WorldWideScience

Sample records for hexaploid wheat varieties

  1. The repair/repopulation effects ratio in the postirradiation recovery of hexaploid wheat varieties contrast by their radioresistance

    International Nuclear Information System (INIS)

    Selezneva, E.M.; Sarapul'tsev, B.I.

    1988-01-01

    The cytogenic and morphometrical distinctions between hexaploid wheat varieties contrast by their radioresistance during the postirradiation period are attributed to the differential activity of caffeine-dependent repair processes; they are not a reliable function of the rate of aberrant cell elimination

  2. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties.

    Science.gov (United States)

    Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo

    2017-05-01

    Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  3. Genetics of leaf rust-resistant mutant WH 147-LM-1 in hexaploid wheat variety WH 147

    International Nuclear Information System (INIS)

    Reddy, V.R.K.; Viswanathan, P.

    1999-01-01

    By applying gamma rays, EMS and their combination in hexaploid wheat variety WH 147, a total of 20 mutants (0.0226%) exhibiting complete leaf rust resistance were isolated from segregating M2 rows.When one of the rust-resistant mutants, WH 147-LM-1 was crossed with the universally susceptible, suggesting that the mutant character is controlled by one dominant gene and one recessive gene.The F2 plants derived by crossing the mutant WH 147-LM with seven near-isogenic wheat lines showed segregation for susceptibility, indicating that the mutant character was indeed generated through induced mutations

  4. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1

    Indian Academy of Sciences (India)

    GSs. However, incorporation of HMW-GS from Ae. tauschii in six synthetic hexaploid wheat lines significantly increased most quality related parameters. The potential values of these wheat lines in improving the quality of wheat are discussed.

  6. The influence of nalidixic acid and nicotinamide of the radiation-induced cytogenetic injury to hexaploid wheat varities contrast by radioresistance

    International Nuclear Information System (INIS)

    Selezneva, E.M.; Sarapul'tsev, B.I.

    1990-01-01

    Nalidixic acid modifies the cytogenetic injury when only applied to seeds of a radiosensitive variety, Moskovskaya 35. The radioprotective effect of nicotinamide on both radiosensitive and radioresistant hexaploid wheat varities is observed being dependent on the extent which the genetic apparatus is impaired

  7. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  8. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  9. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-01-01

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  10. QTLs for seedling traits under salinity stress in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Yongzhe Ren

    2018-03-01

    Full Text Available ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411. Values of wheat seedling traits including maximum root length (MRL, root dry weight (RDW, shoot dry weight (SDW, total dry weight (TDW and the ratio of TDW of wheat plants between salt stress and control (TDWR were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.

  11. The pangenome of hexaploid bread wheat.

    Science.gov (United States)

    Montenegro, Juan D; Golicz, Agnieszka A; Bayer, Philipp E; Hurgobin, Bhavna; Lee, HueyTyng; Chan, Chon-Kit Kenneth; Visendi, Paul; Lai, Kaitao; Doležel, Jaroslav; Batley, Jacqueline; Edwards, David

    2017-06-01

    There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Possible origin of Triticum petropavlovskyi based on cytological analyses of crosses between T. petropavlovskyi and tetraploid, hexaploid, and synthetic hexaploid (SHW-DPW) wheat accessions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Song, J.; Du, W.; Xu, L.Y.; Yu, G.R.

    2016-07-01

    Intraspecific hybridization between Triticum petropavlovskyi Udacz. et Migusch., synthetic hexaploid wheat (SHW-DPW), and tetraploid and hexaploid wheat, was performed to collect data on seed set, fertility of F1 hybrid, and meiotic pairing configuration, aiming to evaluate the possible origin of T. petropavlovskyi. Our data showed that (1) seed set of crosses T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Chinese Spring was significantly high; (2) fertility of hybrids T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum ssp. yunnanense was higher than that of the other hybrids; (3) fertility of F1 hybrids SHW-DPW × T. dicoccoides and SHW-DPW×T. aestivum ssp. tibetanum was significantly high; and (4) c-value of T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Changning white wheat was also significantly high. The results indicate that the probable origin of T. petropavlovskyi is divergence from a natural cross between T. aestivum and T. polonicum, via either spontaneous introgression or breeding effort.

  13. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  14. Molecular mapping of stripe rust resistance gene YrSE5756 in synthetic hexaploid wheat and its transfer to common wheat

    International Nuclear Information System (INIS)

    Wang, Y.J.; Wang, C.Y.; Zhang, H.

    2015-01-01

    Synthetic hexaploid wheat is an important germplasm resource for transfer of beneficial genes from alien species to common wheat (Triticum aestivum L.). Synthetic hexaploid wheat SE5756 confers a high level of resistance against a wide range of races of Puccinia striiformis West. f. sp. tritici Eriks. et Henn.(Pst). The objectives of this study were to determine the inheritance pattern, adjacent molecular markers, and chromosomal location of the stripe rust resistance gene in SE5756 and to develop new germplasm. We constructed a segregating population of 116 F2 plants and corresponding F2:3 families from a cross between SE5756 and Xinong979 with Pst races CYR32. Genetic analysis revealed that a single dominant gene, tentatively designated as YrSE5756, was responsible for seedling stage stripe rust resistance in SE5756. A genetic map, encompassing Xwmc626, Xwmc269, Xgwm11, Xbarx137, Xwmc419, Xwmc85, Xgpw5237, Xwmc134, WE173, Xwmc631, and YrSE5756, spanned 70.1 cM on chromosome 1BS. Xwmc419 and Xwmc85 were flanking markers tightly linked to YrSE5756 at genetic distances of 2.3 and 1.8 cM. Typical adult plant responses of the SE5756, varieties of the carrier Yr10 and Yr15, Chuanmai 42 (Yr24/Yr26), Yuanfeng 175 (Yr24/Yr26) and Huixianhong resistant to mixture Pst races (CYR32, CYR33 and V26) were experimented. The results showed that YrSE5756 was likely a new resistance stripe rust gene different from Yr24/Yr26, Yr10 and Yr15. From cross and backcross populations of SE5756/Xinong 979, we developed four new wheat lines with large seeds, stripe rust resistance, and improved agronomic traits: N07178-1, N07178-2, N08256-1, and N08256-2. These new germplasm lines could serve as sources of resistance to stripe rust in wheat breeding. SE5756 has the very vital significance in the development of breeding and expand our resistance germplasm resource gene pool. (author)

  15. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  16. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L. varieties.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  17. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    Science.gov (United States)

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  18. Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhaorong Hu

    Full Text Available Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.

  19. Molecular markers based identification of diversity for drought tolerance in bread wheat varieties and synthetic hexaploids.

    Science.gov (United States)

    Shah, Zahid Hussain; Munir, Muhammad; Kazi, Abdul Mujeeb; Mujtaba, Tahir; Ahmed, Zaheer

    2009-01-01

    The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.

  20. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  1. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    Science.gov (United States)

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  2. Novel genetic diversity of the alien D-genome synthetic hexaploid wheat (2n=6x=42, Aabbdd) germplasm for various phenology traits

    International Nuclear Information System (INIS)

    Masood, R.M.; Bibi, K.; Jamil, M.

    2016-01-01

    The current study evaluates genetic penetrance and expressivity of an alien genome introgression in a set of 117 primary synthetic hexaploid wheat (SHW) accessions. These SHW have originated from durum wheat /accessions with three sets of durum wheat cultivars ALTAR 84, D67.2 and CERCETA as the female and diverse Ae. tauschii accessions as the pollen parents. Diversity of the 12 important traits (Growth habit, pigmentation, chlorophyll content, leaf area index, crop digital ground cover, awn size, awn length, and several seed digital imaging parameters)revealed significant variation for the respective traits, leading to the conclusion that Ae. tauschii accessions have tremendous diversity than the durum controls. Further, the value deviations within each attribute had a range of being lower or higher than their durum wheat female parents and these observations allowed us to use the variations as selective sieves and narrow down the desirable SHW that would be advantageous to exploit for wheat breeding and cultivar improvement programs. Selections were made and a group of 41SHW accessions were identified that will after an intermediate DNA diversity evaluation form a crisper final set for user friendly utilization. The range of selections shows multiple trait advantages for exploitation in both irrigated and rain-fed conditions. This pivotal study sets the foundation to better define the D genome SHW for efficient utilization in future research investigations. Our results have implications in widening the genetic base of hexaploid bread wheat and may facilitate the development of agronomically desirable wheat cultivars. (author)

  3. Sensibility of different wheat varieties (strains) to Ar+ implantation

    International Nuclear Information System (INIS)

    Cui Huanhu; Jing Hua; Ma Aiping; Kang Xiuli; Yang Liping; Huang Mingjing; Ma Buzhou; Shanxi Academy of Agricultural Sciences, Taiyuan

    2005-01-01

    The sensibility of different wheat varieties (strains) to Ar + implantation was studied. The results showed that the survival rate of 21 wheat varieties (strains) at the dose of 6 x 10 16 Ar + /cm 2 could be divided into five groups: surplus sensitive varieties (strains), sensitive varieties (strains), transitional varieties (strains), obtuse varieties (strains) and surplus obtuse varieties (strains). The sensibility of wheat varieties (strains) to Ar + injection is high-moisture-fertility wheat varieties (strains) > medium-moisture-fertility wheat varieties (strains) > dry land wheat varieties (strains). The study has provided theoretical basis in induced mutation medial lethal dose of different wheat varieties (strains) to Ar + implantation. (authors)

  4. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus.

    Science.gov (United States)

    Pandey, Renu; Lal, Milan Kumar; Vengavasi, Krishnapriya

    2018-06-04

    Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO 2 ] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP). Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO 2 ] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO 2 ]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO 2 ] with low P. Interaction of low P and [CO 2 ] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low K m ) in response to elevated [CO 2 ] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO 2 ] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO 2 ] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

  5. Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat

    Directory of Open Access Journals (Sweden)

    Xiangqi Zhang

    2013-07-01

    Full Text Available Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR. In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD, only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat.

  6. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  7. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2012-08-01

    Full Text Available Abstract Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97% were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT markers, 72 simple sequence repeat (SSR, one insertion site-based polymorphism (ISBP, and two high-molecular-weight glutenin subunit (HMW-GS markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL, including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of

  8. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome.

    Science.gov (United States)

    Zhang, Li; Luo, Jiang-Tao; Hao, Ming; Zhang, Lian-Quan; Yuan, Zhong-Wei; Yan, Ze-Hong; Liu, Ya-Xi; Zhang, Bo; Liu, Bao-Long; Liu, Chun-Ji; Zhang, Huai-Gang; Zheng, You-Liang; Liu, Deng-Cai

    2012-08-13

    A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.

  9. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.

    Science.gov (United States)

    Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly

    2014-05-01

    The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

  10. NUTRITIONAL CHARACTERISTICS OF EMMER WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2015-02-01

    Full Text Available The objective of this study was to evaluate the nutritional compounds (fat, sugars, crude protein, soluble fiber, ash and starch of four emmer wheat varieties grown under the conditions of organic farming system. The experiment was established on Scientific Research base Dolná Malanta, near Nitra in Slovakia during 2010 – 2011 and 2011 – 2012 growing seasons. Nutritional parameters, except crude protein content, were not influenced by the variety and weather conditions. Agnone variety had the highest content of fat, crude protein and starch but the lowest content of soluble dietary fiber. The lowest values of fat, crude protein had Molise sel Colli variety; Farvento variety had the lowest sugars and starch content. Emmer wheat as ancient wheat has a unique composition in secondary components, such as starch, which may play a role as functional food ingredients.

  11. Breeding of hexaploid triticale for drought resistance

    Directory of Open Access Journals (Sweden)

    Г. В. Щипак

    2016-05-01

    Full Text Available Purpose. Analysis of hexaploid triticale breeding process for drought resistance through the use of systemic ecological tests in contrasting conditions. Methods. Dialectical, field, laboratory and statistical ones. Results. Medium-grown (‘Amos’, ‘Nikanor’, ‘Rarytet’, ‘Yaroslava’ and low-stem (‘HAD 69’, ‘HAD 86’, ‘HAD 110’, ‘Timofei’ multiline varieties of winter and alternate hexaploid triticale were developed with higher adaptability, potential yield of 9–12 tons per ha and high bread-making properties. Among the most drought resistant genotypes, such varieties as ‘Amos’, ‘Buket’, ‘Harne’, ‘Markiian’, ‘Kharroza’, ‘Shalanda’, ‘Nicanor’ and ‘Yaroslava’ showed high values of yield, plasticity and stability. Conclusions. The use of interspecific hybridization instead of intergeneric one in hexaploid triticale breeding, together with systemic testing of the hybrid material in contrasting agro-ecological zones, ensured the creation of multiline competitive varieties with an optimal combination of yield and adaptive properties

  12. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat.

    Science.gov (United States)

    Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie

    2018-01-01

    Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici , and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F 1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC 2 F 3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.

  13. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  14. New spring wheat varieties ‘Panianka’ and ‘Diana’

    Directory of Open Access Journals (Sweden)

    О. А. Демидов

    2016-12-01

    Full Text Available Purpose. To create new competitive spring wheat varieties. Methods. Field study, laboratory test. Results. Based on the competitive variety trial, bread spring wheat line ‘Lutescens 07-26’ has been selected due to high values of such traits as resistance to fungal diseases, grain qua­lity(protein content accounted for 15.0%, 1000 kernel weight (44.6 g productivity (3.92 t/ha and lodging resistance (9 points. In 2011, it was submitted to the State variety testing as ‘Panianka’ variety. Durum spring wheat line ‘Leukurum 08-11’ was characterized by a number of positive traits: quite a high productivity (3.05 t/ha, short stem (79 cm, resistance to fungal diseases and lodging(9 points, and in 2011 it was submitted to the State variety testing as ‘Diana’ variety. According to the results of the State variety testing in 2012–2014, spring wheat varieties ‘Panianka’ and ‘Diana’ in 2015 were put on the State Register of plant varieties suitable for dissemination in Ukraine. Conclusions. For farms in Forest-Steppe and Polissia zones of Ukraine, bread and durum spring wheat varieties were bred by V. M.Remeslo Myronivka Institute of Wheat of NAAS of Ukraine that demonstrated rather high potential of productivity and adaptability to stress conditions. This goes to prove that cultivation of domestic spring wheat varieties will promote formation of high and quality grain yields.

  15. Mutation breeding for disease resistance in wheat and field beans in Egypt

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.

    1983-01-01

    Seeds of three varieties of hexaploid wheat and of one variety of tetraploid wheat were treated with gamma rays in order to obtain mutants with improved resistance to stem rust, leaf rust and stripe rust. Mutants with resistance to prevailing races of rusts were selected; however, the race spectrum shifted and made the mutants useless for the time being. Induction of mutations for resistance to chocolate spot and rusts was attempted in Vicia faba. No resistant mutant was found but some mutants with lower levels of infection were. (author)

  16. PCR-Based EST Mapping in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    J. PERRY GUSTAFSON

    2009-04-01

    Full Text Available Mapping expressed sequence tags (ESTs to hexaploid wheat is aimed to reveal the structure and function of the hexaploid wheat genome. Sixty eight ESTs representing 26 genes were mapped into all seven homologous chromosome groups of wheat (Triticum aestivum L using a polymerase chain reaction technique. The majority of the ESTs were mapped to homologous chromosome group 2, and the least were mapped to homologous chromosome group 6. Comparative analysis between the EST map from this study and the EST map based on RFLPs showed 14 genes that have been mapped by both approaches were mapped to the same arm of the same homologous chromosome, which indicated that using PCR-based ESTs was a reliable approach in mapping ESTs in hexaploid wheat.

  17. TaGW2, a Good Reflection of Wheat Polyploidization and Evolution.

    Science.gov (United States)

    Qin, Lin; Zhao, Junjie; Li, Tian; Hou, Jian; Zhang, Xueyong; Hao, Chenyang

    2017-01-01

    Hexaploid wheat consists of three subgenomes, namely, A, B, and D. These well-characterized ancestral genomes also exist at the diploid and tetraploid levels, thereby rendering wheat as a good model species for studying polyploidization. Here, we performed intra- and inter-species comparative analyses of wheat and its relatives to dissect polymorphism and differentiation of the TaGW2 genes. Our results showed that genetic diversity of TaGW2 decreased with progression from the diploids to tetraploids and hexaploids. The strongest selection occurred in the promoter regions of TaGW2-6A and TaGW2-6B . Phylogenetic trees clearly indicated that Triticum urartu and Ae. speltoides were the donors of the A and B genomes in tetraploid and hexaploid wheats. Haplotypes detected among hexaploid genotypes traced back to the tetraploid level. Fst and π values revealed that the strongest selection on TaGW2 occurred at the tetraploid level rather than in hexaploid wheat. This infers that grain size enlargement, especially increased kernel width, mainly occurred in tetraploid genotypes. In addition, relative expression levels of TaGW2s significantly declined from the diploid level to tetraploids and hexaploids, further indicating that these genes negatively regulate kernel size. Our results also revealed that the polyploidization events possibly caused much stronger differentiation than domestication and breeding.

  18. Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (Triticum aestivum L. during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Debbie Laudencia-Chingcuanco

    2012-01-01

    Full Text Available The expression of 1,613 transposable elements (TEs represented in the Affymetrix Wheat Genome Chip was examined during cold treatment in crowns of four hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throughout the experiment in three of the genotypes. In winter Norstar, the most cold-hardy of the four genotypes, a subset of the TEs showed a burst of expression after vernalization saturation was achieved. About 47% of the TEs were expressed, and both Class I (retrotransposons and Class II (DNA transposons types were well represented. Gypsy and Copia were the most represented among the retrotransposons while CACTA and Mariner were the most represented DNA transposons. The data suggests that the Vrn-A1 region plays a role in the stage-specific induction of TE expression in this genotype.

  19. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua

    2018-03-05

    The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary

  20. Wheat ferritins: Improving the iron content of the wheat grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2012-01-01

    The characterization of the full complement of wheat ferritins show that the modern hexaploid wheat genome contains two ferritin genes, TaFer1 and TaFer2, each represented by three homeoalleles and placed on chromosome 5 and 4, respectively. The two genes are differentially regulated and expresse...

  1. RAPD and SSR based genetic diversity analysis of elite-2 set of ...

    African Journals Online (AJOL)

    Background: Synthetic hexaploid wheats are artificially reconstituted hexaploid wheats that possess high genetic variation which could be utilized for the development of new improved wheat varieties. One such group of synthetic wheats is called the Elite-II set of synthetic wheats that are derived from crossing durum wheat ...

  2. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    The present study was conducted to assess the genetic diversity of Elite-II synthetic hexaploid (SH) wheat by genome DNA fingerprinting as revealed by random amplified polymorphic DNA (RAPD) analysis. Ten decamer RAPD primers (OPG-1, OPG-2, OPG-3, OPG-4, OPG-5, OPA-3, OPA-4, OPA-5, OPA-8, and OPA-15) ...

  3. Induced multiple disease resistance in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.; Worland, A.J.

    1990-01-01

    Full text: The existence of genes suppressing resistance to leaf rust, stem rust and yellow rust in hexaploid wheat has been suggested. If such genes are deleted or inactivated, a more resistant variety may be obtained. In mutant lines of the wheat variety San Pastore, selected after treatment with 20,000 rad of gamma-rays, resistance to leaf rust, yellow rust, stem rust, and to some extent to Erysiphe graminis was determined. The mutants responded to infection by producing necrotic flecks in the presence of high level of disease inoculum. Similar flecks develop under stress condition. It is likely that the mother variety San Pastore carries genes for resistance which are masked by suppressor genes. Irradiation inactivates suppressors so that resistance genes which were previously masked are expressed. The first results of monosomic analysis indicate that chromosomes of groups 4 and 5 or possibly 7 may be critical for expression of resistance in the mutant lines. (author)

  4. Main varieties of bread (Triticum aestivum L.) and durum (Triticum durum Desf.) wheat.

    OpenAIRE

    М. П. Чебаков

    2008-01-01

    Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L.) and hard (Triticum durum Desf.) are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.

  5. Main varieties of bread (Triticum aestivum L. and durum (Triticum durum Desf. wheat.

    Directory of Open Access Journals (Sweden)

    М. П. Чебаков

    2008-04-01

    Full Text Available Results of systematization and morphological characteristics of two wheat species-bread (Triticum aestivum L. and hard (Triticum durum Desf. are given. Detail descriptions of 55 main varieties of bread wheat and 32 varieties of hard wheat arep- resented in table version. In practical application these result enable plant breeders, seed producers and variety testers to determine wheat varieties easily sinse it is method for morphological systematics of wheat.

  6. Reaction of Rust on Some Bread Wheat Varieties in Çukurova Region

    OpenAIRE

    AY, Hasan

    2013-01-01

    This study was conducted with 126 varieties of wheat between 2009-2010 years in Adana. There has not been artificially inoculated yellow, leaf and stem rusts. Races of rust in natural were evaluated in both years. Between 2009-2010 this study was conducted in Adana, with 126 varieties of bread wheat. In both years, only the natural environment leaf rust races inoculated for assessments reactions of bread wheat. According to results, 49 bread wheat varieties were found resistant, 6 bread wheat...

  7. Genetic variation of gliadin composition of wheat varieties in shanxi

    International Nuclear Information System (INIS)

    Sun Daizhen; Wang Shuguang; Yang Wude; Cao Yaping; Yang Haifeng

    2009-01-01

    In order to discover genetic variation of gliadin composition of wheat varieties in Shanxi, A-PAGE method was used to analyze difference of gliadin composition and genetic diversity of 214 varieties including local bred, introduced and landraces wheat in recent 40 years. The results were as follows: number of gliadin band increased by 2.1 and 1.5 in bred and introduced wheat varieties compared to Shanxi landraces. In total 70 bands,the frequency of 26 bands detected from bred and introduced cultivars was up, 23 down, 21 no regular pattern compared to Shanxi landraces. In 4 gliadin zones, variation of types and frequency of gliadin band in ω zone was largest, γ was the second, β and α was smallest. Two band block of 16.5 and 19.1, and three band block of 12.9, 15.7 and 17.8 were tested in ω zone, but they do not express in the same variety. Mean of genetic distance in Shanxi wheat landraces was larger than those in other two type wheat cultivars. The cluster analysis found that cultivars of landraces, bred or introduced were divided into the same group, which showed genetic difference of loci encoded gliadin in Shanxi wheat landraces was larger than the other two type wheat cultivars, namely, the level of genetic variation of gliadin in bred or introduced cultivars was not high in the last 40 years. (authors)

  8. Breeding value of primary synthetic wheat genotypes for grain yield

    Science.gov (United States)

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  9. Sensory Profiles and Volatile Compounds of Wheat Species, Landraces and Modern Varieties

    DEFF Research Database (Denmark)

    Starr, Gerrard

    as cooked wheat grain, flour porridge and for eight of these varieties, baked bread. Descriptors for odours of cocoa, oat porridge and øllebrød1) and flavours of sweet, bitter, oat porridge and øllebrød1) were common to all three wheat products. Wheat porridge shared 6 odour and 10 flavour descriptors...... be connected. This Ph. D. project aims to study sensory attributes and volatile compounds of wheat and its products in order to investigate variations between wheat species, landraces and modern varieties and to reveal their impact on bread odours and flavours. Furthermore to examine whether bread could......) were used to analyse sensory and GC-MS data. Differences in odours and flavours were found in all wheat products. Variation also occurred between volatile peak-areas of wheat grain- and bread samples. Twenty four selected wheat species, landraces and varieties were evaluated by trained sensory panels...

  10. Comparison of bloat potential between a variety of soft-red versus a variety of hard-red winter wheat forage.

    Science.gov (United States)

    Akins, M S; Kegley, E B; Coffey, K P; Caldwell, J D; Lusby, K S; Moore, J C; Coblentz, W K

    2009-10-01

    Some aspects of wheat pasture bloat have been researched extensively, but few studies have evaluated the effect of wheat type or variety on bloat. Eight Gelbvieh x Angus ruminally cannulated heifers (515 +/- 49 kg of BW) and 48 Angus heifers (238 +/- 12 kg of BW) grazed 1-ha pastures of hard-red or soft-red winter wheat (Triticum aestivum L.) to evaluate the effect of wheat variety on bloat potential. In Exp. 1, cattle grazed from November 11 to 22 and from November 26 to December 7, 2006, in a crossover design. In Exp. 2, cattle were shrunk for 20 h and then grazed from December 19 to 20, 2006, and from January 19 to 20, 2007. In both experiments, bloat was scored at 1000 and 1600 h daily. Rumen samples were collected at 0600, 1200, and 1800 h during each of the last 2 d of each period in Exp. 1 and during both days of each period of Exp. 2. Rumen samples were evaluated for pH, foam production and strength, and viscosity. In Exp. 1, cannulated heifers grazing soft-red had a greater (P bloat (21.9 vs. 5.6%) than those grazing hard-red winter wheat, but bloat incidence was low (2.1%) for the stocker cattle, with no difference between hard-red and soft-red winter wheat (P = 0.52). Viscosity of the rumen fluid was affected (P = 0.03) by the wheat variety x time interaction, with soft-red at 1200 and 1800 h being more viscous than soft-red at 0600 h and hard-red at all times. Foam strength, as determined by bubbling CO(2) gas through rumen fluid, had a wheat variety x time interaction (P = 0.02) with both wheat varieties similar at 0600 h but soft-red having greater foam strength at 1200 and 1800 h. In Exp. 2, no bloat was observed, and no differences between wheat varieties were observed for any of the rumen foam measures. Therefore, for these 2 varieties, the soft-red winter wheat had a greater bloat potential than the hard-red winter wheat based on results from the cannulated heifers, but no differences were observed in the frequency of bloat in stocker cattle. In

  11. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers.

    Science.gov (United States)

    Achtar, S; Moualla, M Y; Kalhout, A; Röder, M S; MirAli, N

    2010-11-01

    Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing 34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from 0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B genome had the highest mean number of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively, and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties that is crucial for wheat improvement.

  12. Study on genetic diversity in Pakistani wheat varieties using simple ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Common wheat (Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is ... A high degree of genetic polymorphism was observed among the wheat varieties with average ... cold, heat, soil salinization and water logging and (ii) ... and to find genetically most diverse genotypes of wheat.

  13. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    Science.gov (United States)

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  14. Drought tolerant wheat varieties developed through mutation ...

    African Journals Online (AJOL)

    In search for higher yielding drought tolerant wheat varieties, one of the Kenyan high yielding variety 'Pasa' was irradiated with gamma rays (at 150, 200, and 250gy) in 1997 so as to induce variability and select for drought tolerance. Six mutants ((KM10, KM14, KM15, KM18, KM20 and KM21) were selected at M4 for their ...

  15. Characterization of wheat varieties by seed storageprotein ...

    African Journals Online (AJOL)

    Journal Home > Vol 6, No 5 (2007) > ... Wheat grains of thirteen varieties were collected from different ecological regions of Pakistan. ... the dendrogram for high molecular weight (HMW) and low molecular weight (LMW) gluten subunit bands.

  16. Maternal effects of the English grain aphids feeding on the wheat varieties with different resistance traits.

    Science.gov (United States)

    Hu, Xiang-Shun; Zhang, Zhan-Feng; Zhu, Tong-Yi; Song, Yue; Wu, Li-Juan; Liu, Xiao-Feng; Zhao, Hui-Yan; Liu, Tong-Xian

    2018-05-09

    The maternal effects of the English grain aphid, Sitobion avenae on offspring phenotypes and performance on wheat varieties with different resistance traits were examined. We found that both conditioning wheat varieties(the host plant for over 3 months) and transition wheat varieties affected the biological parameters of aphid offspring after they were transferred between wheat varieties with different resistance traits. The conditioning varieties affected weight gain, development time (DT), and the intrinsic rate of natural increase (r m ), whereas transition varieties affected the fecundity, r m , net reproductive rate, and fitness index. The conditioning and transition wheat varieties had significant interaction effects on the aphid offspring's DT, mean relative growth rate, and fecundity. Our results showed that there was obvious maternal effects on offspring when S. avenae transferred bwteen wheat varieties with different resistance level, and the resistance traits of wheat varieties could induce an interaction between the conditioning and transition wheat varieties to influence the growth, development, reproduction, and even population dynamics of S. avenae. The conditioning varieties affected life-history traits related to individual growth and development to a greater extent, whereas transition varieties affected fecundity and population parameters more.

  17. Breeding of new variety Yangfumai 4 with high resistance to wheat yellow mosaic disease

    International Nuclear Information System (INIS)

    He Zhentian; Chen Xiulan; Zhang Rong; Wang Jianhua; Wang Jinrong; Liu Jian

    2011-01-01

    To control the infection of wheat yellow mosaic disease,new wheat variety with high-yield, disease-resistant was selected. Ningmai 9, which carries yellow mosaic disease resistant genes, was used as original material. Combination of conventional breeding technique and radiation methods, a new wheat variety Yangfumai 4 was developed during 1996-2007, and registered in 2008. The new wheat variety with high yield and resistance to yellow mosaic disease is suitable to plant in the Yangtze River region. (authors)

  18. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.)

    Indian Academy of Sciences (India)

    Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled ...

  19. Salt tolerance analysis of chickpea, faba bean and durum wheat varieties. II. Durum wheat

    NARCIS (Netherlands)

    Katerji, N.; Hoorn, van J.W.; Hamdy, A.; Mastrorilli, M.; Nachit, M.M.; Oweis, T.

    2005-01-01

    Seven varieties of durum wheat (Triticum turgidum), provided by ICARDA, were tested in a greenhouse experiment for their salt tolerance. Afterwards two varieties, differing in salt tolerance, were irrigated with waters of three different salinity levels in a lysimeter experiment to analyse their

  20. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  1. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  2. Genetic controls on starch amylose content in wheat and rice grains

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... cuboid in appearance and smaller than wheat or maize. (figure 3; Kaur et al. 2007). ..... gaps in our knowledge. Due to the hexaploid ...... Makino A 2011 Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.

  3. Spectroscopic analysis of essential elements in different varieties of wheat grown in Sindh

    International Nuclear Information System (INIS)

    Shar, G.Q.; Kazi, T.G.; Jakhrani, M.A.; Sahito, S.R.

    2002-01-01

    Atomic absorption spectrometry (AAS) has been used to characterize essential elements in wheat. The procedure has been validated by analyzing a certified sample obtained from the Federal Seed Certification and Registration Department. Several wheat samples of known origin, variety and crop year have been analysed to determine the content of sodium, potassium, calcium, magnesium, iron and zinc by means of Atomic Absorption Spectrophotometric. Considerable amount of essential elements was to be found in each variety of wheat. The values of each element were compared with certified samples, which is at the 95 to 98 % confidence limit. The resulting compositions of the different samples have been used to assess species, origin and variety of the examined wheat. (author)

  4. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Microsatellites in wheat and their applications

    International Nuclear Information System (INIS)

    Stephenson, P.; Bryan, G.J.; Kirby, J.; Gale, M.D.

    1998-01-01

    The development of large panels of simply analyzable genetic markers for diversity studies and tagging, agronomically important genes in hexaploid bread wheat is an important goal in applied cereal genetic research. We have isolated and sequenced over two-hundred clones containing microsatellites from the wheat genome, and have tested 150 primer pairs for genetic polymorphism using a panel of ten wheat varieties, including the parents of our main mapping cross. A total of 125 loci were detected by 82 primer pairs, of which 105 loci from 63 primer pairs can be unequivocally allocated to one of the wheat chromosomes. A relatively low frequency of the loci detected are from the D-genome (24%). Generally, the microsatellites show high levels of genetic polymorphism and an average 3.5 alleles per locus with an average polymorphism information content (PIC) value of 0.5. The observed levels of polymorphism are positively correlated with the length of the microsatellite repeats. A high proportion, approximately one half, of primer pairs designed to detect simple sequence repeat (SSR) variation in wheat do not generate the expected amplification products and, more significantly, often generate unresolvable Polymerase Chain Reaction (PCR) products. In general our results agree closely with those obtained from other recent studies using microsatellites in plants. (author)

  6. Breeding of newly licensed wheat variety Huapei 8 and improved ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-28

    Dec 28, 2011 ... Full Length Research Paper. Breeding of newly licensed wheat variety Huapei 8 and improved breeding strategy by anther culture ... more efficient in pure line selection rather than the hete- .... Regional and productivity tests showed that Huapei 8 had .... Large-scale production of wheat and triticale double.

  7. Exclusion of solar UV radiation improves photosynthetic performance and yield of wheat varieties.

    Science.gov (United States)

    Kataria, Sunita; Guruprasad, K N

    2015-12-01

    Field studies were conducted to determine the potential for alterations in photosynthetic performance and grain yield of four wheat (Triticum aestivum) varieties of India- Vidisha, Purna, Swarna and Naveen Chandausi by ambient ultraviolet radiation (UV). The plants were grown in specially designed UV exclusion chambers, wrapped with filters that excluded UV-B (solar UV exclusion increased the leaf mass per area ratio, leaf weight ratio and chlorophylls per unit area of flag leaves in all the four varieties of wheat. Polyphasic chlorophyll a fluorescence transients from the flag leaves of UV excluded wheat plants gave a higher fluorescence yield. Exclusion of solar UV significantly enhanced photosynthetic performance as a consequence of increased efficiency of PS II, performance index (PIABS) and rate of photosynthesis in the flag leaves of wheat varieties along with a remarkable increase in carbonic anhydrase, Rubisco and nitrate reductase activities. This additional fixation of carbon and nitrogen by exclusion of UV was channelized towards the improvement in grain yield of wheat varieties as there was a decrease in the UV-B absorbing substances and an increase in soluble protein content in flag leaves of all the four varieties of wheat. The magnitude of response for UV exclusion for all the measured parameters was higher in two varieties of wheat Vidisha and Purna as compared to Swarna and Naveen Chandausi. Cumulative stress response index (CSRI) for each variety was developed from the cumulative sum of physiological and yield parameters such as leaf mass area ratio of flag leaf, total chlorophyll content, performance index at absorption basis, rate of photosynthesis and grain yield. All the varieties had a negative CSRI, demonstrating a negative impact of ambient UV radiation. Naveen Chandausi and Swarna are less sensitive to ambient UV radiation; Vidisha is more sensitive to both UV-A and UV-B and Purna is more sensitive to ambient UV-B radiation. Copyright

  8. Tripartite interactions of Barley yellow dwarf virus, Sitobion avenae and wheat varieties.

    Directory of Open Access Journals (Sweden)

    Xiao-Feng Liu

    Full Text Available The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L., the Barley yellow dwarf virus (BYDV, and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1 aphid peak number (APN in the aphid + BYDV (viruliferous aphid treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13G and Xiaoyan6. (2 The production of alatae (PA was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13G and Xiaoyan6. (3 The BYDV disease incidence (DIC on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID on Tam200(13G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4 Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing.

  9. Tripartite Interactions of Barley Yellow Dwarf Virus, Sitobion avenae and Wheat Varieties

    Science.gov (United States)

    Liu, Xiao-Feng; Hu, Xiang-Shun; Keller, Mike A.; Zhao, Hui-Yan; Wu, Yun-Feng; Liu, Tong-Xian

    2014-01-01

    The tripartite interactions in a pathosystem involving wheat (Triticum aestivum L.), the Barley yellow dwarf virus (BYDV), and the BYDV vector aphid Sitobion avenae were studied under field conditions to determine the impact of these interactions on aphid populations, virus pathology and grain yield. Wheat varietal resistance to BYDV and aphids varied among the three wheat varieties studied over two consecutive years. The results demonstrated that (1) aphid peak number (APN) in the aphid + BYDV (viruliferous aphid) treatment was greater and occurred earlier than that in the non-viruliferous aphid treatment. The APN and the area under the curve of population dynamics (AUC) on a S. avenae-resistant variety 98-10-30 was significantly lower than on two aphid-susceptible varieties Tam200(13)G and Xiaoyan6. (2) The production of alatae (PA) was greater on the variety 98-10-30 than on the other varieties, and PA was greater in the aphid + BYDV treatment on 98-10-30 than in the non-viruliferous aphid treatment, but this trend was reversed on Tam200(13)G and Xiaoyan6. (3) The BYDV disease incidence (DIC) on the variety 98-10-30 was greater than that on the other two varieties in 2012, and the disease index (DID) on Tam200(13)G was lower than on the other varieties in the aphid + BYDV and BYDV treatments in 2012, but not in 2011 when aphid vector numbers were generally lower. (4) Yield loss in the aphid + BYDV treatment tended to be greater than that in the aphid or BYDV alone treatments across varieties and years. We suggested that aphid population development and BYDV transmission tend to promote each other under field conditions. The aphids + BYDV treatment caused greater yield reductions than non-viruliferous aphids or virus treatment. Wheat varietal resistance in 98-10-30 affects the aphid dispersal, virus transmission and wheat yield loss though inhibits aphid populations from increasing. PMID:25184214

  10. Breeding of newly licensed wheat variety Huapei 8 and improved ...

    African Journals Online (AJOL)

    H2 was the best selection generation for traits with high heredity ability, and H3 was the best selection for grain traits and yield test. Consequently, we bred and licensed six new wheat varieties derived from anther culture and significantly reduced breeding time to three to five years. Huapei 8 was the newest released wheat ...

  11. Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.)

    OpenAIRE

    Н. В. Булавка; Л. М. Голик

    2007-01-01

    The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days). Vernalization requierement differences among varieties from different climatic zones were revealed.

  12. High-yielding Wheat Varieties Harbour Superior Plant Growth Promoting-Bacterial Endophytes

    Directory of Open Access Journals (Sweden)

    Mehwish Yousaf

    2017-06-01

    Full Text Available Background and Objective: The purpose of this study was to compare the endophytic microbial flora of different wheat varieties to check whether a better yielding variety also harbours superior plant growth promoting bacteria. Such bacteria are helpful in food biotechnology as their application can enhance the yield of the crop.Material and Methods: Three wheat varieties (Seher, Faisalabad and Lasani were selected, Seher being the most superior variety. endophytic bacteria were isolated from the histosphere of the leaves and roots at different growth phases of the plants. The isolates were analyzed for plant growth promoting activities. Isolates giving best results were identified through 16S rRNA gene sequencing. Statistical analysis was done using Microsoft Excel 2013. All the experiments were conducted in triplicates.Results and Conclusion: The endophytes of Seher variety showed maximum plant growth promoting abilities. Among the shoot endophytes, the highest auxin production was shown by Seher isolate SHHP1-3 up to 51.9μg ml-1, whereas in the case of root endophytes, the highest auxin was produced by SHHR1-5 up to 36 μg ml-1. The bacteria showing significant plant growth promoting abilities were identified by 16S rRNA sequencing. Bacillus, Proteobacteria and Actinobacteria species were the dominant bacteria showing all the traits of plant growth promotion. It can be concluded that Seher variety harbours superior plant growth promoting endophytes that must be one of the reasons for its better growth and yield as compared to the other two varieties. The investigated results support possible utilization of the selected isolates in wheat growth promotion with respect to increase in agro-productivity. The application of such bacteria could be useful to enhance wheat yield and can help in food biotechnology.Conflict of interest: The authors declare no conflict of interest.

  13. Impact of Solid and Hollow Varieties of Winter and Spring Wheat on Severity of Wheat Stem Sawfly (Hymenoptera: Cephidae) Infestations and Yield and Quality of Grain.

    Science.gov (United States)

    Szczepaniec, Adrianna; Glover, Karl D; Berzonsky, William

    2015-10-01

    Wheat stem sawfly (WSS), Cephus cinctus Norton (Hymenoptera: Cephidae), has recently emerged as a key pest of wheat (Triticum aestivum L.) in the Great Plains and Canadian provinces. The expanding impact of WSS has caused considerable economic losses to wheat production. Solid-stem varieties of wheat remain the only effective measure of suppression of WSS, and the goal of this research was to test whether five solid- and hollow-stem varieties of winter and spring wheat reduce survival of WSS in South Dakota. We reported that solid-stem varieties had significantly lower numbers of WSS larvae, and this effect was especially evident when WSS infestation rates exceeded 15%. We also observed that the yield of solid-stem varieties was significantly lower than hollow-stem varieties when the abundance of WSS was low, but not when populations of WSS were relatively high. We did not observe consistent differences in grain quality between solid- and hollow-stem varieties, however, and in case of protein levels of grain, solid-stem wheat varieties performed better than hollow-stem wheat. We conclude that solid-stem varieties of wheat appear to effectively suppress WSS survival, and reduced yield of these varieties is less apparent when populations of C. cinctus are high enough to affect the yield of hollow-stem wheat. This is the first report to describe the effectiveness of solid-stem varieties of wheat on WSS in South Dakota. More research in the state is necessary before more robust conclusions can be drawn. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Reduction of aflatoxin B1 contamination in Pakistani wheat varieties by physical methods

    International Nuclear Information System (INIS)

    Hussain, A.; Lutfullah, G.

    2011-01-01

    In the study of effect of physical treatments, such as washing and heating, on the AFB1 contaminated wheat varieties, it was observed that the reduction of AFB1 was directly proportional to washing time in all the varieties. The concentration of AFB1 was reduced more by heating than washing. The level of AFB1 in dried wheat decreased to more than 50% and 90% by heating in oven at 150 and 200 degree C, respectively. However, the reduction of AFB1 in wet wheat in which water (10%) was intentionally added was higher on heating at 100 degree C for 30 min than that in the dried wheat. (author)

  15. Investigation of rheological properties of winter wheat varieties during storage

    Directory of Open Access Journals (Sweden)

    Móré M.

    2015-01-01

    Full Text Available The paper shows the results of some experimental researches on the rheological characteristics of the dough obtained from the flour of three winter wheat varieties. We used valorigraph test to determine the rheological properties of wheat flour dough, because it determines the quality of the end-products. Winter wheat varieties (Lupus, Mv Toldi and GK Csillag were produced and their samples were collected on Látókép Research Farm of the University of Debrecen in the crop year of 2011/2012. We have carried out a short-term storage experiment (from July to August, 2012. We analysed the changes in water absorption capacity, dough stability time and valorigraph quality number for 3 times (24.07.2012, 31.07.2012, 21.08.2012 during short-term storage. Our results showed that the baking quality of Lupus, Mv Toldi and GK Csillag improved during the storage period.

  16. Suitability of spring wheat varieties for the production of best quality pizza.

    Science.gov (United States)

    Tehseen, Saima; Anjum, Faqir Muhammad; Pasha, Imran; Khan, Muhammad Issa; Saeed, Farhan

    2014-08-01

    The selection of appropriate wheat cultivars is an imperative issue in product development and realization. The nutritional profiling of plants and their cultivars along with their suitability for development of specific products is of considerable interests for multi-national food chains. In this project, Pizza-Hut Pakistan provided funds for the selection of suitable newly developed Pakistani spring variety for pizza production. In this regard, the recent varieties were selected and evaluated for nutritional and functional properties for pizza production. Additionally, emphasis has been paid to assess all varieties for their physico-chemical attributes, rheological parameters and mineral content. Furthermore, pizza prepared from respective flour samples were further evaluated for sensory attributes Results showed that Anmool, Abadgar, Imdad, SKD-1, Shafaq and Moomal have higher values for protein, gluten content, pelshenke value and SDS sedimentation and these were relatively better in studied parameters as compared to other varieties although which were considered best for good quality pizza production. TD-1 got significantly highest score for flavor of pizza and lowest score was observed from wheat variety Kiran. Moreover, it is concluded from current study that all wheat varieties except TJ-83 and Kiran exhibited better results for flavor.

  17. Vernalization requirement of winter bread wheat modern varieties (Tritikum aestivum L.

    Directory of Open Access Journals (Sweden)

    Н. В. Булавка

    2007-12-01

    Full Text Available The study of vernalization requierement of winter bread wheat 87 modem varieties from Ukraine and Russia showed significant domination - 81.6% - of varieties with short vernalization requierement (30-40 days. Vernalization requierement differences among varieties from different climatic zones were revealed.

  18. Gliadin and glutenin polymorphism in durum wheat landraces and breeding varieties of Azerbaijan

    Directory of Open Access Journals (Sweden)

    Sadigov-Baykishi Hamlet

    2015-01-01

    Full Text Available Durum wheat genotypes including 7 landraces and 17 breeding varieties were studied. Polyacrylamide gel electrophoresis under acidic conditions of pH 3.1 was used to study gliadin and glutenin polymorphisms. In total, 32 gliadin and 8 high molecular weight glutenin alleles were identified. The contribution of B genome (58.5% to the allelic variation of durum wheat varieties was higher than of A genome. The cluster analysis delineated genotypes into four main clusters. According to cluster analysis, legitimacy identifying the distribution of botanical varieties through the tree was observed. The study confirms the suitability of biochemical markers for cultivar identification and genetic relation study in durum wheat genotypes.

  19. Study on Spectrum Estimation in Biophoton Emission Signal Analysis of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Yitao Liang

    2014-01-01

    Full Text Available The photon emission signal in visible range (380 nm–630 nm was measured from various wheat kernels by means of a low noise photomultiplier system. To study the features of the photon emission signal, the spectrum estimation method of the photon emission signal is described for the first time. The biophoton emission signal, belonging to four varieties of wheat, is analyzed in time domain and frequency domain. It shows that the intensity of the biophoton emission signal for four varieties of wheat kernels is relatively weak and has dramatic changes over time. Mean and mean square value are obviously different in four varieties; the range was, respectively, 3.7837 and 74.8819. The difference of variance is not significant. The range is 1.1764. The results of power spectrum estimation deduced that the biophoton emission signal is a low frequency signal, and its power spectrum is mostly distributed in the frequency less than 0.1 Hz. Then three parameters, which are spectral edge frequency, spectral gravity frequency, and power spectral entropy, are adopted to explain the features of the kernels’ spontaneous biophoton emission signal. It shows that the parameters of the spontaneous biophoton emission signal for different varieties of wheat are similar.

  20. Selecting of a new soft wheat variety of Yangfumai 2

    International Nuclear Information System (INIS)

    He Zhentian; Chen Xiulan; Han Yuepeng; Wang Jinrong; Yang Hefeng; Liu Xueyu

    2004-01-01

    A new variety Yangfumai 2 was developed by hybridization (Yangmai158 x mutation line 1-9012) and irradiation. The flour quality of new variety meets the national standard of soft wheat, and agronomic characteristics show stable high yield, high stress toloerance and high 1000-grain weight. (authors)

  1. Seed priming improves salinity tolerance of wheat varieties

    International Nuclear Information System (INIS)

    Jamal, Y.; Shafi, M.; Arif, M.

    2011-01-01

    To evaluate the response of wheat varieties to seed priming and salinity, an experiment was conducted in completely randomized design (CRD) with three replications at Institute of Biotechnology and Genetic Engineering (IBGE), KPK Agricultural University, Peshawar, Pakistan. The performance of 6 wheat varieties (Tatara-96, Ghaznavi-98, Fakhri Sarhad, Bakhtawar-92, Pirsabaq-2004 and Auqab-2000) at two seed conditions (primed with 30 mM NaCl and un primed) under four salinity levels (0, 40, 80 and 120 mM) was studied. Statistical analysis of the data revealed that salinity, seed priming and varieties had significantly (P= 0.05) affected shoot fresh weight plant/sup -1/ shoot dry weight plant/sup -1/, shoot Na/sup +/ contents (mg g/sup -1/ dry weight), shoot K/sup +/ contents (mg g/sup -1/ dry weight) and shoot K/sup +/Na/sup +/ ratio. Maximum shoot fresh weight plant/sup -1/ (7.71 g), shoot dry weight plant/sup -1/ (1.68 g), shoot K/sup +/ contents (1.39 mg g/sup -1/ dry weight) and shoot K/sup +/ Na/sup +/ratio (1.45) were recorded from Bakhtawar-92 as compared with other varieties. Highest shoot Na/sup +/ contents (1.43 mg g/sup -1/ dry weight) were recorded from Auqab-2000 when compared with other varieties. All parameters were enhanced with seed priming except shoot Na/sup +/ contents, which reduced significantly (p= 0.05) with seed priming. (author)

  2. Economical and Morpho-Biological Features of Whiner Wheat New Generation Varieties (Triticum durum

    Directory of Open Access Journals (Sweden)

    Л. І. Улич

    2010-10-01

    Full Text Available The article describes summary of the researches, characteristics of morphological and agro-biological characteristics and features, a note is made of a significant progress in the selection of productivity and adaptability of registered Durum Winter Wheat Varieties of new crops rotation. Significant developments of  plants architectonic are marked, especially in height, characteristics of economical value, and in terms of considerable achievements in breeding of this kind of wheat. A stress in made on the need to enhance Durum Winter Wheat breeding to develop more frostresistant and drought-overheat resistant varieties.

  3. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  4. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, I.; Escorial, C.; Garcia-Baudin, J. M.; Chueca, M. C.

    2009-07-01

    Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F{sub 1} hybrids bearing F{sub 2} seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with Astral wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphiploids (2n=10x=70). The present study evidences the possibility of spontaneous formation of amphiploids between these three Aegilops species and hexaploid wheat and discusses their relevance for gene transference. Future risk assessment of transgenic wheat cultivars needs to evaluate the importance of amphiploids as a bridge for transgene introgression and for gene escape to the wild. (Author)

  5. Mass photosynthesis and distribution of photo assimilates of winter wheat varieties with different maturity feature

    International Nuclear Information System (INIS)

    Wang Fahong; Zhao Junshi

    1996-01-01

    The mass photosynthesis rate and distribution of photoassimilates of winter wheat varieties with different maturity feature were studied using GXH-305 portable CO 2 infrared ray analyzer. The mass photosynthesis rate of winter wheat varieties with better maturity feature showed little difference from the varieties with general maturity feature during the early stage of grain filling phase. However, the mass photosynthesis rate of the former was significantly higher than that of the later during the middle and late stage of grain filling. The study with 14 CO 2 -tracing method showed that the relative activity in different organs of varieties with better maturity feature was significantly higher than that of varieties with worse maturity feature during the later growth stage of winter wheat. The rate of photoassimilates distribution in stalk and root system of winter wheat varieties with better maturity was higher than that in the others organs. The physiological mechanism of difference of grain yield and plant decay in varieties with different maturity feature were also discussed

  6. Determination of iron and copper contents in certain indigenous varieties of wheat (Triticum aestivum, L.)

    International Nuclear Information System (INIS)

    Akhtar, M.S.; Abbas, N.; Shaheen, A.

