldn't survive in soil with chromium up to 200 mg·kg-1. Valences of more than 97.0% added hexavalent chromium was changed. The majority portion of the chromium was remained in soil. Only very small portion was absorbed by water spinach. The simulated acid rain could significantly enhance the absorption rate of chromium by water spinach. The amount of absorbed chromium in treatments with acid rain was 2.6 to 5 times as those in the treatments without acid rain. The chromium enrichment coefficients were 2.2 and 4.6 for the aboveground part and the underground part of water spinach respectively by comparing the treatments with and without acid rain. The research result shows that acid rain increases the risk of crop grown in soil contaminated by chromium especially through the absorption of chromium by root system. Hence, agricultural food safety problem in chromium polluted area will be enhanced by acid rain.%通过盆栽试验,研究了模拟酸雨条件下六价铬在土壤和空心菜之间的分布、迁移和转化规律.结果发现,酸雨处理显著提高了空心菜体内铬的含量,其中空心菜地下部的铬含量显著高于其地上部;空心菜在100 mg·kg-1的铬处理下仍然可以正常生长,但当土壤中的铬达到200 mg· kg-1时,空心菜生长数天后即全部死亡;添加到土壤中的六价铬97.0%以上已经转化成其他形态而留

  10. Highly efficient and recyclable triple-shelled Ag@Fe3O4@SiO2@TiO2 photocatalysts for degradation of organic pollutants and reduction of hexavalent chromium ions

    Science.gov (United States)

    Su, Jianwei; Zhang, Yunxia; Xu, Sichao; Wang, Shuan; Ding, Hualin; Pan, Shusheng; Wang, Guozhong; Li, Guanghai; Zhao, Huijun

    2014-04-01

    Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2 (P25), pure TiO2 microspheres, Fe3O4@SiO2@TiO2 and annealed Ag@Fe3O4@SiO2@TiO2 nanocomposites, the as-obtained amorphous triple-shelled Ag@Fe3O4@SiO2@TiO2 hierarchical nanospheres exhibit a markedly enhanced visible light or sunlight photocatalytic activity towards the photodegradation of methylene blue and photoreduction of hexavalent chromium ions in wastewater. The outstanding photocatalytic activities of the plasmonic photocatalyst are mainly due to the enhanced light harvesting, reduced transport paths for both mass and charge transport, reduced recombination probability of photogenerated electrons/holes, near field electromagnetic enhancement and efficient scattering from the plasmonic nanostructure, increased surface-to-volume ratio and active sites in three dimensional (3D) hierarchical porous nanostructures, and improved photo/chemical stability. More importantly, the hierarchical nanostructured Ag@Fe3O4@SiO2@TiO2 photocatalysts could be easily collected and separated by applying an external magnetic field and reused at least five times without any appreciable reduction in photocatalytic efficiency. The enhanced photocatalytic activity and excellent chemical stability, in combination with the magnetic recyclability, make these multifunctional nanostructures promising candidates to remediate aquatic contaminants and meet the demands of future environmental issues.Herein, we demonstrate the design and fabrication of the well-defined triple-shelled Ag@Fe3O4@SiO2@TiO2 nanospheres with burr-shaped hierarchical structures, in which the multiple distinct functional components are integrated wonderfully into a single nanostructure. In comparison with commercial TiO2

  11. Adsorption of Chromium(VI from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins

    Directory of Open Access Journals (Sweden)

    Khudbudin Mulani

    2013-01-01

    Full Text Available Removal of chromium(VI from wastewater is essential as it is toxic. Thus, removal of chromium(VI was performed using coffee polyphenol-formaldehyde/acetaldehyde resins as adsorbents. Adsorbent resins were prepared by condensation of decaffeinated coffee powder with formaldehyde/acetaldehyde and used for the removal of Cr(VI ions from aqueous solutions. A simple and sensitive solid phase extraction procedure was applied for the determination of chromium at trace levels by spectroscopic method using 1,5-diphenylcarbazide reagent. The adsorption of Cr(VI on the coffee polyphenol-formaldehyde/acetaldehyde resins was monitored by FTIR and EDX analysis. The metal adsorption parameters such as contact time, pH, Cr(VI ion concentration, and adsorbent dose were investigated. For Cr(VI, the maximum adsorption capacity of coffee polyphenol-formaldehyde resins was 98% at pH 2. The experimental results showed that Cr(VI bound strongly with coffee polyphenol-formaldehyde/acetaldehyde resins and utilization of resins could be improved greatly by reuse.

  12. Remoción de Cromo Hexavalente por el Hongo Paecilomyces sp. Aislado del Medio Ambiente Hexavalent Chromium Removal by a Paecilomyces sp Fungal Strain Isolated from Environment

    Directory of Open Access Journals (Sweden)

    Juan F Cárdenas-González

    2011-01-01

    Full Text Available Se aisló un hongo resistente y capaz de remover cromo hexavalente a partir del medio ambiente de una zona cercana a la Facultad de Ciencias Químicas, Universidad de San Luis Potosí en México. La cepa fue identificada como Paecilomyces sp, en base a sus características macro y microscópicas. La biomasa fúngica remueve eficientemente Cromo (VI en solución y puede utilizarse para descontaminar nichos acuáticos contaminados, ya que 1 g de biomasa fúngica remueve 100 y 1000 mg/100 mL del metal a una y tres horas de incubación, y elimina totalmente 297 mg Cr(VI/g de tierra contaminada.A fungal strain resistant to Cr (VI and capable of removing the oxyanion from the médium was isolated from the environment near the Chemical Science Faculty, University San Luis Potosí in México. The strain was identified as Paecilomyces sp, by macro and microscopic characteristics. It was concluded that this fungal biomass can be used for the removal of Cr (VI in aqueous solutions, since 1 g of fungal biomass removes 100 y 1000 mg/100 mL of this metal after one and three hours of incubation, and removes 297 mg Cr (VI from contaminated soil.

  13. Bioaccumulation kinetics of hexavalent chromium in the tissues of Exopalaemon carinicauda and Portunus trituberculatus%六价铬离子在脊尾白虾和三疣梭子蟹体内的富集动力学

    Institute of Scientific and Technical Information of China (English)

    李磊; 沈新强; 李超; 王云龙; 蒋玫; 吴庆元; 牛俊翔; 许高鹏

    2015-01-01

    通过15 d的富集以及之后15 d的清水释放实验,应用双箱动力学模型拟合获得了六价铬离子[ C r (Ⅵ)]在脊尾白虾( Exopalaemon carinicauda)和三疣梭子蟹( Portunus trituberculatus)体内的富集与释放动力学参数,同时分析探讨其动力学参数的变化特征及差异.拟合结果表明:脊尾白虾和三疣梭子蟹对Cr(Ⅵ )的吸收速率常数k1范围分别为3.37~20.65和4.36~12.44,平均值分别为11.00和7.70;释放速率常数 k2范围分别为0.058~0.121和0.115~0.154,平均值分别为0.089和0.131;生物富集因子( bioaccumulation factor ,BCF)范围分别为58.10~171.00和37.91~80.81,平均值分别为110.13和56.53;在平衡状态下2种海洋生物体内C r (Ⅵ )含量( CAmax )范围分别为8.55~290.52和4.85~56.87 mg/kg ,平均值分别为116.57和25.66 mg/kg ;生物半衰期(B1/2)范围为5.74~11.95和4.50~6.03d,平均分别为8.50和5.38d.2种海洋生物对Cr(Ⅵ )质量的吸收速率常数 k1、释放速率常数 k2和BCF均随外部水体中Cr(Ⅵ )质量浓度的增大而减少,CAmax和 B1/2随外部水体中Cr(Ⅵ)浓度的增大而增大.脊尾白虾对Cr(Ⅵ)的富集能力高于三疣梭子蟹,富集速率前期高于后期;而其对Cr(Ⅵ)的释放能力弱于三疣梭子蟹,且释放主要集中在前期.%Summary Chromium ( Cr) is considered to be one of the major heavy metal pollutants in marine environment , and in existence of two valence states :hexavalent chromium [Cr( Ⅵ )] and trivalent chromium [Cr( Ⅲ )] . The source of Cr pollution in marine environment was mainly from discharge of effluents by a variety of industries . Cr( Ⅵ) is considered as the most toxic form of Cr , whereas Cr ( Ⅲ ) is much less toxic . Cr ( Ⅵ ) is non‐biodegradable and can rapidly accumulate in creatures and reach toxic levels in short periods of time . Although the bioaccumulation of heavy metals in many creatures has been well studied , details on mechanisms and

  14. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS ...

    African Journals Online (AJOL)

    a

    due to high temperature carbonisation adopted for CAC in preparation than PPFSC. Commercial ... The FTIR spectra of PPFSC and CAC are presented in Figure 3 (a) PPFSC and (b) CAC. ..... Adsorption of Cr(VI) was highly pH dependent.

  15. Synthesis and characterization of polyaniline/zeolite nanocomposite for the removal of chromium(VI from aqueous solution

    Directory of Open Access Journals (Sweden)

    Abdulsalam A. Shyaa

    2015-01-01

    Batch adsorption experiments were used to investigate the effect of various experimental parameters on the equilibrium adsorption of chromium(VI on PANI/zeolite nanocomposite. The adsorption characteristics of the composite toward Cr(VI in dilute aqueous solution were followed spectrophotometrically. The effect of contact time, size of the sorbent and the concentration of Cr(VI in solution on the metal uptake behavior of the composite were studied. It has been observed that the capacity of chromium adsorption on PANI/zeolite increases with initial metal concentration, the metal ion adsorption on surfactant is well represented by the Freundlich isotherm.

  16. Microwave-assisted Fenton-like decolorization of methyl orange solution using chromium compounds

    Institute of Scientific and Technical Information of China (English)

    LIU Zuo-hua; TAO Chang-yuan; DU Jun; SUN Da-gui; LI Bai-zhan

    2008-01-01

    Azo dyes discharged in the environment are persistent organic pollutants (POPs), which are very difficult to remove. We developed a microwave-assisted Fenton-like process to degrade methyl orange (MO), an azo dye, with hydrogen peroxide (H2O2) catalyzed by chromium compounds coexisting with MO in the solution. Comparison between the Cr(III)-H2O2 and Cr(VI)-H2O2 systems shows that Cr(VI) has a stronger and more stable catalytical activity than Cr(III), and Cr(III) is more susceptible to a change in the acidity or alkalinity of the reaction system. With a Cr(VI) concentration of 10 mmol L-1 or a Cr(III) concentration of 12 mmol L-1 in the solution under the microwave irradiation of a power larger than 300 W for 3 min, 10 mmol L-1 H2O2 can degrade more than 95% of 1 000 mg L-1 methyl orange; when the microwave power is increased to 700 W, the same amount of H2O2 can degrade all methyl orange in the solution with the same amount of Cr(VI) catalyst. Ultraviolet-visible spectrography indicates the cleavage of the azo bond in methyl orange after treatment, suggesting the potential of this Fenton-like process to degrade azo dye POPs. Reusing waste chromium compounds coexisting with dyestuff in wastewater to catalyze the degradation of azo dyes could be a cost-effective technique for azo dyes and chromate manufacturers and/or users to treat their wastewater and prevent POPs from endangering the environment. This is of particular importance to controlling the water quality of the Three Gorges Reservoir.

  17. Laboratory scale studies on removal of chromium from industrial wastes

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Chromium being one of the major toxic pollutants is discharged from electroplating and chrome tanning processes and is also found in the effluents of dyes, paint pigments, manufacturing units etc. Chromium exists in aqueous systems in both trivalent (Cr 3+) and hexavalent (Cr 6+) forms. The hexavalent form is carcinogenic and toxic to aquatic life, whereas Cr3+ is however comparatively less toxic. This study was undertaken to investigate the total chromium removal from industrial effluents by chemical means in order to achieve the Pakistan NEQS level of 1 mg/L by the methods of reduction and precipitation. The study was conducted in four phases.In phase I, the optimum pH and cost effective reducing agent among the four popular commercial chemicals was selected. As a result, pH of 2 was found to be most suitable and sodium meta bisulfate was found to be the most cost effective reducing agent respectively. Phase II showed that lower dose of sodium meta bisulfate was sufficient to obtain 100 % efficiency in reducing Cr6+ to Cr3+, and it was noted that reaction time had no significance in the whole process. A design curve for reduction process was established which can act as a tool for treatment of industrial effluents.Phase III studies indicated the best pH was 8.5 for precipitation of Cr 3+ to chromium hydroxide by using lime. An efficiency of 100 % was achievable and a settling time of 30 minutes produced clear effluent. Finally in Phase IV actual waste samples from chrome tanning and electroplating industries, when precipitated at pH of 12 gave 100 % efficiency at a settling time of 30 minutes and confirmed that chemical means of reduction and precipitation is a feasible and viable solution for treating chromium wastes from industries.

  18. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes.

    Science.gov (United States)

    Suñe, N; Sánchez, G; Caffaratti, S; Maine, M A

    2007-01-01

    The aim of this work was to determine chromium and cadmium bioaccumulation processes of two free-floating macrophytes commonly used in wetlands for water treatment: Salvinia herzogii and Pistia stratiotes. Metal removal from the solution involves two stages: a fast one and a slow one. The fast stage of the Cd uptake is significantly different for each species, while it is not significantly different in Cr uptake. The most important processes of Cd uptake are biological ones in S. herzogii and adsorption, chelation and ionic exchange are in P. stratiotes. The main processes of Cr uptake in both macrophytes are adsorption, chelation and ion exchange. The slow stage is different for each species and metal. Cr precipitation induced by roots occurs in P. stratiotes. Cr uptake through leaves is probably the main cause of the increase of Cr in the aerial parts of S. herzogii.

  19. Chromium(VI Removal from Aqueous Solution by Magnetite Coated by a Polymeric Ionic Liquid-Based Adsorbent

    Directory of Open Access Journals (Sweden)

    Thania Alexandra Ferreira

    2017-05-01

    Full Text Available An evaluation of the chromium(VI adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions.

  20. Evaluation of NaX and NaY packed beds for chromium uptake from multicomponent solution

    Directory of Open Access Journals (Sweden)

    Maria Angélica Simões Dornellas de Barros

    2014-04-01

    Full Text Available In this paper the removal of chromium from Cr/Ca/Mg/K and Cr/Ca/Mg/K/Na solutions was investigated in NaX and NaY packed beds. The breakthrough curves presented some overshooting phenomena where chromium ions displaced the previous exchanged cations. Length of unused bed, overall mass transfer coefficient, operational ratio and dimensionless variance were obtained. According to such mass transfer parameters it was concluded that the chromium uptake is influenced by the competition and interaction of the entering ions. Such influences were verified through some differences in the dynamic selectivity obtained for each system. NaY seemed to have a higher affinity towards Cr3+ and its sites were more efficiently used in the ion exchange process.

  1. The phosphine oxides Cyanex 921 and Cyanex 923 as carriers for facilitated transport of chromium (VI)-chloride aqueous solutions.

    Science.gov (United States)

    Alguacil, Francisco José; López-Delgado, Aurora; Alonso, Manuel; Sastre, Ana Maria

    2004-11-01

    The behaviour of the phosphine oxides Cyanex 921 and Cyanex 923 in the facilitated transport of chromium (VI) from chloride solutions is described. Transport is studied as a function of several variables such as stirring speeds of the aqueous phases, membrane phase diluent, hydrochloric acid concentration in the source phase and chromium and carrier concentrations. The separation of chromium (VI) from other metals presented in the source phase as well as the behaviour of phosphine oxides with respect to other neutral organophosphorous derivatives (tri-n-butylphosphate (TBP) and dibutyl butylphosphonate (DBBP)) are also investigated. Moreover, by using hydrazine sulphate in the receiving phase, Cr(VI) is immediately reduced to the less toxic Cr(III).

  2. Hexavalent Chrome Free Coatings for Electronics Applications: Joint Test Report

    Science.gov (United States)

    Kessel, Kurt

    2012-01-01

    Regardless of the corrosivity of the environment, all metals require periodic maintenance activity to guard against the insidious effects of corrosion and thus ensure that alloys meet or exceed design or performance life. The standard practice for protecting metallic substrates is the application of a coating system. Applied coating systems work via a variety of methods (barrier, galvanic, and/or inhibitor) and adhere to the substrate through a combination of chemical and physical bonds. For years hexavalent chromium has been a widely used element within applied coating systems because of its self healing and corrosion resistant properties. Occupational Safety and Health Administration (OSHA) studies have concluded that hexavalent chromium (hex chrome) is carcinogenic and poses significant risk to human health. On May 5, 2011 amendments to the Defense Federal Acquisition Regulation Supplement (DFARS) were issued in the Federal Register. Subpart 223.73 prohibits contracts from requiring hexavalent chromium in deliverables unless certain exceptions apply. These exceptions include authorization from a general or flag officer and members of the Senior Executive Service from a Program Executive Office, and unmodified legacy systems. Otherwise, Subpart 252.223-7008 provides the contract clause prohibiting contractors from using or delivering hexavalent chromium in a concentration greater than 0.1 percent by weight for all new contracts and to be included down to subcontractors for supplies, maintenance and repair services, and construction materials. National Aeronautics and Space Administration (NASA), Department of Defense (DoD), and industry stakeholders continue to search for alternatives to hex chrome in coatings applications that meet their performance requirements in corrosion protection, cost, operability, and health and safety, while typically specifying that performance must be equal to or greater than existing systems.

  3. Biosorption of hexavalent chromium (chromium (VI) ion from ...

    African Journals Online (AJOL)

    taye

    2015-04-01

    Apr 1, 2015 ... countries for industrial waste water varies from 0.05 to. 0.1 mg/l (Bansal et .... different methods of treatment by physically, chemically and organically .... hydrogen ion concentration is influenced by biological activities. Beside ...

  4. Cr(Ⅵ)干涉VDAC1 mRNA表达与细胞内ATP水平的联系%Interference of hexavalent chromium on VDAC1 mRNA expression or ATP level and their potential association

    Institute of Scientific and Technical Information of China (English)

    杨渊; 邹悦; 李鹏; 罗磊; 戴璐; 钟才高

    2012-01-01

    目的 探讨Cr(Ⅵ)对细胞内电压依赖性离子通道(VDAC1) mRNA表达和三磷酸腺苷(ATP)水平的干涉效应及其之间的联系.方法 实验共分成6个处理组,分别用O、2、4、8、16和32μmol/L Cr(Ⅵ)染毒处理12、24和36 h,然后用逆转录荧光定量聚合酶链反应(RT-qPCR)和荧光素生物发光法分别检测细胞内VDAC1mRNA和能量ATP水平.结果 (1)细胞内VDACl mRNA表达在12h明显低于对照组水平,在24h表达水平有所增加,染毒36h后,各剂量组均明显增加,平均增加至对照组的2.65倍;(2)细胞内ATP含量在12h增高,高剂量组(2μmol/L)尤为明显,在24h后细胞内ATP水平明显下降,染毒36h后,低剂量(2μmol/L和4μmol/L)组ATP含量又回升至对照水平,在高浓度(8、16和32μ mol/L)组,ATP仍处较低水平;(3)相关分析显示,细胞内VDAC1 mRNA表达与ATP水平之间呈中度负相关(r=0.604,P<0.05).结论 Cr(Ⅵ)对细胞内ATP水平的干涉效应与VDAC1 mRNA表达异常有关,VDAC1 mRNA表达增加是Cr(Ⅵ)诱导细胞内能量ATP水平降低的分子机制之一.%Objective To explore the interference of hexavalent chromium-Cr( VI) on voltage-dependent anion channel ( VDAC1) mRNA expression and intracellular adenosine triphosphate( ATP) level in cells and their potential association. Methods Cultured L-02 hepatocytes were treated with 2,4,8,16 and 32n,mol/L of Cr(VI)for 12,24 and 36 hours (h).The expression of VDAC1 mRNA was measured by reverse transcription quantitative polymerase chain reaction ( RT-qPCR ) , whereas the levels of intracellular ATP was determined by an ATP-specific bioluminescence assay. Results ( 1 ) The expression of VDAC1 mRNA in cells of treated groups was less than that of control group at 12h,and then showed slight increase at 24h,and increased significantly after 36 h of treatment. (2) After being treated by Cr(VI)for 12 h,ATP level in cells increased, especially in higher dose groups, and the ATP level then decreased significantly at

  5. Hexavalent Chrome Free Coatings for Electronics: Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2016-01-01

    Determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. Evaluate the ability of hexavalent chrome free pretreated aluminum to form adequate EMI seals, and maintain that seal while being subjected to harsh environmental conditions. Assess the performance of trivalent chromium pretreatments against a known control hexavalent chrome pretreatment before and after they have been exposed to a set of environmental conditions. It is known that environmental testing causes a decrease in shielding effectiveness when hexavalent chrome pretreatments are used (Alodine 1200s). Need to determine how shielding effectiveness will be affected with the use of hexavalent chrome free pretreatments. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings. The formation of corrosion will be evaluated between the mating surfaces and gasket to assess the corrosion resistant properties of the pretreatments, comparing the hexavalent control to the hexavalent chrome free pretreatments.

  6. Efficacy of mangrove leaf powder for bioremediation of chromium (VI) from aqueous solutions: kinetic and thermodynamic evaluation

    Science.gov (United States)

    Sathish, Thadikamala; Vinithkumar, N. V.; Dharani, G.; Kirubagaran, R.

    2015-06-01

    Biosorption of heavy metals by bio-materials has been posited as a potential alternative to the existing physicochemical technologies for detoxification and recovery of toxic and valuable metals from wastewaters. In this context, the role of mangrove leaf powder (MLP) as biosorbent for chromium removal was investigated. In the present study, the effect of process parameters such as particle size, solution pH, initial concentration of Cr(VI) ion and adsorbent dose on chromium removal by MLP was investigated. The maximum sorption was observed at particle size 0.5 mm and pH 2.0. The adsorption data follow the pseudo second-order kinetics model. The isotherms denote that Langmuir model is the best fitted than Freundlich model. The maximum adsorption capacity ( Q 0) of 60.24 mg/g of Cr(VI) at 30 min on MLP was determined using the Langmuir model. The adsorption isotherm model indicates that the chromium is adsorbing as monolayer on the surface of MLP with heterogeneous energetic distribution of active sites. Various thermodynamic parameters, such as Gibb's free energy (∆ G °), enthalpy (∆ H °) and entropy (∆ S °) have been calculated. The thermodynamic data revealed that the adsorption of chromium ions onto MLP is endothermic in nature and a spontaneous process. The results of the present study suggest that MLP is an effective bioremediation measure for removal of high concentration of Cr(VI) in waste waters.

  7. Cadmium and chromium removal kinetics from solution by two aquatic macrophytes

    Energy Technology Data Exchange (ETDEWEB)

    Sune, N. [Quimica Analitica-Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), U.N.L. Sgo del Estero 2829, 3000 Santa Fe (Argentina); Sanchez, G. [Quimica Analitica-Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), U.N.L. Sgo del Estero 2829, 3000 Santa Fe (Argentina); Caffaratti, S. [Quimica Analitica-Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), U.N.L. Sgo del Estero 2829, 3000 Santa Fe (Argentina); Maine, M.A. [Quimica Analitica-Facultad de Ingenieria Quimica, Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), U.N.L. Sgo del Estero 2829, 3000 Santa Fe (Argentina)]. E-mail: amaine@fiqus.unl.edu.ar

    2007-01-15

    The aim of this work was to determine chromium and cadmium bioaccumulation processes of two free-floating macrophytes commonly used in wetlands for water treatment: Salvinia herzogii and Pistia stratiotes. Metal removal from the solution involves two stages: a fast one and a slow one. The fast stage of the Cd uptake is significantly different for each species, while it is not significantly different in Cr uptake. The most important processes of Cd uptake are biological ones in S. herzogii and adsorption, chelation and ionic exchange are in P. stratiotes. The main processes of Cr uptake in both macrophytes are adsorption, chelation and ion exchange. The slow stage is different for each species and metal. Cr precipitation induced by roots occurs in P. stratiotes. Cr uptake through leaves is probably the main cause of the increase of Cr in the aerial parts of S. herzogii. - Cd uptake processes are biological processes in S. herzogii and adsorption, chelation and ionic exchange are in P. stratiotes, whereas Cr uptake processes in both macrophytes are adsorption, chelation and ion exchange.

  8. Removal of chromium(VI) ions from synthetic solutions by the fungus Penicillium purpurogenum

    Energy Technology Data Exchange (ETDEWEB)

    Say, R. [Anadolu University, Department of Chemistry, Eskisehir (Turkey); Yilmaz, N. [Hacettepe University, Department of Biology, Eskisehir (Turkey); Denizli, A. [Hacettepe University, Department of Chemistry, Beytepe, Ankara (Turkey)

    2004-06-01

    The ability of Penicillium purpurogenum to bind high amounts of chromium(VI) from aqueous solutions is demonstrated. Cr(VI) adsorption capacity increases with time during the first four hours and then leveled off toward the equilibrium adsorption capacity. Biosorption of Cr(VI) ions reached equilibrium in four hours. Binding of Cr(VI) ions with Penicillium purpurogenum biomass was clearly pH dependent. Cr(VI) loading capacity increased with increasing pH. The adsorption of Cr(VI) ions reached a plateau value at a pH of approx. 6.0. The maximum capacity of adsorption of Cr(VI) ions onto the fungal biomass was 36.5 mg/g. Adsorption behavior of Cr(VI) ions can be approximately described with the Langmuir equation. When applying the Langmuir model, the maximum adsorption capacity (Q{sub max}) and the Langmuir constant were found to be 40 mg/g and 3.9 x 10{sup -3} mg/L. Elution of Cr(VI) ions was performed by means of 0.5 M HCl. It was possible to use the biomass of Penicillium purpurogenum for six cycles for biosorption. (Abstract Copyright [2004], Wiley Periodicals, Inc.)

  9. Removal of chromium and toxic ions present in mine drainage by Ectodermis of Opuntia

    Energy Technology Data Exchange (ETDEWEB)

    Barrera, Hector [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de Mexico (Mexico); Urena-Nunez, Fernando [Instituto Nacional de Investigaciones Nucleares, A.P.18-1027, Col. Escandon, Delegacion Miguel Hidalgo, C.P. 11801, Mexico, D.F. (Mexico); Bilyeu, Bryan [University of North Texas, Department of Materials Science and Engineering, P.O. Box 305310, Denton, TX 76203-5310 (United States); Barrera-Diaz, Carlos [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon interseccion Paseo Tollocan S/N, C.P. 50120, Toluca, Estado de Mexico (Mexico)]. E-mail: cbarrera@uaemex.mx

    2006-08-25

    This work presents conditions for hexavalent and trivalent chromium removal from aqueous solutions using natural, protonated and thermally treated Ectodermis of Opuntia. A removal of 77% of Cr(VI) and 99% of Cr(III) can be achieved. The sorbent material is characterized using scanning electron microscopy, energy dispersive X-ray spectroscopy, infrared spectroscopy, thermogravimetric analysis, before and after the contact with the chromium containing aqueous media. The results obtained from the characterization techniques indicate that the metal ion remains on the surface of the sorbent material. The percentage removal is found to depend on the initial chromium concentration and pH. The Cr(VI) and Cr(III) uptake process is maximum at pH 4, using 0.1 g of sorbent per liter of aqueous solution. The natural Ectodermis of Opuntia showed a chromium adsorption capacity that was adequately described by the Langmuir adsorption isotherm. Finally, an actual mine drainage sample that contained Cd, Cr, Cu, Fe Zn, Ni and Pb was tested under optimal conditions for chromium removal and Ectodermis of Opuntia was found to be a suitable sorbent material. The use of this waste material for the treatment of metal-containing aqueous solutions as well as mine drainage is effective and economical.

  10. A comparative study of the removal of trivalent chromium from aqueous solutions by bentonite and expanded perlite.

    Science.gov (United States)

    Chakir, Achraf; Bessiere, Jacques; Kacemi, Kacem E L; Marouf, Bouchaïb

    2002-11-11

    Local bentonite and expanded perlite (Morocco) have been characterised and used for the removal of trivalent chromium from aqueous solutions. The kinetic study had showed that the uptake of Cr(III) by bentonite is very rapid compared to expanded perlite. To calculate the sorption capacities of the two sorbents, at different pH, the experimental data points have been fitted to the Freundlich and Langmuir models, respectively, for bentonite and expanded perlite. For both sorbents the sorption capacity increases with increasing the pH of the suspensions. The removal efficiency has been calculated for both sorbents resulting that bentonite (96% of Cr(III) was removed) is more effective in removing trivalent chromium from aqueous solution than expanded perlite (40% of Cr(III) was removed). In the absence of Cr(III) ions, both bentonite and expanded perlite samples yield negative zeta potential in the pH range of 2-11. The changes of expanded perlite charge, from negative to positive, observed after contact with trivalent chromium(III) solutions was related to Cr(III) sorption on the surface of the solid. Thus, it was concluded that surface complexation plays an important role in the sorption of Cr(III) species on expanded perlite. In the case of bentonite, cation-exchange is the predominate mechanism for sorption of trivalent chromium ions, wherefore no net changes of zeta potential was observed after Cr(III) sorption. X-ray photoelectron spectroscopy measurements, at different pH values, were also made to corroborate the zeta potential results.

  11. Corrosion, ion release and Mott-Schottky probe of chromium oxide coatings in saline solution with potential for orthopaedic implant applications

    Science.gov (United States)

    Ogwu, A. A.; Oje, A. M.; Kavanagh, J.

    2016-04-01

    We report our investigation on chromium oxide thin film coatings that show a negligible ion release during electrochemical corrosion testing in saline solution. The chemical constituents of the films prepared by reactive magnetron sputtering were identified to be predominantly Cr2O3 based on Raman spectroscopy anti-symmetric stretching vibration modes for CrIII-O and other peaks and an FTIR spectroscopy E u vibrational mode at 409 cm-1. X-ray photoelectron spectroscopy, multiplet fitting for 2P 3/2 and 2P 1/2 states also confirmed the predominantly Cr2O3 stoichiometry in the films. The prepared chromium oxide coatings showed superior pitting corrosion resistance compared to the native chromium oxide films on bare uncoated stainless steel when tested under open circuit potential, potentiodynamic polarisation and cyclic voltammetry in saline solution. The chromium ion released into solution during the corrosion testing of stainless steel substrates coated with chromium oxide coatings was found to be negligibly small based on atomic absorption spectroscopy measurements. Our Mott-Schottky analysis investigation showed that the negligibly small ion release from the chromium oxide coated steel substrates is most likely due to a much lower defect density on the surface of the deposited coatings compared to the native oxide layer on the uncoated steel substrates. This opens up the opportunity for using chromium oxide surface coatings in hip, knee and other orthopaedic implants where possible metal ion release in vivo still poses a great challenge.

  12. Predictive approach for simultaneous biosorption of hexavalent ...

    African Journals Online (AJOL)

    Jane

    2011-07-04

    Jul 4, 2011 ... Key words: Bacillus cereus, Biosorption, Chromium, Heavy metals, Pentachlorophenol. ..... walls are negatively charged under acidic pH conditions and the cell wall ... high affinity for metal ions in solution (Collins and Stotzky,.

  13. REMOVAL OF CHROMIUM FROM AQUEOUS SOLUTION USING LOCALLY AVAILABLE INEXPENSIVE TARO AND WATER HYACINTH AS BIOSORBENT

    Directory of Open Access Journals (Sweden)

    Shahjalal Khandaker

    2016-04-01

    Full Text Available In this investigation, locally available and inexpensive Taro and Water Hyacinth were used as biosorbents to remove chromium from synthetic wastewater. The removal of this metal ion from water in the batch and column method have been studied and discussed. Adsorption kinetics and equilibrium isotherm studies were also carried out. The material exhibits good adsorption capacity and the data follow both Freundlich and Langmuir models. Scanning Electronic Microscopic image was also used to understand the surface characteristics of biosorbent before and after biosorption studies. Effects of various factors such as pH, adsorbent dose, adsorbate initial concentration, particle size etc. were analyzed. The initial concentrations of chromium were considered 5-30mgL-1 in batch method and only 4mgL-1 in column method. The maximum chromium adsorbed was 1.64 mgg-1 and 4.44 mgg-1 in Batch method and 1.15 mgg-1 and 0.75 mgg-1 in Column method. Batch and Column desorption and regeneration studies were conducted. Column desorption studies indicated that both of these biosorbents could be reused for removing heavy metals. Results of the laboratory experiments show that the performance of Taro and Water Hyacinth prove that they can effectively be used as low cost biosorbents for the removal of chromium from wastewater.KEYWORDS:   adsorption; chromium removal; Taro; water hyacinth; batch method; column studies

  14. Improvement on simultaneous determination of chromium species in aqueous solution by ion chromatography and chemiluminescence detection

    DEFF Research Database (Denmark)

    Gammelgaard, Bente; Liao, Y.P.; Jons, O.

    1997-01-01

    sulphite, whereupon both species were detected by use of the luminol-hydrogen peroxide chemiluminescence system. Parameters affecting retention times and resolution of the separator columns, such as eluent pH, eluent composition, reductant pH and concentration, and flow rates were optimized. Furthermore...... was 1.4% for chromium(III) and 2.5% for chromium(VI), respectively. The accuracy of the chromium(III) determination was determined by analysis of the NIST standard reference material 1643c, Trace elements in water with the result 19.1 +/- 1.0 mu g Cr(III) l(-1) (certified value 19.0 +/- 0.6 mu g Cr...

