WorldWideScience

Sample records for hexaploid wheat genotypes

  1. Characterization of a Wheat Breeders' Array suitable for high-throughput SNP genotyping of global accessions of hexaploid bread wheat (Triticum aestivum).

    Science.gov (United States)

    Allen, Alexandra M; Winfield, Mark O; Burridge, Amanda J; Downie, Rowena C; Benbow, Harriet R; Barker, Gary L A; Wilkinson, Paul A; Coghill, Jane; Waterfall, Christy; Davassi, Alessandro; Scopes, Geoff; Pirani, Ali; Webster, Teresa; Brew, Fiona; Bloor, Claire; Griffiths, Simon; Bentley, Alison R; Alda, Mark; Jack, Peter; Phillips, Andrew L; Edwards, Keith J

    2017-03-01

    Targeted selection and inbreeding have resulted in a lack of genetic diversity in elite hexaploid bread wheat accessions. Reduced diversity can be a limiting factor in the breeding of high yielding varieties and crucially can mean reduced resilience in the face of changing climate and resource pressures. Recent technological advances have enabled the development of molecular markers for use in the assessment and utilization of genetic diversity in hexaploid wheat. Starting with a large collection of 819 571 previously characterized wheat markers, here we describe the identification of 35 143 single nucleotide polymorphism-based markers, which are highly suited to the genotyping of elite hexaploid wheat accessions. To assess their suitability, the markers have been validated using a commercial high-density Affymetrix Axiom ® genotyping array (the Wheat Breeders' Array), in a high-throughput 384 microplate configuration, to characterize a diverse global collection of wheat accessions including landraces and elite lines derived from commercial breeding communities. We demonstrate that the Wheat Breeders' Array is also suitable for generating high-density genetic maps of previously uncharacterized populations and for characterizing novel genetic diversity produced by mutagenesis. To facilitate the use of the array by the wheat community, the markers, the associated sequence and the genotype information have been made available through the interactive web site 'CerealsDB'. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  2. Genotype-dependent Burst of Transposable Element Expression in Crowns of Hexaploid Wheat (Triticum aestivum L. during Cold Acclimation

    Directory of Open Access Journals (Sweden)

    Debbie Laudencia-Chingcuanco

    2012-01-01

    Full Text Available The expression of 1,613 transposable elements (TEs represented in the Affymetrix Wheat Genome Chip was examined during cold treatment in crowns of four hexaploid wheat genotypes that vary in tolerance to cold and in flowering time. The TE expression profiles showed a constant level of expression throughout the experiment in three of the genotypes. In winter Norstar, the most cold-hardy of the four genotypes, a subset of the TEs showed a burst of expression after vernalization saturation was achieved. About 47% of the TEs were expressed, and both Class I (retrotransposons and Class II (DNA transposons types were well represented. Gypsy and Copia were the most represented among the retrotransposons while CACTA and Mariner were the most represented DNA transposons. The data suggests that the Vrn-A1 region plays a role in the stage-specific induction of TE expression in this genotype.

  3. Putative interchromosomal rearrangements in the hexaploid wheat (Triticum aestivum L.) genotype 'Chinese Spring' revealed by gene locations on homoeologous chromosomes

    Czech Academy of Sciences Publication Activity Database

    Ma, J.; Stiller, J.; Zheng, Z.; Wei, Y.M.; Zheng, Y.L.; Yan, G.J.; Doležel, Jaroslav; Liu, C.

    2015-01-01

    Roč. 15, MAR 11 2015 (2015) ISSN 1471-2148 Institutional support: RVO:61389030 Keywords : Interchromosomal rearrangements * Wheat genome * Translocation Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.406, year: 2015

  4. The pangenome of hexaploid bread wheat.

    Science.gov (United States)

    Montenegro, Juan D; Golicz, Agnieszka A; Bayer, Philipp E; Hurgobin, Bhavna; Lee, HueyTyng; Chan, Chon-Kit Kenneth; Visendi, Paul; Lai, Kaitao; Doležel, Jaroslav; Batley, Jacqueline; Edwards, David

    2017-06-01

    There is an increasing understanding that variation in gene presence-absence plays an important role in the heritability of agronomic traits; however, there have been relatively few studies on variation in gene presence-absence in crop species. Hexaploid wheat is one of the most important food crops in the world and intensive breeding has reduced the genetic diversity of elite cultivars. Major efforts have produced draft genome assemblies for the cultivar Chinese Spring, but it is unknown how well this represents the genome diversity found in current modern elite cultivars. In this study we build an improved reference for Chinese Spring and explore gene diversity across 18 wheat cultivars. We predict a pangenome size of 140 500 ± 102 genes, a core genome of 81 070 ± 1631 genes and an average of 128 656 genes in each cultivar. Functional annotation of the variable gene set suggests that it is enriched for genes that may be associated with important agronomic traits. In addition to variation in gene presence, more than 36 million intervarietal single nucleotide polymorphisms were identified across the pangenome. This study of the wheat pangenome provides insight into genome diversity in elite wheat as a basis for genomics-based improvement of this important crop. A wheat pangenome, GBrowse, is available at http://appliedbioinformatics.com.au/cgi-bin/gb2/gbrowse/WheatPan/, and data are available to download from http://wheatgenome.info/wheat_genome_databases.php. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. QTLs for seedling traits under salinity stress in hexaploid wheat

    OpenAIRE

    Ren, Yongzhe; Xu, Yanhua; Teng, Wan; Li, Bin; Lin, Tongbao

    2018-01-01

    ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl co...

  6. Breeding value of primary synthetic wheat genotypes for grain yield

    Science.gov (United States)

    To introduce new genetic diversity into the bread wheat gene pool from its progenitor, Aegilops tauschii (Coss.) Schmalh, 33 primary synthetic hexaploid wheat genotypes (SYN) were crossed to 20 spring bread wheat (BW) cultivars at the International Wheat and Maize Improvement Center. Modified single...

  7. A SNP Genotyping Array for Hexaploid Oat

    Directory of Open Access Journals (Sweden)

    Nicholas A. Tinker

    2014-11-01

    Full Text Available Recognizing a need in cultivated hexaploid oat ( L. for a reliable set of reference single nucleotide polymorphisms (SNPs, we have developed a 6000 (6K BeadChip design containing 257 Infinium I and 5486 Infinium II designs corresponding to 5743 SNPs. Of those, 4975 SNPs yielded successful assays after array manufacturing. These SNPs were discovered based on a variety of bioinformatics pipelines in complementary DNA (cDNA and genomic DNA originating from 20 or more diverse oat cultivars. The array was validated in 1100 samples from six recombinant inbred line (RIL mapping populations and sets of diverse oat cultivars and breeding lines, and provided approximately 3500 discernible Mendelian polymorphisms. Here, we present an annotation of these SNPs, including methods of discovery, gene identification and orthology, population-genetic characteristics, and tentative positions on an oat consensus map. We also evaluate a new cluster-based method of calling SNPs. The SNP design sequences are made publicly available, and the full SNP genotyping platform is available for commercial purchase from an independent third party.

  8. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1

    Indian Academy of Sciences (India)

    GSs. However, incorporation of HMW-GS from Ae. tauschii in six synthetic hexaploid wheat lines significantly increased most quality related parameters. The potential values of these wheat lines in improving the quality of wheat are discussed.

  9. The pangenome of hexaploid bread wheat

    Czech Academy of Sciences Publication Activity Database

    Montenegro, J. D.; Golicz, A. A.; Bayer, P.E.; Hurgobin, B.; Lee, H. T.; Chan, C. K. K.; Visendi, P.; Lai, K.; Doležel, Jaroslav; Batley, J.; Edwards, D.

    2017-01-01

    Roč. 90, č. 5 (2017), s. 1007-1013 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : database * diversity * genome * pangenome * single nucleotide polymorphisms * Triticum aestivum * wheat Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 5.901, year: 2016

  10. QTLs for seedling traits under salinity stress in hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Yongzhe Ren

    2018-03-01

    Full Text Available ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411. Values of wheat seedling traits including maximum root length (MRL, root dry weight (RDW, shoot dry weight (SDW, total dry weight (TDW and the ratio of TDW of wheat plants between salt stress and control (TDWR were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.

  11. Structural and molecular basis of starch viscosity in hexaploid wheat.

    Science.gov (United States)

    Ral, J-P; Cavanagh, C R; Larroque, O; Regina, A; Morell, M K

    2008-06-11

    Wheat starch is considered to have a low paste viscosity relative to other starches. Consequently, wheat starch is not preferred for many applications as compared to other high paste viscosity starches. Increasing the viscosity of wheat starch is expected to increase the functionality of a range of wheat flour-based products in which the texture is an important aspect of consumer acceptance (e.g., pasta, and instant and yellow alkaline noodles). To understand the molecular basis of starch viscosity, we have undertaken a comprehensive structural and rheological analysis of starches from a genetically diverse set of wheat genotypes, which revealed significant variation in starch traits including starch granule protein content, starch-associated lipid content and composition, phosphate content, and the structures of the amylose and amylopectin fractions. Statistical analysis highlighted the association between amylopectin chains of 18-25 glucose residues and starch pasting properties. Principal component analysis also identified an association between monoesterified phosphate and starch pasting properties in wheat despite the low starch-phosphate level in wheat as compared to tuber starches. We also found a strong negative correlation between the phosphate ester content and the starch content in flour. Previously observed associations between internal starch granule fatty acids and the swelling peak time and pasting temperature have been confirmed. This study has highlighted a range of parameters associated with increased starch viscosity that could be used in prebreeding/breeding programs to modify wheat starch pasting properties.

  12. Transcript-specific, single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Allen, Alexandra M; Barker, Gary L A; Berry, Simon T; Coghill, Jane A; Gwilliam, Rhian; Kirby, Susan; Robinson, Phil; Brenchley, Rachel C; D'Amore, Rosalinda; McKenzie, Neil; Waite, Darren; Hall, Anthony; Bevan, Michael; Hall, Neil; Edwards, Keith J

    2011-12-01

    Food security is a global concern and substantial yield increases in cereal crops are required to feed the growing world population. Wheat is one of the three most important crops for human and livestock feed. However, the complexity of the genome coupled with a decline in genetic diversity within modern elite cultivars has hindered the application of marker-assisted selection (MAS) in breeding programmes. A crucial step in the successful application of MAS in breeding programmes is the development of cheap and easy to use molecular markers, such as single-nucleotide polymorphisms. To mine selected elite wheat germplasm for intervarietal single-nucleotide polymorphisms, we have used expressed sequence tags derived from public sequencing programmes and next-generation sequencing of normalized wheat complementary DNA libraries, in combination with a novel sequence alignment and assembly approach. Here, we describe the development and validation of a panel of 1114 single-nucleotide polymorphisms in hexaploid bread wheat using competitive allele-specific polymerase chain reaction genotyping technology. We report the genotyping results of these markers on 23 wheat varieties, selected to represent a broad cross-section of wheat germplasm including a number of elite UK varieties. Finally, we show that, using relatively simple technology, it is possible to rapidly generate a linkage map containing several hundred single-nucleotide polymorphism markers in the doubled haploid mapping population of Avalon × Cadenza. © 2011 The Authors. Plant Biotechnology Journal © 2011 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  13. Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties.