    2004-01-01

    Forty seven wheat varieties were tested for their iron and copper contents. The iron and copper contents were found to differ significantly (P 0.05) with respect to iron and copper contents. The variety named Dirk was found to possess the highest iron contents, while the variety Pasban-90 showed the highest copper contents. The varieties Dirk, Sariab, Tandojam-83, Punjab-88, Sarsabz, Punjab-81, Sandal and Sind-81 contained significantly higher iron contents as compared to other wheat varieties. The varieties, which contained the highest concentrations of copper, were Pasban-90, Chenab-79, Faisalabad-85, Lyp-73, Sind-81, Anmol-91, C-271, Rohtas-90 and Chakwal-86. However, the differences in copper contents among all these wheat varieties were non-significant (P>0.05). These varieties can therefore, be recommended to be included for future breeding and commercial exploitation. (author)

  7. The pangenome of hexaploid bread wheat

    Czech Academy of Sciences Publication Activity Database

    Montenegro, J. D.; Golicz, A. A.; Bayer, P.E.; Hurgobin, B.; Lee, H. T.; Chan, C. K. K.; Visendi, P.; Lai, K.; Doležel, Jaroslav; Batley, J.; Edwards, D.

    2017-01-01

    Roč. 90, č. 5 (2017), s. 1007-1013 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : database * diversity * genome * pangenome * single nucleotide polymorphisms * Triticum aestivum * wheat Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  8. Genetic resources as initial material for developing new soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    В. М. Кір’ян

    2016-12-01

    Full Text Available Purpose. To estimate genetic resources collection of soft winter wheat plants (new collection accessions of Ustymivka Experimental Station for Plant Production and select initial material for breeding of adaptive, productive and qualitative soft winter wheat varieties. Methods. Field experiment, laboratory testing. Results. The authors pre- sented results of study of over 1000 samples of gene pool of soft winter wheat from 25 countries during 2001–2005 in Ustymivka Experimental Station for Plant Production of Plant Production Institute nd. a. V. Ya. Yuriev, NAAS of Ukraine for a complex of economic traits. More than 400 new sources with high adaptive properties were selected that combine traits of high productivity and high quality of grain, early ripening, resistance to biotic and abiotic fac- tors (the assessment of samples for 16 valuable traits is given. The selected material comes from various agro-cli- matic zones, including zones of unsustainable agriculture. Conclusions. Recommended sources of traits that have breeding value will allow to enrich high-quality assortment of wheat and considerably accelerate breeding process du- ring development of new soft winter wheat varieties.

  9. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035

    Science.gov (United States)

    Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...

  10. Hydration kinetics of some durum and bread wheat varieties grown in south-eastern region of turkey

    International Nuclear Information System (INIS)

    Yildirm, A.

    2017-01-01

    Hydration kinetics of wheat varieties grown in South-Eastern Region of Turkey, covering a temperature range from 25 to 50 degree C was examined. Peleg's model together with Arrhenius relationship were successfully used to evaluate water uptake of some Durum (Local names; Zenit and BurgosBurgos) and Bread (Local names; Dariyel and Karatopak) wheat varieties during soaking at a temperature range of 25-50 degree C. Model was found to be suitable for describing the soaking behaviour of wheat kernels with a coefficient of determination (R2) and Root mean square error (RMSE) greater than 0.9805, and less than 0.051, respectively. The Peleg rate and capacity constants, K1 and K2, were affected by temperature and wheat varieties. Activation energy values of Zenit, BurgosBurgos, Dariyel and Karatopak wheats were found as 39.94, 38.03, 36.25 and 29.54 kJ mol-1, respectively. Zenit wheat was the least hydrated while Karatopak was the most hydrated one due to kernel size and protein content. General equations to describe the water uptake of wheat varieties as a function of soaking time, temperature and initial moisture content were developed. These derived equations can be used for wheat operations such as tempering, mixing, knedding etc. (author)

  11. Construction and analysis of a microsatellite-based database of european wheat varieties

    NARCIS (Netherlands)

    Röder, M.S.; Wendehake, K.; Korzun, V.; Bredemeijer, G.; Laborie, D.; Bertrand, L.; Isaac, P.; Vosman, B.

    2002-01-01

    A database of 502 recent European wheat varieties, mainly of winter type, was constructed using 19 wheat microsatellites and one secalin-specific marker. All datapoints were generated in at least two laboratories using different techniques for fragment analysis. An overall level of >99.5ccuracy

  12. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    NARCIS (Netherlands)

    Broeck, van den H.C.; Jong, de H.C.; Salentijn, E.M.J.; Dekking, L.; Bosch, H.J.; Hamer, R.J.; Gilissen, L.J.W.J.; Meer, van der I.M.; Smulders, M.J.M.

    2010-01-01

    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the

  13. Early growth response of six wheat varieties under artificial osmotic stress condition

    International Nuclear Information System (INIS)

    Khakwani, A.A.; Dennett, M.D.; Munir, M

    2011-01-01

    An experiment was carried out under laboratory conditions where seeds of six wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were raised in Petri dishes and were either treated with distilled water (control) or 15% polyethylene glycol (PEG) 6000 solution. Seeds were treated with 15% PEG solution to establish an artificial osmotic stress condition (water stress) and observe its effect on germination percentage, coleoptile length, shoot and root length, fresh weight of shoot and root. A significant difference (P<0.05) was recorded between varietal and treatment means regarding all traits. Variety Hashim-8 gave maximum germination percentage (93.33%) whereas maximum coleoptile (1.78 cm) and shoot length (5.77 cm) was observed in variety DN-73 which was statistically at par with variety Hashim-8. Similarly, root length (3.63 g), fresh shoot (0.15 g) and root weight (0.12 g) was maximum in variety Dera-98 which was statistically at par with variety Hashim-8. A second experiment was carried out under glass house environment where plants were treated with non-stress (100% field capacity) and water stress (35% field capacity) treatments. Although total grain yield was significantly (P<0.05) reduced in all six wheat varieties when grown in water stress condition however Hashim-8 showed the lowest reduction (13%) while Zam-04 showed the highest (32%). The outcome of both experiments indicated that these varieties have great potential to incorporate with the existing commercial wheat varieties in order to obtain high yield in water stress regions. (author)

  14. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution

    Czech Academy of Sciences Publication Activity Database

    Raats, D.; Frenkel, Z.; Krugman, T.; Šimková, Hana; Paux, E.; Doležel, Jaroslav; Feuillet, C.; Korol, A.; Fahima, T.

    2013-01-01

    Roč. 14, č. 12 (2013) ISSN 1465-6906 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.465, year: 2013

  15. The concentration ratio of alkaline earth elements calcium, barium and strontium in grains of diploid, tetraploid and hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Maksimović Ivana V.

    2017-01-01

    Full Text Available Even though calcium (Ca, strontium (Sr and barium (Ba belong to the same group of the periodic table of elements, and thus have similar chemical features, their importance for plants differs greatly. Since plants do not have the ability to completely dis­criminate between essential (e.g. Ca and non-essential elements (e.g. Sr and Ba, they read­ily take all of them up from soil solution, which is reflected in the ratios of concentrations of those elements in plant tissues, and it influences their nutritive characteristics. The ability of plant species and genotypes to take up and accumulate chemical elements in their different tissues is related to their genetic background. However, differences in chemical composition are the least reflected in their reproductive parts. Hence, the aim of this study was to evaluate ratios of concentrations of Ca, Sr and Ba in the whole grain of diploid and tetraploid wheat - ancestors of common wheat, as well as in hexaploid commercial cultivars, grown in the field, at the same location, over a period of three years. The investigated genotypes accumulated Ca, Sr and Ba at different levels, which is reflected in the ratio of their concentrations in the grain. The lowest ratio was established between Ba and Sr, followed by Ca and Ba, while the highest ratio was between Ca and Sr. Moreover, the results have shown that the year of study, genotype and the combination highly significantly affected the ratio of the concentration Ca:Sr, Ca:Ba, and Ba:Sr.

  16. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  17. Some Physical and Chemical Properties of Iraqi Wheat Varieties and their Relationship with Bread Characteristics

    International Nuclear Information System (INIS)

    Fadhl, J.; AL-A'ani, S.; AL-Noori, F.; Sajet, A.

    2005-01-01

    The results showed that the volume of the bread baked from wheat flour of Tammoze 3 was increased significantly compared to other wheat varieties. Maxiback flour gave the smallest bread volume; whereas Abugraib and Rabi'ah bread were not significantly different. Abugraib wheat was not significantly different from Rabi'ah bread. The taste panel results were compatible with baking results. Tammoze 3 was the highest in one thousand grain weight and total protein percentage. Rabi'ah wheat flour was superior in water absorption Among the tested wheat flour varieties, maxiback flour showed best fat content. Amylases and proteases activities were higher in wheat grains than in flour. Protease activity was the highest in Maxiback flour; whereas in Tammoze 3 it was the lowest. (Author's) 19 refs., 5 tabs

  18. Assessment of chapatti quality of wheat varieties based on physicochemical, rheological and sensory traits.

    Science.gov (United States)

    Kundu, Manju; Khatkar, Bhupendar Singh; Gulia, Neelam

    2017-07-01

    Fifty wheat varieties were assessed for chapatti quality using grain characteristics, dough rheological properties and pasting characteristics. Results revealed that 88% of wheat varieties studied were medium-hard to hard based on kernel texture. Water absorption and damaged starch were found to be important parameters for chapatti quality as both parameters had significant positive effect on the pliability and puffing height of chapatti. Protein content and gluten strength parameters like SDS sedimentation volume, dough stability and gluten index were found to have a negative impact on chapatti quality. Based on chapatti quality assessment the wheat varieties were classified into four distinct clusters viz. good, acceptable, fair and poor for chapatti making. It was elucidated that 46% of the varieties studied were good to acceptable for chapatti making, while 54% resulted in fair or poor chapatti quality thereby clearly indicating the need to establish and substantiate the development of product-specific varieties. Copyright © 2016. Published by Elsevier Ltd.

  19. Regularity of mitosis in different varieties of winter bread wheat under the action of herbicides

    Directory of Open Access Journals (Sweden)

    Tatyana Eugenivna KOPYTCHUK

    2012-05-01

    Full Text Available The influence of the most widespread herbicides on winter wheat in Ukraine was studied by anaphase test. Treatment with herbicides reduced the germination of the seeds and disturbed the regularity of mitosis in all varieties of wheat. The range of violations of mitosis was demonstrated by the formation of chromosomal aberrations and dysfunctions of cell cytoskeleton which occurred while processing herbicides. Varietal differences between investigated wheat by sensitivity to herbicides were discovered. The most resistant to herbicides was variety Fantasya Odesskaya, and the most sensitive – Nikoniya, while the most harmful herbicide for wheat was Napalm.

  20. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  1. Changes in the phenolic composition of pancake fractions made from refined and whole-wheat flour of two wheat varieties

    Science.gov (United States)

    In this study, we investigated the changes in the levels of phenolic acids during pancake preparation from refined and whole-wheat flours of two wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenolic acids, namely ultrasonic-assisted extrac...

  2. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  3. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

    Directory of Open Access Journals (Sweden)

    van Veelen Peter A

    2006-01-01

    Full Text Available Abstract Background Bread wheat (Triticum aestivum is an important staple food. However, wheat gluten proteins cause celiac disease (CD in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease. Results We obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87% contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome, as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific. Conclusion Our analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic

  4. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    Science.gov (United States)

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd.

  5. Screening commercial wheat (triticum aestivum l.) varieties for agrobacterium mediated transformation ability

    International Nuclear Information System (INIS)

    Abid, N.; Maqbool, A.; Mlaik, K.

    2014-01-01

    Wheat is staple food crop of many countries including Pakistan. It has a large number of cultivars and genotypes. All genotypes have different tissue culture response that includes callus induction, regeneration and transformation efficiency. For transgenic plant production it is crucial to know tissue culture efficiency of a selected variety. Therefore, in the present study mature embryos of thirteen elite wheat (Triticum aestivum L.) varieties were evaluated for tissue culture response and their amenability to transformation. Each variety responded differently for callogenesis, transient GUS (glucuronidase) expression and regeneration. The results for callus induction and transient GUS expression ranged from 30-100% and 13-100%, respectively whereas regeneration response was quite different in tested varieties that ranged from 0-44%. Good quality callus was observed in all varieties except Dhurabi-11, Lasani-08, Millat and Pak-81. Maximum transient GUS expression (100%) was found in Faisalabad-2008. Highest regeneration (44%) was noticed in Pak-81. Results indicated that three varieties VIII-83, Faisalabad-2008 and Aas-11 are suitable for transformation in comparison to others. (author)

  6. Determination compliance abilities of some triticale varieties and comparison with wheat in Southeastern Anatolia conditions of Turkey.

    Science.gov (United States)

    Kendal, Enver; Tekdal, Sertaç; Aktas, Hüsnü; Karaman, Mehmet

    2014-01-01

    In this research, were used 3 triticale varieties (Tacettinbey, Karma 2000 and Presto), one durum (Sariçanak 98) and one bread (Nurkent) wheat varieties. The study, was randomized as complete block design with four replications in 4 location (southeastern Anatolia of Turkey) and under rainfed conditions during the growing season 2010-2011. With an analysis of variance, significant differences were determined among locations, genotypes and genotype x location interactions at the 1% and 5% level. Following results were obtained: period to heading 109 till 113 days, plant height between 96 and 127 cm, hectoliter weight between 68.2 and 81.7 kg/hl, thousand grain weight between 32.9 and 42.7 g, protein content between 13.3 and 14.7%, humidty kernels at harvest between 9.2 and 9.5% and grain yield between 4409 and 6119 kg/ha(-1). The highest grain yield was obtained with Sariçanak 98 (durum wheat variety) while the best thousant grain weight was obtained by the triticale variety Tacettinbey. The triticale variety Karma 2000 showed higher protein content (14.7%) than other the other triticale varieties as well as durum and bread wheat varieties included trial. For the Southeastern Anatolia Region he results of this study demonstrated that the grain yield of triticale varieties were lower compared to common wheat. Nevertheless the triticale grain yield was higher than these of durum and bread wheat varieties under the more extrem (higher temperature and drought) growing conditions of the Kiziltepe region. For triticale the highest mean grain yield has been obtained fwith the variety Tacettinbey which is spring type. New sping type vatieties are more suitable than wheat for the more extreme growing conditions of the Southeastern Anatolia Region.

  7. Rheological characteristics of flours milled from different wheat varieties (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Ladislav Haris

    2010-01-01

    Full Text Available Technological quality was studied of wheat flours from three varieties of Triticum aestivum L. (Arida, Meritto, Verita delivered to the mill for three years (2007–2009. Physico-chemical parameters observed during the purchase of grain (STN 461100-2 were not significantly different. Also milled flours from tested varieties have by processors required ash content, gluten, acceptable Zeleny index, α-amylase activity (falling number, but as the rheological properties of dough from these flours show, these parameters are unsuited enough (unsuitability of material for efficient processing of flour. Rheological evaluation showed that each variety is suitable for different processing direction. Therefore, if we deliberately separate lots of purchased grain, not only by basic physico-che­mi­cal properties listed in the current standards (CSN and STN, but also by their rheological properties, which are important and reliable indicator of the direction of the end-use processing of wheat flours, the flours will be more likely to succeed in specific cereal technology. For the production of bread was satisfactory rheological properties of dough from variety Arida. Verita variety is suitable for processing into wafers, and a variety Meritto for producing biscuits and crackers. Verita and Me­rit­to varieties so do not achieved the expected values of the rheological optimum for „classic“ bread processing (bakery products despite satisfactory gluten content and falling number to use this processing direction. Reported results show us the possibilities of more efficient selection of varieties or lots purchased grain of wheat for use in baking and buscuit industry by using rheological evaluation methods. Results were evaluated by analysis of data exploration (Boxplot, scattering graphs, classical nonparametric testing of hypotheses and the distribution of the data (Wilcoxon test, Kruskal-Wallis, Friedman, rates central tendency and dispersion.

  8. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat

    Czech Academy of Sciences Publication Activity Database

    Liu, M.; Stiller, J.; Holušová, Kateřina; Vrána, Jan; Liu, D.; Doležel, Jaroslav; Liu, C.

    2016-01-01

    Roč. 6, NOV 8 (2016), č. článku 36398. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * fusarium crown rot * pan-genome * hexaploid wheat * bread wheat * draft genome * rna-seq * maize * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  9. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    Science.gov (United States)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  10. Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat

    Directory of Open Access Journals (Sweden)

    Thomas S. Cox

    2017-10-01

    Full Text Available Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat (Triticum aestivum, of which Ae. tauschii is the source. Since the 1980s, there have been numerous efforts to harness a much larger share of Ae. tauschii's extensive and highly variable gene pool for wheat improvement. Those efforts have followed two distinct approaches: production of amphiploids, known as “synthetic hexaploids,” between T. turgidum and Ae. tauschii, and direct hybridization between T. aestivum and Ae. tauschii; both approaches then involve backcrossing to T. aestivum. Both synthetic hexaploid production and direct hybridization have led to the transfer of numerous new genes into common wheat that confer improvements in many traits. This work has led to release of improved cultivars in China, the United States, and many other countries. Each approach to D-genome improvement has advantages and disadvantages. For example, production of synthetic hexaploids can incorporate useful germplasm from both T. turgidum and Ae. tauschii, thereby enhancing the A, B, and D genomes; on the other hand, direct hybridization rapidly restores the recurrent parent's A and B genomes and avoids incorporation of genes with adverse effects on threshability, hybrid necrosis, vernalization response, milling and baking quality, and other traits, which are often transferred when T. turgidum is used as a parent. Choice of method will depend in part on the type of wheat being developed and the target environment. However, more extensive use of the so-far underexploited direct hybridization approach is especially warranted.

  11. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  12. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    Directory of Open Access Journals (Sweden)

    Sarika Jaiswal

    2017-11-01

    Full Text Available Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169 from complex, hexaploid wheat genome (~17 GB along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb and lowest (74.57 SSRs/Mb SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability testing, EDV (Essentially Derived Variety/IV (Initial Variety disputes, seed

  13. Radio protective effect of gibberellic acid in wheat variety C306

    International Nuclear Information System (INIS)

    Uppal, S.; Maherchandani, N.

    1988-01-01

    The present study was planned to see the effect of GA 3 concentrations on the seedling height and chromosomal damage in a responsive wheat variety C 306, treated with gamma radiation. (author). 13 refs

  14. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Economic Evaluation of Improved Irrigated Bread Wheat Varieties with National and International Origins and Its Impacts on Transfer of Supply Function

    Directory of Open Access Journals (Sweden)

    hormoz asadi

    2017-08-01

    Full Text Available Introduction Agricultural research is important and one of the determinant factors of development of technologies in agricultural sector. Among agricultural research disciplines, breeding programs, especially, wheat breeding programs are one of the applied approaches in improving of production and food security. Based on a study by Byerlee & Traxler (1995, economic benefits and Internal Rate of Return (IRR for Impact of International Wheat Improvement (for all breeding programs were estimated US$3.0 billion per year with internal rate of 53%, and economic benefits for Impact of International Wheat Improvement (Attributed to IWIN was estimated US$1.5 billion per year during 1966-90. Materials and methods The main objectives of this research were to determine shift of supply function of variety and impacts of breeding wheat varieties on reduction costs, and determination of economic return of released irrigated bread wheat in breeding program for the period of 1991-2000. Wheat varieties included; 23 varieties of released irrigated bread wheat by wheat breeding program of Seed and Plant Improvement Institute (SPII and Provincial Agricultural Research Centers. Ex-ante and Ex-post methods were used in this study. Measuring criteria for these methods were; quantity of shift in supply function, cost-benefit analysis and internal rate of return of varieties. For estimation of reduction costs and shift of supply function of varieties in breeding program were calculated following Brennan et al. (2002: Where: Cvb: Cost reduction due to breeding program, TCh: Cost production per ha, Yv (without: yield of check variety in breeding plots, Yv (with: yield of new variety in breeding plots, PSS: % supply shift in breeding program and Pw: price of wheat grain per kg For assessing economic criteria, Net Present Value (NPV, Cost-Benefit Analysis and Internal Rate of Return (IRR were used: Following Brennan et al (2002, gross benefit of irrigated bread wheat

  16. Extraordinarily soft, medium-hard and hard Indian wheat varieties: Composition, protein profile, dough and baking properties.

    Science.gov (United States)

    Katyal, Mehak; Singh, Narpinder; Virdi, Amardeep Singh; Kaur, Amritpal; Chopra, Nidhi; Ahlawat, Arvind Kumar; Singh, Anju Mahendru

    2017-10-01

    Hard wheat (HW), medium-hard wheat (MHW) and extraordinarily soft wheat (Ex-SW) varieties with grain hardness index (GHI) of 83 to 95, 72 to 80, 17 to 29 were evaluated for pasting, protein molecular weight (MW) distribution, dough rheology and baking properties. Flours from varieties with higher GHI had more protein content, ash content and paste viscosities. Ex-SW had more glutenins proportion as compared to HW and MHW. Flours from Ex-SW varieties showed lower NaSRC, WA and mixographic parameters as compared to HW and MHW. Dough from flours milled from Ex-SW had higher Intermolecular-β-sheets (IM-β-sheets) than those from MHW and HW. Muffins volume increased with decrease in GHI, Ex-SW varieties had more muffin volume and less air space. The accumulation of polypeptides (PPs) varied significantly in different varieties. Ex-SW variety (QBP12-10) showed accumulation of 98, 90, 81 and 79kDa PPs, which was unique and was different from other varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Bread winter wheat breeding (Triticum aestivum L. using spring varieties genepool in forest-steppe Environments of Ukraine

    Directory of Open Access Journals (Sweden)

    В. С. Кочмарський

    2010-10-01

    Full Text Available It is concluded by investigations that wheat crossing of various development types between themselves cause increase of formbuilding process in hybrid progeny, promoting the selection of practically valuable recombinats. The genotypes which present the practical valuable by complex of adaptive traits and properties have been selected by phenotype stability in the breeding process. The new bread winter wheat variety Pamyati Remesla developed with participation of spring wheat variety Hja 22139 (Finland has been proposed for including it into the Register of Plant varieties of Ukraine adapted for use in Steppe, Forest- Steppe and Woodland of Ukraine since 2010.

  18. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    Science.gov (United States)

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  19. Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development

    International Nuclear Information System (INIS)

    Khakwani, A.A.; Abid, M.

    2012-01-01

    Plants of 6 bread wheat varieties (Damani, Hashim-8, Gomal-8, DN-73, Zam-04 and Dera-98) were subjected to 2 treatments i.e., control treatment (100% field capacity) and stressed treatment (20 days water stress was given during booting stage and 20 days water stress after anthesis). The findings revealed highly significant differences among means of wheat varieties in all physiological and yield traits. Almost all varieties showed their best adaptation under stressed environment however Hashim-8 and Zam-04 behaved exclusively and indicated higher relative water content (RWC), mean productivity (MP), geometric mean productivity (GMP) and stress tolerance index (STI) whereas stress susceptibility index (SSI) and tolerance (TOL) was estimated at its lowest, as these traits are recognised beneficial drought tolerance indicators for selection of a stress tolerant variety. Similarly, total grain yield per plant, biological yield per plant and harvest index was also higher in the same wheat varieties that put them as good candidates for selection criteria in wheat breeding program for drought resistant. (author)

  20. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2006-10-01

    Full Text Available Abstract Background Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. Results We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip® aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. Conclusion This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat.

  1. BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes

    Czech Academy of Sciences Publication Activity Database

    Šimková, Hana; Šafář, Jan; Kubaláková, Marie; Suchánková, Pavla; Čihalíková, Jarmila; Robert-Quatre, Heda; Azhaguvel, P.; Weng, Y. Q.; Peng, J.; Lapitan, N. L. V.; Ma, Y. Q.; You, F. M.; Luo, M. C.; Bartoš, Jan; Doležel, Jaroslav

    -, č. 302543 (2011), s. 1-11 ISSN 1110-7243 R&D Projects: GA ČR GA521/07/1573; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.436, year: 2011

  2. BREAD-MAKING QUALITY OF SLOVAK AND SERBIAN WHEAT VARIETIES

    Directory of Open Access Journals (Sweden)

    Tatiana Bojňanská

    2014-02-01

    Full Text Available The basic prerequisite for the production of bakery products of a good quality is the knowledge of the quality parameters of raw materials introduced in the production process and the ability to use their potential. The bread making properties of 17 pure European wheat cultivars were analysed. Baking experiments were carried out according to the methodology of the research workplace; 1000 g of flour was processed with the addition of salt, sugar and yeast. Fermentation for 35 minutes at 30 ° C was followed by the baking with steaming (at 240 ° C and then 220 ° C. During an experimental baking test the selected parameters: loaf volume (cm3, specific loaf volume (cm3.100g-1 loaf, volume efficiency (cm3.100g-1 flour, cambering (loaf height/width ratio, bread yield (%, bread yield baking loss (% in bread were evaluated. Loaf volume has been considered as the most important criterion for the bread-making quality. In the analysed samples (11 varieties of Slovak origin and 6 varieties of Serbian origin, the value of this parameter ranged from 3575 cm3 to 5575 cm3 with higher values occurred in Slovak varieties (average 4 640.91 cm3 compared to the Serbian varieties (average 4 363.33 cm3. Based on the complex evaluation of wheat varieties of the Slovak and Serbian origin assessing the selected quality parameters of the baking experiment it can be concluded that in terms of baking quality the three Slovak varieties IS Ezopus, Bonavita and Jarissa were the best. Therefore, they are recommended for cultivation and their subsequent use in the baking industry, in particular for the production of bread According to a baking quality the evaluated varieties can be sorted from best to worst in the following order: IS Ezopus (SK > Bonavita (SK > Jarissa (SK > IS Questor > Etida (SRB > Venistar (SK > Renesansa (SRB > IS Conditor (SK > IS Corvinus (SK > Zvezdana (SRB > Simonida (SRB > Viglanka (SK > IS Agape (SK > NS 40S (SRB > Panonnija (SRB > IS Escoria (SK

  3. Morphoagrobiological properties and productivity of new soft winter wheat varieties under the conditions of Kirovohrad variety testing station

    Directory of Open Access Journals (Sweden)

    О. Л. Уліч

    2017-03-01

    Full Text Available Purpose. To study morphoagrobiological and adaptive properties, level of yielding capacity of recently registered soft winter wheat varieties of various ecological groups under agroecological conditions of Kirovohrad variety testing station. Methods. Field study, laboratory test, analytical procedure and statistical evaluation. Results. It was established that the yield level of is a key composite indicator of genotype adaptation to agroecological growing conditions. Experimental data indicate significant deviations of yield depending on the genotype and the year of study. During three years of experiments, yield depending of the variety ranged from 4.26 to 9.71 t/ha, such varieties as ‘CN Kombin’, ‘Estivus’, ‘Tradytsiia odeska’, ‘Mudrist odeska’, ‘Lil’ and ‘Fabius’ had higher yields. In case of dry weather conditions and unfavorable agro-ecological factors, the following varieties as ‘Mudrist odeska’, ‘Veteran’, ‘Lil’, ‘Tsentylivka’, ‘Fabius’, ‘Patras’, ‘Montrei’ have demonstrated good adaptive properties. Their yield has decreased by 9,2–19,0%, while in the varieties ‘Mahistral’, ‘Poltavka’, ‘Harantiia odeska’ and ‘Pokrova’ – by 34.4, 42.4, 45.2 and 50.6% accordingly. Conclusions. Investigated soft winter wheat varieties differ in morphoagrobiological characteristics, productivity, height, maturation period, adaptability as well as economic and agronomic value. According to the complex of such indices as productivity, agronomic characters and properties as well as adaptability, in the microzone of Kirovohrad variety testing station it is advisable to grow varie­ties ‘CN Kombi’, ‘Pokrova’, ‘Mudrist odeska’, ‘Veteran’ and ‘Lil’.

  4. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Vrána, Jan; Burešová, Veronika; Cápal, Petr; Farkas, A.; Darko, E.; Cseh, A.; Kubaláková, Marie; Molnár-Láng, M.; Doležel, Jaroslav

    2016-01-01

    Roč. 88, č. 3 (2016), s. 452-467 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : tertiary gene pool * triticum-aestivum * common wheat * addition lines * mitotic chromosomes * plant chromosomes * hexaploid wheat * ae. speltoides * dna-sequences * rye genome * Aegilops umbellulata * Aegilops comosa * Aegilops speltoides * Aegilops markgrafii * flow cytometric chromosome sorting * fluorescence insitu hybridization * conserved orthologous set markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.901, year: 2016

  5. Effects of Post-harvest Storage Duration and Variety on Nutrient Digestibility and Energy Content Wheat in Finishing Pigs.

    Science.gov (United States)

    Guo, P P; Li, P L; Li, Z C; Stein, H H; Liu, L; Xia, T; Yang, Y Y; Ma, Y X

    2015-10-01

    This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong) were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE) and crude protein (CP) of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE), metabolizable energy (ME) content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (pdigestibility of NDF changed quadratically (pdigestibility (pdigestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05). In conclusion, the GE, DE, and ME of wheat was stable during the first 3 to 6 mo of post-harvest storage, and decreased during the following 6 to 12 mo of storage under the conditions of this study.

  6. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  7. Effects of Post-harvest Storage Duration and Variety on Nutrient Digestibility and Energy Content Wheat in Finishing Pigs

    Directory of Open Access Journals (Sweden)

    P. P. Guo

    2015-10-01

    Full Text Available This study was conducted to investigate the effects of post-harvest storage duration and wheat variety on the digestibility and energy content of new season wheat fed to finishing pigs. Two wheat varieties (Shi and Zhong were harvested in 2013 and stored in the warehouse of the Fengning Pig Experimental Base at China Agricultural University for 3, 6, 9, or 12 mo. For each storage period, 12 barrows were placed in metabolism crates and allotted to diets containing 1 of the 2 wheat varieties in a randomized complete block design. The experimental diets contained 97.34% wheat and 2.66% of a vitamin and trace mineral premix. With an extension of storage duration from 3 mo to 12 mo, the gross energy (GE and crude protein (CP of the wheat decreased by 2.0% and 12.01%, respectively, while the concentration of neutral detergent fiber (NDF, acid detergent fiber (ADF and starch content increased by 30.26%, 19.08%, and 2.46%, respectively. Total non-starch polysaccharide, total arabinose, total xylose and total mannose contents decreased by 46.27%, 45.80%, 41.71%, and 75.66%, respectively. However, there were no significant differences in the chemical composition between the two wheat varieties with the exception of ADF which was approximately 13.37% lower in Shi. With an extension of storage duration from 3 mo to 12 mo, the digestible energy (DE, metabolizable energy (ME content and the apparent total tract digestibility of GE, CP, dry matter, organic matter, ether extract, ADF and metabolizability of energy in wheat decreased linearly (p<0.01 by 5.74%, 7.60%, 3.75%, 3.88%, 3.50%, 2.47%, 26.22%, 27.62%, and 3.94%, respectively. But the digestibility of NDF changed quadratically (p<0.01. There was an interaction between wheat variety and storage time for CP digestibility (p<0.05, such that the CP digestibility of variety Zhong was stable during 9 mo of storage, while the CP digestibility of variety Shi decreased (p<0.05. In conclusion, the GE, DE, and ME

  8. Effect of processing on phenolic composition of dough and bread fractions made from refined and whole wheat flour of three wheat varieties.

    Science.gov (United States)

    Lu, Yingjian; Luthria, Devanand; Fuerst, E Patrick; Kiszonas, Alecia M; Yu, Liangli; Morris, Craig F

    2014-10-29

    This study investigated the effect of breadmaking on the assay of phenolic acids from flour, dough, and bread fractions of three whole and refined wheat varieties. Comparison of the efficacy of two commonly used methods for hydrolysis and extraction of phenoilc acids showed that yields of total phenolic acids (TPA) were 5-17% higher among all varieties and flour types when samples were directly hydrolyzed in the presence of ascorbate and EDTA as compared to the method separating free, soluble conjugates and bound, insoluble phenolic acids. Ferulic acid (FA) was the predominant phenolic acid, accounting for means of 59 and 81% of TPA among all refined and whole wheat fractions, respectively. All phenolic acids measured were more abundant in whole wheat than in refined samples. Results indicated that the total quantified phenolic acids did not change significantly when breads were prepared from refined and whole wheat flour. Thus, the potential phytochemical health benefits of total phenolic acids appear to be preserved during bread baking.

  9. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  10. Hezu 8, a new wheat variety developed with in vitro mutation technique

    International Nuclear Information System (INIS)

    Gao Mingwei

    1992-01-01

    A new wheat variety named Hezu 8 was developed by in vitro mutation techniques combining the somatic tissue culture with the radiation-induced mutation. This is the first one in the world for breeding wheat variety in such a way, that the nuclear technology was successfully applied to biotechnology. Hezu 8 is featured by high yield potential, early maturity, disease resistance, tolerance to moisture as well as good grain quality. In vitro mutation technique has proved to be helpful in increment of the frequency of somaclonal variation, promotion of the variation stability, acceleration of breeding process, reduction of the population size for variant selection, and finally, improvement of the breeding efficiency. In vitro mutation technique can be also widely applied to other crops and will open up a brilliant prospect for crop improvement

  11. Physical, textural, and antioxidant properties of extruded waxy wheat flour snack supplemented with several varieties of bran

    Science.gov (United States)

    Wheat represents a ubiquitous commodity and while industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets discarded. The objective of this study was to incorporate wheat bran into an extruded snack. Bran varieties from hard red spring, white club Bruehl, and purple whea...

  12. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  13. Studies on increasing fertility of distant hybrid by irradiation of androgametes of wheat

    International Nuclear Information System (INIS)

    Chen Yichun; Sun Guangzu; Zhang Yuexue

    1994-01-01

    Distant hybridization was carried out by using hexaploid triticale, Heizha 266, as female parent and 2 varieties of spring wheat, Longfumai 3 and Longfumai 5, as male parent which were irradiated by slow irradiation of living bodies with 60 Co gamma rays from 600 to 2400 rad before distant hybridization. Through the observation of pollen mother cells of first generation of distant hybrilization (M 1 ), it was found that the amount of bivalents at meiosis metaphase was 13.65 on average, and was 14.55 on maximum, which were close to theoretical value, but the corresponding amount of bivalents at the same stage produced by unirradiated pollen mother cells were 12.80, which were lower than theorectical value. Chromosome pairing was improved by irradiation. Average setting ratio of M 1 generation affected by irradiation was 52.85%, but the corresponding figure for F 1 generation affected by un-irradiation was 6.49%. It is obvious that irradiation treatment increases setting rate of M 1 hybrid generation. The optimum doses for irradiating androgametes are 1600 and 2400 rad, respectively. However, there are significant differences of irradiation sensibility between different varieties of wheat

  14. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    Science.gov (United States)

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  15. Fast neutron radiation induced Glu-B1 deficient lines of an elite bread wheat variety

    Science.gov (United States)

    Five isogenic wheat lines deficient in high-molecular weight subunit (HMW-GS) proteins encoded by the B-genome were identified from a fast-neutron radiation-mutagenized population of Summit, an elite variety of bread wheat (Triticum aestivum L.). The mutant lines differ from the wild-type progenit...

  16. Biochemical and genetic variation of some Syrian wheat varieties using NIR, RAPD and AFLPs techniques

    International Nuclear Information System (INIS)

    Saleh, B.

    2012-01-01

    This study was performed to assess chemical components and genetic variability of five Syrian wheat varieties using NIR, RAPD and AFLP techniques. NIR technique showed that Cham6 was the best variety in term of wheat grain quality due to their lowest protein (%), hardness, water uptake and baking volume and the highest starch (%) compared to the other tested varieties. PCR amplifications with 21 RAPD primers and 13 AFLP PCs primer combinations gave 104 and 466 discernible loci of which 24 (18.823%) and 199 (45.527%) were polymorphic for the both techniques respectively. Our data indicated that the three techniques gave similar results regarding the degree of relatedness among the tested varieties. In the present investigation, AFLP fingerprinting was more efficient than the RAPD assay. Where the letter exhibited lower Marker Index (MI) average (0.219) compared to AFLP one (3.203). The pattern generated by RAPD, AFLPs markers or by NIR separated the five wheat varieties into two groups. The first group consists of two subclusters. The first subcluster involved Cham8 and Bohous6, while the second one includes Cham6 that is very closed to precedent varieties. The second group consists of Bohous9 and Cham7 that were also closely related. Based on this study, the use of NIR, RAPD and AFLP techniques could be a powerful tool to detect the effectiveness relationships of these technologies. (author)

  17. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    Science.gov (United States)

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  18. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  19. Radiation-induced chromosome breakages in bread wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Larik, A.S.

    1975-01-01

    Meiosis and pollen fertility were studied in the M 2 generation in four varieties of hexaploid wheat. Meiosis was characterized by the formation of interchange configurations, such as rings and chains of four chromosomes in several cells. Chromosomal aberrations showed linear relationship with gamma irradiation; 45 kR dose induced the highest chromosomal abnormalities. Most multivalents were interchange rings of four chromosomes. Translocations involving two pairs of homologous or nonhomologous chromosomes seemed to be higher in frequency than those involving more than two pairs of chromosomes. Anaphase abnormalities, such as laggards, bridges and fragments and unequal segregation of chromosomes, were frequently observed. Pollen fertility was considerably reduced in the M 2 plants arising form the treatments of higher doses of gamma rays because of the induced chromosome interchanges. (author)

  20. Relationship between grain colour and preharvest sprouting-resistance in wheat.

    OpenAIRE

    BASSOI, M.C.; FLINTHAM, J.

    2006-01-01

    Since red alleles (R) of the genes that control grain colour are important for the improvement of preharvest sprouting resistance in wheat and there are three independently inherited loci, on chromosomes 3A, 3B and 3D of hexaploid wheat, it is possible to vary the dosage of dominant alleles in a breeding program. The objective of this work was to evaluate the dosage effect of R genes on preharvest sprouting, in a single seed descent population, named TRL, derived from the cross between Timgal...

  1. Application of Mutation Techniques in the Development of Drought Tolerant Wheat Varieties in Kenya

    International Nuclear Information System (INIS)

    Kinyua, M.G.; Wanga, H.

    1998-01-01

    Development of drought tolerant wheat is very important for Kenya as it could lead to utilisation of a large area of the country, which is otherwise under-utilised for crop production. At present there is no crop of economic importance, which being grown in this area. Mutation technique form one of the breeding methods, which can be used to produce suitable wheat varieties for drought prone areas in this country. Wheat seed variety ''pasa'' was irradiated with 160 gy from cobalt source. These irradiated seed were planted at the cage at Njoro, in the main season of 1996. At M2, 4 heads were harvested from 20 selected plants in each row. These were threshed singly. Three of the heads were planted in three sites which experience drought (Katumani, Naivasha and Narok), while one was kept as reserve. Selections of M3 plants, which showed tolerance to drought as compared to the parent variety were made.The parent scored 2 on a 1 to 5 scale for drought tolerance. On this scale 1 indicates susceptibility to drought while 5 indicates drought tolerance. Twenty-one M3 selections scored 4 or 5 on this scale. These therefore showed higher degree of drought tolerance than pasa. For those to score higher than pasa, mutation should have induced some higher degree of drought tolerance.There is indication that, mutation techniques could be used in inducing drought tolerance to wheat growing in Kenya (author)

  2. Bread wheat varieties as influenced by different nitrogen levels.

    Science.gov (United States)

    Hussain, Iqtidar; Khan, Muhammad Ayyaz; Khan, Ejaz Ahmad

    2006-01-01

    Experiment was conducted to determine the effect of different nitrogen levels on four bread wheat varieties (Triticum aestivum L.) viz. Inqilab-91, Daman-98, Dera-98 and Punjab-96 at Gomal University, Dera Ismail Khan (NWFP), Pakistan during 2000 approximatey 2001. The experiment was laid out in split plot design having four replications using a net plot size of 2 m x 5 m. Nitrogen doses used were 0, 50, 100, 150 and 200 kg/ha. The results showed that different nitrogen levels had significant effects on plant height, total number of plants/m(2), number of grains/spike, number of spike/m(2), spike weight, biological yield, grain yield and grain protein content. Maximum plant height, total number of plants/m(2), number of spikes/m(2), spike weight, biological yield and grain protein content were observed at 200 kg N/ha. Among wheat varieties Daman-98 had maximum plant height, spike weight, grains/spike, 1000-grain weight, biological yield and grain yield. Inqilab-91 had heavier grains and the most grain protein content, while Dera-98 had the maximum plant population and spikes/m(2). Grain yield and biological yield were statistically similar at doses of 150 kg N/ha and 200 kg N/ha. However, dose of 200 kg N/ha, compared to dose of 150 Kg N/ha, significantly increased the protein content.

  3. A physical map of the 1-gigabase bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Paux, E.; Sourdille, P.; Salse, J.; Saintenac, C.; Choulet, F.; LeRoy, P.; Korol, A.; Michalak, M.; Kianian, S.; Spielmeyer, W.; Lagudah, E.; Somers, D.; Kilian, A.; Alaux, M.; Vautrin, S.; Bergès, H.; Eversole, K.; Appels, R.; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Bernard, M.; Feuillet, C.

    2008-01-01

    Roč. 322, č. 5898 (2008), s. 101-104 ISSN 0036-8075 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z5038910 Keywords : RUST RESISTANCE GENE * TRITICUM-AESTIVUM * HEXAPLOID WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 28.103, year: 2008

  4. Transfer of genes for stem rust resistance from Agropyron elongatum and imperial rye to durum wheat

    International Nuclear Information System (INIS)

    Prabhakara Rao, M.V.

    1977-01-01

    The Agropyron elongatum gene for stem rust resistance on chromosome 6A of Knott's Thatcher translocation line was transferred to a susceptible local durum wheat variety, Jaya, through a series of back-crosses. Plants heterozygous for the Agropyron translocation always show at least one open bivalent. Homozygotes have not been obtained, probably because of the absence of male transmission in durum background. Monotelosomic addition of the short arm of Imperial rye chromosome 3R (formerly ''G'' of Sears), which carries a gene(s) for resistance to wheat stem rust, was obtained in the local durum variety. Rust-resistant plants from parents having the added rye telocentric were irradiated with gamma rays just before meiosis, and the pollen obtained from the irradiated spikes was used to pollinate euploid plants. In addition, seeds harvested from 2n+1 resistant plants were irradiated with thermal neutrons and the resistant M 1 plants were selfed to raise M 2 families. Two durum-rye translocation lines were obtained following irradiation. DRT-1 was transmitted normally through the female gametes but showed no male transmission. As a result of this, homozygotes have not been obtained. Gametic transmission rates of DRT-2 are being tested. Alien translocations, which show normal gametic and zygotic transmissions in the hexaploid wheat, may behave differently in a tetraploid background. The results indicate that alien genetic transfers may be more difficult to obtain in durum wheat, probably owing to the reduced buffering effect of the tetraploid genome. (author)

  5. Application of Fourier transform infrared (FTIR) spectroscopy for the identification of wheat varieties.

    Science.gov (United States)

    Amir, Rai Muhammad; Anjum, Faqir Muhammad; Khan, Muhammad Issa; Khan, Moazzam Rafiq; Pasha, Imran; Nadeem, Muhammad

    2013-10-01

    Quality characteristics of wheat are determined by different physiochemical and rheological analysis by using different AACC methods. AACC methods are expensive, time consuming and cause destruction of samples. Fourier transforms infrared (FTIR) spectroscopy is one of the most important and emerging tool used for analyzing wheat for different quality parameters. This technique is rapid and sensitive with a great variety of sampling techniques. In the present study different wheat varieties were analyzed for quality assessment and were also characterized by using AACC methods and FTIR technique. The straight grade flour was analyzed for physical, chemical and rheological properties by standard methods and results were obtained. FTIR works on the basis of functional groups and provide information in the form of peaks. On basis of peaks the value of moisture, protein, fat, ash, carbohydrates and hardness of grain were determined. Peaks for water were observed in the range 1,640 cm(-1) and 3,300 cm(-1) on the basis of functional group H and OH. Protein was observed in the range from 1,600 cm(-1) to 1,700 cm(-1) and 1,550 cm(-1) to 1,570 cm(-1) on the basis of bond amide I and amide II respectively. Fat was also observed within these ranges but on the basis of C-H bond and also starch was observed in the range from 2,800 and 3,000 cm(-1) (C-H stretch region) and in the range 3,000 and 3,600 cm(-1) (O-H stretch region). As FTIR is a fast tool it can be easily emplyed for wheat varieties identification according to a set criterion.

  6. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference

    OpenAIRE

    Loureiro, I.; Escorial, C.; García-Baudin, J.M.; Chueca, C.

    2009-01-01

    Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F1 hybrids bearing F2 seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with ";Astral" wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphip...

  7. Sowing terms of winter bread wheat variety-innovations (Triticum aestivum L. in the conditions of change of climate

    Directory of Open Access Journals (Sweden)

    О. Л. Дергачов

    2010-10-01

    Full Text Available Results of studying of influence of sowing terms on productivity and indices of quality of grain of winter bread wheat variety-innovations of V.M. Remeslo Myronivka Institute of Wheat of NAAS of Ukraine in the conditions of Right-bank Forest-steppe are shown. Negative correlation of productivity of varieties on average temperature of air during the sowing period is shown.

  8. Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat.

    Science.gov (United States)

    Lai, Kaitao; Lorenc, Michał T; Lee, Hong Ching; Berkman, Paul J; Bayer, Philipp Emanuel; Visendi, Paul; Ruperao, Pradeep; Fitzgerald, Timothy L; Zander, Manuel; Chan, Chon-Kit Kenneth; Manoli, Sahana; Stiller, Jiri; Batley, Jacqueline; Edwards, David

    2015-01-01

    Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole-genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co-cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low-density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. Genealogical Analysis of the North-American Spring Wheat Varieties with Different Resistance to Pre-harvest Sprouting

    Directory of Open Access Journals (Sweden)

    Martynov Sergey

    2016-12-01

    Full Text Available A comparative analysis of genetic diversity of North American spring wheat varieties differing in resistance to pre-harvest sprouting was carried out. For identification of sources of resistance the genealogical profiles of 148 red-grained and 63 white-grained North-American spring wheat varieties with full pedigrees were calculated and estimates were made of pre-harvest sprouting. The cluster structure of the populations of red-grained and white-grained varieties was estimated. Analysis of variance revealed significant differences between the average contributions of landraces in the groups of resistant and susceptible varieties. Distribution of the putative sources of resistance in the clusters indicated that varieties having different genetic basis may have different sources of resistance. For red-grained varieties the genetic sources of resistance to pre-harvest sprouting are landraces Crimean, Hard Red Calcutta, and Iumillo, or Button, Kenya 9M-1A-3, and Kenya-U, or Red Egyptian and Kenya BF4-3B-10V1. Tracking of pedigrees showed these landraces contributed to the pedigrees, respectively, via Thatcher, Kenya-Farmer, and Kenya-58, which were likely donors of resistance for red-grained varieties. For white-grained varieties the sources of resistance were landraces Crimean, Hard Red Calcutta, Ostka Galicyjska, Iumillo, Akakomugi, Turco, Hybrid English, Rough Chaff White and Red King, and putative donors of resistance — Thatcher, RL2265, and Frontana. The genealogical profile of accession RL4137, the most important donor of resistance to pre-harvest sprouting in North American spring wheat breeding programmes, contains almost all identified sources of resistance.

  10. Identification of wheat varieties using matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry and anartificial neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    of this novelmethod with respect to various experimental parameters has been tested. The results can be summarised: (i)With this approach 97% of the wheat varieties can be classified correctly with a corresponding correlationcoefficient of 1.0, (ii) The method is fast since the time of extracting gliadins from flour......A novel tool for variety identification of wheat (Triticum aestivum L.) has been developed: an artificialneural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laserdesorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...... by the identity of the operator making theanalysis. This study demonstrates that a combination of an ANN and MALDI-TOFMS analysis of thegliadin fraction provides a fast and reliable tool for the variety identification of wheat. Copyright 1999 JohnWiley & Sons, Ltd....

  11. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2015-02-01

    Full Text Available Hexaploid wheat has triplicated homoeologs for most of the genes that are located in subgenomes A, B, and D. GASR7, a member of the Snakin/GASA gene family, has been associated with grain length development in wheat. However, little is known about divergence of its homoeolog expression in wheat polyploids. We studied the expression patterns of the GASR7 homoeologs in immature seeds in a synthetic hexaploid wheat line whose kernels are slender like those of its maternal parent (Triticum turgidum, AABB, PI 94655 in contrast to the round seed shape of its paternal progenitor (Aegilops tauschii, DD, AS2404. We found that the B homoeolog of GASR7 was the main contributor to the total expression level of this gene in both the maternal tetraploid progenitor and the hexaploid progeny, whereas the expression levels of the A and D homoeologs were much lower. To understand possible mechanisms regulating different GASR7 homoeologs, we firstly analyzed the promoter sequences of three homoeologous genes and found that all of them contained gibberellic acid (GA response elements, with the TaGASR7B promoter (pTaGASR7B uniquely characterized by an additional predicted transcriptional enhancer. This was confirmed by the GA treatment of spikes where all three homoeologs were induced, with a much stronger response for TaGASR7B. McrBC enzyme assays showed that the methylation status at pTaGASR7D was increased during allohexaploidization, consistent with the repressed expression of TaGASR7D. For pTaGASR7A, the distribution of repetitive sequence-derived 24-nucleotide (nt small interfering RNAs (siRNAs were found which suggests possible epigenetic regulation because 24-nt siRNAs are known to mediate RNA-dependent DNA methylation. Our results thus indicate that both genetic and epigenetic mechanisms may be involved in the divergence of GASR7 homoeolog expression in polyploid wheat.

  12. Variability in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers.

    Science.gov (United States)

    Chandna, Ruby; Gupta, Sarika; Ahmad, Altaf; Iqbal, Muhammad; Prasad, Manoj

    2010-06-01

    Wheat (Triticum aestivum L.) is a staple food for half of the world. Its productivity and agronomical practices, especially for nitrogen supplementation, is governed by the nitrogen efficiency (NE) of the genotypes. We analyzed 16 popular cultivated Indian varieties of wheat for their NE and variability estimates using a set of 21 simple sequence repeat (SSR) markers, derived from each wheat chromosome. These genotypes were categorized into three groups, viz., low, moderate, and high nitrogen efficient. Of these 16 genotypes, we have reported six, eight, and two genotypes in high, moderate, and low NE categories, respectively. The differential NE in these genotypes was supported by nitrogen uptake and assimilation parameters. The values of average polymorphic information content and marker index for these SSR markers were estimated to be 0.32 and 0.59, respectively. The genetic similarity coefficient for all possible pairs of varieties ranged from 0.41 to 0.76, indicating the presence of considerable range of genetic diversity at molecular level. The dendrogram prepared on the basis of unweighted pair-group method of arithmetic average algorithm grouped the 16 wheat varieties into three major clusters. The clustering was strongly supported by high bootstrap values. The distribution of the varieties in different clusters and subclusters appeared to be related to their variability in NE parameter that was scored. Genetically diverse parents were identified that could potentially be used for their desirable characteristics in breeding programs for improvement of NE in wheat.