  15. A novel method for fast enrichment and monitoring of hexavalent and trivalent chromium at the ppt level with modified silica MCM-41 and its determination by inductively coupled plasma optical emission spectrometry

    Directory of Open Access Journals (Sweden)

    Ganjali Mohammad Reza

    2006-01-01

    Full Text Available Chromium(III at the ng L-1 level was extracted using partially silylated MCM-41 modified by a tetraazamacrocyclic compound (TAMC and determined by inductively coupled plasma optical emision spectrometry (ICP OES. The extraction time and efficiency, pH and flow rate, type and minimum amount of stripping acid, and break- through volume were investigated. The method's enrichment factor and detection limit are 300 and 45.5 pg mL-1, respectively. The maximum capacity of the 10 mg of modified silylated MCM-41 was found to be 400.5?4.7 µg for Cr(III. The method was applied to the determination of Cr(III and Cr(VI in the wastewater of the chromium electroplating industry and in environmental and biological samples (black tea, hot and black pepper.

  16. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys.

    Science.gov (United States)

    Freitas Oliveira Paranhos, Helena de; Bezzon, Osvaldo Luiz; Davi, Letícia Resende; Felipucci, Daniela Nair Borges; Silva, Cláudia Helena Lovato da; Pagnano, Valéria Oliveira

    2014-01-01

    This study evaluated the effect of cleanser solutions on the color of heat-polymerized acrylic resin (HPAR) and on the brightness of dental alloys with 180 immersion trials. Disk-shaped specimens were made with I) commercially pure titanium, II) nickel-chromium-molybdenum-titanium, III) nickel-chromium molybdenum, and IV) nickel-chromium-molybdenum beryllium. Each cast disk was invested in the flasks, incorporating the metal disk into the HPAR. The specimens (n=5) were then immersed in solutions containing: 0.05% sodium hypochlorite, 0.12% chlorhexidine digluconate, 0.500 mg cetylpyridinium chloride, a citric acid tablet, one of two different sodium perborate/enzyme tablets, and water. The color measurements (∆E) of the HPAR were determined by a colorimeter in accordance with the National Bureau of Standards. The surface brightness of the metal was visually examined for the presence of tarnish. The results (ANOVA; Tukey test-α=0.05) show that there was a significant difference between the groups (p<0.001) but not among the solutions (p=0.273). The highest mean was obtained for group III (5.06), followed by group II (2.14). The lowest averages were obtained for groups I (1.33) and IV (1.35). The color changes in groups I, II and IV were slight but noticeable, and the color change was considerable for group III. The visual analysis showed that 0.05% sodium hypochlorite caused metallic brightness changes in groups II and IV. It can be concluded that the agents had the same effect on the color of the resin and that the metallic alloys are not resistant to the action of 0.05% sodium hypochlorite.

  17. Effect of cleanser solutions on the color of acrylic resins associated with titanium and nickel-chromium alloys

    Directory of Open Access Journals (Sweden)

    Helena de Freitas Oliveira Paranhos

    2014-06-01

    Full Text Available This study evaluated the effect of cleanser solutions on the color of heat-polymerized acrylic resin (HPAR and on the brightness of dental alloys with 180 immersion trials. Disk-shaped specimens were made with I commercially pure titanium, II nickel-chromium-molybdenum-titanium, III nickel-chromium molybdenum, and IV nickel-chromium-molybdenum beryllium. Each cast disk was invested in the flasks, incorporating the metal disk into the HPAR. The specimens (n = 5 were then immersed in solutions containing: 0.05% sodium hypochlorite, 0.12% chlorhexidine digluconate, 0.500 mg cetylpyridinium chloride, a citric acid tablet, one of two different sodium perborate/enzyme tablets, and water. The color measurements (∆E of the HPAR were determined by a colorimeter in accordance with the National Bureau of Standards. The surface brightness of the metal was visually examined for the presence of tarnish. The results (ANOVA; Tukey test-α = 0.05 show that there was a significant difference between the groups (p < 0.001 but not among the solutions (p = 0.273. The highest mean was obtained for group III (5.06, followed by group II (2.14. The lowest averages were obtained for groups I (1.33 and IV (1.35. The color changes in groups I, II and IV were slight but noticeable, and the color change was considerable for group III. The visual analysis showed that 0.05% sodium hypochlorite caused metallic brightness changes in groups II and IV. It can be concluded that the agents had the same effect on the color of the resin and that the metallic alloys are not resistant to the action of 0.05% sodium hypochlorite.

  18. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Science.gov (United States)

    Espinoza-Quiñones, F. R.; Rizzutto, M. A.; Added, N.; Tabacniks, M. H.; Módenes, A. N.; Palácio, S. M.; Silva, E. A.; Rossi, F. L.; Martin, N.; Szymanski, N.

    2009-04-01

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr 6+ mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  19. PIXE analysis of chromium phytoaccumulation by the aquatic macrophytes Eicchornia crassipes

    Energy Technology Data Exchange (ETDEWEB)

    Espinoza-Quinones, F.R. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)], E-mail: f.espinoza@terra.com.br; Rizzutto, M.A.; Added, N.; Tabacniks, M.H. [Physics Institute, University of Sao Paulo, Rua do Matao s/n, Travessa R 187, 05508-900 Sao Paulo, SP (Brazil); Modenes, A.N.; Palacio, S.M.; Silva, E.A.; Rossi, F.L.; Martin, N.; Szymanski, N. [Department of Chemical Engineering - Postgraduate Program - NBQ, West Parana State University, Rua da Faculdade, 645, Jardim Santa Maria, 85903-000 Toledo, Parana (Brazil)

    2009-04-15

    The uptake of hexavalent chromium in free living floating aquatic macrophytes Eicchornia crassipes cultivated in non-toxic chromium-doped hydroponic solutions is presented. A Cr-uptake bioaccumulation experiment was carried out using healthy macrophytes grown in a temperature controlled greenhouse. Six samples of nutrient media and plants were collected during the 23 day experiment. Roots and leaves were acid digested with the addition of an internal Gallium standard, for thin film sample preparation and quantitative Cr analysis by PIXE method. The Cr{sup 6+} mass uptake by the macrophytes reached up to 70% of the initial concentration, comparable to former results and literature data. The Cr-uptake data were described using a non-structural first order kinetic model. Due to low cost and high removal efficiency, living aquatic macrophytes E. crassipes are a viable biosorbent in an artificial wetland of a water effluent treatment plant.

  20. Research Progress of the Separation Process of Vanadium and Chromium from Solution Containing Vanadium and Chromium%钒铬溶液中钒铬提取及分离工艺研究进展

    Institute of Scientific and Technical Information of China (English)

    蒋霖

    2014-01-01

    介绍了从钒铬溶液中分离钒铬的方法,即萃取法、化学沉淀法、离子交换法、结晶法和电化学法,阐述了这5种分离方法的技术原理和工艺流程,分析并归纳了各种方法的优缺点.源自于攀枝花红格矿区的高铬型钒渣,经钠化焙烧-水浸后得到低钒高铬溶液,该溶液体系中杂质含量高,钒铬分离困难.通过综合比较后指出,化学沉淀法具有工艺流程短、操作简单、生产成本低等优点,分离提取钒铬容易实现产业化,对于该钒铬溶液体系的钒铬提取分离比较适用;结晶法分离钒铬,产品纯度高,具有较好应用前景.%The separation methods of vanadium and chromium from solution containing vanadium and chromium,including solvent extraction,chemical precipitation,ion exchange,crystallization and electrochemical methods were introduced.The technical principles and process flows of the 5 methods mentioned above were described,and the advantages and disadvantages of them were analyzed and summarized.The solution containing low concentration of vanadium and high content of chromium was obtained by sodium roasting and water leaching using the high chromium vanadium slag from Hongge mining area as raw material,and the high contents of impurities in the solution led to the difficulty in separation of vanadium and chromium.By comprehensive comparison,a conclusion is drawn that the chemical precipitation method is suitable for the separation of vanadium and chromium in the solution with low concentration of vanadium and high content of chromium,which has the advantages of simple process,low cost,easy operation and industrialization.Owing to the high purity of products,crystallization method has a good application prospect in the field of separation of vanadium and chromium.

  1. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters.

    Science.gov (United States)

    Henryk, Kołoczek; Jarosław, Chwastowski; Witold, Żukowski

    2016-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adsorption of chromium forms to organic matter could be explained in terms of formation of donor-acceptor chemical covalent bound with hydroxyl groups as ligands and chromium as the central atom in the formed complex. The chromate-reducing activities were monitored with the use of electron paramagnetic resonance spectroscopy. The results showed that both adsorption and reduction occurred simultaneously and the maximum adsorption capacity of hexavalent chromium being equal to 95% for fiber and 92% for peat was obtained at pH 1.5. The reduction of Cr(VI) in wastewaters began immediately and disappeared after 20 h. Both materials contained yeast and fungi species which can be responsible for reduction of chromium compounds, due to their enzymatic activity (Chwastowski and Koloczek (Acta Biochim Pol 60: 829-834, 2013)). The reduction of Cr(VI) is a two-phase process, the first phase being rapid and based on chemical reaction and the second phase having biological features. After the recovery step, both types of organic materials can be used again for chromium adsorption without any loss in the metal uptake. Both of the materials could be used as biofilters in the wastewater treatment plants.

  2. Kinetics of the Removal of Chromium Complex Dye from Aqueous Solutions Using Activated Carbons and Polymeric Adsorbent

    Directory of Open Access Journals (Sweden)

    Eglė Kazlauskienė

    2011-04-01

    Full Text Available The kinetics of the removal of chromium complex dye (Lanasyn Navy M-DNL from aqueous solutions using polymeric adsorbent Macronet MN 200 (MN 200 as an alternative option for activated carbon Norit RB 0.8 CC (AC was studied in the batch system. The residual colour of dye solution treated with AC or MN 200 strongly depends on solution pH with lower values at acidic pH when a positively charged surface net is favourable for the adsorption of the dye anion. The removal of dye using MN 200 was found relatively higher than that using AC. The pseudo-second order and intraparticle diffusion models agreed well with experimental data. The parameters of these models were studied as a function of temperature and adsorbent nature.Article in Lithuanian

  3. High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites

    CSIR Research Space (South Africa)

    Chauke, VP

    2015-07-01

    Full Text Available Graphene oxide (GO) was functionalized with alpha cyclodextrin (aCD) through a covalent bond to form GO-aCD nanocomposites (NC). GO-aCD NC was further modified with polypyrrole (PPY) to afford an advanced GO-aCD-PPY NC for the removal of highly...

  4. Ailanthus Altissima and Phragmites Australis for chromium removal from a contaminated soil.

    Science.gov (United States)

    Ranieri, Ezio; Fratino, Umberto; Petrella, Andrea; Torretta, Vincenzo; Rada, Elena Cristina

    2016-08-01

    The comparative effectiveness for hexavalent chromium removal from irrigation water, using two selected plant species (Phragmites australis and Ailanthus altissima) planted in soil contaminated with hexavalent chromium, has been studied in the present work. Total chromium removal from water was ranging from 55 % (Phragmites) to 61 % (Ailanthus). After 360 days, the contaminated soil dropped from 70 (initial) to 36 and 41 mg Cr/kg (dry soil), for Phragmites and Ailanthus, respectively. Phragmites accumulated the highest amount of chromium in the roots (1910 mg Cr/kg(dry tissue)), compared with 358 mg Cr/kg(dry tissue) for Ailanthus roots. Most of chromium was found in trivalent form in all plant tissues. Ailanthus had the lowest affinity for Cr(VI) reduction in the root tissues. Phragmites indicated the highest chromium translocation potential, from roots to stems. Both plant species showed good potentialities to be used in phytoremediation installations for chromium removal.

  5. Accumulation of chromium by Commelina communis L. grown in solution with different concentrations of Cr and L-histidine

    Institute of Scientific and Technical Information of China (English)

    唐世荣; 席磊

    2002-01-01

    Hydroponic experiments conducted to examine the chromiun uptake by C. communis in the presence of different Cr concentrations (Cr6+ 100 and 200 mg/L, respectively) and free histidine supplementation (0.5 and 1.0 mol/L) showed that shoot and root growth of C. communis decreased greatly with increasing Cr concentrations in the medium; and that the species was a typical excluder since it accumulated high concentrations of Cr in roots but comparatively low concentrations in shoots. Chromium in shoots and roots of Cr24 -supplied plants ranged from 329-1880 and 3788-4240 mg/kg DW, respectively, while those of Cr24 -histidine-supplied plants ranged from 478 to 629 mg/kg and 4157-4303 mg/kg DW, respectively. With Cr present in the hydroponic solution, C. communis accumulated more Cr in its tissues. Increasing histidine application to the solution significantly increased chromium accumulation in the plant tissues but could not alter the accumulation pattern of plants although it induced a higher concentration of Cr in its shoots and roots. These features suggested that C. communis may serve as an alternative species in a constructed wetland for phytoextraction treatment of Cr-containing wastewater and for phytostabilization of Cr mining spoils.

  6. Characteristics of chromium-allergic dermatitis patients prior to regulatory intervention for chromium in leather

    DEFF Research Database (Denmark)

    Bregnbak, David; Thyssen, Jacob P; Zachariae, Claus;

    2014-01-01

    BACKGROUND: Chromium-tanned leather articles currently constitute the most important cause of contact allergy to chromium in Denmark. A regulation on the content of hexavalent chromium in leather was adopted in November 2013 by the EU member states. OBJECTIVES: To characterize patients...... with chromium allergy and their disease, to serve as a baseline for future studies on the potential effect of the new regulation on chromium in leather. METHODS: A questionnaire case-control study was performed on 155 dermatitis patients with positive patch test reactions to potassium dichromate and a matched...... control group of 621 dermatitis patients. Comparisons were made by use of a χ(2) -test and the Mann-Whitney U-test. Logistic regression analyses were used to test for associations. RESULTS: Sixty-six per cent of chromium-allergic patients had a positive history of contact dermatitis caused by leather...

  7. Chromium in leather footwear-risk assessment of chromium allergy and dermatitis

    DEFF Research Database (Denmark)

    Thyssen, Jacob P; Strandesen, Maria; Poulsen, Pia B;

    2012-01-01

    Background. Chromium-tanned leather footwear, which releases >3 ppm hexavalent Cr(VI), may pose a risk of sensitizing and eliciting allergic dermatitis. Objectives. To determine the content and potential release of chromium in leather footwear and to discuss the prevention of chromium contact...... allergy and dermatitis. Methods. Sixty pairs of leather shoes, sandals and boots (20 children's, 20 men's, and 20 women's) were purchased in Copenhagen and examined with X-ray fluorescence spectroscopy. Chromium was extracted according to the International Standard, ISO 17075. The detection level for Cr......(VI) was 3 ppm. Results. Chromium was identified in 95% of leather footwear products, the median content being 1.7% (range 0-3.3%). No association with store category or footwear category was found. A tendency for there to be a higher chromium content in footwear with high prices was shown (p(trend) = 0...

  8. Evaluation of rhamnolipid (RL) as a biosurfactant for the removal of chromium from aqueous solutions by precipitate flotation.

    Science.gov (United States)

    Salmani Abyaneh, Ali; Fazaelipoor, Mohammad Hassan

    2016-01-01

    Rhamnolipid (RL) is a biosurfactant which is produced by the bacterial species Pseudomonas aeruginosa. Although applications of this material have been examined in various fields, its applications in the flotation of heavy metals remain to be explored. In this research, rhamnolipid was applied as a collector in the flotation of Cr(III) from aqueous solutions. FeSO4 was used for the precipitation of Cr(VI) to Cr(III) which was subsequently removed by flotation. A two level full factorial design (with center points) was used to evaluate the effects of pH, air flow rate, RL/Cr and Fe/Cr molar ratios on the performance of the flotation system. The results showed that the biosurfactant was highly effective in the removal of chromium, and all of the factors had significant effects on the flotation performance. The chromium removal efficiencies of greater than 95% were obtained with the initial chromium concentration of 40 ppm within 5 min. Kinetic studies showed that a first order kinetic model was appropriate to describe the precipitate flotation of Cr(III) using rhamnolipid as a collector. The interference of NaCl, CaCl2, CaSO4, and CaCO3 on the Cr removal was also investigated, and it was demonstrated that CaSO4 and CaCO3 as sparingly water soluble salts, and CaCl2 as a contributor to water hardness had significant negative impacts on Cr removal efficiency of rhamnolipid.

  9. Comparing Nafion and ceramic separators used in electrochemical purification of spent chromium plating solutions: cationic impurity removal and transport.

    Science.gov (United States)

    Huang, Kuo-Lin; Holsen, Thomas M; Chou, Tse-Chuan; Selman, J Robert

    2003-05-01

    This study focuses on the electrolytic regeneration of spent chromium plating solutions. These solutions contain a significant amount of chromium and a lesser amount of other heavy metals, which makes them a significant environmental concern and an obvious target for recycling and reuse. The type of separator used is extremely critical to the performance of the process because they are the major resistance in the transport-related impurity (Cu(II), Ni(II), and Fe(III)) removals from contaminated chromic acid solutions. A Nafion 117 membrane and a ceramic diaphragm separator traditionally used in the industry were tested for comparison. It was found that the mobilities of Cu(II) and Ni(II) were similar and higher than that of Fe(III) using both separators. The mobility of each cation was smaller in the Nafion membrane than in the ceramic diaphragm. The measured conductivity of the ceramic diaphragm was slightly higher than that of Nafion membrane. However, the Nafion membrane was much thinner than the ceramic diaphragm resulting in the system using the Nafion membrane having higher impurity removal rates than the system using the ceramic diaphragm. The removal rates were approximately equal for Cu(II) and Ni(II) and lowest for Fe(III). Both current and initial concentration affected the removal rates of the impurities. Modeling results indicated that a system using a Nafion separator and a small catholyte/anolyte volume ratio was better than a system using a ceramic separator for removing impurities from concentrated plating solutions if the impurities transported into the catholyte are deposited or precipitated.

  10. Method of trivalent chromium concentration determination by atomic spectrometry

    Science.gov (United States)

    Reheulishvili, Aleksandre N [Tbilisi, 0183, GE; Tsibakhashvili, Neli Ya [Tbilisi, 0101, GE

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  11. Environmental biochemistry of chromium.

    Science.gov (United States)

    Losi, M E; Amrhein, C; Frankenberger, W T

    1994-01-01

    Chromium is a d-block transitional element with many industrial uses. It occurs naturally in various crustal materials and is discharged to the environment as industrial waste. Although it can occur in a number of oxidation states, only 3+ and 6+ are found in environmental systems. The environmental behavior of Cr is largely a function of its oxidation state. Hexavalent Cr compounds (mainly chromates and dichromates) are considered toxic to a variety of terrestrial and aquatic organisms and are mobile in soil/water systems, much more so than trivalent Cr compounds. This is largely because of differing chemical properties: Hexavalent Cr compounds are strong oxidizers and highly soluble, while trivalent Cr compounds tend to form relatively inert precipitates at near-neutral pH. The trivalent state is generally considered to be the stable form in equilibrium with most soil/water systems. A diagram of the Cr cycle in soils and water is given in Fig. 6 (Bartlett 1991). This illustration provides a summary of environmentally relevant reactions. Beginning with hexavalent Cr that is released into the environment as industrial waste, there are a number of possible fates, including pollution of soil and surface water and leaching into groundwater, where it may remain stable and, in turn, can be taken up by plants or animals, and adsorption/precipitation, involving soil colloids and/or organic matter. Herein lies much of the environmental concern associated with the hexavalent form. A portion of the Cr(VI) will be reduced to the trivalent form by inorganic electron donors, such as Fe2+ and S2-, or by bioprocesses involving organic matter. Following this conversion, Cr3+ can be expected to precipitate as oxides and hydroxides or to form complexes with numerous ligands. This fraction includes a vast majority of global Cr reserves. Soluble Cr3+ complexes, such as those formed with citrate, can undergo oxidation when they come in contact with manganese dioxide, thus reforming

  12. SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-07-02

    {sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

  13. Adsorption of chromium (Vi) on radiation grafted N,N-dimethylaminoethylmethacrylate onto polypropylene, from aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Burillo, G. [UNAM, Instituto de Ciencias Nucleares, Departamento de Quimica, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Serrano G, J.; Bonifacio M, J., E-mail: juan.serrano@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-08-01

    Polypropylene (Pp) grafted with dimethylaminoethylmethacrylate (DMAEMA), was prepared by irradiation with a {sup 60}Co {gamma} source. The obtained Pp-g-DMAEMA was used to study the Cr(Vi) ion adsorption as a function of contact time, initial ph, initial concentration of metal ion and temperature. Chromium adsorption data on Pp-g-DMAEMA at various initial concentration fit well the Freundlich and Langmuir isotherms. The maximum adsorption capacity (a{sub max}) was found to be 0.3103 x 0{sup -4} mol g{sup -1}. The thermodynamic parameters {Delta}H{sup 0}, {Delta}G{sup 0} and {Delta}S{sup 0} were estimated showing the adsorption process to be exothermic and spontaneous. (Author)

  14. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies

    Science.gov (United States)

    Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater. PMID:26352933

  15. Chromium Biosorption from Cr(VI Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies.

    Directory of Open Access Journals (Sweden)

    Alma Rosa Netzahuatl-Muñoz

    Full Text Available The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr ion biosorption from Cr(VI aqueous solutions by Cupressus lusitanica bark (CLB. CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1. Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI-contaminated water and wastewater.

  16. Chromium Biosorption from Cr(VI) Aqueous Solutions by Cupressus lusitanica Bark: Kinetics, Equilibrium and Thermodynamic Studies.

    Science.gov (United States)

    Netzahuatl-Muñoz, Alma Rosa; Cristiani-Urbina, María del Carmen; Cristiani-Urbina, Eliseo

    2015-01-01

    The present study investigated the kinetics, equilibrium and thermodynamics of chromium (Cr) ion biosorption from Cr(VI) aqueous solutions by Cupressus lusitanica bark (CLB). CLB total Cr biosorption capacity strongly depended on operating variables such as initial Cr(VI) concentration and contact time: as these variables rose, total Cr biosorption capacity increased significantly. Total Cr biosorption rate also increased with rising solution temperature. The pseudo-second-order model described the total Cr biosorption kinetic data best. Langmuir´s model fitted the experimental equilibrium biosorption data of total Cr best and predicted a maximum total Cr biosorption capacity of 305.4 mg g(-1). Total Cr biosorption by CLB is an endothermic and non-spontaneous process as indicated by the thermodynamic parameters. Results from the present kinetic, equilibrium and thermodynamic studies suggest that CLB biosorbs Cr ions from Cr(VI) aqueous solutions predominantly by a chemical sorption phenomenon. Low cost, availability, renewable nature, and effective total Cr biosorption make CLB a highly attractive and efficient method to remediate Cr(VI)-contaminated water and wastewater.

  17. Chromium(VI) adsorption from aqueous solution by Hevea Brasilinesis sawdust activated carbon.

    Science.gov (United States)

    Karthikeyan, T; Rajgopal, S; Miranda, Lima Rose

    2005-09-30

    Adsorption capacity of Cr(VI) onto Hevea Brasilinesis (Rubber wood) sawdust activated carbon was investigated in a batch system by considering the effects of various parameters like contact time, initial concentration, pH and temperature. Cr(VI) removal is pH dependent and found to be maximum at pH 2.0. Increases in adsorption capacity with increase in temperature indicate that the adsorption reaction is endothermic. Based on this study, the thermodynamic parameters like standard Gibb's free energy (DeltaG degrees ), standard enthalpy (DeltaH degrees ) and standard entropy (DeltaS degrees ) were evaluated. Adsorption kinetics of Cr(VI) ions onto rubber wood sawdust activated carbon were analyzed by pseudo first-order and pseudo second-order models. Pseudo second-order model was found to explain the kinetics of Cr(VI) adsorption most effectively. Intraparticle diffusion studies at different temperatures show that the mechanism of adsorption is mainly dependent on diffusion. The rate of intraparticle diffusion, film diffusion coefficient and pore diffusion coefficient at various temperatures were evaluated. The Langmuir, Freundlich and Temkin isotherm were used to describe the adsorption equilibrium studies of rubber wood sawdust activated carbon at different temperatures. Langmuir isotherm shows better fit than Freundlich and Temkin isotherm in the temperature range studied. The result shows that the rubber wood sawdust activated carbon can be efficiently used for the treatment of wastewaters containing chromium as a low cost alternative compared to commercial activated carbon and other adsorbents reported.

  18. Chromium III histidinate exposure modulates antioxidant gene expression in HaCaT human keratinocytes exposed to oxidative stress

    Science.gov (United States)

    While the toxicity of hexavalent chromium is well established, trivalent Cr (Cr(III)) is an essential nutrient involved in insulin and glucose homeostasis. Recently, antioxidant effects of chromium (III) histidinate (Cr(III)His) were reported in HaCaT human keratinocytes exposed to oxidative stress...

  19. Adsorptive removal of methyl orange from aqueous solution with metal-organic frameworks, porous chromium-benzenedicarboxylates

    Energy Technology Data Exchange (ETDEWEB)

    Haque, Enamul; Lee, Ji Eun [Department of Chemistry, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Jang, In Tae; Hwang, Young Kyu; Chang, Jong-San [Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology, P.O. Box, 107, Yusung, Daejeon 305-600 (Korea, Republic of); Jegal, Jonggeon [Membrane and Separation Research Center, Korea Research Institute of Chemical Technology, P.O. Box 107, Yusung, Daejeon 305-600 (Korea, Republic of); Jhung, Sung Hwa, E-mail: sung@knu.ac.kr [Department of Chemistry, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

    2010-09-15

    Two typical highly porous metal-organic framework (MOF) materials based on chromium-benzenedicarboxylates (Cr-BDC) obtained from Material of Institute Lavoisier with special structure of MIL-101 and MIL-53 have been used for the adsorptive removal of methyl orange (MO), a harmful anionic dye, from aqueous solutions. The adsorption capacity and adsorption kinetic constant of MIL-101 are greater than those of MIL-53, showing the importance of porosity and pore size for the adsorption. The performance of MIL-101 improves with modification: the adsorption capacity and kinetic constant are in the order of MIL-101 < ethylenediamine-grafted MIL-101 < protonated ethylenediamine-grafted MIL-101 (even though the porosity and pore size are slightly decreased with grafting and further protonation). The adsorption capacity of protonated ethylenediamine-grafted MIL-101 decreases with increasing the pH of an aqueous MO solution. These results suggest that the adsorption of MO on the MOF is at least partly due to the electrostatic interaction between anionic MO and a cationic adsorbent. Adsorption of MO at various temperatures shows that the adsorption is a spontaneous and endothermic process and that the entropy increases (the driving force of the adsorption) with MO adsorption. The adsorbent MIL-101s are re-usable after sonification in water. Based on this study, MOFs can be suggested as potential re-usable adsorbents to remove anionic dyes because of their high porosity, facile modification and ready re-activation.

  20. Sonoassisted microbial reduction of chromium.

    Science.gov (United States)

    Kathiravan, Mathur Nadarajan; Karthick, Ramalingam; Muthu, Naggapan; Muthukumar, Karuppan; Velan, Manickam

    2010-04-01

    This study presents sonoassisted microbial reduction of hexavalent chromium (Cr(VI)) using Bacillus sp. isolated from tannery effluent contaminated site. The experiments were carried out with free cells in the presence and absence of ultrasound. The optimum pH and temperature for the reduction of Cr(VI) by Bacillus sp. were found to be 7.0 and 37 degrees C, respectively. The Cr(VI) reduction was significantly influenced by the electron donors and among the various electron donors studied, glucose offered maximum reduction. The ultrasound-irradiated reduction of Cr(VI) with Bacillus sp. showed efficient Cr(VI) reduction. The percent reduction was found to increase with an increase in biomass concentration and decrease with an increase in initial concentration. The changes in the functional groups of Bacillus sp., before and after chromium reduction were observed with FTIR spectra. Microbial growth was described with Monod and Andrews model and best fit was observed with Andrews model.

  1. Pollution of Chrome Bearing Materials and the Solutions

    Institute of Scientific and Technical Information of China (English)

    HAN Bingqiang; LI Nan

    2007-01-01

    This paper summarizes the pollution, situation and solutions of chrome bearing materials used in high temperature industry. Hexavalent chromium compounds are readily soluble in water and associated with carcinogen. Therefore, serious environmental problems appeal for the study and application of chrome free materials.Chrome free products include: magnesia based materials, dolomite based materials, magnesia spinel materials, magnesia hercynite or magnesia galaxite materials and zirconia containing materials, and other substitutes.Although any product has its advantages and disadvantages, the trend to development of chrome free products is inevitable.

  2. Bioremediation of Chromium (VI from Textile Industry’s Effluent and Contaminated Soil Using Pseudomonas putida

    Directory of Open Access Journals (Sweden)

    Deepali

    2011-01-01

    Full Text Available Nine bacterial colonies were screened for the Cr(VI removal efficiency and out of these three bacterial strains Pseudomonas putida, Pseudomonas aeruginosa and Bacillus sp. were isolated from soil and used to remove Cr(VI from aqueous solution. The effect of time and concentrations on the removal rate of hexavalent chromium were studied using batch experiment. Maximum Cr (VI removal was noted 75.0% by Bacillus sp. at 10mg/l, 69.70% by Pseudomonas aeruginosa at 40mg/l and 90.88% by Pseudomonas putida at 10mg/l of synthetic solution, during 96 hours. Among these three bacteria, the maximum Cr(VI removal was reported by Pseudomonas putida on lower concentration. On the basis of highest removal rate, Pseudomonas putida was selected and used for further chromium removal from samples. It was found to be removed the highest Cr(VI by 82.92%, from effluent and 74.41% from soil during 96 hours. The present study depicts that bacteria removes chromium efficiently and this could be used for industrial waste management and other environmental contaminants.

  3. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    OpenAIRE

    Viorica Coşier; I. Valentin Petrescu-Mag

    2008-01-01

    Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996). The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutage...

  4. Reduction of Hexavalent Chromium by Nanoscale Fe0 and Its Influencing Factors%纳米Fe0对Cr(Ⅵ)的还原及其影响因素

    Institute of Scientific and Technical Information of China (English)

    刘文文; 邹影; 司友斌

    2012-01-01

    An experiment was carried out on nanoscale zero-valent iron ( NZVI) reducing Cr ( VI) in water to explore effects of NZVI application rate, initial concentrations of Cr( VI) , initial pHs, and organic acids on the reduction. It was found that NZVI efficiently reduced Cr( VI) in water at a rate 7 and 13 times higher than that of iron powder and filings, respectively. Under the condition of the initial concentration of Cr( VI) being 20 mg · L and the NZVI application rate being 5 g · L-1 , the reduction rate reached 82. 7% after 24 h of incubation. Low pH solution promoted corrosion of NZVI, which raised Cr( VI) reduction rate. The highest reduction rate occured in solution being 3.0 in pH. Among organic acids , oxalic acid, malonic acid and succinic acid all significantly improved the effect of NZVI reducing Cr( VI) , and followed the order of oxalic acid > malonic acid > succinic acid.%采用纳米Fe0还原水溶液中的Cr(Ⅵ),考察纳米Fe0投加量、Cr(Ⅵ)初始浓度、溶液pH值和有机酸等因素对Cr(Ⅵ)还原的影响.结果表明,纳米Fe0对Cr(Ⅵ)的还原效果明显,其对Cr(Ⅵ)的还原率分别是铁粉和铁屑的7和13倍.Cr(Ⅵ)溶液初始质量浓度为20 mg·L-1、Fe0投加量为5g·L-1条件下,反应24 h时纳米Fe0对Cr(Ⅵ)的还原率达82.7%.溶液低pH值可以促进Fe0的腐蚀速度,提高反应速率,当pH值为3.0时还原效果最好.草酸、丙二酸和丁二酸对纳米Fe0还原Cr(Ⅵ)均有明显的促进作用,3种有机酸对Cr(Ⅵ)还原率的提高幅度由高到低依次为草酸、丙二酸和丁二酸.

  5. Bioaccumulation and depuration of chromium in the selected organs and whole body tissues of freshwater fish Cirrhinus mrigala individually and in binary solutions with nickel

    Institute of Scientific and Technical Information of China (English)

    PL. RM. Palaniappan; S. Karthikeyan

    2009-01-01

    Contamination of aquatic ecosystems with heavy metals has been receiving increased worldwide attention due to their harmful effects on human health and other organisms in the environment.Most of the studies dealing with toxic effects of metals deal with single metal species, while the aquatic organisms are typically exposed to mixtures of metals.Hence, in order to provide data supporting the usefulness of freshwater fish as indicators of heavy metal pollution, it has been proposed in the present study to investigate the bioaccumulation and depuration of chromium in the selected organs of freshwater fingerlings Cirrhinus mrigala, individually and in binary solutions with nickel.The results show that the kidney is a target organ for chromium accumulation, which implies that it is also the "critical" organ for toxic symptoms.The results further show that accumulation of nickel in all the tissues of C.mrigala is higher than that of chromium.In addition, the metal accumulations of the binary mixtures of chromium and nickel are substantially higher than those of the individual metals, indicating synergistic interactions between the two metals.Theoretically the simplest explanation for an additive joint action of toxicants in a mixture is that they act in a qualitatively similar way.The observed data suggest that C.mrigala could be suitable monitoring organisms to study the bioavailability of water-bound metals in freshwater habitats.