    Science.gov (United States)

    Wang, Ke; Liu, Huiyun; Du, Lipu; Ye, Xingguo

    2017-05-01

    Genotype specificity is a big problem lagging the development of efficient hexaploid wheat transformation system. Increasingly, the biosecurity of genetically modified organisms is garnering public attention, so the generation of marker-free transgenic plants is very important to the eventual potential commercial release of transgenic wheat. In this study, 15 commercial Chinese hexaploid wheat varieties were successfully transformed via an Agrobacterium-mediated method, with efficiency of up to 37.7%, as confirmed by the use of Quickstix strips, histochemical staining, PCR analysis and Southern blotting. Of particular interest, marker-free transgenic wheat plants from various commercial Chinese varieties and their F 1 hybrids were successfully obtained for the first time, with a frequency of 4.3%, using a plasmid harbouring two independent T-DNA regions. The average co-integration frequency of the gus and the bar genes located on the two independent T-DNA regions was 49.0% in T 0 plants. We further found that the efficiency of generating marker-free plants was related to the number of bar gene copies integrated in the genome. Marker-free transgenic wheat plants were identified in the progeny of three transgenic lines that had only one or two bar gene copies. Moreover, silencing of the bar gene was detected in 30.7% of T 1 positive plants, but the gus gene was never found to be silenced in T 1 plants. Bisulphite genomic sequencing suggested that DNA methylation in the 35S promoter of the bar gene regulatory region might be the main reason for bar gene silencing in the transgenic plants. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J; Belfield, Eric J; Jiang, Caifu; Brown, Carly; Mithani, Aziz; Harberd, Nicholas P

    2014-01-01

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution 'nullisomic-tetrasomic' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  15. Patterns of homoeologous gene expression shown by RNA sequencing in hexaploid bread wheat.

    KAUST Repository

    Leach, Lindsey J

    2014-04-11

    BACKGROUND: Bread wheat (Triticum aestivum) has a large, complex and hexaploid genome consisting of A, B and D homoeologous chromosome sets. Therefore each wheat gene potentially exists as a trio of A, B and D homoeoloci, each of which may contribute differentially to wheat phenotypes. We describe a novel approach combining wheat cytogenetic resources (chromosome substitution \\'nullisomic-tetrasomic\\' lines) with next generation deep sequencing of gene transcripts (RNA-Seq), to directly and accurately identify homoeologue-specific single nucleotide variants and quantify the relative contribution of individual homoeoloci to gene expression. RESULTS: We discover, based on a sample comprising ~5-10% of the total wheat gene content, that at least 45% of wheat genes are expressed from all three distinct homoeoloci. Most of these genes show strikingly biased expression patterns in which expression is dominated by a single homoeolocus. The remaining ~55% of wheat genes are expressed from either one or two homoeoloci only, through a combination of extensive transcriptional silencing and homoeolocus loss. CONCLUSIONS: We conclude that wheat is tending towards functional diploidy, through a variety of mechanisms causing single homoeoloci to become the predominant source of gene transcripts. This discovery has profound consequences for wheat breeding and our understanding of wheat evolution.

  16. Genome interplay in the grain transcriptome of hexaploid bread wheat.

    Science.gov (United States)

    Pfeifer, Matthias; Kugler, Karl G; Sandve, Simen R; Zhan, Bujie; Rudi, Heidi; Hvidsten, Torgeir R; Mayer, Klaus F X; Olsen, Odd-Arne

    2014-07-18

    Allohexaploid bread wheat (Triticum aestivum L.) provides approximately 20% of calories consumed by humans. Lack of genome sequence for the three homeologous and highly similar bread wheat genomes (A, B, and D) has impeded expression analysis of the grain transcriptome. We used previously unknown genome information to analyze the cell type-specific expression of homeologous genes in the developing wheat grain and identified distinct co-expression clusters reflecting the spatiotemporal progression during endosperm development. We observed no global but cell type- and stage-dependent genome dominance, organization of the wheat genome into transcriptionally active chromosomal regions, and asymmetric expression in gene families related to baking quality. Our findings give insight into the transcriptional dynamics and genome interplay among individual grain cell types in a polyploid cereal genome. Copyright © 2014, American Association for the Advancement of Science.

  17. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome

    Directory of Open Access Journals (Sweden)

    Zhang Li

    2012-08-01

    Full Text Available Abstract Background A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Results Of the 606 markers used to assemble the genetic map, 588 (97% were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT markers, 72 simple sequence repeat (SSR, one insertion site-based polymorphism (ISBP, and two high-molecular-weight glutenin subunit (HMW-GS markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL, including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. Conclusions A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of

  18. Genetic map of Triticum turgidum based on a hexaploid wheat population without genetic recombination for D genome.

    Science.gov (United States)

    Zhang, Li; Luo, Jiang-Tao; Hao, Ming; Zhang, Lian-Quan; Yuan, Zhong-Wei; Yan, Ze-Hong; Liu, Ya-Xi; Zhang, Bo; Liu, Bao-Long; Liu, Chun-Ji; Zhang, Huai-Gang; Zheng, You-Liang; Liu, Deng-Cai

    2012-08-13

    A synthetic doubled-haploid hexaploid wheat population, SynDH1, derived from the spontaneous chromosome doubling of triploid F1 hybrid plants obtained from the cross of hybrids Triticum turgidum ssp. durum line Langdon (LDN) and ssp. turgidum line AS313, with Aegilops tauschii ssp. tauschii accession AS60, was previously constructed. SynDH1 is a tetraploidization-hexaploid doubled haploid (DH) population because it contains recombinant A and B chromosomes from two different T. turgidum genotypes, while all the D chromosomes from Ae. tauschii are homogenous across the whole population. This paper reports the construction of a genetic map using this population. Of the 606 markers used to assemble the genetic map, 588 (97%) were assigned to linkage groups. These included 513 Diversity Arrays Technology (DArT) markers, 72 simple sequence repeat (SSR), one insertion site-based polymorphism (ISBP), and two high-molecular-weight glutenin subunit (HMW-GS) markers. These markers were assigned to the 14 chromosomes, covering 2048.79 cM, with a mean distance of 3.48 cM between adjacent markers. This map showed good coverage of the A and B genome chromosomes, apart from 3A, 5A, 6A, and 4B. Compared with previously reported maps, most shared markers showed highly consistent orders. This map was successfully used to identify five quantitative trait loci (QTL), including two for spikelet number on chromosomes 7A and 5B, two for spike length on 7A and 3B, and one for 1000-grain weight on 4B. However, differences in crossability QTL between the two T. turgidum parents may explain the segregation distortion regions on chromosomes 1A, 3B, and 6B. A genetic map of T. turgidum including 588 markers was constructed using a synthetic doubled haploid (SynDH) hexaploid wheat population. Five QTLs for three agronomic traits were identified from this population. However, more markers are needed to increase the density and resolution of this map in the future study.

  19. The repair/repopulation effects ratio in the postirradiation recovery of hexaploid wheat varieties contrast by their radioresistance

    International Nuclear Information System (INIS)

    Selezneva, E.M.; Sarapul'tsev, B.I.

    1988-01-01

    The cytogenic and morphometrical distinctions between hexaploid wheat varieties contrast by their radioresistance during the postirradiation period are attributed to the differential activity of caffeine-dependent repair processes; they are not a reliable function of the rate of aberrant cell elimination

  20. The concentration ratio of alkaline earth elements calcium, barium and strontium in grains of diploid, tetraploid and hexaploid wheat

    Directory of Open Access Journals (Sweden)

    Maksimović Ivana V.

    2017-01-01

    Full Text Available Even though calcium (Ca, strontium (Sr and barium (Ba belong to the same group of the periodic table of elements, and thus have similar chemical features, their importance for plants differs greatly. Since plants do not have the ability to completely dis­criminate between essential (e.g. Ca and non-essential elements (e.g. Sr and Ba, they read­ily take all of them up from soil solution, which is reflected in the ratios of concentrations of those elements in plant tissues, and it influences their nutritive characteristics. The ability of plant species and genotypes to take up and accumulate chemical elements in their different tissues is related to their genetic background. However, differences in chemical composition are the least reflected in their reproductive parts. Hence, the aim of this study was to evaluate ratios of concentrations of Ca, Sr and Ba in the whole grain of diploid and tetraploid wheat - ancestors of common wheat, as well as in hexaploid commercial cultivars, grown in the field, at the same location, over a period of three years. The investigated genotypes accumulated Ca, Sr and Ba at different levels, which is reflected in the ratio of their concentrations in the grain. The lowest ratio was established between Ba and Sr, followed by Ca and Ba, while the highest ratio was between Ca and Sr. Moreover, the results have shown that the year of study, genotype and the combination highly significantly affected the ratio of the concentration Ca:Sr, Ca:Ba, and Ba:Sr.

  1. Possible origin of Triticum petropavlovskyi based on cytological analyses of crosses between T. petropavlovskyi and tetraploid, hexaploid, and synthetic hexaploid (SHW-DPW) wheat accessions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.; Song, J.; Du, W.; Xu, L.Y.; Yu, G.R.

    2016-07-01

    Intraspecific hybridization between Triticum petropavlovskyi Udacz. et Migusch., synthetic hexaploid wheat (SHW-DPW), and tetraploid and hexaploid wheat, was performed to collect data on seed set, fertility of F1 hybrid, and meiotic pairing configuration, aiming to evaluate the possible origin of T. petropavlovskyi. Our data showed that (1) seed set of crosses T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Chinese Spring was significantly high; (2) fertility of hybrids T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum ssp. yunnanense was higher than that of the other hybrids; (3) fertility of F1 hybrids SHW-DPW × T. dicoccoides and SHW-DPW×T. aestivum ssp. tibetanum was significantly high; and (4) c-value of T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Changning white wheat was also significantly high. The results indicate that the probable origin of T. petropavlovskyi is divergence from a natural cross between T. aestivum and T. polonicum, via either spontaneous introgression or breeding effort.

  2. Genetic and epigenetic alteration among three homoeologous genes of a class E MADS box gene in hexaploid wheat.

    Science.gov (United States)

    Shitsukawa, Naoki; Tahira, Chikako; Kassai, Ken-Ichiro; Hirabayashi, Chizuru; Shimizu, Tomoaki; Takumi, Shigeo; Mochida, Keiichi; Kawaura, Kanako; Ogihara, Yasunari; Murai, Koji

    2007-06-01

    Bread wheat (Triticum aestivum) is a hexaploid species with A, B, and D ancestral genomes. Most bread wheat genes are present in the genome as triplicated homoeologous genes (homoeologs) derived from the ancestral species. Here, we report that both genetic and epigenetic alterations have occurred in the homoeologs of a wheat class E MADS box gene. Two class E genes are identified in wheat, wheat SEPALLATA (WSEP) and wheat LEAFY HULL STERILE1 (WLHS1), which are homologs of Os MADS45 and Os MADS1 in rice (Oryza sativa), respectively. The three wheat homoeologs of WSEP showed similar genomic structures and expression profiles. By contrast, the three homoeologs of WLHS1 showed genetic and epigenetic alterations. The A genome WLHS1 homoeolog (WLHS1-A) had a structural alteration that contained a large novel sequence in place of the K domain sequence. A yeast two-hybrid analysis and a transgenic experiment indicated that the WLHS1-A protein had no apparent function. The B and D genome homoeologs, WLHS1-B and WLHS1-D, respectively, had an intact MADS box gene structure, but WLHS1-B was predominantly silenced by cytosine methylation. Consequently, of the three WLHS1 homoeologs, only WLHS1-D functions in hexaploid wheat. This is a situation where three homoeologs are differentially regulated by genetic and epigenetic mechanisms.