  13. The breeding of a wheat mutant pollen-derived variety Chuanfu No.5 and the related techniques

    International Nuclear Information System (INIS)

    Xuan Pu; Yin Chunrong; Yue Chunfang; Qu Shihong

    2002-01-01

    With the treatment of 150 Gy 60 Co-γ irradiation to the dry F 1 (Mianyang 88-334 x 8811525) hybrid seeds and the donor plants chosen from MF 2 , wheat anther culture was made based on MW 14 and modified MS media and the pure diploid lines of MH 1 derived from anther pollen were obtained. In 1996, the new mutant line 6086 and its sibling lines, 6086 and 6087, were selected and bred successfully. In 2002, the mutant pollen-derived line 6086 was denominated as Chuanfu No.5 by Sichuan Crop Variety Identification Committee and became the first mutant variety via anther culture of wheat in Sichuan. The success of Chuanfu No.5 shown that combining radiation induction and anther technique could shorten the breeding period and increase the efficiency of breeding of wheat

  14. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements

    Czech Academy of Sciences Publication Activity Database

    Akpinar, B.A.; Magni, F.; Yuce, M.; Lucas, S. J.; Šimková, Hana; Šafář, Jan; Vautrin, S.; Berges, H.; Cattonaro, F.; Doležel, Jaroslav; Budak, H.

    2015-01-01

    Roč. 16, JUN 13 (2015) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Triticum aestivum * 5DS * Hexaploid wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.867, year: 2015

  15. Wheat and barley seed system in Syria: How diverse are wheat and barley varieties and landraces from farmer’s fields?

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2015-01-01

    The present study described the diversity of wheat and barley varieties and landraces available in farmer’s fields in Syria using different indicators. Analysis of spatial and temporal diversity and coefficient of parentage along with measurements of agronomic and morphological traits were employed

  16. Heavy metal accumulation in different varieties of wheat (Triticum aestivum L.) grown in soil amended with domestic sewage sludge

    International Nuclear Information System (INIS)

    Jamali, Muhammad K.; Kazi, Tasneem G.; Arain, Muhammad B.; Afridi, Hassan I.; Jalbani, Nusrat; Kandhro, Ghulam A.; Shah, Abdul Q.; Baig, Jameel A.

    2009-01-01

    The concentrations of heavy metals (HMs) in plants served to indicate the metal contamination status of the site, and also revealed the abilities of various plant species to take up and accumulate them from the soil dressed with sewage sludge. A study to comprehend the mobility and transport of HMs from soil and soil amended with untreated sewage sludge to different newly breaded varieties of wheat (Anmol, TJ-83, Abadgar and Mehran-89) in Pakistan. A pot-culture experiment was conducted to study the transfer of HMs to wheat grains, grown in soil (control) and soil amended with sewage sludge (test samples). The total and ethylenediaminetetraaceticacid (EDTA)-extractable HMs in agricultural soil and soil amended with domestic sewage sludge (SDWS) and wheat grains were analysed by flame atomic absorption spectrometer/electrothermal atomic absorption spectrometer, prior to microwave-assisted wet acid digestion method. The edible part of wheat plants (grains) from test samples presented high concentration of all HMs understudy (mg kg -1 ). Significant correlations were found between metals in exchangeable fractions of soil and SDWS, with total metals in control and test samples of wheat grains. The bio-concentration factors of all HMs were high in grains of two wheat varieties, TJ-83 and Mehran-89, as compared to other varieties, Anmol and Abadgar grown in the same agricultural plots.

  17. The defence?associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias

    OpenAIRE

    Powell, Jonathan J.; Fitzgerald, Timothy L.; Stiller, Jiri; Berkman, Paul J.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal

    2016-01-01

    Summary Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA?seq approach to analyse homoeolog?specific global gene expression patterns in wheat during infection by the fungal pa...

  18. Differential contribution of two Ppd-1 homoeoalleles to early-flowering phenotype in Nepalese and Japanese varieties of common wheat.

    Science.gov (United States)

    Nguyen, Anh T; Iehisa, Julio C M; Mizuno, Nobuyuki; Nitta, Miyuki; Nasuda, Shuhei; Takumi, Shigeo

    2013-12-01

    Wheat landraces carry abundant genetic variation in heading and flowering times. Here, we studied flowering-related traits of two Nepalese varieties, KU-4770 and KU-180 and a Japanese wheat cultivar, Shiroganekomugi (SGK). These three wheat varieties showed similar flowering time in a common garden experiment. In total, five significant quantitative trait loci (QTLs) for three examined traits, the heading, flowering and maturation times, were detected using an F2 population of SGK/KU-4770. The QTLs were found at the Ppd-1 loci on chromosomes 2B and 2D and the 2B QTL was also confirmed in another F2 population of SGK/KU-180. The Ppd-D1 allele from SGK and the Ppd-B1 alleles from the two Nepalese varieties might be causal for early-flowering phenotype. The SGK Ppd-D1 allele contained a 2-kb deletion in the 5' upstream region, indicating a photoperiod-insensitive Ppd-D1a allele. Real-time PCR analysis estimating the Ppd-B1 copy number revealed that the two Nepalese varieties included two intact Ppd-B1 copies, putatively resulting in photoperiod insensitivity and an early-flowering phenotype. The two photoperiod-insensitive Ppd-1 homoeoalleles could independently contribute to segregation of early-flowering individuals in the two F2 populations. Therefore, wheat landraces are genetic resources for discovery of alleles useful for improving wheat heading or flowering times.

  19. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae

    Czech Academy of Sciences Publication Activity Database

    Ivaničová, Zuzana; Jakobson, I.; Reis, D.; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Jarve, K.; Valárik, Miroslav

    2016-01-01

    Roč. 33, č. 5 (2016), s. 718-727 ISSN 1871-6784 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : GENE-EXPRESSION * HEXAPLOID WHEAT * LIGHT QUALITY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.813, year: 2016

  20. New early-ripening wheat mutant lines from the varieties Norman and Avalon

    International Nuclear Information System (INIS)

    Djelepov, K.

    1988-01-01

    The English wheat varieties Norman and Avalon are high-productive, resistant to lodging and to diseases but late-ripening in Bulgaria. They are 10-15 days later than the variety Sadovo 1 and therefore suffer often from dry and hot weather, causing premature ripening and shrivelled seed. Dry seeds from the two varieties were irradiated with 10 and 15 kR 60 Co gamma rays. In M 2 , several earlier ripening forms were selected and they were studied also in M 3 in 1987. In the Table, four early ripening mutant lines and the respective initial varieties are compared. They vary significantly in plant height and grain size. The mutant lines of Norman produce smaller grain but all mutants show a higher hectoliter weight. The mutant lines head and mature 4 to 10 days earlier than the respective initial varieties. Some of them are as productive as the standard and other cultivated varieties. We shall continue testing their productivity and possibilities for their use in the breeding

  1. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat.

    Science.gov (United States)

    Bhati, Kaushal K; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

  2. Alleles of Ppd-D1 gene in the collection of Aegilops tauschii accessions and bread wheat varieties

    Directory of Open Access Journals (Sweden)

    Babenko D. O.

    2012-04-01

    Full Text Available Light period significantly influences on the growth and development of plants. One of the major genes of photoperiod sensitivity is Ppd-D1, located on the chromosome 2D. The aim of the work was to determine the alleles and molecular structure of Ppd-D1 gene in samples from the collection of Ae. tauschii accessions, which have different flowering periods, and in 29 Ukrainian wheat varieties. Methods. We used methods of allele-specific PCR with primers to the Ppd-D1 gene, sequencing and Blast-analysis. Results. The collection of Ae. tauschii accessions and several varieties of winter and spring wheat was studied. The molecular structure of the allelic variants (414, 429 and 453 b. p. of Ppd-D1b gene was determined in the collection of Aegilops. tauschii accessions. Conclusions. The Ppd-D1a allele was present in all studied varieties of winter wheat. 60 % of spring wheat is characterized by Ppd-D1b allele (size of amplification products 414 b. p.. Blast-analysis of the sequence data banks on the basis of the reference sequence of sample k-1322 from the collection of Ae. tauschii accessions has shown a high homology (80 to 100 % between the nucleotide sequences of PRR genes, that characterize the A and D genomes of representatives of the genera Triticum and Aegilops.

  3. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene.

    Science.gov (United States)

    Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.

  4. Anther and isolated microspore culture of wheat lines from northwestern and eastern Europe

    DEFF Research Database (Denmark)

    Holme, I B; Olesen, A; Hansen, N J P

    1999-01-01

    Hexaploid wheat genotypes from north-western Europe show low responses to current anther culture techniques. This phenomenon was investigated on 145 north-western European wheat lines. Twenty-seven lines from eastern Europe were included to observe the response pattern of wheat from an area, where...... the technique has been used successfully. On average, eastern European wheat lines produced 3.6 green plants per 111 anthers, while only 1.4 green plants per 111 anthers were obtained in north-western European lines. This difference was due to the high capacity for embryo formation among the eastern European...... lines, while the ability to regenerate green plants was widespread in both germplasm groups. Isolated wheat microspore culture performed on 85 of these wheat lines gave an average 3.7-fold increase in green plants per anther compared with the anther culture response. The increased recovery of green...

  5. Common Wheat Chromosome 5B Composition Analysis Using Low-Coverage 454 Sequencing

    Czech Academy of Sciences Publication Activity Database

    Sergeeva, E.M.; Afonnikov, D. A.; Koltunova, M. K.; Gusev, V.D.; Miroshnichenko, L. A.; Vrána, Jan; Kubaláková, Marie; Poncet, C.; Sourdille, P.; Feuillet, C.; Doležel, Jaroslav; Salina, E.A.

    2014-01-01

    Roč. 7, č. 2 (2014) ISSN 1940-3372 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : GENOME SHOTGUN SEQUENCES * IN-SITU HYBRIDIZATION * HEXAPLOID WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.933, year: 2014

  6. Molecular genetic studies on irradiated wheat plants

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2002-01-01

    Composite genotype(octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress. Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite. From eight Egyptian wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively. They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield-related traits. Bulked segregating analysis developed some RAPD and SSR markers with different primers, which were considered as molecular for drought tolerance in wheat. Hal 2-like gene was introduced into Egyptian wheat cultivar G-164 via micro projectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal 2-like genes in the genomic background of the two transgenic plants

  7. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools

    Directory of Open Access Journals (Sweden)

    Kai Voss-Fels

    2015-07-01

    Full Text Available Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat ( L., the staple food for 35% of the world’s population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

  8. Identification and Validation of a New Source of Low Grain Cadmium Accumulation in Durum Wheat

    Directory of Open Access Journals (Sweden)

    Atena Oladzad-Abbasabadi

    2018-03-01

    Full Text Available Cadmium (Cd is a heavy metal that has no known biological function and is toxic for many living organisms. The maximum level of Cd concentration allowed in the international market for wheat grain is 0.2 mg kg−1. Because phenotyping for Cd uptake is expensive and time consuming, molecular markers associated with genes conferring low Cd uptake would expedite selection and lead to the development of durum cultivars with reduced Cd concentrations. Here, we identified single nucleotide polymorphisms (SNPs associated with a novel low Cd uptake locus in the durum experimental line D041735, which has hexaploid common wheat in its pedigree. Genetic analysis revealed a single major QTL for Cd uptake on chromosome arm 5BL within a 0.3 cM interval flanked by SNP markers. Analysis of the intervening sequence revealed a gene with homology to an aluminum-induced protein as a candidate gene. Validation and allelism tests revealed that the low Cd uptake gene identified in this study is different from the closely linked Cdu1-B gene, which also resides on 5BL. This study therefore showed that the durum experimental line D041735 contains a novel low Cd uptake gene that was likely acquired from hexaploid wheat.

  9. Variety identification of wheat using mass spectrometry with neural networks and the influence of mass spectra processing prior to neural network analysis

    DEFF Research Database (Denmark)

    Sørensen, Helle Aagaard; Sperotto, Maria Maddalena; Petersen, M.

    2002-01-01

    The performance of matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry with neural networks in wheat variety classification is further evaluated.(1) Two principal issues were studied: (a) the number of varieties that could be classified correctly; and (b) various means of....... With the final method, it was possible to classify 30 wheat varieties with 87% correctly classified mass spectra and a correlation coefficient of 0.90....

  10. Allergen relative abundance in several wheat varieties as revealed via a targeted quantitative approach using MS.

    Science.gov (United States)

    Rogniaux, Hélène; Pavlovic, Marija; Lupi, Roberta; Lollier, Virginie; Joint, Mathilde; Mameri, Hamza; Denery, Sandra; Larré, Colette

    2015-05-01

    Food allergy has become a major health issue in developed countries, therefore there is an urgent need to develop analytical methods able to detect and quantify with a good sensitivity and reliability some specific allergens in complex food matrices. In this paper, we present a targeted MS/MS approach to compare the relative abundance of the major recognized wheat allergens in the salt-soluble (albumin/globulin) fraction of wheat grains. Twelve allergens were quantified in seven wheat varieties, selected from three Triticum species: T. aestivum (bread wheat), T. durum (durum wheat), and T. monococcum. The allergens were monitored from one or two proteotypic peptides and their relative abundance was deduced from the intensity of one fragment measured in MS/MS. Whereas the abundance of some of the targeted allergens was quite stable across the genotypes, others like alpha-amylase inhibitors showed clear differences according to the wheat species, in accordance with the results of earlier functional studies. This study enriches the scarce knowledge available on allergens content in wheat genotypes, and brings new perspectives for food safety and plant breeding. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Physical, Textural, and Antioxidant Properties of Extruded Waxy Wheat Flour Snack Supplemented with Several Varieties of Bran.

    Science.gov (United States)

    Fleischman, Emily F; Kowalski, Ryan J; Morris, Craig F; Nguyen, Thuy; Li, Chongjun; Ganjyal, Girish; Ross, Carolyn F

    2016-09-28

    Wheat represents a ubiquitous commodity and although industries valorize 10% of wheat bran, most of this antioxidant-rich byproduct gets fed to livestock. The objective of this study was to incorporate wheat bran into an extruded snack. Bran samples from hard red spring, soft white club cv. Bruehl, and purple wheat lines were added to cv. Waxy-Pen wheat flour (Triticum aestivum L.) at replacement concentrations of 0%, 12.5%, 25%, and 37.5% (w/w; n = 10). Extrudates were evaluated for antioxidant capacity, color, and physical properties. Results showed that high fiber concentrations altered several pasting properties, reduced expansion ratios (P extrudates. Purple bran supplemented extrudates produced harder products compared to white and red bran treatments (P Extrudates produced with 37.5% (w/w) of each bran variety absorbed more water than the control with no added bran. The oxygen radical absorption capacity assay, expressed as Trolox Equivalents, showed that extrudates made with addition of red (37.5%) and purple (37.5%) bran had higher values compared to the other treatments; the control, red, and white bran treatments had less antioxidant activity after extrusion (P extrudates. Purple and red brans may serve as viable functional ingredients in extruded foods given their higher antioxidant activities. Future studies could evaluate how bran variety and concentration, extruded shape, and flavor influence consumer acceptance. © 2016 Institute of Food Technologists®

  12. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  13. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  14. Evaluation of size distribution of starch granules in selected wheat varieties by the Low Angle Laser Light Scattering method

    International Nuclear Information System (INIS)

    Capouchová, I.; Petr, J.; Marešová, D.

    2003-01-01

    The distribution of the size of wheat starch granules using the method LALLS (Low Angle Laser Light Scattering), followed by the evaluation of the effect of variety, experimental site and intensity of cultivation on the vol. % of the starch A (starch granules > 10 μm) was determined. The total starch content and crude protein content in dry matter of flour T530 in selected collection of five winter wheat varieties were determined. Vol. % of the starch A in evaluated collection of wheat varieties varied between 65.31 and 72.34%. The effect of a variety on the vol. % of starch A seemed to be more marked than the effect of site and intensity of cultivation. The highest vol. % of starch A reached evaluated varieties from the quality group C, i.e. varieties unsuitable for baking utilisation (except variety Contra with high total content of starch in dry matter of flour T530, but relatively low vol. % of starch A). A low vol. % of starch A was also found in the variety Hana (very good variety for baking utilisation). Certain variety differences followed from the evaluation of distribution of starch fractions of starch granules, forming starch A. In the case of varieties Hana, Contra and Siria higher representation of fractions up to 30 μm was recorded, while starch A in the varieties Estica and Versailles was formed in higher degree by size fractions of starch granules over 30 μm and particularly size fraction > 50 μm was greatest in these varieties of all evaluated samples. With increasing total starch content in dry matter of flour T530 the crude protein content decreased; the vol. % of starch A not always increased proportionally with increasing total starch content. (author)

  15. Structural and functional partitioning of bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Choulet, F.; Alberti, A.; Theil, S.; Glover, N.; Barbe, V.; Daron, J.; Pingault, L.; Sourdille, P.; Couloux, A.; Paux, E.; LeRoy, P.; Bellec, A.; Gaspin, Ch.; Šafář, Jan; Doležel, Jaroslav; Rogers, J.; Vandepoele, K.; Mayer, K.; Wincker, P.; Feuillet, C.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : hexaploid wheat * sequencing * meiotic recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25035497

  16. [The high-molecular glutenins of the soft winter wheats from European countries and their relationship to the glutenin composition of the ancient and modern wheat varieties of Ukraine].

    Science.gov (United States)

    Rabinovich, S V; Fedak, G; Lukov, O

    2000-01-01

    The sources of high-quality components of HMW glutenines determining grain quality, as initial material for breeding in the conditions of Ukraine were revealed on the base of analysis of 75 literature sources data about composition of high-molecular weight (HMW) glutenin and pedigrees of 598 European wheats from 12 countries, bred in 1923-1997, including, 449 cultivars from West and 149 East Europe. Origin of these components was observed in varieties of Great Britain, France and Germany from ancient Ukrainian wheat Red Fife and it derivative spring wheats of Canada--Marquis, Garnet, Regent, Saunders, Selkirk and of USA--spring wheat Thatcher and winter wheats--Kanred and Oro--as directly as via cultivars of European countries and Australia; in wheats of East European countries from winter wheats Myronivs'ka 808 and Bezostaya 1 (derivative of Ukrainian cultivars Ukrainka and Krymka) and their descendants; in wheats of Austria and Italy--from the both genetical sources.

  17. Polyethylene Glycol (PEG-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Arif Hasan Khan Robin

    2015-10-01

    Full Text Available Wheat is an important cereal crop worldwide that often suffers from moisture deficits at the reproductive stage. Polyethylene glycol (PEG-treated hydroponic conditions create negative osmotic potential which is compared with moisture deficit stress. An experiment was conducted in a growth chamber to study the effects of PEG on root hair morphology and associated traits of wheat varieties. Plants of 13 wheat varieties were grown hydroponically and three different doses of PEG 6000 (w/v: 0% (control, 0.3% and 0.6% (less than −1 bar were imposed on 60 days after sowing for 20 days’ duration. A low PEG concentration was imposed to observe how initial low moisture stress might affect root hair development. PEG-treated hydroponic culture significantly decreased root hair diameter and length. Estimated surface area reduction of root hairs at the main axes of wheat plants was around nine times at the 0.6% PEG level compared to the control plants. Decrease in root hair diameter and length under PEG-induced culture decreased “potential” root surface area per unit length of main root axis. A negative association between panicle traits, length and dry weight and the main axis length of young roots indicated competition for carbon during their development. Data provides insight into how a low PEG level might alter root hair development.

  18. Effects of Sowing Date and Limited Irrigation on Yield and Yield Components of Five Rainfed Wheat Varieties in Maragheh Region

    Directory of Open Access Journals (Sweden)

    A. R. Tavakkoli

    2013-03-01

    Full Text Available In order to investigate the effects of sowing date (SD and single irrigation (SI amounts on yield and yield components of rainfed wheat varieties, a field experiment was conducted as split-split plots arranged in a randomized complete blocks design with three replications during 2002-2004 at main station of Dryland Agricultural Research Institute in Maragheh, Iran. Treatments included three sowing dates (early, normal and late, three levels of single irrigation (rainfed, 50 mm and 100 mm only at planting time and five wheat varieties (three numbered lines, Azar2 and double-cross Shahi. Results revealed that interactions of SD, SI and wheat varieties were significant for grain yield, number of kernels per spike and water productivity (P≤0.01. Single irrigation at normal planting time increased grain yield, straw, biomass, harvest index, and water productivity. Grain yield and water productivity were increased by 131% and 84.8%, respectively. Single irrigation at late planting time was not significant on agronomic traits and produced low water productivity. Regarding the reaction of wheat to planting date and single irrigation, results showed that normal single irrigation can improve yield, yield components and water productivity index. The effectiveness of single irrigation under dryland conditions can be observed in all wheat cultivars. Although this effectiveness on yield and yield components is observable, but it is necessary to select the time of irrigation properly.

  19. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Science.gov (United States)

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  20. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Directory of Open Access Journals (Sweden)

    Zuzana Ivaničová

    Full Text Available The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (insensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  1. Forming of productivity of new soft winter wheat varieties (Triticum aestivum L. subject to phyto-virus pressure

    Directory of Open Access Journals (Sweden)

    В. П. Петренкова

    2008-10-01

    Full Text Available The infection by phytoviruses and the productivity formation in the new varieties of winter bread wheat in the different years with virus damage were investigated. There were identified the varieties being more tolerant to the observed diseases, among these - the samples with different constituents of tolerance, which could be used in the breeding programs.

  2. The Effect of Variety and Growing Conditions on the Chemical Composition and Nutritive Value of Wheat for Broilers

    Directory of Open Access Journals (Sweden)

    M. E. E. Ball

    2013-03-01

    Full Text Available The aim of this study was to examine the effect of variety and growing conditions of wheat on broiler performance and nutrient digestibility. One hundred and sixty-four wheat samples, collected from a wide range of different sources, locations, varieties and years, were analyzed for a range of chemical and physical parameters. Chemical and physical parameters measured included specific weight, thousand grain weight (TG, in vitro viscosity, gross energy, N, NDF, starch, total and soluble non-starch polysaccharides (NSP, lysine, threonine, amylose, hardness, rate of starch digestion and protein profiles. Ninety-four of the wheat samples were selected for inclusion in four bird trials. Birds were housed in individual wire metabolizm cages from 7 to 28 d and offered water and feed ad libitum. Dry matter intake (DMI, live weight gain (LWG and gain:feed were determined weekly. A balance collection was carried out from 14 to 21 d for determination of apparent metabolizable energy (AME, ME:gain, DM retention, oil and NDF digestibility. At 28 d the birds were sacrificed, the contents of the jejunum removed for determination of in vivo viscosity and the contents of the ileum removed for determination of ileal DM, starch and protein digestibility. The wheat samples used in the study had wide-ranging chemical and physical parameters, leading to bird DMI, LWG, gain:feed, ME:GE, AME content and ileal starch and protein digestibility being significantly (p<0.05 affected by wheat sample. A high level of N fertilizer application to the English and NI wheat samples tended to benefit bird performance, with increases of up to 3.4, 7.2 and 3.8% in DMI, LWG and gain:feed, respectively. Fungicide application also appeared to have a positive effect on bird performance, with fungicide treated (+F wheat increasing bird DMI, LWG and gain:feed by 6.6, 9.3 and 2.7%, over the non-fungicide treated (-F wheats. An increase (p<0.1 of 9.3% in gain:feed was also observed at the

  3. A perspective of leaf rust race fhprn and its impact on leaf rust resistance in pakistani wheat varieties

    International Nuclear Information System (INIS)

    Sohail, Y.

    2015-01-01

    Leaf rust infected leaves of a widely growing variety Seher-06 were collected in wheat season of 2011-12. The leaf rust isolates were assessed on Thatcher derived Lr isogenic lines and a race FHPRN was identified. Seventy six wheat varieties/lines besides Lr isogenic lines were screened against this race for seedling in glass house and for adult plant resistance at Bahawalpur and Faisalabad during 2012-13. Lr1, Lr2a, Lr9, Lr19, Lr24, Lr10+27+31 (Gatcher) and Lr28 were found completely resistant at both stages against FHPRN. Molecular screening of the wheat varieties/lines indicated the presence of leaf rust resistance genes Lr9 (0%), Lr13 (43%), Lr19 (1%), Lr20 (0%), Lr24 (4%), Lr26 (23%), Lr28 (0%), Lr34 (38%), Lr37 (1%) and Lr47 (1%) in them. Field data suggested that As-02 (Lr10+26+34), Bhakar-02 (Lr13) and Shafaq-06 (Lr10+13+27) were resistant; Pasban-90 (Lr10+13+26+27), Chenab-2000 (Lr10+13+26+27+31+34), Fbd-08 (Lr10), Millat-11 (unknown) and Punjab-11 (unknown) were found moderately resistant; Blue silver (Lr13+14a), Pak-81 (Lr10+23+26+31), Bahawalpur-97 (Lr13+26) and Lasani-08 (Lr13+27+31) were susceptible while Sh-88 (unknown), Auqab-2000 (Lr10+23+26+27+31), Iqbal-2000 (Lr3+10+13+26+27+31), Bahawalpur-2000 (Lr34) and Seher-06 (Lr10+27+31) were found highly susceptible against FHPRN. Present and previous studies revealed the presence of Lr3, 10, 13, 14a, 23, 26, 27, 31 and 34 in the Pakistani wheat varieties yet lacking Lr9, 19, 24 and 28. Therefore, the latter genes and their effective combinations should be incorporated in Pakistani varieties to combat leaf rust effectively. (author)

  4. Chromosomal Behavior during Meiosis in the Progeny of Triticum timopheevii × Hexaploid Wild Oat.

    Directory of Open Access Journals (Sweden)

    Hongzhou An

    Full Text Available The meiotic behavior of pollen mother cells (PMCs of the F2 and F3 progeny from Triticum timopheevii × hexaploid wild oat was investigated by cytological analysis and sequential C-banding-genomic in situ hybridization (GISH in the present study. A cytological analysis showed that the chromosome numbers of the F2 and F3 progeny ranged from 28 to 41. A large number of univalents, lagging chromosomes, chromosome bridges and micronuclei were found at the metaphase I, anaphase I, anaphase II and tetrad stages in the F2 and F3 progeny. The averages of univalents were 3.50 and 2.73 per cell, and those of lagging chromosomes were 3.37 and 1.87 in the F2 and F3 progeny, respectively. The PMC meiotic indices of the F2 and F3 progeny were 12.22 and 20.34, respectively, indicating considerable genetic instability. A sequential C-banding-GISH analysis revealed that some chromosomes and fragments from the hexaploid wild oat were detected at metaphase I and anaphase I in the progeny, showing that the progeny were of true intergeneric hybrid origin. The alien chromosomes 6A, 7A, 3C and 2D were lost during transmission from F2 to F3. In addition, partial T. timopheevii chromosomes appeared in the form of univalents or lagging chromosomes, which might result from large genome differences between the parents, and the wild oat chromosome introgression interfered with the wheat homologues' normally pairing.

  5. Classification of wheat varieties: Use of two-dimensional gel electrophoresis for varieties that can not be classified by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and an artificial neural network

    DEFF Research Database (Denmark)

    Jacobsen, Susanne; Nesic, Ljiljana; Petersen, Marianne Kjerstine

    2001-01-01

    Analyzing a gliadin extract by matrix assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI- TOF-MS) combined with an artificial neural network (ANN) is a suitable method for identification of wheat varieties. However, the ANN can not distinguish between all different wheat...

  6. Swedish Spring Wheat Varieties with the Rare High Grain Protein Allele of NAM-B1 Differ in Leaf Senescence and Grain Mineral Content

    Science.gov (United States)

    Asplund, Linnéa; Bergkvist, Göran; Leino, Matti W.; Westerbergh, Anna; Weih, Martin

    2013-01-01

    Some Swedish spring wheat varieties have recently been shown to carry a rare wildtype (wt) allele of the gene NAM-B1, known to affect leaf senescence and nutrient retranslocation to the grain. The wt allele is believed to increase grain protein concentration and has attracted interest from breeders since it could contribute to higher grain quality and more nitrogen-efficient varieties. This study investigated whether Swedish varieties with the wt allele differ from varieties with one of the more common, non-functional alleles in order to examine the effect of the gene in a wide genetic background, and possibly explain why the allele has been retained in Swedish varieties. Forty varieties of spring wheat differing in NAM-B1 allele type were cultivated under controlled conditions. Senescence was monitored and grains were harvested and analyzed for mineral nutrient concentration. Varieties with the wt allele reached anthesis earlier and completed senescence faster than varieties with the non-functional allele. The wt varieties also had more ears, lighter grains and higher yields of P and K. Contrary to previous information on effects of the wt allele, our wt varieties did not have increased grain N concentration or grain N yield. In addition, temporal studies showed that straw length has decreased but grain N yield has remained unaffected over a century of Swedish spring wheat breeding. The faster development of wt varieties supports the hypothesis of NAM-B1 being preserved in Fennoscandia, with its short growing season, because of accelerated development conferred by the NAM-B1 wt allele. Although the possible effects of other gene actions were impossible to distinguish, the genetic resource of Fennoscandian spring wheats with the wt NAM-B1 allele is interesting to investigate further for breeding purposes. PMID:23555754

  7. Dynamic evolution of alpha-gliadin prolamin gene family in homeologous genomes of hexaploid wheat

    Science.gov (United States)

    Bread wheat is an allohexaploid species containing the three closely related A, B, and D subgenomes. Homeologous Gli-2 loci located on chromosomes 6A, 6B and 6D encode complex groups of alpha-gliadin seed storage proteins that contribute to the functional properties of wheat flour, but also trigger ...

  8. Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat

    Czech Academy of Sciences Publication Activity Database

    Kopecký, David; Allen, D.C.; Duchoslav, M.; Doležel, Jaroslav; Lukaszewski, A.J.

    2007-01-01

    Roč. 119, 3-4 (2007), s. 263-267 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : hexaploid wheat * Ph1 and ph1b * rye chromatin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.402, year: 2007

  9. Aroma of wheat porridge and bread-crumb is influenced by the wheat variety

    DEFF Research Database (Denmark)

    Starr, Gerrard; Hansen, Åse Solvej; Petersen, Mikael Agerlin

    2015-01-01

    evaluation, from these eight were selected for bread evaluation. Porridge and bread results were compared. Variations were found in both evaluations. Five odour- and nine flavour descriptors were found to be common to both wheat porridge and bread. The results for two descriptors: "cocoa" and "oat porridge......" were correlated between the wheat porridge and bread samples. Analysis of whole-meal and low-extraction samples revealed that the descriptors "malt", "oat-porridge", "øllebrød", "cocoa" and "grain" mostly characterized wheat bran, while descriptors for "maize", "bean-shoots", "chamomile", "umami...

  10. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Directory of Open Access Journals (Sweden)

    Ashley S. Chaffin

    2016-07-01

    Full Text Available Hexaploid oat ( L., 2 = 6 = 42 is a member of the Poaceae family and has a large genome (∼12.5 Gb containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP array and genotyping-by-sequencing (GBS were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L. reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.

  11. Comparative cytogenetic analysis of diploid and hexaploid Chenopodium album Agg

    Directory of Open Access Journals (Sweden)

    Bożena Kolano

    2011-01-01

    Full Text Available Two cytotypes of Chenopodium album, diploid (2n=2x=18 and hexaploid (2n=6x=54, were analysed using flow cytometry and a FISH experiment. The genome size was indicated as 1.795 pg for the diploid and 3.845 pg for the hexaploid plants which suggested genome downsizing in the evolution of hexaploid cytotype. Double FISH with 25S rDNA and 5S rDNA allowed three to five homologue chromosome pairs to be distinguished depending on the cytotype. The Variation in size and number of rDNA sites between the polyploid C. album and its putative diploid ancestor indicated that rDNA loci underwent rearrangements after polyploidization. Flow cytometry measurements of the relative nuclear DNA content in the somatic tissue of C. album revealed extensive endopolyploidization resulting in tissues comprising a mixture of cells with a different DNA content (from 2C to 32C in varying proportions. The pattern of endopolyploidy was characteristic for the developmental stage of the plant and for the individual organ. Polysomaty was not observed in the embryo tissues however endopolyploidization had taken place in most tested organs of seedlings. The endopolyploidy in diploid and hexaploid C. album was compared to find any relationship between the pattern of polysomaty and polyploidy level in this species. This revealed that polyploid plants showed a decline in the number of endocycles as well as in the frequency of endopolyploidy cells compared to diploid plants.

  12. Absorption and accumulation of aluminum and barium in eight Sindh wheat (Triticum Aestivum L.) varieties and their availability in its soil

    International Nuclear Information System (INIS)

    Shar, G.Q.; Kazi, T.G.; Sahito, S.; Shaikh, M.S.

    2003-01-01

    The determination of the aluminum and barium contents in eight wheat varieties and the soil have been carried out using wet acid digestion method by nitric acid and hydrogen peroxide for dissolution of two heavy metals, aluminum and barium. The certified and representative samples of eight wheat varieties and the soil of experimental plot of NIA, Tandojam Sindh, Pakistan was done by atomic absorption spectrometry. The experimental study was conducted using six samples for each eight wheat varieties of FSC and RD as stand reference materials and representative samples, its soil was collected from nuclear institute of agriculture (NIA), Tandojam. The characteristics mean of each element for six samples of each variety of representative samples found to be 30.14,15.06, 26.5, 19.05, 23.78, 38.77, 29.23 and 25.6 of the aluminum and 3.81, 6.73, 7.38, 7.17, 3.34, 5.99, 17.34 and 16.4 mg/kg of the barium for Anmol, TJ-83, albadgar-93, Mehran-89, Soughat-90, Sarsabaz, Kiran and SKD-10/9 varieties respectively and its soil contain 50607.1 mg/kg respectively in respectively in representative samples which are compared with certified samples which is at the 95% confidence limit. (author)

  13. Comparative efficiency of different methods of gluten extraction in indigenous varieties of wheat

    OpenAIRE

    Imran, Samra; Hussain, Zaib; Ghafoor, Farkhanda; Ahmad Nagra, Saeed; Ashbeal Ziai, Naheeda

    2013-01-01

    The present study investigated six varieties of locally grown wheat (Lasani, Sehar, Miraj-08, Chakwal-50, Faisalabad-08 and Inqlab) procured from Punjab Seed Corporation, Lahore, Pakistan for their proximate contents. On the basis of protein content and ready availability, Faisalabad-08 (FD-08) was selected to be used for the assessment of comparative efficiency of various methods used for gluten extraction. Three methods, mechanical, chemical and microbiological were used for the extraction ...

  14. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis

    NARCIS (Netherlands)

    Geest, van Geert; Bourke, Peter M.; Voorrips, Roeland E.; Marasek-Ciolakowska, Agnieszka; Liao, Yanlin; Post, Aike; Meeteren, van Uulke; Visser, Richard G.F.; Maliepaard, Chris; Arens, Paul

    2017-01-01

    Key message: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL.Abstract: Construction and use of linkage maps are challenging in hexaploids with polysomic

  15. Evaluation of photosynthetic pigments and protein content in some gamma treated wheat varieties using 60Co as a source

    International Nuclear Information System (INIS)

    Mishra, Sandeep; Shukla, Pradeep K.; Ramteke, P.W.; Misra, Pragati; Shukla, Narayani; Gautam, Sanghdeep; Gayatri

    2014-01-01

    Gamma rays are often used on plants in developing varieties that are agriculturally and economically important and have high productivity. The results showed that variety PBW-154 was relatively tolerant to gamma radiation among all the verities, whereas, HD-2733 and LOK-1 were sensitive to gamma radiation varieties. The biochemical parameters in all wheat varieties, chlorophyll content and protein content, showed a significant decrease with the increase in treatment of gamma radiation stress

  16. Investigation of The Relationship Between Grain Yield with Physiological Parameters in Some Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Mehmet KARAMAN

    2015-08-01

    Full Text Available This study was conducted to analyze the relationships between grain yield with physiological parameters in some bread wheat varieties. For this purpose, ten bread wheat genotypes were grown in randomized complete block design with 3 replications under rainfall conditions in the experimental field of GAP International Agricultural Research and Training Center during the 2012-2013 growing season. The most high yielding varieties in this study, Pehlivan, Kate A-1, Cemre and Anapo, were observed as standing out in terms of flag leaf chlorophyll content (SPAD value, flag leaf ash ratio, leaf area index and grain filling period . The correlation analyses of the study showed positive and significant correlations between chlorophyll content of flag leaf at heading stage with chlorophyll content at flowering stage, between chlorophyll content of flag leaf at flowering and heading stages with chlorophyll content of flag leaf at milk stage and between grain filling rate with leaf area index, In addition, positive and significant correlations were identified between flag leaf ash ratio and NDVI reading prior to heading time with grain yield

  17. Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell

    Directory of Open Access Journals (Sweden)

    Maria Irene Baggio de Moraes Fernandes

    2000-12-01

    to facilitate gene flow between wheat and related species. Since the environment at the center of origin of wheat in Southern Asia is quite different from subtropical environments, Brazilian breeding programs overcome more challenges to adapt wheat crop to biotic and abiotic stresses than some other countries. The germplasm bank of Embrapa Trigo has about 1000 registered entries of Triticum relatives, Aegilops, Secale and Agropyron species supplied from several germplasm banks distributed over the world which were multiplied and/or selected for naturally occurring or artificially inoculated fungal diseases. Since Aegilops squarrosa L. entries showed very good performance, the genetic variability observed in this species was firstly exploited. It is reported here the strategy used for transferring useful genes from Ae. squarrosa (DD, 2n = 14: crossing with tetraploid species (AABB, 2n = 28, rescue and in vitro culture of immature embryos for regeneration of the trihaploid (ABD, 2n = 21 hybrid, and colchicine treatment for genome duplication resulting in the artificial synthesis of hexaploid wheat lines (AABBDD, 2n = 42. Results of 10,739 artificial pollinations involving 28 cross combinations amongst eight T. durum L., T. dicoccum and T. cartlicum tetraploid entries used as female parents and ten selected Ae. squarrosa sources of resistance as male parents are presented here. Immature embryos from 18 cross combinations were recovered and cultured in vitro. Green plantlets from 13 combinations were regenerated. Fertile amphiploids were recovered only from crosses among entries of tetraploid T. durum and diploid Ae. squarrosa. They originated 11 fertile synthetic amphiploid lines from seven different combinations. Useful stem and leaf rust as well as powdery mildew resistance for future use in breeding programs were obtained.

  18. Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat

    Czech Academy of Sciences Publication Activity Database

    Akhunov, E. D.; Sehgal, S.; Liang, H. Q.; Wang, S. C.; Akhunova, A. R.; Kaur, G.; Li, W. L.; Forrest, K. L.; See, D.; Šimková, Hana; Ma, Y. Q.; Hayden, M. J.; Luo, M. C.; Faris, J. D.; Doležel, Jaroslav; Gill, B. S.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 252-265 ISSN 0032-0889 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : MESSENGER-RNA DECAY * HEXAPLOID WHEAT * NUCLEOTIDE SUBSTITUTION Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.394, year: 2013

  19. CHARACTERIZATION OF GLIADIN AND HMW GLUTENIN PROTEIN COMPOSITION IN COLOURED WHEAT (TRITICUM AESTIVUM L. VARIETIES

    Directory of Open Access Journals (Sweden)

    Valéria Šudyová

    2011-12-01

    Full Text Available Wheat is one of the most important grains in our daily diet. Coloured wheat contains natural anthocyanin compounds. Bioactive compounds in wheat have attracted increasingly more interest from breeders because of their benefits. It is important to fully understand protein properties of red, blue, purple, and yellow-coloured wheat in order to predict their potential uses for culturing new varieties. All 21 accessions originating from different geographical areas of world were evaluated for high molecular weight glutenin subunit (HMW-GS and T1BL.1RS wheat-rye translocation using SDS-PAGE and A-PAGE. The data indicated the prevalence of the allele 1 (36%, allele 0 (30% and allele 2* (34% at the Glu-1A and five alleles, namely 7+8 (36%, 7+9 (29%, 20 (21%, 7 (12% and 17+18 (2% represented the Glu-1B. Existence of 2 alleles at the locus Glu-1D was revealed, in fact 21% of them showed the subunit pairs Glu-1D 5+10 correlated with good bread making properties. Protein subunit Glu-1A1 and Glu-1A2* were correlated positively with improved dough strength as compared to subunit null. On the chromosome Glu-1B subunit 17+18 and 7+8 were associated with slightly stronger gluten type than 7+9, whereas subunit 20 and 7 were associated with weak gluten properties. On the basis of electrophoretic separation of gliadin fraction it was found that only one genotype contained T1BL.1RS wheat-rye translocation. The Glu-1 quality score ranged from 4 to 10. Suitable accessions can be used for the crossing programs to improve colour and good technological quality of bread wheat.  doi:10.5219/161

  20. Transferring alien genes to wheat

    International Nuclear Information System (INIS)

    Knott, D.R.

    1987-01-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized

  1. Transferring alien genes to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Knott, D. R.

    1987-07-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized.

  2. Towards an improved variety assortment for the Dutch organic sector : case studies on onion and spring wheat

    NARCIS (Netherlands)

    Osman, A.M.

    2014-01-01

    Key words:

    organic farming; principles of organic agriculture; food production chain;

    plant breeding; genetic correlation; plant traits; farmers’ preferences;

    variety testing; Value for Cultivation and Use; EU seed legislation;

    onion; Allium cepa; spring wheat;

  3. Features of the organization of bread wheat chromosome 5BS based on physical mapping

    Czech Academy of Sciences Publication Activity Database

    Salina, E.A.; Nesterov, V.; Frenkel, Z.; Kiseleva, V. I.; Timonova, E. M.; Magni, F.; Vrána, Jan; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Korol, A.; Sergeeva, E.M.

    2018-01-01

    Roč. 19, FEB 9 (2018), č. článku 80. ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Chromosome 5BS * Genetic markers * Hexaploid wheat * Physical mapping * Sequencing * Synteny * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  4. Apoplastic ascorbate contributes to the differential ozone sensitivity in two varieties of winter wheat under fully open-air field conditions

    International Nuclear Information System (INIS)

    Feng Zhaozhong; Pang Jing; Nouchi, Isamu; Kobayashi, Kazuhiko; Yamakawa, Takashi; Zhu Jianguo

    2010-01-01

    We studied leaf apoplastic ascorbates in relation to ozone (O 3 ) sensitivity in two winter wheat (Triticum aestivum L.) varieties: Yangfumai 2 (Y2) and Yangmai 16 (Y16). The plants were exposed to elevated O 3 concentration 27% higher than the ambient O 3 concentration in a fully open-air field from tillering stage until final maturity. The less sensitive variety Y16 had higher concentration of reduced ascorbate in the apoplast and leaf tissue by 33.5% and 12.0%, respectively, than those in the more sensitive variety Y2, whereas no varietal difference was detected in the decline of reduced ascorbate concentration in response to elevated O 3 . No effects of O 3 or variety were detected in either oxidized ascorbate or the redox state of ascorbate in the apoplast and leaf tissue. The lower ascorbate concentrations in both apoplast and leaf tissue should have contributed to the higher O 3 sensitivity in variety Y2. - Apoplastic ascorbate contributes to varietal difference in wheat tolerance to O 3 .

  5. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Kubaláková, Marie; Šimková, Hana; Farkas, A.; Cseh, A.; Megyeri, M.; Vrána, Jan; Molnár-Láng, M.; Doležel, Jaroslav

    2014-01-01

    Roč. 127, č. 5 (2014), s. 1091-1104 ISSN 0040-5752 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : SYNTHETIC HEXAPLOID WHEAT * AEGILOPS-TRITICUM GROUP * GENETIC-LINKAGE MAP Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.790, year: 2014

  6. Assessment of on-farm diversity of wheat varieties and landraces: Evidence from farmer’s fields in Ethiopia

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2014-01-01

    Analysis of spatial diversity, temporal diversity and coefficient of parentage (COP) were carried out along with measurements of agronomic and morphological traits to explain on-farm diversity of modern varieties or landraces of wheat (Triticum aestivum L. and Triticum durum L.) grown by farmers in

  7. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker

    2014-11-01

    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  8. Physico-Chemical Characteristics and Rheolgical Properties of Different Wheat Varieties Grown in Sindh

    International Nuclear Information System (INIS)

    Chana, M.J.; Ghanghro, A.B.; Sheikh, S.A.; Nizamani, S.M.

    2015-01-01

    This study was designed to investigate the physico-chemical and rheological properties of 17 wheat varieties (TJ-83, Jouhar, TD-1, Anmool, Mehran, Indus-66, Sindh B-1, Abadgar, Bhittai, Imdad, Mexi-Pak, Soughat, Blue Silver, Moomal, Marvi, Kiran, and Pak-70 ) commercially grown on experimental field of Agriculture Research Institute, Tandojam. The results revealed that moisture percentage were in range of 11 to 12 among all varieties, high protein content of about 15.2 percentage was found in Mehran and Blue silver varieties, starch was found high in Maxi-pak (70.6 percentage), high hardness values in Imdad (70.1percentage) and Jouhar (70.2 percentage). However, zeleny content was found high in Marvi, Abadgaar and Mehran i.e. 71 percentage. Amylographic results showed that among all varieties the Bhittai variety required maximum temperature up to 65.7 Degree C for the beginning of gelatinization as compared to other varieties. The highest gelatinization temperature was noted up to 96.7 Degree C in Moomal whereas others had temperature from 82.7 to 89.0 Degree C. Highest gelatinization maxima (1782AU) acquired by T.J-83 variety. The results of Farinograph showed that highest water absorption was noted in Anmool variety. The highest dough development time and dough stability were found highest in Kiran and Indus-66, respectively. T.D-1 and Jouhar varieties had highest break down time as well as highest Farinograph quality. (author)

  9. Effects of accelerated aging upon the lipid composition of seeds from two soft wheat varieties from Morocco

    Energy Technology Data Exchange (ETDEWEB)

    Ouzouline, M.; Tahani, N.; Demandre, C.; El Amrani, A.; Benhassaine-Kesri, G.; Serghini Caid, H.

    2009-07-01

    The lipid composition of the seeds from two soft wheat varieties (Triticum aestivum, cv. Marchouche and Mahdia) were analyzed before and after accelerated aging. Eight days of accelerated aging resulted in a total inhibition of seed germ inability as well as a decrease in their total and especially unsaturated fatty acid contents. Oleic and linoleic acid contents decreased particularly in the phosphatidylcholine of the seeds from both varieties. The proportion of polar lipids also decreased after aging as compared to neutral lipids: a 5.8% and 7.2% decrease in polar lipids was e observed in Mahdia and Marchouche cultivars, respectively. In the neutral lipids of the seeds from the Marchouche variety, the percentage of free fatty acids increased whereas the triacylglycerols decreased. After aging, the fatty acid compositions of all lipid classes were modified in the same manner as total fatty acid compositions. Among polar lipids, phospholipid proportions were particularly small, especially the phosphatidylcholine percentages with an 18.1% and 19.1% decrease in Mahdia and Marchouche varieties, respectively. In contrast, MGDG percentages increased, especially in the seeds from the Marchouche variety. A 15.5% increase was noticed when compared with seeds which were not aged. At the same time, the DGDG percentage showed a 16.6% decrease after accelerated aging of the seeds from the Marchouche variety. From these results we concluded that the lipid content decrease observed in seeds after accelerated aging could be linked to a loss in the germination and vigor of wheat seeds. (Author) 38 refs.

  10. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  11. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    Directory of Open Access Journals (Sweden)

    Lidia Błaszczyk

    2013-07-01

    Full Text Available Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax, and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  12. Accumulation of aluminum and barium in twelve Punjab wheat varieties and their contents in the agricultural soil

    International Nuclear Information System (INIS)

    Shar, G.Q.; Lashari, A.K.H.; Haider, S.I.

    2003-01-01

    Wheat samples of twelve varieties, grown by breeders at NIAB, Faisalabad Pakistan and its soil, were collected and analyzed for aluminum and barium content by atomic absorption spectroscopy using acetylene-nitroxide flame. For dissolution for heavy metals, aluminum and barium, wet acid digestion method was used. The experimental study was conducted using six samples for each twelve varieties of FSC and RD (Federal Seed Certification and Registration Department) as standard reference materials and representative samples, and the soil which was also collected from agricultural plot of Nuclear Inst. of Agricultural and Biology (NIAB), Faisalabad, Punjab. The characteristics mean of both elements in each variety of representative samples was found to be 28.32, 71.02, 37.41, 36.95, 28.32, 47.40, 30.14, 14.69, 25.41, 32.86, 30.14 and 41.95 for the aluminum and 12.67, 6.92, 5.67, 19.82, 3.28, 17.34, 10.25, 10.49, 8.01, 14.23, 15.16 and 6.92 mg/kg for the barium of Chakwal-86, Bakhatawar-92, Shahkar-95, Parwaz-94, Punjab-96, Bahawal pur-97, Shahkar-91, Inquilab-91, Pasban-90, Punjab-85, Faisalabad-85 and Pak-81 varieties respectively. The soil of that specific plot contains 35964.3 and 111.08 mg/kg of aluminum and barium respectively. The representative samples, which are compared with certified samples at 95% confidence limit. The purpose of this study was to study the variation in uptake of aluminum and barium in twelve different wheat varieties grown in same agricultural plot. (author)

  13. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    Science.gov (United States)

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  14. Evaluation of Spring Wheat (20 Varieties Adaptation to Soil Drought during Seedlings Growth Stage

    Directory of Open Access Journals (Sweden)

    Jolanta Biesaga-Kościelniak

    2014-04-01

    Full Text Available The effect of soil drought (10 days on the growth of plants, the accumulation of water and leakage of electrolytes, gas exchange, the contents of chl a + b and carotenoids in leaves and photochemical activity of photosystem II was studied at the seedling stage by transient fluorescent analysis in 20 of the popular varieties of polish spring wheat. Drought caused a particularly strong reduction in vigor of growth of seedlings, net photosynthesis rate and triggered an increase in electrolyte leakage from the leaves. Certain varieties during the drought demonstrated relatively intense CO2 assimilation at low water loss through transpiration. The varieties tested were significantly different in terms of tolerance to drought of the processes of gas exchange and seedlings development. Photochemical processes in PSII showed high tolerance to drought and at the same time low differentiation among varieties. The results obtained suggested that tolerance of growth parameters to drought and CO2 assimilation at the seedling stage may alleviate consequent depression of final yield of the grain.