  6. Application of the Stopped Flow Technique to the TiO₂-Heterogeneous Photocatalysis of Hexavalent Chromium in Aqueous Suspensions: Comparison with O₂ and H₂O₂ as Electron Acceptors.

    Science.gov (United States)

    Meichtry, Jorge M; Dillert, Ralf; Bahnemann, Detlef W; Litter, Marta I

    2015-06-01

    The dynamics of the transfer of electrons stored in TiO2 nanoparticles to Cr(VI) in aqueous solution have been investigated using the stopped flow technique. TiO2 nanoparticles were previously irradiated under UV light in the presence of formic acid, and trapped electrons (e(trap)(-)) were made to react with Cr(VI) as acceptor species; other common acceptor species such as O2 and H2O2 were also tested. The temporal evolution of the number of trapped electrons was followed by the decrease in the absorbance at 600 nm, and the kinetics of the electron-transfer reaction was modeled. Additionally, the rate of formation of the surface complex between Cr(VI) and TiO2 was determined with the stopped flow technique by following the evolution of the absorbance at 400 nm of suspensions of nonirradiated TiO2 nanoparticles and Cr(VI) at different concentrations. An approximately quadratic relationship was observed between the maximum absorbance of the surface complex and the concentration of Cr(VI), suggesting that Cr(VI) adsorbs onto the TiO2 surface as dichromate. The kinetic analyses indicate that the electron transfer from TiO2 to Cr(VI) does not require the previous formation of the Cr(VI)-TiO2 surface complex, at least the complex detected here through the stopped flow experiments. When previously irradiated TiO2 was used to follow the evolution of the Cr(VI)-TiO2 complex, an inhibition of the formation of the complex was observed, which can be related to the TiO2 deactivation caused by Cr(III) deposition.

  7. Zero-valent iron particles embedded on the mesoporous silica-carbon for chromium (VI) removal from aqueous solution

    Science.gov (United States)

    Xiong, Kun; Gao, Yuan; Zhou, Lin; Zhang, Xianming

    2016-09-01

    Nanoscale zero-valent iron (nZVI) particles were embedded on the walls of mesoporous silica-carbon (MSC) under the conditions of high-temperature carbonization and reduction and used to remove chromium (VI) from aqueous solution. The structure and textural properties of nZVI-MSC were characterized by the powder X-ray diffraction, transmission electron microscopy and N2 adsorption and desorption. The results show that nZVI-MSC has highly ordered mesoporous structure and large surface area, indistinguishable with that of MSC. Compared with the support MSC and iron particles supported on the activated carbon (nZVI/AC), nZVI-MSC exhibited much higher Cr(VI) removal efficiency with about 98 %. The removal process obeys a pseudo first-order model. Such excellent performance of nZVI-MSC could be ascribed to the large surface and iron particles embedded on the walls of the MSC, forming an intimate contact with the MSC. It is proposed that this feature might create certain micro-electrode on the interface of iron particles and MSC, which prevented the formation of metal oxide on the surface and provided fresh Fe surface for Cr(VI) removal.

  8. Chromium (III) recovery from waste acid solution by ion exchange processing using Amberlite IR-120 resin: batch and continuous ion exchange modelling

    OpenAIRE

    Alguacil,Francisco José; Alonso Gámez, Manuel; Lozano, Kuis Javier

    2004-01-01

    The use of ion exchange technology was studied to remove chromium (III) from acidic waste solution by Amberlite IR-120 resin. Batch and column experimental tests were conducted to provide data for theoretical models and verify the system performance of the adsorption process. Results of batch equilibrium tests indicated that Langmuir isotherm describes well the adsorption process, whereas experimental data also provide evidence that, under the present experimental conditions, chro...

  9. BIOADSORPTION USING COMPOST: AN ALTERNATIVE FOR REMOVAL OF CHROMIUM (VI FROM AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Claudia Vargas,

    2012-05-01

    Full Text Available The removal of Cr(VI from aqueous solutions was studied using a compost generated from carnation flowers waste. The highest percentage of removal achieved (ca. 99 % was obtained at pH 2.0, using a 10 mg L-1 of Cr(VI solution, a dose of 10 g L-1 of compost, and with an equilibrium time of 3 hours. Under these conditions, the kinetics and adsorption isotherm were examined varying the initial Cr(VI concentration from 15 to 200 mg L-1. The maximum sorption capacity at equilibrium (Qm, from the Langmuir model, was found to be 6.25 mg g-1. The evaluation of Cr(VI removal at pH 2.0 showed a second order kinetics and showed that the process mechanism can be modeled by the “adsorption-coupled reduction” hypothesis. Also, the monitoring of Cr(VI and total Cr in aqueous solutions showed that Cr(VI and total Cr were removed from solution, and that part of the Cr(III was retained on the compost. According to the results, the removal of Cr(VI with the assayed compost can be explained by the following steps: (i adsorption of Cr(VI species onto compost, (ii Cr(VI reduction to Cr(III, and (iii adsorption of part of Cr(III on the compost. Thus, this study suggests that the carnation flower waste compost can be used as a remediation system for water contaminated with Cr(VI.

  10. Advances in Functional Trivalent Chromium Electroplating%功能三价铬镀铬的研究进展

    Institute of Scientific and Technical Information of China (English)

    李家柱; 毛祖国; 孙宁

    2012-01-01

    介绍了最近美国关于功能性Cr(Ⅲ)电镀代替Cr(Ⅵ)硬铬电镀的科研进展.Cr(Ⅵ)电镀用于提供硬度高、抗磨损和耐腐蚀的镀层.但是,Cr(Ⅵ)槽液毒性大,对环境和人身有危害,已经得到严格的控制和监督.Cr(Ⅲ)电镀铬已经取得了可以和Cr(Ⅵ)电镀相比美的功能性,对Cr(Ⅲ)镀铬镀层的厚度、均匀性、结合力、孔隙率和抗腐蚀性能方面进行了讨论.%The latest development of functional trivalent chromium plating for replacing hexavalent chromium plating in USA was introduced. The hexavalent chromium plating has been used to provide hard and durable coatings with excellent wear and corrosion resistance. But this hexavalent chromium plating was strictly supervised due to its toxic nature,harmful effect to the environment and human health. Until now, the trivalent chromium plating has the comparable properties with hexavalent chromium plating and been successfully applied in the undercarriage of airplane. Finally,the thickness, uniformity, bonding strength, porosity and corrosion resistance of trivalent chromium plating were discussed.

  11. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal-bacterial ......Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal...

  12. Thermodynamic study of the adsorption of chromium ions from aqueous solution on waste corn cobs material

    Directory of Open Access Journals (Sweden)

    Rafael A. Fonseca-Correa

    2014-12-01

    Full Text Available The paper shows the results of a study obtaining activated carbon from corn cobs and determining its use as an adsorbent for the removal of Cr3+ from aqueous solutions. The finely ground precursor was subjected to pyrolysis at 600 and 900 °C in a nitrogen atmosphere and chemical activation with H2O2 and HNO3. The effects of pyrolysis conditions and activation method on the physicochemical properties of the materials obtained were tested. The samples were characterised chemically and texturally. Were obtained microporous activated carbons of well-developed surface area varying from 337 to 1213 m2/g and exhibited differences acid-base character of the surface. The results obtained shows that a suitable good option of the activation procedure for corncobs permits the production of economic adsorbents with high sorption capacity for Cr3+ from aqueous solutions. A detailed study of immersion calorimetry was performed with carbons prepared from corn cobs to establish possible relationships with these materials between the enthalpies of immersion and textural and chemical parameters.

  13. Removal of Chromium from Aqueous Solution Using Modified Pomegranate Peel:Mechanistic and Thermodynamic Studies

    Directory of Open Access Journals (Sweden)

    Tariq S. Najim

    2009-01-01

    Full Text Available Modified pomegranate peel (MPGP and formaldehyde modified pomegranate peel (FMPGP were prepared and used as adsorbent for removal of Cr(VI ions from aqueous solution using batch process. The temperature variation study of adsorption on both adsorbents revealed that the adsorption process is endothermic, from the positive values of ∆H˚. These values lie in the range of physisorption. The negative values of ∆G˚ show the adsorption is favorable and spontaneous. On the other hand, these negative values increases with increase in temperature on both adsorbents, which indicate that the adsorption is preferable at higher temperatures. ∆S˚ values showed that the process is accompanied by increase in disorder and randomness at the solid solution interface due to the reorientation of water molecules and Cr(VI ions around the adsorbent surface. The endothermic nature of the adsorption was also confirmed from the positive values of activation energy, Ea, the low values of Ea confirm the physisorption mechanism of adsorption. The sticking probability, S*, of Cr(VI ion on surface of both adsorbents showed that the adsorption is preferable due to low values of S* (0< S* < 1 , but S* values are lower for FMPGP indicating that the adsorption on FMPGP is more preferable .

  14. Influence of both the composition of impregnation solution and impregnation method on copper(II, chromium(VI and silver(I deposition on activated carbon

    Directory of Open Access Journals (Sweden)

    Ivanović Slavica

    2003-01-01

    Full Text Available The composition of a solution for impregnating activated carbon (AC for use in a gas filter was investigated. The solution components were tetraaminocop-per(II complex, chromium(VI, silver(l and carbonate ions. Two methods of impregnation were investigated: ion adsorption from aqueous solution in excess and the incipient wetness method. Copper, chromium and silver con-tents on AC Were determined by atomic absorption spectrometry. The largest copper contents (4.38 and 5.00 % (w/w for two AC samples were achieved at: c([Cu(NH34]2+ = 1.0 mol/L; M(Cu i M(Cr = 3.75: 1; M(Cu i M(Ag = 62: 1 and M(Cu: M(CO3 = 2: 1, using two fold impregnation by the incipient wetness method with 2.4 mL of solution per 3 g AC. The contents of chromium and silver on the same AC samples Were 1.06 and 0.0098 % for the first and 1.14 and 0.009 % for the second AC. A larger Cr content (1.57 % was achieved from an impregnation solution in excess (c([Cu(NH34]2+ = 1.25 mol/L; M(Cu i M(Cr = 3: 1; without Ag. The largest Ag content (0.17 % was obtained using two fold impregnation by the incipient wetness method (c([Cu(NH34]2+ = 0.8 mol/L; M(Cu: M(Cr = 3.75: 1<; M(Cu i M(Ag ( 80: 1 and M(Cu i M(CO3 = 1 i 1.32. Larger metal contents were obtained using two fold impregnation by the incipient wetness method. Further work is needed on the determination of the influence of carbonate ions both on the solution stability and metal deposition on AC.

  15. Study of reduction of chromium (VI by calcium polysulfide using spectrophotometric method

    Directory of Open Access Journals (Sweden)

    Batukhan Tatykaev

    2013-05-01

    Full Text Available The paper presents  the results of the study on reduction  of  Cr2O72-   to   Cr3 +  by aqueous solution of calcium polysulfide  using spectrophotometric method. Concentrations  of Cr (VI were determined on the basis of the absorption spectrum at the wavelength range 350 - 372 nm. The change of the concentration of Cr (VI during on reduction by calcium polysulfide has been shown.  The influence of pH on the rate of reducing of Cr (VI to Cr (III was considered: the rate of reducing of hexavalent chromium decreases with increasing pH. The data obtained show that recycling Cr (VI in industrial scale potentially effective at  the pH = 5.

  16. Microbial reduction of chromium from the hexavalent to divalent state

    Science.gov (United States)

    Daulton, Tyrone L.; Little, Brenda J.; Jones-Meehan, Joanne; Blom, Douglas A.; Allard, Lawrence F.

    2007-02-01

    We demonstrate that Shewanella oneidensis, a metal-reducing bacteria species with cytoplasmic-membrane-bound reductases and remarkably diverse respiratory capabilities, reduced Cr(VI) to Cr(II) in anaerobic cultures where chromate was the sole terminal electron acceptor. Individual cell microanalysis by transmission electron microscopy (TEM) using electron energy-loss spectroscopy (EELS) and energy dispersive X-ray spectroscopy (EDXS) demonstrates Cr(II) concentrated near the cytoplasmic membrane, suggesting the terminal reduction pathway is intracellularly localized. Further, estimated cellular Cr(II) concentrations are relatively high at upwards of 0.03-0.09 g Cr/g bacterium. Accumulation of Cr(II) is observed in S. oneidensis cells prior to the formation of submicron-sized precipitates of insoluble Cr(III) on their surfaces. Furthermore, under anaerobic conditions, Cr(III) precipitates that encrust cells are shown to contain Cr(II) that is likely bound in the net negatively charged extracellular biopolymers which can permeate the surfaces of the precipitates. In otherwise nearly identical incubations, Cr(III) precipitate formation was observed in cultures maintained anaerobic with bubbled nitrogen but not in three replicate cultures in an anaerobic chamber.

  17. Removal of hexavalent chromium using chitosan prepared from ...

    African Journals Online (AJOL)

    sunny t

    shrimp shells and the characterization of the prepared chitosan by field emission scanning electron microscopy .... for non-conductive materials, the Nova Nano SEM is unique in .... A novel chitosan functional gel included with multiwall carbon.

  18. Microbial Reduction of Chromium from the Hexavalent to Divalent State

    Science.gov (United States)

    2007-01-01

    1987, 1989) and the tendency of dissolved Cr(III) to be adsorbed by organic carbon (Fukushima et al., 1995) as well as mineral surfaces (Griffin et al...Neal et al., 2002; Kalabegishvili et al., 1987, 1989) and their soluble organo complexes et al., 2003). Electron paramagnetic resonance (EPR) mea- (Puzon... mineral chemistry has not been rigorously character- whether the Cr was concentrated as precipitates on cell sur- ized. Similar to Cr(OH) 3-nH 2 0

  19. RDT&E Progress and Plansfor Hexavalent Chromium (Cr6+)

    Science.gov (United States)

    2011-05-12

    Inhibitors Function (Project WP-1620) Project Team – Main Performers ● Dr. Gerald S. Frankel and Dr. Rudolph G. Buchheit Fontana Corrosion Center, The...qualification ● Dr. Joseph Osborne, The Boeing Company  Co-PI, coating system integration, coating and surface prep development, Cr and Cd replacement

  20. Chromium inhibition and size-selected Au nanocluster catalysis for the solution growth of low-density ZnO nanowires

    OpenAIRE

    Vito Errico; Giuseppe Arrabito; Plant, Simon R.; Pier Gianni Medaglia; Palmer, Richard E.; Christian Falconi

    2015-01-01

    The wet chemical synthesis of nanostructures has many crucial advantages over high-temperature methods, including simplicity, low-cost, and deposition on almost arbitrary substrates. Nevertheless, the density-controlled solution growth of nanowires still remains a challenge, especially at the low densities (e.g. 1 to 10 nanowires/100 μm2) required, as an example, for intracellular analyses. Here, we demonstrate the solution-growth of ZnO nanowires using a thin chromium film as a nucleation in...

  1. Hexavalent Chrome Free Coatings for Electronics; Electromagnetic Interference (EMI) Shielding Effectiveness (SE)

    Science.gov (United States)

    Kessel, Kurt R.

    2014-01-01

    The purpose of this testing is to determine the suitability of trivalent chromium conversion coatings that meet the requirements of MIL-DTL-5541, Type II, for use in applications where high-frequency electrical performance is important. This project will evaluate the ability of coated aluminum to form adequate EMI seals. Testing will assess performance of the trivalent chromium coatings against the known control hexavalent chromium MIL-DTL-5541 Type I Class 3 before and after they have been exposed to a set of environmental conditions. Performance will be assessed by evaluating shielding effectiveness (SE) test data from a variety of test samples comprised of different aluminum types and/or conversion coatings.

  2. ADSORPTION OF CHROMIUM (VI FROM AQUEOUS SOLUTIONS BY DIFFERENT ADMIXTURES – A BATCH EQUILIBRIUM TEST STUDY

    Directory of Open Access Journals (Sweden)

    K. SHIVA PRASHANTH KUMAR

    2014-08-01

    Full Text Available Wide variety of inorganic compounds such as nutrients and trace metals, organic chemicals, radioactive contaminants and pathogens are commonly present as contaminants in the groundwater. Migration of contaminants in soil involves important mechanisms such as molecular diffusion, dispersion under physical processes, adsorption, precipitation and oxidation - reduction under chemical processes and biodegradation under biological process. Cr (VI is a major and dangerous contaminant as per the ground water is concerned. There are numerous research work carried out with concentrated efforts by the researchers towards removal of Cr (VI contaminant from aqueous solutions. There are few studies relevant to Cr (VI removal with respect to utilization of low cost admixtures and also soil type. In the present study, different low cost admixtures like rice husk (RH, shredded tyre (ST and fly ash (FA are used to understand the performance in removal of Cr (VI from aqueous solution and also two different soil types are used along with the admixture. The results are discussed in terms of sorption capacity and performance of individual admixture and combination of admixture with soil in removal of contaminant. The fly ash, rice husk and shredded tyre admixtures are used and the results revealed that the shredded tyre showed higher performance in removal of contaminant concentration. Also, the soil which has more fine particle content (size<0.075 mm IS sieve showed reasonable reduction in concentration of contaminant at the lower levels of contaminant initial concentration. The sorption capacity results of Cr (VI contaminant, treated with various admixtures are further validated with the published work of other investigators. The shredded tyre (ST showed more adsorption capacity, i.e., 3.283 mg/g at pH of 4.8. For other admixtures, adsorption capacity value is varying in the range of 0.07 mg/g to 1.7 mg/g. Only in case of activated alumina and modified saw dust

  3. Acid-activated spent bleaching earth as a sorbent for chromium (VI) in aqueous solution.

    Science.gov (United States)

    Low, K S; Lee, C K; Lee, T S

    2003-02-01

    Spent bleaching earth, an industrial waste produced after the bleaching of crude palm oil, was investigated for its potential in removing Cr(VI) from aqueous solution. The earth was treated with different amounts of sulfuric acid and under different activation temperatures. Results show that the optimum treatment process involved 10% sulfuric acid at 350 degrees C. The effects of contact time, pH, initial concentration, sorbent dosage, temperature, sorption isotherms and the presence of other anions on its sorption capacity were studied. Isotherm data could be fitted into a modified Langmuir isotherm model implying monolayer coverage of Cr(VI) on acid activated spent bleaching earth. The maximum sorption capacity derived from the Langmuir isotherm was 21.2 mg g(-1). This value was compared with those of some other low cost sorbents. Studies of anion effect on the uptake of Cr(VI) on acid activated spent bleaching earth provided the following order of suppression: EDTA >PO4(3-)>SO4(2-)>NO3(-)>Cl(-).

  4. A novel polymer inclusion membrane applied in chromium (VI) separation from aqueous solutions.

    Science.gov (United States)

    Gherasim, Cristina-Veronica; Bourceanu, Gelu; Olariu, Romeo-Iulian; Arsene, Cecilia

    2011-12-15

    In the present work, we analyze the transport properties of a novel polymer inclusion membrane (PIM) containing a poly-vinyl chloride (PVC) polymer matrix and the organic anion exchanger Aliquat 336 as a specific carrier, without addition of plasticizers. The study was specifically focused on the transport properties of Cr(VI) in conditions simulating industrial wastewaters. We analyzed the impact of several parameters on the Cr(VI) transport process such as: the carrier content of the PIM, the pH, and the phases' composition. We concluded that efficient transport processes occur through a PIM containing 40% Aliquat 336/60% PVC (w/w). The process is very fast and efficient for solutions of initial Cr(VI) concentration smaller than 10(-3)mol/L, in which nearly all of Cr(VI) is removed within 3h. The performed experiments prove that Cr(VI) transport through the membrane is a facilitated counter-transport process. The obtained results sustain that this novel non-plasticized membrane possesses enhanced transport properties towards other liquid membranes and plasticized PIMs previously reported as used for Cr(VI) transport. Additionally, it possesses an excellent reliability and a high selectivity for Cr(VI) from mixtures with other metal ions and anions existing in the real industrial effluents. The PIM characterization highlights the plasticizing role of the carrier Aliquat 336.

  5. Standard Methods of Analysis of Sulfochromate Etch Solution Used in Surface Preparation of Aluminum

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2012-01-01

    1.1 These methods offer a means for controlling the effectiveness of the etchant which is normally used for preparing the surface of aluminum alloys for subsequent adhesive bonding. As the etchant reacts with the aluminum, hexavalent chromium is converted to trivalent chromium; a measure of the two and the difference can be used to determine the amount of dichromate used. 1.2 The sulfochromate solution can be replenished by restoring the sodium dichromate and the sulfuric acid to the original formulation levels. The lower limit of usefulness will vary depending upon solution storage, adhesives used, critical nature of bond capability, variety of metals processed, etc. and should be determined. Replenishment will be limited to the number of times the chemical ingredients can be restored and maintained to the required levels and should be determined by the user. Sludge collecting in the bottom of a tank should be minimized by periodic removal of sludge. For some applications, the hexavalent chromium should not ...

  6. Spectroscopic analysis of chromium bioremediation products

    Science.gov (United States)

    Varadharajan, C.; Nico, P. S.; Yang, L.; Marcus, M. A.; Steefel, C.; Larsen, J. T.; Beller, H. R.; Brodie, E. L.

    2010-12-01

    Remediation of chromium contamination frequently involves reducing the toxic and soluble hexavalent form, Cr(VI), to the relatively harmless and mostly immobile trivalent state, Cr(III). The objective of this study is to identify the biogeochemical reactions that control in situ chromium reduction in the presence of different dominant electron acceptors, i.e., NO3-, Fe(III), and SO42-. It was hypothesized that indirect, abiotic reduction of Cr(VI) by reduced metabolic products [Fe(II) and sulfides] would dominate over direct enzymatic reduction by denitrifying, iron-reducing, or sulfate-reducing bacteria. It is further hypothesized that the enzymatic reduction of Cr(VI) would produce relatively pure chromium hydroxide precipitates, whereas indirect reduction would result in mixed Cr-Fe hydroxide solid phases. Flow-through columns containing homogenized sediments from the 100H site at Hanford, WA were subjected to nitrate-, sulfate- or iron-reducing conditions in the presence of 5 µM Cr(VI) and 5 mM lactate. Cr(VI) was depleted in the effluent solutions from the nitrate- and sulfate-reducing columns; however only a small amount of Cr(VI) was removed under iron-reducing conditions. Preliminary analysis of micro X-ray absorption spectra indicate that the untreated and iron-reducing column sediments contained pre-existing Cr in the form of primary minerals, e.g. chromite and/or Cr-bearing micas. However, there was an increase in the relative abundance of mixed-phase Cr-Fe hydroxides, i.e., Cr1-xFex(OH)3 in the nitrate- and sulfate-treated columns. A possible explanation for the observations is that the production of Fe(II) was enhanced under the nitrate- and sulfate- reducing conditions, and was most likely sulfide-driven in the latter case. The Fe(II) was subsequently available for reduction of Cr(VI) resulting in the mixed-phase precipitates. The results from the spectroscopic analysis support the hypothesis that Fe(II)-mediated Cr reduction prevails over direct

  7. A Comparative Study of Chromium and Cadmium Removal from Their Common Aqueous Solution by Batch Operation Using Tea Factory Waste as Adsorbent

    Directory of Open Access Journals (Sweden)

    Jibesh Datta

    2014-06-01

    Full Text Available The process of adsorption is a powerful tool for the treatment of industrial wastewater. In the recent years many studies have been conducted to evaluate the effectiveness of various locally available economical adsorbents for the removal of various heavy metals from the waste water. In the present study tea factory waste is used as adsorbent and its capacity to remove toxic heavy metals chromium and cadmium from their combined solution is investigated. Batch adsorption study is conducted to find the adsorption capacity of the adsorbent and the effect of the three important process parameters, i.e. agitation rate, adsorbent dose and initial metal ion concentration is evaluated. The maximum adsorption capacity of 24.88 mg/g and 23.92 mg/g is observed in case of cadmium and chromium respectively. It is also found that the removal efficiency of cadmium is higher than that of chromium in all cases. The experimental results are also found to be well fitted in the Langmuir and Freundlich Isotherm model.

  8. The risk implications of the distribution of chromium forms in environmental media

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, L.A.; Petroff, D.M.; Batey, J.C. [Eckenfelder Inc., Nashville, TN (United States)

    1996-12-31

    Chromium exhibits multiple oxidation (valence) states, ranging from ({minus}2) to (+6). Under natural conditions, however, chromium typically exists in the Cr(III) (trivalent) and/or Cr(VI) (hexavalent) form, with the hexavalent form exhibiting higher solubility and much greater toxicity than the trivalent form. Due to the large differences in toxicity, the distribution of chromium oxidation states (Cr(III) and Cr(VI)) in site media is potentially of great importance to the calculation of site risk levels, and thus ultimately to cleanup activities. Despite its importance, chromium oxidation states are often not available for media samples collected at waste sites. Typical assumptions regarding the chromium distribution in site media are presented. Actual chromium distribution data from media from baseline investigations of several waste sites are also presented for groundwater, surface water, and soil and compared in terms of background chromium levels and the nature of site wastes. The differences in toxicity of Cr(III) and Cr(VI) are briefly discussed. Risk estimates and risk-based cleanup levels generated using different assumptions for the distribution of chromium in site media for a selected example site are then given. These risk-based cleanup levels are compared to various state regulatory limits, MCLs, and Practical Quantitation Limits (PQLs) for chromium.

  9. Hexavalent-Chrome Free Coatings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The replacement of hexavalent chrome [Cr (VI)] in the processing of aluminum for high-reliability electronics applications in the aviation and aerospace sector...

  10. Chromium Toxicity Test for Fall Chinook Salmon (Oncorhynchus tshawytscha) Using Hanford Site Groundwater: Onsite Early Life-Stage Toxicity Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Patton, Gregory W.; Dauble, Dennis D.; Chamness, Michele A.; Abernethy, Cary S.; McKinstry, Craig A.

    2001-07-10

    The objective of this study was to evaluate site-specific effects for early life-stage (eyed eggs to free swimming juveniles) fall chinook salmon that might be exposed to hexavalent chromium from Hanford groundwater sources. Our exposure conditions included hexavalent chromium obtained from Hanford groundwater wells near the Columbia River, Columbia River water as the diluent, and locally adapted populations of fall chinook salmon. This report describes both a 96-hr pretest using rainbow trout eggs and an early life-stage test beginning with chinook salmon eggs.

  11. The use of trivalent chromium bath to obtain a solar selective black chromium coating

    Science.gov (United States)

    Survilienė, S.; Češūnienė, A.; Juškėnas, R.; Selskienė, A.; Bučinskienė, D.; Kalinauskas, P.; Juškevičius, K.; Jurevičiūtė, I.

    2014-06-01

    Black chromium coatings were electrodeposited from a trivalent chromium bath using a ZnO additive as a second main component. Black chromium was electrodeposited on steel and copper plates and substrates plated with bright nickel prior to black chromium electrodeposition. The black chromium coatings were characterized by XRD and SEM. The XRD data suggest that the phase structure of black chromium may be defined as a zinc solid solution in chromium or a chromium solid solution in zinc depending on the chromium/zinc ratio in the deposit. The role of substrate finish was evaluated through the corrosion resistance and reflectance of black chromium. According to corrosion tests the samples plated with bright nickel prior to black chromium deposition have shown the highest corrosion resistance. The electrodeposited black chromium possesses good optical properties for the absorption of solar energy. The absorption coefficient of black chromium was found to be over 0.99 for the samples obtained without the Ni undercoat and below 0.99 for those obtained with the use of Ni undercoat. However, the use of nickel undercoat before black chromium plating is recommended because it remarkably improves the corrosion resistance of samples.

  12. Isolation and characterization of a chromium-resistant bacterium Serratia sp. Cr-10 from a chromate-contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kundi; Li, Fuli [Chinese Academy of Sciences, Qingdao (China). Qingdao Inst. of Bioenergy and Bioprocess Technology

    2011-05-15

    A novel bacterium, Cr-10, was isolated from a chromium-contaminated site and capable of removing toxic chromium species from solution by reducing hexavalent chromium to an insoluble precipitate. Sequence analysis of 16S rRNA gene of strain Cr-10 showed that it was most closely related to Serratia rubidaea JCM 1240{sup T} (97.68%). Physiological and chemotaxonomic data also supported that strain Cr-10 was identified as Serratia sp., a genus which was never specially reported chromate-resistant before. Serratia sp., Cr-10 was tolerant to a concentration of 1,500 mg Cr(VI) L{sup -1}, which was the highest level reported until now. The optimum pH and temperature for reduction of Cr(VI) by Serratia sp. Cr-10 were found to be 7.0 and 37 C, respectively. The Cr(VI) reduction was significantly influenced by additional carbon sources, and among them fructose and lactose offered maximum reduction, with a rate of 0.28 and 0.25 mg Cr(VI) L{sup -1} h{sup -1}, respectively. The cell-free extracts and filtrate of the culture were able to reduce Cr(VI) while concentration of total chromium remained stable in the process, indicating that the enzyme-catalyzed mechanism was applied in Cr(VI) reduction by the isolate. Additionally, it was found that there was hardly any chromium on the cell surface of the strain, further supporting that reduction, rather than bioadsorption, plays a major role in the Cr(VI) removal. (orig.)

  13. Interactions of chromium with microorganisms and plants.

    Science.gov (United States)

    Cervantes, C; Campos-García, J; Devars, S; Gutiérrez-Corona, F; Loza-Tavera, H; Torres-Guzmán, J C; Moreno-Sánchez, R

    2001-05-01

    Chromium is a highly toxic non-essential metal for microorganisms and plants. Due to its widespread industrial use, chromium (Cr) has become a serious pollutant in diverse environmental settings. The hexavalent form of the metal, Cr(VI), is considered a more toxic species than the relatively innocuous and less mobile Cr(III) form. The presence of Cr in the environment has selected microbial and plant variants able to tolerate high levels of Cr compounds. The diverse Cr-resistance mechanisms displayed by microorganisms, and probably by plants, include biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux. Some of these systems have been proposed as potential biotechnological tools for the bioremediation of Cr pollution. In this review we summarize the interactions of bacteria, algae, fungi and plants with Cr and its compounds.

  14. Biological monitoring of occupational exposure to different chromium compounds at various valency states

    Energy Technology Data Exchange (ETDEWEB)

    Mutti, A.; Pedroni, C.; Arfini, G.; Franchini, I.; Minoia, C.; Micoli, G.; Baldi, C.

    1984-01-01

    Chromium concentrations in the air were measured in seven different workroom environments, where exposure to water soluble hexavalent or trivalent compounds was expected. Urinary excretion of chromium was measured before and after the same arbitrarily chosen working day. End-of-shift urinary chromium and its increase above pre-exposure levels were closely related to the concentration of water soluble chromium (VI) in the air. The values corresponding to 50 micrograms m-3 in the air, which is the current threshold limit value in most countries, were 29.8 and 12.2 micrograms g-1 of creatinine, respectively. Urinary chromium in workers exposed to water insoluble chromates or to water soluble chromic (III) sulphate was definitely higher than that observed in subjects not occupationally exposed to chromium compounds, but it cannot be recommended as short-term exposure test for evaluation of the job-related hazard.

  15. Enhanced chromium adsorption capacity via plasma modification of natural zeolites

    Science.gov (United States)

    Cagomoc, Charisse Marie D.; Vasquez, Magdaleno R., Jr.

    2017-01-01

    Natural zeolites such as mordenite are excellent adsorbents for heavy metals. To enhance the adsorption capacity of zeolite, sodium-exchanged samples were irradiated with 13.56 MHz capacitively coupled radio frequency (RF) argon gas discharge. Hexavalent chromium [Cr(VI)] was used as the test heavy metal. Pristine and plasma-treated zeolite samples were soaked in 50 mg/L Cr solution and the amount of adsorbed Cr(VI) on the zeolites was calculated at predetermined time intervals. Compared with untreated zeolite samples, initial Cr(VI) uptake was 70% higher for plasma-treated zeolite granules (50 W 30 min) after 1 h of soaking. After 24 h, all plasma-treated zeolites showed increased Cr(VI) uptake. For a 2- to 4-month period, Cr(VI) uptake increased about 130% compared with untreated zeolite granules. X-ray diffraction analyses between untreated and treated zeolite samples revealed no major difference in terms of its crystal structure. However, for plasma-treated samples, an increase in the number of surface defects was observed from scanning electron microscopy images. This increase in the number of surface defects induced by plasma exposure played a crucial role in increasing the number of active sorption sites on the zeolite surface.

  16. Integrated reduction/oxidation reactions and sorption processes for Cr(VI) removal from aqueous solutions using Laminaria digitata macro-algae

    OpenAIRE

    Dittert, Ingrid M.; Pina, Frederico; Souza,Selene M. A. Guelli U. de; Botelho, Cid??lia M.S.; Vilar, V??tor J.P.; Boaventura, Rui A.R.; Souza, Ant??nio Augusto U. de; Silva, Eduardo A.B. da; Brand??o, Heloisa de Lima

    2015-01-01

    The main goal of this work was the valorization of seaweed Laminaria digitata, after acid pre-treatment, for the remediation of hexavalent chromium solutions. The Cr(VI) removal efficiency by the protonated biomass was studied as a function of different parameters, such as contact time, pH, biomass and Cr(VI) concentration, and temperature. Cr(VI) removal is based on a complex mechanism that includes a reduction of Cr(VI) to Cr(III), through the oxidation of biomass at acidic medi...