  3. Molecular markers based identification of diversity for drought tolerance in bread wheat varieties and synthetic hexaploids.

    Science.gov (United States)

    Shah, Zahid Hussain; Munir, Muhammad; Kazi, Abdul Mujeeb; Mujtaba, Tahir; Ahmed, Zaheer

    2009-01-01

    The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.

  4. Genetics of leaf rust-resistant mutant WH 147-LM-1 in hexaploid wheat variety WH 147

    International Nuclear Information System (INIS)

    Reddy, V.R.K.; Viswanathan, P.

    1999-01-01

    By applying gamma rays, EMS and their combination in hexaploid wheat variety WH 147, a total of 20 mutants (0.0226%) exhibiting complete leaf rust resistance were isolated from segregating M2 rows.When one of the rust-resistant mutants, WH 147-LM-1 was crossed with the universally susceptible, suggesting that the mutant character is controlled by one dominant gene and one recessive gene.The F2 plants derived by crossing the mutant WH 147-LM with seven near-isogenic wheat lines showed segregation for susceptibility, indicating that the mutant character was indeed generated through induced mutations

  5. Molecular cloning and characterization of two novel genes from hexaploid wheat that encode double PR-1 domains coupled with a receptor-like protein kinase

    Science.gov (United States)

    Hexaploid wheat (Triticum aestivum L.) contains at least 23 TaPr-1 genes encoding the group 1 pathogenesis-related (PR-1) proteins as identified in our previous work. Here we report the cloning and characterization of TaPr-1-rk1 and TaPr-1-rk2, two novel genes closely related to the wheat PR-1 famil...

  6. Simultaneous Transfer of Leaf Rust and Powdery Mildew Resistance Genes from Hexaploid Triticale Cultivar Sorento into Bread Wheat.

    Science.gov (United States)

    Li, Feng; Li, Yinghui; Cao, Lirong; Liu, Peiyuan; Geng, Miaomiao; Zhang, Qiang; Qiu, Lina; Sun, Qixin; Xie, Chaojie

    2018-01-01

    Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici , and wheat leaf rust, caused by Puccinia triticina Eriks, are two important diseases that severely threaten wheat production. Sorento, a hexaploid triticale cultivar from Poland, shows high resistance to the wheat powdery mildew isolate E09 and the leaf rust isolate PHT in Beijing, China. To introduce resistance genes into common wheat, Sorento was crossed with wheat line Xuezao, which is susceptible to both diseases, and the F 1 hybrids were then backcrossed with Xuezao as the recurrent male parent. By marker analysis, we demonstrate that the long arm of the 2R (2RL) chromosome confers resistance to both the leaf rust and powdery mildew isolates at adult-plant and seedling stages, while the long arm of 4R (4RL) confers resistance only to powdery mildew at both stages. The chromosomal composition of BC 2 F 3 plants containing 2R or 2RL and 4R or 4RL in the form of substitution and translocation were confirmed by GISH (genomic in situ hybridization) and FISH (fluorescence in situ hybridization). Monosomic and disomic substitutions of a wheat chromosome with chromosome 2R or 4R, as well as one 4RS-4DL/4DS-4RL reciprocal translocation homozigote and one 2RL-1DL translocation hemizigote, were recovered. Such germplasms are of great value in wheat improvement.

  7. Occurrence of 'super soft' wheat kernel texture in hexaploid and tetraploid wheats

    Science.gov (United States)

    Wheat kernel texture is a key trait that governs milling performance, flour starch damage, flour particle size, flour hydration properties, and baking quality. Kernel texture is commonly measured using the Perten Single Kernel Characterization System (SKCS). The SKCS returns texture values (Hardness...

  8. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  9. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L. varieties.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  10. The influence of nalidixic acid and nicotinamide of the radiation-induced cytogenetic injury to hexaploid wheat varities contrast by radioresistance

    International Nuclear Information System (INIS)

    Selezneva, E.M.; Sarapul'tsev, B.I.

    1990-01-01

    Nalidixic acid modifies the cytogenetic injury when only applied to seeds of a radiosensitive variety, Moskovskaya 35. The radioprotective effect of nicotinamide on both radiosensitive and radioresistant hexaploid wheat varities is observed being dependent on the extent which the genetic apparatus is impaired

  11. Differential response of hexaploid and tetraploid wheat to interactive effects of elevated [CO2] and low phosphorus.

    Science.gov (United States)

    Pandey, Renu; Lal, Milan Kumar; Vengavasi, Krishnapriya

    2018-06-04

    Hexaploid wheat is more responsive than tetraploid to the interactive effects of elevated [CO 2 ] and low P in terms of carboxylate efflux, enzyme activity and gene expression (TaPT1 and TaPAP). Availability of mineral nutrients to plants under changing climate has become a serious challenge to food security and economic development. An understanding of how elevated [CO 2 ] influences phosphorus (P) acquisition processes at the whole-plant level would be critical in selecting cultivars as well as to maintain optimum yield in limited-P conditions. Wheat (Triticum aestivum and T. durum) grown hydroponically with sufficient and low P concentration were exposed to elevated and ambient [CO 2 ]. Improved dry matter partitioning towards root resulted in increased root-to-shoot ratio, root length, volume, surface area, root hair length and density at elevated [CO 2 ] with low P. Interaction of low P and [CO 2 ] induced activity of enzymes (phosphoenolpyruvate carboxylase, malate dehydrogenase and citrate synthase) in root tissue resulting in twofold increase in carboxylates and acid phosphatase exudation. Physiological absorption capacity of roots showed that plants alter their uptake kinetics by increasing affinity (low K m ) in response to elevated [CO 2 ] under low P supply. Increased relative expression of genes, purple acid phosphatase (TaPAP) and high-affinity Pi transporter (TaPT1) in roots induced by elevated [CO 2 ] and low P supported our physiological observations. Hexaploid wheat (PBW-396) being more responsive to elevated [CO 2 ] at low P supply as compared to tetraploid (PDW-233) necessitates the ploidy effect to be explored further which might be advantageous under changing climate.

  12. Short periods of high temperature during meiosis prevent normal meiotic progression and reduce grain number in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Draeger, Tracie; Moore, Graham

    2017-09-01

    Exposure of wheat to high temperatures during male meiosis prevents normal meiotic progression and reduces grain number. We define a temperature-sensitive period and link heat tolerance to chromosome 5D. This study assesses the effects of heat on meiotic progression and grain number in hexaploid wheat (Triticum aestivum L. var. Chinese Spring), defines a heat-sensitive stage and evaluates the role of chromosome 5D in heat tolerance. Plants were exposed to high temperatures (30 or 35 °C) in a controlled environment room for 20-h periods during meiosis and the premeiotic interphase just prior to meiosis. Examination of pollen mother cells (PMCs) from immature anthers immediately before and after heat treatment enabled precise identification of the developmental phases being exposed to heat. A temperature-sensitive period was defined, lasting from premeiotic interphase to late leptotene, during which heat can prevent PMCs from progressing through meiosis. PMCs exposed to 35 °C were less likely to progress than those exposed to 30 °C. Grain number per spike was reduced at 30 °C, and reduced even further at 35 °C. Chinese Spring nullisomic 5D-tetrasomic 5B (N5DT5B) plants, which lack chromosome 5D, were more susceptible to heat during premeiosis-leptotene than Chinese Spring plants with the normal (euploid) chromosome complement. The proportion of plants with PMCs progressing through meiosis after heat treatment was lower for N5DT5B plants than for euploids, but the difference was not significant. However, following exposure to 30 °C, in euploid plants grain number was reduced (though not significantly), whereas in N5DT5B plants the reduction was highly significant. After exposure to 35 °C, the reduction in grain number was highly significant for both genotypes. Implications of these findings for the breeding of thermotolerant wheat are discussed.

  13. Novel genetic diversity of the alien D-genome synthetic hexaploid wheat (2n=6x=42, Aabbdd) germplasm for various phenology traits

    International Nuclear Information System (INIS)

    Masood, R.M.; Bibi, K.; Jamil, M.

    2016-01-01

    The current study evaluates genetic penetrance and expressivity of an alien genome introgression in a set of 117 primary synthetic hexaploid wheat (SHW) accessions. These SHW have originated from durum wheat /accessions with three sets of durum wheat cultivars ALTAR 84, D67.2 and CERCETA as the female and diverse Ae. tauschii accessions as the pollen parents. Diversity of the 12 important traits (Growth habit, pigmentation, chlorophyll content, leaf area index, crop digital ground cover, awn size, awn length, and several seed digital imaging parameters)revealed significant variation for the respective traits, leading to the conclusion that Ae. tauschii accessions have tremendous diversity than the durum controls. Further, the value deviations within each attribute had a range of being lower or higher than their durum wheat female parents and these observations allowed us to use the variations as selective sieves and narrow down the desirable SHW that would be advantageous to exploit for wheat breeding and cultivar improvement programs. Selections were made and a group of 41SHW accessions were identified that will after an intermediate DNA diversity evaluation form a crisper final set for user friendly utilization. The range of selections shows multiple trait advantages for exploitation in both irrigated and rain-fed conditions. This pivotal study sets the foundation to better define the D genome SHW for efficient utilization in future research investigations. Our results have implications in widening the genetic base of hexaploid bread wheat and may facilitate the development of agronomically desirable wheat cultivars. (author)

  14. Molecular mapping of stripe rust resistance gene YrSE5756 in synthetic hexaploid wheat and its transfer to common wheat

    International Nuclear Information System (INIS)

    Wang, Y.J.; Wang, C.Y.; Zhang, H.