  15. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon

    2014-01-01

    Vernalization, photoperiod and the relatively poorly defined earliness per se ( eps ) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62 , consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111 . SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

  16. SSR allelic diversity changes in 480 European bread wheat varieties released from 1840 to 2000.

    Science.gov (United States)

    Roussel, V; Leisova, L; Exbrayat, F; Stehno, Z; Balfourier, F

    2005-06-01

    A sample of 480 bread wheat varieties originating from 15 European geographical areas and released from 1840 to 2000 were analysed with a set of 39 microsatellite markers. The total number of alleles ranged from 4 to 40, with an average of 16.4 alleles per locus. When seven successive periods of release were considered, the total number of alleles was quite stable until the 1960s, from which time it regularly decreased. Clustering analysis on Nei's distance matrix between these seven temporal groups showed a clear separation between groups of varieties registered before and after 1970. Analysis of qualitative variation over time in allelic composition of the accessions indicated that, on average, the more recent the European varieties, the more similar they were to each other. However, European accessions appear to be more differentiated as a function of their geographical origin than of their registration period. On average, western European countries (France, The Netherlands, Great Britain, Belgium) displayed a lower number of alleles than southeastern European countries (former Yugoslavia, Greece, Bulgaria, Romania, Hungary) and than the Mediterranean area (Italy, Spain and Portugal), which had a higher number. A hierarchical tree on Nei's distance matrix between the 15 geographical groups of accessions exhibited clear opposition between the geographical areas north and south of the arc formed by the Alps and the Carpathian mountains. These results suggest that diversity in European wheat accessions is not randomly distributed but can be explained both by temporal and geographical variation trends linked to breeding practices and agriculture policies in different countries.

  17. Non-Additive Expression of Homoeologous Genes is Established Upon Polyploidization in Hexaploid Wheat

    Science.gov (United States)

    Traditional views on the potential genetic effects of polyploidy in allohexaploid wheat (Triticum aestivum L.) have primarily emphasized aspects of greater coding sequence variation and the enhanced potential to acquire new gene functions through mutation of redundant loci. The extent and significa...

  18. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Duan Jialei

    2012-08-01

    Full Text Available Abstract Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq. The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.

  19. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  20. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda, E-mail: pal.magda@agrar.mta.hu

    2014-09-15

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress.

  1. Synthesis and role of salicylic acid in wheat varieties with different levels of cadmium tolerance

    International Nuclear Information System (INIS)

    Kovács, Viktória; Gondor, Orsolya K.; Szalai, Gabriella; Darkó, Éva; Majláth, Imre; Janda, Tibor; Pál, Magda

    2014-01-01

    Highlights: • Cd induces the salicylic acid metabolism in wheat. • Salicylic acid is synthesized via benzoic acid and/or ortho-hydroxy-cinnamic acid. • Cd tolerance can be explained by the highly induced glutathione metabolism. • Salicylic acid signalling is correlated with glutathione-related mechanisms. - Abstract: Wheat genotypes with different endogenous SA contents were investigated, in order to reveal how cadmium influences salicylic acid (SA) synthesis, and to find possible relationships between SA and certain protective compounds (members of the antioxidants and the heavy metal detoxification system) and between the SA content and the level of cadmium tolerance. Cadmium exposure induced SA synthesis, especially in the leaves, and it is suggested that the phenyl-propanoid synthesis pathway is responsible for the accumulation of SA observed after cadmium stress. Cadmium influenced the synthesis and activation of protective compounds to varying extents in wheat genotypes with different levels of tolerance; the roots and leaves also responded differently to cadmium stress. Although a direct relationship was not found between the initial SA levels and the degree of cadmium tolerance, the results suggest that the increase in the root SA level during cadmium stress in the Mv varieties could be related with the enhancement of the internal glutathione cycle, thus inducing the antioxidant and metal detoxification systems, which promote Cd stress tolerance in wheat seedlings. The positive correlation between certain SA-related compounds and protective compounds suggests that SA-related signalling may also play a role in the acclimation to heavy metal stress

  2. Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii.

    Science.gov (United States)

    Nishijima, Ryo; Ikeda, Tatsuya M; Takumi, Shigeo

    2018-02-01

    Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F 2 mapping population, and found that the F 2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F 2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.

  3. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    Science.gov (United States)

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  4. Genetic mapping of a novel recessive allele for non-glaucousness in wild diploid wheat Aegilops tauschii: implications for the evolution of common wheat.

    Science.gov (United States)

    Nishijima, Ryo; Tanaka, Chisa; Yoshida, Kentaro; Takumi, Shigeo

    2018-04-01

    Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F 2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.

  5. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality.

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat ( Triticum aestivum ) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, "C 306" and a poor chapatti variety, "Sonalika." About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2'-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be "variety or genotype" specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding.

  6. Identification of Wheat Varieties Using Matrix-assisted Laser Desorption/Ionisation Time-of-flight Mass Spectrometry and an Artificial Neural network

    DEFF Research Database (Denmark)

    Bloch, Helle Aagaard; Kesmir, Can; Petersen, Marianne Kjerstine

    1999-01-01

    A novel tool for variety identification of wheat (Triticum aestivum L,) has been developed: an artificial neural network (ANN) is used to classify the gliadin fraction analysed by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS). The robustness...

  7. Allelopathic appraisal effects of straw extract wheat varieties on the ...

    African Journals Online (AJOL)

    hope&shola

    2010-11-29

    Nov 29, 2010 ... Ben HM, Ghorbal H, Kremer RJ, Oussama O (2001). Allelopathic effects of barley extracts on germination and seedlings growth of bread and durum wheats. Agronomie, 21: 65-71. Dias LS (1991). Allelopathic activity of decomposing straw of wheat and oat and associated soil on some crop species. Soil Till.

  8. An Advanced Backcross Population through Synthetic Octaploid Wheat as a “Bridge”: Development and QTL Detection for Seed Dormancy

    Directory of Open Access Journals (Sweden)

    Zhang Dale

    2017-12-01

    Full Text Available The seed dormancy characteristic is regarded as one of the most critical factors for pre-harvest sprouting (PHS resistance. As a wild wheat relative species, Aegilops tauschii is a potential genetic resource for improving common wheat. In this study, an advanced backcross population (201 strains containing only Ae. tauschii segments was developed by means of synthetic octaploid wheat (hexaploid wheat Zhoumai 18 × Ae. tauschii T093. Subsequently, seed dormancy rate (Dor in the advanced backcross population was evaluated on the day 3, 5 and 7, in which 2 major QTLs (QDor-2D and QDor-3D were observed on chromosomes 2D and 3D with phenotypic variance explained values (PVEs of 10.25 and 20.40%, respectively. Further investigation revealed significant correlation between QDor-3D and Tamyb10 gene, while no association was found between the former and TaVp1 gene, implying that QDor-3D site could be of closer position to Tamyb10. The obtained quantitative trait locus sites (QTLs in this work could be applied to develop wheat cultivars with PHS resistance.

  9. Study on genetic diversity in Pakistani wheat varieties using simple ...

    African Journals Online (AJOL)

    Common wheat ( Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is the most important human food grain and ranks second in total production as a cereal crop behind maize. Genetic diversity evaluation of germplasm is the basis of improvement in wheat. In the present study genetic diversity of 10 ...

  10. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Science.gov (United States)

    Wang, Xiubo; Wang, Lifang; Shangguan, Zhouping

    2016-01-01

    Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.). In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs), but with a greater increase in instantaneous water use efficiency (WUE). At the meantime, the nitrogen (N) supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP), the maximum photochemical efficiency (Fv/Fm), the quantum yield of photosystemII(ΦPSII), and the apparent photosynthetic electron transport rate (ETR) decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S) increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  11. Leaf Gas Exchange and Fluorescence of Two Winter Wheat Varieties in Response to Drought Stress and Nitrogen Supply.

    Directory of Open Access Journals (Sweden)

    Xiubo Wang

    Full Text Available Water and nitrogen supply are the two primary factors limiting productivity of wheat (Triticum aestivum L.. In our study, two winter wheat varieties, Xinong 979 and large-spike wheat, were evaluated for their physiological responses to different levels of nitrogen and water status during their seedling stage grown in a phytotron. Our results indicated that drought stress greatly reduced the net photosynthetic rate (Pn, transpiration rate (E, and stomatal conductance (Gs, but with a greater increase in instantaneous water use efficiency (WUE. At the meantime, the nitrogen (N supply improved photosynthetic efficiency under water deficit. Parameters inferred from chlorophyll a measurements, i.e., photochemical quenching coefficient (qP, the maximum photochemical efficiency (Fv/Fm, the quantum yield of photosystemII(ΦPSII, and the apparent photosynthetic electron transport rate (ETR decreased under water stress at all nitrogen levels and declined in N-deficient plants. The root-shoot ratio (R/S increased slightly with water stress at a low N level; the smallest root-shoot ratio was found at a high N level and moderate drought stress treatment. These results suggest that an appropriate nitrogen supply may be necessary to enhance drought resistance in wheat by improving photosynthetic efficiency and relieving photoinhibition under drought stress. However, an excessive N supply had no effect on drought resistance, which even showed an adverse effect on plant growth. Comparing the two cultivars, Xinong 979 has a stronger drought resistance compared with large-spike wheat under N deficiency.

  12. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Shawna B Matthews

    Full Text Available Genetic differences among major types of wheat are well characterized; however, little is known about how these distinctions affect the small molecule profile of the wheat seed. Ethanol/water (65% v/v extracts of seed from 45 wheat lines representing 3 genetically distinct classes, tetraploid durum (Triticum turgidum subspecies durum (DW and hexaploid hard and soft bread wheat (T. aestivum subspecies aestivum (BW were subjected to ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS. Discriminant analyses distinguished DW from BW with 100% accuracy due to differences in expression of nonpolar and polar ions, with differences attributed to sterol lipids/fatty acids and phospholipids/glycerolipids, respectively. Hard versus soft BW was distinguished with 100% accuracy by polar ions, with differences attributed to heterocyclic amines and polyketides versus phospholipid ions, respectively. This work provides a foundation for identification of metabolite profiles associated with desirable agronomic and human health traits and for assessing how environmental factors impact these characteristics.

  13. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  14. Response of wheat varieties to different nitrogen levels under agro-climatic conditions of mansehra

    International Nuclear Information System (INIS)

    Shahzad, K.; Khan, A.

    2013-01-01

    A field experiment, comprising of three Nitrogen levels viz.0, 60, 120 and 180 kg/ha and five wheat varieties, viz., Pir Sabak-04 (P.S), P.S-05, P.S-08, Atta Habib and Siran, was conducted at Agricultural Research Station, Baffa, Mansehra, in 2011. The experiment was laid out in randomised complete block design with split-plot arrangement. The results indicated that varieties and nitrogen levels were significantly different for tillers per m2, days to physiological maturity, plant height (cm), spike length, grains per spike, 1000 grains weight (gm), biological yield (kg/ha) and grain yield (kg/ha), while harvest index (%) was significantly affected by varieties only. Maximum tillers per m2 were produced in varieties P.S-2008, P.S-2004 and P.S-2005. Maximum days to physiological maturity and grains per spike were observed in variety P.S-2008. Taller plants were produced by variety P.S. 2005. Longer spikes, maximum thousand grains weight and grain yield (kg/ha) were obtained in varieties P.S-2008 and Atta Habib, respectively. Maximum biological yield (kg/ha) was recorded in Atta Habib. Among nitrogen levels, maximum tillers per m2, days to physiological maturity, longer spikes, number of grains per spike, thousand grains weight, biological yield and grain yield were maximum when N was applied at the rate of 120 kg/ha. Similarly the interactive response of varieties and nitrogen was significantly affected for days to emergence, grains per spike, biological yield, grain yield and harvest index (%). From the study, it was concluded that the varieties, Pir Sabak-2008 and Atta Habib, produced maximum seed yield whereas nitrogen applied at the rate of 120 kg/ha performed better in productivity than other treatments. (author)

  15. Discovery of quantitative trait loci for crossability from a synthetic wheat genotype

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Jin Wang; Ronghua Zhou; Jizeng Jia

    2011-01-01

    Crossability between wheat and rye is an important trait for wheat improvement.No quantitative trait loci (QTLs) were detected from wheat ancestors previously.The objectives of this study were to dissect the QTLs for crossability using 111 introgression lines (ILs) derived from synthetic hexaploid wheat.A total of 1275 SSR markers were screened for polymorphism between the two parents,and 552 markers of them displayed polymorphism,of which 64 were selected for genotyping the 111 BC5F6 ILs.Field trials were performed in a Latinized α-lattice design in Luoyang and Jiaozuo of Henan Province of China in 2007-2008 and 2008-2009 cropping seasons.One-way ANOVA and interval mapping (IM) analysis were used to detect QTL for crossability between wheat and rye.A total of 13 putative QTLs were detected.Five of them,QCa.caas.1A,QCa.caas.2D,QCa.caas.4B,QCa.caas.5B and QCa.caas.6A,were detected in both trials and three of them,QCa.caas.2D,QCa.caas.4B and QCa.caas.6A,were novel.The positive effect allele of the four QTLs came from the donor parent Am3 except QCa.caas.6A that came from the recurrent parent Laizhou953.ILs with both higher positive effect alleles and favorable agronomic traits developed in present study are elite germplasm for wide crossing in wheat.Results from the current study suggest that wheat ancestors can be rich in new sources of crossability genes.

  16. Wheat for Kids! [and] Teacher's Guide.

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  17. Comparative Analysis of Phenolic Compound Characterization and Their Biosynthesis Genes between Two Diverse Bread Wheat (Triticum aestivum) Varieties Differing for Chapatti (Unleavened Flat Bread) Quality

    Science.gov (United States)

    Sharma, Monica; Sandhir, Rajat; Singh, Anuradha; Kumar, Pankaj; Mishra, Ankita; Jachak, Sanjay; Singh, Sukhvinder P.; Singh, Jagdeep; Roy, Joy

    2016-01-01

    Phenolic compounds (PCs) affect the bread quality and can also affect the other types of end-use food products such as chapatti (unleavened flat bread), now globally recognized wheat-based food product. The detailed analysis of PCs and their biosynthesis genes in diverse bread wheat (Triticum aestivum) varieties differing for chapatti quality have not been studied. In this study, the identification and quantification of PCs using UPLC-QTOF-MS and/or MS/MS and functional genomics techniques such as microarrays and qRT-PCR of their biosynthesis genes have been studied in a good chapatti variety, “C 306” and a poor chapatti variety, “Sonalika.” About 80% (69/87) of plant phenolic compounds were tentatively identified in these varieties. Nine PCs (hinokinin, coutaric acid, fertaric acid, p-coumaroylqunic acid, kaempferide, isorhamnetin, epigallocatechin gallate, methyl isoorientin-2′-O-rhamnoside, and cyanidin-3-rutinoside) were identified only in the good chapatti variety and four PCs (tricin, apigenindin, quercetin-3-O-glucuronide, and myricetin-3-glucoside) in the poor chapatti variety. Therefore, about 20% of the identified PCs are unique to each other and may be “variety or genotype” specific PCs. Fourteen PCs used for quantification showed high variation between the varieties. The microarray data of 44 phenolic compound biosynthesis genes and 17 of them on qRT-PCR showed variation in expression level during seed development and majority of them showed low expression in the good chapatti variety. The expression pattern in the good chapatti variety was largely in agreement with that of phenolic compounds. The level of variation of 12 genes was high between the good and poor chapatti quality varieties and has potential in development of markers. The information generated in this study can be extended onto a larger germplasm set for development of molecular markers using QTL and/or association mapping approaches for their application in wheat breeding

  18. Elasticities for U.S. Wheat Food Use by Class

    OpenAIRE

    Marsh, Thomas L.

    2003-01-01

    We conceptualize wheat for food use as an input into flour production and derive demand functions to quantify price responsiveness and economic substitutability across wheat classes. Cost, price, and substitution elasticities are estimated for hard red winter, hard red spring, soft red wheat, soft white winter, and durum wheat. In general, hard red winter and spring wheat varieties are much more responsive to their own price than are soft wheat varieties and durum wheat. Morishima elasticitie...

  19. Tocotrienols and tocopherols in colored-grain wheat, tritordeum and barley.

    Science.gov (United States)

    Lachman, Jaromír; Hejtmánková, Alena; Orsák, Matyáš; Popov, Marek; Martinek, Petr

    2018-02-01

    Colored-grain spring and winter wheat, spring tritordeum and barley (blue aleurone, purple pericarp, and yellow endosperm) from the harvests 2014 and 2015 were evaluated for tocol contents by HPLC-FD. Higher content of total tocols was found in spring wheat varieties compared with winter varieties. Four tocols (β-tocotrienol, α-tocotrienol, β-tocopherol, and α-tocopherol) were identified in wheat and tritordeum varieties. Dominant tocols in purple- and blue-grained wheat and yellow-grained tritordeum were α-tocopherol and β-tocotrienol, whereas spring barley varieties differed from wheat and tritordeum by high α-tocotrienol content. Tocol content was significantly affected by genotype and in a lesser extent in some varieties and lines also by rainfall and temperatures during crop year. Higher rainfall and lower temperatures caused in most varieties higher tocol contents. Purple- and blue-grained wheat lines with higher tocol, anthocyanin and phenolic acids with health benefits may be useful for breeding new varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  1. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines.

    Science.gov (United States)

    van den Broeck, Hetty C; van Herpen, Teun W J M; Schuit, Cees; Salentijn, Elma M J; Dekking, Liesbeth; Bosch, Dirk; Hamer, Rob J; Smulders, Marinus J M; Gilissen, Ludovicus J W J; van der Meer, Ingrid M

    2009-04-07

    Gluten proteins can induce celiac disease (CD) in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum) (AABBDD). The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the alpha-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS) resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the omega-gliadin, gamma-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS) removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  2. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat.

    Science.gov (United States)

    Zhang, Yunwei; Bai, Yang; Wu, Guangheng; Zou, Shenghao; Chen, Yongfang; Gao, Caixia; Tang, Dingzhong

    2017-08-01

    Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  3. Identification of genome-specific transcripts in wheat–rye translocation lines

    Directory of Open Access Journals (Sweden)

    Tong Geon Lee

    2015-09-01

    Full Text Available Studying gene expression in wheat–rye translocation lines is complicated due to the presence of homeologs in hexaploid wheat and high levels of synteny between wheat and rye genomes (Naranjo and Fernandez-Rueda, 1991 [1]; Devos et al., 1995 [2]; Lee et al., 2010 [3]; Lee et al., 2013 [4]. To overcome limitations of current gene expression studies on wheat–rye translocation lines and identify genome-specific transcripts, we developed a custom Roche NimbleGen Gene Expression microarray that contains probes derived from the sequence of hexaploid wheat, diploid rye and diploid progenitors of hexaploid wheat genome (Lee et al., 2014. Using the array developed, we identified genome-specific transcripts in a wheat–rye translocation line (Lee et al., 2014. Expression data are deposited in the NCBI Gene Expression Omnibus (GEO under accession number GSE58678. Here we report the details of the methods used in the array workflow and data analysis.

  4. Biotechnology in wheat improvement in Kenya

    International Nuclear Information System (INIS)

    Karanja, L.; Kinyua, M.G.; Njau, P.N.; Maling'a, J.

    2001-01-01

    Use of double haploid (DH) and mutation techniques in breeding wheat lines and varieties tolerant to drought, acid soils and resistant to Russian Wheat Aphid (RWA) at the National Plant Breeding Research Center in the last 4 years, is reported. The wheat variety, ''Pasa'' irradiated in 1996 is reported to have undergone selection process through yield trials in 1999-2000. Work done in the year 2000 is mainly described

  5. Qtl mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage

    International Nuclear Information System (INIS)

    Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.

    2014-01-01

    Drought stress is one of the major environmental constraints to crop plants including wheat worldwide. Synthetic hexaploid can act as a vehicle for improving crop tolerance against biotic and abiotic stresses. Doubled haploid population consisting of one hundred and forty individuals derived from cross of Opata and SH223 was used in the present study to identify genomic regions associated with various quantitative attributes of physiological nature. Doubled haploid mapping population was phenotyped for chlorophyll content and chlorophyll fluorescence kinetics under control and drought stress imposed at anthesis stage. Genotyping of population was accomplished by utilizing two hundred and sixty one polymorphic Gaterslaben wheat microsatellites and Beltsville agriculture research center simple sequence repeats. Linkage map of doubled haploid population comprising of 19 linkage groups and covering map length of two thousands six hundred and twenty six (2626) cM was constructed using map maker software. Major and minor QTLs associated with quantitative traits were identified using QGene software. Major QTL for chlorophyll content (QTc.wwc-1B-S11) of doubled haploid mapping population under anthesis drought stress was mapped on chromosome 1B and explained 10.09 percent of phenotypic variation at LOD score of 5.5. Seven major and minor QTLs for PCFK of doubled haploids were identified on chromosome 1B, 7A and 7D under control and drought stress at anthesis stage. The identified QTLs are of prime importance for high resolution mapping in synthetic hexaploid wheat. Genomic synteny of doubled haploids was observed with rice chromosome 2, 4, 7 and maize chromosome 7 owing to occurrence of orthologous QTLs for chlorophyll content and chlorophyll fluorescence respectively. (author)

  6. Influence of gamma radiation on productiveness of Cuba C-204 wheat variety in spring

    International Nuclear Information System (INIS)

    Caballero Torres, I.; Perez Talavera, S.; Diaz Esquivel, R.

    1995-01-01

    The percentage of flowers carrying seeds in spikes from seed irradiated plant with 100 to 800 Gy and non irradiated control plants was evaluated cv. Cuba C -204 wheat affectation. The results showed a significative (1 %) dose and s'pikes maturity time influence by bi factorial analysis. A significance of 1 % dose-maturity time interaction was obtained too and that bigger flowers carrying seeds percentage is obtained in 400 Gy radiated seeds plants. A delay of 5 days is present in the 500 Gy radiated plants maturity and a seed carrying flowers reduction of 35 % with reference to control. From 600 Gy up in the studied variety seeds were not obtained in the spring season

  7. Allometric analysis of the effects of density on reproductive allocation and Harvest Index in 6 varieties of wheat (Triticum)

    DEFF Research Database (Denmark)

    Qin, Xiao-liang; Weiner, Jacob; Qi, Lin

    2013-01-01

    allocation should be analyzed and interpreted allometrically because ratios or fractions such as Reproductive Effort or Harvest Index are size dependent. We investigated reproductive allocation of individuals in 6 varieties of Triticum (wheat) grown at a wide range of densities. We harvested leaves, stems...... size. There were significant differences among the varieties in the allometric exponent (slope of log–log relationship) of grain versus vegetative mass, such that some varieties produced higher yield (and therefore had a higher Harvest Index) than others when plants were small, while others had higher...... yield at larger sizes. Thus, the Harvest Index and its rank among varieties changed with plant size, which puts into question the practice of selecting for Harvest Index when crop performance varies greatly among individuals, years or environments. Selection for a high Harvest Index when individuals...

  8. Genetic analysis and location of a resistance gene to Puccinia ...

    Indian Academy of Sciences (India)

    Administrator

    the wheat production in Asia, North America, Europe and other wheat growing areas. China is the largest ..... A history of wheat breeding. ... and Yr65 for stripe rust resistance in hexaploid derivatives of durum wheat accessions PI 331260.

  9. based molecular characterization of popular wheat varieties of ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... (Talbert et al., 1994) and AFLP (Barrett and Kidwell,. 1998) have been used for the estimation of genetic diversity in wheat. The RAPD technique, regardless of its sensitivity to reaction conditions and problems with repeatability and amplifying of non-homologous sequen- ces (Devos and Gale, 1992), has ...

  10. Multi-trait evolution of farmer varieties of bread wheat after cultivation in contrasting organic farming systems in Europe.

    Science.gov (United States)

    Dawson, J C; Serpolay, E; Giuliano, S; Schermann, N; Galic, N; Chable, V; Goldringer, I

    2012-03-01

    Because of the lack of varieties for organic agriculture, associations of organic farmers in several European countries have begun cultivating landraces and historic varieties, effectively practicing in situ conservation of agricultural biodiversity. To promote agrobiodiversity conservation, a special list for "conservation varieties" was implemented in 2008 by the EU because for any exchange and marketing of seeds in the EU, a variety must be registered in an official catalog. Our study aimed at improving knowledge on the phenotypic diversity and evolution of such varieties when cultivated on organic farms in Europe, in order to better define their specific characteristics and the implications for the registration process. We assessed multi-trait phenotypic evolution in eight European landraces and historic varieties of bread wheat and in two pureline variety checks, each grown by eight organic farmers over 2 years and then evaluated in a common garden experiment at an organic research farm. Measurements on each farmer's version of each variety included several standard evaluation criteria for assessing distinctness, uniformity and stability for variety registration. Significant phenotypic differentiation was found among farmers' versions of each variety. Some varieties showed considerable variation among versions while others showed fewer phenotypic changes, even in comparison to the two checks. Although farmers' variety would not satisfy uniformity or stability criteria as defined in the catalog evaluation requirements, each variety remained distinct when assessed using multivariate analysis. The amount of differentiation may be related to the initial genetic diversity within landraces and historic varieties.

  11. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome

    Czech Academy of Sciences Publication Activity Database

    Mayer, K. F. X.; Rogers, J.; Doležel, Jaroslav; Pozniak, C.; Feuillet, C.; Lukaszewski, A.J.; Sourdille, P.; Kubaláková, Marie; Čihalíková, Jarmila; Dubská, Zdeňka; Vrána, Jan; Šperková, Romana; Šimková, Hana; Choulet, F.; Stein, N.; Praud, S.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 R&D Projects: GA ČR GBP501/12/G090; GA ČR(CZ) GAP501/12/2554; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : GENE-EXPRESSION * POLYPLOID WHEAT * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=CCC&DestLinkType=FullRecord&UT=000339400700040

  12. Characterization and glutenin diversity in tetraploid wheat varieties ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-19

    Nov 19, 2008 ... Important methods applied for the breeding of bread-quality wheat (Triticum durum L.) consist of small- scale bread-quality tests for the determination of the grain protein content, SDS-sedimentation volume, thousand weight kernel and ... marked as a x and y – type subunits, based on their electrophoretic ...

  13. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    Directory of Open Access Journals (Sweden)

    Albert Kertho

    Full Text Available Leaf rust, caused by Puccinia triticina (Pt, and stripe rust, caused by P. striiformis f. sp. tritici (Pst, are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ and one race of Pst (PSTv-37 frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.

  14. Heat-induced regulation of antioxidant defense system and nutrient accumulation in hexaploid bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Zia, M.A.; Ashraf, M.; Akram, A.

    2014-01-01

    Ten cultivars (five registered S-24, Inqlab-91, Saher-2006, Fsd-2008, and Lasani, and five candidate cultivars P.B-18, M.P-65, S.H-20, AARI-10, and G.A-20) of spring wheat (Triticum aestivum L.) were examined for high temperature stress tolerance. Plants were grown in soil filled pots in the Botanical Garden of the Department of Botany University of Agriculture Faisalabad, Pakistan. Three different temperature regimes (30, 40 and 50 degree C) were applied at two different growth stages (tillering and boot) for three temperature durations 30, 60 and 90 min in a growth chamber. The leaf and root samples were collected after two weeks of temperature treatment and then analyzed for enzymatic and non-enzymatic antioxidants as well as inorganic nutrients (N, P, K+, Ca2+). At the end, data obtained were statistically analyzed to distinguish heat tolerant from non-tolerant wheat cultivars. After appraisal of growth, antioxidant defense system and uptake of nutrients it was found that cvs. S-24, Inqlab-91, Saher-2006, Fsd-2008, Lasani and G.A-20 exhibited better thermo-tolerance capabilities than the other wheat cultivars (P.B-18, M.P-65, S.H-20, AARI-10). Among the thermo-tolerant wheat cultivars, G.A-20 and Lasani were superior in maintaining shoot fresh weights and shoot length, high antioxidant activities and better nutrient uptake at both tillering and boot stages. The response of all cultivars to heat stress applied at the tillering stage or boot stage was almost the same. (author)

  15. Genetic gains in wheat in Turkey: Winter wheat for dryland conditions

    Directory of Open Access Journals (Sweden)

    Mesut Keser

    2017-12-01

    Full Text Available Wheat breeders in Turkey have been developing new varieties since the 1920s, but few studies have evaluated the rates of genetic improvement. This study determined wheat genetic gains by evaluating 22 winter/facultative varieties released for rainfed conditions between 1931 and 2006. The study was conducted at three locations in Turkey during 2008–2012, with a total of 21 test sites. The experimental design was a randomized complete block with four replicates in 2008 and 2009 and three replicates in 2010–2012. Regression analysis was conducted to determine genetic progress over time. Mean yield across all 21 locations was 3.34 t ha−1, but varied from 1.11 t ha−1 to 6.02 t ha−1 and was highly affected by moisture stress. Annual genetic gain was 0.50% compared to Ak-702, or 0.30% compared to the first modern landmark varieties. The genetic gains in drought-affected sites were 0.75% compared to Ak-702 and 0.66% compared to the landmark varieties. Modern varieties had both improved yield potential and tolerance to moisture stress. Rht genes and rye translocations were largely absent in the varieties studied. The number of spikes per unit area decreased by 10% over the study period, but grains spike−1 and 1000-kernel weight increased by 10%. There were no significant increases in harvest index, grain size, or spike fertility, and no significant decrease in quality over time. Future use of Rht genes and rye translocations in breeding programs may increase yield under rainfed conditions. Keywords: Genetic gain, Rainfed wheat production, Winter wheat, Yield

  16. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat.

    Science.gov (United States)

    Gasparis, Sebastian; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2013-11-26

    Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. We documented that RNAi-based silencing of Sin genes resulted in

  17. The experience in the development of a new soft wheat variety of Yangfumai 2 with good quality

    International Nuclear Information System (INIS)

    He Zhentian; Chen Xiulan; Han Yuepen; Wang Jinrong; Yang Hefeng; Liu Xueyu

    2004-01-01

    A new variety Yangfumai 2 derived from a combination, Yangmail 58 x 1-9012, was developed by the way of hybridization and irradiation. Its flour quality meets the standard of national soft wheat, and its agronomic characteristics are described as the high and steady yield, resistance to bad growth condition, the high value of 1000-grainweight and the good-looking at the late seed-filling stage. Yangfumai 2 is suitable to growth in the region of Huaihe canallying in the south along Yangtze River in the middle and lower area. (authors)

  18. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2016-11-01

    Full Text Available Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.. In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies towards both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1 and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1 were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  19. Removing celiac disease-related gluten proteins from bread wheat while retaining technological properties: a study with Chinese Spring deletion lines

    Directory of Open Access Journals (Sweden)

    Bosch Dirk

    2009-04-01

    Full Text Available Abstract Background Gluten proteins can induce celiac disease (CD in genetically susceptible individuals. In CD patients gluten-derived peptides are presented to the immune system, which leads to a CD4+ T-cell mediated immune response and inflammation of the small intestine. However, not all gluten proteins contain T-cell stimulatory epitopes. Gluten proteins are encoded by multigene loci present on chromosomes 1 and 6 of the three different genomes of hexaploid bread wheat (Triticum aestivum (AABBDD. Results The effects of deleting individual gluten loci on both the level of T-cell stimulatory epitopes in the gluten proteome and the technological properties of the flour were analyzed using a set of deletion lines of Triticum aestivum cv. Chinese Spring. The reduction of T-cell stimulatory epitopes was analyzed using monoclonal antibodies that recognize T-cell epitopes present in gluten proteins. The deletion lines were technologically tested with respect to dough mixing properties and dough rheology. The results show that removing the α-gliadin locus from the short arm of chromosome 6 of the D-genome (6DS resulted in a significant decrease in the presence of T-cell stimulatory epitopes but also in a significant loss of technological properties. However, removing the ω-gliadin, γ-gliadin, and LMW-GS loci from the short arm of chromosome 1 of the D-genome (1DS removed T-cell stimulatory epitopes from the proteome while maintaining technological properties. Conclusion The consequences of these data are discussed with regard to reducing the load of T-cell stimulatory epitopes in wheat, and to contributing to the design of CD-safe wheat varieties.

  20. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Allohexaploid wheat was derived from interspecific hybridization, followed by spontaneous chromosome doubling. Newly synthesized hexaploid wheat by crossing Triticum turgidum and Aegilops tauschii provides a classical model to understand the mechanisms of allohexaploidization in wheat. However, immediate ...

  1. Impact of Added Colored Wheat Bran on Bread Quality

    OpenAIRE

    Lenka Machálková; Marie Janečková; Luděk Hřivna; Yvona Dostálová; Joany Hernandez; Eva Mrkvicová; Tomáš Vyhnánek; Václav Trojan

    2017-01-01

    The impact of colored wheat bran addition on bread quality was tested on wheat varieties with purple pericarp (Konini, Rosso and Karkulka) and on a variety containing blue aleurone (Skorpion). The effect of 10 %, 15 % and 20 % bran addition on sensory evaluation, bread color and texture was compared to the characteristics of bread prepared from wheat variety Mulan. The addition of 10 % bran significantly increased the sensory evaluation scores of bread. Crumb characteristics were improved mai...

  2. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sajjad, Muhammad; Ma, Xiaoling; Habibullah Khan, Sultan; Shoaib, Muhammad; Song, Yanhong; Yang, Wenlong; Zhang, Aimin; Liu, Dongcheng

    2017-10-16

    The Flo2 gene is a member of a conserved gene family in plants. This gene has been found to be related to thousand grain weight (TGW) in rice. Its orthologs in hexaploid wheat were cloned, and the haplotype variation in TaFlo2-A1 was tested for association with TGW. The cloned sequences of TaFlo2-A1, TaFlo2-B1 and TaFlo2-D1 contained 23, 23 and 24 exons, respectively. The deduced proteins of TaFlo2-A1 (1734 aa), TaFlo2-B1 (1698 aa) and TaFlo2-D1 (1682 aa) were highly similar (>94%) and exhibited >77% similarity with the rice FLO2 protein. Like the rice FLO2 protein, four tetratricopeptide repeat (TPR) motifs were observed in the deduced TaFLO2 protein. An 8-bp InDel (-10 to -17 bp) in the promoter region and five SNPs in first intron of TaFlo2-A1 together formed two haplotypes, TaFlo2-A1a and TaFlo2-A1b, in bread wheat. TaFlo2 was located on homeologous group 2 chromosomes. TaFlo2-A1 was inferred to be located on deletion bin '2AL1-0.85-1.00'. The TaFlo2-A1 haplotypes were characterized in the Chinese Micro Core Collection (MCC) and Pakistani wheat collection using the molecular marker TaFlo2-Indel8. TaFlo2-A1 was found to be associated with TGW but not with grain number per spike (GpS) in both the MCC and Pakistani wheat collections. The frequency of TaFlo2-A1b (positive haplotype) was low in commercial wheat cultivars; thus this haplotype can be selected to improve grain weight without negatively affecting GpS. The expression level of TaFlo2-A1 in developing grains at 5 DAF (days after flowering) was positively correlated with TGW in cultivars carrying the positive haplotype. This study will likely lead to additional investigations to understand the regulatory mechanism of the Flo2 gene in hexaploid wheat. Furthermore, the newly developed molecular marker 'TaFlo2-InDel8' could be incorporated into the kit of wheat breeders for use in marker-assisted selection.

  3. Population dynamics of diploid and hexaploid populations of a perennial herb

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana

    2007-01-01

    Roč. 100, č. 6 (2007), s. 1259-1270 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA206/06/0598; GA AV ČR(CZ) KJB6111303 Institutional research plan: CEZ:AV0Z60050516 Keywords : Aster amellus * diploid * hexaploid Subject RIV: EF - Botanics Impact factor: 2.939, year: 2007

  4. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS

    Directory of Open Access Journals (Sweden)

    You Frank M

    2010-06-01

    Full Text Available Abstract Background Physical maps employing libraries of bacterial artificial chromosome (BAC clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum, Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions The physical map reported here is the first physical map using fingerprinting of a complete

  5. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    Science.gov (United States)

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  6. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakano

    Full Text Available Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.

  7. New mechanism for the control of sodium transport in wheat

    International Nuclear Information System (INIS)

    James, R.A.; Munns, R.; Huang, C.X.

    2002-01-01

    Full text: Durum and other tetraploid wheats are typically very salt-sensitive compared to hexaploid bread wheats. This is primarily due to high rates of Na + accumulation in the leaves in tetraploid wheat. Recently, we have discovered a durum landrace with low Na + accumulation and enhanced K + /Na + discrimination, much lower than current durum cultivars and similar to bread wheat. We have identified 3 different mechanisms for the control of Na + transport to the leaves in this landrace, 1) control of Na + uptake at the epidermis of the root, 2) control of Na + loading into the xylem and 3) partitioning of Na + into the leaf sheath. The low Na + durum landrace had 3-4 fold lower Na + uptake rates than durum cultivars. Using X ray microanalysis on snap-frozen root sections, we found Na + to be high in the epidermis, a decreasing gradient through the cortex, low in the endodermis and again high in the stele (pencycle and xylem parenchyma), indicative of control points at the epidermis and in the stele. Partitioning of Na + between shoot and root was at least 5 times lower in the durum landrace, suggestive of greater control of Na + transport at the site of xylem loading. A third and novel control mechanism was found in the leaf sheath. Short and long term salinity treatments showed that Na + was partitioned preferentially into the sheaths of the low Na + durum landrace, keeping leaf blade Na + levels very low and similar to that of bread wheat Na + partitioned in the leaf sheath was stored primarily in the parenchyma cells and Cl - in the epidermal cells. Collectively, these data show that we have identified germplasm that has the potential to increase the salt tolerance of durum wheat. Additionally, as bread wheat does not contain the mechanism for partitioning Na + into the sheath, this trait may be useful for further increasing the salt tolerance of this species

  8. Phylogenetic relationships of hexaploid large-sized barbs (genus Labeobarbus, Cyprinidae) based on mtDNA data.

    Science.gov (United States)

    Tsigenopoulos, Costas S; Kasapidis, Panagiotis; Berrebi, Patrick

    2010-08-01

    The phylogenetic relationships among species of the Labeobarbus genus (Teleostei, Cyprinidae) which comprises large body-sized hexaploid taxa were inferred using complete cytochrome b mitochondrial gene sequences. Molecular data suggest two main evolutionary groups which roughly correspond to a Northern (Middle East and Northwest Africa) and a sub-Saharan lineage. The splitting of the African hexaploids from their Asian ancestors and their subsequent diversification on the African continent occurred in the Late Miocene, a period in which other cyprinins also invaded Africa and radiated in the Mediterranean region. Finally, systematic implications of these results to the taxonomic validity of genera or subgenera such as Varicorhinus, Kosswigobarbus, Carasobarbus and Capoeta are further discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Use of wheat and maize protein mutants in breeding for improved protein quantity and quality

    International Nuclear Information System (INIS)

    Denic, M.; Dumanovic, J.; Misevic, D.; Konstantinov, K.; Fidler, D.; Stojanovic, Z.

    1984-01-01

    Selected offspring progenies (50 mutant lines) originating from mutation experiments with hexaploid wheat (cv. Bezostaya 1) were analysed for induced heritable variation in protein content, lysine content, grain yield and protein and lysine yields. Ten of these mutant lines were crossed with 11 local varieties. The protein and lysine contents were measured in the progenies of these crossings. The data showed better correlations of grain yield with protein and lysine yields than the protein and lysine contents with their corresponding yields. F 1 seeds showed higher lysine and protein contents than local varieties. Data with maize showed that: (1) the total endosperm protein content of modified opaque-2 types increases with an increase in the degree of normalization; (2) the lysine content in dry matter and protein in normalized o 2 kernels usually decreases with the increasing degree of normalization; (3) the lysine content in protein of modified o 2 kernels, is, in general, satisfactory up to the normalization of about 50% of endosperm. A desirable modification of o 2 endosperm within line A632o 2 was selected and crossed with o 2 lines. Most of the tested hybrids had a good protein quality, but endosperm modification was not evident in all hybrids. The o 2 gene was incorporated into high protein backgrounds. Besides a high protein content and quality, some of the hybrids tested had a comparable or higher yield than the o 2 check. (author)

  10. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC.

    Science.gov (United States)

    Butow, B J; Gale, K R; Ikea, J; Juhász, A; Bedö, Z; Tamás, L; Gianibelli, M C

    2004-11-01

    Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called 'over-expressing' allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.

  11. Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat.

    Science.gov (United States)

    Bonneau, Julien; Baumann, Ute; Beasley, Jesse; Li, Yuan; Johnson, Alexander A T

    2016-12-01

    Nicotianamine (NA) is a non-protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S-adenosyl-L-methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up-regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  12. Salt tolerance in wheat - an overview. (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.

    2005-01-01

    Considerable efforts have been made during the past few years to overcome the problem of salinity through the development of salt tolerant lines of important crop species using screening, breeding and molecular biology techniques. In view of considerable importance of spring wheat as a major staple food crop of many countries, plant scientists have directed there attention to identify and develop salt tolerant genotypes that can be of direct use on salt-affected soils. Although considerable progress in understanding individual phenomenon and genes involved in plant response to salinity stress has been made over the past few years, underlying physiological mechanisms producing salt tolerant plants is still unclear. It has been suggested that salt tolerance of plants could be improved by defining genes or characters. Twenty years ago, it was suggested that genes located on the D genome of bread wheat confer salinity tolerance to hexaploid wheat by reducing Na/sup +/ accumulation in the leaf tissue and increasing discrimination in favour of K/sup +/. However, recently, low Na/sup +/ accumulation and high K/sup +/Na/sup +/ discrimination, of similar magnitude to bread wheat, in several selections of durum wheat has been observed, supporting the notion that salt tolerance is controlled by multiple genes, which are distributed throughout the entire set of chromosomes. In addition, various physiological selection criteria such as compatible osmolytes (glycinebetaine, proline, trehalose, mannitol etc.), antioxidants, carbon discrimination, high K/sup +//Na/sup +/ ratio etc. have been discussed. Although tolerance to salinity is known to have a multigenic inheritance, mediated by a large number of genes, knowledge of heritability and the genetic mode of salinity tolerance is still lacking because few studies have yet been conducted in these areas. Indeed, genetic information is lagging behind the physiological information. Modern methods such as recombinant DNA technology

  13. Promising semi-dwarf mutant in wheat variety K68

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D [Banaras Hindu Univ. (India). Dept. of Genetics and Plant Breeding

    1977-04-01

    A semi-dwarf mutant (HUW-SDf 1) was induced from common wheat Var. K68 through the exposure of /sup 60/Co ..gamma..-rays at 15 kR. This mutant along with other induced mutants and control was assessed for yield components, yield and grain quality (M/sub 4/ generation); internode length reduction pattern and the yielding ability at three levels of nitrogen (M/sub 5/ generation). The mutant was significantly shorter in height and almost equal in tillers per plant and grains per spike to K68. However, it showed marked reduction in spike length and spikelets per spike. On the other hand, it possessed significantly higher (50.04 g) 1000-grain weight against control (41.15 g). The mutant gave 56.0% higher yield than the control. Grain quality studies indicated that the mutant possessed significantly higher (14.15%) total protein than K68. It was equally as good as K68 in lysine content. Pelshenke value (62.5 min) of the mutant indicated medium hard nature of gluten as compared to hard nature (198.0) of the control. The mutant showed 24.0% reduction in total culm length compared to K68. Reduction occurred due to maximum and almost equal reduction in 5th and 4th internodes (ca 34.0%) followed by 3rd, 2nd and 1st. The mutant showed similar yield and yield response to increasing nitrogen levels (80 to 160 kg per ha.) as for current commercial semi-dwarf varieties.

  14. Concentration of benzoxazinoids in roots of field-grown wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Stochmal, Anna; Kus, Jan; Martyniuk, Stefan; Oleszek, Wieslaw

    2006-02-22

    Benzoxazinones are naturally occurring secondary metabolites of some Gramineae plants, responsible for their resistance to some pathogenic fungi and for their allelopathic action. Six varieties of winter wheat grown in fields under organic or conventional systems and 11 old accessions were tested for two consecutive seasons and three plant development stages for the concentration in their roots of cyclic hydroxamic acids and their degradation products. This is the first report of six benzoxazinones analyzed in plants grown in the field. An analytical technique employing LC-DAD was used for determination. It was shown that 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one, its degradation product 6-methoxybenzoxazolin-2-one, and the lactam 2-hydroxy-7-methoxy-1,4-benzoxazin-2-one were predominant compounds in all tested samples. Their concentrations significantly differed with plant development stage and season, but no significant differences were found between varieties and between plant cultivation systems. The concentrations of 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) and its degradation product benzoxazolin-2-one (BOA) were much lower, ranging from 60 to 430 mg/kg of dry matter, depending on accession, stage of development, and season. There was no significant difference found between plants grown in different cultivation systems, but there were significant differences between old and new varieties; concentrations of DIBOA and its derivatives were significantly lower in old accessions. It was concluded that the concentrations of DIBOA and BOA, which are precursors of highly fungicidal 2-aminophenol, 2-amino-3H-phenoxazin-3-one, and 2-acetylamino-3H-phenoxazin-3-one, are theoretically high enough to protect plants against some soilborne pathogens.

  15. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  16. The effect of feeding wheat varieties with different grain pigmentation on growth performance, texture, colour and meat sensory traits of broiler chickens

    Directory of Open Access Journals (Sweden)

    Ondřej Šťastník

    2017-01-01

    Full Text Available The feeding effect of of three spring wheat genotypes (Vánek, Konini and UC66049 with different grain colour on growth performance, body composition and meat quality parameters of broiler chickens was tested. Ninety chickens were divided into three groups (control, Konini and UC with 30 chickens in each. The tested genotypes were compares with standard variety Vánek (control with common (red grain colour. The two experimental groups received feed mixtures containing 38.2% of wheats with different grain colour: groups Konini (n = 30 and UC (n = 30 with. The third group (n = 30 had 38.2% of common wheat Vánek cultivar (Control group. The live weight of chickens between the experimental groups and control group was not significant different, as well as body composition and chemical analysis of breast and thigh meat of chickens. The feeding of wheat with different grain colour had no effect on performance parameters of broiler chickens. Breast meat tenderness according to the Razor Blade Shear Force was higher in control group against experimental groups. The colour change was not significantly different in all coordinates. pH values (measured after 1-hour post mortem were found significantly higher in the group fattening with Konini wheat than control and UC groups. Chickens meat from the experimental group was characterised by steady overall quality. The effect of various feeding had no effect on meat quality in terms of relevance to consumers.

  17. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale).

    Science.gov (United States)

    Kalinka, Anna; Achrem, Magdalena

    2018-04-01

    The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.

  18. Resistance of Wheat Accessions to the English Grain Aphid Sitobion avenae

    Science.gov (United States)

    Hu, Xiang-Shun; Liu, Ying-Jie; Wang, Yu-Han; Wang, Zhe; Yu, Xin-lin; Wang, Bo; Zhang, Gai-Sheng; Liu, Xiao-Feng; Hu, Zu-Qing; Zhao, Hui-Yan; Liu, Tong-Xian

    2016-01-01

    The English grain aphid, Sitobion avenae, is a major pest species of wheat crops; however, certain varieties may have stronger resistance to infestation than others. Here, we investigated 3 classical resistance mechanisms (antixenosis, antibiosis, and tolerance) by 14 wheat varieties/lines to S. avenae under laboratory and field conditions. Under laboratory conditions, alatae given the choice between 2 wheat varieties, strongly discriminated against certain varieties. Specifically, the ‘Amigo’ variety had the lowest palatability to S. avenae alatae of all varieties. ‘Tm’ (Triticum monococcum), ‘Astron,’ ‘Xanthus,’ ‘Ww2730,’ and ‘Batis’ varieties also had lower palatability than other varieties. Thus, these accessions may use antibiosis as the resistant mechanism. In contrast, under field conditions, there were no significant differences in the number of alatae detected on the 14 wheat varieties. One synthetic line (98-10-30, a cross between of Triticum aestivum (var. Chris) and Triticum turgidum (var. durum) hybridization) had low aphid numbers but high yield loss, indicating that it has high antibiosis, but poor tolerance. In comparison, ‘Amigo,’ ‘Xiaoyan22,’ and some ‘186Tm’ samples had high aphid numbers but low yield loss rates, indicating they have low antibiosis, but good tolerance. Aphid population size and wheat yield loss rates greatly varied in different fields and years for ‘98-10-35,’ ‘Xiaoyan22,’ ‘Tp,’ ‘Tam200,’ ‘PI high,’ and other ‘186Tm’ samples, which were hybrid offspring of T. aestivum and wheat related species. Thus, these germplasm should be considered for use in future studies. Overall, S. avenae is best adapted to ‘Xinong1376,’ because it was the most palatable variety, with the greatest yield loss rates of all 14 wheat varieties. However, individual varieties/lines influenced aphid populations differently in different years. Therefore, we strongly recommend a combination of

  19. Genetic variation at loci controlling quality traits in spring wheat

    International Nuclear Information System (INIS)

    Ali, N.; Iqbal, M.; Asif, M.

    2013-01-01

    Selection for quality traits in bread wheat (Triticum aestivum L.) during early breeding generations requires quick analytical methods that need small grain samples. Marker assisted selection can be useful for the improvement of quality traits in wheat. The present study was conducted to screen 117 Pakistani adapted spring wheat varieties with DNA markers linked with genes controlling composition of low and high molecular weight glutenin subunits (LMW-GS and HMW-GS, respectively), starch viscosity, Polyphenol oxidase (PPO) activity and grain hardness. DNA fragments associated with the presence/absence of quality related genes were amplified using Polymerase chain reaction (PCR) and detected using agarose gel electrophoresis. Positive allele of beta-secalin, which indicates presence of 1B.1R translocation, was found in 77 (66%) varieties. The marker PPO05 was found in 30 (26%) varieties, indicating lower PPO activity. Grain hardness controlled by Pinb-D1b allele was present in 49 (42%) varieties. Allele Wx-B1b which confers superior noodle quality was found in 48 (41%) varieties. HMW-GS encoded by Glu-D1d allele that exerts a positive effect on dough strength was present in 115 (98%) varieties. LMW-GS alleles Glu-A3d and Glu-B3 were observed in 21 (18%) and 76 (65%) varieties, respectively. Results of the present study may help wheat breeders in selecting parents for improving desirable quality attributes of future wheat varieties. The varieties, identified having desirable quality genes, in this study can be used in the wheat breeding programs aiming to improve quality traits. Early generation marker assisted selection can help to efficiently utilize resources of a breeding program. (author)

  20. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    Science.gov (United States)

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time

  1. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  2. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Ryusuke Matsuda

    Full Text Available Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.