  17. Isolation of Cr(Ⅵ) reducing bacteria from industrial effluents and their potential use in bioremediation of chromium containing wastewater

    Institute of Scientific and Technical Information of China (English)

    Ahmed Zahoor; Abdul Rehman

    2009-01-01

    The present study is aimed at assessing the ability of Bacillus sp.JDM-2-1 and Staphylococcus capitis to reduce hexavalent chromium into its trivalent form.Bacillus sp.JDM-2-1 could tolerate Cr(Ⅵ) (4800 μg/mL) and S.capitis could tolerate Cr(Ⅵ) (2800 μg/mL).Both organisms were able to resist Cd2+ (50 μg/mL),Cu2+ (200 μg/mL),Pb2+ (800 μg/mL),Hg2+ (50 μg/mL) and Ni2+ (4000 μg/mL).S.capitis resisted Zn2+ at 700 μg/mL while Bacillus sp.JDM-2-1 only showed resistance up to 50 μg/mL.Bacillus sp.JDM-2-1 and S.capitis showed optimum growth at pH 6 and 7,respectively,while both bacteria showed optimum growth at 37℃.Bacillus sp.JDM-2-1 and S.capitis could reduce 85% and 81% of hexavalent chromium from the medium after 96 h and were also capable of reducing hexavalent chromium 86% and 89%,respectively,from the industrial effluents after 144 h.Cell free extracts of Bacillus sp.JDM-2-1 and S.capitis showed reduction of 83% and 70% at concentration of 10 μg Cr(Ⅵ)/mL,respectively.The presence of an induced protein having molecular weight around 25 kDa in the presence of chromium points out a possible role of this protein in chromium reduction.The bacterial isolates can be exploited for bioremediation of hexavalent chromium containing wastes,since they seem to have the potential to reduce the toxic hexavalent form to its nontoxic trivalent form.

  18. AQUIFER TESTING AND REBOUND STUDY IN SUPPORT OF THE 100-H DEEP CHROMIUM INVESTIGATION

    Energy Technology Data Exchange (ETDEWEB)

    SMOOT JL

    2010-11-05

    The 100-HR-3 Groundwater Operable Unit (OU) second Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 5-year review (DOEIRL-2006-20, The Second CERCLA Five-Year Review Report for the Hanford Site) set a milestone to conduct an investigation of deep hexavalent chromium contamination in the sediments of the Ringold upper mud (RUM) unit, which underlies the unconfined aquifer in the 100-H Area. The 5-year review noted that groundwater samples from one deep well extending below the aquitard (i.e., RUM) exceeded both the groundwater standard of 48 parts per billion (ppb) (Ecology Publication 94-06, Model Toxics Control Act Cleanup Statute and Regulation) and the federal drinking water standard of 100 {mu}g/L for hexavalent chromium. The extent of hexavalent chromium contamination in this zone is not well understood. Action 12-1 from the 5-year review is to perform additional characterization of the aquifer below the initial aquitard. Field characterization and aquifer testing were performed in the Hanford Site's 100-H Area to address this milestone. The aquifer tests were conducted to gather data to answer several fundamental questions regarding the presence of the hexavalent chromium in the deep sediments of the RUM and to determine the extent and magnitude of deeper contamination. The pumping tests were performed in accordance with the Description of Work for Aquifer Testing in Support of the 100-H Deep Chromium Investigation (SGW-41302). The specific objectives for the series of tests were as follows: (1) Evaluate the sustainable production of the subject wells using step-drawdown and constant-rate pumping tests. (2) Collect water-level data to evaluate the degree of hydraulic connection between the RUM and the unconfined (upper) aquifer (natural or induced along the well casing). (3) Evaluate the hydraulic properties of a confined permeable layer within the RUM.; (4) Collect time-series groundwater samples during testing to

  19. Environmental Factors Affecting Chromium-Manganese Oxidation-Reduction Reactions in Soil

    Institute of Scientific and Technical Information of China (English)

    D.O.P.TREBIEN; L.BORTOLON; M.J.TEDESCO; C.A.BISSANI; F.A.O.CAMARGO

    2011-01-01

    Disposal of chromium (Cr) hexavalent form, Cr(Ⅵ), in soils as additions in organic fertilizers, liming materials or plant nutrient sources can be dangerous since Cr(Ⅵ) can be highly toxic to plants, animals, and humans. In order to explore soil conditions that lead to Cr(Ⅵ) generation, this study were performed using a Paleudult (Dystic Nitosol) from a region that has a high concentration of tannery operations in the Rio Grande do Sul State, southern Brazil. Three laboratory incubation experiments were carried out to examine the influences of soil moisture content and concentration of cobalt and organic matter additions on soil Cr(Ⅵ) formation and release and manganese (Mn) oxide reduction with a salt of chromium chloride (CrCl3) and tannery sludge as inorganic and organic sources of Cr(Ⅲ), respectively. The amount of Cr(Ⅲ) oxidation depended on the concentration of easily reducible Mn oxides and the oxidation was more intense at the soil water contents in which Mn(Ⅲ/Ⅳ) oxides were more stable. Soluble organic compounds in soil decreased Cr(Ⅵ) formation due to Cr(Ⅲ) complexation. This mechanism also resulted in the decrease in the oxidation of Cr(Ⅲ) due to the tannery sludge additions. Chromium(Ⅲ) oxidation to Cr(Ⅵ) at the solid/solution interface involved the following mechanisms:the formation of a precursor complex on manganese (Mn) oxide surfaces, followed by electron transfer from Cr(Ⅲ) to Mn(Ⅲ or Ⅳ),the formation of a successor complex with Mn(Ⅱ) and Cr(Ⅵ), and the breakdown of the successor complex and release of Mn(Ⅱ) and Cr(Ⅵ) into the soil solution.

  20. Influence of Chemical Composition on Rupture Properties at 1200 Degrees F. of Forged Chromium-Cobalt-Nickel-Iron Base Alloys in Solution-Treated and Aged Condition

    Science.gov (United States)

    Reynolds, E E; Freeman, J W; White, A E

    1951-01-01

    The influence of systematic variations of chemical composition on rupture properties at 1200 degrees F. was determined for 62 modifications of a basic alloy containing 20 percent chromium, 20 percent nickel, 20 percent cobalt, 3 percent molybdenum, 2 percent tungsten, 1 percent columbium, 0.15 percent carbon, 1.7 percent manganese, 0.5 percent silicon, 0.12 percent nitrogen and the balance iron. These modifications included individual variations of each of 10 elements present and simultaneous variations of molybdenum, tungsten, and columbium. Laboratory induction furnace heats were hot-forged to round bar stock, solution-treated at 2200 degrees F., and aged at 1400 degrees F. The melting and fabrication conditions were carefully controlled in order to minimize all variable effects on properties except chemical composition. Information is presented which indicates that melting and hot-working conditions play an important role in high-temperature properties of alloys of the type investigated.

  1. Simultaneous speciation of arsenic, selenium, and chromium: species, stability, sample preservation, and analysis of ash and soil leachates

    Science.gov (United States)

    Wolf, Ruth E.; Morman, Suzette A.; Hageman, Philip L.; Hoefen, Todd M.; Plumlee, Geoffrey S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10° C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present

  2. Simultaneous speciation of arsenic, selenium, and chromium: Species stability, sample preservation, and analysis of ash and soil leachates

    Science.gov (United States)

    Wolf, R.E.; Morman, S.A.; Hageman, P.L.; Hoefen, T.M.; Plumlee, G.S.

    2011-01-01

    An analytical method using high-performance liquid chromatography separation with inductively coupled plasma mass spectrometry (ICP-MS) detection previously developed for the determination of Cr(III) and Cr(VI) has been adapted to allow the determination of As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI) under the same chromatographic conditions. Using this method, all six inorganic species can be determined in less than 3 min. A dynamic reaction cell (DRC)-ICP-MS system was used to detect the species eluted from the chromatographic column in order to reduce interferences. A variety of reaction cell gases and conditions may be utilized with the DRC-ICP-MS, and final selection of conditions is determined by data quality objectives. Results indicated all starting standards, reagents, and sample vials should be thoroughly tested for contamination. Tests on species stability indicated that refrigeration at 10 ??C was preferential to freezing for most species, particularly when all species were present, and that sample solutions and extracts should be analyzed as soon as possible to eliminate species instability and interconversion effects. A variety of environmental and geological samples, including waters and deionized water [leachates] and simulated biological leachates from soils and wildfire ashes have been analyzed using this method. Analytical spikes performed on each sample were used to evaluate data quality. Speciation analyses were conducted on deionized water leachates and simulated lung fluid leachates of ash and soils impacted by wildfires. These results show that, for leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent Cr(VI) form. In general, total and hexavalent chromium levels for samples taken from burned residential areas were higher than those obtained from non-residential forested areas. Arsenic, when found, was generally in the more oxidized As(V) form. Selenium (IV) and (VI) were present

  3. Sampling and Analysis Instruction for Evaluation of Residual Chromium Contamination in the Subsurface Soil at 100-C-7

    Energy Technology Data Exchange (ETDEWEB)

    W. S. Thompson

    2007-02-15

    This sampling and analysis instruction (SAI) provides the requirements for sample collection and laboratory analysis to evaluate the extent of hexavalent chromium contamination present in the soil below the 100-C-7 and 100-C-7:1 remedial action waste site excavations.

  4. The effect of chromium on the hemoglobin concentration of Limnodrilus hoffmeisteri (Oligochaeta: Tubificidae).

    Science.gov (United States)

    Flores-Tena, F J; Martínez-Tabchet, L

    2001-11-01

    The purpose of this study was to determine the toxic effects of polluted sediments, mainly chromium, the El Niagara reservoir (Aguascalientes, Mexico) on a benthic oligochaete species. Acute toxicity tests with hexavalent chromium in an artificial sediment-water system resulted in 24-, 48-, and 96-h LC50 values of 49.53, 22.81, and 5.11 mg available chromium/kg dry sediment, respectivley, in Limnodrilus hoffmeisteri. The uptake of chromium by tubificids from artificial and polluted reservoir sediments was found to increase with metal concentration in sediments and exposure time. The increase was higher in experiments with artificial sediment. Cr concentration in worms was related to hemoglobin content, which decreased significantly when Cr concentrations were above 1.0 microg/g dry weight. Bioavailable chromium in the El Niágara reservoir sediments may be an important factor limiting the benthic species in this ecosystem.

  5. Maximum availability and mineralogical control of chromium released from AOD slag.

    Science.gov (United States)

    Li, Junguo; Liu, Bao; Zeng, Yanan; Wang, Ziming; Gao, Zhiyuan

    2017-03-01

    AOD (argon oxygen decarburization) slag is the by-product in the stainless steel refining process. Chromium existing in AOD slag can leach out and probably poses a serious threat to the environment. To assess the leaching toxicity of chromium released from AOD slag, the temperature-dependent maximum availability leaching test was performed. To determine the controlling mineralogical phases of chromium released from AOD slag, a Visual MINTEQ simulation was established based on Vminteq30 and the FactSage 7.0 database. The leaching tests indicated that the leaching availability of chromium was slight and mainly consisted of trivalent chromium. Aging of AOD slag under the atmosphere can oxidize trivalent chromium to hexavalent chromium, which could be leached out by rainwater. According to the simulation, the chromium concentration in leachates was controlled by the freely soluble pseudo-binary phases in the pH = 7.0 leaching process and controlled by the Cr2O3 phase in the pH = 4.0 leaching process. Chromium concentrations were underestimated when the controlling phases were determined to be FeCr2O4 and MgCr2O4. Facilitating the generation of the insoluble spinel-like phases during the cooling and disposal process of the molten slag could be an effective approach to decreasing the leaching concentration of chromium and its environmental risk.

  6. Electrodeposition of chromium from trivalent chromium urea bath containing sulfate and chloride

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The reduction of Cr( Ⅲ) to Cr( Ⅱ ) on copper electrode in trivalent chromium urea bath containing chromium sulfate and chromium chloride as chromium source has been investigated by potentiodynamic sweep. The transfer coefficient α for reduction of Cr( Ⅲ ) to Cr( Ⅱ ) on copper electrode was calculated as 0.46. The reduction is a quasi-reversible process. J-t responses at different potential steps showed that the generation and adsorption characteristics of carboxylate bridged oligomer are relevant to cathode potential. The interface behavior between electrode and solution for Cr( Ⅲ ) complex is a critical factor influencing sustained electrode position of chromium. The hypotheses of the electro-inducing polymerization of Cr( Ⅲ ) was proposed. The potential scope in which sustained chromium deposits can be prepared is from- 1.3 V to- 1.7 V (vs SCE) in the urea bath. Bright chromium deposits with thickness of 30 μm can be prepared in the bath.

  7. Influence of pH on the survival of Dictyosphaerium chlorelloides populations living in aquatic environments highly contaminated with chromium.

    Science.gov (United States)

    Pereira, María; Bartolomé, M Carmen; Sánchez-Fortún, Sebastián

    2013-12-01

    The accommodation of photosynthetic organisms to adverse conditions, such as pH changes in the aquatic environment, and their response to aquatic pollutants is essential to develop future biosensors. The present study reports the ability of both Cr(VI)-sensitive and tolerant Dyctiosphaerium chlorelloides strains to live in aqueous solutions highly contaminated with hexavalent chromium under varying ranges of pH, by the determination of chromium toxic effects on these strains. Studies of cell growth, photosynthetic quantum yield and gross photosynthesis rate show that both D. chlorelloides strains are able to survive in alkaline and moderately acidified (pH 4.25) aquatic environments. Below this pH value cell populations from both strains exposed for short periods of time to Cr(VI) showed alterations in the three parameters studied. There were no significant differences comparing the response of both strains at pH change in the culture medium. However, Cr(VI)-tolerant strain exhibits a better fit to maintain cell growth than Cr(VI)-sensitive strain when both were subjected to pH 4.25 in the culture medium. The absence of significant differences in photosynthetic activity results for both strains suggests that the lower sensitivity exhibited by Cr(VI)-tolerant strain would be due to cellular morphological changes rather than changes in cellular activity. © 2013 Published by Elsevier Inc.

  8. Speciation of arsenic, selenium, and chromium in wildfire impacted soils and ashes

    Science.gov (United States)

    Wolf, Ruth E.; Hoefen, Todd M.; Hageman, Philip L.; Morman, Suzette A.; Plumlee, Geoffrey S.

    2010-01-01

    In 2007-09, California experienced several large wildfires that damaged large areas of forest and destroyed many homes and buildings. The U.S. Geological Survey collected samples from the Harris, Witch, Grass Valley, Ammo, Santiago, Canyon, Jesusita, and Station fires for testing to identify any possible characteristics of the ashes and soils from burned areas that may be of concern for their impact on water quality, human health, and endangered species. The samples were subjected to analysis for bulk chemical composition for 44 elements by inductively coupled plasma mass spectrometry (ICP-MS) after acid digestion and de-ionized water leach tests for pH, alkalinity, conductivity, and anions. Water leach tests generated solutions ranging from pH 10-12, suggesting that ashes can generate caustic alkalinity in contact with rainwater or body fluids (for example, sweat and fluids in the respiratory tract). Samples from burned residential areas in the 2007 fires had elevated levels for several metals, including: As, Pb, Sb, Cu, Zn, and Cr. In some cases, the levels found were above the U.S. Environmental Protection Agency (USEPA) preliminary remediation goals (PRG) for soils. Speciation analyses were conducted on de-ionized water and simulated lung fluid leachates for As(III), As(V), Se(IV), Se(VI), Cr(III), and Cr(VI). All species were determined in the same analytical run using an ion-pairing HPLC-ICP-MS method. For leachates containing high levels of total Cr, the majority of the chromium was present in the hexavalent, Cr(VI), form. Higher total and hexavalent chromium levels were observed for samples collected from burned residential areas. Arsenic was also generally present in the more oxidized, As(V), form. Selenium (IV) and (VI) were present, but typically at levels below 2 ppb for most samples. Stability studies of leachate solutions under different storage conditions were performed and the suitability of different sample preservation methods for speciation

  9. [Bioremediation of chromium (VI) contaminated site by reduction and microbial stabilization of chromium].

    Science.gov (United States)

    Zheng, Jia-Chuan; Zhang, Jian-Rong; Liu, Xi-Wen; Xu, Qian; Shi, Wei-Lin

    2014-10-01

    Chromium (VI) contaminated soil samples were collected from a chemical plant in Suzhou. Firstly, the reduced soil was prepared by adding reagent (Stone-sulfure reagent) into polluted soil to transfer most chromium (VI) into chromium (III), then a nutrient solution was introduced into the reduced soil, and the stabilized soil was obtained after 60 days culturing. The chromium (VI) content of the three kinds of soil was analyzed. The results showed that the chromium (VI) content in toxicity characteristic leaching liquid (TCLL) dropped by 96. 8% (from 8.26 mg · L(-1) to 0.26 mg · L(-1)), and the total chromium content dropped by 95.7% (from 14.66 mg · L(-1) to 0.63 mg · L(-1)) after bioremediation in 5% nutrient solution. Additionally, the durability of chromium stabilization was tested by potassium permanganate oxidation and sterilization of microbe-treated soil. After oxidation, the chromium (VI) content in TCLL of the reduced soil was increased from 8.26 mg · L(-1) to 14.68 mg · L(-1). However, the content after bioremediation was decreased to 2.68 mg · L(-1). The results of sterilization demonstrated that the death of microbe had no significant effect on the stabilization of chromium. Consequently, the research in this paper demonstrated the feasibility of bioremediation of chromium (VI) polluted soil through reduction followed by stabilization/soilidification, and provided a technique with low cost but high efficiency.

  10. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community.

    Science.gov (United States)

    Cang, Long; Zhou, Dong-Mei; Alshawabkeh, Akram N; Chen, Hai-Feng

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  11. Effects of sodium hypochlorite and high pH buffer solution in electrokinetic soil treatment on soil chromium removal and the functional diversity of soil microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Cang Long [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China); Zhou Dongmei [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)]. E-mail: dmzhou@issas.ac.cn; Alshawabkeh, Akram N. [Department of Civil and Environmental Engineering, Northeastern University, Boston, MA (United States); Chen Haifeng [State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008 (China)

    2007-04-02

    Effects of sodium hypochlorite (NaClO), applied as an oxidant in catholyte, and high pH buffer solution on soil Cr removal and the functional diversity of soil microbial community during enhanced electrokinetic treatments of a chromium (Cr) contaminated red soil are evaluated. Using pH control system to maintain high alkalinity of soil together with the use of NaClO increased the electrical conductivities of soil pore liquid and electroosmotic flux compared with the control (Exp-01). The pH control and NaClO improved the removal of Cr(VI) and total Cr from the soil. The highest removal percentages of soil Cr(VI) and total Cr were 96 and 72%, respectively, in Exp-04 when the pH value of the anolyte was controlled at 10 and NaClO was added in the catholyte. The alkaline soil environment and introduction of NaClO in the soil enhanced the desorption of Cr(VI) from the soil and promoted Cr(III) oxidation to mobile Cr(VI), respectively. However, the elevated pH and introduction of NaClO in the soil, which are necessary for improving the removal efficiency of soil Cr, resulted in a significantly adverse impact on the functional diversity of soil microbial community. It suggests that to assess the negative impact of extreme conditions for enhancing the extraction efficiencies of Cr on the soil properties and function is necessary.

  12. Strategies for chromium bioremediation of tannery effluent.

    Science.gov (United States)

    Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan

    2012-01-01

    Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and

  13. Advances in preparation of modified activated carbon and its applications in the removal of chromium (VI) from aqueous solutions

    Science.gov (United States)

    Deng, Z. L.; Liang, M. N.; Li, H. H.; Zhu, Z. J.

    2016-08-01

    The wastewater in which Cr(VI) is not fully treated has drawn environment researchers’ attention increasingly, due to its environmental pollution and harms to human health. Thus a high efficiency of modified activated carbon (MAC) to remove Cr(VI) has become one of the hot topics among environmental material research. This paper introduces the modification methods from the physical structure features and chemical properties of the activated carbon (AC) surface. At the same time, it briefly analyses the chemical characteristics of Cr(VI) in aqueous solutions, and on the basis of the aforementioned introduces the modification methods of the surface chemical characteristics of AC, such as: oxidation modification, reduction modification, loaded metal modification, and microwave modification. Combining studies on removing Cr(VI) from aqueous solutions by MAC in recent years, this paper anticipates the new trends of preparing MAC and the points in absorption research, offering some suggestions for future studies.

  14. Adsorption of copper (II), chromium (III), nickel (II) and lead (II) ions from aqueous solutions by meranti sawdust.

    Science.gov (United States)

    Rafatullah, M; Sulaiman, O; Hashim, R; Ahmad, A

    2009-10-30

    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.

  15. Localized Corrosion of Chromium Coated Steel

    NARCIS (Netherlands)

    Zhang, X.; Beentjes, P.; Mol, A.; Terryn, H.

    2006-01-01

    In this paper, we report on the studies of the local corrosion behaviour of chromium-coated ultra low carbon steel in NaCl solution using polarization, electrochemical impedance spectroscopy (EIS) and SVET.

  16. Adsorption isotherm studies of chromium (VI) from aqueous solutions using sol-gel hydrotalcite-like compounds.

    Science.gov (United States)

    Ramos-Ramírez, Esthela; Ortega, Norma L Gutiérrez; Soto, Cesar A Contreras; Gutiérrez, Maria T Olguín

    2009-12-30

    In under-developed countries, industries such as paint and pigment manufacturing, leather tanning, chrome plating and textile processing, usually discharge effluents containing Cr(VI) and Cr(III) into municipal sanitary sewers. It has been reported that Cr(VI) acts as a powerful epithelial irritant and as a human carcinogen. In the present work, hydrotalcite-like compounds with a Mg/Al ratio=2 were synthesized by the sol-gel method. The hydrotalcite-like compounds and their corresponding thermally treated products were characterized by powder X-ray diffraction, infrared spectroscopy and N(2) adsorption. The hydrotalcite-like compounds and the heated solids were used as adsorbents for Cr(VI) in aqueous solutions. Adsorption isotherm studies of Cr(VI) from aqueous solution are described. The adsorbent capacity was determined using the Langmuir, Freundlich and Dubinin-Radushkevich adsorption isotherm models. The Cr(VI) adsorption isotherm data fit best to the Langmuir isotherm model. The maximum Cr(VI) uptake by hydrotalcite and the heated solids was determined using the Langmuir equation and was found to range between 26 and 29 mg Cr(VI)/g adsorbent.

  17. Effect of chromium on the fatty acid composition of two strains of Euglena gracilis

    Energy Technology Data Exchange (ETDEWEB)

    Rocchetta, Iara [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina)]. E-mail: rocchetta@bg.fcen.uba.ar; Mazzuca, Marcia [Departamento de Quimica, Facultad de Ciencias Naturales, Universidad de Patagonia, Comodoro Rivadavia, Chubut (Argentina); Conforti, Visitacion [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Ruiz, Laura [Departamento de Biodiversidad y Biologia Experimental, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Balzaretti, Vilma [Departamento de Quimica, Facultad de Ciencias Naturales, Universidad de Patagonia, Comodoro Rivadavia, Chubut (Argentina); Rios de Molina, Maria del Carmen [Departamento de Quimica Biologica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires (Argentina)

    2006-05-15

    The effect of hexavalent chromium on fatty acid composition was studied in two strains of Euglena gracilis; UTEX 753 (from the Culture Collection of Algae of Texas University, USA) and MAT (isolated from a highly polluted River). Both were grown in photoauxotrophic and photoheterotrophic conditions and exposed to two metal concentrations, one below and one above IC{sub 5}. The high malondialdehyde (MDA) levels (3 to 7-fold) obtained with chromium concentration above IC{sub 5}, suggested the existence of metal-induced lipid peroxidation. Total lipid content increased only with concentration below IC{sub 5}, whereas it was inhibited by higher metal concentration. Photoheterotrophic control strains exhibited a significantly higher proportion of saturated and polyunsaturated fatty acids. Polyunsaturated acids were most affected by chromium, especially those related to chloroplast structures. Ultra-structure studies showed clear thylakoid disorganization in all treated cells. The results indicate that hexavalent chromium affects levels of fatty acids, especially those related to photosynthetic activity. - Fatty acid evaluation in the presence of chromium in Euglena gracilis grown in different culture conditions.

  18. Leaching of chromium from chromium contaminated soil: Speciation study and geochemical modeling

    Directory of Open Access Journals (Sweden)

    Anđelković Darko H.

    2012-01-01

    Full Text Available Distribution of chromium between soil and leachate was monitored. A natural process of percolating rainwater through the soil was simulated in the laboratory conditions and studied with column leaching extraction. Migration of chromium in the soil is conditioned by the level of chromium soil contamination, the soil organic matter content, and rainwater acidity. Chromium (III and chromium(VI were determined by spectrophotometric method with diphenilcarbazide in acidic media. Comparing the results of chromium speciation in leachate obtained by experimental model systems and geochemical modelling calculations using Visual MINTEQ model, a correlation was observed regarding the influence of the tested parameters. Leachate solutions showed that the concentration of Cr depended on the organic matter content. The influence of pH and soil organic matter content is in compliance after its definition through experimental and theoretical way. The computer model - Stockholm Humic Model used to evaluate the leaching results corresponded rather well with the measured values.

  19. Removal of Chromium(VI from Aqueous Solutions Using Fe3O4 Magnetic Polymer Microspheres Functionalized with Amino Groups

    Directory of Open Access Journals (Sweden)

    Kai Wang

    2015-12-01

    Full Text Available Magnetic polymer microspheres (MPMs using glycidylmethacrylate (GMA as a functional monomer were synthesized in the presence of Fe3O4 nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA. The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs were characterized by scanning electron microscope (SEM, X-ray diffraction (XRD, vibrating-sample magnetometer (VSM and Fourier transform infrared (FT-IR spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS° of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  20. Removal of Chromium(VI) from Aqueous Solutions Using Fe₃O₄ Magnetic Polymer Microspheres Functionalized with Amino Groups.

    Science.gov (United States)

    Wang, Kai; Qiu, Guangming; Cao, Hongyu; Jin, Ruifa

    2015-12-03

    Magnetic polymer microspheres (MPMs) using glycidylmethacrylate (GMA) as a functional monomer were synthesized in the presence of Fe₃O₄ nanoparticles via dispersion polymerization. After polymerization, the magnetic polymer microbeads were modified with ethylenediamine (EDA). The obtained ethylenediamine-functionalized magnetic microspheres (EDA-MPMs) were characterized by scanning electron microscope (SEM), X-ray diffraction (XRD), vibrating-sample magnetometer (VSM) and Fourier transform infrared (FT-IR) spectroscopy. Then the EDA-MPMs were applied as adsorbents for the removal of Cr(VI) from aqueous solution. Langmuir equation was appropriate to describe the experimental data. The maximum adsorption capacities obtained from the Langmuir model were 236.9, 242.1 and 253.2 mg/g at 298, 308 and 318 K, respectively. The Cr(VI) adsorption equilibrium was established within 120 min and the adsorption kinetics was compatibly described by the pseudo-second order equation. The thermodynamic parameters (ΔG°, ΔH°, ΔS°) of the sorption process revealed that the adsorption was spontaneous and was an endothermic process. The regeneration study demonstrated that the EDA-MPMs could be repeatedly utilized with no significant loss of adsorption efficiency.

  1. The effectiveness of Mendong plant (Fimbrystilis globulosa as a phytoremediator of soil contaminated with chromium of industrial waste

    Directory of Open Access Journals (Sweden)

    Pungky Ferina

    2017-07-01

    Full Text Available The textile industry produces sideline output in the form of dangerous waste. The textile industrial waste containing heavy metal, one of which is Chromium (Cr.  Chromium is very dangerous metal for environment, especially chromium hexavalent that has properties of soluble, carcinogenic, and toxic. The pollution of chromium in soil is a problem that the action to be taken with the technology of bioremediation. Phytoremediation of soil contaminated with chromium using Mendong plant (Fimbrystilis globulosa, combined with association of microorganisms Agrobacterium sp I3 and compost. This study was conducted in field experiment plots using a completely randomized block design. Data were analyzed using Anova followed by Duncan and correlation tests. The results showed that the Mendong plant was an effective phytoremediator of soil contaminated with chromium and it can be used as a chromium accumulator plant. The highest decrease of soil chromium content of 58.39% was observed on the combined artificial fertilizer, Agrobacterium sp I3 and Mendong plant treatment (P1B1T1. Removal effectiveness of chromium at the treatments using Mendong plant was higher than without the Mendong plant. Chromium uptake in shoots was higher than in roots of Mendong plant. Bioremediation increased the total bacterial colonies, decreased soil pH, and increased cation exchange capacity of the soil. The growth of the Mendong plant was in a good condition during the process of bioremediation.

  2. Removal of chromium from synthetic plating waste by zero-valent iron and sulfate-reducing bacteria.

    Science.gov (United States)

    Guha, Saumyen; Bhargava, Puja

    2005-01-01

    Experiments were conducted to evaluate the potential of zero-valent iron and sulfate-reducing bacteria (SRB) for reduction and removal of chromium from synthetic electroplating waste. The zero-valent iron shows promising results as a reductant of hexavalent chromium (Cr+6) to trivalent chromium (Cr+3), capable of 100% reduction. The required iron concentration was a function of chromium concentration in the waste stream. Removal of Cr+3 by adsorption or precipitation on iron leads to complete removal of chromium from the waste and was a slower process than the reduction of Cr+6. Presence SRB in a completely mixed batch reactor inhibited the reduction of Cr+6. In a fixed-bed column reactor, SRB enhanced chromium removal and showed promising results for the treatment of wastes with low chromium concentrations. It is proposed that, for waste with high chromium concentration, zero-valent iron is an efficient reductant and can be used for reduction of Cr+6. For low chromium concentrations, a SRB augmented zero-valent iron and sand column is capable of removing chromium completely.

  3. Removal of Chromium(VI from aqueous solution using guar gum–nano zinc oxide biocomposite adsorbent

    Directory of Open Access Journals (Sweden)

    Tabrez A. Khan

    2017-05-01

    Full Text Available Guar gum–nano zinc oxide (GG/nZnO biocomposite was used as an adsorbent for enhanced removal of Cr(VI from aqueous solution. The maximum adsorption was achieved at 50 min contact time, 25 mg/L Cr(VI conc., 1.0 g/L adsorbent dose and 7.0 pH. Langmuir, Freundlich, Dubinin–Kaganer–Radushkevich and Temkin isotherm models were used to interpret the experimental data. The data obeyed both Langmuir and Freundlich models (R2 = 0.99 indicating a multilayer adsorption of Cr(VI onto the heterogeneous surface. The linear plots of Temkin isotherm showed adsorbent-adsorbate interactions. Moreover, the energy obtained from DKR isotherm (1.58–2.24 kJ/mol indicated a physical adsorption of the metal ions onto the adsorbent surface, which implies more feasibility of the regeneration of the adsorbent. GG/nZnO biocomposite adsorbent showed an improved adsorption capacity for Cr(VI (qm = 55.56 mg/g as compared to other adsorbents reported in the literature. Adsorption process followed pseudo-second order kinetics; controlled by both liquid-film and intra-particle diffusion mechanisms. Thermodynamic parameters (ΔGo, ΔHo and ΔSo reflected the feasibility, spontaneity and exothermic nature of adsorption. The results suggested that GG/nZnO biocomposite is economical, eco-friendly and capable to remove Cr(VI from natural water resources.

  4. Noncarcinogenic effects of chromium: Update to health-assessment document. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Victery, W.; Lee, S.D.; Mushak, P.; Piscator, M.

    1990-04-01

    The document updates the 1984 Health Assessment Document for Chromium by addressing issues regarding noncarcinogenic health effects of chromium: oxidation states and persistence of these states in the environment, sampling and analytical methodology to differentiate these oxidation states and amounts at submicrogram ambient air levels, the degree of human exposure to chromium in the environment, both short-term and long-term, in vivo reduction of Cr (VI) to Cr (III), and effects from environmentally relevant levels on pulmonary function and renal function. Trivalent chromium is chemically stable; Cr (VI) is readily reduced to Cr (III). Oxidation state of chromium in ambient air depends on proximity to sources emitting one form over the other. Reliable monitoring methods to speciate oxidation states at ambient air levels below 1 microgram/cu m are not available. Ambient levels of total chromium (obtained from EPA's National Air Data Branch) range from a high of 0.6 microgram/cu m to below the detection limit of 0.005 microgram/cu m. Reduction of hexavalent chromium in vivo occurs in several organ systems and therefore, small amounts of inhaled Cr (VI) will be reduced before systemic absorption can occur. Trivalent chromium is an essential trace metal which potentiates actions of insulin-mediated glucose transport.