    2015-01-01

    Synthetic hexaploid wheat is an important germplasm resource for transfer of beneficial genes from alien species to common wheat (Triticum aestivum L.). Synthetic hexaploid wheat SE5756 confers a high level of resistance against a wide range of races of Puccinia striiformis West. f. sp. tritici Eriks. et Henn.(Pst). The objectives of this study were to determine the inheritance pattern, adjacent molecular markers, and chromosomal location of the stripe rust resistance gene in SE5756 and to develop new germplasm. We constructed a segregating population of 116 F2 plants and corresponding F2:3 families from a cross between SE5756 and Xinong979 with Pst races CYR32. Genetic analysis revealed that a single dominant gene, tentatively designated as YrSE5756, was responsible for seedling stage stripe rust resistance in SE5756. A genetic map, encompassing Xwmc626, Xwmc269, Xgwm11, Xbarx137, Xwmc419, Xwmc85, Xgpw5237, Xwmc134, WE173, Xwmc631, and YrSE5756, spanned 70.1 cM on chromosome 1BS. Xwmc419 and Xwmc85 were flanking markers tightly linked to YrSE5756 at genetic distances of 2.3 and 1.8 cM. Typical adult plant responses of the SE5756, varieties of the carrier Yr10 and Yr15, Chuanmai 42 (Yr24/Yr26), Yuanfeng 175 (Yr24/Yr26) and Huixianhong resistant to mixture Pst races (CYR32, CYR33 and V26) were experimented. The results showed that YrSE5756 was likely a new resistance stripe rust gene different from Yr24/Yr26, Yr10 and Yr15. From cross and backcross populations of SE5756/Xinong 979, we developed four new wheat lines with large seeds, stripe rust resistance, and improved agronomic traits: N07178-1, N07178-2, N08256-1, and N08256-2. These new germplasm lines could serve as sources of resistance to stripe rust in wheat breeding. SE5756 has the very vital significance in the development of breeding and expand our resistance germplasm resource gene pool. (author)

  15. Cytogenetics and immature embryo culture at Embrapa Trigo breeding program: transfer of disease resistance from related species by artificial resynthesis of hexaploid wheat (Triticum aestivum L. em. Thell

    Directory of Open Access Journals (Sweden)

    Maria Irene Baggio de Moraes Fernandes

    2000-12-01

    Full Text Available Worldwide wheat (Triticum aestivum L. em. Thell, 2n = 6X = 42, AABBDD breeding programs aim to reorganize genotypes to achieve better yields, environmental adaptation and food quality. The necessary interdisciplinarity for breeding purposes requires an accurate choice of the most appropriate cellular and/or molecular strategies available to be integrated with agronomic approaches in order to overcome the genetic limitation of each cultivated species, at each agroecosystem. Cytogenetics has given a great contribution to wheat genetic studies and breeding, due to viability of chromosomal variants because of homoeology among genomes in this allohexaploid species and the genus Triticum. The level of development of cytogenetic techniques achieved over the last 60 years has set wheat apart from other cereal crops in terms of possibilities to introduce genetic material from other species. Cytogenetic approaches have been extensively used in chromosomal mapping and/or resistance gene transference from tribe Triticeae-related species. Monosomic analysis, entire chromosomes engineered through single additions and/or substitutions, reciprocal translocation through radiation or manipulation of homoeologous pairing, as well as synthesis of new amphiploids to allow homologous recombination by chiasmata evolved considerably since the past decades. The association of tissue culture and molecular biology techniques provides bread wheat breeding programs with a powerful set of biotechnological tools. However, knowledge on genetic system components, cytotaxonomical relationships, cytogenetic structure and evolutionary history of wheat species cannot be neglected. This information indicates the appropriate strategy to avoid isolation mechanisms in interspecific or intergeneric crosses, according to the genome constitution of the species the desired gene is to be transferred from. The development of amphiploids as "bridge" species is one of the available procedures

  16. The defence?associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias

    OpenAIRE

    Powell, Jonathan J.; Fitzgerald, Timothy L.; Stiller, Jiri; Berkman, Paul J.; Gardiner, Donald M.; Manners, John M.; Henry, Robert J.; Kazan, Kemal

    2016-01-01

    Summary Bread wheat (Triticum aestivum L.) is an allopolyploid species containing three ancestral genomes. Therefore, three homoeologous copies exist for the majority of genes in the wheat genome. Whether different homoeologs are differentially expressed (homoeolog expression bias) in response to biotic and abiotic stresses is poorly understood. In this study, we applied a RNA?seq approach to analyse homoeolog?specific global gene expression patterns in wheat during infection by the fungal pa...

  17. Overexpression of three TaEXPA1 homoeologous genes with distinct expression divergence in hexaploid wheat exhibit functional retention in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Zhaorong Hu

    Full Text Available Common wheat is a hexaploid species with most of the genes present as triplicate homoeologs. Expression divergences of homoeologs are frequently observed in wheat as well as in other polyploid plants. However, little is known about functional variances among homologous genes arising from polyploidy. Expansins play diverse roles in plant developmental processes related to the action of cell wall loosening. Expression of the three TaEXPA1 homoeologs varied dynamically at different stages and organs, and epigenetic modifications contribute to the expression divergence of three TaEXPA1 homoeologs during wheat development. Nevertheless, their functions remain to be clarified. We found that over expression of TaEXPA1-A, -B and -D produced similar morphological changes in transgenic Arabidopsis plants, including increased germination and growth rate during seedling and adult stages, indicating that the proteins encoded by these three wheat TaEXPA1 homoeologs have similar (or conserved functions in Arabidopsis. Collectively, our present study provided an example of a set of homoeologous genes expression divergence in different developmental stages and organs in hexaploid wheat but functional retention in transgenic Arabidopsis plants.

  18. Dynamic evolution of alpha-gliadin prolamin gene family in homeologous genomes of hexaploid wheat

    Science.gov (United States)

    Bread wheat is an allohexaploid species containing the three closely related A, B, and D subgenomes. Homeologous Gli-2 loci located on chromosomes 6A, 6B and 6D encode complex groups of alpha-gliadin seed storage proteins that contribute to the functional properties of wheat flour, but also trigger ...

  19. Microarray expression analysis of meiosis and microsporogenesis in hexaploid bread wheat

    Directory of Open Access Journals (Sweden)

    Langridge Peter

    2006-10-01

    Full Text Available Abstract Background Our understanding of the mechanisms that govern the cellular process of meiosis is limited in higher plants with polyploid genomes. Bread wheat is an allohexaploid that behaves as a diploid during meiosis. Chromosome pairing is restricted to homologous chromosomes despite the presence of homoeologues in the nucleus. The importance of wheat as a crop and the extensive use of wild wheat relatives in breeding programs has prompted many years of cytogenetic and genetic research to develop an understanding of the control of chromosome pairing and recombination. The rapid advance of biochemical and molecular information on meiosis in model organisms such as yeast provides new opportunities to investigate the molecular basis of chromosome pairing control in wheat. However, building the link between the model and wheat requires points of data contact. Results We report here a large-scale transcriptomics study using the Affymetrix wheat GeneChip® aimed at providing this link between wheat and model systems and at identifying early meiotic genes. Analysis of the microarray data identified 1,350 transcripts temporally-regulated during the early stages of meiosis. Expression profiles with annotated transcript functions including chromatin condensation, synaptonemal complex formation, recombination and fertility were identified. From the 1,350 transcripts, 30 displayed at least an eight-fold expression change between and including pre-meiosis and telophase II, with more than 50% of these having no similarities to known sequences in NCBI and TIGR databases. Conclusion This resource is now available to support research into the molecular basis of pairing and recombination control in the complex polyploid, wheat.

  20. Genome-wide identification and expression characterization of ABCC-MRP transporters in hexaploid wheat.

    Science.gov (United States)

    Bhati, Kaushal K; Sharma, Shivani; Aggarwal, Sipla; Kaur, Mandeep; Shukla, Vishnu; Kaur, Jagdeep; Mantri, Shrikant; Pandey, Ajay K

    2015-01-01

    The ABCC multidrug resistance associated proteins (ABCC-MRP), a subclass of ABC transporters are involved in multiple physiological processes that include cellular homeostasis, metal detoxification, and transport of glutathione-conjugates. Although they are well-studied in humans, yeast, and Arabidopsis, limited efforts have been made to address their possible role in crop like wheat. In the present work, 18 wheat ABCC-MRP proteins were identified that showed the uniform distribution with sub-families from rice and Arabidopsis. Organ-specific quantitative expression analysis of wheat ABCC genes indicated significantly higher accumulation in roots (TaABCC2, TaABCC3, and TaABCC11 and TaABCC12), stem (TaABCC1), leaves (TaABCC16 and TaABCC17), flag leaf (TaABCC14 and TaABCC15), and seeds (TaABCC6, TaABCC8, TaABCC12, TaABCC13, and TaABCC17) implicating their role in the respective tissues. Differential transcript expression patterns were observed for TaABCC genes during grain maturation speculating their role during seed development. Hormone treatment experiments indicated that some of the ABCC genes could be transcriptionally regulated during seed development. In the presence of Cd or hydrogen peroxide, distinct molecular expression of wheat ABCC genes was observed in the wheat seedlings, suggesting their possible role during heavy metal generated oxidative stress. Functional characterization of the wheat transporter, TaABCC13 a homolog of maize LPA1 confirms its role in glutathione-mediated detoxification pathway and is able to utilize adenine biosynthetic intermediates as a substrate. This is the first comprehensive inventory of wheat ABCC-MRP gene subfamily.

  1. Behavior of durum wheat genotypes under normal irrigation and ...

    African Journals Online (AJOL)

    Behavior of durum wheat genotypes under normal irrigation and drought stress conditions in the greenhouse. ... African Journal of Biotechnology ... Genotypes were grouped in cluster analysis (using Ward's method) based on Yp, Ys and ...

  2. Non-Additive Expression of Homoeologous Genes is Established Upon Polyploidization in Hexaploid Wheat

    Science.gov (United States)

    Traditional views on the potential genetic effects of polyploidy in allohexaploid wheat (Triticum aestivum L.) have primarily emphasized aspects of greater coding sequence variation and the enhanced potential to acquire new gene functions through mutation of redundant loci. The extent and significa...

  3. Discovery of quantitative trait loci for crossability from a synthetic wheat genotype

    Institute of Scientific and Technical Information of China (English)

    Li Zhang; Jin Wang; Ronghua Zhou; Jizeng Jia

    2011-01-01

    Crossability between wheat and rye is an important trait for wheat improvement.No quantitative trait loci (QTLs) were detected from wheat ancestors previously.The objectives of this study were to dissect the QTLs for crossability using 111 introgression lines (ILs) derived from synthetic hexaploid wheat.A total of 1275 SSR markers were screened for polymorphism between the two parents,and 552 markers of them displayed polymorphism,of which 64 were selected for genotyping the 111 BC5F6 ILs.Field trials were performed in a Latinized α-lattice design in Luoyang and Jiaozuo of Henan Province of China in 2007-2008 and 2008-2009 cropping seasons.One-way ANOVA and interval mapping (IM) analysis were used to detect QTL for crossability between wheat and rye.A total of 13 putative QTLs were detected.Five of them,QCa.caas.1A,QCa.caas.2D,QCa.caas.4B,QCa.caas.5B and QCa.caas.6A,were detected in both trials and three of them,QCa.caas.2D,QCa.caas.4B and QCa.caas.6A,were novel.The positive effect allele of the four QTLs came from the donor parent Am3 except QCa.caas.6A that came from the recurrent parent Laizhou953.ILs with both higher positive effect alleles and favorable agronomic traits developed in present study are elite germplasm for wide crossing in wheat.Results from the current study suggest that wheat ancestors can be rich in new sources of crossability genes.

  4. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome

    Czech Academy of Sciences Publication Activity Database

    Mayer, K. F. X.; Rogers, J.; Doležel, Jaroslav; Pozniak, C.; Feuillet, C.; Lukaszewski, A.J.; Sourdille, P.; Kubaláková, Marie; Čihalíková, Jarmila; Dubská, Zdeňka; Vrána, Jan; Šperková, Romana; Šimková, Hana; Choulet, F.; Stein, N.; Praud, S.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 R&D Projects: GA ČR GBP501/12/G090; GA ČR(CZ) GAP501/12/2554; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : GENE-EXPRESSION * POLYPLOID WHEAT * AEGILOPS-TAUSCHII Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=CCC&DestLinkType=FullRecord&UT=000339400700040

  5. Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat.