  3. (Neovossia indica ) resistance in wheat

    Indian Academy of Sciences (India)

    Unknown

    Screening and multiplication of different wheat varieties under laboratory conditions using in vitro culture techniques may speed up the resistance breeding programmes. Hence, the present investigations were planned to study the nature and magnitude of gene effects of inhibition zone formed by the wheat embryos, callus-.

  4. Evaluation of nitrogen sources (15 N) in three wheat varieties in an andisol and in an ultisol, IX region. 1. Effect of yield, absorption and N efficiency

    International Nuclear Information System (INIS)

    Peyrelongue, A.; Pino, Y.; Buneder, M.

    1997-01-01

    Full text: During 1988/1989 the effect of nitrate and ammoniacal fertilization was studied on yield, yield components, absorption and efficiency of N according the conventional methods in three wheat varieties. The field evaluation was done in an Ultisol and Andisol of the IX Region of Chile. In both soils the statistical design was completely randomized blocks where the sources of N were the treatment: sodium nitrate, urea and ammonium nitrate. In the Andisol the wheat variety used was Laurel and in the Ultisol Dalcahue and Perquenco varieties were used. The rate of N was 160 kg N ha -1 . The application of N had a significant effect on yield in the three environments. For Dalcahue this effect was obtained with sodium nitrate and for Perquenco and Laurel there was not significant differences between nitrogen sources. The results in Ultisol show different behavior between varieties, with a better response of Perquenco according N application but a lower yield in relationship with Dalcahue. The best yield was obtained with Laurel in the Andisol, also with the higher total N absorption, AE and FUE, according with the yield obtained

  5. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat.

    Directory of Open Access Journals (Sweden)

    Haibin Wu

    Full Text Available The wax (glaucousness on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2 and non-glaucousness loci (Iw1 and Iw2. The non-glaucousness (Iw loci act as inhibitors of the glaucousness loci (W. High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences corresponding to the syntenic regions of the Iw loci in wheat. Eleven Iw1 and eight Iw2 linked EST markers were developed and mapped to linkage maps on the distal regions of chromosomes 2BS and 2DS, respectively. The Iw1 locus mapped within a 0.96 cM interval flanked by the BE498358 and CA499581 EST markers that are collinear with 122 kb, 202 kb, and 466 kb genomic regions in the Brachypodium 5S chromosome, the sorghum 6S chromosome and the rice 4S chromosome, respectively. The Iw2 locus was located in a 4.1 to 5.4-cM interval in chromosome 2DS that is flanked by the CJ886319 and CJ519831 EST markers, and this region is collinear with a 2.3 cM region spanning the Iw1 locus on chromosome 2BS. Both Iw1 and Iw2 co-segregated with the BF474014 and CJ876545 EST markers, indicating they are most likely orthologs on 2BS and 2DS. These high-resolution maps can serve as a framework for chromosome landing, physical mapping and map-based cloning of the wax inhibitors in wheat.

  6. Genetics applied to the constitution new varieties of plants

    International Nuclear Information System (INIS)

    Stamigna, Carla; Chiaretti, Emiliano; Chiaretti, Domenico

    2015-01-01

    The genetic improvement of plants intended to create new varieties, as well as the study of principles and techniques to get them to answer for the real needs of farmers. This process requires advanced agricultural techniques to obtain a continuous and progressive increase crop productivity and higher profitability the processes employed in agriculture. Enea continues to recognize new plant varieties in collaboration with the company ISEAAGROSERVICE seed, which in the past it has been the one that has more commercialized the Croesus wheat, a variety of durum wheat obtained at the laboratories of the Center Casaccia Research in the early 70s. [it

  7. Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Pasquale Codianni

    2007-09-01

    Full Text Available Low-input cropping systems are characterised by the reduction of pesticides and chemical fertilizers and, often, by the use of old cultivars to realize sustainable crop production which can easily integrate in the European Union agricultural subsidies. Market prices and environmental concerns favour low-input wheat production systems, nevertheless protein standards become particularly difficult to achieve in these conditions due to a minimal nitrogen supply. This study assesses the efficiency of a specific breeding program dedicated to improve yield and quality in emmer and spelt wheat in low-input environments. Ten tetraploid (emmer and durum wheat and four hexaploid (spelt and bread wheat wheat genotypes (including parent cultivars and offspring breeding lines selected for adaptation to low-input conditions were investigated for 1 yr (2003-2004 in Italy in three locations in conventional and low-input cropping systems. The main agro-morphological and qualitative traits were recorded (HD, PH, GY, PC GPY, TKW, TW, GC. The results of this study show encouraging agronomic performances of new emmer and spelt genotypes under conventional and low-input cropping systems. The new genotypes are characterized by a yield potential similar to that of the modern wheat cultivar as well as by a protein content higher than old emmer and spelt accessions. The new genetic materials were also characterized by a higher responsiveness to improved environmental conditions. The results described in this study support the suitability of modern emmer and spelt genotypes, improved by introgressing wheat yield and quality traits, for organic farming in Mediterranean environments.

  8. Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Michele Fornara

    2011-02-01

    Full Text Available Low-input cropping systems are characterised by the reduction of pesticides and chemical fertilizers and, often, by the use of old cultivars to realize sustainable crop production which can easily integrate in the European Union agricultural subsidies. Market prices and environmental concerns favour low-input wheat production systems, nevertheless protein standards become particularly difficult to achieve in these conditions due to a minimal nitrogen supply. This study assesses the efficiency of a specific breeding program dedicated to improve yield and quality in emmer and spelt wheat in low-input environments. Ten tetraploid (emmer and durum wheat and four hexaploid (spelt and bread wheat wheat genotypes (including parent cultivars and offspring breeding lines selected for adaptation to low-input conditions were investigated for 1 yr (2003-2004 in Italy in three locations in conventional and low-input cropping systems. The main agro-morphological and qualitative traits were recorded (HD, PH, GY, PC GPY, TKW, TW, GC. The results of this study show encouraging agronomic performances of new emmer and spelt genotypes under conventional and low-input cropping systems. The new genotypes are characterized by a yield potential similar to that of the modern wheat cultivar as well as by a protein content higher than old emmer and spelt accessions. The new genetic materials were also characterized by a higher responsiveness to improved environmental conditions. The results described in this study support the suitability of modern emmer and spelt genotypes, improved by introgressing wheat yield and quality traits, for organic farming in Mediterranean environments.

  9. Behavior of cereal's varieties in the presence of Heterodera avenae ...

    African Journals Online (AJOL)

    The behaviour of cereals varieties (Ofanto, Waha and Vitron for durum wheat; Anza and HD1120 for bread wheat and Saida with Acsad for barly) were tested towards Heterodera avenae. The analysis of the variance reveals that the nematode has an effect on the development of durum wheat for the number of ear per ...

  10. Synthetic Hexaploids Derived from Wild Species Related to Sweet Potato

    OpenAIRE

    SHIOTANI, Itaru; KAWASE, Tsuneo; 塩谷, 格; 川瀬, 恒男

    1987-01-01

    The utilization of germplasm of the wild species in sweet-potato breeding has been conducted for the last three decades. Such attempts brought some remarkable achievments in improving root yield, starch content and resistance to the nematodes of sweet potato. Some wild plants in polyploid series may have many genes potentially important for further improvement of the agronomic traits. However, the genomic relationship between the wild relatives and hexaploid sweet potato (2n=6x=90) has been u...

  11. Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Carla Ceoloni

    2017-12-01

    Full Text Available Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x and tetraploid durum wheat (T. durum, 4x, widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or

  12. Impact of improved wheat technology adoption on productivity and ...

    African Journals Online (AJOL)

    Wheat (Triticum aestivum L.) is one of the most important cereal crops cultivated in wide range of agro-ecologies in Eastern Africa. However, wheat productivity has remained low. This study was carried out in Ethiopia Aris Zone to determine the level and impact of adoption of improved wheat varieties on wheat productivity ...

  13. Gamma rays effect on inducing semidwarf mutants with good quality in the local durum wheat variety (Hamari)

    International Nuclear Information System (INIS)

    Mir Ali, Nizar

    1991-01-01

    The main objective of the present study was to test, under our field conditions, some promising M4-M5 mutant lines that were selected under green house conditions (U.K) from a Ph.D. project aimed at improving protein content in a local Syrian durum wheat variety Hamari. The study lasted 3 years, in the first year there were not enough seeds available for replications, thus, about 90 lines were grown in one location after which many unsatisfactory lines were discarded. In the second and third years 3 recently released varieties and 4 advanced lines from ICARDA were included in the trials with 4 replications and 2 and 3 locations in 1989 and 1990 respectively. Nearest Neighbour Analysis was used to estimate the lines yield performance. The results indicated that, in all locations, there were some mutant lines that surpassed the varieties Sham 3 and Bhuth 1. Moreover, in the dry location (Izraa) 3 mutant lines have out yielded the OM-Al Rabi lines which were produced by ICARDA and described as being suitable in dry areas. The employment of ANOFT and FTAB programme was effective in selecting some lines of interest depending on multiple character selection with variable selection pressure. Such selections resulted in short mutant lines that were better in their yield and quality than the recently released varieties (except for variety Daki in the driest location, Izraa). These results need confirmation for three more years with increasing plot size and locations before sending the superior lines to the national testing and multiplication authorities. (author). 10 refs., 14 tabs

  14. Rejecting New Technology: The Case of Genetically Modified Wheat

    OpenAIRE

    Derek Berwald; Colin A. Carter; Guillaume P. Gruère

    2006-01-01

    Canada has stringent regulations covering the release of new wheat varieties, but the United States has virtually no regulations in this area. Monsanto Co. developed genetically modified (GM) spring wheat for North America, and made a commitment to the U.S. industry to release this new technology simultaneously in both Canada and the United States, or not at all. The Canadian regulatory bias against new varieties acted as a veto against GM wheat and caused Monsanto to shelve the technology in...

  15. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jiping Wang

    2017-09-01

    Full Text Available Calreticulin (CRT, an endoplasmic reticulum (ER-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L., particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL population (114 lines developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  16. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  17. Quantifying variety-specific heat resistance and the potential for adaptation to climate change.

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Rife, Trevor W; Poland, Jesse A; Nalley, Lawton Lanier

    2016-08-01

    The impact of climate change on crop yields has become widely measured; however, the linkages for winter wheat are less studied due to dramatic weather changes during the long growing season that are difficult to model. Recent research suggests significant reductions under warming. A potential adaptation strategy involves the development of heat resistant varieties by breeders, combined with alternative variety selection by producers. However, the impact of heat on specific wheat varieties remains relatively unstudied due to limited data and the complex genetic basis of heat tolerance. Here, we provide a novel econometric approach that combines field-trial data with a genetic cluster mapping to group wheat varieties and estimate a separate extreme heat impact (temperatures over 34 °C) across 24 clusters spanning 197 varieties. We find a wide range of heterogeneous heat resistance and a trade-off between average yield and resistance. Results suggest that recently released varieties are less heat resistant than older varieties, a pattern that also holds for on-farm varieties. Currently released - but not yet adopted - varieties do not offer improved resistance relative to varieties currently grown on farm. Our findings suggest that warming impacts could be significantly reduced through advances in wheat breeding and/or adoption decisions by producers. However, current adaptation-through-adoption potential is limited under a 1 °C warming scenario as increased heat resistance cannot be achieved without a reduction in average yields. © 2015 John Wiley & Sons Ltd.

  18. Opportunities in Tajikistan to breed wheat varieties resistant to seed-borne diseases and improved baking quality

    OpenAIRE

    Husenov, Bahromiddin

    2013-01-01

    Wheat seed-borne diseases and options for improving baking quality of wheat, as well as the role of genotypes for breeding to achieve high yield and quality are the key issues discussed in this introductory paper. The importance of wheat for Tajikistan and how to achieve food security goals in the country is also elucidated. Wheat seed-borne diseases are caused mostly by fungi. Loose Smut (Ustilago tritici), Common Bunt (Tilletia laevis and T.caries), Karnal Bunt (T.indica), Dwarf Bunt (T....

  19. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment.

    Science.gov (United States)

    Visioli, Giovanna; Bonas, Urbana; Dal Cortivo, Cristian; Pasini, Gabriella; Marmiroli, Nelson; Mosca, Giuliano; Vamerali, Teofilo

    2018-04-01

    With the increasing demand for high-quality foodstuffs and concern for environmental sustainability, late-season nitrogen (N) foliar fertilization of common wheat is now an important and widespread practice. This study investigated the effects of late-season foliar versus soil N fertilization on yield and protein content of four varieties of durum wheat, Aureo, Ariosto, Biensur and Liberdur, in a three-year field trial in northern Italy. Variations in low-molecular-weight glutenins (LMW-GS), high-molecular-weight glutenins (HMW-GS) and gliadins were assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). It was found that N applied to the canopy did not improve protein rate compared with N application to the soil (general mean 138 mg g -1 ), but moderately increased productivity in the high-yielding varieties Liberdur and Biensur (three-year means 7.23 vs 7.13 and 7.53 vs 7.09 t ha -1 respectively). Technological quality was mainly related to variety choice, Aureo and Ariosto having higher protein rates and glutenin/gliadin ratios. Also found was a strong 'variety × N application method' interaction in the proportions of protein subunits within each class, particularly LMW-GS and gliadins. A promising result was the higher N uptake efficiency, although as apparent balance, combined with higher HMW/LMW-GS ratio in var. Biensur. Late-season foliar N fertilization allows N fertilizer saving, potentially providing environmental benefits in the rainy climate of the northern Mediterranean area, and also leads to variety-dependent up-regulation of essential LMW-GS and gliadins. Variety choice is a key factor in obtaining high technological quality, although it is currently associated with modest grain yield. This study provides evidence of high quality in the specific high-yielding variety Biensur, suggesting its potential as a mono-varietal semolina for pasta production. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  20. Improvement of wheat for resistance to Russian Wheat Aphid

    International Nuclear Information System (INIS)

    Kinyua, M.; Malinga, J.N.; Wanyama, J.; Karanja, L.; Njau, P.; Leo, T.; Alomba, E.

    2001-01-01

    Breeding for resistance against Russian wheat aphid in Kenya is reported. Results of six of the lines were found to have high to moderate resistance to Russian wheat aphid. Popular lines were susceptible in the greenhouse when subjected to aphid pressure but showed moderate susceptibility when screened under field conditions, indicating that in years or location with low aphid pressure farmers may still get a crop. However in areas of high aphid pressure or bad years they may lose their crop. Consequently, developing resistant/torerant varieties is urgent

  1. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat

    Directory of Open Access Journals (Sweden)

    Abdulqader Jighly

    2018-02-01

    Full Text Available Whole genome duplication (WGD is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents (Triticum turgidum; 2n = 4x = 28, AABB subgenomes with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome. The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy

  2. Investigation on the root distributions of Sivas 111/33 and Gerek A-79 wheat varieties grown under Central Anatolian conditions, using tracer techniques

    International Nuclear Information System (INIS)

    Ozbek, N.; Halitligil, M.B.; Ozdemir, E.

    1988-01-01

    In order to determine the vertical root distributions of Sivas 111/33 and Gerek-79 wheat varieties in the soil profile, two field experiments were conducted at Haymana in 1986, and at Lodumlu in 1987 using tracer techniques and 32 p as a tracer. Randomized complete blocks design as four replications was used. The plot size was 12 m 2 (240 m by 5.00 m) in which 32 p isotope plots were established with dimensions of 0.07 mxl. 25 m=0.875 m 2 . They included 4 rows of wheat and in the middle of these rows, 15 holes (25 cam apart) were opened with a portable drill. The holes either had depths of 30, 60 or 90 cm depending on the treatment selected. 4 ml carrier-free 32 p solutions were injected into the holes with the help of plastic tubes at two times, one after seedling emergence and the other at early spring. Plant samples for radioactivity measurements were taken at four different growth stages, namely tillering, shooting, heading and full maturity. The results obtained from these investigations clearly showed that: 1. The root growth of plants showed differences depending on growth stage and variety. 2. At tillering stage the roots of both wheat varieties were not able to reach to the 90 cm soil depth, however, Sivas 111/33 had relatively shallow rotting system and Gerek-79 had deep rooting system at this stage. 3. At shooting, heading and full maturity stages Sivas 111/33 had more roots than Gerek-79, while at 30 and especially 60 cm soil depths Gerek-79 had more roots. Nearly 26%, 32% and 42% of the total roots of Sivas 111/33, and 15%, 42% and 43% of the total roots of Gerek-79 were found at 90, 60 and 30 cm soil depths, respectively. 4. When compared with Gerek-79, Sivas 111/33 was found to be more suitable for drought conditions

  3. Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2018-03-01

    Full Text Available Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS, is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides accession D97 into the common wheat (Triticum aestivum cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.

  4. Soluble carbohydrates in cereal (wheat, rye, triticale seed after storage under accelerated ageing conditions

    Directory of Open Access Journals (Sweden)

    Agnieszka I. Piotrowicz-Cieślak

    2011-01-01

    Full Text Available Germinability and the content of soluble carbohydrates were analysed in cereal seed (winter rye, cv. Warko; spring wheat, cv. Santa; hexaploid winter triticale, cv. Fidelio and cv. Woltario. Seed moisture content (mc was equilibrated over silica gel to 0.08 g H2O/g dry mass and stored in a desiccator at 20oC for up to 205 weeks or were equilibrated to mc 0.06, 0.08 or 0.10 g H2O/g dm and subjected to artificial aging at 35oC in air-tight laminated aluminium foil packages for 205 weeks. It was shown that the rate of seed aging depended on the species and seed moisture content. The fastest decrease of germinability upon storage was observed in seed with the highest moisture level. Complete germinability loss for winter rye, winter triticale cv. Fidelio, winter triticale cv. Woltario and spring wheat seed with mc 0.10 g H2O/g dm3 occurred after 81, 81, 101 and 133 weeks, respectively. Fructose, glucose, galactose, myo-inositol, sucrose, galactinol, raffinose, stachyose and verbascose were the main soluble carbohydrates found in the seed. The obtained data on the contents of specific sugars and the composition of soluble sugars fraction in seed of rye, wheat and triticale did not corroborate any profound effect of reducing sugars, sucrose and oligosaccharides on seed longevity.

  5. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  6. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  7. Natural polyploidization within tetraploid and hexaploid populations of the desert shrub Atriplex confertifolia

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Shadscale (Atriplex confertifolia) is a wind-pollinated dioecious shrub of western North America with an unusual development of apparently autoploid races, showing all even ploidy levels from 2x to 12x (base x = 9). Of these, tetraploid races are the most frequently encountered, with octoploids the next most common, and hexaploids being much less common. In this study...

  8. Flour quality and kernel hardness connection in winter wheat

    Directory of Open Access Journals (Sweden)

    Szabó B. P.

    2016-12-01

    Full Text Available Kernel hardness is controlled by friabilin protein and it depends on the relation between protein matrix and starch granules. Friabilin is present in high concentration in soft grain varieties and in low concentration in hard grain varieties. The high gluten, hard wheat our generally contains about 12.0–13.0% crude protein under Mid-European conditions. The relationship between wheat protein content and kernel texture is usually positive and kernel texture influences the power consumption during milling. Hard-textured wheat grains require more grinding energy than soft-textured grains.

  9. A SNP-Based Molecular Barcode for Characterization of Common Wheat.

    Directory of Open Access Journals (Sweden)

    LiFeng Gao

    Full Text Available Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program.

  10. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  11. Yr10 gene polymorphism in bread wheat varieties | Temel | African ...

    African Journals Online (AJOL)

    Yellow rust resistance locus Yr10 located on chromosome 1B in Moro and originated from the Turkish line PI178383 was investigated in terms of polymorphism in seven winter type bread wheat cvs. (Triticum aestivum ssp. Aestivum) Altay2000, zgi2001, Sönmez2001 (yellow rust resistant), Aytýn98, ES14, Harmankaya99 ...

  12. Estimation of adaptive of bread spring wheat varieties

    Directory of Open Access Journals (Sweden)

    В. А. Власенко

    2006-12-01

    Full Text Available For estimation of adaptive of varieties it is offered to use the aggregate of estimations of stability and plasticity in the integrated index - rating of adaptive of varieties. The high rating of adaptive on the parameters of productivity have the varieties Elegia myronivska, Kolektyvna 3, Etud and Suita.

  13. Identification of Leaf Promoters for Use in Transgenic Wheat

    Directory of Open Access Journals (Sweden)

    Saqer S. Alotaibi

    2018-03-01

    Full Text Available Wheat yields have plateaued in recent years and given the growing global population there is a pressing need to develop higher yielding varieties to meet future demand. Genetic manipulation of photosynthesis in elite wheat varieties offers the opportunity to significantly increase yields. However, the absence of a well-defined molecular tool-box of promoters to manipulate leaf processes in wheat hinders advancements in this area. Two promoters, one driving the expression of sedoheptulose-1,7-bisphosphatase (SBPase and the other fructose-1,6-bisphosphate aldolase (FBPA from Brachypodium distachyon were identified and cloned into a vector in front of the GUS reporter gene. Both promoters were shown to be functionally active in wheat in both transient assays and in stably transformed wheat plants. Analysis of the stable transformants of wheat (cv. Cadenza showed that both promoters controlled gus expression throughout leaf development as well as in other green tissues. The availability of these promoters provides new tools for the expression of genes in transgenic wheat leaves and also paves the way for multigene manipulation of photosynthesis to improve yields.

  14. Variation of heavy metal and micro and macro element concentrations of bread and durum wheats and their relationship in grain of Turkish wheat cultivars.

    Science.gov (United States)

    Harmankaya, Mustafa; Ozcan, Mehmet Musa; Gezgin, Sait

    2012-09-01

    The 64 varieties displayed a large variation for all mineral elements, investigated Fe, Mn and Zn, ranging from 24.2 to 43.1 mg/kg, 27.6 to 64.8 mg/kg and 10.4 to 38.2 mg/kg, respectively. The mean Ca, K, Mg, Na, P and S concentrations in wheat rain varieties amounted to 378, 4,266, 1,183, 317, 3,513 and 1,542 mg/kg, respectively. Ca, K, Mg, Na, P and S contents of wheat varieties changed at the levels between 266 and 531 mg/kg, 3,029 and 5,566 mg/kg, 972 and 1,525 mg/kg, 277 and 368 mg/kg, 2,422 and 4,610 mg/kg and 1,241 to 2,052 mg/kg, respectively. The concentrations of Al, Cu, Fe, Mn and Zn of durum wheat samples were found at high levels. The mean Al, Cr, Mo, Ni, Cu, Fe, Mn and Zn concentrations in durum wheat varieties amounted to 10.93, 0.47, 0.72, 0.72, 5.37, 34.9, 37.28 and 20.88 mg/kg, respectively.

  15. Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat

    Czech Academy of Sciences Publication Activity Database

    Belova, T.; Zhan, B.J.; Wright, J.; Caccamo, M.; Asp, T.; Šimková, Hana; Kent, M.; Bendixen, C.; Panitz, F.; Lien, S.; Doležel, Jaroslav; Olsen, O.A.; Sandve, S.R.

    2013-01-01

    Roč. 14, APR 4 2013 (2013) ISSN 1471-2164 R&D Projects: GA ČR(CZ) GAP501/12/2554 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Scaffold * Assembly * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.041, year: 2013

  16. Radiation use efficiency and yield of winter wheat under deficit irrigation in North China

    International Nuclear Information System (INIS)

    Han, H.; Li, Z.; Ning, T.; Bai, M.; Zhang, X.; Shan, Y.

    2008-01-01

    An experiment was conducted in North China to investigate the effects of deficit irrigation and winter wheat varieties on the photosynthetic active radiation (PAR) capture ration, PAR utilization and grain yield. Field experiments involved Jimai 20 (J; high yield variety) and Lainong 0153 (L; dryland variety) with non-irrigation and irrigated at the jointing stage. The results showed that whether irrigated at jointing stage or not, there was no significant difference between J and L with respect to the amount of PAR intercepted by the winter wheat canopies. However, significant differences were observed between the varieties with respect to the amount of PAR intercepted by plants that were 60-80 cm above the ground surface. This result was mainly caused by the changes in the vertical distributions of leaf area index. As a result, the effects of the varieties and deficit irrigation on the radiation use efficiency (RUE) and grain yield of winter wheat were due to the vertical distribution of PAR in the winter wheat canopies. During the late growing season of winter wheat, irrespective of the irrigation regime, the RUE and grain yield of J were significantly higher than those of L. These results suggest that a combination of deficit irrigation and a suitable winter wheat variety should be applied in North China

  17. Wheat breadmaking properties in dependance on wheat enzymes status and climate conditions.

    Science.gov (United States)

    Tomić, Jelena; Torbica, Aleksandra; Popović, Ljiljana; Hristov, Nikola; Nikolovski, Branislava

    2016-05-15

    The objective of this study was to evaluate albumins profile, proteolytic and amylolytic activity level and baking performance of wheat varieties grown in two production years with different climate conditions (2011 and 2012) in four locations. The results of ANOVA showed that variety, location, production year, and their interactions all had significant effects on all tested wheat quality parameters. The enzymatic activity and specific bread volume were mainly influenced by the variety. The samples from 2012 production year, had the lower values of albumin content, proteolytic and amylolytic activity, and bread specific volume. The correlation analysis, performed for 2011 production year, showed that albumin fraction (15-30 kDa) and proteolytic activity were negatively correlated with bread specific volume indicating the role of this fraction on lowering the crucial bread quality parameter. In 2012 production year, albumin fractions (5-15 kDa; 50-65 kDa) showed the most correlations, especially with parameters of bread quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. [Adaptability of APSIM model in Southwestern China: A case study of winter wheat in Chongqing City].

    Science.gov (United States)

    Dai, Tong; Wang, Jing; He, Di; Zhang, Jian-ping; Wang, Na

    2015-04-01

    Field experimental data of winter wheat and parallel daily meteorological data at four typical stations in Chongqing City were used to calibrate and validate APSIM-wheat model and determine the genetic parameters for 12 varieties of winter wheat. The results showed that there was a good agreement between the simulated and observed growth periods from sowing to emergence, flowering and maturity of wheat. Root mean squared errors (RMSEs) between simulated and observed emergence, flowering and maturity were 0-3, 1-8, and 0-8 d, respectively. Normalized root mean squared errors (NRMSEs) between simulated and observed above-ground biomass for 12 study varieties were less than 30%. NRMSE between simulated and observed yields for 10 varieties out of 12 study varieties were less than 30%. APSIM-wheat model performed well in simulating phenology, aboveground biomass and yield of winter wheat in Chongqing City, which could provide a foundational support for assessing the impact of climate change on wheat production in the study area based on the model.

  19. Perspectives to breed for improved baking quality wheat varieties adapted to organic growing conditions.

    Science.gov (United States)

    Osman, Aart M; Struik, Paul C; van Bueren, Edith T Lammerts

    2012-01-30

    Northwestern European consumers like their bread to be voluminous and easy to chew. These attributes require a raw material that is rich in protein with, among other characteristics, a suitable ratio between gliadins and glutenins. Achieving this is a challenge for organic growers, because they lack cultivars that can realise high protein concentrations under the relatively low and variable availability of nitrogen during the grain-filling phase common in organic farming. Relatively low protein content in wheat grains thus needs to be compensated by a high proportion of high-quality protein. Organic farming therefore needs cultivars with genes encoding for optimal levels of glutenins and gliadins, a maximum ability for nitrogen uptake, a large storage capacity of nitrogen in the biomass, an adequate balance between vegetative and reproductive growth, a high nitrogen translocation efficiency for the vegetative parts into the grains during grain filling and an efficient conversion of nitrogen into high-quality proteins. In this perspective paper the options to breed and grow such varieties are discussed. Copyright © 2011 Society of Chemical Industry.

  20. Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat.

    Science.gov (United States)

    Brinton, Jemima; Simmonds, James; Minter, Francesca; Leverington-Waite, Michelle; Snape, John; Uauy, Cristobal

    2017-08-01

    Crop yields must increase to address food insecurity. Grain weight, determined by grain length and width, is an important yield component, but our understanding of the underlying genes and mechanisms is limited. We used genetic mapping and near isogenic lines (NILs) to identify, validate and fine-map a major quantitative trait locus (QTL) on wheat chromosome 5A associated with grain weight. Detailed phenotypic characterisation of developing and mature grains from the NILs was performed. We identified a stable and robust QTL associated with a 6.9% increase in grain weight. The positive interval leads to 4.0% longer grains, with differences first visible 12 d after fertilization. This grain length effect was fine-mapped to a 4.3 cM interval. The locus also has a pleiotropic effect on grain width (1.5%) during late grain development that determines the relative magnitude of the grain weight increase. Positive NILs have increased maternal pericarp cell length, an effect which is independent of absolute grain length. These results provide direct genetic evidence that pericarp cell length affects final grain size and weight in polyploid wheat. We propose that combining genes that control distinct biological mechanisms, such as cell expansion and proliferation, will enhance crop yields. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  1. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat.

    Science.gov (United States)

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2012-06-06

    As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.

  2. Alterations in reducing sugar in Triticum aestivum under irrigated ...

    African Journals Online (AJOL)

    This research was conducted with the objective of observing alterations in reducing sugars, which may play a part in distinguishing tolerant and susceptible genotypes. The experimental material consisted of thirteen wheat genotypes including eleven bread wheat advanced lines, one synthetic hexaploid and its durum ...

  3. Metabolism of 14C-bentazone in wheat, oat, and maize

    International Nuclear Information System (INIS)

    Mueller, F.; Sanad, A.

    1975-01-01

    The uptake, distribution, and catabolism of Bentazon (3-isopropyl-2,1,3-benzo-thiadiazinon-(4)-2,2-dioxide) in winter wheat (variety Jubilar), maize (variety Inra 258), and several varieties of oat was investigated in the hothouse and under outside conditions in large culture vessels. Bentazon is decomposed fairly rapidly in wheat, maize, and oat. In the experiments with cultures in vessels under outside conditions, the metabolic fate of the 14 C-labelled pesticide was investigated in three varieties of oat after a vegetation period. (GSE/AK) [de

  4. Analysis of diallel crosses between six varieties of durum wheat in ...

    African Journals Online (AJOL)

    $$)9

    2014-01-08

    Jan 8, 2014 ... The study of morphological genetic determinism characteristics and production of durum wheat. (Triticum durum Desf.) ... analysis of variance for general combining ability (GCA) and specific combining ability (SCA) abilities and reciprocal ... increased and at the same time, these components results in an ...

  5. The Response of Durum Wheat to the Preceding Crop in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Laura Ercoli

    2014-01-01

    Full Text Available Crop sequence is an important management practice that may affect durum wheat (Triticum durum Desf. production. Field research was conducted in 2007-2008 and 2008-2009 seasons in a rain-fed cold Mediterranean environment to examine the impact of the preceding crops alfalfa (Medicago sativa L., maize (Zea mays L., sunflower (Helianthus annuus L., and bread wheat (Triticum aestivum L. on yield and N uptake of four durum wheat varieties. The response of grain yield of durum wheat to the preceding crop was high in 2007-2008 and was absent in the 2008-2009 season, because of the heavy rainfall that negatively impacted establishment, vegetative growth, and grain yield of durum wheat due to waterlogging. In the first season, durum wheat grain yield was highest following alfalfa, and was 33% lower following wheat. The yield increase of durum wheat following alfalfa was mainly due to an increased number of spikes per unit area and number of kernels per spike, while the yield decrease following wheat was mainly due to a reduction of spike number per unit area. Variety growth habit and performance did not affect the response to preceding crop and varieties ranked in the order Levante > Saragolla = Svevo > Normanno.

  6. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.

    Science.gov (United States)

    Diallo, Amadou Oury; Agharbaoui, Zahra; Badawi, Mohamed A; Ali-Benali, Mohamed Ali; Moheb, Amira; Houde, Mario; Sarhan, Fathey

    2014-06-01

    The einkorn wheat mutant mvp-1 (maintained vegetative phase 1) has a non-flowering phenotype caused by deletions including, but not limited to, the genes CYS, PHYC, and VRN1. However, the impact of these deletions on global gene expression is still unknown. Transcriptome analysis showed that these deletions caused the upregulation of several pathogenesis-related (PR) and jasmonate-responsive genes. These results suggest that jasmonates may be involved in flowering and vernalization in wheat. To test this hypothesis, jasmonic acid (JA) and methyl jasmonate (MeJA) content in mvp and wild-type plants was measured. The content of JA was comparable in all plants, whereas the content of MeJA was higher by more than 6-fold in mvp plants. The accumulation of MeJA was also observed in vernalization-sensitive hexaploid winter wheat during cold exposure. This accumulation declined rapidly once plants were deacclimated under floral-inductive growth conditions. This suggests that MeJA may have a role in floral transition. To confirm this result, we treated vernalization-insensitive spring wheat with MeJA. The treatment delayed flowering with significant downregulation of both TaVRN1 and TaFT1 genes. These data suggest a role for MeJA in modulating vernalization and flowering time in wheat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Effect of Stay-Green Wheat, a Novel Variety of Wheat in China, on Glucose and Lipid Metabolism in High-Fat Diet Induced Type 2 Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Jinshan Ji

    2015-06-01

    Full Text Available The use of natural hypoglycemic compounds is important in preventing and managing Type 2 diabetes mellitus (T2DM. Forty male Sprague-Dawley rats weighing 150–180 g were divided into four groups to investigate the effects of the compounds in stay-green wheat (SGW, a novel variety of wheat in China, on T2DM rats. The control group (NDC was fed with a standard diet, while T2DM was induced in the rats belonging to the other three groups by a high-fat diet followed by a streptozotocin (STZ injection. The T2DM rats were further divided into a T2DM control group (DC, which was fed with the normal diet containing 50% common wheat flour, a high dose SGW group (HGW fed with a diet containing 50% SGW flour, and a low dose SGW group (LGW fed with a diet containing 25% SGW flour and 25% common wheat flour. Our results showed that SGW contained cereal antioxidants, particularly high in flavonoids and anthocyanins (46.14 ± 1.80 mg GAE/100 g DW and 1.73 ± 0.14 mg CGE/100 g DW, respectively. Furthermore, SGW exhibited a strong antioxidant activity in vitro (30.33 ± 2.66 μg TE/g DW, p < 0.01. Administration of the SGW at a high and low dose showed significant down-regulatory effects on fasting blood glucose (decreasing by 11.3% and 7.0%, respectively, insulin levels (decreasing by 12.3% and 9.7%, respectively, and lipid status (decreasing by 9.1% and 7.5%, respectively in T2DM rats (p < 0.01. In addition, the T2DM groups treated with SGW at a high and low dose showed a significant increase in the blood superoxide dismutase (1.17 fold and 1.15 fold, respectively and glutathione peroxidase activities (1.37 fold and 1.30 fold, respectively compared with the DC group (p < 0.01. The normalized impaired antioxidant status of the pancreatic islet and of the liver compared with the DC group was also significantly increased. Our results indicated that SGW components exerting a glycemic control and a serum lipid regulation effect may be due to their free radical

  8. Genetic diversity in wheat germplasm collections from Balochistan province of Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.; Iqbal, A.; Awan, F.S.; Khan, I.A.

    2010-01-01

    Productivity of wheat varieties being bred for the last many years is stagnant in Pakistan, apparently because of the narrowed genetic base of their parental lines. As a part of the national wheat germplasm characterization programme, we examined genetic diversity among 75 accessions of wheat using RAPD markers and assessed the relationship and genetic distance between them. The accessions surveyed were comprised of land race populations of Triticum aestivum L., collected from various districts of the Balochistan province of Pakistan, which is considered a reservoir of genetic diversity, particularly for wheat. The genetic similarity revealed by RAPD markers among the wheat accessions was medium to high. The accessions collected from Sibi and Pishin districts had the greatest similarity. The polymorphism revealed in the wheat accessions, appeared to be distributed with the location of collections. The high degree of similarity even among the presumably land race material emphasizes the need for the expansion of germplasm resources and development of wheat varieties with diverse genetic background, which could substantiate the wheat breeding programmes to increase its productivity. (author)

  9. Variability in wheat: factors affecting its nutritional value

    NARCIS (Netherlands)

    Gutierrez del Alamo Oms, A.; Verstegen, M.W.A.; Hartog, den L.A.; Villamide, M.J.

    2008-01-01

    Wheat is a common raw material used to provide energy in broiler diets. Its apparent metabolisable energy and its influence on broiler performance varies between wheat samples. Reasons for that variability can be classified as intrinsic (variety, chemical composition) and extrinsic factors (growing

  10. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm.

    Science.gov (United States)

    Shorinola, Oluwaseyi; Balcárková, Barbara; Hyles, Jessica; Tibbits, Josquin F G; Hayden, Matthew J; Holušova, Katarina; Valárik, Miroslav; Distelfeld, Assaf; Torada, Atsushi; Barrero, Jose M; Uauy, Cristobal

    2017-01-01

    Pre-harvest sprouting (PHS) is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 ( PM19 ) genes and the mitogen-activated protein kinase kinase 3 ( TaMKK3-A) gene, have been proposed to underlie Phs-A1 . To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A , and not PM19 , is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A . Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the study will

  11. Haplotype Analysis of the Pre-harvest Sprouting Resistance Locus Phs-A1 Reveals a Causal Role of TaMKK3-A in Global Germplasm

    Directory of Open Access Journals (Sweden)

    Oluwaseyi Shorinola

    2017-09-01

    Full Text Available Pre-harvest sprouting (PHS is an important cause of quality loss in many cereal crops and is particularly prevalent and damaging in wheat. Resistance to PHS is therefore a valuable target trait in many breeding programs. The Phs-A1 locus on wheat chromosome arm 4AL has been consistently shown to account for a significant proportion of natural variation to PHS in diverse mapping populations. However, the deployment of sprouting resistance is confounded by the fact that different candidate genes, including the tandem duplicated Plasma Membrane 19 (PM19 genes and the mitogen-activated protein kinase kinase 3 (TaMKK3-A gene, have been proposed to underlie Phs-A1. To further define the Phs-A1 locus, we constructed a physical map across this interval in hexaploid and tetraploid wheat. We established close proximity of the proposed candidate genes which are located within a 1.2 Mb interval. Genetic characterization of diverse germplasm used in previous genetic mapping studies suggests that TaMKK3-A, and not PM19, is the major gene underlying the Phs-A1 effect in European, North American, Australian and Asian germplasm. We identified the non-dormant TaMKK3-A allele at low frequencies within the A-genome diploid progenitor Triticum urartu genepool, and show an increase in the allele frequency in modern varieties. In United Kingdom varieties, the frequency of the dormant TaMKK3-A allele was significantly higher in bread-making quality varieties compared to feed and biscuit-making cultivars. Analysis of exome capture data from 58 diverse hexaploid wheat accessions identified fourteen haplotypes across the extended Phs-A1 locus and four haplotypes for TaMKK3-A. Analysis of these haplotypes in a collection of United Kingdom and Australian cultivars revealed distinct major dormant and non-dormant Phs-A1 haplotypes in each country, which were either rare or absent in the opposing germplasm set. The diagnostic markers and haplotype information reported in the

  12. Influence of wheat type and pretreatment on fungal growth in solid-state fermentation

    NARCIS (Netherlands)

    Hoogschagen, M.; Zhu, Y.; As, H. van; Tramper, J.; Rinzema, A.

    2001-01-01

    The respiration kinetics of Aspergillus oryzae on different varieties of whole wheat kernels were studied. Six wheat varieties were pretreated in two different ways. Five of the six substrates fermented similarly and independently of the pretreatment method. However, pretreatment affected

  13. Evaluation of wheat genotypes for performance and adaptability under rainfed conditions

    International Nuclear Information System (INIS)

    Razzaq, A.; Munir, M.

    2002-01-01

    In four wheat varieties/genotypes were evaluated under rainfed areas of northern Punjab on farmer's fields at 47 locations from 1982-83 to 1986-87. The two wheat varieties Pak-81 and S-19 (Junco S) out yielded the check variety Lyp-73 in all four years. On an average, these two varieties out yielded the check variety by more than 16%. The newly developed variety Barani-83 yielded slightly more than Lyp-73 but significantly less than the Pak-81 and S-19. These two varieties/genotypes performed well in drought also. The relative performance of all the four varieties was same with no difference under two tillage treatments (deep vs. shallow) during 1985-86.(author)

  14. The Effect of Supplemental Irrigation on Canopy Temperature Depression, Chlorophyll Content, and Water Use Efficiency in Three Wheat (Triticum aestivum L. and T. durum Desf. Varieties Grown in Dry Regions of Jordan

    Directory of Open Access Journals (Sweden)

    Abdul Latief A. Al-Ghzawi

    2018-05-01

    Full Text Available One critical challenge facing the world is the need to satisfy the food requirements of the dramatically growing population. Drought stress is one of the main limiting factors in the wheat-producing regions; therefore, wheat yield stability is a major objective of wheat-breeding programs in Jordan, which experience fluctuating climatic conditions in the context of global climate change. In the current study, a two-year field experiment was conducted for exploring the effect of four different water regimes on the yield, yield components, and stability of three wheat (Triticum aestivum L.; T. durum Desf. Jordanian cultivars as related to Canopy Temperature Depression (CTD, and Chlorophyll Content (measured by Soil-Plant Analysis Development, SPAD. A split plot design was used in this experiment with four replicates. Water treatment was applied as the main factor: with and without supplemental irrigation; 0%, 50%, 75%, and 100% of field capacity were applied. Two durum wheat cultivars and one bread wheat cultivar were split over irrigation treatments as a sub factor. In both growing seasons, supplemental irrigation showed a significant increase in grain yield compared to the rain-fed conditions. This increase in grain yield was due to the significantly positive effect of water availability on yield components. Values of CTD, SPAD, harvest index, and water use efficiency (WUE were increased significantly with an increase in soil moisture and highly correlated with grain yield. Ammon variety produced the highest grain yield across the four water regimes used in this study. This variety was characterized by the least thermal time to maturity and the highest values of CTD and SPAD. It was concluded that Ammon had the highest stability among the cultivars tested. Furthermore, CTD and SPAD can be used as important selection parameters in breeding programs in Jordan to assist in developing high-yielding genotypes under drought and heat stress conditions.

  15. Quality characteristics of U.S. soft white and club wheat

    Science.gov (United States)

    U.S. soft white wheat from the Pacific Northwest states of Washington, Oregon and Idaho is a premium quality, versatile soft wheat. Soft White wheat (SWW) is comprised of winter and spring-sown varieties; spike morphology further delineates the class into ‘common’ (lax) and club sub-classes. The reg...

  16. Producer Surplus Distributions in GM Crops: The Ignored Impacts of Roundup Ready Wheat

    OpenAIRE

    Wilson, William W.; Huso, Scott R.

    2006-01-01

    Release of a genetically modified (GM) crop variety would lower prices of competing pesticides used on conventional varieties. This causes an increase in surplus for those farmers who adopt the GM variety, as well as for those who plant the conventional variety. A Cournot model was developed to determine the equilibrium quantities of conventional pesticides. A market with conventional wheat was compared to a market with both conventional and GM wheat varieties to identify price decreases of t...

  17. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes

    Directory of Open Access Journals (Sweden)

    Botticella Ermelinda

    2011-11-01

    Full Text Available Abstract Background Manipulation of the amylose-amylopectin ratio in cereal starch has been identified as a major target for the production of starches with novel functional properties. In wheat, silencing of starch branching enzyme genes by a transgenic approach reportedly caused an increase of amylose content up to 70% of total starch, exhibiting novel and interesting nutritional characteristics. In this work, the functionality of starch branching enzyme IIa (SBEIIa has been targeted in bread wheat by TILLING. An EMS-mutagenised wheat population has been screened using High Resolution Melting of PCR products to identify functional SNPs in the three homoeologous genes encoding the target enzyme in the hexaploid genome. Results This analysis resulted in the identification of 56, 14 and 53 new allelic variants respectively for SBEIIa-A, SBEIIa-B and SBEIIa-D. The effects of the mutations on protein structure and functionality were evaluated by a bioinformatic approach. Two putative null alleles containing non-sense or splice site mutations were identified for each of the three homoeologous SBEIIa genes; qRT-PCR analysis showed a significant decrease of their gene expression and resulted in increased amylose content. Pyramiding of different single null homoeologous allowed to isolate double null mutants showing an increase of amylose content up to 21% compared to the control. Conclusion TILLING has successfully been used to generate novel alleles for SBEIIa genes known to control amylose content in wheat. Single and double null SBEIIa genotypes have been found to show a significant increase in amylose content.

  18. Antibiosis resistance in national uniform wheat yield trials against rhopalosiphum padi (L.)

    International Nuclear Information System (INIS)

    Akhtar, N.; Ashfaque, M.; Gillani, W.A.; Ata-ul-Mohsin; Tahfeen, A.; Begum, I.

    2010-01-01

    The germplasm of National Uniform Wheat Yield Trials (Normal) (2003-04) were screened against Rhopalosiphum padi L., bird cherry oat aphid at National Agricultural Research Centre, Islamabad. Twenty National Uniform Wheat Yield Trials (NUWYT) , Normal and 12 (NUWYT) rain fed varieties/ lines were evaluated for seedling bulk test to know the resistant, moderately resistant and susceptible wheat varieties/ lines. These results revealed that varieties Diamond and Margalla-99 and lines V-99022, 99B2278 and 7-03 were partially resistant, two lines V-00125 and SD-66 were susceptible and three varieties and ten lines were moderately resistant in seedling bulk test. For antibiosis studies, 10 varieties/ lines out of 20 were selected to know the effect of host plants on the fecundity of R. padi. Two varieties Wafaq-2007 and Diamond were the least preferred for fecundity and one line VOO125 was highly preferred for fecundity. (author)

  19. Genetic diversity of the African hexaploid species Solanum scabrum Mill. and S. nigrum L. (Solanaceae)

    NARCIS (Netherlands)

    Manoko, M.L.K.; Berg, van den R.G.; Feron, R.M.C.; Weerden, van der G.M.; Mariani, C.

    2008-01-01

    Two hexaploid species of Solanum sect. Solanum are present in Africa: Solanum scabrum and S. nigrum. Solanum scabrum is a widely cultivated species and is used as a leafy vegetable, as a source of medicine and as a source of ink dye. In previous studies a wide range of morphological diversity has

  20. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    Science.gov (United States)

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  1. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity.

    Science.gov (United States)

    Yue, Jieyu; Sun, Hong; Zhang, Wei; Pei, Dan; He, Yang; Wang, Huazhong

    2015-04-01

    Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are

  2. On-farm dynamic management of genetic diversity: the impact of seed diffusions and seed saving practices on a population-variety of bread wheat.

    Science.gov (United States)

    Thomas, Mathieu; Demeulenaere, Elise; Dawson, Julie C; Khan, Abdul Rehman; Galic, Nathalie; Jouanne-Pin, Sophie; Remoue, Carine; Bonneuil, Christophe; Goldringer, Isabelle

    2012-12-01

    Since the domestication of crop species, humans have derived specific varieties for particular uses and shaped the genetic diversity of these varieties. Here, using an interdisciplinary approach combining ethnobotany and population genetics, we document the within-variety genetic structure of a population-variety of bread wheat (Triticum aestivum L.) in relation to farmers' practices to decipher their contribution to crop species evolution. Using 19 microsatellites markers, we conducted two complementary graph theory-based methods to analyze population structure and gene flow among 19 sub-populations of a single population-variety [Rouge de Bordeaux (RDB)]. The ethnobotany approach allowed us to determine the RDB history including diffusion and reproduction events. We found that the complex genetic structure among the RDB sub-populations is highly consistent with the structure of the seed diffusion and reproduction network drawn based on the ethnobotanical study. This structure highlighted the key role of the farmer-led seed diffusion through founder effects, selection and genetic drift because of human practices. An important result is that the genetic diversity conserved on farm is complementary to that found in the genebank indicating that both systems are required for a more efficient crop diversity conservation.

  3. In search of tetraploid wheat accessions reduced in celiac disease-related gluten epitopes

    NARCIS (Netherlands)

    Broeck, van den H.C.; Hongbing, C.; Lacaze, X.; Dusautoir, J.C.; Gilissen, L.J.W.J.; Smulders, J.M.; Meer, van der I.M.

    2010-01-01

    Tetraploid wheat (durum wheat) is mainly used for the preparation of pasta. As a result of breeding, thousands of tetraploid wheat varieties exist, but also tetraploid landraces are still maintained and used for local food preparations. Gluten proteins present in wheat can induce celiac disease, a

  4. Grain yields and disease resistance as selection criteria for introduction of new varieties of small grain cereal in Lubumbashi, D.R. Congo.

    Science.gov (United States)

    Mukobo, M R P; Ngongo, L M; Haesaert, G

    2014-01-01

    Wheat production in African countries is a major challenge for their development, considering their increasing consumption of wheat flour products. In the Democratic Republic of Congo, wheat and wheat-based products are the important imported food products although there is a potential for the cultivation of small grain cereals such as durum wheat, wheat and triticale. Trials done in Lubumbashi in the Katanga Province have shown that Septoria Leaf Blotch, Septoria Glume Blotch and Fusarium head blight are the main constraints to the efficient development of these cultures. Some varieties of Elite Spring Wheat, High Rainfall Wheat, Triticale and Durum Wheat from CIMMYT were followed during 4 growing seasons and agronomic characteristics and their levels of disease resistance were recorded. Correlations of agronomic characteristics with yields showed that in most cases, thousand kernel weight is the parameter that has the most influence on the yield level (p < 0.0001). The analysis of variance for all diseases showed that there were significant effects related to the year, the species and the interaction years x species. Triticale varieties seem to have a better resistance against the two forms of Septoria compared to wheat varieties but, they seem to be more sensitive to Fusarium Head Blight than wheat varieties. However, the Fusarium Head Blight has a rather low incidence in Lubumbashi.

  5. Quantitative and qualitative differences in celiac disease epitopes among durum wheat varieties identified through deep RNA-amplican sequencing

    NARCIS (Netherlands)

    Salentijn, E.M.J.; Esselink, D.G.; Goryunova, S.V.; Meer, van der I.M.; Gilissen, L.J.W.J.; Smulders, M.J.M.

    2013-01-01

    Background - Wheat gluten is important for the industrial quality of bread wheat (Triticum aestivum L.) and durum wheat (T. turgidum L.). Gluten proteins are also the source of immunogenic peptides that can trigger a T cell reaction in celiac disease (CD) patients, leading to inflammatory responses

  6. Genetic analysis for grain quality traits in pakistani wheat varieties

    International Nuclear Information System (INIS)

    Minhas, N.M.; Ajmal, S.U.; Iqbal, Z.; Munir, M.