  5. Effect of Chromium on Oxidative Damage and Antioxidant Capacity of Ctenopharyngodon idellus

    Institute of Scientific and Technical Information of China (English)

    Ting GUO; Yuanyuan MA; Peng TIAN; Yan LIU; Lunqiang YUAN

    2012-01-01

    [Objective] This study aimed to investigate the effect of chromium on ox- idative damage and antioxidant capacity of Ctenopharyngodon idellus (grass carp). [Method] The grass carps were treated with hexavalent chromium (Cr^6+) solution at concentrations of 0, 7.23, 14.47, 28.94 mg/L, and then the content of malondialde- hyde (MDA), the level of total antioxidative capacity (T-AOC) and the activity of gtu- tathione-S-transferase (GST) in the hepatopancreas of grass carp were determined after 96 hours in different treatment groups. [Result] The content of MDA presented increasing trend with the increase of exposure Cr^6+ concentrations. The activity of T-AOC increased firstly, then decreased with the increasing Cr^6+ exposure concentra- tions, showing that the level of T-AOC was induced in tow and medium concentrat ions (7.23 and 14.47 mg/L), but inhibited in high concentrations (28.94 mg/L). Among the exposure groups, the level of T-AOC in medium concentration group (14.47 mg/L) was significantly higher than the control (P〈0.05). Except the low concentration groups (7.23 mg/L) of which the GST activity was slightly induced, the GST activities of the other groups all showed downward trend with increasing Cr^6+ levels, and the activity of GST in 28.94 mg/L group was significantly lower than the control group (P〈0.05). [Conclusion] Cr^6+ could cause large oxidative damage in the hepatopancreas of grass carp, thus poisoning it, and Cr^6+ may further damage the organizational structure and physiological function of grass carp.

  6. Solid phase extraction of chromium(VI) from aqueous solutions by adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column.

    Science.gov (United States)

    Rajesh, N; Jalan, Rohit Kumar; Hotwany, Pinky

    2008-02-11

    A method has been developed for the solid phase extraction of chromium(VI) based on the adsorption of its diphenylcarbazide complex on an Amberlite XAD-4 resin column. The influence of acidity, stability of the column, sample volume, flow rate and interfering ions were studied in detail. The adsorbed complex could be eluted using acetone-sulfuric acid mixture and the concentration of chromium was determined using visible spectrophotometry. A detection limit of 6 microg L(-1) could be achieved. A preconcentration factor of 27 could be obtained for 400 mL sample volume. The validity of the method was checked in spiked water samples and electroplating wastewater.

  7. Biosorption of aqueous chromium(VI) by Tamarindus indica seeds.

    Science.gov (United States)

    Agarwal, G S; Bhuptawat, Hitendra Kumar; Chaudhari, Sanjeev

    2006-05-01

    The effectiveness of low cost agro-based materials namely, Tamarindus indica seed (TS), crushed coconut shell (CS), almond shell (AS), ground nut shell (GS) and walnut shell (WS) were evaluated for Cr(VI) removal. Batch test indicated that hexavalent chromium sorption capacity (q(e)) followed the sequence q(e)(TS) > q(e)(WS) > q(e)(AS) > q(e)(GS) > q(e)(CS). Due to high sorptive capacity, tamarind seed was selected for detailed sorption studies. Sorption kinetic data followed first order reversible kinetic fit model for all the sorbents. The equilibrium conditions were achieved within 150 min under the mixing conditions employed. Sorption equilibria exhibited better fit to Freundlich isotherms (R>0.92) than Langmuir isotherm (R approximately = 0.87). Hexavalent chromium sorption by TS decreased with increase in pH, and slightly reduced with increase in ionic strength. Cr(VI) removal by TS seems to be mainly by chemisorption. Desorption of Cr(VI) from Cr(VI) laden TS was quite less by distilled water and HCl. Whereas with NaOH, maximum desorption achieved was about 15.3%. When TS was used in downflow column mode, Cr(VI) removal was quite good but head loss increased as the run progressed and was stopped after 200 h.

  8. Chromium in diet

    Science.gov (United States)

    The best source of chromium is brewer's yeast. However, many people do not use brewer's yeast because it causes bloating ( abdominal distention ) and nausea . Other good sources of chromium include ...

  9. Fertilizers and Mixed Crop Cultivation of Chromium Tolerant and Sensitive Plants under Chromium Toxicity

    Directory of Open Access Journals (Sweden)

    B. Dheeba

    2015-01-01

    Full Text Available Zea mays (maize and Vigna radiata (green gram are found to be the chromium (Cr tolerant and sensitive plants, respectively. In the present paper, we investigate the reduction of the toxicity of Cr in the sensitive plants by the mixed crop cultivation in the field using various amendments. Further, the potassium dichromate was used as the source of hexavalent Cr. The results indicated that Cr adversely affects both the growth and yield of plants. The soil properties vary with Cr and different fertilizer amendments and the yield of both plants were affected by Cr. We conclude that metal accumulation of seeds of green gram was higher than corn and the application of single fertilizer either farm yard manure (FYM or nitrogen, phosphorous, and potassium (NPK enhances the growth and yield of both the tolerant and sensitive plants in the mixed crop cultivations.

  10. Heterogeneous chromium catalysts

    NARCIS (Netherlands)

    2005-01-01

    The present invention relates to a heterogeneous chromium catalyst system for the polymerisation of ethylene and/or alpha olefins prepared by the steps of: (a) providing a silica-containing support, (b) treating the silica-containing support with a chromium compound to form a chromium-based silica-c

  11. Synchrotron Spectroscopic Studies of the Reaction of Cleaved Pyrite ( {FeS2}) Surfaces with Cr(VI) Solutions

    Science.gov (United States)

    Doyle, C. S.; Kendelewicz, T.; Bostick, B. C.; Brown, G. E.

    2002-12-01

    Pyrite is one of the most common sulfide ores, and the separation of valuable sulfide minerals from it has been an area of considerable interest for a long time. This extraction has led to a large quantity of pyrite waste, typically remaining in mine tailings piles which can interact with oxygen and surface water. The oxidation of pyrite under these conditions leads to the commonly known environmental problem of acid mine drainage, with acidification of surface waters, and the release of potentially toxic metals remaining within the pyrite matrix. A microscopic understanding of this oxidation process is extremely important and has been the aim of a number of studies. We apply the methods of synchrotron based surface science to this problem, utilizing surface sensitive photoemission and X-ray absorption spectroscopy to study the surface species present on the pyrite surface at the initial stages of oxidation. We have reacted pyrite surfaces with solutions containing chromate. Chromium exists in solution in two principal valence states, trivalent Cr(III) and hexavalent Cr(VI). Hexavalent chromium is itself considered an environmental problem due to its high toxicity and solubility, and thus mobility, whilst trivalent chromium is much less toxic and relatively insoluble. Hexavalent chromate is a strong oxidizing agent, and will react rapidly with the pyrite surface allowing the identification of oxidized iron and sulfur surface species. The possibility of using pyrite as a means of reducing chromate, and at the same time using chromate to passivate the pyrite surface to further oxidation through the buildup of a non-reactive iron-chromium (oxy)hydroxide layer will be investigated. The work was performed on rods cut from a natural pyrite single crystal from the Logroño region of Spain. The rods were then fractured over a reaction vessel, producing a fresh (100) surface for each experiment. The pyrite surfaces were reacted with 50 μM Cr(VI) solutions for 5 minutes at

  12. Distribution of soluble and precipitated iron and chromium products generated by anodic dissolution of 316L stainless steel and alloy C-22: final report

    Energy Technology Data Exchange (ETDEWEB)

    Estill, J; Farmer, J; Gordon, S; King, K; Logotetta, L; Silberman, D

    1999-08-11

    At near neutral pH and at applied potentials above the threshold potential for localized breakdown of the passive film, virtually all of the dissolved chromium appeared to be in the hexavalent oxidation state (Cr(VI)). In acidic environments, such as crevice solutions formed during the crevice corrosion of 316L and C-22 samples in 4 M NaCl, virtually all of the dissolved chromium appeared to be in the trivalent oxidation state (Cr(III)). These general observations appear to be consistent with the Pourbaix diagram for chromium (Pourbaix 1974), pp. 307-321. At high pH and high anodic polarization (pH {approximately} 8 and 800 mV vs. SHE), the predominate species is believed to be the soluble chromate anion (CrO{sub 4}{sup 2{minus}}). At the same pH, but lower polarization (pH {approximately} 8 and 0 mV vs. SHE), the predominate species are believed to be precipitates such as trivalent Cr(OH){sub 3} {center_dot} n(H{sub 2}O) and hexavalent Cr{sub 2}O{sub 3}. In acidified environments such as those found in crevices (pH < 3), soluble Cr{sup 3+} is expected to form over a wide range of potential extending from 400 mV vs. SHE to approximately 1200 mV vs. SHE. Again, this is consistent with the observations from the creviced samples. In earlier studies by the principal investigator, it has been found that low-level chromium contamination in ground water is usually in the hexavalent oxidation state (Farmer et al. 1996). In general, dissolved iron measured during the crevice experiments appears to be Fe(II) in acidic media and Fe(III) in near-neutral and alkaline solutions (table 3). In the case of cyclic polarization measurements, the dissolved iron measured at the end of some cyclic polarization measurements with C-22 appeared to be in the Fe(III) state. This is probably due to the high electrochemical potential at which these species were generated during the potential scan. Note that the reversal potential was approximately 1200 mV vs. Ag/AgCl during these scans. These

  13. Microbial biotechnology for remediation of aquatic habitats polluted with chromium

    Directory of Open Access Journals (Sweden)

    Viorica Coşier

    2008-12-01

    Full Text Available Chromium may occur in nine different forms of oxidation ranging from ?II to +VI, with forms II, III and VI as the most commonly encountered. In Cluj county, chromium pollution dates well back in time and has caused important dysfunction to the mechanical-biological wastewater purification station of the city of Cluj (Coşier & Diţă 1996. The purpose of this study was to develop one microbial method able to reduce hexavalent chromium (mobile, permeable to cell membrane, carcinogenic and mutagenic (Ishikawa et al 1994 to the trivalent form (insoluble and an essential element for humans (Song et al 2006. Different sources of chromium-reducing bacteria and many sources of carbon and energy added to the Kvasnikov mineral basal medium (Komori et al 1990 with increasing amount of chromate (200- 1000 mg/l were tested. Two bacterial strains, able to reduce even 1000 mg chromate/l, were isolated in pure culture. For one of these bacterial strains, we determined the optimum conditions for the reduction of Cr (VI.

  14. Solid waste removes toxic liquid waste: adsorption of chromium(VI) by iron complexed protein waste.

    Science.gov (United States)

    Fathima, Nishtar Nishad; Aravindhan, Rathinam; Rao, Jonnalagadda Raghava; Nair, Balachandran Unni

    2005-04-15

    The leather processing industry generates huge amounts of wastes, both in solid and liquid form. Fleshing from animal hides/skins is one such waste that is high in protein content. In this study, raw fleshing has been complexed with iron and is used for removal of chromium(VI). The effect of pH and the initial concentration of chromium(VI) on the removal of Cr(IV) by iron treated fleshing is presented. Iron treatment is shown to greatly improve adsorption of the fleshing for hexavalent chromium. The ultimate adsorption capacity of iron treated fleshing is 51 mg of chromium(VI) per gram of fleshing. That of untreated fleshing is 9 mg/g such that iron treatment increases the adsorption capacity of fleshing by 10-fold. The measured adsorption kinetics is well described by a pseudo-second-order kinetic model. The uptake of chromium(VI) by fleshing is best described by the Langmuir adsorption isotherm model. X-ray photoelectron spectroscopic (XPS) studies show that the iron is incorporated into the protein matrix. Shifts in XPS spectra suggest that dichromate binding occurs with iron at active adsorption sites and that iron treated fleshing removes chromium(VI) without reducing it to chromium(III).

  15. Use of iron oxide magnetic nanosorbents for Cr (VI removal from aqueous solutions: A review

    Directory of Open Access Journals (Sweden)

    Nirmala Ilankoon

    2014-10-01

    Full Text Available This review paper focuses on the use of iron oxide nanosorbents for the removal of hexavalent Chromium [Cr(VI], from aqueous media. Cr(VI is a well-known toxic heavy metal, which can cause severe damages to the human health even with the presence of trace levels. Chromium continuously enters into water streams from different sources. Several methods are available for Cr(VI removal and some of them are well established in industrial scale whilst some are still in laboratory scale. Reduction followed by chemical precipitation, adsorption, electro-kinetic remediation, membrane separation processes and bioremediation are some of the removal techniques. Each method is associated with both advantages and disadvantages. Currently, the use of nanosorbents for the aqueous chromium removal is popular among researchers and iron oxide nanoparticles are the most frequently used nanosorbents. This review paper summarizes the performance of different iron oxide nanosorbents studied on the last decade. The direct comparison of these results is difficult due to different experimental conditions used in each study. Adsorption isotherms and adsorption kinetics models are also discussed in this review paper. The effect of solution pH, temperature, initial Cr(VI concentration, adsorbent dosage and other coexisting ions are also briefly discussed. From the results it is evident that, more attention needs to be paid on the industrial application of the technologies which were successful in the laboratory scale.

  16. Effect of polyethylene glycol on electrochemically deposited trivalent chromium layers

    Institute of Scientific and Technical Information of China (English)

    Joo-Yul LEE; Man KIM; Sik-Chol KWON

    2009-01-01

    The structural characteristics of the trivalent chromium deposits and their interfacial behavior in the plating solution with and without polyethylene glycol molecules were observed by using various electrochemical methods such as cyclic voltammetry, open circuit potential transition, electrochemical impedance spectroscopy, scanning electron microscopy and X-ray photoelectron spectrometry. It is shown that the polyethylene glycol molecules make the reductive current density lower in the trivalent chromium plating system and promote a hydrogen evolution reaction through their adsorption on the electrode surface. And the trivalent chromium layer formed from the polyethylene glycol-containing solution has somewhat higher density of cracks on its surface and results in a lower film resistance, lower polarization resistance, and higher capacitance in a corrosive atmosphere. It is also revealed that the formation of chromium carbide layer is facilitated in the presence of polyethylene glycol, which means easier electrochemical codeposition of chromium and carbon, not single chromium deposition.

  17. Bioadsorción de Cromo (VI en Solución Acuosa por la Biomasa Celular de Cryptococcus neoformans y Helminthosporium sp Biosorption of Chromium (VI from Aqueous Solutions by Fungal Biomass of Cryptococcus neoformans and Helminthosporium sp

    Directory of Open Access Journals (Sweden)

    I. Acosta

    2005-01-01

    Full Text Available Se determinó la bioadsorción de Cromo (VI en solución por la biomasa celular de la levadura capsulada Cryptococcus neoformans y del hongo micelial Helminthosporium sp, por el método colorimétrico de la difenilcarbazida. La biomasa de C. neoformans fue más eficiente en la remoción de Cromo (VI en solución (98% que la de Helminthosporium sp (65%. La mayor bioadsorción para C. neoformans fue a pH=2.0 +/- 0.2, mientras que para Helminthosporium sp fue a pH=4.0 +/- 0.2, ambas a 28oC durante 24 horas con 0.2 mg/L de biomasa celular. Se concluye que las biomasas fúngicas remueven eficientemente Cromo (VI en solución y pueden utilizarse para descontaminar nichos acuáticos contaminados con este metal.A determination was made on the biosorption of dissolved Chromium (VI using cellular biomass of the encapsulated yeast Cryptococcus neoformans and the mycelial fungus Helminthosporium sp. using a diphenylcarbazide colorimetric method. The C. neoformans biomass was more efficient in removing Chromium (VI from solution (98% than the Helminthosporium sp. (65%. The highest biosorption for C. neoformans was at pH 2.0 + 0.02, while for Helminthosporium sp this occurred at pH 4.0 + 0.2 , both at 28°C for 24 h employing 0.2 mg/L of cellular biomass. It is concluded that the fungal biomasses efficiently removed Chromium (VI from solution and could be used for decontamination of aquatic habitats polluted with this metal.

  18. Mechanisms of bacterial resistance to chromium compounds.

    Science.gov (United States)

    Ramírez-Díaz, Martha I; Díaz-Pérez, César; Vargas, Eréndira; Riveros-Rosas, Héctor; Campos-García, Jesús; Cervantes, Carlos

    2008-06-01

    Chromium is a non-essential and well-known toxic metal for microorganisms and plants. The widespread industrial use of this heavy metal has caused it to be considered as a serious environmental pollutant. Chromium exists in nature as two main species, the trivalent form, Cr(III), which is relatively innocuous, and the hexavalent form, Cr(VI), considered a more toxic species. At the intracellular level, however, Cr(III) seems to be responsible for most toxic effects of chromium. Cr(VI) is usually present as the oxyanion chromate. Inhibition of sulfate membrane transport and oxidative damage to biomolecules are associated with the toxic effects of chromate in bacteria. Several bacterial mechanisms of resistance to chromate have been reported. The best characterized mechanisms comprise efflux of chromate ions from the cell cytoplasm and reduction of Cr(VI) to Cr(III). Chromate efflux by the ChrA transporter has been established in Pseudomonas aeruginosa and Cupriavidus metallidurans (formerly Alcaligenes eutrophus) and consists of an energy-dependent process driven by the membrane potential. The CHR protein family, which includes putative ChrA orthologs, currently contains about 135 sequences from all three domains of life. Chromate reduction is carried out by chromate reductases from diverse bacterial species generating Cr(III) that may be detoxified by other mechanisms. Most characterized enzymes belong to the widespread NAD(P)H-dependent flavoprotein family of reductases. Several examples of bacterial systems protecting from the oxidative stress caused by chromate have been described. Other mechanisms of bacterial resistance to chromate involve the expression of components of the machinery for repair of DNA damage, and systems related to the homeostasis of iron and sulfur.

  19. A Comprehensive Review on Nickel (II And Chromium VI Toxicities - Possible Antioxidant (Allium Sativum Linn Defenses

    Directory of Open Access Journals (Sweden)

    Kusal K.Das

    2009-12-01

    Full Text Available The toxicity associated with nickel (II and chromium (VI is mainly due to generation of reactive oxygen species (ROS with subsequent oxidative deterioration of biological macromolecules. Both nickel and chromium can generate free radicals (FR directly from molecular oxygen in a two step process to produce superoxide anion and in continued process, produce highly toxic hydroxyl radical. The pro-oxidative effects are compounded by fact that they also inhibit antioxidant enzymes and deplete intracellular glutathione. Garlic (Allium sativum has played an important dietary and medicinal role throughout the history of mankind. Garlic has the potential to enhance the endogenous antioxidant status in nickel as well as hexavalent chromium induced lipid peroxidation in normal and diabetic rats.

  20. Chromium Isotopes Record Fluctuations in Precambrian Biospheric Oxygenation

    Science.gov (United States)

    Frei, R.; Gaucher, C.; Poulton, S. W.; Canfield, D. E.

    2009-12-01

    There is a direct relationship between life, oxygen, and the surface chemistry of the Earth. Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps, near the beginning and the end of the Proterozoic Eon (2500 to 542 million years ago), but the details of this history are unclear. The geochemical behaviour of chromium (Cr) is highly sensitive to the redox state of the surface environment as oxidative weathering processes produce the oxidised hexavalent [Cr(VI)] form. Oxidation of reduced trivaltent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. The fractionated Cr isotope signature is then tranfered by riverine transport to the sea. Here, we use Cr stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of Earth’s atmosphere-hydrosphere system. Fractionated Cr isotopes indicate the accumulation of Cr(VI) in ocean surface waters ~2.8 to 2.6 billion years (Gyr) ago and a likely transient elevation in atmospheric and surface ocean oxygen prior to the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event; GOE). In contrast, Cr isotopes in ~1.88 Gyr old BIFs are not fractionated, indicating a major decline in atmospheric oxygen and demonstrating that the GOE did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, ~800 to 542 million years (Myr) ago, we observe strong positive fractionations in Cr isotopes (δ53Cr up to +4.9 ‰) providing independent support for increased surface oxygenation at this time. This may have stimulated rapid evolution of macroscopic multicellular life. Our chromium isotope data thus provide new insights into the oxygenation history of the Earth, and highlight its use as a powerful redox tracer in aquatic systems.

  1. Activated carbon adsorption for chromium treatment and recovery; Adsorbimento di cromo su carboni attivi a scopo di recupero e decontaminazione

    Energy Technology Data Exchange (ETDEWEB)

    Baroncelli, F.; Castelli, S.; De Francesco, M. [ENEA, Casaccia (Italy). Area Energia e Innovazione

    1994-05-01

    The capability of actived carbon systems to adsorb chromium from wastewater of galvanic industry is valued. Batch tests and column tests are carried out with good results. An activated carbon with acidic surface oxides can adsorb both chromate and chromium (III); chromate is reduced in situ and then adsorbed as chromium (III). Chromium can be desorbed from carbon by an acid or basic treatment obtaining respectively chromium (III) or chromate solutions. Carbon can be regenerated many times without evident signs of deterioration.

  2. Influence of Chelating Agents on Chromium Fate in Sediment

    Institute of Scientific and Technical Information of China (English)

    WANGXIAOCHANG; SUNJINHE; 等

    1996-01-01

    A laboratory investigation on reaction between chelating agents and chromium was conducted to evaluate the effect of chelating agents on the adsorption and desorption of chromium in sediment.The amount of adsorbed chromium(VI) in sediment decreased slightly by 5%-10% because of addition of chelating agents.Chelating agents inhibited the removal of Cr(Ⅲ)by sediment from solutions and the inhibiting effect was in the order:citric acid>tartaric acid>EDTA,Salicylic acid.No effect of chelating agents on desorption of chromium in sediment was observed.

  3. Chromium recycling of tannery waste through microbial fermentation.

    Science.gov (United States)

    Katsifas, E A; Giannoutsou, E; Lambraki, M; Barla, M; Karagouni, A D

    2004-02-01

    An Aspergillus carbonarius isolate, selected from an established microbial culture collection, was used to study the biodegradation of chromium shavings in solid-state fermentation experiments. Approximately 97% liquefaction of the tannery waste was achieved and the liquid obtained from long-term experiments was used to recover chromium. The resulting alkaline chromium sulfate solution was useful in tanning procedures. A proteinaceous liquid was also obtained which has potential applications as a fertilizer or animal feed additive and has several other industrial uses. The A. carbonarius strain proved to be a very useful tool in tannery waste-treatment processes and chromium recovery in the tanning industries.

  4. Chromium Isotopic Fractionation During Biogeochemical Cr (IV) Reduction in Hanford Sediment Column Experiments with Native Aquifer Microbial Communities

    Science.gov (United States)

    Qin, L.; Christensen, J. N.; Brown, S. T.; Yang, L.; Conrad, M. E.; Sonnenthal, E. L.; Beller, H. R.

    2010-12-01

    Hexavalent Chromium contamination in groundwater within the DOE complex, including the Hanford 100D and 100H sites has been a long-standing issue. It has been established that certain bacteria (including denitrifying and sulfate-reducing bacteria) harbor enzymes that catalyze Cr(VI) reduction to relatively nontoxic Cr(III). Microbial reduction of Cr(VI) also occurs indirectly by products of microbial respiration, such as sulfide and Fe(II). Chromium isotopes can be fractionated during Cr(VI) reduction and provides a potential basis for characterizing and discriminating between different microbial metabolic and geochemical pathways associated with Cr(VI) reductive immobilization. Addition of electron donor to contaminated groundwater systems to create conditions favorable for reductive metal immobilization has become a widely utilized remediation practice. We conducted a series of small-scale column experiments with homogenized material from the Hanford 100H aquifer to examine the effects of differing electron acceptors on local microbial communities. All columns have a continuous inflow of solutions with constant concentrations of Cr(VI), lactate (electron donor), and the appropriate electron acceptor (e.g. nitrate or sulfate). The Cr isotopic composition in the effluent was measured using a 50-54 double-spike technique and a Triton TIMS. Cr concentration measurements showed that the greatest Cr(VI) reduction occurred in the sulfate columns. Our preliminary Cr isotopic data show that under these conditions the delta 53Cr value increased from close to 0 to 4 per mil while the Cr concentration decreased from 260 ppb to 30 ppb in the effluent. This yields an apparent fractionation factor of 0.9979 (2.1 per mil). A decrease in Cr concentration from 260 ppb to 190 ppb in a nitrate-reducing column was accompanied by an increase of 1 per mil in delta 53Cr. Further Cr isotopic data will be presented and the effects of differing flow rates and electron acceptors will be

  5. TREATABILITY TEST REPORT FOR THE REMOVAL OF CHROMIUM FROM GROUNDWATER AT 100-D AREA USING ELECTROCOAGULATION

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-09-24

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of {le} 20 micrograms per liter ({micro}g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory

  6. GSDO Program Hexavalent Chrome Alternatives: Final Pretreatments Test Report

    Science.gov (United States)

    Kessel, Kurt

    2013-01-01

    Hexavalent chrome free pretreatments should be considered for use on Ground Support Equipment (OSE) and Electrical Ground Support Equipment (EOSE). Both of the hexavalent chrome free pretreatments (Metalast TCP HF and SurTec 650C) evaluated by this project met, and in some instances exceeded, the requirements ofMIL-DTL-5541 "Chemical Conversion Coatings on Aluminum and Aluminum Alloys". For DC resistance measurements, both Metalast TCP HF and SurTec (!50C met initial requirements following assembly and in many cases continued to maintain passing readings for the duration of testing.

  7. 环保彩锌镀层在NaCl介质中的腐蚀行为研究%Corrosion Behavior of Chromium Color Passivating Coating in NaCl Solution

    Institute of Scientific and Technical Information of China (English)

    陈亮; 王鹤云; 武文鑫; 丁毅; 马立群

    2012-01-01

    The corrosion behavior of chromium (Ⅲ) color passivating coating in NaCl solution was studied by Tafel linear extrapolation and accelerated corrosion test. Morphologies and corrosion products after corrosion were characterized by SEM and EDS. The results show that the corrosion current density of chromium (Ⅲ) color passivating coating becomes larger with the increase of the concentration of NaCl solution. The coating is passivated in the range from -1.2 V to -0.7 V. The corrosion of Cl- is firstly hindered by chromium (Ⅲ) color passivating film, and secondly hindered by corroded products in the accelerated corrosion test. The intense absorption and penetration of Cl- makes passive film crack and Zn be corroded. With the increase of time, passive film is destroyed and even the corrosion of Zn is accelerated resulting from forming Zn-Fe galvanic cells.%采用Tafel直线外推法、加速腐蚀试验,研究了环保彩锌镀层在NaCl溶液中的腐蚀行为,利用扫描电镜和能谱分析表征彩锌镀层的腐蚀形貌和腐蚀产物.结果表明:随着NaCl浓度的升高,彩锌镀层腐蚀电流密度增大;在-1.2~-0.7 V区域内,彩锌镀层发生阳极钝化;镀锌层的3价铬钝化膜可阻碍Cl-腐蚀,在随后的加速腐蚀试验所产生的腐蚀产物可再次阻碍Cl-腐蚀;由于Cl-存在强吸附和强穿透性,使得钝化膜产生破裂并使Zn腐蚀;随着时间的增加,在Cl-的进一步作用下,钝化膜被破坏殆尽,甚至有些已经侵入基体形成Zn-Fe原电池加速了Zn的腐蚀.

  8. Role of Microbial Exopolymeric Substances (EPS) on Chromium Sorption and Transport in Heterogeneous Subsurface Soils: I. Cr(III) Complexation with EPS in Aqueous Solution

    Energy Technology Data Exchange (ETDEWEB)

    C Kantar; H Demiray; N Dogan; C Dodge

    2011-12-31

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  9. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, C.; Dodge, C.; Demiray, H.; Dogan, N.M.

    2011-01-26

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK{sub a} values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL{sub 2} monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL{sub 2} and HL{sub 3} monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  10. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: I. Cr(III) complexation with EPS in aqueous solution.

    Science.gov (United States)

    Kantar, Cetin; Demiray, Hilal; Dogan, Nazime Mercan; Dodge, Cleveland J

    2011-03-01

    Chromium (III) binding by exopolymeric substances (EPS) isolated from Pseudomonas putida P18, Pseudomonas aeruginosa P16 and Pseudomonas stutzeri P40 strains were investigated by the determination of conditional stability constants and the concentration of functional groups using the ion-exchange experiments and potentiometric titrations. Spectroscopic (EXAFS) analysis was also used to obtain information on the nature of Cr(III) binding with EPS functional groups. The data from ion-exchange experiments and potentiometric titrations were evaluated using a non-electrostatic discrete ligand approach. The modeling results show that the acid/base properties of EPSs can be best characterized by invoking four different types of acid functional groups with arbitrarily assigned pK(a) values of 4, 6, 8 and 10. The analysis of ion-exchange data using the discrete ligand approach suggests that while the Cr binding by EPS from P. aeruginosa can be successfully described based on a reaction stoichiometry of 1:2 between Cr(III) and HL(2) monoprotic ligands, the accurate description of Cr binding by EPSs extracted from P. putida and P. stutzeri requires postulation of 1:1 Cr(III)-ligand complexes with HL(2) and HL(3) monoprotic ligands, respectively. These results indicate that the carboxyl and/or phosphoric acid sites contribute to Cr(III) binding by microbial EPS, as also confirmed by EXAFS analysis performed in the current study. Overall, this study highlights the need for incorporation of Cr-EPS interactions into transport and speciation models to more accurately assess microbial Cr(VI) reduction and chromium transport in subsurface systems, including microbial reactive treatment barriers.

  11. Removal of Cr(VI) from aqueous solution by fungal biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, Sarabjeet Singh [Department of Biotechnology, General Shivdev Singh Diwan Gurbachan Singh Khalsa College, Patiala, Punjab (India); Goyal, Dinesh [Department of Biotechnology and Environmental Sciences, Thapar University, Patiala, Punjab (India)

    2010-10-15

    Chromium compounds are released by industrial processes including leather production, mining, petroleum refining, in textile industry and dyeing. They are a significant threat to the environment and public health because of their toxicity. Removal of hexavalent chromium by living biomass of different fungi was effective in the order of Aspergillus terricola>Aspergillus niger>Acremonium strictum>Aureobasidium pullulans>Paecilomyces variotii>Aspergillus foetidus>Cladosporium resinae>Phanerochaete chrysosporium. Non-living dried fungal biomass showed higher potential for metal removal than living cells. Among all fungi dead biomass of P. chrysosporium, C. resinae and P. variotii had the maximum specific chromium uptake capacity, which was 11.02, 10.69 and 10.35 mg/g of dry biomass respectively at pH 4.0-5.0 in batch sorption. Removal of Cr(VI) by P. chrysosporium from multi-metallic synthetic solution as well as chrome effluent was significant by bringing down the residual concentration to 0.1 mg/L in the effluent, which falls within the permissible range and its removal was not affected by the presence of other metal ions such as Fe, Zn and Ni. Fourier transform infrared spectral analysis revealed the presence of carboxylate (C=O) and amine (-NH{sup +}{sub 3}-NH{sup +}{sub 2}) functional groups commonly present on the cell surface of all fungi, with possible involvement in chromium binding. The result indicates that non-living fungal biomass either obtained as a by-product of fermentation industry or mass produced using inexpensive culture media can be used for bioremediation of Cr(VI) from chrome effluent on large scale. (Copyright copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. 无钴硫酸体系三价铬黑色钝化工艺%Process for trivalent chromium black passivation in cobalt-free sulfuric acid system

    Institute of Scientific and Technical Information of China (English)

    柯昌美; 周黎琴; 汪振忠; 张金龙; 王茜; 张利玉; 陈红祥

    2012-01-01

    以过渡金属硫化物M替代钴(镍)盐作发黑剂,在镀锌层表面得到黑色钝化膜.钝化液的配方与工艺为:Cr2(SO4)335 g/L,有机羧酸X 6 g/L,柠檬酸32 g/L,过渡金属硫化物M2g/L,FeSO410 g/L,NaNO37 g/L,NaH2PO415 g/L,pH=2.0,室温,时间30 s.钝化膜层乌黑均匀、附着力合格;经封闭后的三价铬黑色钝化膜,其耐蚀性等级高于市售含钴盐发黑剂的三价铬黑色钝化膜,且达到六价铬钝化的耐蚀等级;钝化膜中不含六价铬;钝化液性能稳定.%A black passivation film was obtained on surface of zinc coating by using transition-metal sulfide (code: M) instead of cobalt or nickel salt as blackening agent. The bath composition and passivation process parameters are as follows: Cr2(SO4)3 35 g/L, organic carboxylic acid (code: X) 6 g/L, citric acid 32 g/L, transition-metal sulfide M 2 g/L, FeSO4 10 g/L, NaNO3 7 g/L, NaH2PO4 15 g/L, pH = 2.0, room temperature, and time 30 s. The obtained passivation film is black and uniform, and of qualified adhesion. The corrosion resistance of sealed black trivalent chromium passivation film is higher than that of passivation film prepared from commercial passivation solution containing cobalt salt, and is equal to that of hexavalent chromium passivation film. The black passivation film is free of hexavalent chromium. The passivation bath has stable performance.

  13. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes

    Science.gov (United States)

    Frei, Robert; Gaucher, Claudio; Poulton, Simon W.; Canfield, Don E.