    Science.gov (United States)

    Brinton, Jemima; Simmonds, James; Minter, Francesca; Leverington-Waite, Michelle; Snape, John; Uauy, Cristobal

    2017-08-01

    Crop yields must increase to address food insecurity. Grain weight, determined by grain length and width, is an important yield component, but our understanding of the underlying genes and mechanisms is limited. We used genetic mapping and near isogenic lines (NILs) to identify, validate and fine-map a major quantitative trait locus (QTL) on wheat chromosome 5A associated with grain weight. Detailed phenotypic characterisation of developing and mature grains from the NILs was performed. We identified a stable and robust QTL associated with a 6.9% increase in grain weight. The positive interval leads to 4.0% longer grains, with differences first visible 12 d after fertilization. This grain length effect was fine-mapped to a 4.3 cM interval. The locus also has a pleiotropic effect on grain width (1.5%) during late grain development that determines the relative magnitude of the grain weight increase. Positive NILs have increased maternal pericarp cell length, an effect which is independent of absolute grain length. These results provide direct genetic evidence that pericarp cell length affects final grain size and weight in polyploid wheat. We propose that combining genes that control distinct biological mechanisms, such as cell expansion and proliferation, will enhance crop yields. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  6. Decomposing Additive Genetic Variance Revealed Novel Insights into Trait Evolution in Synthetic Hexaploid Wheat

    Directory of Open Access Journals (Sweden)

    Abdulqader Jighly

    2018-02-01

    Full Text Available Whole genome duplication (WGD is an evolutionary phenomenon, which causes significant changes to genomic structure and trait architecture. In recent years, a number of studies decomposed the additive genetic variance explained by different sets of variants. However, they investigated diploid populations only and none of the studies examined any polyploid organism. In this research, we extended the application of this approach to polyploids, to differentiate the additive variance explained by the three subgenomes and seven sets of homoeologous chromosomes in synthetic allohexaploid wheat (SHW to gain a better understanding of trait evolution after WGD. Our SHW population was generated by crossing improved durum parents (Triticum turgidum; 2n = 4x = 28, AABB subgenomes with the progenitor species Aegilops tauschii (syn Ae. squarrosa, T. tauschii; 2n = 2x = 14, DD subgenome. The population was phenotyped for 10 fungal/nematode resistance traits as well as two abiotic stresses. We showed that the wild D subgenome dominated the additive effect and this dominance affected the A more than the B subgenome. We provide evidence that this dominance was not inflated by population structure, relatedness among individuals or by longer linkage disequilibrium blocks observed in the D subgenome within the population used for this study. The cumulative size of the three homoeologs of the seven chromosomal groups showed a weak but significant positive correlation with their cumulative explained additive variance. Furthermore, an average of 69% for each chromosomal group's cumulative additive variance came from one homoeolog that had the highest explained variance within the group across all 12 traits. We hypothesize that structural and functional changes during diploidization may explain chromosomal group relations as allopolyploids keep balanced dosage for many genes. Our results contribute to a better understanding of trait evolution mechanisms in polyploidy

  7. Evaluation of Freezing Tolerance of Hexaploid Triticale Genotypes under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad, NEZAMI

    2010-06-01

    Full Text Available In order to evaluate freezing tolerance of different triticale (X Triticosecale Wittmack genotypes, an experiment was carried out under controlled conditions in 2007 and 2008 at college of agriculture, Ferdowsi University of Mashhad. In this study seeven triticale genotypes (�Juanilo-92�, �ET-82-15�, �ET-82-8�, �ET-83-20�, �ET-83-19�, �ET-83-18� and �ET-79-17�, across six temperatures (0�C, -4�C, -8�C, -12�C, -16�C and -20�C were evaluated within a factorial-completely randomized design with three replications. Plants were kept until 2 leaf stage in chamber with temperature of 20/15�C (day/night and 12.5 h photoperiod. At the end of this stage, plants were under acclimation for three weeks. After exposing to acclimation freezing the cell membrane integrity was measured through electrolyte leakage (EL and the lethal temperature (LT50 of samples was measured. After the exposure to freezing temperatures the samples were transferred to the greenhouse. Survival percentage, plant height, leaf area and number, chlorophyll content, and plant dry weight were determined after 3 weeks. Results showed that the effect of different freezing temperature and genotypes were significant on all plant characteristics. As temperature decreased, %EL of all genotypes was increased. Minimum and Maximum EL % in leaf and crown were observed at 0�C (21% and -20�C (88.5%. �ET-79-17� and �Juanilo-92� genotypes showed the highest EL% (55.5% and 44.8% and �ET-83-20� the lowest EL% (47.3% and 41.2% in leaf and crown. Dry weight and leaf area decreased by 48% and 42% respectively compared to non frozen control plants. �ET-79-17� and �ET-82-15� genotypes showed the highest dry weight (83.8 mg and highest leaf area (14.3 cm2 respectively and �ET-83-20� cultivar showed the lowest dry weight and leaf area (58.2 mg and 8.7 cm2.

  8. Evaluation of Freezing Tolerance of Hexaploid Triticale Genotypes under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Ahmad, NEZAMI

    2010-06-01

    Full Text Available In order to evaluate freezing tolerance of different triticale (X Triticosecale Wittmack genotypes, an experiment was carried out under controlled conditions in 2007 and 2008 at college of agriculture, Ferdowsi University of Mashhad. In this study seeven triticale genotypes (Juanilo-92, ET-82-15, ET-82-8, ET-83-20, ET-83-19, ET-83-18 and ET-79-17, across six temperatures (0C, -4C, -8C, -12C, -16C and -20C were evaluated within a factorial-completely randomized design with three replications. Plants were kept until 2 leaf stage in chamber with temperature of 20/15C (day/night and 12.5 h photoperiod. At the end of this stage, plants were under acclimation for three weeks. After exposing to acclimation freezing the cell membrane integrity was measured through electrolyte leakage (EL and the lethal temperature (LT50 of samples was measured. After the exposure to freezing temperatures the samples were transferred to the greenhouse. Survival percentage, plant height, leaf area and number, chlorophyll content, and plant dry weight were determined after 3 weeks. Results showed that the effect of different freezing temperature and genotypes were significant on all plant characteristics. As temperature decreased, %EL of all genotypes was increased. Minimum and Maximum EL % in leaf and crown were observed at 0C (21% and -20C (88.5%. ET-79-17 and Juanilo-92 genotypes showed the highest EL% (55.5% and 44.8% and ET-83-20 the lowest EL% (47.3% and 41.2% in leaf and crown. Dry weight and leaf area decreased by 48% and 42% respectively compared to non frozen control plants. ET-79-17 and ET-82-15 genotypes showed the highest dry weight (83.8 mg and highest leaf area (14.3 cm2 respectively and ET-83-20 cultivar showed the lowest dry weight and leaf area (58.2 mg and 8.7 cm2.

  9. Evaluation of wheat genotypes originated from interspecific crossing and gamma radiation

    International Nuclear Information System (INIS)

    Camargo, C.E.O.; Ferreira Filho, A.W.P.; Freitas, J.G.; Tulmann Neto, A.; Pettinelli Junior, A.; Castro, J.L.

    1995-01-01

    Twenty three inbred HEXAPLOID wheat lines were evaluated. They were originated by selections made in populations submitted to gamma radiation (27.5 krad), in the F 4 generation, from the interspecific hybrid between BH-1146 (triticum aestivum L.) and Anhinga S x Winged S (Triticum durum L.) and the cultivars BH-1146 and Yavaros S (T. durum L.) Nine trials were carried out with irrigation and in upland conditions. Several agronomic characteristics were assessed. Under laboratory conditions the genotypes were evaluated with respect to Al toxicity using nutrient solutions. Semi dwarf line 11 and 19, with moderate lodging resistance, medium cycle from emergence to flowering, tolerance to aluminum toxicity, were the most productive. Seven lines showed resistance to the causal agent of mildew, but all genotypes were susceptible to the causal agents of leaf spots. Some of the genotypes could be used in cross breeding as genetic sources for short plant, long head, large number of spikelets per head, large number of grains per head and per spikelet and heavy grains. BH-1146 and seven from the 23 lines were considered the most tolerant to aluminium toxicity, presenting good regrowth after treatment in nutrient solutions with 10 mg/liter of Al +3 . (author). 15 refs., 7 tabs

  10. Evaluation of 14 winter bread wheat genotypes in normal irrigation ...

    African Journals Online (AJOL)

    Evaluation of 14 winter bread wheat genotypes in normal irrigation and stress conditions after anthesis stage. ... African Journal of Biotechnology ... Using biplot graphic method, comparison of indices amounts and mean rating of indices for ...

  11. Three endoplasmic reticulum-associated fatty acyl-coenzyme a reductases were involved in the production of primary alcohols in hexaploid wheat (Triticum aestivum L.).

    Science.gov (United States)

    Chai, Guaiqiang; Li, Chunlian; Xu, Feng; Li, Yang; Shi, Xue; Wang, Yong; Wang, Zhonghua

    2018-03-05

    The cuticle covers the surface of the polysaccharide cell wall of leaf epidermal cells and forms an essential diffusion barrier between the plant and the environment. The cuticle is composed of cutin and wax. Cuticular wax plays an important role in the survival of plants by serving as the interface between plants and their biotic and abiotic environments, especially restricting nonstomatal water loss. Leaf cuticular waxes of hexaploid wheat at the seedling stage mainly consist of primary alcohols, aldehydes, fatty acids, alkane and esters. Primary alcohols account for more than 80% of the total wax load. Therefore, we cloned several genes encoding fatty acyl-coenzyme A reductases from wheat and analyzed their function in yeast and plants. We propose the potential use of these genes in wheat genetic breeding. We reported the cloning and characterization of three TaFARs, namely TaFAR6, TaFAR7 and TaFAR8, encoding fatty acyl-coenzyme A reductases (FAR) in wheat leaf cuticle. Expression analysis revealed that TaFAR6, TaFAR7 and TaFAR8 were expressed at the higher levels in the seedling leaf blades, and were expressed moderately or weakly in stamen, glumes, peduncle, flag leaf blade, sheath, spike, and pistil. The heterologous expression of three TaFARs in yeast (Saccharomyces cerevisiae) led to the production of C24:0 and C26:0 primary alcohols. Transgenic expression of the three TaFARs in tomato (Solanum lycopersicum) and rice (Oryza sativa) led to increased accumulation of C24:0-C30:0 primary alcohols. Transient expression of GFP protein-tagged TaFARs revealed that the three TaFAR proteins were localized to the endoplasmic reticulum (ER), the site of wax biosynthesis. The three TaFAR genes were transcriptionally induced by drought, cold, heat, powdery mildew (Blumeria graminis) infection, abscisic acid (ABA) and methyl jasmonate (MeJa) treatments. These results indicated that wheat TaFAR6, TaFAR7 and TaFAR8 are involved in biosynthesis of very-long-chain primary

  12. Meiotic behaviour of tetraploid wheats (Triticum turgidum L.)

    Indian Academy of Sciences (India)

    Meiotic behaviour of plant chromosomes is influenced by both genetic and environmental factors. In this study, the meiotic behaviour of cereal crops was investigated, which includes tetraploid wheat genotypes (with and without the meiotic restitution trait) and their derivates (synthetic hexaploid wheats and a doubled ...

  13. Screening of Wheat Genotypes for Boron Efficiency in Bangladesh

    Science.gov (United States)

    A number of Bangladeshi wheat genotypes (varieties and advanced lines) have been tested for boron efficiency through sand culture experiments over two years (2007-08 & 2008-09) against two Thai check varieties ‘Fang 60’ (boron efficient) and ‘SW41’ (boron inefficient). Performances of the genotypes ...