    2014-01-01

    A set of eight parental diallel involving seven commercial wheat cultivars and one breeding line was made to investigate the nature of gene action determining inheritance pattern of grain quality characters. Highly significant differences were observed among the genotypes for 1000 grain weight, protein content, wet gluten and lysine content. Adequacy tests were employed to estimate the fitness of data sets to additive dominance model. Both the tests i.e. analysis of uniformity of Wr, Vr and joint regression analysis validated the data of these traits for genetic analysis. Gene actions for grain quality traits were ascertained following Hayman's analysis of variance. Results of the genetic analysis revealed that both additive and dominance genetic components were involved in the manifestation of characters under study. However, additive gene effects were more pronounced in the genetic control of these traits. Non significance of b1, b2 and b3 values revealed the absence of directional dominance, symmetrical distribution of genes among the parental lines and absence of specific genes action respectively in all the traits. Maternal effects were also noted in 1000 grain weight, protein content and wet gluten percentage. It is concluded that additive effects are crucial in the expression of grain quality characters of wheat in germplasm under study and single plant selection may be recommended in segregating generations for effective improvement in these characters. (author)

  7. Neutron activation analysis of wheat samples

    International Nuclear Information System (INIS)

    Galinha, C.; Anawar, H.M.; Freitas, M.C.; Pacheco, A.M.G.; Almeida-Silva, M.; Coutinho, J.; Macas, B.; Almeida, A.S.

    2011-01-01

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation, Jordao presented higher transfer coefficients than Marialva, in particular for Co, Fe, and Na. The Jordao and Marialva cultivars accumulated not statistically significant different

  8. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao

    2015-11-04

    Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.

  9. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035.

    Directory of Open Access Journals (Sweden)

    Jinita Sthapit Kandel

    Full Text Available Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.. Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL for stripe rust resistance in PI 480035. A spring wheat, "Avocet Susceptible" (AvS, was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL. The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40 of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52 indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance.

  10. Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring' revealed by gene locations on homoeologous chromosomes

    Czech Academy of Sciences Publication Activity Database

    Ma, J.; Stiller, J.; Zheng, Z.; Wei, Y.M.; Zheng, Y.L.; Yan, G.J.; Doležel, Jaroslav; Liu, C.

    2015-01-01

    Roč. 15, MAR 11 2015 (2015) ISSN 1471-2148 Institutional support: RVO:61389030 Keywords : Interchromosomal rearrangements * Wheat genome * Translocation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.406, year: 2015

  11. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome.

    Science.gov (United States)

    Belova, Tatiana; Grønvold, Lars; Kumar, Ajay; Kianian, Shahryar; He, Xinyao; Lillemo, Morten; Springer, Nathan M; Lien, Sigbjørn; Olsen, Odd-Arne; Sandve, Simen R

    2014-09-01

    A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.

  12. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  13. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1.

    Science.gov (United States)

    Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A

    2018-01-04

    FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  14. Physical characteristics of some wheat genotypes cultivated in Lake District of Turkey

    Directory of Open Access Journals (Sweden)

    Hülya GÜL

    2012-12-01

    Full Text Available This study was carried out to determine the physical characteristics of wheat genotypes cultivated in lakes district of Turkey. The genotypes were collected from the center of Isparta and Burdur province, districts and selected five different villages in this district at harvest in 2011. Totaly 19 genotypes named as; Hard Wheat, Red Kazmalı Wheat, Lavanta, Red Wheat, Burgaz, Osmaniye and Yunak (Landraces, Kızıltan-91, İzmir 85, Bezostoya, Ankara 98, Sönmez 2001, Çeşit-1252, Hatay 86, Mirzabey, Kunduru-1149, Gerek-79, Gediz-75 and Cumhuriyet-75 (Wheat registered cultivars were collected from these districts. Physical characteristics of the wheat samples brought to laboratory were analyzed as completely randomized design with three replications. Foreign matters of wheats were determined according to TS 2974 standards. 4 genotypes were found at second degree, 5 genotypes were at third degree and remaining 10 genotypes were found out of these rating. Highest thousand kernel weight and hectoliter weight were determined on Mirzabey and Sönmez 2001 respectively in bread wheat varieties while highest thousand kernel weight and hectoliter weight were determeined on Kunduru 1149 and Burgaz respectively in durum wheat varieties.

  15. Evaluation of nitrogen sources (15 N) on three wheat varieties in an andisol and an ultisol in the IX Region. II: Isotopic parameters and fertilizer use efficiency

    International Nuclear Information System (INIS)

    Pino N, Ines; Buneder B, Mirta; Peyrelongue C, Amelia

    1996-01-01

    A field study was carried out in order to evaluate different N fertilizers sources in three wheat varieties considering an Andisol and an Ultisol soils, in the IX Region of the country. The dilution isotopic techniques was used, with AS, 10% at rates of 20 kg ha -1 of N. The isotopic parameters such as N in the plant derived from the nitrogen sources, the N in the plant derived from the soil, the fertilizer use efficiencies and the agronomic evaluation between them were determined. The Nddfu (%) was associated to the varieties and to the soils. In the Ultisol, Dalcahue variety had a better behaviour with SS and, in the Andisol, Laurel variety showed an special affinity with U. In three varieties, the higher % of N derived from the sources it was in the grain, showing Dalcahue variety a better translocation.The fertilizer use efficiency (FUE) and the physiological efficiency, determined according the isotopic parameters, were higher than the values determined according the conventional methodology. (author)

  16. Evaluation of nitrogen sources (15 N) on three wheat varieties in an andisol and an ultisol, in the IX region. 2. Isotopic parameters and fertilizer use efficiency

    International Nuclear Information System (INIS)

    Pino N, Ines; Peyrelongue C, A.; Buneder B, Mirta

    1997-01-01

    Full text: A field study was carried out in order to evaluate different N fertilizers sources un three wheat varieties, considering an Andisol and Ultisol soils, in the IX Region of the country. The dilution isotopic techniques was used, with As, 10% at rates of 20 kg ha -1 of N. The isotopic parameters such as N in the plant derived from the nitrogen sources, the N in the plant derived from the soil, the fertilizer use efficiencies and the agronomic evaluation between them were determined. The Nddfu (%) was associated to the varieties and to the soils. In the Ultisol, Dalcahue variety had a better behaviour with SS and, in the Andisol, Laurel variety showed an special affinity with U. In the three varieties, the higher % of N derived from the sources it was in the grain, showing Dalcahue variety a better translocation. The fertilizer use efficiency (FUE) and the physiological efficiency, determined according the isotopic parameters, were higher than the values determined according the conventional methodology

  17. OPPORTUNITIES TO USE PEA - WHEAT MIXES IN ORGANIC FARMING

    Directory of Open Access Journals (Sweden)

    Grigori Ivanov

    2015-12-01

    Full Text Available This article presented the results of productivity and quality of the green mass of pea-wheat mixes grown in conditions of organic farming. Are explored 5 wheat varieties - Sadovo 1, Geia 1, Guinness, Farmer, Liusil and 4 varieties of winter peas -Mir, Vesela, №11, L12AB, at different ratio between them - 50:50 and 30:70%. The selection of varieties is made based on previous studies of their complex characteristics – ripening, yield, chemistry (Angelova S., T.Georgieva, M.Sabeva, 2011. Setting up and raising the experimental mixture of seeds has been made in a medium free of organic and mineral fertilizers. We have studied the changes in green mass yield and the biochemistry of surface biomass. The cultivation of pea–wheat mixtures under conditions of organic farming leads to increased yields of green mass in comparison with the self-seeding of wheat and peas. According to the results obtained at early ripening and the highest crude protein content average of three years is the mixture Sadovo1–Mir 30:70%. The most productive is the mixture Sadovo1-Mir 50-50%.

  18. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.

    Directory of Open Access Journals (Sweden)

    Ke Liu

    Full Text Available The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22 were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils.

  19. Comparative studies of different varieties of wheat flour

    International Nuclear Information System (INIS)

    Abid, H.; Alizai, M.N.K.

    2007-01-01

    Studies were carried out to evaluate the nutritional quality of different samples of wheat flour, collected form various flour mills. These were analyzed physically for colour, flavour, taste, texture, microbiologically for total bacterial count, coliform bacteria, yeast, mould and chemically for moisture content, total protein, gluten, acidity, crude fiber and ash content. Effect of storage time on the gluten content was also studied. Out of 24 samples 13 samples were contaminated with mould. Deterioration of food constituents like protein and gluten was recorded in all the samples which were infected with mould. Moisture content of 12 samples out these 13 infected samples were also higher than the required standard. While the rate of 11 samples have moisture content within the specified range (less than 12%). In these samples there were no losses of protein, gluten and were also free from yeast and mould. (author)

  20. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    Science.gov (United States)

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  1. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat.

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J; Carmo-Silva, Elizabete; Parry, Martin A J; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Ptranspiration rate (Ptranspiration efficiency -related traits and yield in bread wheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement.

  2. EVALUATION OF TECHNOLOGICAL AND ANTIOXIDANT PROPERTIES OF TRITICUM AESTIVUM L. AND TRITICUM DURUM L. VARIETIES

    Directory of Open Access Journals (Sweden)

    Ján Mareček

    2014-02-01

    Full Text Available The study deals with the evaluation of technological and antioxidant characteristics of selected varieties of Triticum aestivum and Triticum durum grown in Slovakia and Serbia. Research was conducted during the two years 2009 and 2010. Measured values of water activity were in the range 0.4 - 0.5. Optimal activity of alpha-amylase was measured in Serbian varieties Etida (210 seconds, Pobeda (218 seconds and Renesansa (272 seconds. The highest sedimentation capacity expressed as sedimentation index by Zeleny had variety Karpatia (60 cm3. The high content of insoluble protein (gluten was measured in a variety Rusija (36.6%. Nitrogen content was in the range 12.7 - 13.9% of dry matter, starch content in the range 56.6 - 61.6% of dry matter. Antioxidant activity measured by DPPH method ranged in wheat varieties from 44 to 49%. The highest content of polyphenols was measured in a variety Etida (0.464 mg of catechin/g of sample. Durum wheat varieties have a higher content of polyphenols in general. The production of semolina flour from durum wheat may have the positive antioxidant effect according to gained measurements.

  3. Comparative efficiency of different methods of gluten extraction in indigenous varieties of wheat.

    Science.gov (United States)

    Imran, Samra; Hussain, Zaib; Ghafoor, Farkhanda; Nagra, Saeedahmad; Ziai, Naheeda Ashbeal

    2013-06-01

    The present study investigated six varieties of locally grown wheat (Lasani, Sehar, Miraj-08, Chakwal-50, Faisalabad-08 and Inqlab) procured from Punjab Seed Corporation, Lahore, Pakistan for their proximate contents. On the basis of protein content and ready availability, Faisalabad-08 (FD-08) was selected to be used for the assessment of comparative efficiency of various methods used for gluten extraction. Three methods, mechanical, chemical and microbiological were used for the extraction of gluten from FD-08. Each method was carried out under ambient conditions using a drying temperature of 55 degrees C. Mechanical method utilized four different processes viz:- dough process, dough batter process, batter process and ethanol washing process using standard 150 mesh. The starch thus obtained was analyzed for its proximate contents. Dough batter process proved to be the most efficient mechanical method and was further investigated using 200 and 300 mesh. Gluten content was determined using sandwich omega-gliadin enzyme-linked immunosorbent assay (ELISA).The results of dough batter process using 200 mesh indicated a starch product with gluten content of 678 ppm. Chemical method indicated high gluten content of more than 5000 ppm and the microbiological method reduced the gluten content from 2500 ppm to 398 ppm. From the results it was observed that no gluten extraction method is viable to produce starch which can fulfill the criteria of a gluten free product (20 ppm).

  4. Breeding wheat for disease resistance in Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.; Maling'a, J.

    2001-01-01

    Yellow rust caused by Puccinia striformis and stem rust caused by Puccinia graminis tritici are most destructive diseases in Kenya. In wheat improvement, development of varieties of wheat with resistance to these diseases has been among the foremost contributions in wheat breeding. In breeding programs each disease is considered as a separate problem. Attention has been given to varieties resistant to stem rust, yellow rust and leaf rust among other diseases. In the year 2001 program stem rust and yellow rust were recorded in all the sites where NPT was performed. Breeding for resistance for the two diseases is approached through the Introductions and Hybridisation. The Doubled Haploid Technique is used to quicken the time of homozygous lines production. The introduction and the homozygous lines are then evaluated for yield and disease resistance in the field under preliminary yield trials and the National Performance Trials (NPT) in 2001, 18 lines and 2 check varieties were included in the NPT. The results show that there were some differences in reaction to the three diseases where lines R946, K7972-1 and R899 had the lowest score of the diseases in all sites. In the commercial variety trial the results show that all the varietieshave become susceptible to stem rust and so the need to develop new cultivars which will be resistance to the rusts. Yombi a newly developed variety showed a substantially high level resistance. (author)

  5. Breeding drought tolerant wheat for the marginal areas of Kenya

    International Nuclear Information System (INIS)

    Njau, P.N.; Kinyua, M.G.; Karanja, L.

    2001-01-01

    Over the last 10 years the National Plant Breeding Research Center (NPBRC - Njoro) has been involved in developing wheat varieties for the marginal areas of Kenya with the aim of introducing wheat in the non- traditional region of the country. During this period four varieties tolerant to drought have been released. These include varieties such as Duma, Ngamia, Chozi and the newly released Njoro BW1. At the moment the released varieties are of low yielding and so there is need to develop higher yielding varieties if we are to produce at an economic level. This study was aimed at developing and evaluating some of the germplasm, which have been developed or introduced over the years over their suitability for production in the marginal areas of of Kenya. Over 600 introductions were screened in the screening nursery in Njoro while segregating populations in F2-F8 were selected and advanced to the next generation. A National Dryland Wheat Performance Trial (NDL WPT) was conducted for 10 introduced lines, 3 mutants, 1 Kenya seed line and Duma and Chozi as check varieties. KM14 has been released as a marginal area variety for its high protein content. Line R965 showed higher performance in both yield and hectolitre weight and will be entered for the second NDLWPT in 2002 and may be released as variety later. (author)

  6. Evaluating the Production of Doubled Haploid Wheat Lines Using Various Methods of Wheat and Maize Crossing to Develop Heat-Tolerant Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Tayebeh BAKHSHI

    2017-02-01

    Full Text Available Abstract. In this study, chromosome elimination method was used to develop doubled haploid wheat lines via crosses with maize. The plant materials used included 11, F1 wheat genotypes and maize genotype BC572. In these crosses, the maize plant was used as the male parent.Three methods of haploid production in wheat comprising conventional (A, detached-tiller culture (B and intermediate (C techniques were used and compared. The traits such as the number of seeds set, the number of embryos obtained and the number of haploid seedlings produced were studied. Comparisons showed that among various methods of storing wheat spikes, method (C was better than other techniques in terms of the percentage of seed production, embryo formation and haploid seedling production. Also, in all three methods, the percentage of seed production, the percentage of embryo formation and the percentage of haploid seedling production were respectively equal to 76.84, 25.22 and 51.89. Among the wheat genotypes in all three methods, genotype DH-133 with 87.28 percent seed set and genotype DH-132 with 32.71 percent embryo formation and 65.08 percent haploid seedling production were the best genotypes. A total of 92 doubled haploid lines were produced. In the field evaluations of 86 doubled haploid lines, traits such as growing season, plant height, lodging, kernel yield and 1000 kernel weight were examined. Finally, 3 lines were selected for adaptation and stability testing under heat stress conditions.Keywords: Wheat, Doubled haploid, Chromosome elimination, Detached-tiller culture Özet. Bu çalışmada, mısır ile çaprazlarla çift katlı haploid buğday hatlarının geliştirilmesi için kromozom eliminasyon yöntemi kullanılmıştır. Kullanılan bitki materyalleri 11, F1 buğday genotipleri ve BC572 mısır genotipini içermektedir. Bu çaprazlarda, mısır bitkisi erkek ebeveyn olarak kullanılmıştır. Geleneksel (A, ayrık-yeke kültürü (B ve ara (C

  7. Development of new iraqi wheat varieties induced by gamma rays

    International Nuclear Information System (INIS)

    Ibrahim, I.F.; Al-Janabi, K.K.; Al-Maaroof, E.M.; Al-Aubaidi, M.O.; Mahmoud, A.H.; Al-Janabi, A.A.

    1991-01-01

    The aim of the present investigation is to study agronomic traits of three wheat mutants induced by gamma rays and compared with their origin 'Saber Beg' during M 8 - M 11 generations. These mutants showed a moderate resistance to leaf rust and lodging, while the origin was susceptible. Also, these mutants surpassed their origin in seed weight of 100 spikes, weight of 1000 kernels and protein yield per unit area. Chemical and physical analyses of mutant flours indicated that it could be used for bread making successfully.2 fig.,4 tab

  8. Soft wheat quality characteristics required for making baking powder biscuits

    Science.gov (United States)

    Fifteen soft wheat varieties were evaluated for their grain, milling, flour and dough mixing characteristics, as well as their solvent retention capacities (SRCs), pasting properties and suitability for making baking powder biscuits, to identify wheat quality characteristics required for making bisc...

  9. Management of parthenium weed by extracts and residue of wheat

    African Journals Online (AJOL)

    Ehsan Zaidi

    2011-10-24

    Oct 24, 2011 ... bioassay, dried and chopped wheat straw of the four test wheat varieties was thoroughly mixed in pot ... environment from living plants and the subsequent ... Copped materials were mixed in sandy loam soil in plastic pots of 8.

  10. 100-year history of the development of bread winter wheat breeding programs

    Directory of Open Access Journals (Sweden)

    М. А. Литвиненко

    2016-05-01

    Full Text Available Purpose. Review of the main achievements of the Wheat Breeding and Seed ProductionDepartment in the Plant Breeding and Genetic Institute – National Centre of Seed and Cultivar Investigation in the developing theoretical principles of breeding and creation of winter wheat varieties of different types during 100-year (1916–2016 period of breeding programs realization. Results. The main theoretical, methodical developments and breeding achievements of Wheat Breeding and Seed Production Department during 100-year (1916–2016 history have been considered. In the course of the Department activity, the research and metho­dology grounds of bread winter wheat breeding and seed production have been laid, 9 stages of breeding programs development have been accomplished. As a result, more than 130 varieties of different types have been created, 87 of them have been released in some periods or registered in the State registers of plants varieties of Ukraine and other countries and grown in the total sowing area about 220 million hectares.

  11. [Faba bean fusarium wilt (Fusarium oxysporum )control and its mechanism in different wheat varieties and faba bean intercropping system].

    Science.gov (United States)

    Dong, Yan; Dong, Kun; Zheng, Yi; Tang, Li; Yang, Zhi-Xian

    2014-07-01

    Field experiment and hydroponic culture were conducted to investigate effects of three wheat varieties (Yunmai 42, Yunmai 47 and Mianyang 29) and faba bean intercropping on the shoot biomass, disease index of fusarium wilt, functional diversity of microbial community and the amount of Fusarium oxysporum in rhizosphere of faba bean. Contents and components of the soluble sugars, free amino acids and organic acids in the root exudates were also examined. Results showed that, compared with monocropped faba bean, shoot biomass of faba bean significantly increased by 16.6% and 13.4%, disease index of faba bean fusarium wilt significantly decreased by 47.6% and 23.3% as intercropped with Yunmai 42 and Yunmai 47, but no significant differences of both shoot biomass and disease index were found as intercropped with Mianyang 29. Compared with monocropped faba bean, the average well color development (AWCD value) and total utilization ability of carbon sources of faba bean significantly increased, the amount of Fusarium oxysporum of faba bean rhizosphere significantly decreased, and the microbial community structures of faba bean rhizosphere changed as intercropped with YM42 and YM47, while no significant effects as intercropped with MY29. Total contents of soluble sugar, free amino acids and organic acids in root exudates were in the trend of MY29>YM47>YM42. Contents of serine, glutamic, glycine, valine, methionine, phenylalanine, lysine in root exudates of MY29 were significantly higher than that in YM42 and YM47. The arginine was detected only in the root exudates of YM42 and YM47, and leucine was detected only in the root exudates of MY29. Six organic acids of tartaric acid, malic acid, citric acid, succinic acid, fumaric acid, t-aconitic acid were detected in root exudates of MY29 and YM47, and four organic acids of tartaric acid, malic acid, citric acid, fumaric acid were detected in root exudates of YM42. Malic acid content in root exudates of YM47 and MY29 was

  12. Wheat seed system in Ethiopia: Farmers' varietal perception, seed sources, and seed management

    NARCIS (Netherlands)

    Bishaw, Z.; Struik, P.C.; Gastel, van A.J.G.

    2010-01-01

    Knowledge and information on farmers' perception and its influence on adoption of modern wheat varieties, awareness and source of new wheat production technology, wheat seed sources, and on-farm seed-management practices remain sporadic in Ethiopia. This study was conducted to understand the

  13. Study on Prevalence of Mycoflora in Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Pratishtha Adhikari

    2016-01-01

    Full Text Available Forty seed sample of wheat (Triticum aestivum were collected from four locations viz. Chitwan, Kaski, Banke and Lalitpur and tested by blotter method at laboratory during 2013 for determining fungal pathogens associated with wheat seeds in Nepal. Eighteen species representing thirteen genera of fungi were recovered from the seed. Alternaria alternata and Bipolaris sorokiniana were predominant in all the varieties/genotypes from all the locations, where B. sorokiniana was strongly pathogenic in wheat crop. Percentage frequency and type of fungi detected varied with variety and locations. Bipolaris sorokiniana was highest (64.40% in Banke than remaining three locations. Seeds of Chitwan had lowest percentage (5.50% of seed infection as compared to other locations. Relative abundance of Alternaria alternata (55.10% was highest as it was the most prevalent component of seed borne mycoflora, followed by Bipolaris sorokiniana (34.69% and Cladosporium herbarum (7.19%. Differences in quantity of precipitation and relative humidity might be the possible reason for variation in frequency and type of fungi detected in wheat seeds of four locations.

  14. Nutritional characteristics of ancient Tuscan varieties of Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Lisetta Ghiselli

    2016-08-01

    Full Text Available Bread wheat (Triticum aestivum L. is an important cereal in human consumption. In recent years, there has been a growing interest in ancient wheat varieties. The latter represent an important source of germplasm, characterised by a broader genetic base and, therefore, a potential source of biodiversity. The objective of the study was to ascertain the optimal balance between the presence of secondary metabolites having beneficial effects on health and technological features that ensure successful baking quality. The experimental trial was performed in 2011-2012 on three organic farms located in three different areas within the province of Siena (Tuscany. In each location, an overall evaluation of the commercial, rheological and functional properties of five ancient Tuscan bread wheat varieties (Andriolo, Frassineto, Gentil rosso, Inallettabile 96, Verna as compared with a commercial modern variety (Palesio was carried out. The ancient varieties were compared both singularly (pure and in combination (mixtures of two varieties in equal proportion, respectively. Biometric and productive parameters were detected for each plot (32 plots in each farm. Macro- and trace elements, polyphenols, flavonoids and antioxidant activity (antiradical power, ARP were similarly determined on representative whole grain samples. Rheological analysis was carried out on flour samples. The multivariate statistical analysis using principal components analysis was performed on all variables analysed. The results showed a significant environment effect on the different parameters measured and did not reveal significant improvements in the variables measured when varieties were cultivated in mixtures. However, the study did reveal various interesting trends that are warranting of further investigation. The most interesting effect from a nutritional and functional point of view is the relationship between ARP, rheological properties, protein content and gluten content. These

  15. Rust resistance evaluation of advanced wheat (triticum aestivum l.) genotypes using pcr-based dna markers

    International Nuclear Information System (INIS)

    Rahman, S.U.; Younis, M.; Iqbal, M.Z.; Nawaz, M.

    2014-01-01

    The most effective and environmental friendly approach for the control of wheat rust disease is the use of resistant genotypes. The present study was conducted to explore rust resistance potential of 85 elite wheat genotypes (36 varieties and 49 advanced lines) using various types of DNA markers like STS, SCAR and SSR. DNA markers linked with different genes conferring resistance to rusts (Leaf rust=Lr, Yellow rust=Yr and Stem rust=Sr) were employed in this study. A total of 18 genes, consisting of eleven Lr (lr1, lr10, lr19, lr21, lr28, lr34, lr39, lr46, lr47, lr51 and lr52), four Yr (yr5, yr18, yr26 and yr29) and three Sr genes (sr2, sr29, and sr36) were studied through linked DNA markers. Maximum number of Lr genes was found in 17 advanced lines and 9 varieties, Yr genes in 26 advanced lines and 20 wheat varieties, and Sr genes in 43 advanced lines and 27 varieties. Minimum number of Lr genes was found in advanced line D-97 and variety Kohinoor-83, Yr genes in wheat variety Bwp-97 and Sr genes in 6 advanced lines and 8 varieties. Molecular data revealed that genotypes having same origin, from a specified area showed resistance for similar type of genes. In this study, an average similarity of 84% was recorded among wheat genotypes. Out of 18 loci, 15 were found to be polymorphic. (author)

  16. Self-sterility in the hexaploid Handroanthus serratifolius (Bignoniaceae, the national flower of Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Alves

    2013-12-01

    Full Text Available Polyploidization is common among angiosperms and might induce typically allogamous plants to become autogamous (self-compatible, relying on sexual self-fertilization or apomictic (achieving asexual reproduction through seeds. This work aimed to determine whether neopolyploidy leads to the breakdown of the self-incompatibility system in the hexaploid non-apomictic species Handroanthus serratifolius (Vahl S. Grose, through analyses of its floral biology, pollination biology and breeding system. Although anthesis lasted for three days, increasing the overall floral display, receptivity decreased as of the second day. Centridini and Euglossini bees were the main pollinators, and low nectar availability (1.95 ± 1.91 µl/flower might have obliged them to visit multiple flowers. We observed low reproductive efficacy. That might be explained by self-sterility and by the great number of flowers per individual, which could increase the frequency of geitonogamy. Ovule penetration by the pollen tubes in self-pollinated pistils with posterior abscission indicated late-acting self-incompatibility in H. serratifolius, as observed in other diploid Bignoniaceae species, although inbreeding depression cannot be excluded. The self-sterility found in the monoembryonic, hexaploid individuals studied here contrasts with the results for other neopolyploid Handroanthus and Anemopaegma species, which are often autogamous and apomictic. Our results suggest that neopolyploidy is not the main factor leading to self-fertility in Handroanthus.

  17. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  18. Wheat grain mechanical vulnerability to mechanical damage in light of the recent agrophysical research

    International Nuclear Information System (INIS)

    Grundas, S.

    1995-01-01

    The paper contains basic information on mechanical damage to wheat grains. The most important causes of mechanical damage and some of its effects in manufacturing are discussed. Grain material included 5 varieties of winter wheat and 2 varieties of spring wheat. Internal mechanical damage was examined by X-ray technique; external damage was examined with the colorimeter method. The results obtained were compared with the estimation results of more important processing features of the grain: gluten quantity and quality and grain hardness. (author)

  19. Evaluation of Photosynthesis Capacity of Some Winter Wheat Genotypes in Transylvanian Plain Conditions

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2018-05-01

    Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.

  20. Chromosomal rearrangements caused by gamma-irradiation in winter wheat cells

    Directory of Open Access Journals (Sweden)

    M. M. Nazarenko

    2017-02-01

    Full Text Available In this article we report the results of our investigation into several cytogenetic parameters of variability in mutation induction of modern winter wheat varieties and some connections between the means of cytogenetic indices and different doses of gamma-rays. Analysis of chromosomal aberrations following the action of any kind of mutagen by the anaphases method is one of the most widely investigated and most precise methods which can be used to determine the fact of mutagenic action on plants and identify the nature of the mutagen. We combined in our investigation the sensitivity of genotype to mutagen using cytological analysis of mutagen treated wheat populations with the corresponding different varieties by breeding methods to reveal its connections and differences, specific sensitivity to mutagens action on the cell level. Dry seeds of 8 varieties of winter wheat were subjected to 100, 150, 200, 250 Gy gamma irradiation, which are trivial for winter wheat mutation breeding. We investigated rates and spectra of chromosomal aberrations in the cells of winter wheat primary roots tips. The coefficients of correlations amid the rate of chromosomal aberrations and the dose of gamma-rays were on the level 0.8–0.9. The fragments/bridges ratio is a clear and sufficient index for determining the nature of the mutagen agent. We distinguished the following types of chromosomal rearrangements: chromatid and chromosome bridges, single and double fragments, micronuclei, and delayed chromosomes. The ratio of chromosomal aberrations changes with the change in mutagen; note that bridge-types are characteristic of irradiation. Radiomutants are more resistant to gamma rays. This is apparent in the lower rate of chromosomal aberrations. Varieties obtained by chemical mutagenesis (varieties Sonechko, Kalinova are more sensitive to gamma-irradiation than others. We propose these varieties as objects for a mutation breeding programme and radiation of mutants

  1. Agrobacterium-Mediated Transformation of Bread and Durum Wheat Using Freshly Isolated Immature Embryos

    Science.gov (United States)

    Wu, Huixia; Doherty, Angela; Jones, Huw D.

    Agrobacterium-mediated transformation of wheat is becoming a viable alternative to the more established biolistic protocols. It offers advantages in terms of simple, low-copy-number integrations and can be applied with similar efficiencies to specific durum wheat and spring and winter bread wheat types varieties.

  2. Effect of fungicide on the development of wheat stem rust and yield ...

    African Journals Online (AJOL)

    Stem rust caused by Puccinia graminis f.sp tritici Erik. & E. Henn. is a highly destructive disease of wheat (Triticum aestivum L.). The effects of fungicide application on stem rust (Puccinia graminis tritici) epidemics and yield of three bread wheat varieties varying in reaction to the disease were studied in two major wheat ...

  3. Genetic analysis of rust resistance genes in global wheat cultivars: an overview

    International Nuclear Information System (INIS)

    Aktar-Uz-Zaman, Md; Tuhina-Khatun, Mst; Hanafi, Mohamed Musa; Sahebi, Mahbod

    2017-01-01

    Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striiformis f. Tritici Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding

  4. The effect of feeding wheat with purple pericarp on the growth of carp

    Directory of Open Access Journals (Sweden)

    Jan Mareš

    2015-08-01

    Full Text Available This study assessed and compared the influence of feeding wheat with purple pericarp (variety Konini and standard coloured wheat (red variety Bohemia on the growth characteristics of fingerling carp (Cyprinus carpio L. of the "Amurský lysec" line. The total content of anthocyanins converted to cyanidin 3-glucoside in the control Bohemia wheat was 24.95 mg.kg-1 and in the Konini purple wheat 41.70 mg.kg-1. Two experimental variants for feed were evaluated: dipped wheat grain and crushed wheat grain. The feed dose for wheat was 1.5% of the fish stock weight and for natural food (frozen Chironomid larvae was 0.2% of fish stock weight to all variants. Growth parameters (body length, body weight, Fulton's condition factor and feed conversion ratio of the fish were evaluated after one month of administration. The feed consumption and physico-chemical parameters (temperature, oxygen saturation, pH, N-NH4 +, N-NO2-, N-NO3- and Cl- of the environment were observed. During the feeding test, no major differences in food consumption among variations feeding on either wheat and on Chironomid larvae were noted. Satisfying results for mas and length gain were achieved in V2 wheat with purple pericarp (Konini variety - dipped grain, where the average total body length was 156.56 mm and the average unit mass was 60.81 g. In this variant, higher values of the parameters were achieved compared to the control group (100.6%, resp. 104.2%. A positive impact of wheat with purple pericarp on the evaluated parameter of fish condition factor was demonstrated. This trend was confirmed in all variants. No effect was demonstrated for mechanical disruption of kernels on the level of utilization of nutrients. In further experiments on growth characteristics we would like to determine antioxidant parameters in the blood and liver of fry.

  5. Comparative assessment of wheat landraces against polyethylene glycol simulated drought stress

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Latif, M.M.; Arif, M.; Ahson, M.; Siddiqui, S.U.

    2014-01-01

    Current investigation reports a comparative assessment and relative performance of 10 wheat accessions including check variety Inqilab-91 against polyethylene glycol (PEG) simulated drought stress at seedling. Wheat genotypes were tested against 0, 19, 21, 23 and 25% solutions of PEG 6000. The young seedlings were observed for germination (%) and root length (cm). In general, a decrease in germination percentage was observed with the increase in PEG concentration. All the investigated wheat genotypes performed better than the check variety Inqilab-91. The wheat accession 18699 that had more than 30% surviving seedlings at the highest concentration of used PEG was rated as the tolerant genotype. On the other hand, 18671 and 18698 appeared to be less tolerant having less than 5% germination at 25% PEG. Similarly, the root length decreased with the increase in PEG concentrations. The mean root length of all the wheat accessions, which were studied, was comparatively less affected than the control (Inqilab-91). The wheat genotypes 18670 and 18671 were the better performers than the rest of genotypes investigated and belonged to rainfed area of the Pothowar region. A detailed investigation of these genotypes in the field conditions is suggested. (author)

  6. Induced mutagenesis in wheat at various ploidy levels

    International Nuclear Information System (INIS)

    Valeva, S.A.

    1975-01-01

    Different wheat species with 2x=14,28 and 42 were treated with ethylene imine(EI) and gamma-rays, and the M 1 damage and M 2 mutation frequency recorded. The resistance towards mutagenic treatment, in general, increased with ploidy level, but in each ploidy group the cultivated varieties were tolerant than the wild and primitive forms of the same species or ploidy level. It was also observed that the manifestation of mutagenic damage is expressed differently for different parameters taken for recording the extent of injury. There was no direct correlation between the sensitivity expressed through M 1 , injury and the mutation frequency recorded in M 2 , although in hexploid bread wheat a more sensitive variety (Bezostava-1) was also more mutable than the other variety of the same species (Beltskaya-32). (author)

  7. Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization.

    Science.gov (United States)

    Shen, Yanyue; Zhang, Yu; Zou, Jun; Meng, Jinling; Wang, Jianbo

    2015-01-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. Although genomic and transcriptomic changes have been observed in polyploids, the effects of polyploidization on proteomic divergence are poorly understood. In this study, we reported quantitative analysis of proteomic changes in leaves of Brassica hexaploid and its parents using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with mass spectrometry. A total of 2044 reproducible proteins were quantified by at least two unique peptides. We detected 452 proteins differentially expressed between Brassica hexaploid and its parents, and 100 proteins were non-additively expressed in Brassica hexaploid, which suggested a trend of non-additive protein regulation following genomic merger and doubling. Functional categories of cellular component biogenesis, immune system process, and response to stimulus, were significantly enriched in non-additive proteins, probably providing a driving force for variation and adaptation in allopolyploids. In particular, majority of the total 452 differentially expressed proteins showed expression level dominance of one parental expression, and there was an expression level dominance bias toward the tetraploid progenitor. In addition, the percentage of differentially expressed proteins that matched previously reported differentially genes were relatively low. This study aimed to get new insights into the effects of polyploidization on proteomic divergence. Using iTRAQ LC-MS/MS technology, we identified 452 differentially expressed proteins between allopolyploid and its parents which involved in response to stimulus, multi-organism process, and immune system process, much more than previous studies using 2-DE coupled with mass spectrometry technology. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in allopolyploid and its parents, which will lead to a better understanding of

  8. Agronomic factors related to the quality of wheat for the starch industry; part I: Sprout damage

    NARCIS (Netherlands)

    Kelfkens, M.; Hamer R.J.

    1991-01-01

    The wheat starch industry in the Netherlands processes about 300.000 t of wheat annually. However, only a small percentage of this wheat is grown in the Netherlands although it has been demonstrated that Dutch wheat varieties can also be successfully processed. Climatological and cultural aspects

  9. New winter hardy winter bread wheat cultivar (Triticum aestivum L. Voloshkova

    Directory of Open Access Journals (Sweden)

    Л. М. Голик

    2007-12-01

    Full Text Available Creation of Initial raw for breeding of winter wheat by change of the development type under low temperatures influence was described. Seeds of spring wheat were vernalized in aluminum weighting bottle. By using low temperatures at sawing of M2-6 at the begin ind of optimal terms of sawing of winter wheat, new winter-hardy variety of Voloshkova was bred.

  10. Photosynthesis and yield reductions from wheat stem sawfly (Hymenoptera: Cephidae): interactions with wheat solidness, water stress, and phosphorus deficiency.

    Science.gov (United States)

    Delaney, Kevin J; Weaver, David K; Peterson, Robert K D

    2010-04-01

    The impact of herbivory on plants is variable and influenced by several factors. The current study examined causes of variation in the impact of larval stem mining by the wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), on spring wheat, Triticum aestivum L. We performed greenhouse experiments over 2 yr to (1) study whether biotic (hollow versus solid stemmed host wheat) and abiotic (water, phosphorus stress) factors interact with C. cinctus stem mining to influence degree of mined stem physiological (photosynthesis) and yield (grain weight) reductions; and (2) determine whether whole plant yield compensatory responses occur to offset stem-mining reductions. Flag leaf photosynthetic reduction was not detected 16-20 d after infestation, but were detected at 40-42 d and doubled from water or phosphorus stresses. Main stem grain weight decreased from 10 to 25% from stem mining, largely due to reductions in grain size, with greater reductions under low phosphorus and/or water levels. Phosphorus-deficient plants without water stress were most susceptible to C. cinctus, more than doubling the grain weight reduction due to larval feeding relative to other water and phosphorus treatments. Two solid stemmed varieties with stem mining had less grain weight loss than a hollow stemmed variety, so greater internal mechanical resistance may reduce larval stem mining and plant yield reductions. Our results emphasize the importance of sufficient water and macronutrients for plants grown in regions impacted by C. cinctus. Also, solid stemmed varieties not only reduce wheat lodging from C. cinctus, they may reduce harvested grain losses from infested stems.

  11. RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1 in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation

    Directory of Open Access Journals (Sweden)

    Sipla Aggarwal

    2018-03-01

    Full Text Available Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1 is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5. Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28–56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe and zinc (Zn content, thereby enhancing their molar ratios (Zn:PA and Fe:PA. Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.

  12. Irrigation offsets wheat yield reductions from warming temperatures

    Science.gov (United States)

    Tack, Jesse; Barkley, Andrew; Hendricks, Nathan

    2017-11-01

    Temperature increases due to climate change are expected to cause substantial reductions in global wheat yields. However, uncertainty remains regarding the potential role for irrigation as an adaptation strategy to offset heat impacts. Here we utilize over 7000 observations spanning eleven Kansas field-trial locations, 180 varieties, and 29 years to show that irrigation significantly reduces the negative impact of warming temperatures on winter wheat yields. Dryland wheat yields are estimated to decrease about eight percent for every one-degree Celsius increase in temperature, yet irrigation completely offsets this negative impact in our sample. As in previous studies, we find that important interactions exist between heat stress and precipitation for dryland production. Here, uniquely, we observe both dryland and irrigated trials side-by-side at the same locations and find that precipitation does not provide the same reduction in heat stress as irrigation. This is likely to be because the timing, intensity, and volume of water applications influence wheat yields, so the ability to irrigate—rather than relying on rainfall alone—has a stronger influence on heat stress. We find evidence of extensive differences of water-deficit stress impacts across varieties. This provides some evidence of the potential for adapting to hotter and drier climate conditions using optimal variety selection. Overall, our results highlight the critical role of water management for future global food security. Water scarcity not only reduces crop yields through water-deficit stress, but also amplifies the negative effects of warming temperatures.

  13. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.

    Science.gov (United States)

    Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong

    2016-05-01

    Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Bran characteristics and bread-baking quality of whole grain wheat flour

    Science.gov (United States)

    Varietal variations in physical and compositional characteristics of bran and their associations with bread-baking quality of whole grain wheat flour (WWF) were investigated using bran obtained from roller milling of 18 wheat varieties. Bran was characterized for composition including protein, fat, ...

  15. Chemical compositions as quality parameters of ZP soybean and wheat genotypes

    Directory of Open Access Journals (Sweden)

    Žilić Slađana

    2009-01-01

    Full Text Available This research is focused on the analysis of chemical characteristics of ZP soybean and wheat genotypes, as well as, on nutritional differences between this two complementary plant species. The experimental material consisted of two bread (ZP 96/I and ZP 87/Ip, two durum (ZP 34/I ZP and ZP DSP/01-66M wheat genotypes and four soybean varieties (Nena, Lidija, Lana and Bosa of different genetic background. All ZP soybean genotypes, except the Lana, had over 40% of total proteins by dry matter. Lana and Lidija, variety of recent creation, developed as a result of selection for specific traits, had high oil content. Wheat genotypes had much a lower content of ash, oil, total and water soluble proteins than soybean cultivars. The highest oil, total and water soluble proteins content was detected in grain of durum genotype ZP DSP/01-66M. Lignin content varies much more among soybean than among the wheat genotypes. Generally, contents of total phenolics, carotenes and tocopherol were more abundant in ZP soybean than bread and durum wheat genotypes.

  16. Salinity stress effects on [14C-1]- and [14C-6]-glucose metabolism of a salt-tolerant and salt-susceptible variety of wheat

    International Nuclear Information System (INIS)

    Krishnaraj, S.; Thorpe, T.A.

    1996-01-01

    The effect of salt (sodium sulfate) on carbohydrate metabolism was studied in a salt-tolerant (Kharchia-65) variety and a salt-susceptible (Fielder) variety of wheat (Triticum aestivum L.) by comparing their responses under control and stress conditions. Leaf segments of Kharchia-65 showed increased activity through both the pentose phosphate pathway (PPP) and the glycolytic pathway of glucose oxidation, with the former being comparatively more active in response to salt. In Fielder, there was an increase in PPP activity at the expense of glycolytic pathway activity. Label from glucose was found in the lipid, neutral sugar, amino acid, organic acid, and phosphate ester fractions in all treatments. On the basis of the label distribution patterns, it appears that Fielder leaves incubated with [ 14 C-6]-glucose were not able to utilize glucose efficiently under saline conditions. This finding was further supported by decreased label incorporation into all the fractions, especially the amino acid and organic acid fractions. Adenosine phosphate and reduced pyridine nucleotide concentrations were consistent with these observations. We conclude therefore that the salt-tolerant variety had an enhanced metabolic activity compared with the salt-susceptible variety, which contributed to its ability to overcome the adverse effects of salt. (author)

  17. Induced mutations for resistance to leaf rust in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.

    1983-01-01

    Problems related to the induction of mutations for disease resistance were investigated under several aspects, using the wheat/leaf rust system. Previously selected mutant lines, tested in M 11 and M 13 , were found to differ with regard to infection type and disease severity from the original varieties. To verify the induced-mutation origin, these mutants were examined further using test crosses with carriers of known genes for leaf rust resistance and electrophoresis. A separate experiment to induce mutations for leaf rust resistance in the wheat varieties Sava, Aurora and Siete Cerros, using gamma rays, fast neutrons and EMS, yielded mutants with different disease reaction in the varieties Sava and Aurora at a frequency of about 1x10 - 3 per M 1 plant progenies. (author)

  18. New advances of wheat mutation breeding in Heilongjiang Province

    International Nuclear Information System (INIS)

    Sun Guangzu

    1991-09-01

    Five wheat varieties have been released between 1980 and 1990, these varieties possess early maturity, high yield, good quality, disease resistance and wide adaptability. They have been cultivated on 373 330 ha. Some of them are proved to be very valuable germ plasma for cross breeding. Technique of induced wheat mutation have been studied. Since selecting adaptable irradiation conditions, using combination of radiation with hybridization, irradiating male gamete, female gamete and zygote, soaking treatment with KH+2 32 PO 4 , etc., the efficiency of induced mutation have been increased. By combining radiation with distant hybridization, F 0 unfruitfulness and F 1 sterility have been overcome, and 21 wheat-rye translocation lines have been selected. One of them, 6BS/6RL translocation line, which is called Longfumai No. 4, was released in 1987. The procedure of inducting and identifying translocation lines has been raised already. Mature embryos, anthers and young embryos of wheat were irradiated and inoculated as explants. The rude toxin of Bipoloris sorokiniana, as a screening factor, was added to different medi and finally 3 lines with resistance to Bipoloris sorokiniana were selected. It was established that technical system for in-vitro radiation induced mutation and screening wheat mutants of resistance to disease. The biochemical identify methods for mutants have been studied already

  19. Overexpression of wheat lipid transfer protein gene TaLTP5 increases resistances to Cochliobolus sativus and Fusarium graminearum in transgenic wheat.

    Science.gov (United States)

    Zhu, Xiuliang; Li, Zhao; Xu, Huijun; Zhou, Miaoping; Du, Lipu; Zhang, Zengyan

    2012-08-01

    The fungus Cochliobolus sativus is the main pathogen of common root rot, a serious soil-borne disease of wheat (Triticum aestivum L.). The fungus Fusarium graminearum is the primary pathogen of Fusarium head blight, a devastating disease of wheat worldwide. In this study, the wheat lipid transfer protein gene, TaLTP5, was cloned and evaluated for its ability to suppress disease development in transgenic wheat. TaLTP5 expression was induced after C. sativus infection. The TaLTP5 expression vector, pA25-TaLTP5, was constructed and bombarded into Chinese wheat variety Yangmai 18. Six TaLTP5 transgenic wheat lines were established and characterized. PCR and Southern blot analyses indicated that the introduced TaLTP5 gene was integrated into the genomes of six transgenic wheat lines by distinct patterns, and heritable. RT-PCR and real-time quantitative RT-PCR revealed that the TaLTP5 gene was over-expressed in the transgenic wheat lines compared to segregants lacking the transgene and wild-type wheat plants. Following challenge with C. sativus or F. graminearum, all six transgenic lines overexpressing TaLTP5 exhibited significantly enhanced resistance to both common root rot and Fusarium head blight compared to the untransformed wheat Yangmai 18.

  20. VARIABILITY OF AMYLOSE AND AMYLOPECTIN IN WINTER WHEAT AND SELECTION FOR SPECIAL PURPOSES

    Directory of Open Access Journals (Sweden)

    Nikolina Weg Krstičević

    2015-06-01

    Full Text Available The aim of this study was to investigate the variability of amylose and amylopectin in 24 Croatian and six foreign winter wheat varieties and to detect the potential of these varieties for special purposes. Starch composition analysis was based on the separation of amylose and amylopectin and the determination of their amounts and ratios. Analysis of the amount of amylose and amylopectin determined statistically highly significant differences between the varieties. The tested varieties are mostly bread wheat of different quality which have the usual content of amylose and amylopectin. Some varieties were identified among them with high amylopectin and low amylose content and one variety with high amylose content. They have the potential in future breeding programs and selection for special purposes.

  1. The Development of “Eldo Ngano 1”: The World’s World’s First Ug99 Resistant Mutant Wheat Variety

    International Nuclear Information System (INIS)

    Forster, Brian P.

    2014-01-01

    The wheat black stem rust disease is a virulent race of fungus, Puccinia graminis, which affects wheat plants and is caused by a strain of fungus known as Ug99. Named for its place and year of origin, Ug99 was first discovered on wheat in Uganda in 1999. The spores of this plant disease are airborne and can be easily spread by wind. If not prevented, the disease can destroy 70 to 100 per cent of the yield of wheat crops. Annually on average 8.3 million tonnes of wheat grain is lost to this disease, costing US $1.23 billion per year. Ethiopia, Kenya and Uganda are hot spots for this disease. In 2009, growing international concern regarding the horrific impact of Ug99 on wheat led to the establishment of IAEA project INT/5/150, Responding to the Transboundary Threat of Wheat Black Stem Rust (Ug99). This project has involved over 18 countries and 5 national and international institutions, and examined possible mutation induction treatments to deal with the challenges posed by Ug99. Meetings and workshops to facilitate the project efforts have been held in Kenya and Turkey. Ug99 continues to spread globally and has now reached the Islamic Republic of Iran. There are also reports of suspected disease occurrences in Europe. It is essential that work continues on developing mutant lines for further crop protection that can be utilized worldwide to safeguard the wheat crop from this devastating disease

  2. Starch molecular fractionation of bread wheat varieties Fraccionamiento molecular del almidón de variedades trigo pan

    Directory of Open Access Journals (Sweden)

    V. Corcuera

    2007-06-01

    Full Text Available The starch composition of bread making wheat seeds (Triticum aestivum subsp. vulgare of the Argentine commercial varieties Buck Charrua, Buck Ombú, Buck Guaraní, Buck Catriel and Buck Poncho was analyzed by two different methods. One of these depends on the differential solubility of amylose and amylopectin in a water:butanol mixture whilst the other process is based on the use of the lectin Concanavalin A. These methods were complemented by spectrophotometric determinations to enable the identification of the á-D- glucanes and also improved the comparative quantitation of the amylose and amylopectin fractions. As a result of this, no significant variations for starch content (ANOVA, F4- 8= 0.7; p ≥ 0.05 were found among these varieties, although strong differences were found for amylose (ANOVA, F4- 8= 44.4; p ≥ 0.01 and amylopectin content (ANOVA, F4- 8= 77.1; p ≥ 0.01. These results and the fact that no differences were found for amylose (ANOVA, F2- 8= 0.3 and amylopectin among years within the same variety (ANOVA, F2- 8:0.8 at p ≥0.01 led to the conclusion that the diverse properties and end-uses of the starch mainly depend on the genotype, and that starch quality is null or scarcely influenced by the environment. This knowledge must be taken into account for wheat breeding purposes.Se analizó la composición del almidón de granos de trigo pan (Triticum aestivum subsp. v u l g a r e de las variedades comerciales argentinas Buck Charrúa, Buck Ombú, Buck Guaraní, Buck Catriel y Buck Poncho mediante dos métodos diferentes. Uno de ellos depende de la solubilidad diferencial de la amilosa y amilopectina en una mezcla de agua:butanol, mientras que el otro proceso está basado en el uso de la lectina Concanavalina A. Estos métodos fueron complementados mediante determinaciones espectrofotométricas que facilitaron la identificación de los á-D-glucanos y también permitieron mejorar la cuantificación comparativa de las fracciones

  3. Effects of embryo induction media and pretreatments in isolated ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-11-16

    Nov 16, 2009 ... chemical + heat and also the effects of 5 embryo induction media (NPB-99, C17, ... Key words: Hexaploid wheat, haploid, isolated microspore culture, pretreatment, ..... this method is influenced by several mentioned factors.