    2009-09-01

    Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between ~2.45 and 2.2Gyr ago, leading to a significant increase in atmospheric oxygen concentrations and concomitant oxygenation of the shallow surface ocean. The second increase in atmospheric oxygen appears to have taken place in distinct stages during the late Neoproterozoic era (~800-542Myr ago), ultimately leading to oxygenation of the deep ocean ~580Myr ago, but details of the evolution of atmospheric oxygenation remain uncertain. Here we use chromium (Cr) stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of the Earth's atmosphere-hydrosphere system. The geochemical behaviour of Cr is highly sensitive to the redox state of the surface environment because oxidative weathering processes produce the oxidized hexavalent [Cr(VI)] form. Oxidation of reduced trivalent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. Our fractionated Cr isotope data indicate the accumulation of Cr(VI) in ocean surface waters ~2.8 to 2.6Gyr ago and a likely transient elevation in atmospheric and surface ocean oxygenation before the first great rise of oxygen 2.45-2.2Gyr ago (the Great Oxidation Event). In ~1.88-Gyr-old BIFs we find that Cr isotopes are not fractionated, indicating a decline in atmospheric oxygen. Our findings suggest that the Great Oxidation Event did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, we observe strong positive fractionations in Cr isotopes (δ53Cr up to +4.9‰), providing independent support for increased surface oxygenation at that time, which may have stimulated rapid evolution of macroscopic multicellular life.

  14. Dissociation of Hexavalent Chromium from Sanded Paint Particles into a Simulated Lung Fluid

    Science.gov (United States)

    2006-06-01

    ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION UNIFORMED SERVICES UNIV OF HEALTH SCIENC REPORT NUMBER C104-1857 9. SPONSORING...12 2.4.4 Paint M atrix ................................................................................. 13 2.5 Health Effects...A., & Hill, R. L. (1977). Purification,Composition, Molecular Weight and subunit structure of ovine submaxillary Mucin. Journal of Biological

  15. Influence of plants on the reduction of hexavalent chromium in wetland sediments

    Energy Technology Data Exchange (ETDEWEB)

    Zazo, Juan A. [Department of Chemical Engineering, Universidad Autonoma de Madrid, Madrid, 28049 (Spain)], E-mail: juan.zazo@uam.es; Paull, Jeffery S.; Jaffe, Peter R. [Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544 (United States)

    2008-11-15

    This work addresses the effect that plants (Typha latifolia and Carex lurida) have on the reduction of Cr(VI) in wetland sediments. Experiments were carried out using tubular microcosms, where chemical species were monitored along the longitudinal flow axis. Cr(VI) removal was enhanced by the presence of plants. This is explained by a decrease in the redox potential promoted by organic root exudates released by plants. Under these conditions sulfate reduction is enhanced, increasing the concentration of sulfide species in the sediment pore water, which reduce Cr(VI). Evapotranspiration induced by plants also contributed to enhance the reduction of Cr(VI) by concentrating all chemical species in the sediment pore water. Both exudates release and evapotranspiration have a diurnal component that affects Cr(VI) reduction. Concentration profiles were fitted to a kinetic model linking sulfide and Cr(VI) concentrations corrected for evapotranspiration. This expression captures both the longitudinal as well as the diurnal Cr(VI) concentration profiles. - The presence of plants enhances the reduction of Cr(VI) in wetland sediments by modifying the governing biogeochemical cycle.

  16. Enhancing the hexavalent chromium bioremediation potential of Acinetobacter junii VITSUKMW2 using statistical design experiments.

    Science.gov (United States)

    Pulimi, Mrudula; Jamwal, Subika; Samuel, Jastin; Chandrasekaran, Natarajan; Mukherjee, Amitava

    2012-12-01

    The Cr(VI) removal capability of Acinetobacter junii VITSUKMW2 isolated from the Sukinda chromite mine site was evaluated and enhanced using statistical design techniques. The removal capacity was evaluated at different pH values (5-11) and temperatures (30-40 degrees C) and with various carbon and nitrogen sources. Plackett- Burman design was used to select the operational parameters for bioremediation of Cr(VI). Three parameters (molasses, yeast extract, and Cr(VI) concentration) were chosen for further optimization using central composite design. The optimal combination of parameters was found to be 14.85 g/l molasses, 4.72 g/l yeast extract, and 54 mg/l initial Cr(VI), with 99.95% removal of Cr(VI) in 12 h. A. junii VITSUKMW2 was shown to have significant potential for removal of Cr(VI).

  17. Zeolite Coating System for Corrosion Control to Eliminate Hexavalent Chromium from DoD Applications

    Science.gov (United States)

    2009-08-01

    channel successfu stem  step) low te sition is imp he substrate t with the s dilute aque netrate conf f complex fast; the sh 5 minutes to an oven...Power-law phenomena in adhesive de-bonding. Materials Research Society Symposium Proceedings, 1997 . 458(Interfacial Engineering for Optimized

  18. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells.

    Science.gov (United States)

    Wang, Gang; Huang, Liping; Zhang, Yifeng

    2008-11-01

    A novel approach to Cr(VI)-contaminated wastewater treatment was investigated using microbial fuel cell technologies in fed-batch mode. By using synthetic Cr(VI)-containing wastewater as catholyte and anaerobic microorganisms as anodic biocatalyst, Cr(VI) at 100 mg/l was completely removed during 150 h (initial pH 2). The maximum power density of 150 mW/m(2) (0.04 mA/cm(2)) and the maximum open circuit voltage of 0.91 V were generated with Cr(VI) at 200 mg/l as electron acceptor. This work verifies the possibility of simultaneous electricity production and cathodic Cr(VI) reduction.

  19. Influence of hexavalent chromium on lactate-enriched Hanford groundwater microbial communities.

    Energy Technology Data Exchange (ETDEWEB)

    Somenahally, Anil C [ORNL; Mosher, Jennifer J [ORNL; Yuan, Tong [University of Oklahoma; Podar, Mircea [ORNL; Phelps, Tommy Joe [ORNL; Brown, Steven D [ORNL; Yang, Zamin Koo [ORNL; Hazen, Terry C [ORNL; Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Palumbo, Anthony Vito [ORNL; Zhou, Jizhong [University of Oklahoma; Elias, Dwayne A [ORNL

    2013-01-01

    Microbial reduction and immobilization of chromate (Cr(VI)) is a plausible bioremediation strategy. However, higher Cr(VI) concentrations may impose stress on native Cr-reducing communities. We sought to determine if Cr(VI) would influence the lactate enriched native microbial community structure and function in groundwater from the Cr contaminated site at Hanford, WA. Steady state continuous flow bioreactors were amended with lactate and Cr(VI) (0.0, 0.1 and 3.0 mg/L). Microbial growth, metabolites, Cr(VI) concentrations, 16S rRNA gene sequences and GeoChip based functional gene composition in bioreactors were monitored for 15 weeks. Temporal trends and some differences in growth, metabolite profiles, and community composition were observed, largely between Low-Cr and High-Cr bioreactors. In both High-Cr and Low-Cr bioreactors, Cr(VI) was reduced in the bioreactors. With lactate enrichment, the native communities did not significantly differ between Cr concentrations. Native bacterial communities were diverse, whereas after lactate enrichment, Pelosinus spp., and Sporotalea spp., were the most predominant groups in all bioreactors. Similarly, the Archaea diversity significantly decreased from Methanosaeta (35%), Methanosarcina (17%), Halobacteriales (12%), Methanoregula (8%) and others, to mostly Methanosarcina spp. (95%) after lactate enrichment. Composition of several key functional genes was distinct in Low-Cr bioreactors compared to High-Cr. Among the Cr resistant probes (chrA), Burkholderia vietnamiensis, Comamonas testosterone and Ralstonia pickettii proliferated in Cr amended bioreactors. In-situ fermentative conditions facilitated Cr(VI) reduction, and as a result the 3.0 mg/L Cr(VI) did not appear to give chromate reducing strains a competitive advantage for proliferation or for increasing Cr-reduction.

  20. A MIXED CHEMICAL REDUCTANT FOR TREATING HEXAVALENT CHROMIUM IN A CHROMITE ORE PROCESSING SOLID WASTE

    Science.gov (United States)

    We evaluated a method for delivering ferrous iron into the subsurface to enhance chemical reduction of Cr(VI) in a chromite ore processing solid waste (COPSW). The COPSW is characterized by high pH (8.5 -11.5), high Cr(VI) concentrations in the solid phase (up to 550 mg kg-1) and...

  1. Cytogenomics of hexavalent chromium (Cr6+ exposed cells: A comprehensive review

    Directory of Open Access Journals (Sweden)

    Akanksha Nigam

    2014-01-01

    Full Text Available The altered cellular gene expression profile is being hypothesized as the possible molecular basis navigating the onset or progress of various morbidities. This hypothesis has been evaluated here in respect of Cr 6+ induced toxicity. Several studies using gene microarray show selective and strategic dysregulations of cellular genes and pathways induced by Cr 6+ . Relevant literature has been reviewed to unravel these changes in different test systems after exposure to Cr 6+ and also to elucidate association if any, of the altered cytogenomics with Cr 6+ induced toxicity or carcinogenicity. The aim was to verify the hypothesis for critical role of altered cytogenomics in onset of Cr 6+ induced biological / clinical effects by identifying genes modulated commonly by the toxicant irrespective of test system or test concentrations / doses, and by scrutinizing their importance in regulation of the flow of mechanistically linked events crucial for resultant morbidities. Their probability as biomarkers to monitor the toxicant induced biological changes is speculative. The modulated genes have been found to cluster under the pathways that manage onset of oxidative stress, DNA damage, apoptosis, cell-cycle regulation, cytoskeleton, morphological changes, energy metabolism, biosynthesis, oncogenes, bioenergetics, and immune system critical for toxicity. In these studies, the identity of genes has been found to differ remarkably; albeit the trend of pathways′ dysregulation has been found to remain similar. We conclude that the intensity of dysregulation of genes or pathways involved in mechanistic events forms a sub-threshold or threshold level depending upon the dose and type (including speciation of the toxicant, duration of exposure, type of target cells, and niche microenvironment of cells, and the intensity of sub-threshold or threshold level of the altered cytogenomics paves way in toxicant exposed cells eventually either to opt for reversal to differentiation and growth, or to result in toxicity like dedifferentiation and apoptosis, respectively.

  2. Effects of hexavalent chromium on development of crabs, Rhithropanopeus harrisii and Callinectes sapidus

    Energy Technology Data Exchange (ETDEWEB)

    Bookhout, C.G.; Monroe, R.J.; Forward, R.B. Jr.; Costlow, J.D. Jr.

    1984-01-01

    Survival of Rhithropanopeus harrisii larvae from hatching to first crab stage occurred in Na/sub 2/CrO/sub 4/ concentrations from 1.1 to 29.1 ppm. Estimated LC50 for complete zoeal development was 17.8 ppm Na/sub 2/CrO/sub 4/ and it was 13.7 ppm for development to first crab stage. A concentration of 1.1 ppm Na/sub 2/CrO/sub 4/ was nontoxic, while Na/sub 2/CrO/sub 4/ concentrations of 7.2 and 14.5 ppm were sublethal and concentrations of 29.1 to 58.1 ppm were acutely toxic. Low concentrations of Na/sub 2/CrO/sub 4/ concentrations of Na/sub 2/CrO/sub 4/ caused an increase in swimming speed and high concentrations caused a decline. Survival of Callinectes sapidus larvae occurred in Na/sub 2/CrO/sub 4/ concentrations from 1.1 to 4.7 ppm. The LC50 for complete zoeal development was estimated to be 2.9 ppm Na/sub 2/CrO/sub 4/ and the LC50 for development to first crab stage was estimated to be 1.0 ppm Na/sub 2/CrO/sub 4/. The total Cr in sodium chromate is 32% by weight, hence, the total Cr concentrations tested were 32% of the Cr salts given above. Statistical analyses of the data on survival, duration and mortality of larvae are presented.

  3. 75 FR 18041 - Defense Federal Acquisition Regulation Supplement; Minimizing Use of Hexavalent Chromium (DFARS...

    Science.gov (United States)

    2010-04-08

    ... platforms due to its corrosion protection properties. On April 8, 2009, the Under Secretary of Defense (Acquisition, Technology and Logistics) issued a memorandum establishing policy for the minimization...

  4. A new cation-exchange method for accurate field speciation of hexavalent chromium

    Science.gov (United States)

    Ball, J.W.; McCleskey, R.B.

    2003-01-01

    A new method for field speciation of Cr(VI) has been developed to meet present stringent regulatory standards and to overcome the limitations of existing methods. The method consists of passing a water sample through strong acid cation-exchange resin at the field site, where Cr(III) is retained while Cr(VI) passes into the effluent and is preserved for later determination. The method is simple, rapid, portable, and accurate, and makes use of readily available, inexpensive materials. Cr(VI) concentrations are determined later in the laboratory using any elemental analysis instrument sufficiently sensitive to measure the Cr(VI) concentrations of interest. The new method allows measurement of Cr(VI) concentrations as low as 0.05 ??g 1-1, storage of samples for at least several weeks prior to analysis, and use of readily available analytical instrumentation. Cr(VI) can be separated from Cr(III) between pH 2 and 11 at Cr(III)/Cr(VI) concentration ratios as high as 1000. The new method has demonstrated excellent comparability with two commonly used methods, the Hach Company direct colorimetric method and USEPA method 218.6. The new method is superior to the Hach direct colorimetric method owing to its relative sensitivity and simplicity. The new method is superior to USEPA method 218.6 in the presence of Fe(II) concentrations up to 1 mg 1-1 and Fe(III) concentrations up to 10 mg 1-1. Time stability of preserved samples is a significant advantage over the 24-h time constraint specified for USEPA method 218.6.

  5. IRIS Toxicological Review of Hexavalent Chromium Part 2: Human, Toxicokinetic, and Mechanistic Studies (Preliminary Assessment Materials)

    Science.gov (United States)

    In August 2014, EPA released the second part of draft literature searches and associated search strategies, evidence tables, and exposure response arrays for Cr(VI) to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA w...

  6. IRIS Toxicological Review of Hexavalent Chromium Part 1: Experimental Animal Studies (Preliminary Assessment Materials)

    Science.gov (United States)

    In April 2014, EPA released the draft literature searches and associated search strategies, evidence tables, and exposure response arrays for Cr(VI) to obtain input from stakeholders and the public prior to developing the draft IRIS assessment. Specifically, EPA was interested in...

  7. 76 FR 71926 - Defense Federal Acquisition Regulation Supplement: Applicability of Hexavalent Chromium Policy to...

    Science.gov (United States)

    2011-11-21

    .... Williams, OUSD (AT&L) DPAP/DARS, Room 3B855, 3060 Defense Pentagon, Washington, DC 20301-3060. Comments... submitted by mail). FOR FURTHER INFORMATION CONTACT: Ms. Amy G. Williams, telephone 703- 602-0328... operations, or other military operations or exercises designated by the Combatant Commander. (d)...

  8. A screening method for detection of hexavalent chromium levels in soils

    Directory of Open Access Journals (Sweden)

    Débora V Franco

    2011-01-01

    Full Text Available A rapid and low cost method to determine Cr(VI in soils based upon alkaline metal extraction at room temperature is proposed as a semi-quantitative procedure to be performed in the field. A color comparison with standards with contents of Cr(VI in the range of 10 to 150 mg kg-1 was used throughout. For the different types of soils studied, more than 75% of the fortified soluble Cr(VI were recovered for all levels of spike tested for both the proposed and standard methods. Recoveries of 83 and 99% were obtained for the proposed and the standard methods, respectively, taking into account the analysis of a heavily contaminated soil sample.

  9. Synthesis, Characterization and Hexavalent Chromium Adsorption Characteristics of Aluminum- and Sucrose-Incorporated Tobermorite

    Directory of Open Access Journals (Sweden)

    Zhiguang Zhao

    2017-05-01

    Full Text Available Tobermorites were synthesized from the lime-quartz slurries with incorporations of aluminum and sucrose under hydrothermal conditions, and then used for adsorption of Cr(VI. The chemical components, and structural and morphological properties of tobermorite were characterized by X-ray diffraction (XRD, thermogravimetric-differential scanning calorimetry (TG-DSC, Fourier transform infrared spectroscopy (FT-IR, nuclear magnetic resonance (NMR, scanning electron microscopy (SEM, X-ray photoelectron spectroscopic (XPS and N2 adsorption–desorption measurements. The formation and crystallinity of tobermorite could be largely enhanced by adding 2.3 wt.% aluminum hydroxide or 13.3 wt.% sucrose. Sucrose also played a significantly positive role in increasing the surface area. The adsorption performances for Cr(VI were tested using a batch method taking into account the effects of pH, the adsorption kinetics, and the adsorption isotherms. The adsorption capacities of the aluminum- and sucrose-incorporated tobermorites reached up to 31.65 mg/g and 28.92 mg/g, respectively. Thus, the synthesized tobermorites showed good adsorption properties for removal of Cr(VI, making this material a promising candidate for efficient bulk wastewater treatment.

  10. 75 FR 60454 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2010-09-30

    ..., full address and contact information). When you register, please indicate if you will need audio-visual equipment (e.g., laptop computer and slide projector). In general, each presentation should be no more than... your presentation. The following are instructions for registering: To attend or present comments at...

  11. 76 FR 20349 - Draft Toxicological Review of Hexavalent Chromium: In Support of Summary Information on the...

    Science.gov (United States)

    2011-04-12

    ... Peer Review Workshop. SUMMARY: EPA is announcing that Eastern Research Group, Inc., an EPA contractor for external scientific peer review, will convene an independent panel of experts and organize and... peer review workshop for comments from the public. Please inform Eastern Research Group, Inc. if...

  12. Semi-continuous detection of toxic hexavalent chromium using a sulfur-oxidizing bacteria biosensor.

    Science.gov (United States)

    Gurung, Anup; Oh, Sang-Eun; Kim, Ki Duck; Shin, Beom-Soo

    2012-09-15

    Toxicity testing is becoming a useful tool for environmental risk assessment. A biosensor based on the metabolic properties of sulfur-oxidizing bacteria (SOB) has been applied for the detection of toxic chemicals in water. The methodology exploits the ability of SOB to oxidize elemental sulfur to sulfuric acid under aerobic conditions. The reaction results in an increase in electrical conductivity (EC) and a decrease in pH. Five hours after Cr(6+) was added to the SOB biosensor operated in semi-continuous mode (1 min rapid feeding and 29 min batch reaction), a decrease in effluent EC and an increase in pH (from 2-3 to 6) were detected due to Cr(6+) toxicity to SOB. The SOB biosensor is simple; it can detect toxic levels of Cr(6+) on the order of minutes to hours, a useful time scale for early warning detection systems designed to protect the environment from further degradation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Effect of Set Potential on Hexavalent Chromium Reduction and Electricity Generation from Biocathode Microbial Fuel Cells

    KAUST Repository

    Huang, Liping

    2011-06-01

    Setting a biocathode potential at ?300 mV improved the subsequent performance of an MFC for Cr(VI) reduction compared to a control (no set potential). With this set potential, the startup time was reduced to 19 days, the reduction of Cr(VI) was improved to 19.7 mg/L d, and the maximum power density was increased to 6.4 W/m3 compared to the control (26 days, 14.0 mg/L d and 4.1 W/m3). Set potentials of ?150 mV and ?300 mV also improved system performance and led to similarly higher utilization of metabolic energy gained (PMEG) than set potentials of +200 mV and ?450 mV. We observed putative pili at ?150 and ?300 mV potentials, and aggregated precipitates on bacterial surfaces in both poised and nonpoised controls. These tests show that there are optimal potentials that can be set for developing a Cr(VI) biocathode. © 2011 American Chemical Society.

  14. Fleet Readiness Center - Southeast Technology Development Program (Cadmium & Hexavalent Chromium Reduction)

    Science.gov (United States)

    2014-11-01

    power consumption) • Bath is Stable Nanovate™ CR EHC Deposition Method Electrodeposition (Pulse) Electrodeposition (DC) Part Geometries LOS and...remain 25 Cold Spray Metallization  AERMIP Funded  National Team (PAX)  Brush Cadmium Alternative  Dem/Val F/A-18 Bomb Rack  Modifying

  15. Chromium (VI) adsorption on boehmite

    Energy Technology Data Exchange (ETDEWEB)

    Granados-Correa, F. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)], E-mail: fgc@nuclear.inin.mx; Jimenez-Becerril, J. [Instituto Nacional de Investigaciones Nucleares, Apartado Postal 18-1027 Col., Escandon, Delegacion Miguel Hidalgo, C.P. 11801 Mexico, D.F. (Mexico)

    2009-03-15

    Boehmite was synthesized and characterized in order to study the adsorption behavior and the removal of Cr(VI) ions from aqueous solutions as a function of contact time, initial pH solution, amount of adsorbent and initial metal ion concentration, using batch technique. Adsorption data of Cr(VI) on the boehmite were analyzed according to Freundlich, Langmuir and Dubinin-Radushkevich (D-R) adsorption models. Thermodynamic parameters for the adsorption system were determinated at 293, 303, 313 and 323 K temperatures. The kinetic values and thermodynamic parameters from the adsorption process show that the Cr(VI) ions adsorption on boehmite is an endothermic and spontaneous process. These results show that the boehmite could be considered as a potential adsorbent for chromium ions in aqueous solutions.

  16. Competition of Chromium on Iron binding sites in the biological system

    Directory of Open Access Journals (Sweden)

    *F. S. Rehmani

    2011-09-01

    Full Text Available Hexavalent chromium is mutagenic and neurotoxic. Trivalent Chromium is involved in the enzymes of glucose metabolism. Chromium is generally found in +3 oxidation state and sometimes it competes for the binding sites of iron in the biological system, when the concentration of chromium exceeds above the normal, it inhibits the absorption of iron and iron deficiency leads diseases such as anemia, tinnitus and depression. Salicylicdhydroxamic acid a hydroxamate type siderophore is used as a drug in the chelation therapy of iron overload patients. The complex formation of Cr(III and Fe(III with salicyclic hydroxamate were studied potentiometrically at different temperatures and data was subjected to computer programs. The stability constant (log beta values and thermodynamic stabilities were calculated. It was found that salicyclic hydroxamate forms 1:1 complex at pH 3 and 1:2 complex at pH 4 with Cr(III and Fe(III, respectively. The stability constant (Log beta and thermodynamic stabilities of Cr(III Salicyclic hydroxamate complexes are close to Fe(III Salicyclic hydroxamate complexes. It was observed from the stability constant values that after chelating therapy the concentration of chromium become low and deficiency symptoms appear resulting diabetes.

  17. Nanospherical inorganic α-Fe core-organic shell necklaces for the removal of arsenic(V) and chromium(VI) from aqueous solution

    Science.gov (United States)

    Azzam, Ahmed M.; Shenashen, Mohamed A.; Selim, Mahmoud M.; Yamaguchi, Hitoshi; El-Sewify, Islam M.; Kawada, Satoshi; Alhamid, Abdulaziz A.; El-Safty, Sherif A.

    2017-10-01

    Mesoporous nanospherical necklaces (NSN) of inorganic α-Fe core-organic shell and ethylenediaminetetraacetic acid (EDTA) were fabricated. The necklaces were 1 μm in length and 50 nm in thickness, with massive nanospherical particles connecting and overlapping in a neat micro-/nano-necklace archery cage for capturing/trapping of As(V) and Cr(VI) species from water sources. The α-Fe core and the dressing shell of EDTA provided numerous active sites for adsorption, which led to 100% adsorption uptake of these toxic ions. The adsorption isotherms revealed that NSN adsorbent with mesoporous caves and organic-decorated surfaces was promising and effective for the spontaneous and endothermic removal of both ions from contaminated water. The NSN structure exhibited long-term stability. The adsorption efficiency and uptake of the deleterious arsenic and chromium species were achieved after multi-particulate processing of reuse cycles. The pH-dependent removal of As(V) and Cr(VI) species is an emerging topic in selective adsorption assays among competitive ions. Furthermore, the ion-selective conditions at pH 5 for As(V) and pH 7 for Cr(VI) significantly affected the adsorption capacity and affinity of 306.7 and 406.5 mg g-1 into NSN cages, respectively. The obtained results could be used as a basis to provide effective and low-cost products for the purification of wastewater resources from toxic metals.

  18. The oxidation and reduction of chromium of stainless steels in an eletric arc furnace

    Directory of Open Access Journals (Sweden)

    B. Arh

    2011-07-01

    Full Text Available The oxidation of chromium during the elaboration of stainless steels occurs with oxygen in solution blown inthe melt and with oxides in the slag. A higher content of silicon in the furnace charge decreases the extent of oxidation of chromium, however, the efficient reduction of chromium from the slag is of essential importance for a minimal loss of chromium. In this survey, the theory of the oxidation of chromium, its reduction from the slag and the conditions for the formation of foaming slag are discussed.

  19. Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles.

    Science.gov (United States)

    Cao, Jiasheng; Zhang, Wei-Xian

    2006-05-20

    Laboratory batch experiments were conducted on heavily contaminated groundwater and chromium ore processing residue (COPR) samples to determine the rate and extent of hexavalent chromium [Cr(VI)] reduction and immobilization by nanoscale iron particles. Laboratory synthesized nanoscale iron particles (iron particles was 0.157 +/- 0.018 mg m(-2) min(-1), about 25 times greater than that by iron powders (100 mesh). One gram of nanoparticles can reduce 84.4-109.3mg Cr(VI) in the groundwater and 69.3-72.7 mg Cr(VI) in the COPR. This reduction capacity is 50-70 times greater than that of iron powders under the same experimental conditions.

  20. Vortex-assisted ionic liquid-based dispersive liquid-liquid microextraction for assessment of chromium species in artificial saliva extract of different chewing tobacco products.

    Science.gov (United States)

    Akhtar, Asma; Kazi, Tasneem Gul; Afridi, Hassan Imran; Musharraf, Syed Ghulam; Talpur, Farah Naz; Khan, Noman; Bilal, Muhammad; Khan, Mustafa

    2016-12-01

    A novel dispersive liquid-liquid microextraction (ILDLLμE) method using an extracting solvent (ionic liquid) and dispersant (Triton X-114) was developed for the separation and preconcentration of hexavalent chromium (Cr(6+)) in artificial saliva extract (ASE) of chewing tobacco products, gutkha, and mainpuri (n = 23). In the proposed method, the extraction of Cr(6+) was accomplished by using ammonium pyrrolidinedithiocarbamate (APDC) as complexing agent and 1-butyl-3-methylimidazolium hexafluorophosphate [C4MIM] [PF6] as extracting solvent. The tiny droplet of metal chelate was then dispersed into TX-114 emulsion, using vortex mixer. Various parameters such as concentration of APDC, pH of the solution, volume of [C4MIM] [PF6], and TX-114 as well as extraction time were studied. Under the most favorable conditions, the limit of detection was found to be 0.068 μg/L with the relative standard deviation carcinogenic and noncarcinogenic risks. Estimated daily intake of Cr via chewing 10 g/day of gutkha and mainpuri was found to be below the maximum tolerable daily intake, whereas the calculated risk of cancer for Cr was observed in the acceptable range of 10E(-6)-10E(-4), except some brands of gutkha. Graphical Abstract ᅟ.

  1. Design and performance of chromium mist generator

    Directory of Open Access Journals (Sweden)

    Tirgar Aram

    2006-01-01

    Full Text Available Chromium mist generator is an essential tool for conducting researches and making science-based recommendations to evaluate air pollution and its control systems. The purpose of this research was to design and construct a homogenous chromium mist generator and the study of some effective factors including sampling height and distances between samplers in side-by-side sampling on chromium mist sampling method. A mist generator was constructed, using a chromium electroplating bath in pilot scale. Concentration of CrO3 and sulfuric acid in plating solution was 125 g L-1 and 1.25 g L-1, respectively. In order to create permanent air sampling locations, a Plexiglas cylindrical chamber (75 cm height, 55 cm i.d was installed the bath overhead. Sixty holes were produced on the chamber in 3 rows (each 20. The distance between rows and holes was 15 and 7.5 cm, respectively. Homogeneity and effective factors were studied via side-by-side air sampling method. So, 48 clusters of samples were collected on polyvinyl chloride (PVC filters housed in sampling cassettes. Cassettes were located in 35, 50, and 65 cm above the solution surface with less than 7.5 and/or 7.5-15 cm distance between heads. All samples were analyzed according to the NIOSH method 7600. According to the ANOVA test, no significant differences were observed between different sampling locations in side-by-side sampling (P=0.82 and between sampling heights and different samplers distances (P=0.86 and 0.86, respectively. However, there were notable differences between means of coefficient of variations (CV in various heights and distances. It is concluded that the most chromium mist homogeneity could be obtained at height 50 cm from the bath solution surface and samplers distance of < 7.5 cm.

  2. Finished leather waste chromium acid extraction and anaerobic biodegradation of the products.

    Science.gov (United States)

    Ferreira, Maria J; Almeida, Manuel F; Pinho, Sílvia C; Santos, Isabel C

    2010-06-01

    Due to the amounts of chromium in the leachate resulting from leather leaching tests, chromium sulfate tanned leather wastes are very often considered hazardous wastes. To overcome this problem, one option could be recovering the chromium and, consequently, lowering its content in the leather scrap. With this objective, chromium leather scrap was leached with sulfuric acid solutions at low temperature also aiming at maximizing chromium removal with minimum attack of the leather matrix. The effects of leather scrap dimension, sulfuric acid and sodium sulfate concentration in the solutions, as well as extraction time and temperature on chromium recovery were studied, and, additionally, organic matrix degradation was evaluated. The best conditions found for chromium recovery were leather scrap conditioning using 25mL of concentrated H(2)SO(4)/L solution at 293 or 313K during 3 or 6days. Under such conditions, 30-60+/-5% of chromium was recovered and as low as 3-6+/-1% of the leather total organic carbon (TOC) was dissolved. Using such treatment, the leather scrap area and volume are reduced and the residue is a more brittle material showing enhanced anaerobic biodegradability. Although good recovery results were achieved, due to the fact that the amount of chromium in eluate exceeded the threshold value this waste was still hazardous. Thus, it needs to be methodically washed in order to remove all the chromium de-linked from collagen.

  3. Removal of Chromium and Lead from Industrial Wastewater Using

    Directory of Open Access Journals (Sweden)

    Mohamed Hilal

    2013-04-01

    Full Text Available In this research an attempt is made on the ability of aerobic treatment of synthetic solutions containing lead and chromium using effective microorganisms within the reactor. To achieve the desired objectives of the research, synthetic aqueous solutions of lead and chromium was used in the concentration of chromium and lead ions of 5, 10,50 and 100 mg / l .The work was done at constant pH equal to 4.5 and temperature of 30 ± 1 º C. Effective microorganisms solutions was added to the reactor at Vol.% of 1/50 ,1/100 ,1/500 and 1/1000, with retention time was 24 hours to measure the heavy metals concentration the atomic absorption device was used. The experimental results showed that each 1mg / l of lead and chromium ions need 24 mg of effective microorganisms to achieve removal of 92.0% and 82.60% for lead and chromium respectively. Increasing the concentration of effective microorganisms increases the surface of adsorption and thus increasing the removal efficiency. It is found that the microorganisms activity occur in the first five hours of processing and about 94% of adsorption capacity of biomass will take place. It is also found the selectivity of microorganisms to lead ions is higher than for chromium ions.

  4. Production of basic chromium sulfate by using recovered chromium from ashes of thermally treated leather.

    Science.gov (United States)

    Dettmer, Aline; Nunes, Keila Guerra Pacheco; Gutterres, Mariliz; Marcílio, Nilson Romeu

    2010-04-15

    Leather wastes tanned with chromium are generated during the production process of leather, hence the wastes from hand crafted goods and footwear industries are a serious environmental problem. The thermal treatment of leather wastes can be one of the treatment options because the wastes are rich in chromium and can be used as a raw material for sodium chromate production and further to obtain several chromium compounds. The objective of this study was to utilize the chromium from leather wastes via basic chromium sulfate production to be subsequently applied in a hide tanning. The obtained results have shown that this is the first successful attempt to achieve desired base properties of the product. The result was achieved when the following conditions were applied: a molar ratio between sodium sulfite and sodium dichromate equal to 6; reaction time equal to 5 min before addition of sulfuric acid; pH of sodium dichromate solution equal to 2. Summarizing, there is an opportunity to utilize the dangerous wastes and reused them in the production scheme by minimizing or annulling the environmental impact and to attend a sustainable process development concept.

  5. Adsorption kinetics,isotherm,and thermodynamic studies of adsorption of pollutant from aqueous solutions onto humic acid

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In the present study,humic acid was used as an adsorbent for the investigation of the adsorption kinetics,isotherms,and thermo-dynamic parameters of hexavalent chromium from aqueous solution at varying pH,temperatures,and concentrations.Adsorption isotherms and equilibrium adsorption capacities were determined by the fittings of the experimental data to three well-known iso-therm models:Langmuir,Freundlich,and Redlich-Peterson.The results showed that the Langmuir and Redlich-Peterson models appear to fit the adsorption better than did the Freundlich adsorption model for the adsorption of chromium onto humic acid.The equilibrium constants were used to calculate thermodynamic parameters such as the change of free energy,enthalpy,and entropy.The derived adsorption constants (logaL) and their temperature dependencies from Langmuir isotherm have been used to calculate the corresponding thermodynamic quantities such as the free energy of adsorption,heat,and entropy of adsorption.The thermo-dynamic data indicate that Cr (VI) adsorption onto humic acid is entropically driven and characterized by physical adsorption.