  14. Copy number and haplotype variation at the VRN-A1 and central FR-A2 loci are associated with frost tolerance in hexaploid wheat.

    Science.gov (United States)

    Zhu, Jie; Pearce, Stephen; Burke, Adrienne; See, Deven Robert; Skinner, Daniel Z; Dubcovsky, Jorge; Garland-Campbell, Kimberly

    2014-05-01

    The interaction between VRN - A1 and FR - A2 largely affect the frost tolerance of hexaploid wheat. Frost tolerance is critical for wheat survival during cold winters. Natural variation for this trait is mainly associated with allelic differences at the VERNALIZATION 1 (VRN1) and FROST RESISTANCE 2 (FR2) loci. VRN1 regulates the transition between vegetative and reproductive stages and FR2, a locus including several tandemly duplicated C-REPEAT BINDING FACTOR (CBF) transcription factors, regulates the expression of Cold-regulated genes. We identified sequence and copy number variation at these two loci among winter and spring wheat varieties and characterized their association with frost tolerance. We identified two FR-A2 haplotypes-'FR-A2-S' and 'FR-A2-T'-distinguished by two insertion/deletions and ten single nucleotide polymorphisms within the CBF-A12 and CBF-A15 genes. Increased copy number of CBF-A14 was frequently associated with the FR-A2-T haplotype and with higher CBF14 transcript levels in response to cold. Factorial ANOVAs revealed significant interactions between VRN1 and FR-A2 for frost tolerance in both winter and spring panels suggesting a crosstalk between vernalization and cold acclimation pathways. The model including these two loci and their interaction explained 32.0 and 20.7 % of the variation in frost tolerance in the winter and spring panels, respectively. The interaction was validated in a winter wheat F 4:5 population segregating for both genes. Increased VRN-A1 copy number was associated with improved frost tolerance among varieties carrying the FR-A2-T allele but not among those carrying the FR-A2-S allele. These results suggest that selection of varieties carrying the FR-A2-T allele and three copies of the recessive vrn-A1 allele would be a good strategy to improve frost tolerance in wheat.

  15. TaGW2, a Good Reflection of Wheat Polyploidization and Evolution.

    Science.gov (United States)

    Qin, Lin; Zhao, Junjie; Li, Tian; Hou, Jian; Zhang, Xueyong; Hao, Chenyang

    2017-01-01

    Hexaploid wheat consists of three subgenomes, namely, A, B, and D. These well-characterized ancestral genomes also exist at the diploid and tetraploid levels, thereby rendering wheat as a good model species for studying polyploidization. Here, we performed intra- and inter-species comparative analyses of wheat and its relatives to dissect polymorphism and differentiation of the TaGW2 genes. Our results showed that genetic diversity of TaGW2 decreased with progression from the diploids to tetraploids and hexaploids. The strongest selection occurred in the promoter regions of TaGW2-6A and TaGW2-6B . Phylogenetic trees clearly indicated that Triticum urartu and Ae. speltoides were the donors of the A and B genomes in tetraploid and hexaploid wheats. Haplotypes detected among hexaploid genotypes traced back to the tetraploid level. Fst and π values revealed that the strongest selection on TaGW2 occurred at the tetraploid level rather than in hexaploid wheat. This infers that grain size enlargement, especially increased kernel width, mainly occurred in tetraploid genotypes. In addition, relative expression levels of TaGW2s significantly declined from the diploid level to tetraploids and hexaploids, further indicating that these genes negatively regulate kernel size. Our results also revealed that the polyploidization events possibly caused much stronger differentiation than domestication and breeding.

  16. Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Pasquale Codianni

    2007-09-01

    Full Text Available Low-input cropping systems are characterised by the reduction of pesticides and chemical fertilizers and, often, by the use of old cultivars to realize sustainable crop production which can easily integrate in the European Union agricultural subsidies. Market prices and environmental concerns favour low-input wheat production systems, nevertheless protein standards become particularly difficult to achieve in these conditions due to a minimal nitrogen supply. This study assesses the efficiency of a specific breeding program dedicated to improve yield and quality in emmer and spelt wheat in low-input environments. Ten tetraploid (emmer and durum wheat and four hexaploid (spelt and bread wheat wheat genotypes (including parent cultivars and offspring breeding lines selected for adaptation to low-input conditions were investigated for 1 yr (2003-2004 in Italy in three locations in conventional and low-input cropping systems. The main agro-morphological and qualitative traits were recorded (HD, PH, GY, PC GPY, TKW, TW, GC. The results of this study show encouraging agronomic performances of new emmer and spelt genotypes under conventional and low-input cropping systems. The new genotypes are characterized by a yield potential similar to that of the modern wheat cultivar as well as by a protein content higher than old emmer and spelt accessions. The new genetic materials were also characterized by a higher responsiveness to improved environmental conditions. The results described in this study support the suitability of modern emmer and spelt genotypes, improved by introgressing wheat yield and quality traits, for organic farming in Mediterranean environments.

  17. Bio-agronomic Evaluation of Old and Modern Wheat, Spelt and Emmer Genotypes for Low-input Farming in Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Michele Fornara

    2011-02-01

    Full Text Available Low-input cropping systems are characterised by the reduction of pesticides and chemical fertilizers and, often, by the use of old cultivars to realize sustainable crop production which can easily integrate in the European Union agricultural subsidies. Market prices and environmental concerns favour low-input wheat production systems, nevertheless protein standards become particularly difficult to achieve in these conditions due to a minimal nitrogen supply. This study assesses the efficiency of a specific breeding program dedicated to improve yield and quality in emmer and spelt wheat in low-input environments. Ten tetraploid (emmer and durum wheat and four hexaploid (spelt and bread wheat wheat genotypes (including parent cultivars and offspring breeding lines selected for adaptation to low-input conditions were investigated for 1 yr (2003-2004 in Italy in three locations in conventional and low-input cropping systems. The main agro-morphological and qualitative traits were recorded (HD, PH, GY, PC GPY, TKW, TW, GC. The results of this study show encouraging agronomic performances of new emmer and spelt genotypes under conventional and low-input cropping systems. The new genotypes are characterized by a yield potential similar to that of the modern wheat cultivar as well as by a protein content higher than old emmer and spelt accessions. The new genetic materials were also characterized by a higher responsiveness to improved environmental conditions. The results described in this study support the suitability of modern emmer and spelt genotypes, improved by introgressing wheat yield and quality traits, for organic farming in Mediterranean environments.

  18. Evaluation of bread wheat genotypes for salinity tolerance under ...

    African Journals Online (AJOL)

    In two consecutive seasons (2007-08 and 2008-09), field experiments were conducted at Soil Salinity Research Institute, Pindi Bhattian and Biosaline Agricultural Research Station, Pakka Aana, Pakistan. During 2007-08, 103 wheat landrace genotypes were evaluated for salinity tolerance. During 2008-09, 47 selected ...

  19. Protein landmarks for diversity assessment in wheat genotypes ...

    African Journals Online (AJOL)

    Grain proteins from 20 Indian wheat genotypes were evaluated for diversity assessment based seed storage protein profiling on sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE). Genetic diversity was evaluated using Nei's index, Shannon index and Unweighted pair group method with arithmetic ...

  20. Improving the precision of genotype selection in wheat performance trials

    Directory of Open Access Journals (Sweden)

    Giovani Benin

    2013-12-01

    Full Text Available The aim of this study was to verify whether using the Papadakis method improves model assumptions and experimental accuracy in field trials used to determine grain yield for wheat lineages indifferent Value for Cultivation and Use (VCU regions. Grain yield data from 572 field trials at 31 locations in the VCU Regions 1, 2, 3 and 4 in 2007-2011 were used. Each trial was run with and without the use of the Papadakis method. The Papadakis method improved the indices of experimental precision measures and reduced the number of experimental repetitions required to predict grain yield performance among the wheat genotypes. There were differences among the wheat adaptation regions in terms of the efficiency of the Papadakis method, the adjustment coefficient of the genotype averages and the increases in the selective accuracy of grain yield.

  1. Chlorophyll a fluorescence to phenotype wheat genotypes for heat tolerance

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl-Otto

    In prospects of global climate change, heat stress is a rising constraint for the productivity of wheat (Triticum aestivum L.). It is a heat-susceptible crop beyond 17-23oC temperature throughout its phenological stages, flowering phase being the most sensitive stage. Chlorophyll a fluorescence...... parameter, maximum quantum yield efficiency of PSII (Fv/Fm) is used as a physiological marker for early stress detection in PSII in plants. We established a reproducible protocol to measure response of wheat genotypes to high temperature based on Fv/Fm. The heat treatment of 40°C in 300 µmol m-2s-1 PAR...... enabled the identification of contrasting wheat genotypes that can be used to study the genetic and physiological nature of heat stress tolerance to dissect quantitative traits into simpler and more heritable traits....

  2. The impact of photoperiod insensitive Ppd-1a mutations on the photoperiod pathway across the three genomes of hexaploid wheat (Triticum aestivum).

    Science.gov (United States)

    Shaw, Lindsay M; Turner, Adrian S; Laurie, David A

    2012-07-01

    Flowering time is a trait that has been extensively altered during wheat domestication, enabling it to be highly productive in diverse environments and providing a rich source of variation for studying adaptation mechanisms. Hexaploid wheat is ancestrally a long-day plant, but many environments require varieties with photoperiod insensitivity (PI) that can flower in short days. PI results from mutations in the Ppd-1 gene on the A, B or D genomes, with individual mutations conferring different degrees of earliness. The basis of this is poorly understood. Using a common genetic background, the effects of A, B and D genome PI mutations on genes of the circadian clock and photoperiod pathway were studied using genome-specific expression assays. Ppd-1 PI mutations did not affect the clock or immediate clock outputs, but affected TaCO1 and TaFT1, with a reduction in TaCO1 expression as TaFT1 expression increased. Therefore, although Ppd-1 is related to PRR genes of the Arabidopsis circadian clock, Ppd-1 affects flowering by an alternative route, most likely by upregulating TaFT1 with a feedback effect that reduces TaCO1 expression. Individual genes in the circadian clock and photoperiod pathway were predominantly expressed from one genome, and there was no genome specificity in Ppd-1 action. Lines combining PI mutations on two or three genomes had enhanced earliness with higher levels, but not earlier induction, of TaFT1, showing that there is a direct quantitative relationship between Ppd-1 mutations, TaFT1 expression and flowering. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  3. Response of Wheat Genotypes to Different Levels of Nitrogen

    Directory of Open Access Journals (Sweden)

    Shukra Raj Shrestha

    2016-12-01

    Full Text Available A field experiment was conducted using six genotypes of wheat (Triticum aestivum L. for response to different levels of nitrogen (N use. The experiment was laid out in split plot design with four levels (0, 50, 100 and 150 kg N ha-1 as main plots and six wheat genotypes (BL 3623, BL 3629, BL 3872, NL 1008, NL 1055 and Vijay, a check variety as sub-plots. Grain yield and other yield components increased linearly in response to N concentrations in both seasons. Only two parameters: days to heading (DOH and days to maturity (DTM varied significantly (p ≤ 0.05 among wheat genotypes in both the years. None of the parameters showed interaction effects in both seasons. Vijay showed highest grain yield of 3.12 t ha-1 in 2013 with the application of 100 kg N ha-1, and 3.23 t ha-1 in 2014 with 150 kg N ha-1. Spike length, productive tillers m-2, number of spikes m-2 and test weight were greater with higher N rates. The straw yield of wheat fertilized with 150 kg N ha-1 was the highest in Vijay (4.35 t ha-1 and BL 3872 (4.33 t ha-1, respectively. Vijay with 100 kg N ha-1 produced the highest number of productive tillers m-2 (276.33 in 2013 and 296.00 with the application of 150 kg N ha-1 in 2014.