  4. TEXTURE OF COOKED SPELT WHEAT NOODLES

    Directory of Open Access Journals (Sweden)

    Magdaléna Lacko - Bartošová

    2013-02-01

    Full Text Available At present, there are limited and incomplete data on the ability of spelt to produce alimentary pasta of suitable quality. Noodles are traditional cereal-based food that is becoming increasingly popular worldwide because of its convenience, nutritional qualities, and palatability. It is generally accepted that texture is the main criterion for assessing overall quality of cooked noodles. We present selected indicators of noodle texture of three spelt cultivars – Oberkulmer Rotkorn, Rubiota and Franckenkorn grown in an ecological system at the locality of Dolna Malanta near Nitra. A texture analyzer TA.XT PLUS was used to determine cooked spelt wheat noodle firmness (N (AACC 66-50. The texture of cooked spelt wheat noodles was expressed also as elasticity (N and extensibility (mm. Statistical analysis showed significant influence of the variety and year of growing on the firmness, elasticity and extensibility of cooked noodles. The wholemeal spelt wheat noodles were characterized with lower cutting firmness than the flour noodles. Flour noodles were more tensile than wholemeal noodles. The best elasticity and extensibility of flour noodles was found in noodles prepared from Rubiota however from wholemeal noodles it was Oberkulmer Rotkorn. Spelt wheat is suitable for noodle production, however also here it is necessary to differentiate between varieties. According to achieved results, wholemeal noodles prepared from Oberkulmer Rotkorn can be recommended for noodle industry due to their consistent structure and better texture quality after cooking.

  5. Yield and grain quality of winter wheat under Southern Steppe of Ukraine growing conditions

    Directory of Open Access Journals (Sweden)

    М. М. Корхова

    2014-12-01

    Full Text Available The results of three years study of the effect of sowing time and seed application rates on yield and grain quality of different varieties of winter wheat under the conditions of South Steppe of Ukraine were presented. It was found that winter wheat provides optimal combination of high yield and grain quality in case of sowing in October 10 with seed application rate of 5,0 million seeds/ha. The highest yield – 4,59 t/ha on average in 2011–2013 was obtained for the variety of Natalka when sowing in October 10 with seed application rate  of 5 million germinable seeds. With increasing seed application rate from 3 to 5 million seeds/ha, protein content in winter wheat was decreased by 0,3%, gluten – by 0,6%. The variety Natalka  formed the highest quality grains when sowing in October 20 with seed application rate of 3 million seeds/ha, in this case protein content was 15,8%, gluten – 32,9%. It is proved that early sowing time  – September 10 leads to yields reduction and grain   quality deterioration for all winter wheat varieties.

  6. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  7. WHEAT CHARACTERISTIC DEMAND AND IMPLICATIONS FOR DEVELOPMENT OF GENETICALLY MODIFIED GRAINS

    OpenAIRE

    Janzen, Edward L.; Mattson, Jeremy W.; Wilson, William W.

    2001-01-01

    Agricultural biotechnology is advancing rapidly and is embracing all major crops. The adoption of genetically modified corn, soybeans, and cotton have reached high levels in the United States. Wheat is the next major crop confronting the biotechnology issue, but no commercial varieties of genetically modified (GM) wheat have been released yet. Primary opportunities for GM developments in wheat center around improvements that meet consumer and end-user needs/issues in addition to meeting produ...

  8. EFFECTS OF DIFFERENT GROWING CONDITIONS ON THE MORPHOLOGICAL FEATURES OF THE SPIKE OF HEXAPLOID TRITICALE

    Directory of Open Access Journals (Sweden)

    K. U. Kurkiev

    2016-01-01

    Full Text Available Aim. The aim is to study the effect of different environmental conditions on the morphological traits of the spike of hexaploid triticale varieties.Methods. We analyzed 507 samples of triticale of various eco-geographical origins, in different years of study and at different seeding times. To investigate the influence of environmental conditions on the phenotypic expression of the studied traits we held a comparative analysis of the spike of two years and, in addition, of spring triticale during winter and spring crops. Analysis on the features was carried out on the main spikes. We studied the following morphological characteristics of the spike: length, number of spikelets and density.Results and discussion. The study of differences in individual variety samples showed that more than 60% triticale samples had significant differences in the length of the spike, depending on the weather conditions of the year – with the winter crops number of spikelets per spike was significantly higher than with the spring crops. A comparative analysis of the impact of the weather conditions of the year on triticale showed that significant differences in the density of the spike were observed in less than 30%.Conclusion. Study of the influence of conditions of the year and sowing dates on the main features of the spike of triticale showed that the density of the spike is the least affected by the external environment. The length of the spikes and the number of spikelets per spike differed significantly when growing in a various conditions.

  9. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum).

    Science.gov (United States)

    Evens, Nicholas P; Buchner, Peter; Williams, Lorraine E; Hawkesford, Malcolm J

    2017-10-01

    Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn 2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  10. Genetic improvement of drought tolerance in semi-dwarf wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Laghari, K.A.

    2012-01-01

    Water stress is one of the main environmental constraints for the wheat crop. Drought stress from anthesis to maturity, especially if accompanied by heat stress, affects every morphological and physiological aspect of wheat plant and significantly reduces final yield. Genetic improvement for drought tolerance in wheat could be possible through conventional and mutation breeding tools. There is a dire need to identify stress tolerant genotypes which can grow and flourish well under harsh environments (low water requirements). Twelve newly evolved bread wheat genotypes alongwith 3 drought-tolerant commercial check varieties, viz., Sarsabz, Khirman and Chakwal-86 were screened under three water stresses (zero, single and two irrigations). Different yield associated traits were studied. At severe water stress (zero irrigation), six genotypes (BWM-3, NIA-8/7, NIA-9/5, NIA-28/4, NIA-25/5, MSH-36) produced significantly higher grain yield (ranged from 1522 to 2022 kg/ha) than check varieties. These genotypes had higher seed index and less spike sterility at severe stress, which indicated that these genotypes were less responsive to water stress and possessed more tolerance to drought stress. (author)

  11. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  12. Bran characteristics influencing quality attributes of whole wheat Chinese steamed bread

    Science.gov (United States)

    This study investigated the variations in the characteristics of brans obtained from a pilot-scale milling of 17 soft red winter wheat varieties and their influences on the quality of whole wheat northern-style Chinese steamed bread (CSB) prepared from blends of a base flour and brans of different w...

  13. Inheritance of Plant Height in two Ethiopian Castor Varieties

    African Journals Online (AJOL)

    The green revolution in Asia was led by the semi dwarf varieties of wheat and rice ... Castor (Racinnus communis L.) is an industrial non edible oil seed that originated in East ... At the fourth generation single plants from each inbred line were.

  14. Association analysis of genomic loci important for grain weight control in elite common wheat varieties cultivated with variable water and fertiliser supply.

    Directory of Open Access Journals (Sweden)

    Kunpu Zhang

    Full Text Available Grain weight, an essential yield component, is under strong genetic control and markedly influenced by the environment. Here, by genome-wide association analysis with a panel of 94 elite common wheat varieties, 37 loci were found significantly associated with thousand-grain weight (TGW in one or more environments differing in water and fertiliser levels. Five loci were stably associated with TGW under all 12 environments examined. Their elite alleles had positive effects on TGW. Four, two, three, and two loci were consistently associated with TGW in the irrigated and fertilised (IF, rainfed (RF, reduced nitrogen (RN, and reduced phosphorus (RP environments. The elite alleles of the IF-specific loci enhanced TGW under well-resourced conditions, whereas those of the RF-, RN-, or RP-specific loci conferred tolerance to the TGW decrease when irrigation, nitrogen, or phosphorus were reduced. Moreover, the elite alleles of the environment-independent and -specific loci often acted additively to enhance TGW. Four additional loci were found associated with TGW in specific locations, one of which was shown to contribute to the TGW difference between two experimental sites. Further analysis of 14 associated loci revealed that nine affected both grain length and width, whereas the remaining loci influenced either grain length or width, indicating that these loci control grain weight by regulating kernel size. Finally, the elite allele of Xpsp3152 frequently co-segregated with the larger grain haplotype of TaGW2-6A, suggesting probable genetic and functional linkages between Xpsp3152 and GW2 that are important for grain weight control in cereal plants. Our study provides new knowledge on TGW control in elite common wheat lines, which may aid the improvement of wheat grain weight trait in further research.

  15. Isolation and Molecular Characterization of High Molecular Weight Glutenin Subunit Genes 1Bx13 and 1By16 from Hexaploid Wheat

    Institute of Scientific and Technical Information of China (English)

    Bin-Shuang Pang; Xue-Yong Zhang

    2008-01-01

    The high molecular weight glutenin subunit (HMW-GS) pair 1Bx13+1Byt6 are recognized to positively correlate with bread-making quality; however, their molecular data remain unknown. In order to reveal the mechanism by which 1By16 and 1Bx13 creates high quality, their open reading frames (ORFs) were amplified from common wheat Atlas66 and Jimai 20 using primers that were designed based on published sequences of HMW glutenin genes. The ORF of 1By16 was 2220bp, deduced into 738 amino acid residues with seven cysteines including 59 hexapeptides and 22 nanopeptides motifs. The ORF of 1Bx13 was 2385bp, deduced into 795 amino acid residues with four cysteines including 68 hexapeptides, 25 nanopeptides and six tripeptides motifs. We found that 1By16 was the largest y-type HMW glutenin gene described to date in common wheat. The 1By16 had 36 amino acid residues inserted in the central repetitive domain compared with 1By15. Expression in bacteria and western-blot tests confirmed that the sequence cloned was the ORF of HMW-GS 1By16, and that 1Bx13 was one of the largest 1Bx genes that have been described so far in common wheat, exhibiting a hexapeptide (PGQGQQ) insertion in the end of central repetitive domain compared with 1Bx7. A phylogenetic tree based on the deduced full-length amino acid sequence alignment of the published HMW-GS genes showed that the 1By16 was clustered with Glu-IB-2, and that the 1Bx13 was clustered with Glu-1B-1 alleles.

  16. Karyotype characterization and comparison of three hexaploid species of Bromus Linnaeus, 1753 (Poaceae

    Directory of Open Access Journals (Sweden)

    Leonardo Luís Artico

    2017-04-01

    Full Text Available Chromosome morphometry and nuclear DNA content are useful data for cytotaxonomy and to understand the evolutionary history of different taxa. For the genus Bromus Linnaeus, 1753, distinct ploidy levels have been reported, occurring from diploid to duodecaploid species. The geographic distribution of Bromus species has been correlated with chromosome number and ploidy level. In this study, the aims were to determine the nuclear genome size and characterize the karyotype of the South American Bromus species: Bromus auleticus Trinius ex Nees, 1829, Bromus brachyanthera Döll, 1878 and Bromus catharticus Vahl, 1791. The mean nuclear 2C value ranged from 2C = 12.64 pg for B. catharticus to 2C = 17.92 pg for B. auleticus, meaning a maximum variation of 2C = 5.28 pg, equivalent to 41.70%. Despite this significant difference in 2C value, the three species exhibit the same chromosome number, 2n = 6x = 42, which confirms their hexaploid origin. Corroborating the genome size, the chromosome morphometry (total, short- and long-arm length and, consequently, the class differed among the karyotypes of the species. Based on the first karyograms for these Bromus species, some morphologically similar and several distinct chromosome pairs were found. Therefore, the karyotype characterization confirmed the hexaploid origin of the studied Bromus species, which differ in relation to the karyogram and the nuclear 2C value. Considering this, cytogenetics and flow cytometry can be used to discriminate Bromus species, contributing to taxonomy and systematic studies and providing information on the evolutionary history of this taxa.

  17. Karyotype characterization and comparison of three hexaploid species of Bromus Linnaeus, 1753 (Poaceae).

    Science.gov (United States)

    Artico, Leonardo Luís; Mazzocato, Ana Cristina; Ferreira, Juliano Lino; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2017-01-01

    Chromosome morphometry and nuclear DNA content are useful data for cytotaxonomy and to understand the evolutionary history of different taxa. For the genus Bromus Linnaeus, 1753, distinct ploidy levels have been reported, occurring from diploid to duodecaploid species. The geographic distribution of Bromus species has been correlated with chromosome number and ploidy level. In this study, the aims were to determine the nuclear genome size and characterize the karyotype of the South American Bromus species: Bromus auleticus Trinius ex Nees, 1829, Bromus brachyanthera Döll, 1878 and Bromus catharticus Vahl, 1791. The mean nuclear 2C value ranged from 2C = 12.64 pg for B. catharticus to 2C = 17.92 pg for B. auleticus , meaning a maximum variation of 2C = 5.28 pg, equivalent to 41.70%. Despite this significant difference in 2C value, the three species exhibit the same chromosome number, 2n = 6x = 42, which confirms their hexaploid origin. Corroborating the genome size, the chromosome morphometry (total, short- and long-arm length) and, consequently, the class differed among the karyotypes of the species. Based on the first karyograms for these Bromus species, some morphologically similar and several distinct chromosome pairs were found. Therefore, the karyotype characterization confirmed the hexaploid origin of the studied Bromus species, which differ in relation to the karyogram and the nuclear 2C value. Considering this, cytogenetics and flow cytometry can be used to discriminate Bromus species, contributing to taxonomy and systematic studies and providing information on the evolutionary history of this taxa.

  18. Whole genome association mapping of plant height in winter wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Christine D Zanke

    Full Text Available The genetic architecture of plant height was investigated in a set of 358 recent European winter wheat varieties plus 14 spring wheat varieties based on field data in eight environments. Genotyping of diagnostic markers revealed the Rht-D1b mutant allele in 58% of the investigated varieties, while the Rht-B1b mutant was only present in 7% of the varieties. Rht-D1 was significantly associated with plant height by using a mixed linear model and employing a kinship matrix to correct for population stratification. Further genotyping data included 732 microsatellite markers, resulting in 770 loci, of which 635 markers were placed on the ITMI map plus a set of 7769 mapped SNP markers genotyped with the 90 k iSELECT chip. When Bonferroni correction was applied, a total of 153 significant marker-trait associations (MTAs were observed for plant height and the SSR markers (-log10 (P-value ≥ 4.82 and 280 (-log10 (P-value ≥ 5.89 for the SNPs. Linear regression between the most effective markers and the BLUEs for plant height indicated additive effects for the MTAs of different chromosomal regions. Analysis of syntenic regions in the rice genome revealed closely linked rice genes related to gibberellin acid (GA metabolism and perception, i.e. GA20 and GA2 oxidases orthologous to wheat chromosomes 1A, 2A, 3A, 3B, 5B, 5D and 7B, ent-kaurenoic acid oxidase orthologous to wheat chromosome 7A, ent-kaurene synthase on wheat chromosome 2B, as well as GA-receptors like DELLA genes orthologous to wheat chromosomes 4B, 4D and 7A and genes of the GID family orthologous to chromosomes 2B and 5B. The data indicated that besides the widely used GA-insensitive dwarfing genes Rht-B1 and Rht-D1 there is a wide spectrum of loci available that could be used for modulating plant height in variety development.

  19. Biolistic- and Agrobacterium-mediated transformation protocols for wheat.

    Science.gov (United States)

    Tamás-Nyitrai, Cecília; Jones, Huw D; Tamás, László

    2012-01-01

    After rice, wheat is considered to be the most important world food crop, and the demand for high-quality wheat flour is increasing. Although there are no GM varieties currently grown, wheat is an important target for biotechnology, and we anticipate that GM wheat will be commercially available in 10-15 years. In this chapter, we summarize the main features and challenges of wheat transformation and then describe detailed protocols for the production of transgenic wheat plants both by biolistic and Agrobacterium-mediated DNA-delivery. Although these methods are used mainly for bread wheat (Triticum aestivum L.), they can also be successfully applied, with slight modifications, to tetraploid durum wheat (T. turgidum L. var. durum). The appropriate size and developmental stage of explants (immature embryo-derived scutella), the conditions to produce embryogenic callus tissues, and the methods to regenerate transgenic plants under increasing selection pressure are provided in the protocol. To illustrate the application of herbicide selection system, we have chosen to describe the use of the plasmid pAHC25 for biolistic transformation, while for Agrobacterium-mediated transformation the binary vector pAL156 (incorporating both the bar gene and the uidA gene) has been chosen. Beside the step-by-step methodology for obtaining stably transformed and normal fertile plants, procedures for screening and testing transgenic wheat plants are also discussed.

  20. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  1. New Seeds are Resistant to Wheat Stem Rust (Ug99) Multinational Programme Supported by FAO and IAEA

    International Nuclear Information System (INIS)

    2013-01-01

    Full text: A multinational effort supported by the International Atomic Energy Agency and the U.N. Food and Agriculture Organization marked a key milestone this week when a Kenyan university debuted two new varieties of disease-resistant wheat to the nation's farmers. Over the past two days, thousands of Kenyan farmers have visited Eldoret University in western Kenya for a two-day agriculture fair highlighting the latest farming technologies. Supporting the development of the new varieties were the IAEA's Technical Cooperation Department and the Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture. They manage an interregional Technical Cooperation project to develop varieties of wheat that are resistant to a devastating type of fungus, causing a disease known as wheat stem rust. Wheat stem rust under control for over 30 years, but a resurgence of the disease was discovered in 1999 in Uganda that swiftly spread to neighbouring Kenya. The wheat stem rust, caused by the strain of the fungus known as Ug99, named after its place and year of origin, has since spread to Iran, Yemen and South Africa and threatens crops as far away as India as spores are carried by wind. Parasitic rusts threaten global wheat production, reducing plant growth and crop yields. The disease can destroy up to 70-100 percent of the yield of wheat crop if not prevented. 'Improving food security in developing countries through the use of nuclear techniques is an important priority of the IAEA', said IAEA Director General Yukiya Amano. 'I am pleased that we have been able to make an important contribution to fighting wheat rust'. 'Wheat rusts, particularly the Ug99 strain, are a major threat to food security because rust epidemics can result in devastating yield losses. This international project involving affected countries, plant scientists and breeders and international organizations is a major breakthrough. It clearly shows the benefits of FAO/IAEA collaboration and that

  2. Induced mutations for disease resistance in wheat and field beans

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.; Kamel, A.H.

    1976-01-01

    Wheat disease in Egypt is reviewed and results of mutation breeding by γ irradiation for disease resistance in wheat and field beans are described. Wheat mutants of the variety Giza 155 resistant to leaf rust, Giza 156 resistant to both leaf and yellow rusts, and Tosson with a reasonable level of combined resistance to the three rusts in addition to mutants of the tetraploid variety Dakar 52 with a good level of stem and yellow rust resistance are required. Their seeds were subjected to 10, 15 and 20 krad. Of 3000-3700 M 2 plants from each variety and dosage, 22 plants from both Giza 155 and Giza 156, although susceptible, showed a lower level of disease development. In 1975, M 3 families of these selected plants and 6000 plants from bulked material were grown from each variety and dosage at two locations. Simultaneously, an additional population consisting of 3000 mutagen-treated seeds was grown to have a reasonable chance of detecting mutants; 2 heads from each plant were harvested. These will be grown next season (1976) to make a population of 25,000-30,000 M 2 plants and screened to composite cultures of specific rusts. Vicia faba seeds of field bean varieties Giza 1, Giza 2 and Rebaya 40, equally susceptible to rust and chocolate spot, were subjected to 3, 5 and 7 krad of 60 Co gamma radiation and 800 M 1 plants were grown in 1972 per variety and dose. Up to this later growing season (M 3 ) no resistance was detected in M 3 plank

  3. IDENTIFICATION OF TECHNOLOGICALLY IMPORTANT GENES AND THEIR PRODUCTS IN THE COLLECTION OF BREAD WHEAT GENOTYPES

    Directory of Open Access Journals (Sweden)

    Milan Chňapek

    2015-02-01

    Full Text Available Wheat is the second most cultivated crop on the world and is very important plant for feed not only mankind but also animals. Because of this is necessary to develop new varieties with better properties. Bread making quality of wheat grain is one of the most important paramaters for quality evaluation. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE of wheat storage proteins and allelic specific polymerase chain reaction (AS-PCR are analysis suitable for identification, differentiation and characterization of bread wheat (Triticum aestivum L.. There were analysed 16 genotypes of new varieties of bread wheat in our work by SDS-PAGE and obtained results were verified by AS-PCR. Analysed genotypes of bread wheat genotypes were homogenous and single line with very good bread making quality. Our results confirmed hypothesis, that cultivated bread wheat genotypes are uniformed with high production and quality but there is a risk of sensitivity to environmental conditions. SDS-PAGE analyses of wheat grain proteins are fast and not very expensive technique, which provide us information of bread making quality of grains. However, there is possibility of environmental influence on protein synthesis and because of this is necessary to couple these analysis with analysis of DNA.

  4. Colonisation of winter wheat grain by Fusarium spp. and mycotoxin content as dependent on a wheat variety, crop rotation, a crop management system and weather conditions.

    Science.gov (United States)

    Czaban, Janusz; Wróblewska, Barbara; Sułek, Alicja; Mikos, Marzena; Boguszewska, Edyta; Podolska, Grażyna; Nieróbca, Anna

    2015-01-01

    Field experiments were conducted during three consecutive growing seasons (2007/08, 2008/09 and 2009/10) with four winter wheat (Triticum aestivum L.) cultivars - 'Bogatka', 'Kris', 'Satyna' and 'Tonacja' - grown on fields with a three-field crop rotation (winter triticale, spring barley, winter wheat) and in a four-field crop rotation experiment (spring wheat, spring cereals, winter rapeseed, winter wheat). After the harvest, kernels were surface disinfected with 2% NaOCl and then analysed for the internal infection by different species of Fusarium. Fusaria were isolated on Czapek-Dox iprodione dichloran agar medium and identified on the basis of macro- and micro-morphology on potato dextrose agar and synthetic nutrient agar media. The total wheat grain infection by Fusarium depended mainly on relative humidity (RH) and a rainfall during the flowering stage. Intensive rainfall and high RH in 2009 and 2010 in the period meant the proportions of infected kernels by the fungi were much higher than those in 2008 (lack of precipitation during anthesis). Weather conditions during the post-anthesis period changed the species composition of Fusarium communities internally colonising winter wheat grain. The cultivars significantly varied in the proportion of infected kernels by Fusarium spp. The growing season and type of crop rotation had a distinct effect on species composition of Fusarium communities colonising the grain inside. A trend of a higher percentage of the colonised kernels by the fungi in the grain from the systems using more fertilisers and pesticides as well as the buried straw could be perceived. The most frequent species in the grain were F. avenaceum, F. tricinctum and F. poae in 2008, and F. avenaceum, F. graminearum, F. tricinctum and F. poae in 2009 and 2010. The contents of deoxynivalenol and zearalenon in the grain were correlated with the percentage of kernels colonised by F. graminearum and were the highest in 2009 in the grain from the four

  5. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane

    2017-01-01

    of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major...

  6. Industrial Potential of Two Varieties of Cocoyam in Bread Making

    Directory of Open Access Journals (Sweden)

    Nnabuk O. Eddy

    2012-01-01

    Full Text Available The evaluation of the chemical (proximate composition, mineral composition, toxicant composition and vitamin composition, nutritional and industrial potentials of two varieties of cocoyam (Xanthosoma sagittifolium (XS and Colocasia esculenta (CE were carried out using recommended methods of analysis. Baking trials were conducted with the two varieties of cocoyam at different levels of substitution (20%, 30% and 50%. The produced bread samples were analyzed for their physical parameters and proximate composition. Sensory evaluation test was also carried out on the produced bread. The result of the analysis showed that the preferred bread in terms of loaf weight, volume and specific volume was given by sample I (control sample containing 100% wheat flour with a specific volume of 3.54 cm3/g. This was closely followed by sample A with specific volume of 3.25 cm3/g containing 20% substitution level of CE. Sample H containing 50% substitution level of XS with specific volume of 2.58 cm3/g gave the poorest performance. The sensory evaluation result further revealed that apart from the 100% wheat flour based sample I, sample D with 20% substitution level of XS was rated good and maintained better performance amongst the cocoyam varieties while samples G and C with 100% and 50% substitution level of CE respectively were rated the poorest. The proximate composition of the bread samples was also carried out. CE, XS and wheat bread samples (100% recorded 15.0633±1.4531, 12.1133±1.5975 and 11.2867±0.7978 respectively for the moisture content. XS bread recorded the highest carbohydrate content of 45.0133±3.0274. In terms of ash, CE bread recorded the highest value of 31.4367±1.6159 while wheat bread recorded the highest value for protein i.e. 20.6033± 0.8113. XS performed better in terms of crude fat and energy value of 12.2967± 0.8914 and 371.5367 respectively. The use of cocoyam - wheat flour mixture in producing composite bread is therefore

  7. From early farmers to Norman Borlaug - the making of modern wheat.

    Science.gov (United States)

    Vergauwen, David; De Smet, Ive

    2017-09-11

    If we wander through the countryside, passing fields of wheat, it is apparent that this crop is reasonably short in stature and that the stems carry large ears. However, this was not always the case. If we take a look at depictions of wheat throughout history, we observe that wheat used to be fairly tall. It was not until the second half of the 20 th century that dwarf wheat varieties started to dominate the agricultural landscape. Underlying this short stature are the Reduced height (Rht) genes, which encode DELLA proteins and which formed the cornerstone of the Green Revolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Review of methodologies and a protocol for the Agrobacterium-mediated transformation of wheat

    Directory of Open Access Journals (Sweden)

    Doherty Angela

    2005-09-01

    Full Text Available Abstract Since the first report of wheat transformation by Agrobacterium tumefaciens in 1997, various factors that influence T-DNA delivery and regeneration in tissue culture have been further investigated and modified. This paper reviews the current methodology literature describing Agrobacterium transformation of wheat and provides a complete protocol that we have developed and used to produce over one hundred transgenic lines in both spring and winter wheat varieties.

  9. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta.

    Directory of Open Access Journals (Sweden)

    Kui Shi

    Full Text Available Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs and proteins (DEPs, respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.

  10. The effect of endogenous hydrogen peroxide induced by cold treatment in the improvement of tissue regeneration efficiency

    NARCIS (Netherlands)

    Szechynska-Hebda, M.; Skrzypek, E.; Dabrowska, G.; Wedzony, M.; Lammeren, van A.A.M.

    2012-01-01

    We propose that oxidative stress resulting from an imbalance between generation and scavenging hydrogen peroxide contributes to tissue regeneration efficiency during somatic embryogenesis of hexaploid winter wheat (Triticum aestivum cv. Kamila) and organogenesis of faba bean (Vicia faba ssp. minor

  11. [PS II photochemical efficiency in flag leaf of wheat varieties and its adaptation to strong sun- light intensity on farmland of Xiangride in Qinghai Province, Northwest China].

    Science.gov (United States)

    Shi, Sheng-Bo; Chen, Wen-Jie; Shi, Rui; Li, Miao; Zhang, Huai-Gang; Sun, Ya-Nan

    2014-09-01

    Taking four wheat varieties developed by Northwest Institute of Plateau Biology, Chinese Academy of Sciences, as test materials, with the measurement of content of photosynthetic pigments, leaf area, fresh and dry mass of flag leaf, the PS II photochemistry efficiency of abaxial and adaxial surface of flag leaf and its adaptation to strong solar radiation during the period of heading stage in Xiangride region were investigated with the pulse-modulated in-vivo chlorophyll fluorescence technique. The results indicated that flag leaf angle mainly grew in horizontal state in Gaoyuan 314, Gaoyuan 363 and Gaoyuan 584, and mainly in vertical state in Gaoyuan 913 because of its smaller leaf area and larger width. Photosynthetic pigments were different among the 4 varieties, and positively correlated with intrinsic PS II photochemistry efficiencies (Fv/Fm). In clear days, especially at noon, the photosynthetic photoinhibition was more serious in abaxial surface of flag leaf due to directly facing the solar radiation, but it could recover after reduction of sunlight intensity in the afternoon, which meant that no inactive damage happened in PS II reaction centers. There were significant differences of PS II actual and maximum photochemical efficiencies at the actinic light intensity (ΦPS II and Fv'/Fm') between abaxial and adaxial surface, and their relative variation trends were on the contrary. The photochemical and non-photochemical quenching coefficients (qP and NPQ) had a similar tendency in both abaxial and adaxial surfaces. Although ΦPS II and qP were lower in adaxial surface of flag leaf, the Fv'/Fm' was significantly higher, which indicated that the potential PS II capture efficiency of excited energy was higher. The results demonstrated that process of photochemical and non-photochemical quenching could effectively dissipate excited energy caused by strong solar radiation, and there were higher adaptation capacities in wheat varieties natively cultivated in

  12. Milling and Baking Test REsults for Eastern Soft Winter Wheats Harvested in 2010

    Science.gov (United States)

    The Soft Wheat Quality Council (SWQC) will provide an organization structure to evaluate the quality of soft wheat experimental lines and variety that may be grown in the traditional growing regions of the United States. The SWQC also will establish other activities as requested by the membership. ...

  13. Male sterility in plants. Induction, isolation and utilization

    International Nuclear Information System (INIS)

    Driscoll, C.J.; Barlow, K.K.

    1976-01-01

    Both induced and spontaneously arising male sterility mutants exist in a number of important plant species. These mutants are somewhat unique in that they effect procedures for breeding improved varieties. They allow for the possibility of easily obtaining large numbers of hybrids, population breeding systems and the production of hybrid varieties. These mutants are normally classified as cytoplasmic mutants or chromosomal mutants, the latter also being referred to as nuclear or genic mutants. Specific examples of these types of sterility are examined in relation to the breeding system of the species and their potential use for varietal development. Male sterility in diploid and polyploid species is compared, with reference to gene duplication in polyploids. The mechanism of male sterility is examined in the various species at the anatomical and biochemical levels. Methods of isolating male sterility mutants are compared and a specific example is outlined for hexaploid wheat. Future use of male sterility mutants for improving varieties of various crops is examined. (author)

  14. Durum and bread wheat differ in their ability to retain potassium in leaf mesophyll: implications for salinity stress tolerance.

    Science.gov (United States)

    Wu, Honghong; Shabala, Lana; Zhou, Meixue; Shabala, Sergey

    2014-10-01

    Understanding the intrinsic mechanisms involved in the differential salinity tolerance between bread wheat and durum wheat is essential for breeding salt-tolerant varieties to cope with the global salinity issue threatening future food supply. In the past, higher salinity tolerance in bread wheat compared with durum wheat has been attributed to its better ability to exclude Na(+) from uptake. Here we show that another mechanism, namely more superior K(+) retention ability in the leaf mesophyll, also contributes to this difference. A strong positive correlation (R(2) > 0.41, P varieties. However, while the above correlation was strong in bread wheat, it was statistically insignificant in durum wheat. Consistent with these findings, a significantly higher relative leaf K(+) content was found in bread wheat than in durum wheat. In contrast to root tissues, the role of voltage-gated K(+) channels in K(+) retention in the wheat mesophyll was relatively small, and non-selective cation channels played a major role in controlling intracellular K(+) homeostasis. Moreover, a significant negative correlation between NaCl-induced mesophyll H(+) flux and mesophyll K(+) retention was found, and interpreted as a compensatory mechanism employed by sensitive varieties to regain K(+) leaked into the apoplast. It is concluded that bread wheat and durum wheat show different strategies of coping with salinity, and that targeting mechanisms conferring K(+) retention in the leaf mesophyll may be a promising way to improve the overall salinity tolerance in these species. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  15. Recurrent selection as breeding strategy for heat tolerance in wheat

    Directory of Open Access Journals (Sweden)

    Juarez Campolina Machado

    2010-01-01

    Full Text Available The development of heat-tolerant varieties is an important goal of wheat breeding programs, requiringefficient selection methods. In the present study the use of recurrent selection was evaluated as a strategy to improve heatstress tolerance in wheat. Two cycles of recurrent selection were performed in experiments conducted in research areas of theUniversidade Federal de Viçosa, located in Coimbra-MG and Viçosa-MG, in 2004 and 2007, in two growing seasons (summerand winter. The genetic gain and the existence of variability show the possibility of successful recurrent selection for heattolerancein wheat.

  16. Durum Wheat (Triticum Durum Desf. Lines Show Different Abilities to Form Masked Mycotoxins under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Martina Cirlini

    2013-12-01

    Full Text Available Deoxynivalenol (DON is the most prevalent trichothecene in Europe and its occurrence is associated with infections of Fusarium graminearum and F. culmorum, causal agents of Fusarium head blight (FHB on wheat. Resistance to FHB is a complex character and high variability occurs in the relationship between DON content and FHB incidence. DON conjugation to glucose (DON-3-glucoside, D3G is the primary plant mechanism for resistance towards DON accumulation. Although this mechanism has been already described in bread wheat and barley, no data are reported so far about durum wheat, a key cereal in the pasta production chain. To address this issue, the ability of durum wheat to detoxify and convert deoxynivalenol into D3G was studied under greenhouse controlled conditions. Four durum wheat varieties (Svevo, Claudio, Kofa and Neodur were assessed for DON-D3G conversion; Sumai 3, a bread wheat variety carrying a major QTL for FHB resistance (QFhs.ndsu-3B, was used as a positive control. Data reported hereby clearly demonstrate the ability of durum wheat to convert deoxynivalenol into its conjugated form, D3G.

  17. Residual, direct and cumulative effect of zinc application on wheat and rice yield under rice-wheat syst

    Directory of Open Access Journals (Sweden)

    R. Khan

    2009-05-01

    Full Text Available Zinc (Zn deficiency is prevalent particularly on calcareous soils of arid and semiarid region. A field experiment was conducted to investigate the direct, residual and cumulative effect of zinc on the yield of wheat and rice in permanent layout for two consecutive years, 2004-05 and 2005-06 at Arid Zone Research Institute D.I. Khan. Soil under study was deficient in Zn (0.8 mg kg-1. Effect of Zn on yield, Zn concentrations in leaf and soils were assessed using wheat variety Naseer-2000 and rice variety IRRI-6. Three rates of Zn, ranging from 0 to 10 kg ha-1 in soil, were applied as zinc sulphate (ZnSO4. 7H2O along with basal dose fertilization of nitrogen, phosphorus and potassium. Mature leaf and soil samples were collected at panicle initiation stage. The results showed that grain yield of wheat and rice was significantly increased by the direct application of 5 and 10 kg Zn ha-1. Highest grain yield of wheat (5467 kg ha-1 was recorded with the direct application of 10 kg Zn ha-1 while 4994 kg ha-1 was recorded with the cumulative application of 10 kg Zn ha-1 but the yield increase due to residual effect of Zn was statistically lower than the cumulative effect of Zn. Maximum paddy yield was recorded with the cumulative application ofZn followed by residual and direct applied 10 and 5 kg Zn kg ha-1, respectively. Zn concentration in soils ranged from 0.3 to 1.5 mg kg-1 in wheat and 0.24 to 2.40 mg kg-1 in rice, while in leaves it ranged from 18-48 mg kg-1 in wheat and 15-52 mg kg-1 in rice. The concentration of Zn in soil and leaves increased due to the treatments in the order; cumulative > residual > direct effect > control (without Zn. The yield attributes like 1000- grain weight, number of spikes, spike length and plant height were increased by the residual, direct and cumulative effect of Zn levels; however, the magnitude of increase was higher in cumulative effect than residual and direct effect of Zn, respectively. Under Zn-deficient soil

  18. Biofortification: High zinc wheat programme – The potential agricultural options for alleviating malnutrition in Pakistan

    Directory of Open Access Journals (Sweden)

    Qadir Bux Baloch

    2015-07-01

    Full Text Available The deficiency of micronutrients (zinc, iron, iodine and vitamin A is persistently afflicting millions of people living across Africa, Southern Americas, Asia and Pakistan. Among these, the zinc deficiency syndrome is occurring by 47.6, 41.3, and 39.2% in pregnant, non-pregnant and children under 5 years, respectively in Pakistan. The reason being that majority of the people subsists on cereal-based diets, i.e., wheat. The commercially grown wheat varieties contain zinc about 25 mg/g, whereas about 40 mg/g zinc is required in daily diet.The potential risk of zinc deficiency could be mitigated through certain interventions i.e., mineral drugs, food supplements, diversity in diets, production of fortified foods, and genetic biofortification of staple food crops. Among these, quantum increase in zinc content in wheat grains through genetic manipulation would be basics to alleviate zinc deficiency in the malnourished communities. The objective of the programme is to enhance the concentration of zinc nutrient from 25 to 40 mg/g in wheat grains through conventional plant breeding techniques.Pakistan Agricultural Research Council, Islamabad in collaboration with Consultative Group on International Agricultural Research (CGIAR and International Maize & Wheat Improvement Center (CIMMYT and HarvestPlus, Pakistan started R&D works to develop biofortified high zinc wheat varieties containing around 40 mg/g in the year 2009. The biofortified wheat crop is developed through conventional plant breeding techniques. The germplasm inherited with high zinc nutrient are crossed with high yielding and adopted to ecological conditions. The varieties are high yielding, and inheriting zinc around 40 mg/g in the grains under both irrigated and rainfed production environments. The Government of Punjab has also given high priority to develop and consume biofortified high zinc wheat in its multi-sectoral Nutrition Strategy Plan 2015, as potential agricultural option to

  19. Leaf and stripe rust resistance among Ethiopian grown wheat ...

    African Journals Online (AJOL)

    The result indicated that 20 varieties and lines harbor resistance to the leaf rust and 26 to the stripe rust pathotypes showing infection types <2+. Twelve bread wheat varieties and lines (Et-13 A2, HAR 1407 [Tusie], HAR 1775 [Tura], HAR 1920, HAR 2192, HAR 2534, HAR 2536, HAR 2561, HAR 2563 and three durum lines ...

  20. A Novel Wheat C-bZIP Gene, TabZIP14-B, Participates in Salt and Freezing Tolerance in Transgenic Plants

    Directory of Open Access Journals (Sweden)

    Lina Zhang

    2017-05-01

    Full Text Available The group C-bZIP transcription factors (TFs are involved in diverse biological processes, such as the regulation of seed storage protein (SSP production and the responses to pathogen challenge and abiotic stress. However, our knowledge of the abiotic functions of group C-bZIP genes in wheat remains limited. Here, we present the function of a novel TabZIP14-B gene in wheat. This gene belongs to the group C-bZIP TFs and contains six exons and five introns; three haplotypes were identified among accessions of tetraploid and hexaploid wheat. A subcellular localization analysis indicated that TabZIP14-B was targeted to the nucleus of tobacco epidermal cells. A transactivation assay demonstrated that TabZIP14-B showed transcriptional activation ability and was capable of binding the abscisic acid (ABA responsive element (ABRE in yeast. RT-qPCR revealed that TabZIP14-B was expressed in the roots, stems, leaves, and young spikes and was up-regulated by exogenous ABA, salt, low-temperature, and polyethylene glycol (PEG stress treatments. Furthermore, Arabidopsis plants overexpressing TabZIP14-B exhibited enhanced tolerance to salt, freezing stresses and ABA sensitivity. Overexpression of TabZIP14-B resulted in increased expression of the AtRD29A, AtCOR47, AtRD20, AtGSTF6, and AtRAB18 genes and changes in several physiological characteristics. These results suggest that TabZIP14-B could function as a positive regulator in mediating the abiotic stress response.

  1. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Microsatellite development and characterization for Saurogobio dabryi Bleeker, 1871 in a Yangtze river-connected lake, China · HONG GAO LIU ... Online Resource. Genomic restructuring in F1 Hordeum chilense × durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses.

  2. Journal of Genetics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 96; Online resources. Genomic restructuring in F1 Hordeum chilense × durum wheat hybrids and corresponding hexaploid tritordeum lines revealed by DNA fingerprinting analyses. ANDREIA DELGADO ANA CARVALHO AZAHARA CARMEN MARTÍN ANTONIO MARTÍN JOSÉ ...

  3. The Effect of Different Zinc Application Methods on Yield and Grain Zinc Concentration of Bread Wheat Varieties

    Directory of Open Access Journals (Sweden)

    Hatun Barut

    2017-08-01

    Full Text Available This study was carried out to elucidate the impacts of zinc (Zn treatments on growth, development, quality and yield of commonly sown bread wheat cultivars under field conditions of Çukurova Region. Three different bread wheat cultivars (Adana-99, Ceyhan-99 and Pandas were experimented in randomized complete blocks-split plots experimental design with 3 replications. Field experiments were performed by two different Zn application methods; via soil and via soil+foliage. In the both trials, 0, 5, 10, 20, 30, and 40 kg ha-1 pure Zn doses were applied to the soil. 0.4% ZnSO4.7H2O solution was used for foliar Zn applications. Current findings revealed that Zn treatments had significant effects on grain yield, grain Zn concentration, grain phosphorus (P concentration and thousand grain weight of bread wheat cultivars, but significant effects were not observed on grain protein concentrations. Soil+foliar Zn treatments were more effective in improving grain Zn concentrations. It was concluded that 10- 20 kg ha-1 Zn treatment was quite effective on grain Zn concentrations.

  4. HIGH YIELD GENETICALLY MODIFIED WHEAT IN GERMANY: SOCIO ECONOMIC ASSESSMENT OF ITS POTENTIAL

    OpenAIRE

    Wree, Philipp; Sauer, Johannes

    2015-01-01

    High Yield Genetically Modified Wheat (HOSUT) HOSUT lines are an innovation in wheat breeding based on biotechnology with an incremental yield potential of ca. 28% compared to conventional wheat varieties. We apply the real option concept of Maximum Incremental Social Tolerable Irreversible Costs (MISTICs) to do an ex-ante assessment of the socioeconomic potential of HOSUT lines for Germany. We analyze the cost and benefits to farmer and society within two scenarios. Our results of our scenar...

  5. Production and evaluation of dwarf and semi-dwarf winter wheat mutants

    International Nuclear Information System (INIS)

    Barabas, Z.; Kertesz, Z.

    1984-01-01

    A special research programme for evolving and evaluating dwarf wheat forms resistant to lodging was carried out at the Cereal Research Institute, Wheat Division, Szeged, Hungary. Seed lots of the two tall winter wheat varieties Jubilejnaya 50 and Partizanka were exposed to gamma ray of 60 Co. With irradiation of 15000 rad 60 Co all of M 1 plants grown in the field were almost totally destroyed in 1980 and about 50% in 1982. In the greenhouse the number of lost M 1 plants was insignificant. Only a small number of plants died both in the greenhouse and in the field when they were irradiated with 5000 rad. A treatment with this lower dose of irradiation probably may help the breeders in selection for winter hardiness. 97 dwarf wheat lines already established were analysed for height character by a top cross method using the variety Jubilejnaya 50 as a tester. Height data of the simultaneously grown parental as well as the F 1 and F 2 offsprings indicated that the majority of them were recessive, except 3 cases where dominant or semi-dominant dwarfism was observed. Noteworthy is the Mx 158 a new semi-dwarf variety candidate, 60-65 cm in height at normal stand and resistant to all the main diseases here (powdery mildew and rusts). Its grain and protein production per unit area is also very good. Some genetically lesser-known dwarf sources were investigated in a complete crossing diallel test. (author)

  6. REARRANGEMENT IN THE B-GENOME FROM DIPLOID PROGENITOR TO WHEAT ALLOPOLYPOLID

    Directory of Open Access Journals (Sweden)

    Salina E.A.

    2012-08-01

    Full Text Available Three key periods that were accompanied by considerable rearrangements in the B genome of wheat and its progenitor can be considered. The first period covers the period from the divergence of diploid Triticum and Aegilops species from their common progenitor (2.5–6 million years ago to formation of the tetraploid T. diccocoides (about 500 thousand years ago. Significant genomic rearrangements in the diploid progenitor of the B genome, Ae. speltoides (SS genome, involved a considerable amplification of repeated DNA sequences, which led to an increase in the number of heterochromatin blocks on chromosomes relative to other diploid Aegilops and Triticum species. Our analysis has demonstrated that during this period the Spelt1 repeats intensively amplified as well as several mobile elements proliferated, in particular, the genome-specific gypsy LTR-retrotransposon Fatima and CACTA DNA-transposon Caspar. The second period in the B-genome evolution was associated with the emergence of tetraploid (BBAA genome and its subsequent evolution. The third most important event leading to the next rearrangement of the B genome took place relatively recently, 7000–9500 years ago, being associated with the emergence of hexaploid wheat with the genomic formula BBAADD. The evolution of the B/S genome involved intergenomic and intragenomic translocations and chromosome inversions. So far, five rearrangements in the B-genome chromosomes of polyploid wheats has been observed and described; the majority of them took place during the formation and evolution of tetraploid species. The mapping of the S-genome chromosomes and comparison with the B-genome chromosome maps have demonstrated that individual rearrangements pre-existed in Ae. speltoides; moreover, Ae. speltoides is polymorphic for these rearrangements.Chromosome 5B is nearly 870 Mbp (5BL = 580 Mbp and 5BS = 290 Mbp and is known to carry important genes controlling the key aspects of wheat biology, in

  7. Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat

    Science.gov (United States)

    Wheat stem rust (Puccinia graminis f. sp. tritici Eriks. and E. Henn.) is one of the most destructive diseases world-wide. Races belonging to Ug99 (or TTKSK) continue to cause crop losses in East Africa and threaten global wheat production. Developing and deploying wheat varieties with multiple race...

  8. Fourier Transform Infrared Spectroscopic Studies Of Wheat In The Mid Infrared

    Science.gov (United States)

    Olinger, Jill M.; Griffiths, Peter R.

    1989-12-01

    Official grain standards of the United States state that wheat may be divided into seven classes which are: Durum, Red Durum, Hard Red Spring, Hard Red Winter, Soft Red Winter, White, and Mixed.1 Most end uses of wheat involve converting the grain into flour through one of a variety of grinding methods. The quality of wheat-based products is often very dependent upon the type or class of wheat which was used to make the flour. Pasta products, for example, are made almost exclusively from the flour of durum wheats, which are the hardest of the wheats listed above. The highest quality breads are produced using flour from wheats classed as hard, whereas cakes, cookies and pastries are considered best when flour from wheats classed as soft are used. It is obvious then that the capability of determining the class of a particular wheat, especially with respect to hardness, is of economic importance to growers, processors, and merchants of wheat and wheat products. Hardness has been measured in many different ways 2-5 but, as of yet, no one method has become the method of choice. This paper reports on the use of principal components analysis (PCA) of mid infrared diffuse reflectance (DR) spectra of diluted ground wheats to aid in the classification of those wheats with respect to their hardness. The theory and mathematics involved in a principal component analysis have been described elsewhere.9

  9. Impact of Triticum mosaic virus infection on hard winter wheat milling and bread baking quality.

    Science.gov (United States)

    Miller, Rebecca A; Martin, T Joe; Seifers, Dallas L

    2012-03-15

    Triticum mosaic virus (TriMV) is a newly discovered wheat virus. Information regarding the effect of wheat viruses on milling and baking quality is limited. The objective of this study was to determine the impact of TriMV infection on the kernel characteristics, milling yield and bread baking quality of wheat. Commercial hard winter varieties evaluated included RonL, Danby and Jagalene. The TriMV resistance of RonL is low, while that of Danby and Jagalene is unknown. KS96HW10-3, a germplasm with high TriMV resistance, was included as a control. Plots of each variety were inoculated with TriMV at the two- to three-leaf stage. Trials were conducted at two locations in two crop years. TriMV infection had no effect on the kernel characteristics, flour yield or baking properties of KS96HW10-3. The effect of TriMV on the kernel characteristics of RonL, Danby and Jagalene was not consistent between crop years and presumably an environmental effect. The flour milling and bread baking properties of these three varieties were not significantly affected by TriMV infection. TriMV infection of wheat plants did not affect harvested wheat kernel characteristics, flour milling properties or white pan bread baking quality. Copyright © 2011 Society of Chemical Industry.

  10. Effects of Fungicide Treatment on Free Amino Acid Concentration and Acrylamide-Forming Potential in Wheat.

    Science.gov (United States)

    Curtis, Tanya Y; Powers, Stephen J; Halford, Nigel G

    2016-12-28

    Acrylamide forms from free asparagine and reducing sugars during frying, baking, roasting, or high-temperature processing, and cereal products are major contributors to dietary acrylamide intake. Free asparagine concentration is the determining factor for acrylamide-forming potential in cereals, and this study investigated the effect of fungicide application on free asparagine accumulation in wheat grain. Free amino acid concentrations were measured in flour from 47 varieties of wheat grown in a field trial in 2011-2012. The wheat had been supplied with nitrogen and sulfur and treated with growth regulators and fungicides. Acrylamide formation was measured after the flour had been heated at 180 °C for 20 min. Flour was also analyzed from 24 (of the 47) varieties grown in adjacent plots that were treated in identical fashion except that no fungicide was applied, resulting in visible infection by Septoria tritici, yellow rust, and brown rust. Free asparagine concentration in the fungicide-treated wheat ranged from 1.596 to 3.987 mmol kg -1 , with a significant (p fungicide treatment, the increases in acrylamide ranging from 2.7 to 370%. Free aspartic acid concentration also increased, whereas free glutamic acid concentration increased in some varieties but decreased in others, and free proline concentration decreased. The study showed disease control by fungicide application to be an important crop management measure for mitigating the problem of acrylamide formation in wheat products.

  11. Assessing the impact of time of spring vegetation renewal on growth, development and productivity of soft winter wheat varieties

    Directory of Open Access Journals (Sweden)

    О. Л. Уліч

    2014-12-01

    Full Text Available Results of study focusing on impact of environmental factor – time of spring vegetation renewal (TSVR of soft winter wheat on growth and development of plants, crop productivity and modern varieties response are presented. It is found that in the central part of the Right-Bank of Forest-Steppe of Ukraine this factor is important and it should be considered in planning of spring and summer care techniques, fertilizer system, especially at spring fertilizing, use of pesticides and growth regulators, in taking a decision on reseeding or underseeding of space plants. At the same time, it was determined that the environmental effect of TSVR was not occurred every year, thus it is not always possible to forecast the type of plant development. But in such years it is possible to influence the processes of plants growth, development and survival in spring and summer periods and the formation of their productivity by introducing such intensive technologies as differential crop tending, mineral nutrition optimization, the use of plant growth regulators, trace nutrients, weed, pest and disease control agents.