  6. Redox Equilibria of Chromium in Calcium Silicate Base Melts

    Science.gov (United States)

    Mirzayousef-Jadid, A.-M.; Schwerdtfeger, Klaus

    2009-08-01

    The oxidation state of chromium has been determined at 1600 °C in CaO-SiO2-CrO x melts with CaO/SiO2 ratios (mass pct) of 0.66, 0.93, and 1.10, and 0.15 to 3.00 pct Cr2O3 (initial). A few experiments were also carried out with CaO-SiO2-Al2O3-CrO x melts at 1430 °C. The slag samples were equilibrated with gas phases of controlled oxygen pressure. Two techniques were applied to determine the oxidation state: thermogravimetry and quenching of the samples with subsequent wet chemical analysis. In the low-oxygen pressure range, the chromium is mainly divalent. In the high-oxygen pressure range, it is trivalent and hexavalent. It was found that the Cr3+/Cr2+ and Cr6+/Cr3+ ratios depend on oxygen pressure at a constant CaO/SiO2 ratio and a constant content of total chromium, according to the ideal law of mass action. According to the respective chemical reactions, these ratios change proportional to p_{{{text{O}}2 }}{}^{1/4} or p_{{{text{O}}_{ 2} }}{}^{3/4}, respectively. They also increase with increasing basicity. The data are used to compute the fractions of the different ions in the melt. There is a certain range of oxygen pressure in which all three valence states, Cr2+, Cr3+, and Cr6+, coexist. The color of the solidified slag samples is described and is explained with the help of transmission spectra.

  7. Chromium removal from electroplating wastewater by coir pith.

    Science.gov (United States)

    Suksabye, Parinda; Thiravetyan, Paitip; Nakbanpote, Woranan; Chayabutra, Supanee

    2007-03-22

    Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75microm, at initial Cr(VI) 1647mgl(-1), system pH 2, and an equilibrium time of 18h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 degrees C was 138.04, 197.23, 262.89 and 317.65mgCr(VI)g(-1) coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (CO) groups and methoxy (O-CH(3)) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with CO groups and O-CH(3) groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III).

  8. Chromium removal from electroplating wastewater by coir pith

    Energy Technology Data Exchange (ETDEWEB)

    Suksabye, Parinda [The Joint School of Energy and Environment, King Mongkut' s University of Technology Thonburi, 91 Pracha-Utit Road, Bangmod, Thungkru, Bangkok 10140 (Thailand); Thiravetyan, Paitip [Division of Biotechnology, School of Bioresources and Technology, King Mongkut' s University of Technology Thonburi, 83 Moo. 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand)]. E-mail: paitip.thi@kmutt.ac.th; Nakbanpote, Woranan [Pilot Plant Development and Training Institute, King Mongkut' s University of Technology Thonburi, 83 Moo. 8 Thakham, Bangkhuntien, Bangkok 10150 (Thailand); Chayabutra, Supanee [Department of Chemistry, Faculty of Science, Silpaorn University, 6 Rajamankhanai Road, Amphoe Muang, Nakorn Pathom Province, Bangkok 73000 (Thailand)

    2007-03-22

    Coir pith is a by-product from padding used in mattress factories. It contains a high amount of lignin. Therefore, this study investigated the use of coir pith in the removal of hexavalent chromium from electroplating wastewater by varying the parameters, such as the system pH, contact time, adsorbent dosage, and temperature. The maximum removal (99.99%) was obtained at 2% (w/v) dosage, particle size <75 {mu}m, at initial Cr(VI) 1647 mg l{sup -1}, system pH 2, and an equilibrium time of 18 h. The adsorption isotherm of coir pith fitted reasonably well with the Langmuir model. The maximum Cr(VI) adsorption capacity of coir pith at 15, 30, 45 and 60 deg. C was 138.04, 197.23, 262.89 and 317.65 mg Cr(VI) g{sup -1} coir pith, respectively. Thermodynamic parameters indicated an endothermic process and the adsorption process was favored at high temperature. Desorption studies of Cr(VI) on coir pith and X-ray absorption near edge structure (XANES) suggested that most of the chromium bound on the coir pith was in Cr(III) form due to the fact that the toxic Cr(VI) adsorbed on the coir pith by electrostatic attraction was easily reduced to less toxic Cr(III). Fourier transform infrared (FT-IR) spectrometry analysis indicated that the carbonyl (C=O) groups and methoxy (O-CH{sub 3}) groups from the lignin structure in coir pith may be involved in the mechanism of chromium adsorption. The reduced Cr(III) on the coir pith surface may be bound with C=O groups and O-CH{sub 3} groups through coordinate covalent bonding in which a lone pair of electrons in the oxygen atoms of the methoxy and carbonyl groups can be donated to form a shared bond with Cr(III)

  9. The oxidation of chromium(III) by hydroxyl radical in alkaline solution. A stopped-flow and pre-mix pulse radiolysis study

    DEFF Research Database (Denmark)

    Zhao, Zhongwei; Rush, J.D.; Holcman, J.

    1995-01-01

    The pK(a) for the equilibrium Cr(III)(H2O)3(OH)3(OH)3 reversible Cr(III)(H2O)2(OH)4- + H+ was determined to be 12.8 at 25-degrees-C. The dimerization of the two monomeric forms was studied in alkaline solutions using the stopped-flow method: k2[Cr(III)(H2O)3(OH)3 + Cr(III)(H2O)3(OH)3] = (2.5 +/- ......(VI)-(O-Cr(III))n]. Furthermore, a second-order reaction between two Cr(IV) monomers to yield a species which may be either a (Cr)2IV,IV or a (Cr)2III,V mixed-valence dimer was observed. The corresponding spectra in both the UV and visible range were determined....

  10. The oxidation of chromium(III) by hydroxyl radical in alkaline solution. A stopped-flow and pre-mix pulse radiolysis study

    DEFF Research Database (Denmark)

    Zhao, Zhongwei; Rush, J.D.; Holcman, J.

    1995-01-01

    The pK(a) for the equilibrium Cr(III)(H2O)3(OH)3(OH)3 reversible Cr(III)(H2O)2(OH)4- + H+ was determined to be 12.8 at 25-degrees-C. The dimerization of the two monomeric forms was studied in alkaline solutions using the stopped-flow method: k2[Cr(III)(H2O)3(OH)3 + Cr(III)(H2O)3(OH)3] = (2.5 +/- ......(VI)-(O-Cr(III))n]. Furthermore, a second-order reaction between two Cr(IV) monomers to yield a species which may be either a (Cr)2IV,IV or a (Cr)2III,V mixed-valence dimer was observed. The corresponding spectra in both the UV and visible range were determined....

  11. Nanoscale zero-valent iron (nZVI) assembled on magnetic Fe3O4/graphene for chromium (VI) removal from aqueous solution.

    Science.gov (United States)

    Lv, Xiaoshu; Xue, Xiaoqin; Jiang, Guangming; Wu, Donglei; Sheng, Tiantian; Zhou, Hongyi; Xu, Xinhua

    2014-03-01

    Nanoscale Zero-Valent Iron (nZVI) assembled on magnetic Fe3O4/graphene (nZVI@MG) nanocomposites was synthesized for Cr(VI) removal from aqueous solution. nZVI particles were perfectly dispersed either among Fe3O4 nanoparticles (Fe3O4 NPs) or above the basal plane of graphene. This material shows Cr(VI) removal efficiency of 83.8%, much higher than those of individuals (18.0% for nZVI, 21.6% for Fe3O4 NPs and 23.7% for graphene) and even their sum of 63.3%. The removal process obeys pseudo-second-order adsorption model, suggesting that adsorption is rate-controlling step. Maximum Cr(VI) adsorption capacity varies from 66.2 to 101.0 mg g(-1) with decreasing pH from 8.0 to 3.0 at 30°C. Negative ΔG and ΔH indicate spontaneous tendency and exothermic nature. Robust performance of nZVI@MG arises from the formation of micro-nZVI-graphene/nZVI-Fe3O4 batteries and strong adsorption capability of broad graphene sheet/Fe3O4 surfaces. Electrons released by nZVI spread all over the surfaces of graphene and Fe3O4, and the adsorbed Cr(VI) ions on them capture these floating electrons and reduce to Cr(III). Fe3O4 NPs also served as protection shell to prevent nZVI from agglomeration and passivation.

  12. CHROMIUM EXTRACTION BY MICROEMULSIONS IN TWO- AND THREE-PHASE SYSTEMS

    Directory of Open Access Journals (Sweden)

    K. R. O. Melo

    2015-12-01

    Full Text Available Abstract Microemulsion systems were used to remove chromium from an aqueous solution obtained from acid digestion of tannery sludge. The systems were composed by: coconut oil soap as surfactant, 1-butanol as cosurfactant, kerosene as the oil phase, and chromium solution as the aqueous phase. Two- and three-phase microemulsion extraction methods were investigated in the experiments. Viscosity, effective diameter of the droplets, and extraction and re-extraction efficiencies were evaluated for each system. Two- and three-phase systems showed small variations in droplet diameter, which can be attributed to the formation of micellar structures. Chromium recovery efficiencies for the studied systems were over 96%. The re-extraction step showed that the stripping solution used can release more than 96% of the chromium from the microemulsion phase. Experimental results confirm that chromium can be recovered efficiently using microemulsion systems.

  13. Preparation of Silica Modified with 2-Mercaptoimidazole and its SorptionProperties of Chromium(III

    Directory of Open Access Journals (Sweden)

    Harry Budiman

    2009-01-01

    Full Text Available Modified silica gel was prepared to remove the heavy metal of chromium(III from water sample. Silica gel was used as supporting material and the 2-mercaptoimidazole was immobilized onto surface silica so that the silica would have selective properties to adsorb the heavy metal chromium(III through the formation of coordination compound between the 2-mercaptoimidazole and chromium(III. The characterization of modified silica gel was carried out by analyzing the Fourier Transform Infrared Spectrum of this material in order to ensure the immobilization of 2-mercaptoimidazole onto the surface. The effect of pH solution, initial concentration of chromium(III, and interaction time were investigated in batch mode to find the adsorption properties of chromium(III onto modified silica. The condition optimum of these parameters was applied to determine the removal percentage of chromium(III in water sample using the modified silica gel

  14. Suppression of interference in the AAS determination of chromium by use of ammonium bifluoride.

    Science.gov (United States)

    Purushottam, A; Naidu, P P; Lal, S S

    1973-07-01

    Addition of 1% of ammonium bifluoride successfully suppresses interference by diverse ions in the atomic-absorption determination of chromium(VI). If the sample solutions also contain chromium(III) addition of 1% of ammonium bifluoride and 0.2% of sodium sulphate is recommended for the suppression.

  15. Effects of chromium(III and VI) on spring barley and maize biomass yield and content of nitrogenous compounds.

    Science.gov (United States)

    Wyszkowski, Mirosław; Radziemska, Maja

    2010-01-01

    The aim of this study was to (1) determine the effects of trivalent Cr(III) or hexavalent chromium Cr(VI) soil contamination on biomass yield and nitrogenous compound content of spring barley (Hordeum vulgare L.) as the main crop and subsequently maize (Zea mays L.) grown successively, and (2) examine whether the neutralizing additives applied (compost, zeolite, and calcium oxide) may be effective in reducing adverse impact of chromium (Cr) on crops. Spring barley yield was markedly decreased by Cr compounds, particularly Cr(VI). In contrast, maize yield was significantly increased by Cr(VI). Hexavalent Cr exerted a greater effect than the Cr(III) form on nitrogen levels in spring barley. Chromium significantly increased ammonia nitrogen content in maize. The accumulation of NO(3)(-)-N in plants treated with Cr(VI) was lower than in controls. The application of compost, zeolite, and calcium oxide onto the soil increased yield of maize only in pots containing Cr(III). Neutralizing additives exerted a positive, increased effect on the N-total content of maize but not spring barley, which was apparent with calcium oxide. Accumulation of NH(4)(+)-N in maize in pots with Cr(VI) was increased by all additives applied. The content of nitrate nitrogen in spring barley was predominantly affected by addition of compost and calcium oxide into the soil, producing a significant rise in NO(3)(-)-N content. Chromium, especially Cr(VI), used at doses of 100 and 150 mg/kg soil exerted adverse effects in treated plants, particularly spring barley.

  16. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes.

    Science.gov (United States)

    Frei, Robert; Gaucher, Claudio; Poulton, Simon W; Canfield, Don E

    2009-09-10

    Geochemical data suggest that oxygenation of the Earth's atmosphere occurred in two broad steps. The first rise in atmospheric oxygen is thought to have occurred between approximately 2.45 and 2.2 Gyr ago, leading to a significant increase in atmospheric oxygen concentrations and concomitant oxygenation of the shallow surface ocean. The second increase in atmospheric oxygen appears to have taken place in distinct stages during the late Neoproterozoic era ( approximately 800-542 Myr ago), ultimately leading to oxygenation of the deep ocean approximately 580 Myr ago, but details of the evolution of atmospheric oxygenation remain uncertain. Here we use chromium (Cr) stable isotopes from banded iron formations (BIFs) to track the presence of Cr(VI) in Precambrian oceans, providing a time-resolved picture of the oxygenation history of the Earth's atmosphere-hydrosphere system. The geochemical behaviour of Cr is highly sensitive to the redox state of the surface environment because oxidative weathering processes produce the oxidized hexavalent [Cr(VI)] form. Oxidation of reduced trivalent [Cr(III)] chromium on land is accompanied by an isotopic fractionation, leading to enrichment of the mobile hexavalent form in the heavier isotope. Our fractionated Cr isotope data indicate the accumulation of Cr(VI) in ocean surface waters approximately 2.8 to 2.6 Gyr ago and a likely transient elevation in atmospheric and surface ocean oxygenation before the first great rise of oxygen 2.45-2.2 Gyr ago (the Great Oxidation Event). In approximately 1.88-Gyr-old BIFs we find that Cr isotopes are not fractionated, indicating a decline in atmospheric oxygen. Our findings suggest that the Great Oxidation Event did not lead to a unidirectional stepwise increase in atmospheric oxygen. In the late Neoproterozoic, we observe strong positive fractionations in Cr isotopes (delta(53)Cr up to +4.9 per thousand), providing independent support for increased surface oxygenation at that time, which may

  17. Chromium recovery from exhausted baths generated in plating processes and its reuse in the tanning industry.

    Science.gov (United States)

    Torras, Josep; Buj, Irene; Rovira, Miquel; de Pablo, Joan

    2012-03-30

    Chromium plating used for functional purposes provides an extremely hard, wear and corrosion resistant layer by means of electrolytic deposition. Typical layer thicknesses range between 2.5 and 500 μm. Chromium electroplating baths contain high concentrations of Cr(VI) with chromium trioxide (CrO(3)) as the chromium source. When because of technical or economic reasons a bath gets exhausted, a waste containing mainly chromium as dichromate as well as other heavy metals is generated. Chromium may then be purified for use in other industrial processes with different requirements. In this work, a sustainable system for using galvanic wastes as reagents in the leather tanning industry, thus reducing quantity of wastes to be treated, is presented. Metal cations present in the chromium exhausted bath were precipitated with NaOH. Then, the solution containing mainly soluble Cr(VI) was separated. By means of sodium sulphite in acidic conditions, Cr(VI) was reduced to Cr(III) as chromium (III) sulphate. From chromium (III) sulphate a basic Cr(III) sulphate may be obtained, which is one of most used compounds in the tanning industry. Cr(III) concentration in the final solution allows its reuse without concentration, but with a slight dilution. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Non-chromatographic speciation of chromium at sub-ppb levels using cloud point extraction in the presence of unmodified silver nanoparticles.

    Science.gov (United States)

    López-García, Ignacio; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2015-01-01

    The cloud point extraction (CPE) of silver nanoparticles (AgNPs) by Triton X-114 allows chromium (III) ions to be transferred to the surfactant-rich phase, where they can be measured by electrothermal atomic absorption spectrometry. Using 20 mL sample and 50 μL Triton X-114 (30% w/v), the enrichment factor was 1150, and calibration graphs were obtained in the 5-100 ng L(-1) chromium range in the presence of 5 µg L(-1) AgNPs. Speciation of trivalent and hexavalent chromium was achieved by carrying out two CPE experiments, one of them in the presence of ethylenediaminetetraacetate. While in the first experiment, in absence of the complexing agent, the concentration of total chromium was obtained, the analytical signal measured in the presence of this chemical allowed the chromium (VI) concentration to be measured, being that of chromium (III) calculated by difference. The reliability of the procedure was verified by using three standard reference materials before applying to water, beer and wine samples.

  19. Chromium-doped DLC for implants prepared by laser-magnetron deposition.

    Science.gov (United States)

    Jelinek, Miroslav; Kocourek, Tomáš; Zemek, Josef; Mikšovský, Jan; Kubinová, Šárka; Remsa, Jan; Kopeček, Jaromir; Jurek, Karel

    2015-01-01

    Diamond-like carbon (DLC) thin films are frequently used for coating of implants. The problem of DLC layers lies in bad layer adhesion to metal implants. Chromium is used as a dopant for improvement of adhesion of DLC films. DLC and Cr-DLC layers were deposited on silicon, Ti6Al4V and CoCrMo substrates by a hybrid technology using combination of pulsed laser deposition (PLD) and magnetron sputtering. The topology of layers was studied using SEM, AFM and mechanical profilometer. Carbon and chromium content and concentration of trivalent and toxic hexavalent chromium bonds were determined by XPS and WDS. It follows from the scratch tests that Cr doping improved adhesion of DLC layers. Ethylene glycol, diiodomethane and deionized water were used to measure the contact angles. The surface free energy (SFE) was calculated. The antibacterial properties were studied using Pseudomonas aeruginosa and Staphylococcus aureus bacteria. The influence of SFE, hydrophobicity and surface roughness on antibacterial ability of doped layers is discussed.

  20. Health effects of arsenic and chromium in drinking water: recent human findings.

    Science.gov (United States)

    Smith, Allan H; Steinmaus, Craig M

    2009-01-01

    Even at high concentrations, arsenic-contaminated water is translucent, tasteless, and odorless. Yet almost every day, studies report a continually increasing plethora of toxic effects that have manifested in exposed populations throughout the world. In this article we focus on recent findings, in particular those associated with major contributions since 2006. Early life exposure, both in utero and in childhood, has been receiving increased attention, and remarkable increases in consequent mortality in young adults have been reported. New studies address the dose-response relationship between drinking-water arsenic concentrations and skin lesions, and new findings have emerged concerning arsenic and cardiovascular disease. We also review the increasing epidemiological evidence that the first step of methylation of inorganic arsenic to monomethylated arsenic (MMA) is actually an activation step rather than the first step in detoxification, as once thought. Hexavalent chromium differs from arsenic in that it discolors water, turning the water yellow at high concentrations. A controversial issue is whether chromium causes cancer when ingested. A recent publication supports the original findings in China of increased cancer mortality in a population where well water turned yellow with chromium.

  1. Removal of Cr(VI) from Aqueous Solution Using Activated Cow Dung Carbon.

    Science.gov (United States)

    Das; Mahapatra; Pradhan; Das; Thakur

    2000-12-15

    Removal of hexavalent chromium from aqueous medium by using activated cow dung carbon was studied. Cow dung was carbonized and activated by treating with concentrated H(2)SO(4) followed by heating for 24 h at 120 degrees C. The extent of adsorption was studied as a function of pH, contact time, amount of adsorbent, concentration of adsorbate, and temperature. At lower pH (Press.

  2. Use of adsorption using granular activated carbon (GAC) for the enhancement of removal of chromium from synthetic wastewater by electrocoagulation.

    Science.gov (United States)

    Vivek Narayanan, N; Ganesan, Mahesh

    2009-01-15

    The present work deals with removal of hexavalent chromium from synthetic effluents in a batch stirred electrocoagulation cell with iron-aluminium electrode pair coupled with adsorption using granular activated carbon (GAC). Several working parameters such as pH, current density, adsorbent concentration and operating time were studied in an attempt to achieve higher removal capacity. Results obtained with synthetic wastewater revealed that most effective removal capacities of chromium (VI) could be achieved when the initial pH was near 8. The removal of chromium (VI) during electrocoagulation, is due to the combined effect of chemical precipitation, coprecipitation, sweep coagulation and adsorption. In addition, increasing current density in a range of 6.7-26.7mA/cm2 and operating time from 20 to 100min enhanced the treatment rate to reduce metal ion concentration below admissible legal levels. The addition of GAC as adsorbent resulted in remarkable increase in the removal rate of chromium at lower current densities and operating time, than the conventional electrocoagulation process. The method was found to be highly efficient and relatively fast compared to existing conventional techniques.

  3. On texture formation of chromium electrodeposits

    DEFF Research Database (Denmark)

    Nielsen, Christian Bergenstof; Leisner, Peter; Horsewell, Andy

    1998-01-01

    The microstructure, texture and hardness of electrodeposited hard, direct current (DC) chromium and pulsed reversed chromium has been investigated. These investigations suggest that the growth and texture of hard chromium is controlled by inhibition processes and reactions. Further, it has been...... established that codeposition of Cr2O3 nanoparticles is a general feature of DC chromium electrodeposition....

  4. 络合-超滤脱除稀土永磁材料生产废水中六价铬的研究%Study on complexation-ultrafiltration to remove the six chromium from wastewater produced by rare earth permanent magnetic material

    Institute of Scientific and Technical Information of China (English)

    钟常明; 王有贤; 邓书妍; 余夏静; 许振良

    2015-01-01

    采用聚乙烯亚胺(PEI)络合超滤脱除稀土永磁材料生产废水中的六价铬,研究了pH值、聚合物/金属离子装载比(P/M)、操作压差(△P)、运行时间和温度等因素对稀土永磁材料生产废水中六价铬截留率和膜通量的影响。结果表明:在一定的操作压力下,控制络合pH=7,P/M=7时,六价铬截留率可达86%以上。膜通量随着操作压差的增加而增高,六价铬截留率随操作压差的变化不大;超滤装置运行20 min后,膜通量和六价铬截留率达到稳定;在15~40℃的温度范围内,膜通量和六价铬截留率有明显的变化。%The experiment, using PEI as complexing agents to remove the six chromium from wastewater by rare earth permanent magnetic materials, investigated the effects of pH value, the polymer / metal ion loading ratio (P/M), operation pressure difference (△P), factors that affect the running time and temperature on the retention rate of hexavalent chromium and membrane flux. The results showed that under △P of a constant, pH=7 and P/M=7, the retention rate of hexavalent chromium can reach more than 86 %. Membrane flux increased with the increase of operating pressure, while the retention rate of hexavalent chromium did not change much;the membrane flux and the retention rate of hexavalent chromium remained unchanged when ultrafiltration device was running after 20 min; the membrane flux and the retention rate of hexavalent chromium changed significantly in the temperature range of 15 ℃to 40℃.

  5. Sorption of chromium in soils of the Cerrado Goias, Brazil

    Directory of Open Access Journals (Sweden)

    Welershon José de Castro

    2010-08-01

    Full Text Available Land application of tannery sludge, which usually contain high levels of chromium, and considerable amounts of organic matter, macronutrients and micronutrients may contribute to the improvement of soil fertility and plant nutrition, and constitutes a form of disposal residue in the environment. The objective of this work was to determine the sorption isotherms of metal chromium (Cr+3 in a Ultisol, Oxisol Typic Acrustox, Quartzipsamment and Kandic Oxisol, identify soil classes that are prone to chromium mobility, and characterize the potential of agricultural soils of Goiás that are subject to groundwater contamination by the potentially toxic metal. For the establishment of sorption isotherms, solutions were prepared at 1:10 in volume. Air dried samples of 5.0 cm3 of each class of soil were placed in triplicates in beakers of 250.0 cm3. A solution containing 50.0 cm3 of the potentially toxic metal was added to solution. The solutions were prepared in CaCl2.(2H2O (0.01 mol.L-1 as electrolyte support and employing the basic chromium sulphate as a source of metal. Adjustments were made to the polynomial regression between the concentrations of potentially toxic levels of metal contaminants in the solution depending on the concentration of metal in the filtered solution after equilibrium. The Quartzipsamment showed lower retention compared to other classes of soils. Therefore it is more vulnerable to groundwater contamination if industrial wastes containing trivalent chromium are used as fertilizer.

  6. Evaluation of chromium concentration in cattle feces using different acid digestion and spectrophotometric quantification techniques

    Directory of Open Access Journals (Sweden)

    N.K.P. Souza

    2013-10-01

    Full Text Available The objective of this work was to evaluate combinations between acid digestion techniques and spectrophotometric quantification to measure chromium concentration in cattle feces. Digestion techniques were evaluated based on the use of nitric and perchloric acids, sulfuric and perchloric acids, and phosphoric acid. The chromium quantification in the solutions was performed by colorimetry and by atomic absorption spectrophotometry (AAS. When AAS was used, the addition of calcium chloride to the solutions as a releasing agent was also evaluated. Several standard samples containing known chromium contents were produced (0, 2, 4, 6, 8 and 10g of chromium per kg of feces using cattle feces obtained from three different animals to evaluate the accuracy of the different combinations of techniques. The accuracy was evaluated by adjusting a simple linear regression model of the estimated values on the actual values of chromium content in the standard samples. Regardless of the digestion technique, the chromium content estimates in the standard samples obtained by colorimetry were not accurate (P0.05. The use of the digestion technique in phosphoric acid provided incomplete recovery of the fecal chromium (P0.05 fecal chromium contents.

  7. Hexavalent Americium Recovery Using Copper(III) Periodate

    Energy Technology Data Exchange (ETDEWEB)

    McCann, Kevin; Brigham, Derek M.; Morrison, Samuel; Braley, Jenifer C.

    2016-11-21

    Separation of americium from the lanthanides is considered one of the most difficult separation steps in closing the nuclear fuel cycle. One approach to this separation could involve oxidizing americium to the hexavalent state to form a linear dioxo cation while the lanthanides remain as trivalent ions. This work considers aqueous soluble Cu3+ periodate as an oxidant under molar nitric acid conditions to separate hexavalent Am with diamyl amylphosphonate (DAAP) in n-dodecane. Initial studies assessed the kinetics of Cu3+ periodate auto-reduction in acidic media to aid in development of the solvent extraction system. Following characterization of the Cu3+ periodate oxidant, solvent extraction studies optimized the recovery of Am from varied nitric acid media and in the presence of other fission product, or fission product surrogate, species. Short aqueous/organic contact times encouraged successful recovery of Am (distribution values as high as 2) from nitric acid media in the absence of redox active fission products. In the presence of a post-PUREX simulant aqueous feed, precipitation of tetravalent species (Ce, Ru, Zr) occurred and the distribution values of 241Am were suppressed, suggesting some oxidizing capacity of the Cu3+ periodate is significantly consumed by other redox active metals in the simulant. The manuscript demonstrates Cu3+ periodate as a potentially viable oxidant for Am oxidation and recovery and notes the consumption of oxidizing capacity observed in the presence of the post-PUREX simulant feed will need to be addressed for any approach seeking to oxidize Am for separations relevant to the nuclear fuel cycle.

  8. STUDY ON MORPHOLOGY OF CHROMIUM IN CHILLED Cu-0.14%-2.0%Cr ALLOYS

    Institute of Scientific and Technical Information of China (English)

    H.W.Yang; Z.K.Fan

    2004-01-01

    The morphology of chromium in chilled Cu-Cr alloys with 0.14%-2.0% Cr has been studied. The results showed that eutectic Cr phase takes a fibrous shape, and pre-eutectic Cr is dendritic in the studied chilled Cu-Cr alloy. During solute treatment of the eutectic and super-eutectic Cu-Cr alloys, only part of chromium particles dissolved in copper phase,some fiber and dendritic chromium still remained. Forging before solute treatment can reduce the size of primary Cr particles, which benefits the aging structure.

  9. REACH Compliant Hexavalent Chrome Replacement for Corrosion Protection (HITEA)

    Science.gov (United States)

    2014-11-01

    is September 2017. 2 Engine Guide Vane Actuator Aluminium Housing •Forged / Make from Solid •Chromic acid anodised (CAA) externally. Aluminium Piston...Chromic Acid mocftsed Aluminium -~am skins ;and structures Hard Chromium-~Qrriace, Tnn:smis:sion and Rotors Epoxy resin constituents (Rotor bbdes

  10. TREATABILITY TEST REPORT FOR THE REMOVAL OF CHROMIUM FROM GROUNDWATER AT 100-D AREA USING ELECTROCOAGULATION

    Energy Technology Data Exchange (ETDEWEB)

    PETERSEN SW

    2009-09-24

    The U.S. Department of Energy (DOE) has committed to accelerate cleanup of contaminated groundwater along the Columbia River. The current treatment approach was driven by a series of Interim Action Records of Decision (IAROD) issued in the mid-1990s. Part of the approach for acceleration involves increasing the rate of groundwater extraction for the chromium plume north of the 100-D Reactor and injecting the treated water in strategic locations to hydraulically direct contaminated groundwater toward the extraction wells. The current treatment system uses ion exchange for Cr(VI) removal, with off-site regeneration of the ion exchange resins. Higher flow rates will increase the cost and frequency of ion exchange resin regeneration; therefore, alternative technologies are being considered for treatment at high flow rates. One of these technologies, electrocoagulation (EC), was evaluated through a pilot-scale treatability test. The primary purpose of the treatability study was to determine the effectiveness of Cr(VI) removal and the robustness/implementability of an EC system. Secondary purposes of the study were to gather information about derivative wastes and to obtain data applicable to scaling the process from the treatability scale to full-scale. The treatability study work plan identified a performance objective and four operational objectives. The performance objective for the treatability study was to determine the efficiency (effectiveness) of hexavalent chromium removal from the groundwater, with a desired concentration of {le} 20 micrograms per liter ({micro}g/L) Cr(VI) in the effluent prior to re-injection. Influent and effluent total chromium and hexavalent chromium data were collected using a field test kit for multiple samples per week, and from off-site laboratory analysis of samples collected approximately monthly. These data met all data quality requirements. Two of three effluent chromium samples analyzed in the off-site (that is, fixed) laboratory

  11. Spectroscopic study for a chromium-adsorbed montmorillonite

    Science.gov (United States)

    Nurtay, Maidina ·; Tuersun, Maierdan ·; Cai, Yuanfeng; Açıkgöz, Muhammed; Wang, Hongtao; Pan, Yuguan; Zhang, Xiaoke; Ma, Xiaomei

    2017-02-01

    Samples of purified montmorillonite with trace amounts of quartz were subjected to different concentrations of chromium sulphate solutions for one week to allow cation exchange. The chromium-bearing montmorillonites were verified and tested using powder X-ray diffractometry (XRD), X-ray fluorescence spectrometry, electron spin resonance (ESR) spectrometry and Fourier transformation infrared (FTIR) spectroscopy to explore the occupation sites of the chromium. The ESR spectra recorded before and after the chromium exchange show clear differences: a strong and broad resonance with two shoulders at the lower magnetic field side was present to start, and its intensity as well as that of the ferric iron resonance, increased with the concentration of added chromium. The signals introduced by the chromium, for example at g = 1.975 and 2.510 etc., suggested that the chromium had several occupational sites. The ESR peak with g = 2.510 in the second derivative spectrum suggested that Cr3+ was weakly bounded to TOT with the form of [Cr(H2O)3]3+ in hexagonal cavities. This was verified by comparing the FTIR spectra of the pure and modified montmorillonite. The main resonance centred at g = 1.975 indicated that the majority of Cr3+ occupied the interlayer region as [Cr(H2O)6]3+. The substitution of Ca2 + by Cr3+ also greatly affected the vibration of the hydrogens associate to water, ranged from 3500 to 2600 cm-1 in FTIR. Furthermore, the presence of two diffraction lines in the XRD results (specifically those with d-values of 1.5171 and 1.2673 nm) and the calculations of the size of the interlayer space suggested the presence of two types of montmorillonite with different hydration cations in the sample exposed to 0.2 M chromium sulphate. The two diffraction lines were assigned to [Cr(H2O)6]3+ and [Cr(H2O)3O3]3+, respectively. This also suggested that the species of hydration cation was constrained by the concentration of the chromium solution.

  12. Proteomic analysis of chromium stress and sulfur deficiency responses in leaves of two canola (Brassica napus L.) cultivars differing in Cr(VI) tolerance.

    Science.gov (United States)

    Yıldız, Mustafa; Terzi, Hakan

    2016-02-01

    Sulfur (S) is an essential macronutrient for plant growth and development, and it plays an essential role in response to environmental stresses. Plants suffer with combined stress of S deficiency and hexavalent chromium [Cr(VI)] in the rhizosphere. Little is known about the impact of S deficiency on leaf metabolism of canola (Brassica napus L.) under Cr(VI) stress. Therefore, this study is the first to examine the effects of Cr(VI) stress and S deficiency in canola at a molecular level. A comparative proteomic approach was used to investigate the differences in protein abundance between Cr-tolerant NK Petrol and Cr-sensitive Sary cultivars. The germinated seeds were grown hydroponically in S-sufficient (+S) nutrient solution for 7 days and then subjected to S-deficiency (-S) for 7 days. S-deficient and +S seedlings were then exposed to 100μM Cr(VI) for 3 days. Protein patterns analyzed by two-dimensional electrophoresis (2-DE) revealed that 58 protein spots were differentially regulated by Cr(VI) stress (+S/+Cr), S-deficiency (-S/-Cr) and combined stress (-S/+Cr). Of these, 39 protein spots were identified by MALDI-TOF/TOF mass spectrometry. Differentially regulated proteins predominantly had functions not only in photosynthesis, but also in energy metabolism, stress defense, protein folding and stabilization, signal transduction, redox regulation and sulfur metabolism. Six stress defense related proteins including 2-Cys peroxiredoxin BAS1, glutathione S-transferase, ferritin-1, l-ascorbate peroxidase, thiazole biosynthetic enzyme and myrosinase-binding protein-like At3g16470 exhibited a greater increase in NK Petrol. The stress-related proteins play an important role in the detoxification of Cr(VI) and maintaining cellular homeostasis under variable S nutrition.