  4. Lunasin detection in coloured wheat genotype

    Directory of Open Access Journals (Sweden)

    Milan Chňapek

    2016-01-01

    Full Text Available Lunasin is a biologically active protein, composed of 43 amino acid residues. There has been proven many health-promoting effects of lunasin peptide. The most important health benefits include: anti-hypertension, antioxidant activity, cancer prevention or therapy. It was also demonstrated anti-inflammation, hypocholesterolemic activity, anti-obesity and immunomodulation. The focus of our research is to summarize the discovery, characterization and biological activities of lunasin, which will provide a reference for the future development and utilization of lunasin, and a basis for exploring the underlying mechanisms of these health-beneficial functions. Lunasin was first isolated in 1987 at Niigata University School of Medicine in Japan, during the screening of protease inhibitors from soybean seeds. It was subsequently found in other beans, grains and herbal plants, including wheat, barley, rye, triticale. Concentration of lunasin is ranging from 0.013 to 70.5 mg protein lunasin/g of protein. Big step forward in the understanding of the lunasine operating mechanism in the fight against cancer has arisen after study on cloning of the soybean lunasin gene and subsequent transfection into mammalian cells which led to the discovery that the lunasin gene can disrupt mitosis and induce chromosome breakage, ultimately leading to cell apoptosis. The main goal of our work was to evaluate collection of wheat with unusual grain colour for presence of lunasin gene. DNA was extracted by commercial kit and lunasin gene was detected by PCR reaction. Our results showed presence of lunasin gene detected by 3 combinations of 2 sets of primer pair and indicated lunasin peptide presence in cereal grains. These findings are necessary to confirmed by proteome analysis. Normal 0 21 false false false CS JA X-NONE

  5. Mineral Composition of Organically Grown Wheat Genotypes: Contribution to Daily Minerals Intake

    Science.gov (United States)

    Hussain, Abrar; Larsson, Hans; Kuktaite, Ramune; Johansson, Eva

    2010-01-01

    In this study, 321 winter and spring wheat genotypes were analysed for twelve nutritionally important minerals (B, Cu, Fe, Se, Mg, Zn, Ca, Mn, Mo, P, S and K). Some of the genotypes used were from multiple locations and years, resulting in a total number of 493 samples. Investigated genotypes were divided into six genotype groups i.e., selections, old landraces, primitive wheat, spelt, old cultivars and cultivars. For some of the investigated minerals higher concentrations were observed in selections, primitive wheat, and old cultivars as compared to more modern wheat material, e.g., cultivars and spelt wheat. Location was found to have a significant effect on mineral concentration for all genotype groups, although for primitive wheat, genotype had a higher impact than location. Spring wheat was observed to have significantly higher values for B, Cu, Fe, Zn, Ca, S and K as compared to winter wheat. Higher levels of several minerals were observed in the present study, as compared to previous studies carried out in inorganic systems, indicating that organic conditions with suitable genotypes may enhance mineral concentration in wheat grain. This study also showed that a very high mineral concentration, close to daily requirements, can be produced by growing specific primitive wheat genotypes in an organic farming system. Thus, by selecting genotypes for further breeding, nutritional value of the wheat flour for human consumption can be improved. PMID:20948934

  6. Integration of mate pair sequences to improve shotgun assemblies of flow-sorted chromosome arms of hexaploid wheat

    Czech Academy of Sciences Publication Activity Database

    Belova, T.; Zhan, B.J.; Wright, J.; Caccamo, M.; Asp, T.; Šimková, Hana; Kent, M.; Bendixen, C.; Panitz, F.; Lien, S.; Doležel, Jaroslav; Olsen, O.A.; Sandve, S.R.

    2013-01-01

    Roč. 14, APR 4 2013 (2013) ISSN 1471-2164 R&D Projects: GA ČR(CZ) GAP501/12/2554 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : Scaffold * Assembly * Wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.041, year: 2013

  7. mlo-based powdery mildew resistance in hexaploid bread wheat generated by a non-transgenic TILLING approach.

    Science.gov (United States)

    Acevedo-Garcia, Johanna; Spencer, David; Thieron, Hannah; Reinstädler, Anja; Hammond-Kosack, Kim; Phillips, Andrew L; Panstruga, Ralph

    2017-03-01

    Wheat is one of the most widely grown cereal crops in the world and is an important food grain source for humans. However, wheat yields can be reduced by many abiotic and biotic stress factors, including powdery mildew disease caused by Blumeria graminis f.sp. tritici (Bgt). Generating resistant varieties is thus a major effort in plant breeding. Here, we took advantage of the non-transgenic Targeting Induced Lesions IN Genomes (TILLING) technology to select partial loss-of-function alleles of TaMlo, the orthologue of the barley Mlo (Mildew resistance locus o) gene. Natural and induced loss-of-function alleles (mlo) of barley Mlo are known to confer durable broad-spectrum powdery mildew resistance, typically at the expense of pleiotropic phenotypes such as premature leaf senescence. We identified 16 missense mutations in the three wheat TaMlo homoeologues, TaMlo-A1, TaMlo-B1 and TaMlo-D1 that each lead to single amino acid exchanges. Using transient gene expression assays in barley single cells, we functionally analysed the different missense mutants and identified the most promising candidates affecting powdery mildew susceptibility. By stacking of selected mutant alleles we generated four independent lines with non-conservative mutations in each of the three TaMlo homoeologues. Homozygous triple mutant lines and surprisingly also some of the homozygous double mutant lines showed enhanced, yet incomplete, Bgt resistance without the occurrence of discernible pleiotropic phenotypes. These lines thus represent an important step towards the production of commercial non-transgenic, powdery mildew-resistant bread wheat varieties. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  8. Heat-induced regulation of antioxidant defense system and nutrient accumulation in hexaploid bread wheat (triticum aestivum l.)

    International Nuclear Information System (INIS)

    Zia, M.A.; Ashraf, M.; Akram, A.

    2014-01-01

    Ten cultivars (five registered S-24, Inqlab-91, Saher-2006, Fsd-2008, and Lasani, and five candidate cultivars P.B-18, M.P-65, S.H-20, AARI-10, and G.A-20) of spring wheat (Triticum aestivum L.) were examined for high temperature stress tolerance. Plants were grown in soil filled pots in the Botanical Garden of the Department of Botany University of Agriculture Faisalabad, Pakistan. Three different temperature regimes (30, 40 and 50 degree C) were applied at two different growth stages (tillering and boot) for three temperature durations 30, 60 and 90 min in a growth chamber. The leaf and root samples were collected after two weeks of temperature treatment and then analyzed for enzymatic and non-enzymatic antioxidants as well as inorganic nutrients (N, P, K+, Ca2+). At the end, data obtained were statistically analyzed to distinguish heat tolerant from non-tolerant wheat cultivars. After appraisal of growth, antioxidant defense system and uptake of nutrients it was found that cvs. S-24, Inqlab-91, Saher-2006, Fsd-2008, Lasani and G.A-20 exhibited better thermo-tolerance capabilities than the other wheat cultivars (P.B-18, M.P-65, S.H-20, AARI-10). Among the thermo-tolerant wheat cultivars, G.A-20 and Lasani were superior in maintaining shoot fresh weights and shoot length, high antioxidant activities and better nutrient uptake at both tillering and boot stages. The response of all cultivars to heat stress applied at the tillering stage or boot stage was almost the same. (author)

  9. Genome-Wide Association Mapping for Resistance to Leaf and Stripe Rust in Winter-Habit Hexaploid Wheat Landraces.

    Directory of Open Access Journals (Sweden)

    Albert Kertho

    Full Text Available Leaf rust, caused by Puccinia triticina (Pt, and stripe rust, caused by P. striiformis f. sp. tritici (Pst, are destructive foliar diseases of wheat worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Here we report a genome-wide association analysis of 567 winter wheat (Triticum aestivum landrace accessions using the Infinium iSelect 9K wheat SNP array to identify loci associated with seedling resistance to five races of Pt (MDCL, MFPS, THBL, TDBG, and TBDJ and one race of Pst (PSTv-37 frequently found in the Northern Great Plains of the United States. Mixed linear models identified 65 and eight significant markers associated with leaf rust and stripe rust, respectively. Further, we identified 31 and three QTL associated with resistance to Pt and Pst, respectively. Eleven QTL, identified on chromosomes 3A, 4A, 5A, and 6D, are previously unknown for leaf rust resistance in T. aestivum.

  10. Comparative high-resolution mapping of the wax inhibitors Iw1 and Iw2 in hexaploid wheat.

    Directory of Open Access Journals (Sweden)

    Haibin Wu

    Full Text Available The wax (glaucousness on wheat leaves and stems is mainly controlled by two sets of genes: glaucousness loci (W1 and W2 and non-glaucousness loci (Iw1 and Iw2. The non-glaucousness (Iw loci act as inhibitors of the glaucousness loci (W. High-resolution comparative genetic linkage maps of the wax inhibitors Iw1 originating from Triticum dicoccoides, and Iw2 from Aegilops tauschii were developed by comparative genomics analyses of Brachypodium, sorghum and rice genomic sequences corresponding to the syntenic regions of the Iw loci in wheat. Eleven Iw1 and eight Iw2 linked EST markers were developed and mapped to linkage maps on the distal regions of chromosomes 2BS and 2DS, respectively. The Iw1 locus mapped within a 0.96 cM interval flanked by the BE498358 and CA499581 EST markers that are collinear with 122 kb, 202 kb, and 466 kb genomic regions in the Brachypodium 5S chromosome, the sorghum 6S chromosome and the rice 4S chromosome, respectively. The Iw2 locus was located in a 4.1 to 5.4-cM interval in chromosome 2DS that is flanked by the CJ886319 and CJ519831 EST markers, and this region is collinear with a 2.3 cM region spanning the Iw1 locus on chromosome 2BS. Both Iw1 and Iw2 co-segregated with the BF474014 and CJ876545 EST markers, indicating they are most likely orthologs on 2BS and 2DS. These high-resolution maps can serve as a framework for chromosome landing, physical mapping and map-based cloning of the wax inhibitors in wheat.

  11. Contemplation of wheat genotypes for enhanced antioxidant enzyme activity

    International Nuclear Information System (INIS)

    Nasim, S.; Shabbir, G.; Ilyas, M.