  12. Unraveling Key Metabolomic Alterations in Wheat Embryos Derived from Freshly Harvested and Water-Imbibed Seeds of Two Wheat Cultivars with Contrasting Dormancy Status

    Directory of Open Access Journals (Sweden)

    Aayudh Das

    2017-07-01

    Full Text Available Untimely rains in wheat fields during harvest season can cause pre-harvest sprouting (PHS, which deteriorates the yield and quality of wheat crop. Metabolic homeostasis of the embryo plays a role in seed dormancy, determining the status of the maturing grains either as dormant (PHS-tolerant or non-dormant (PHS-susceptible. Very little is known for direct measurements of global metabolites in embryonic tissues of dormant and non-dormant wheat seeds. In this study, physiologically matured and freshly harvested wheat seeds of PHS-tolerant (cv. Sukang, dormant and PHS-susceptible (cv. Baegjoong, non-dormant cultivars were water-imbibed, and the isolated embryos were subjected to high-throughput, global non-targeted metabolomic profiling. A careful comparison of identified metabolites between Sukang and Baegjoong embryos at 0 and 48 h after imbibition revealed that several key metabolic pathways [such as: lipids, fatty acids, oxalate, hormones, the raffinose family of oligosaccharides (RFOs, and amino acids] and phytochemicals were differentially regulated between dormant and non-dormant varieties. Most of the membrane lipids were highly reduced in Baegjoong compared to Sukang, which indicates that the cell membrane instability in response to imbibition could also be a key factor in non-dormant wheat varieties for their untimely germination. This study revealed that several key marker metabolites (e.g., RFOs: glucose, fructose, maltose, and verbascose, were highly expressed in Baegjoong after imbibition. Furthermore, the data showed that the key secondary metabolites and phytochemicals (vitexin, chrysoeriol, ferulate, salidroside and gentisic acid, with known antioxidant properties, were comparatively low at basal levels in PHS-susceptible, non-dormant cultivar, Baegjoong. In conclusion, the results of this investigation revealed that after imbibition the metabolic homeostasis of dormant wheat is significantly less affected compared to non

  13. Introgression lines of Triticum aestivum x Aegilops tauschii: Agronomic and nutritional value

    Science.gov (United States)

    Eighty-five single homozygous substitution lines (SLs) of the Aegilops tauschii D genome in Chinese Spring (CS) hexaploid wheat (Triticum aestivum L.) genetic background were evaluated for agronomic, phenotypic and ionome profiles during three years of field experiments. An augmented design with a r...

  14. Biodegradability of wheat gluten based bioplastics.

    Science.gov (United States)

    Domenek, Sandra; Feuilloley, Pierre; Gratraud, Jean; Morel, Marie-Hélène; Guilbert, Stéphane

    2004-01-01

    A large variety of wheat gluten based bioplastics, which were plasticized with glycerol, were subjected to biodegradation. The materials covered the total range available for the biochemical control parameter Fi, which expresses the percentage of aggregated proteins. This quantity can be related to the density of covalent crosslinks in the wheat gluten network, which are induced by technological treatments. The biodegradability tests were performed in liquid medium (modified Sturm test) and in farmland soil. All gluten materials were fully degraded after 36 days in aerobic fermentation and within 50 days in farmland soil. No significant differences were observed between the samples. The mineralization half-life time of 3.8 days in the modified Sturm test situated gluten materials among fast degrading polymers. The tests of microbial inhibition experiments revealed no toxic effects of the modified gluten or of its metabolites. Thus, the protein bulk of wheat gluten materials is non-toxic and fully biodegradable, whatever the technological process applied.

  15. Protein landmarks for diversity assessment in wheat genotypes

    African Journals Online (AJOL)

    jai ganesha

    2013-07-17

    Jul 17, 2013 ... of genetic diversity in wheat has been on differences in morphological and ... glutenins, are the main components of gluten, which is the main contributor to the .... However, there was no within variety diversity observed as a ...

  16. Characterization of Tamyb10 allelic variants and development of STS marker for pre-harvest sprouting resistance in Chinese bread wheat.

    Science.gov (United States)

    Wang, Y; Wang, X L; Meng, J Y; Zhang, Y J; He, Z H; Yang, Y

    2016-01-01

    Wheat grain color does not only affect the brightness of flour but also seed dormancy and pre-harvest sprouting (PHS) tolerance. The transcription factor Tamyb10 is an important candidate for R-1 gene, and the expression of its homologs determines wheat seed coat color. In the present study, the allelic variations of Tamyb10 were explored in a set of Chinese bread wheat varieties and advanced lines with different PHS tolerance, and a sequenced-tagged site (STS) marker for Tamyb10-D1 gene was developed, designated as Tamyb10D , which could be used as an efficient and reliable marker to evaluate the depth dormancy of wheat seeds. Using the marker Tamyb10D , 1629- and 1178-bp PCR fragments were amplified from the tolerant varieties, whereas a 1178-bp fragment was from the susceptible ones. Of the Chinese bread wheat varieties and advanced lines, 103 were used to validate the relationship between the polymorphic fragments of Tamyb10D and PHS tolerance. Statistical analysis indicated that Tamyb10D was significantly ( P  varieties, 8 Tamyb10 genotypes ( Tamybl0-A1 , Tamybl0-B1 , and Tamyb10-D1 loci) were detected, namely, aaa, aab, aba, abb, baa, bab, bba, and bbb, and these were significantly associated with GI value.

  17. Content of phenolic acids and ferulic acid dehydrodimers in 17 rye (Secale cereale L.) varieties

    DEFF Research Database (Denmark)

    Andreasen, M. F.; Christensen, L. P.; Meyer, Anne Boye Strunge

    2000-01-01

    of the analyzed components were observed among the different rye varieties and also between different harvest years. However, the content of phenolic acids in the analyzed rye varieties was narrow compared to cereals such as wheat and barley. The concentration of ferulic acid, the most abundant phenolic acid...

  18. Chemical composition, functional and sensory characteristics of wheat-taro composite flours and biscuits.

    Science.gov (United States)

    Himeda, Makhlouf; Njintang Yanou, Nicolas; Fombang, Edith; Facho, Balaam; Kitissou, Pierre; Mbofung, Carl M F; Scher, Joel

    2014-09-01

    The physicochemical, alveographic and sensory characteristics of precooked taro-wheat composite flours and their biscuits were investigated. A 2x7 factorial design consisting of two varieties of taro flour (Red Ibo Ngaoundere, RIN, and egg-like varieties) and 7 levels of wheat substitutions (0, 5, 10, 15, 20, 25 and 30 %) was used for this purpose. It was observed that water absorption capacity (range 95-152 g/100 g), water solubility index (range 18.8-29.5 g/100 g) and swelling capacity (range 125.4-204.6 mL/100 g) of composite flours significantly (p baking products, whereas at all levels of taro substitution, the composite biscuits samples were either acceptable as or better (5-10 % substitution with RIN flour) than 100 % wheat biscuit.

  19. A novel wheat variety with elevated content of amylose increases resistant starch formation and may beneficially influence glycaemia in healthy subjects

    Directory of Open Access Journals (Sweden)

    Elin Östman

    2011-08-01

    Full Text Available Previous studies indicate that elevated amylose content in products from rice, corn, and barley induce lower postprandial glycaemic responses and higher levels of resistant starch (RS. Consumption of slowly digestible carbohydrates and RS has been associated with health benefits such as decreased risk of diabetes and cardiovascular disease.To evaluate the postprandial glucose and insulin responses in vivo to bread products based on a novel wheat genotype with elevated amylose content (38%.Bread was baked from a unique wheat genotype with elevated amylose content, using baking conditions known to promote amylose retrogradation. Included test products were bread based on whole grain wheat with elevated amylose content (EAW, EAW with added lactic acid (EAW-la, and ordinary whole grain wheat bread (WGW. All test breads were baked at pumpernickel conditions (20 hours, 120°C. A conventionally baked white wheat bread (REF was used as reference. Resistant starch (RS content was measured in vitro and postprandial glucose and insulin responses were tested in 14 healthy subjects.The results showed a significantly higher RS content (on total starch basis in breads based on EAW than in WGW (p<0.001. Lactic acid further increased RS (p<0.001 compared with both WGW and EAW. Breads baked with EAW induced lower postprandial glucose response than REF during the first 120 min (p<0.05, but there were no significant differences in insulin responses. Increased RS content per test portion was correlated to a reduced glycaemic index (GI (r= − 0.571, p<0.001.This study indicates that wheat with elevated amylose content may be preferable to other wheat genotypes considering RS formation. Further research is needed to test the hypothesis that bread with elevated amylose content can improve postprandial glycaemic response.

  20. Effect of reducing agents on wheat gluten and quality characteristics of flour and cookies

    Directory of Open Access Journals (Sweden)

    Naveen KUMAR

    2013-12-01

    Full Text Available The aim of the present study was to determine the effect of reducing agents (Lcystine, glutathione and proteases on wheat gluten recovery and quality characteristics of dough and cookies. PBW-343 and RAJ-3765 wheat varieties were analysed for physico-chemical properties which indicated that wheat variety RAJ-3765 had superior quality characteristics in comparison to PBW-343. Wet gluten and dry gluten %yields were reduced with addition of reducing agents. As the concentration of reducing agents increased gluten, yield decreased further. The dough strength (resistance to extension decreased, whereas extension of dough increased significantly with the addition of reducing agents. Upon addition of reducing agents, spread factor increased, whereas hardness decreased. Glutathione was found to be the most effective reducing agent out of the three reducing agents used in this study.

  1. Genome-Wide Analysis of Microsatellite Markers Based on Sequenced Database in Chinese Spring Wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Bin Han

    Full Text Available Microsatellites or simple sequence repeats (SSRs are distributed across both prokaryotic and eukaryotic genomes and have been widely used for genetic studies and molecular marker-assisted breeding in crops. Though an ordered draft sequence of hexaploid bread wheat have been announced, the researches about systemic analysis of SSRs for wheat still have not been reported so far. In the present study, we identified 364,347 SSRs from among 10,603,760 sequences of the Chinese spring wheat (CSW genome, which were present at a density of 36.68 SSR/Mb. In total, we detected 488 types of motifs ranging from di- to hexanucleotides, among which dinucleotide repeats dominated, accounting for approximately 42.52% of the genome. The density of tri- to hexanucleotide repeats was 24.97%, 4.62%, 3.25% and 24.65%, respectively. AG/CT, AAG/CTT, AGAT/ATCT, AAAAG/CTTTT and AAAATT/AATTTT were the most frequent repeats among di- to hexanucleotide repeats. Among the 21 chromosomes of CSW, the density of repeats was highest on chromosome 2D and lowest on chromosome 3A. The proportions of di-, tri-, tetra-, penta- and hexanucleotide repeats on each chromosome, and even on the whole genome, were almost identical. In addition, 295,267 SSR markers were successfully developed from the 21 chromosomes of CSW, which cover the entire genome at a density of 29.73 per Mb. All of the SSR markers were validated by reverse electronic-Polymerase Chain Reaction (re-PCR; 70,564 (23.9% were found to be monomorphic and 224,703 (76.1% were found to be polymorphic. A total of 45 monomorphic markers were selected randomly for validation purposes; 24 (53.3% amplified one locus, 8 (17.8% amplified multiple identical loci, and 13 (28.9% did not amplify any fragments from the genomic DNA of CSW. Then a dendrogram was generated based on the 24 monomorphic SSR markers among 20 wheat cultivars and three species of its diploid ancestors showing that monomorphic SSR markers represented a promising

  2. Induced Mutations for Improving Production on Bread and Durum Wheat

    Science.gov (United States)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-04-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff.

  3. Induced Mutations for Improving Production on Bread and Durum Wheat

    International Nuclear Information System (INIS)

    Stamo, Ilirjana; Ylli, Ariana; Dodbiba, Andon

    2007-01-01

    Wheat is a very important crop and has been bred for food and its improvement is continuous from cross-breeding. Radiation and chemically induced mutations have provided variability in selection for novel varieties. Four bread and one durum wheat cultivars were exposed to gamma rays, Cs 137 with doses 10, 15 and 20 krad (2000 seeds of each dose and cultivars). We have isolated mutant plants with height reduced and on cv Progress spike without chaff

  4. Transfer of alien genes by means of induced translocation in oats and other crop species

    International Nuclear Information System (INIS)

    Thomas, H.; Taing Aung

    1977-01-01

    Some of the best sources of resistance to mildew, which is the most important disease of the oat crop in the United Kingdom, occur in related weed species. The mildew resistance found in a genotype of the tetraploid species Avena barbata has been transferred into the germ plasm of the cultivated hexaploid species A. sativa by means of an induced translocation. The procedures adopted to isolate the desirable translocation and to determine its breeding behaviour are described. A number of alien genes have been transferred into wheat by means of induced translocations and genetic induction, but their successful introduction into commercial varieties has been limited. In this paper, the use and limitations of alien transfers as breeding material are discussed. (author)

  5. Natural genetic variation in Calligonum Tunisian genus analyzed by ...

    African Journals Online (AJOL)

    Jane

    2011-08-29

    Aug 29, 2011 ... available meager resources of Tunisian desert region is to characterize ... enzymatic loci, and to the high degree of genetic relation- ship among the ... of intraspecific polymorphism, such as hexaploid wheat ...... Relationship between hybrid performance and genetic ... Runo MS, Muluvi GM (2004). Analysis ...

  6. Energy productivity and efficiency of wheat farming in Bangladesh

    International Nuclear Information System (INIS)

    Rahman, Sanzidur; Hasan, M. Kamrul

    2014-01-01

    Wheat is the second most important cereal crop in Bangladesh and production is highly sensitive to variations in the environment. We estimate productivity and energy efficiency of wheat farming in Bangladesh by applying a stochastic production frontier approach while accounting for the environmental constraints affecting production. Wheat farming is energy efficient with a net energy balance of 20,596 MJ per ha and energy ratio of 2.34. Environmental constraints such as a combination of unsuitable land, weed and pest attack, bad weather, planting delay and infertile soils significantly reduce wheat production and its energy efficiency. Environmental constraints account for a mean energy efficiency of 3 percentage points. Mean technical efficiency is 88% thereby indicating that elimination of inefficiencies can increase wheat energy output by 12%. Farmers' education, access to agricultural information and training in wheat production significantly improves efficiency, whereas events such as a delay in planting and first fertilization significantly reduce it. Policy recommendations include development of varieties that are resistant to environmental constraints and suitable for marginal areas; improvement of wheat farming practices; and investments in education and training of farmers as well as dissemination of information. - Highlights: • Bangladesh wheat farming is energy efficient at 20,596 MJha −1 ; energy ratio 2.34. • Environmental factors significantly influence productivity and energy efficiency. • Environmental factors must be taken into account when estimating wheat productivity. • Government policies must focus on ways of alleviating environmental factors. • Farmers' education, training and information sources increase technical efficiency

  7. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L. and spelt (Triticum spelta L..

    Directory of Open Access Journals (Sweden)

    Klaudia Goriewa-Duba

    Full Text Available Fluorescent in situ hybridization (FISH relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines, to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  8. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.).

    Science.gov (United States)

    Goriewa-Duba, Klaudia; Duba, Adrian; Kwiatek, Michał; Wiśniewska, Halina; Wachowska, Urszula; Wiwart, Marian

    2018-01-01

    Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  9. Gametocidal chromosomes enhancing chromosome aberration in common wheat induced by 5-azacytidine.

    Science.gov (United States)

    Su, W-Y; Cong, W-W; Shu, Y-J; Wang, D; Xu, G-H; Guo, C-H

    2013-07-08

    The gametocidal (Gc) chromosome from Aegilops spp induces chromosome mutation, which is introduced into common wheat as a tool of chromosome manipulation for genetic improvement. The Gc chromosome functions similar to a restriction-modification system in bacteria, in which DNA methylation is an important regulator. We treated root tips of wheat carrying Gc chromosomes with the hypomethylation agent 5-azacytidine; chromosome breakage and micronuclei were observed in these root tips. The frequency of aberrations differed in wheat containing different Gc chromosomes, suggesting different functions inducing chromosome breakage. Gc chromosome 3C caused the greatest degree of chromosome aberration, while Gc chromosome 3C(SAT) and 2C caused only slight chromosome aberration. Gc chromosome 3C induced different degrees of chromosome aberration in wheat varieties Triticum aestivum var. Chinese Spring and Norin 26, demonstrating an inhibition function in common wheat.

  10. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat

    Science.gov (United States)

    Vinod; Naik, Bhojaraja K.; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S. M. S.

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010–11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  11. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.

    Directory of Open Access Journals (Sweden)

    Ram Sewak Singh Tomar

    Full Text Available Water availability is a major limiting factor for wheat (Triticum aestivum L. production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72 and Indian (86 origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L. and 3 tetraploid (T. durum were characterized for root traits at reproductive stage in polyvinyl chloride (PVC pipes. Roots of drought tolerant genotypes grew upto137cm (C306 as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439 and drought sensitive (HD2877, HD2012, HD2851 and MACS2496 genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and

  12. Selection of high hectolitre weight mutants of winter wheat

    International Nuclear Information System (INIS)

    Crowley, C.; Jones, P.

    1989-01-01

    Grain quality in wheat includes hectolitre weight (HLW) besides protein content and thousand-grain weight (TGW). The British winter wheat variety ''Guardian'' has a very high yield potential. Although the long grain of ''Guardian'' results in a desirable high TGW the HLW is too low. To select mutants exhibiting increased HLW the character was first analyzed to identify traits that could more easily be screened for using M 2 seeds. In comparison of 6 wheat cultivars, correlation analyses with HLW resulted in coefficients of -0.86 (grain length, L:P 2 seeds for shorter, less prolate grains. Mutagenesis was carried out using EMS sulphonate (1.8 or 3.6%), sodium azide (2 or 20 mM) or X-rays (7.5 or 20 kR). 69 M 2 grains with altered shape were selected. Examination of the M 3 progeny confirmed 6 grain-shape mutants, most of them resulting from EMS treatment (Table). Two of the mutants showed TGW values significantly below the parental variety, but three mutants exhibited HLW and TGW values significantly greater than those of the parental variety. Microplot yield trails on selected M 3 lines are in progress. The influence of physical grain characteristics on HLW offers prospects for mechanical fractionation of large M 2 populations. The application of gravity separators (fractionation on the basis of grain density) and sieves (fractionation on the basis of grain length) in screening mutants possessing improved grain quality is being investigated

  13. Structural rearrangements detected in newly-formed hexaploid ...

    Indian Academy of Sciences (India)

    signals were observed on the Epifluorescence microscope ... Images were cap- ... the chromosome pairs 1B and 6B in durum wheat (figure. 1e). The number and physical location ... 6B chromosome probably experienced an inverted pericen-.

  14. Cloning and Sequence Analysis of the Amylase Gene from the Rice Pest Walker and its Inhibitor from Wheat (Variety MP Sehore

    Directory of Open Access Journals (Sweden)

    Poonam Sharma

    2009-01-01

    Full Text Available Scirpophaga incertulas Walker (Lepidoptera: Pyralideae, commonly known as yellow stem borer, is a predominant monophagous pest of rice, which causes 5% to 30% loss of the rice crop. We report for the first time, the cloning and sequence analysis of the amylase gene of this pest. The cloned gene translates into a protein of 487 amino acids having a predicted molecular weight of 54,955 daltons and a theoretical pI of 5.9. The 3D structure of the amylase is predicted from its amino acid sequence by homology modeling using the structure of the amylase from Tenebrio molitor L (Coleoptera: Tenebrionidae. We also report the purification of a dimeric α-amylase inhibitor from a local variety of wheat MP Sehore that is specific for the amylase of this pest and does not inhibit human salivary amylase or porcine pancreatic amylase. The gene encoding this inhibitor has been cloned and its sequence has been analysed to find a possible explanation for this specificity.

  15. Aphid-parasitoid community structure on genetically modified wheat.

    Science.gov (United States)

    von Burg, Simone; van Veen, Frank J F; Álvarez-Alfageme, Fernando; Romeis, Jörg

    2011-06-23

    Since the introduction of genetically modified (GM) plants, one of the main concerns has been their potential effect on non-target insects. Many studies have looked at GM plant effects on single non-target herbivore species or on simple herbivore-natural enemy food chains. Agro-ecosystems, however, are characterized by numerous insect species which are involved in complex interactions, forming food webs. In this study, we looked at transgenic disease-resistant wheat (Triticum aestivum) and its effect on aphid-parasitoid food webs. We hypothesized that the GM of the wheat lines directly or indirectly affect aphids and that these effects cascade up to change the structure of the associated food webs. Over 2 years, we studied different experimental wheat lines under semi-field conditions. We constructed quantitative food webs to compare their properties on GM lines with the properties on corresponding non-transgenic controls. We found significant effects of the different wheat lines on insect community structure up to the fourth trophic level. However, the observed effects were inconsistent between study years and the variation between wheat varieties was as big as between GM plants and their controls. This suggests that the impact of our powdery mildew-resistant GM wheat plants on food web structure may be negligible and potential ecological effects on non-target insects limited.

  16. Monitoring levels of deoxynivalenol in wheat flour of Brazilian varieties

    Directory of Open Access Journals (Sweden)

    Cristiano L Silva

    2015-03-01

    Full Text Available Deoxynivalenol (DON is a mycotoxin produced by Fusarium graminearum and its intake represents a severe risk to human and animal health. The objective of this study was to evaluate levels of DON in wheat (Triticum aestivum L. flour from two representative locations of south Brazil. Experiments were carried out in Pato Branco (Paraná and Coxilha (Rio Grande do Sul in a randomized complete block design with three replicates. Levels of DON were measured by high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS. This mycotoxin was detected in 97% of samples, ranging from 200 to 4140 u,g kg-1. Only 17% of samples presented DON beyond of the maximum allowed by the Brazilian Health Surveillance Agency up to the year 2012; even though, Fusarium head blight (FHB epidemics were slight low in the growing season that the study was performed. According to our knowledge, this is the first report showing genetic variability of Brazilian cultivars to DON contamination and some genotypes have potential to be exploited as a source of low accumulation of this toxin.

  17. Recurrent selection as breeding strategy for heat tolerance in wheat

    OpenAIRE

    Juarez Campolina Machado; Moacil Alves de Souza; Davi Melo de Oliveira; Adeliano Cargnin; Aderico Júnior Badaró Pimentel; Josiane Cristina de Assis

    2010-01-01

    The development of heat-tolerant varieties is an important goal of wheat breeding programs, requiringefficient selection methods. In the present study the use of recurrent selection was evaluated as a strategy to improve heatstress tolerance in wheat. Two cycles of recurrent selection were performed in experiments conducted in research areas of theUniversidade Federal de Viçosa, located in Coimbra-MG and Viçosa-MG, in 2004 and 2007, in two growing seasons (summerand winter). The genetic gain ...

  18. Organic Bread Wheat Production and Market in Europe

    DEFF Research Database (Denmark)

    David, C.; Abecassis, J.; Carcea, M.

    2012-01-01

    yield under organic production. The choice of cultivar, green manure, fertilization and intercropping legumes – grain or forage – are efficient ways to obtain high grain quality and quantity. The economic viability of wheat production in Europe is also affected by subsidies from European Union agri......This chapter is a first attempt to analyse bottlenecks and challenges of European organic bread wheat sector involving technical, political and market issues. From 2000, the organic grain market has largely increased in Western Europe. To balance higher consumer demand there is a need to increase...... organic production by a new transition and technical improvement. Bread wheat is grown in a variety of crop rotations and farming systems where four basic organic crop production systems have been defined. Weeds and nitrogen deficiency are considered to be the most serious threat inducing lowest grain...

  19. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication.

    Science.gov (United States)

    Avni, Raz; Nave, Moran; Barad, Omer; Baruch, Kobi; Twardziok, Sven O; Gundlach, Heidrun; Hale, Iago; Mascher, Martin; Spannagl, Manuel; Wiebe, Krystalee; Jordan, Katherine W; Golan, Guy; Deek, Jasline; Ben-Zvi, Batsheva; Ben-Zvi, Gil; Himmelbach, Axel; MacLachlan, Ron P; Sharpe, Andrew G; Fritz, Allan; Ben-David, Roi; Budak, Hikmet; Fahima, Tzion; Korol, Abraham; Faris, Justin D; Hernandez, Alvaro; Mikel, Mark A; Levy, Avraham A; Steffenson, Brian; Maccaferri, Marco; Tuberosa, Roberto; Cattivelli, Luigi; Faccioli, Primetta; Ceriotti, Aldo; Kashkush, Khalil; Pourkheirandish, Mohammad; Komatsuda, Takao; Eilam, Tamar; Sela, Hanan; Sharon, Amir; Ohad, Nir; Chamovitz, Daniel A; Mayer, Klaus F X; Stein, Nils; Ronen, Gil; Peleg, Zvi; Pozniak, Curtis J; Akhunov, Eduard D; Distelfeld, Assaf

    2017-07-07

    Wheat ( Triticum spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( T. turgidum ssp. dicoccoides ). We report a 10.1-gigabase assembly of the 14 chromosomes of wild tetraploid wheat, as well as analyses of gene content, genome architecture, and genetic diversity. With this fully assembled polyploid wheat genome, we identified the causal mutations in Brittle Rachis 1 ( TtBtr1 ) genes controlling shattering, a key domestication trait. A study of genomic diversity among wild and domesticated accessions revealed genomic regions bearing the signature of selection under domestication. This reference assembly will serve as a resource for accelerating the genome-assisted improvement of modern wheat varieties. Copyright © 2017, American Association for the Advancement of Science.

  20. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue.

    Science.gov (United States)

    Becker, D; Brettschneider, R; Lörz, H

    1994-02-01

    A reproducible transformation system for hexaploid wheat was developed based on particle bombardment of scutellar tissue of immature embryos. Particle bombardment was carried out using a PDS 1000/He gun. Plant material was bombarded with the plasmid pDB1 containing the beta-glucuronidase gene (uidA) under the control of the actin-1 promoter of rice, and the selectable marker gene bar (phosphinothricin acetyltransferase) under the control of the CaMV 35S promoter. Selection was carried out using the herbicide Basta (Glufosinate-ammonium). From a total number of 1050 bombarded immature embryos, in seven independent transformation experiments, 59 plants could be regenerated. Putative transformants were screened for enzyme activity by the histochemical GUS assay using cut leaf material and by spraying the whole plants with an aqueous solution of the herbicide Basta. Twelve regenerants survived Basta spraying and showed GUS-activity. Southern-blot analysis indicated the presence of introduced foreign genes in the genomic DNA of the transformants and both marker genes were present in all plants analysed. To date, four plants have been grown to maturity and set seed. Histochemically stained pollen grains showed a 1:1 segregation of the uidA gene in all plants tested. A 3:1 segregation of the introduced genes was demonstrated by enzyme activity tests and Southern blot analysis of R1 plants.

  1. Evaluation of wheat genotypes originated from interspecific crossing and gamma radiation

    International Nuclear Information System (INIS)

    Camargo, C.E.O.; Ferreira Filho, A.W.P.; Freitas, J.G.; Tulmann Neto, A.; Pettinelli Junior, A.; Castro, J.L.

    1995-01-01

    Twenty three inbred HEXAPLOID wheat lines were evaluated. They were originated by selections made in populations submitted to gamma radiation (27.5 krad), in the F 4 generation, from the interspecific hybrid between BH-1146 (triticum aestivum L.) and Anhinga S x Winged S (Triticum durum L.) and the cultivars BH-1146 and Yavaros S (T. durum L.) Nine trials were carried out with irrigation and in upland conditions. Several agronomic characteristics were assessed. Under laboratory conditions the genotypes were evaluated with respect to Al toxicity using nutrient solutions. Semi dwarf line 11 and 19, with moderate lodging resistance, medium cycle from emergence to flowering, tolerance to aluminum toxicity, were the most productive. Seven lines showed resistance to the causal agent of mildew, but all genotypes were susceptible to the causal agents of leaf spots. Some of the genotypes could be used in cross breeding as genetic sources for short plant, long head, large number of spikelets per head, large number of grains per head and per spikelet and heavy grains. BH-1146 and seven from the 23 lines were considered the most tolerant to aluminium toxicity, presenting good regrowth after treatment in nutrient solutions with 10 mg/liter of Al +3 . (author). 15 refs., 7 tabs

  2. Agronomic traits and deoxynivalenol contamination of two tetraploid wheat species (Triticum turgidum spp. durum, Triticum turgidum spp. turanicum grown strictly under low input conditions

    Directory of Open Access Journals (Sweden)

    Giovanni Dinelli

    2014-09-01

    Full Text Available An evaluation of the agronomic performance of two tetraploid wheat varieties (Triticum turgidum spp. durum, Claudio; Triticum turgidum spp. turanicum, Kamut® grown strictly under low input conditions was carried out over three consecutive cropping years. The study reported grain yield values ranging from 1.8 to 2.6 t ha-1. Productivity showed to be primarily affected by environmental conditions, while no differences were observed between the two genotypes. The study of the yield components highlighted that the durum wheat variety had a higher plant density than Kamut®, but this discrepancy was offset by a greater number of kernels per spike and the kernel weight of khorasan wheat. The investigated wheat genotypes were also analysed to assess the mycotoxin (DON levels of wholegrain semolina and the efficiency of cleaning treatments to reduce contamination. Results showed that both wheat varieties had a good hygienic and sanitary quality with a DON content ranging from 0.35 to 1.31 mg kg-1, which was lower than the maximum acceptable level set by the European regulation at 1.75 mg kg-1. In addition, our research work investigated the effects of premilling cleaning procedures, such as water washing and brushing, on mycotoxin levels, which yielded interesting results in terms of decontamination efficiency. These methods were particularly efficient with Kamut® semolina (46-93% DON reduction, suggesting that mycotoxins accumulate in this variety at more superficial levels than in the durum wheat variety. On the whole, our study provided additional knowledge on the traits to be further improved to respond to low input requirements and to enhance the potential adaptability of wheat genotypes to organic agriculture. Our results emphasized the need to develop wheat varieties that can provide adequate performance without high levels of nitrogen inputs by selecting specific traits, such as kernel weight, spike length and kernel/spike. This may help

  3. Regulatory Approval Decisions in the Presence of Market Externalities: The Case of Genetically Modified Wheat

    OpenAIRE

    Furtan, William Hartley; Gray, Richard S.; Holzman, J.J.

    2005-01-01

    This study examines the optimal approval strategy for genetically modified (GM) wheat varieties in Canada and the United States. Without an affordable segregation system, the introduction of GM wheat will create a market for "lemons" that will result in the loss of important export markets. Using a differentiated product trade model for spring wheat, with endogenous technology pricing, a payoff matrix is generated for the possible approval outcomes. Results show that the existence of the mark...

  4. Development of wheat varieties with reduced contents of celiac-immunogenic epitopes through conventional and GM strategies

    NARCIS (Netherlands)

    Smulders, M.J.M.; Jouanin, A.A.; Schaart, J.G.; Visser, R.G.F.; Cockram, J.; Leigh, F.; Wallington, E.; Boyd, L.A.; Broeck, van den H.C.; Meer, van der I.M.; Gilissen, L.J.W.J.

    2014-01-01

    Cereals, especially wheat, may cause several food-related diseases, of which gluten intolerance (coeliac disease, CD) is the best defined: specific immunogenic epitopes, nine amino acid-long peptide sequences, have been identified from various gluten proteins. These may activate T cells, causing

  5. TaEDS1 genes positively regulate resistance to powdery mildew in wheat.

    Science.gov (United States)

    Chen, Guiping; Wei, Bo; Li, Guoliang; Gong, Caiyan; Fan, Renchun; Zhang, Xiangqi

    2018-04-01

    Three EDS1 genes were cloned from common wheat and were demonstrated to positively regulate resistance to powdery mildew in wheat. The EDS1 proteins play important roles in plant basal resistance and TIR-NB-LRR protein-triggered resistance in dicots. Until now, there have been very few studies on EDS1 in monocots, and none in wheat. Here, we report on three common wheat orthologous genes of EDS1 family (TaEDS1-5A, 5B and 5D) and their function in powdery mildew resistance. Comparisons of these genes with their orthologs in diploid ancestors revealed that EDS1 is a conserved gene family in Triticeae. The cDNA sequence similarity among the three TaEDS1 genes was greater than 96.5%, and they shared sequence similarities of more than 99.6% with the respective orthologs from diploid ancestors. The phylogenetic analysis revealed that the EDS1 family originated prior to the differentiation of monocots and dicots, and EDS1 members have since undergone clear structural differentiation. The transcriptional levels of TaEDS1 genes in the leaves were obviously higher than those of the other organs, and they were induced by Blumeria graminis f. sp. tritici (Bgt) infection and salicylic acid (SA) treatment. The BSMV-VIGS experiments indicated that knock-down the transcriptional levels of the TaEDS1 genes in a powdery mildew-resistant variety of common wheat compromised resistance. Contrarily, transient overexpression of TaEDS1 genes in a susceptible common wheat variety significantly reduced the haustorium index and attenuated the growth of Bgt. Furthermore, the expression of TaEDS1 genes in the Arabidopsis mutant eds1-1 complemented its susceptible phenotype to powdery mildew. The above evidences strongly suggest that TaEDS1 acts as a positive regulator and confers resistance against powdery mildew in common wheat.

  6. Enhanced Temperature During Grain Filling Reduces Protein Concentration of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Franco Miglietta

    2011-02-01

    Full Text Available Durum wheat is cultivated over more than 13 millions of hectares (ha world wide and Italy is the main European producer with 3.5 millions tons per year. The protein concentration of durum wheat is very important, it ensures high nutritional value and is highly appreciated by the pasta production industries. The protein concentration of wheat is determined during the grain filling period when carbon and nitrogen compounds are translocated into the grains. Air temperature affects translocation rates and contributes to final protein concentration of wheat grains. Two common commercial varieties of durum and bread wheat were exposed from anthesis to harvest, to a source of infrared radiation in the field. This allowed to investigate the relative effect of temperature on translocation of carbon and nitrogen compound during grain filling. The heat treatment imposed affected marginally dry mass accumulation of the grains in bread wheat and didn’t affect dry mass in durum wheat. Grain protein was affected by heat treatment in durum but not in bread wheat. Carbon accumulation rate was higher for durum than for bread wheat. The protein concentration was greater in durum than in bread wheat and we can assume that the absolute nitrogen accumulation rates were higher for the former species. Such difference may be either caused by a faster nitrogen uptake rate and translocation or a more efficient relocation of nitrogen accumulated in reserve organs.

  7. Mechanism of Resistance in two Bread Wheat (Triticum Aestivum L.) Lines to Russian Wheat Aphid (Diuraphis Noxia: Homoptra: Aphididae) in Kenya

    International Nuclear Information System (INIS)

    Malinga, J.N.

    2002-01-01

    Russian wheat aphid (Diuraphis noxia) is a recent pest of small cereals that is causing severe yield losses in farmers' fields and farmers have demanded a resistant wheat line. In wheat the pest causes both direct and indirect damage resulting in losses of up to 90%. Control of the aphid is a major constraint in the production of wheat in Kenya requiring the use of more than one systematic insecticide application.This cost is prohibitive.Breeding wheat for resistance to Russian wheat is the cheapest alternative and is the international trend. The use of Russian wheat aphid resistant cultivars may reduce the impact of these pest on cereal production. A study was therefore conducted in Kenya to understand and determine the genetics of inheritance pattern of D. noxia present in two new sources of resistance (RWA 8 and RWA 16). These two new sources would be potential donors of D. noxia resistance in breeding programmes. The two resistant donors with unknown resistance genes for Diuraphis noxia were crossed with susceptible Kenyan commercial wheat cultivar, Heroe. Resistant reaction of F 1 ,BC 1 and F2 indicated that resistance in the two lines differed. Resistant in RWA 8 may be controlled by a single dominant genes while RWA 16 by two incomplete dominant genes. It is unknown wether these genes are identical to any known, designated resistance genes. However, their resistance has been shown to be effective on the RWA population in Kenya. As studies continue on these genes at molecular level, it is recommended that resistant populations are carried on through the breeding programme to possibly identify and release a resistant variety for commercial production

  8. Genetic Architecture of Main Effect QTL for Heading Date in European Winter Wheat

    Directory of Open Access Journals (Sweden)

    Christine eZanke

    2014-05-01

    Full Text Available A genome-wide association study (GWAS for heading date (HD was performed with a panel of 358 European winter wheat (Triticum aestivum L. varieties and 14 spring wheat varieties through the phenotypic evaluation of HD in field tests in eight environments. Genotyping data consisted of 770 mapped microsatellite loci and 7934 mapped SNP markers derived from the 90K iSelect wheat chip. Best linear unbiased estimations (BLUEs were calculated across all trials and ranged from 142.5 to 159.6 days after the 1st of January with an average value of 151.4 days. Considering only associations with a –log10 (P-value ≥3.0, a total of 340 SSR and 2983 SNP marker-trait associations (MTAs were detected. After Bonferroni correction for multiple testing, a total of 72 SSR and 438 SNP marker-trait associations remained significant. Highly significant MTAs were detected for the photoperiodism gene Ppd-D1, which was genotyped in all varieties. Consistent associations were found on all chromosomes with the highest number of MTAs on chromosome 5B. Linear regression showed a clear dependence of the HD score BLUEs on the number of favourable alleles (decreasing HD and unfavourable alleles (increasing HD per variety meaning that genotypes with a higher number of favourable or a low number of unfavourable alleles showed lower HD and therefore flowered earlier. For the vernalization gene Vrn-A2 co-locating MTAs on chromosome 5A, as well as for the photoperiodism genes Ppd-A1 and Ppd-B1 on chromosomes 2A and 2B were detected. After the construction of an integrated map of the SSR and SNP markers and by exploiting the synteny to sequenced species, such as rice and Brachypodium distachyon, we were able to demonstrate that a marker locus on wheat chromosome 5BL with homology to the rice photoperiodism gene Hd6 played a significant role in the determination of the heading date in wheat.

  9. Induced mutations for rust resistance in bread wheat

    International Nuclear Information System (INIS)

    Sawhney, R.N.

    1989-01-01

    Full text: Seeds of variety ''Lalbahadur'' were treated with 0.04% NMH. M 2 plants were inoculated with a mixture of pathotypes of each of the 3 Puccinia species (P. graminis, P. recondita, P. striiformis). Plants with simultaneous resistance to all 3 rusts were selected. Repeated testing in subsequent generations confirmed the resistance. The mutant lines are morphologically similar to the parent cultivar and therefore could be used as components of a multiline variety. Comparison of variety pattern against the Indian pathotypes of rusts suggests that the mutant genes are different from the ones known already in bread wheat. (author)

  10. Drought Tolerance in Modern and Wild Wheat

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda; Yucebilgili Kurtoglu, Kuaybe

    2013-01-01

    The genus Triticum includes bread (Triticum aestivum) and durum wheat (Triticum durum) and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides), which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance. PMID:23766697

  11. Drought Tolerance in Modern and Wild Wheat

    Directory of Open Access Journals (Sweden)

    Hikmet Budak

    2013-01-01

    Full Text Available The genus Triticum includes bread (Triticum aestivum and durum wheat (Triticum durum and constitutes a major source for human food consumption. Drought is currently the leading threat on world's food supply, limiting crop yield, and is complicated since drought tolerance is a quantitative trait with a complex phenotype affected by the plant's developmental stage. Drought tolerance is crucial to stabilize and increase food production since domestication has limited the genetic diversity of crops including wild wheat, leading to cultivated species, adapted to artificial environments, and lost tolerance to drought stress. Improvement for drought tolerance can be achieved by the introduction of drought-grelated genes and QTLs to modern wheat cultivars. Therefore, identification of candidate molecules or loci involved in drought tolerance is necessary, which is undertaken by “omics” studies and QTL mapping. In this sense, wild counterparts of modern varieties, specifically wild emmer wheat (T. dicoccoides, which are highly tolerant to drought, hold a great potential. Prior to their introgression to modern wheat cultivars, drought related candidate genes are first characterized at the molecular level, and their function is confirmed via transgenic studies. After integration of the tolerance loci, specific environment targeted field trials are performed coupled with extensive analysis of morphological and physiological characteristics of developed cultivars, to assess their performance under drought conditions and their possible contributions to yield in certain regions. This paper focuses on recent advances on drought related gene/QTL identification, studies on drought related molecular pathways, and current efforts on improvement of wheat cultivars for drought tolerance.

  12. Effect of consumption of micronutrient enriched wheat steamed bread on postprandial plasma glucose in healthy and type 2 diabetic subjects.

    Science.gov (United States)

    Su-Que, Lan; Ya-Ning, Meng; Xing-Pu, Li; Ye-Lun, Zhang; Guang-Yao, Song; Hui-Juan, Ma

    2013-05-17

    Steamed wheat bread have previously been shown to induce comparatively high postprandial plasma glucose responses, on the contrary, buckwheat products induced lower postprandial plasma glucose. The present study was to assess the effects of micronutrient enriched bread wheat variety Jizi439 and buckwheat on postprandial plasma glucose in healthy and diabetic subjects comparing with buckwheat and other bread wheat varieties. Two experiments were conducted to study the effects of bread wheat variety Jizi439 on the postprandial plasma glucose levels of the randomly selected subjects. The first experiment involved three types of steamed bread with equivalent of 50 g available carbohydrate fed to 10 normal weight young healthy subjects. Two types of steamed bread were made from two purple-grain bread wheat varieties, Jizi439 and Chu20, respectively, and the third type was made from the mixture of different white grain wheat varieties. Plasma glucose levels of each subject were measured at 15, 30, 45, 60, 120 min after eating. Glucose was used as a reference, the total area under curve (AUC) and glycemic index (GI) was calculated for test meal. The second experiment was performed among ten type 2 diabetics who were served equivalent of 50 g available carbohydrate of steamed bread made from Jizi 439, the mixture of white grain bread wheat and buckwheat, respectively. The plasma glucose increment was determined two hours thereafter. In the first experiment, consumption of the steamed bread made from Jizi439 resulted in the least increase in plasma glucose and the GI was significantly lower than that of Chu20 and the mixture. In the second experiment, the average of postprandial 2 h plasma glucose increment of Jizi439 was 2.46 mmol/L which was significantly lower than that of the mixture of white wheat but was not significantly different from buckwheat. The results indicated that consumption of Jizi439 steamed bread resulted in significantly lower plasma glucose in

  13. Mutation breeding in wheat

    International Nuclear Information System (INIS)

    Amer, I.M.

    2002-01-01

    The study aims to improve the productivity of wheat by using gamma ray (100 - 600 Gy) in mutation breading. Five local varieties were used and the program continued for the Sakha 69 for seven generations. Seeds irradiated with 600 Gy were not germinated in the field, while low doses (100-150 Gy) stimulated the root growth and spike length. The higher doses caused gradual decrease of growth with differences in varieties response. in the second generation, a genetic differences were noticed in most varieties using doses of 100-300 Gy, and the dispike was disappeared when 250 Gy was used. 79 plants from irradiated Sakha 69 were selected according to spike length and the number of grains and planted with the control to test the third generation. differences between the varieties were noticed and 8 mutants with high productivity were selected and evaluated in the fourth and fifth generations with the local variety. The mutants improve the productivity and in particular the mutants Nos.. (19-1), (14-3), and (30-2). The experiment showed the relation between the planting sites and the mutants in the sixth and seven generations

  14. Physiological and biochemical constituents as predictive appreciation for selection of drought tolerant cultivars in wheat (triticum aestivum L.)

    International Nuclear Information System (INIS)

    Jalal-ud-Din; Khan, S.U.; Gurmani, A.R.

    2012-01-01

    A pot study was undertaken to assess the effect of drought stress imposed at various growth stages on growth, physiological and biochemical attributes of wheat. Five commercial wheat cultivars viz. Chakwal-97, Inqalab-91, Margalla-99, NR-234 and Wafaq-2001 were grown in pots. The plants were subjected to three consecutive drought cycles at tillering, pre-anthesis and milky growth stages. Measurements pertaining to various physiological and biochemical parameters such as relative water content (RWC), proline, superoxide dismutase (SOD), membrane stability index (MSI), yield and yield components were made. Significant reduction in grain yield was observed in all the test varieties when drought was imposed at any growth stage. The reduction was highest (39-64%) when stress was imposed at pre-anthesis followed by tillering growth stage. The wheat variety Wafaq-2001 and Inqalab-91 performed better by giving higher yield and produced greater numbers of filled seeds per spike compared to other varieties. Under water stress proline contents were higher in the drought-tolerant cultivar Wafaq-2001. The same variety showed higher membrane stability index and antioxidant enzymes (SOD) activity under drought stress conditions. The results suggest that pre-anthesis growth stage is the most sensitive towards drought stress. Wheat cultivars: Wafaq-2001 and Inqalab-91 showed best tolerance response against drought stress. Higher proline, RWC and SOD activity under drought stress seems to be the most reliable parameters enabling the discrimination of varieties for drought tolerance. (author)

  15. Yield Interactions of Wheat Genotypes to Dates of Seeding in Eastern Mid Hills of Nepal

    OpenAIRE

    Rudra Bhattarai; Bedanand Chaudhary; Dhruba Bahadur Thapa; Ramesh Raj Puri; Ram Nath Chaudhary; Ram Nath Chaudhary; Bibek Sapkota; Kiran Baral; Shukra Raj Shrestha; Surya Prasad Adhikari

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for ...

  16. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool

    International Nuclear Information System (INIS)

    Zafar, S.; Niaz, M.; Kausar, A.

    2015-01-01

    Salinity is a major threat to world food security, to ensure future food needs of an increasing world population, development of salt tolerant crop varieties are necessary. Effective screening techniques for salinity tolerance would be beneficial in developing high yielding and salt tolerant wheat varieties. In the present study, an attempt for rapid screening of wheat genotypes for salt tolerance was made. Twenty wheat genotypes were evaluated for salinity tolerance under laboratory/green-house conditions using different physiological indices like germination stress tolerance index (GSI), shoot length stress tolerance index (SLSI), root length stress tolerance index (RLSI) , shoot dry biomass stress tolerance index (SDSI). The data was pooled together to different multivariate techniques including correlation and cluster analysis to assess the diversity for salt tolerance in wheat genotypes. Highly significant and positive correlations were found between GSI, SDWSI and RDWSI. Cluster analysis classified 20 genotypes into three divergent groups. The members of first cluster (Abadgharr, Bhakkar-2000, Chakwal-86, Kiran-95, LU-26-S, Margalla-99, Marvi Pak-81, Sarsabaz) exhibited adequate degree of salt tolerance on the basis of various physiological stress tolerance indices, whereas, cluster-2 included genotypes (Bhattai, Pasban-90, Shafaq-2006, Soghat-90) with medium level of salt tolerance and cluster-3 consisted of wheat genotypes (Inqilab-91, Iqbal-2000, Kohistan-97, PARI-73, Punjab-90, Sehar-2006 and Uqab-6) with lower level of salt tolerance and did not perform upto the mark. On the basis of results and scores obtained, indicated that physiological indices can be used as a selection tool for salinity tolerance in wheat. (author)

  17. Blé Poitou”, beginning of a participatory project for co-breeding (wheat and legumes)

    OpenAIRE

    Serpolay-Besson , Estelle; Goldringer , Isabelle; Aubin , Thibaud

    2012-01-01

    A group of farmers of the Poitou region in France, already expert in on-farm maize population selection, would like to acquire the same know-how with wheat and legume in co-breeding. They asked INRA to build a participatory breeding project with them with this view. The first year was dedicated to the cultivation and common evaluation of several varieties on a platform. More than having learnt how to breed wheat, the farmers say they have learnt how to observe wheat and are now able to do on-...

  18. Identifying loci influencing grain number by microsatellite screening in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Zhang, Dongling; Hao, Chenyang; Wang, Lanfen; Zhang, Xueyong

    2012-11-01

    Grain number (GN) is one of three major yield-related components in wheat. We used the Chinese wheat mini core collection to undertake a genome-wide association analysis of grain number using 531 SSR markers randomly located on all 21 chromosomes. Grain numbers of all accessions were measured in four trials, i.e. two environments in four growing seasons. Association analysis based on a mixed linear model (MLM) revealed that 27 SSR loci were significantly associated with mean GN (MGN) estimated by the best linear unbiased predictor (BLUP) method. These included numerous breeder favorable alleles with strong positive effects at 23 loci. Significant or extremely significant differences were detected on MGN between varieties conveying favored allele and varieties with other alleles. Moreover, statistical simulation showed that the favored alleles have additive genetic effects. Although modern varieties combined larger numbers of favored alleles, the numbers of favored alleles were not significantly different from those in landraces, especially those alleles contributing mostly to the phenotypic variation. These results indicate that there is still considerable genetic potential for use of markers for genome selection of GN for high yield in wheat.

  19. Manthar-03: a high-yielding cultivar of wheat released for general cultivation in Southern Punjab

    International Nuclear Information System (INIS)

    Hussain, M.; Akhtar, L.H.; Nasim, M.

    2010-01-01

    We report the release of a new wheat variety Manthar-03. 'Manthar-03' is a high yielding and rust resistant variety of bread wheat with erect growth habit. It was released in the year 2003 as a general purpose variety. Manthar-03 is a selection from CIMMYT material (Entry No. 42 of 29 International Bread Wheat Screening Nursery) made at Regional Agricultural Research Institute (RARI), Bahawalpur during 1996-97. This strain has the famous CIMMYT line 'Kauz' in its parentage (KAUZ//ALTAR 84/AOS). Its pedigree is CM11163-6M-20Y-10M- 0M-0B. It is a more adapted and a high yielder. Genetically, this strain differs from existing commercial cultivars of Punjab. Resistance against leaf rust (5MRMS to 10MR), RRI value of 6.7 and 7.6 for leaf rust and ACI values of 3.4 and 0.7 for leaf rust) and high yield potential (6300 kg ha-1 ) are the major attributes of Manthar-03 that make it a superior variety for its target regions. Manthar-03 is tolerant to wheat aphid and Helicoverpa armigera. The thousand seed weight of this variety is 40-44 g. Seed is amber in color and contains 12.97% protein, 8.2% dry gluten and 1.55% ash. It has good chapati making quality. Plant type of Manthar-03 is erect with plant height 94 cm and droopy flag leaves. It is lodging resistant. It completes heading in 98 days and matures in 142 days. Manthar-03 performs better when planted from 15, November to 1, December, keeping 125 kg ha/sup -1/ seed rate and 125-85-50 kg NPK ha/sup -1/ are applied. (author)

  20. Quantitative structure analysis of genetic diversity among spring bread wheats (Triticum aestivum L.) from different geographical regions.

    Science.gov (United States)

    Hai, Lin; Wagner, Carola; Friedt, Wolfgang

    2007-07-01

    Genetic diversity in spring bread wheat (T. aestivum L.) was studied in a total of 69 accessions. For this purpose, 52 microsatellite (SSR) markers were used and a total of 406 alleles were detected, of which 182 (44.8%) occurred at a frequency of bread wheats was H ( e ) = 0.65. A comparatively higher diversity was observed between wheat varieties from Southern European countries (Austria/Switzerland, Portugal/Spain) corresponding to those from other regions.