  13. The nature of temper brittleness of high-chromium ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Sarrak, V.I.; Suvorova, S.O.; Golovin, I.S.; Mishin, V.M.; Kislyuk, I.V. [Central Scientific-Research Institute for Ferrous Metallurgy, Moscow (Russian Federation)

    1995-03-01

    The reasons for development of {open_quotes}475{degrees}C brittleness{close_quotes} of high-chromium ferritic steels are considered from the standpoint of fracture mechanics. It is shown that the general rise in the curve of temperature-dependent local flow stress has the decisive influence on the position of the ductile-to-brittle transformation temperature and the increase in it as the result of a hold at temperatures of development of brittleness. The established effect is related to the change in the parameters determining dislocation mobility, that is, the activation energy of dislocation movement in high-chromium ferrite and the resistance to microplastic deformation, both caused by processes of separation into layers of high-chromium ferrite and decomposition of the interstitial solid solution.

  14. Studies of removal of chromium by model constructed wetland

    Directory of Open Access Journals (Sweden)

    C. Mant

    2005-09-01

    Full Text Available Chromium is a pollutant present in tannery wastewater, its removal is necessary for protection of the environment. Penisetum purpureum, Brancharia decumbens and Phragmites australis were grown hydroponically in experimental gravel beds to determine their potential for the phytoremediation of solutions containing 10 and 20 mg Cr dm-3. These concentrations, similar to tannery wastewater after initial physico-chemical treatment were used with the aim of developing an economic secondary treatment to protect the environment. All the systems achieved removal efficiencies of 97 - 99.6% within 24 hours. P. purpureum and B. decumbens removed 78.1% and 68.5% respectively within the first hour. Both P. purpureum and B. decumbens were tolerant of the concentrations of chromium applied, but P. purpureum showed the greatest potential because its faster growth and larger biomass achieved a much greater chromium removal over the whole length of time of the experiment.

  15. Removal of perfluorooctane sulfonate from wastewater by anion exchange resins: effects of resin properties and solution chemistry.

    Science.gov (United States)

    Deng, Shubo; Yu, Qiang; Huang, Jun; Yu, Gang

    2010-10-01

    Perfluorooctane sulfonate (PFOS) is a new persistent organic pollutant of substantial environmental concern, and its removal from industrial wastewater is critical to eliminate its release into water environment. In this paper, six anion exchange resins with different polymer matrix, porosity, and functional group were evaluated for PFOS removal from simulated wastewater. Resin matrix displayed significant effect on the sorption kinetics and capacity of PFOS, and the polyacrylic resins including IRA67 and IRA958 exhibited faster sorption and higher sorption capacity for PFOS than the polystyrene resins due to the hydrophilic matrix. Sorption isotherms illustrated that the sorption capacity of PFOS on IRA67 and IRA958 was up to 4-5 mmol/g, and the amount of PFOS sorbed on the resins was more than chloride released from resins, indicating that other interactions besides anion exchange were involved in the sorption. Solution pH had little impact on the sorption of PFOS on IRA958, but displayed significant effect on IRA67 at pH above 10 due to the deprotonation of amine groups. The coexisting sulfate and hexavalent chromium in wastewater interfered with the sorption of PFOS because of their competitive sorption on the exchange sites. The spent resins were successfully regenerated using the mixture of NaCl and methanol solution. This work provided an understanding of sorption behavior and mechanism of PFOS on different anion exchange resins, and should result in more effective applications of ion exchange for PFOS removal from industrial wastewater.

  16. Development of Alkaline Oxidative Dissolution Methods for Chromium (III) Compounds Present in Hanford Site Tank Sludges

    Energy Technology Data Exchange (ETDEWEB)

    NN Krot; VP Shilov; AM Fedoseev; NA Budantseva; MV Nikonov; AB Yusov; AYu Garnov; IA Charushnikova; VP Perminov; LN Astafurova; TS Lapitskaya; VI Makarenkov

    1999-07-02

    The high-level radioactive waste sludge in the underground storage tanks at the Hanford Site contains various chromium(III)solid phases. Dissolution and removal of chromium from tank waste sludges is desirable prior to high-level waste vitrification because increased volume is required to incorporate the residual chromium. Unfortunately, dissolution of chromium from the sludge to form Cr(OH){sub 4}{sup {minus}} through treatment with heated NaOH solution (also used to dissolve aluminum phases and metathesize phosphates to sodium salts) generally has been unsuccessful in tests with both simulated and genuine Hanford waste sludges. Oxidative dissolution of the Cr(III) compounds to form soluble chromate has been proposed as an alternative chromium solid phase dissolution method and results of limited prior testing have been reported.

  17. Role of chromium and vanadium in the atmospheric oxidation of sulfur(IV)

    Science.gov (United States)

    Brandt, Christian; Elding, Lars I.

    Oxidation of HSO 3- in aqueous solution has been studied in the presence of vanadium(V), chromium(III) and chromium(VI). Based on spectrophotometric kinetics data and product analysis it is concluded that the autoxidation rate of sulfur(IV) in slightly acidic solution is unaffected by the presence of vanadium(V) and chromium(III). Chromate(VI), on the other hand, oxidizes sulfur(IV) in a direct redox process in acidic solution. The overall rate of this reaction decreases with increasing pH and it becomes relatively slow in the atmospherically relevant pH range 4-6. Moreover, chromium(III) dominates strongly over chromium(VI) in the atmospheric aqueous phase. Hence, it is concluded that cations of vanadium and chromium have no significant influence on the atmospheric aqueous-phase oxidation of sulfur(IV) under most ambient atmospheric conditions. Only in very acidic droplets, direct redox between chromium(VI) and sulfite might be of some importance.

  18. CHROMIUM STATUS IN DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Keshavarz

    1996-06-01

    Full Text Available Fasting serum chromium, total cholesterol HDL-cholesterol, LDL-cholesterol, triacytglycerot and blood sugar were determined in fifty two diabetic patients with no other organic diseases anil compared with those obtained from a control group including fourty two healthy volunteers matched for age, sex ami body mass irutex (BMI. Fasting serum chromium and HDL-cholesterol were significantly lower in patients than in controls (p<0.0001 and p<0.001 respectively, but the mean triacytglycerot concentration was significantly higher in patients than in controls (p<002. Mean total cholesterol and LDL-cholesterol values were not significantly different in the two groups. Mean intake of energy, proteins, fats and chromium, estimated by the 24 hr dietary recall method were not significantly different in the two groups. We demonstrated that despite an adequate intake of chromium, the fasting serum chromium was lower in diabetic patients than in control subjects. Chromium deficiency in diabetic patients may act as a contributing factor in aggravating the disease's complications.

  19. Galvanic cells including cobalt-chromium alloys.

    Science.gov (United States)

    Gjerdet, N R

    1980-01-01

    Galvanic cells may be created when dentures made of cobalt-chromium alloys are placed on teeth with metallic restorations. The power of such cells was evaluated in an in vitro galvanic using amalgams, gold alloy, and nickel-chromium alloys. The amalgams and one of the nickel-chromium alloys revealed high corrosion currents when placed in contact with cobalt-chromium alloy, the conventional amalgam showing the highest values. The gold alloy and another nickel-chromium alloy exhibited low corrosion currents and they were noble with respect to cobalt-chromium.

  20. Leaching behavior of chromium in chrome shaving generated in tanning process and its stabilization.

    Science.gov (United States)

    Erdem, Mehmet; Ozverdi, Arzu

    2008-08-15

    In this study, leaching properties and pollution potential of chromium in chrome shaving (CS), which is a solid residue of leather industry, containing 2.27% Cr were investigated and thermal stabilization procedure was applied to the CS for chromium immobilization. For this purpose, firstly, effects of the liquid/solid ratio, contact time, pH and sequential extraction on the leaching behavior of chromium in the CS were studied. It was determined that the CS-caused chromium pollution is a hazardous material for environment. Thermal stabilization procedure was applied to the CS in the temperature range of 250-500 degrees C for the chromium immobilization. Effective stabilization of chromium in the CS was achieved by heating of CS at 350 degrees C under CO(2) atmosphere. Leaching experiments were also carried out with the samples obtained from the stabilization process and the results compared with that of the CS. Also, TCLP test method was applied to the samples to determine pollution potentials and discharge situations of the CS and its stabilization products. While the chromium concentrations in the test solutions of all samples stabilized thermally at above 350 degrees C were below the USEPA regulatory limit of 5 mg/l, the concentration of chromium leached out from the CS was 30-fold bigger than the USEPA regulatory limit.

  1. Kinetics of chromium ion absorption by cross-linked polyacrylate films

    Science.gov (United States)

    May, C. E.

    1984-01-01

    Three cross-linked ion exchange membranes were studied as to their ability to absorb chromium ion from aqueous chromium III nitrate solutions. Attention was given to the mechanism of absorption, composition of the absorbed product, and the chemical bonding. The membranes were: calcium polyacrylate, polyacrylic acid, and a copolymer of acrylic acid and vinyl alcohol. For the calcium polyacrylate and the copolymer, parabolic kinetics were observed, indicating the formation of a chromium polyacrylate phase as a coating on the membrane. The rate of absorption is controlled by the diffusion of the chromium ion through this coating. The product formed in the copolymer involves the formation of a coordination complex of a chromium ion with 6 carboxylic acid groups from the same molecule. The absorption of the chromium ion by the polyacrylic acid membranes appears to be more complicated, involving cross-linking. This is due to the coordination of the chromium ion with carboxylic acid groups from more than one polymer molecule. The absorption rate of the chromium ion by the calcium salt membrane was found to be more rapid than that by the free polyacrylic acid membrane.

  2. Study on the Cultivation of Chromium-enriched Yeast%富铬酵母的研制

    Institute of Scientific and Technical Information of China (English)

    王盛良; 黄杰; 黄薇; 孙桂菊

    2001-01-01

    This paper offered a method to get organic chromium nutrient bycultivating chromium-enriched yeast. It was found that the solution of low consistency promoted the growth of yeast, and with increasing the chromium concentration in culture,the chromium content of chromium-enriched yeast would increase. The solution of chromium-enriched and normal brewer' s yeast was measured by ultraviolet spectrometry with in 200~320nm wavelength range. A characteristic ultraviolet absorption peak appeared at 260nm. The organic chromium was about 97.6% of the total chromium in chromium-enriched yeast.%研究了富铬酵母的培养方法,发现培养基中低浓度的铬(<100mg/kg)对酵母生长起促进作用,且随着铬浓度的增加酵母对铬的富集作用亦增加。用200~320nm波长范围对富铬酵母及普通酵母溶液进行紫外扫描,发现在260nm处有一特征的吸收峰。富铬酵母中有机铬占总铬量的97.6%.

  3. ALUMINUM AND CHROMIUM LEACHING WORKSHOP WHITEPAPER

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, D; Jeff Pike, J; Bill Wilmarth, B

    2007-04-25

    formulations. Disposal of the resulting aluminum and chromium-rich streams are different at the two sites, with vitrification into Low Activity Waste (LAW) glass at Hanford, and solidification in Saltstone at SRS. Prior to disposal, the leachate solutions must be treated to remove radionuclides, resulting in increased operating costs and extended facility processing schedules. Interim storage of leachate can also add costs and delay tank closure. Recent projections at Hanford indicate that up to 40,000 metric tons of sodium would be needed to dissolve the aluminum and maintain it in solution, which nearly doubles the amount of sodium in the entire current waste tank inventory. This underscores the dramatic impact that the aluminum leaching can have on the entire system. A comprehensive view of leaching and the downstream impacts must therefore be considered prior to implementation. Many laboratory scale tests for aluminum and chromium dissolution have been run on Hanford wastes, with samples from 46 tanks tested. Three samples from SRS tanks have been tested, out of seven tanks containing high aluminum sludge. One full-scale aluminum dissolution was successfully performed on waste at SRS in 1982, but generated a very large quantity of liquid waste ({approx}3,000,000 gallons). No large-scale tests have been done on Hanford wastes. Although the data to date give a generally positive indication that aluminum dissolution will work, many issues remain, predominantly because of variable waste compositions and changes in process conditions, downstream processing, or storage limitations. Better approaches are needed to deal with the waste volumes and limitations on disposal methods. To develop a better approach requires a more extensive understanding of the kinetics of dissolution, as well as the factors that effect rates, effectiveness, and secondary species. Models of the dissolution rate that have been developed are useful, but suffer from limitations on applicable compositional

  4. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    Science.gov (United States)

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-05

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.

  5. Comparison of potentiality of Zinc oxide nanoparticles and hydrogen peroxide in removal of hexavalent chromium from polluted water

    Directory of Open Access Journals (Sweden)

    Anvar Asadi

    2012-12-01

    Conclusion: The results of this study indicated that H2O2 as a cheap and available agent and also UV/ZnO, as a friendly and without residual environmental treatment process, can be used for effective reduction of Cr(VI to yield Cr(III.

  6. U.S. Army Toxic Metal Reduction Program: Demonstrating Alternatives to Hexavalent Chromium and Cadmium in Surface Finishing

    Science.gov (United States)

    2014-11-18

    oxide , rare earth (Ce), silanes GSE (immersion): ANAD, LEAD, Tobyhanna Army Depot  Zirconium oxide , rare earth (Cerium) and silanes Leverage...Demonstration projects initiated  October: 1st TTA signed by PEO Aviation, CCAD Hazardous Plating Shop Processes Chromic acid anodizing of aluminum ... Aluminum conversion coatings* Hard chrome plating* Magnesium anodizing* Sealers and rinses* Stripping of anodizing and platings* Passivation of stainless

  7. Biosynthesized iron nanoparticles in aqueous extracts of Eichhornia crassipes and its mechanism in the hexavalent chromium removal

    Science.gov (United States)

    Wei, Yufen; Fang, Zhanqiang; Zheng, Liuchun; Tsang, Eric Pokeung

    2017-03-01

    Eichhornia crassipes (water hyacinth), a species of invasive weeds has caused serious ecological damage due to its extraordinary fertility and growth rate. However, it has not yet been exploited for use as a resource. This paper reported the synthesis and characterization of amorphous iron nanoparticles (Ec-Fe-NPs) from Fe(III) salts in aqueous extracts of Eichhornia crassipes. The nanoparticles were characterized by SEM, EDS, TEM, XPS, FTIR, DLS and the zeta potential methods. The characterization results confirmed the successful synthesis of amorphous iron nanoparticles with diameters of 20-80 nm. Moreover, the nanoparticles were mainly composed of zero valent iron nanoparticles which were coated with various organic matters in the extracts as a capping or stabilizing agents. Batch experiments showed that 89.9% of Cr(VI) was removed by the Ec-Fe-NPs much higher than by the extracts alone (20.4%) and Fe3O4 nanoparticles (47.3%). Based on the kinetics study and the XPS analysis, a removal mechanism dominated by adsorption and reduction with subsequently co-precipitation was proposed.

  8. Assessment of heavy metal tolerance and hexavalent chromium reducing potential of Corynebacterium paurometabolum SKPD 1204 isolated from chromite mine seepage

    Directory of Open Access Journals (Sweden)

    Amal Kanti Paul

    2016-07-01

    Full Text Available Corynebacterium paurometabolum SKPD 1204 (MTCC 8730, a heavy metal tolerant and chromate reducing bacterium isolated from chromite mine seepage of Odisha, India has been evaluated for chromate reduction under batch culture. The isolate was found to tolerate metals like Co(II, Cu(II, Ni(II, Mn(II, Zn(II, Fe(III and Hg(II along with Cr(VI and was resistant to different antibiotics as evaluated by disc-diffusion method. The isolate, SKPD 1204 was found to reduce 62.5% of 2 mM Cr(VI in Vogel Bonner broth within 8 days of incubation. Chromate reduction capability of SKPD 1204 decreased with increase in Cr(VI concentration, but increased with increase in cell density and attained its maximum at 1010 cells/mL. Chromate reducing efficiency of SKPD 1204 was promoted in the presence of glycerol and glucose, while the highest reduction was recorded at pH 7.0 and 35 °C. The reduction process was inhibited by divalent cations Zn(II, Cd(II, Cu(II, and Ni(II, but not by Mn(II. Anions like nitrate, phosphate, sulphate and sulphite was found to be inhibitory to the process of Cr(VI reduction. Similarly, sodium fluoride, carbonyl cyanide m-chlorophenylhydrazone, sodium azide and N, N,-Di cyclohexyl carboiimide were inhibitory to chromate reduction, while 2,4-dinitrophenol appeared to be neither promotive nor inhibitory to the process.

  9. Rapid and efficient photocatalytic reduction of hexavalent chromium by using “water dispersible” TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Kang, Shi-Zhao, E-mail: kangsz@sit.edu.cn; Li, Xiangqing; Qin, Lixia; Yan, Hao; Mu, Jin, E-mail: mujin@sit.edu.cn

    2016-08-01

    In the present work, “water dispersible” TiO{sub 2} nanoparticles were prepared, and meanwhile, their photocatalytic activity was systematically tested for the reduction of aqueous Cr(VI) ions. It is found that the as-prepared “water dispersible” TiO{sub 2} nanoparticles are a highly efficient photocatalyst for the reduction of Cr(VI) ions in water under UV irradiation, and suitable for the remediation of Cr(VI) ions wastewater with low concentration. Compared with commercial TiO{sub 2} nanoparticles (P25), the “water dispersible” TiO{sub 2} nanoparticles exhibit 3.8-fold higher photocatalytic activity. 100% Cr (VI) ions can be reduced into Cr(III) ions within 10 min when the Cr (VI) ions initial concentration is 10 mg L{sup −1}. Moreover, the electrical energy consumption can be obviously decreased using the “water dispersible” TiO{sub 2} nanoparticles. These results suggest that the “water dispersible” TiO{sub 2} nanoparticles are a promising photocatalyst for rapid removal of Cr (VI) in environmental therapy. - Highlights: • “Water dispersible” TiO{sub 2} nanoparticles with high photocatalytic activity. • 100% Cr (VI) (10 mg L{sup −1}) can be reduced within 10 min. • Obvious decrease of electrical energy consumption.

  10. Nitrification inhibition by hexavalent chromium Cr(VI)--Microbial ecology, gene expression and off-gas emissions.

    Science.gov (United States)

    Kim, Young Mo; Park, Hongkeun; Chandran, Kartik

    2016-04-01

    The goal of this study was to investigate the responses in the physiology, microbial ecology and gene expression of nitrifying bacteria to imposition of and recovery from Cr(VI) loading in a lab-scale nitrification bioreactor. Exposure to Cr(VI) in the reactor strongly inhibited nitrification performance resulting in a parallel decrease in nitrate production and ammonia consumption. Cr(VI) exposure also led to an overall decrease in total bacterial concentrations in the reactor. However, the fraction of ammonia oxidizing bacteria (AOB) decreased to a greater extent than the fraction of nitrite oxidizing bacteria (NOB). In terms of functional gene expression, a rapid decrease in the transcript concentrations of amoA gene coding for ammonia oxidation in AOB was observed in response to the Cr(VI) shock. In contrast, transcript concentrations of the nxrA gene coding for nitrite oxidation in NOB were relatively unchanged compared to Cr(VI) pre-exposure levels. Therefore, Cr(VI) exposure selectively and directly inhibited activity of AOB, which indirectly resulted in substrate (nitrite) limitation to NOB. Significantly, trends in amoA expression preceded performance trends both during imposition of and recovery from inhibition. During recovery from the Cr(VI) shock, the high ammonia concentrations in the bioreactor resulted in an irreversible shift towards AOB populations, which are expected to be more competitive in high ammonia environments. An inadvertent impact during recovery was increased emission of nitrous oxide (N2O) and nitric oxide (NO), consistent with recent findings linking AOB activity and the production of these gases. Therefore, Cr(VI) exposure elicited multiple responses on the microbial ecology, gene expression and both aqueous and gaseous nitrogenous conversion in a nitrification process. A complementary interrogation of these multiple responses facilitated an understanding of both direct and indirect inhibitory impacts on nitrification.

  11. Electrochemically enhanced reduction of hexavalent chromium in contaminated clay: Kinetics, energy consumption, and application of pulse current

    DEFF Research Database (Denmark)

    Sun, Tian Ran; Pamukcu, Sibel; Ottosen, Lisbeth M.;

    2015-01-01

    Electrochemically enhanced reduction of Cr(VI) in clay medium is a technique based on inputting extra energy into the clay to drive the favorable redox reaction. In this study, the reducing reagent Fe(II) was transported into Cr(VI) spiked kaolinite clay by direct current to investigate the depen......Electrochemically enhanced reduction of Cr(VI) in clay medium is a technique based on inputting extra energy into the clay to drive the favorable redox reaction. In this study, the reducing reagent Fe(II) was transported into Cr(VI) spiked kaolinite clay by direct current to investigate......,Fe)(OH)3] precipitates. XRD analysis suggested that the [(Cr,Fe)(OH)3] formed at the clay surface and grew into the pore fluid. SEM-EDX results indicated that the overall Fe(III):Cr(III) ratio of the precipitates was approximately 1.26:1. Application of pulse current decreased the non-productive energy...

  12. Bioremediation of Hexavalent Chromium Pollution by Sporosarcina saromensis M52 Isolated from Offshore Sediments in Xiamen, China

    Institute of Scientific and Technical Information of China (English)

    ZHAO Ran; WANG Bi; CAI Qing Tao; LI Xiao Xia; LIU Min; HU Dong; GUO Dong Bei; WANG Juan; FAN Chun

    2016-01-01

    ObjectiveCr(VI) removal from industrial effluents and sediments has attracted the attention of environmental researchers. In the present study, we aimed to isolate bacteria for Cr(VI) bioremediation from sediment samples and to optimize parameters of biodegradation. MethodsStrains with the ability to tolerate Cr(VI) were obtained by serial dilution and spread plate methods and characterized by morphology, 16S rDNA identification, and phylogenetic analysis. Cr(VI) was determined using the 1,5-diphenylcarbazide method, and the optimum pH and temperature for degradation were studied using a multiple-factor mixed experimental design. Statistical analysis methods were used to analyze the results. ResultsFifty-five strains were obtained, and one strain (Sporosarcina saromensisM52; patent application number: 201410819443.3) having the ability to tolerate 500 mg Cr(VI)/L wasselected to optimize the degradation conditions. M52 was found be able to efficiently remove 50-200 mg Cr(VI)/L in 24 h, achieving the highest removal efficiency at pH 7.0-8.5 and 35°C. Moreover, M52 could completely degrade 100 mg Cr(VI)/L at pH 8.0 and35 °C in 24 h. The mechanism involved in the reduction of Cr(VI) was considered to be bioreduction rather than absorption. ConclusionThe strong degradation ability ofS. saromensis M52 and its advantageous functional characteristics support the potential use of this organism for bioremediation ofheavy metal pollution.

  13. Sampling Instruction: Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site

    Energy Technology Data Exchange (ETDEWEB)

    Truex, Michael J.; Vermeul, Vincent R.

    2012-05-01

    Several types of data are needed to assess the flux of Cr(VI) from the excavation into the groundwater. As described in this plan, these data include (1) temporal Cr(VI) data in the shallow groundwater beneath the pit; (2) hydrologic data to interpret groundwater flow and contaminant transport; (3) hydraulic gradient data; and (4) as a contingency action if necessary, vertical profiling of Cr(VI) concentrations in the shallow aquifer beyond the depth possible with aquifer tubes.

  14. Ultrafine cobalt nanoparticles supported on reduced graphene oxide: Efficient catalyst for fast reduction of hexavalent chromium at room temperature

    Science.gov (United States)

    Xu, Tingting; Xue, Jinjuan; Zhang, Xiaolei; He, Guangyu; Chen, Haiqun

    2017-04-01

    A novel composite ultrafine cobalt nanoparticles-reduced graphene oxide (Co-RGO) was firstly synthesized through a modified one-step solvothermal method with Co(OH)2 as the precursor. The prepared low-cost Co-RGO composite exhibited excellent catalytic activity for the reduction of highly toxic Cr(VI) to nontoxic Cr(III) at room temperature when formic acid (HCOOH) was employed as the reductant, and its catalytic performance was even comparable with that of noble metal-based catalysts in the same reduction reaction. Moreover, Co-RGO composite could be readily recovered under an external magnetic field and efficiently participated in recycled reaction for Cr(VI) reduction.

  15. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Song, Tian-shun [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Jiangsu Branch of China Academy of Science & Technology Development, Nanjing (China); Jin, Yuejuan; Bao, Jingjing [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Kang, Dongzhou, E-mail: kangdz@ybu.edu.cn [College of Pharmacy, Yanbian University, Yanji 133002 (China); Xie, Jingjing, E-mail: xiej@njtech.edu.cn [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816 (China); College of Life Science and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816 (China); Jiangsu Branch of China Academy of Science & Technology Development, Nanjing (China); College of Pharmacy, Yanbian University, Yanji 133002 (China); Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing 211816 (China)

    2016-11-05

    Highlights: • Graphene/biofilm was microbially fabricated to cathode of a Cr(VI)-reducing MFC. • High Cr(VI) reduction rate was generated by self-assembled graphene biocathode MFC. • Graphene biocathode improves the electricity production of Cr(VI)-reducing MFC. • High surface area of the graphene provides more adsorption sites for Cr(VI). • Graphene biocathode improves the electron transfer rate in the MFC. - Abstract: In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48 h, at 40 mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions.

  16. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    Science.gov (United States)

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site.

  17. Soil retention of hexavalent chromium released from construction and demolition waste in a road-base-application scenario

    DEFF Research Database (Denmark)

    Butera, Stefania; Trapp, Stefan; Astrup, Thomas Fruergaard

    2015-01-01

    depth. However, in rigid climates and with high water infiltration through the road pavement, the reduction reaction could be so slow that Cr(VI) might migrate as deep as 200 cm under the road. The reaction parameters and the model can form the basis for systematically assessing under which scenarios Cr...

  18. Soil retention of hexavalent chromium released from construction and demolition waste in a road-base-application scenario.

    Science.gov (United States)

    Butera, Stefania; Trapp, Stefan; Astrup, Thomas F; Christensen, Thomas H

    2015-11-15

    We investigated the retention of Cr(VI) in three subsoils with low organic matter content in laboratory experiments at concentration levels relevant to represent leachates from construction and demolition waste (C&DW) reused as unbound material in road construction. The retention mechanism appeared to be reduction and subsequent precipitation as Cr(III) on the soil. The reduction process was slow and in several experiments it was still proceeding at the end of the six-month experimental period. The overall retention reaction fit well with a second-order reaction governed by actual Cr(VI) concentration and reduction capacity of the soil. The experimentally determined reduction capacities and second-order kinetic parameters were used to model, for a 100-year period, the one-dimensional migration of Cr(VI) in the subsoil under a layer of C&DW. The resulting Cr(VI) concentration would be negligible below 7-70 cm depth. However, in rigid climates and with high water infiltration through the road pavement, the reduction reaction could be so slow that Cr(VI) might migrate as deep as 200 cm under the road. The reaction parameters and the model can form the basis for systematically assessing under which scenarios Cr(VI) from C&DW could lead to an environmental issue for ground- and receiving surface waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Microbial Detoxification of Hexavalent Chromium from Chromium-Containing Slag%铬渣中6价铬的微生物解毒研究

    Institute of Scientific and Technical Information of China (English)

    何德文; 刘欢; 蒋崇文; 段浩鹏; 刘蕾

    2013-01-01

    详细研究了微生物处理铬渣中6价铬Cr(Ⅵ)及其回收Cr(Ⅲ)的方法.研究成果表明,来自铬渣场的一株名为Ch-1的细菌能有效地加速Cr(Ⅵ)浸出和去除;此外,通过扫描电子扫描电镜(SEM)和X射线仪器(EDX)观察,Ch-1细菌能有效改变浸出后铬渣的结构,这有利于铬渣中Cr(Ⅵ)浸出及其解毒为毒性低的Cr(Ⅲ);最后经浸出毒性试验,淋溶渣的毒性为3.3 μg/g,远低于国家标准5μg/g,且6价铬Cr(Ⅵ)的回收率高达90%以上.

  20. Peat and coconut fiber as biofilters for chromium adsorption from contaminated wastewaters

    OpenAIRE

    2015-01-01

    Batch adsorption experiments were performed for the removal of chromium (III) and chromium (VI) ions from aqueous solutions using Canadian peat and coconut fiber. The Langmuir model was used to describe the adsorption isotherm. The maximum adsorption for peat reached 18.75 mg/g for Cr(III) and 8.02 mg/g for Cr(VI), whereas the value for fiber was slightly higher and reached 19.21 mg/g for Cr(III) and 9.54 mg/g for Cr(VI). Both chromium forms could be easily eluted from the materials. The adso...

  1. Effect of microbial activity on the mobility of chromium in soils.

    Science.gov (United States)

    Desjardin, V; Bayard, R; Huck, N; Manceau, A; Gourdon, R

    2002-01-01

    The effect of microbial activity on the chemical state of chromium, in a contaminated soil located in the Rhĵne-Alpes region (France), has been investigated. This soil contained 4,700 mg kg(-1) Cr, with about 40% present in the soluble hexavalent form. Indigenous microbial activity was found to significantly reduce Cr(VI) to the less mobile form (III) when the soil was incubated at 30 degrees C in an aqueous medium containing glucose and nutrients. A Cr(VI)-reducing strain of Streptomyces thermocarboxydus was isolated from the contaminated soil. The strain was found to metabolize Cr(VI) in a similar manner as an exogenous inoculum of Pseudomonas fluorescens LB300, and to precipitate chromium as a Cr oxyhydroxide with a gammaCrOOH-like local structure. The Cr(VI)-reducing activity of S. thermocarboxydus was induced, or significantly accelerated, by the aggregation of bacterial cells or their adhesion to suspended solid particles, and was stimulated in pure culture by glycerol and chromate.

  2. Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure.

    Science.gov (United States)

    Sheik, Cody S; Mitchell, Tyler W; Rizvi, Fariha Z; Rehman, Yasir; Faisal, Muhammad; Hasnain, Shahida; McInerney, Michael J; Krumholz, Lee R

    2012-01-01

    Extensive use of chromium (Cr) and arsenic (As) based preservatives from the leather tanning industry in Pakistan has had a deleterious effect on the soils surrounding production facilities. Bacteria have been shown to be an active component in the geochemical cycling of both Cr and As, but it is unknown how these compounds affect microbial community composition or the prevalence and form of metal resistance. Therefore, we sought to understand the effects that long-term exposure to As and Cr had on the diversity and structure of soil microbial communities. Soils from three spatially isolated tanning facilities in the Punjab province of Pakistan were analyzed. The structure, diversity and abundance of microbial 16S rRNA genes were highly influenced by the concentration and presence of hexavalent chromium (Cr (VI)) and arsenic. When compared to control soils, contaminated soils were dominated by Proteobacteria while Actinobacteria and Acidobacteria (which are generally abundant in pristine soils) were minor components of the bacterial community. Shifts in community composition were significant and revealed that Cr (VI)-containing soils were more similar to each other than to As contaminated soils lacking Cr (VI). Diversity of the arsenic resistance genes, arsB and ACR3 were also determined. Results showed that ACR3 becomes less diverse as arsenic concentrations increase with a single OTU dominating at the highest concentration. Chronic exposure to either Cr or As not only alters the composition of the soil bacterial community in general, but affects the arsenic resistant individuals in different ways.

  3. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis

    Science.gov (United States)

    Sarahney, Hussam; Mao, Xuhui; Alshawabkeh, Akram N.

    2012-01-01

    The potential for chemical reduction of hexavalent chromium Cr(VI) in contaminated water and formation of a stable precipitate by Zero Valent Iron (ZVI) anode electrolysis is evaluated in separated electrodes system. Oxidation of iron electrodes produces ferrous ions causing the development of a reducing environment in the anolyte, chemical reduction of Cr(VI) to Cr(III) and formation of stable iron-chromium precipitates. Cr(VI) transformation rates are dependent on the applied electric current density. Increasing the electric current increases the transformation rates; however, the process is more efficient under lower volumetric current density (for example 1.5 mA L−1 in this study). The transformation follows a zero order rate that is dependent on the electric current density. Cr(VI) transformation occurs in the anolyte when the electrodes are separated as well as when the electrolytes (anolyte/catholyte) are mixed, as used in electrocoagulation. The study shows that the transformation occurs in the anolyte as a result of ferrous ion formation and the product is a stable Fe15Cr5(OH)60 precipitate. PMID:23284182

  4. Role of Iron Anode Oxidation on Transformation of Chromium by Electrolysis.

    Science.gov (United States)