    2017-01-01

    Wheat (Triticum aestivum L.) is leading cereal crop in Pakistan but its yield is highly affected due to various abiotic factors especially drought stress, which affects the metabolism of plants. The present study was conducted at Pir Mehr Ali Shah Arid Agriculture University Rawalpindi, using thirty three genotypes during 2011 to investigate the response of anti oxidative enzymes. Seedlings were subjected to stress condition with 30 % PEG 6000 solution along with control (irrigated with water) under in vitro conditions. The experiment was conducted in pots following Complete Randomized Design in Laboratory. Results revealed that under control conditions the maximum values for Guaiacol peroxidase were found in Punjab-96 and Auqab-2000 (2.523), for superoxide in C-273 (0.294), for ascorbate peroxide in PAK-81 (2.523) and for catalase in Kohsar-95 (0.487). Under moisture stress condition the maximum value for Guaiacol peroxidase were recorded for Kohsar-95 (2.699), for superoxide in Kohsar-95 (1.259), for ascorbate peroxide in Pak-81, SA-75, Mexipak-65 and PARI-73 (3.000) and for catalase in Mexipak-65 (0.640). The genotypes which showed higher antioxidant enzyme activity under drought stress have the ability to perform better under adverse soil moisture condition. Such potential genotypes can be utilized in the future breeding programs and also in improving the wheat varieties against drought stress. (author)

  12. Genotype x environment interaction for grain yield of wheat genotypes tested under water stress conditions

    International Nuclear Information System (INIS)

    Sail, M.A.; Dahot, M.U.; Mangrio, S.M.; Memon, S.

    2007-01-01

    Effect of water stress on grain yield in different wheat genotypes was studied under field conditions at various locations. Grain yield is a complex polygenic trait influenced by genotype, environment and genotype x environment (GxE) interaction. To understand the stability among genotypes for grain yield, twenty-one wheat genotypes developed Through hybridization and radiation-induced mutations at Nuclear Institute of Agriculture (NIA) TandoJam were evaluated with four local check varieties (Sarsabz, Thori, Margalla-99 and Chakwal-86) in multi-environmental trails (MET/sub s/). The experiments were conducted over 5 different water stress environments in Sindh. Data on grain yield were recorded from each site and statistically analyzed. Combined analysis of variance for all the environments indicated that the genotype, environment and genotype x environment (GxE) interaction were highly significant (P greater then 0.01) for grain yield. Genotypes differed in their response to various locations. The overall highest site mean yield (4031 kg/ha) recorded at Moro and the lowest (2326 kg/ha) at Thatta. Six genotypes produced significantly (P=0.01) the highest grain yield overall the environments. Stability analysis was applied to estimate stability parameters viz., regression coefficient (b), standard error of regression coefficient and variance due to deviation from regression (S/sub 2/d) genotypes 10/8, BWS-78 produced the highest mean yield over all the environments with low regression coefficient (b=0.68, 0.67 and 0.63 respectively and higher S/sup 2/ d value, showing specific adaptation to poor (un favorable) environments. Genotype 8/7 produced overall higher grain yield (3647 kg/ha) and ranked as third high yielding genotype had regression value close to unity (b=0.9) and low S/sup d/ value, indicating more stability and wide adaptation over the all environments. The knowledge of the presence and magnitude of genotype x environment (GE) interaction is important to

  13. Presence of celiac disease epitopes in modern and old hexaploid wheat varieties: wheat breeding may have contributed to increased prevalence of celiac disease

    NARCIS (Netherlands)

    Broeck, van den H.C.; Jong, de H.C.; Salentijn, E.M.J.; Dekking, L.; Bosch, H.J.; Hamer, R.J.; Gilissen, L.J.W.J.; Meer, van der I.M.; Smulders, M.J.M.

    2010-01-01

    Gluten proteins from wheat can induce celiac disease (CD) in genetically susceptible individuals. Specific gluten peptides can be presented by antigen presenting cells to gluten-sensitive T-cell lymphocytes leading to CD. During the last decades, a significant increase has been observed in the

  14. Allelopathic activity of pakistan wheat genotypes against wild oat (Avena fatua L.)

    International Nuclear Information System (INIS)

    Mahmood, K.; Khaliq, A.; Cheema, Z.A.; Arshad, M.

    2013-01-01

    Wheat allelopathy can be manipulated for sustainable weed management in wheat based cropping systems. Bioassays were conducted to quantify the allelopathic potential of 35 indigenous wheat genotypes against germination and seedling growth of wild oat (Avena fatua L.). Foliar application of aqueous extracts of wheat straw, surface mulching and incorporation of wheat straw of different genotypes were employed for bioassays study. Results revealed the suppressive allelopathic activity of different wheat genotypes manifested in the form of impaired germination and retarded seedling growth of wild oat. A highly significant genotypic variation in allelopathic potential was observed for different traits. Germination of wild oat was decreased by 10-84% over control by different wheat genotypes. Likewise, over 70% reductions in seedling root and shoot dry weight of wild oat was also observed in V6007. Wheat genotypes viz. V6007, AS 2000, V6111, V6034, V4611, V7189, Uqa b 2000, Chanab 2000, Bhakkar 2002, Pak 81 and Rohtas 90 showed strongly inhibitory allelopathic activity against seedling growth of wild oat. V6007 exhibited highest suppression of wild oat. These studies confirm the suppressive allelopathic potential of indigenous wheat genotypes against wild oat that needs further to be explored under natural conditions. (author)

  15. Physical characteristics of some wheat genotypes cultivated in Lake District of Turkey

    Directory of Open Access Journals (Sweden)

    Hülya GÜL

    2012-12-01

    Full Text Available This study was carried out to determine the physical characteristics of wheat genotypes cultivated in lakes district of Turkey. The genotypes were collected from the center of Isparta and Burdur province, districts and selected five different villages in this district at harvest in 2011. Totaly 19 genotypes named as; Hard Wheat, Red Kazmalı Wheat, Lavanta, Red Wheat, Burgaz, Osmaniye and Yunak (Landraces, Kızıltan-91, İzmir 85, Bezostoya, Ankara 98, Sönmez 2001, Çeşit-1252, Hatay 86, Mirzabey, Kunduru-1149, Gerek-79, Gediz-75 and Cumhuriyet-75 (Wheat registered cultivars were collected from these districts. Physical characteristics of the wheat samples brought to laboratory were analyzed as completely randomized design with three replications. Foreign matters of wheats were determined according to TS 2974 standards. 4 genotypes were found at second degree, 5 genotypes were at third degree and remaining 10 genotypes were found out of these rating. Highest thousand kernel weight and hectoliter weight were determined on Mirzabey and Sönmez 2001 respectively in bread wheat varieties while highest thousand kernel weight and hectoliter weight were determeined on Kunduru 1149 and Burgaz respectively in durum wheat varieties.

  16. THE OLD GENOTYPES OF WHEAT, THE SOURCE OF IMPORTANT QUALITATIVE CHARACTERISTICS

    Directory of Open Access Journals (Sweden)

    H FRANČÁKOVÁ

    2002-05-01

    Full Text Available Technological quality of 35 chosen genotypes of wheat was analysed during two years. The genotypes included 4 standards (Astella, Ilona, Samanta, Šárka and the old European Land varietes of wheat. A large amount of various genetic material was evaluated for various use. It is possible to choice the best genotypes which are exceptional for certain characteristic. Obtained results can be applied for further breeding process. Data of technological parameters are included in tables 1 and 2.

  17. Effect of halopriming on the induction of nacl salt tolerance in different wheat genotypes

    International Nuclear Information System (INIS)

    Muhammad, Z.; Hussain, F.; Rehmanullah, M.; Majeed, A.

    2015-01-01

    Salinity is a major environmental stress limiting plant growth and productivity of wide range of crops with impairing effects on germination and yield. The present study was conducted to assess the induction of salt tolerance in seven wheat genotypes (Bakhtawar-92, Bhakar-2002, Fakhar-e-Sarhad, Khyber-87, Nasir-2000, Pirsabak-2005, and Uqab-2000) at germination and seedling stage through halo-priming with NaCl. Seeds of each wheat genotype were halo-primed separately. Halo-primed seeds of each wheat genotype were subjected to 0.02 (control), 2, 4, 6 and 8 dS/m NaCl salinity under laboratory conditions. Germination percentage age varied significantly among various wheat genotypes; however, differences between different salt concentrations were non-significant. All the seedling growth characters (germination, plumule growth, fresh and dry weight of seedling and moisture contents) exhibited significant differences among wheat genotypes as well as under the applied salt concentration except for radicle growth which varied non-significantly under salt stress. Interaction between various wheat genotypes and salt concentration was also significant for all the seedling growth characters, while it was non-significant for germination percentage age. It is concluded that NaCl proved to be effective priming agents in inducing salt tolerance in the tested wheat genotypes. (author)

  18. Wheat in the Mediterranean revisited--tetraploid wheat landraces assessed with elite bread wheat Single Nucleotide Polymorphism markers.

    Science.gov (United States)

    Oliveira, Hugo R; Hagenblad, Jenny; Leino, Matti W; Leigh, Fiona J; Lister, Diane L; Penã-Chocarro, Leonor; Jones, Martin K

    2014-05-08

    Single Nucleotide Polymorphism (SNP) panels recently developed for the assessment of genetic diversity in wheat are primarily based on elite varieties, mostly those of bread wheat. The usefulness of such SNP panels for studying wheat evolution and domestication has not yet been fully explored and ascertainment bias issues can potentially affect their applicability when studying landraces and tetraploid ancestors of bread wheat. We here evaluate whether population structure and evolutionary history can be assessed in tetraploid landrace wheats using SNP markers previously developed for the analysis of elite cultivars of hexaploid wheat. We genotyped more than 100 tetraploid wheat landraces and wild emmer wheat accessions, some of which had previously been screened with SSR markers, for an existing SNP panel and obtained publically available genotypes for the same SNPs for hexaploid wheat varieties and landraces. Results showed that quantification of genetic diversity can be affected by ascertainment bias but that the effects of ascertainment bias can at least partly be alleviated by merging SNPs to haplotypes. Analyses of population structure and genetic differentiation show strong subdivision between the tetraploid wheat subspecies, except for durum and rivet that are not separable. A more detailed population structure of durum landraces could be obtained than with SSR markers. The results also suggest an emmer, rather than durum, ancestry of bread wheat and with gene flow from wild emmer. SNP markers developed for elite cultivars show great potential for inferring population structure and can address evolutionary questions in landrace wheat. Issues of marker genome specificity and mapping need, however, to be addressed. Ascertainment bias does not seem to interfere with the ability of a SNP marker system developed for elite bread wheat accessions to detect population structure in other types of wheat.

  19. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    NARCIS (Netherlands)

    Martre, P.; Reynolds, M.P.; Asseng, S.; Ewert, F.; Alderman, P.D.; Cammarano, D.; Maiorano, Andrea; Ruane, A.C.; Aggarwal, P.K.; Anothai, J.; Supit, I.; Wolf, J.

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during

  20. Effect of planting date on yield of wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, Z.; Hussain, I.

    2010-01-01

    Due to reduction in tillering period and increased risk of hot weather during grain filling, late planting results in linear reduction in wheat grain yield. A study was undertaken to determine the effects of planting dates on growth and yield of different wheat genotypes in Sindh. The trial was laid out in RCBD with split plot arrangement having four replications during 2000-01 and 2001-02 at Sakrand, Sindh. Four sowing dates i.e. November 1 and 15, December 1 and 15 were in main plots, whereas six wheat genotypes (V-7001, V-7002, V-7004, MPT-6, Abadgar-93, and Anmol-91) were in sub plots. Because of better tillering, plant growth, growth period, number of grain per unit area and grain weight, November 15 planted wheat had maximum grain yield of 5904 kg ha/sup -1/, followed by November 1 and December 1 which gave 5302 and 4948 kg ha/sup -1 /respectively. Wheat planted on December 15 resulted in minimum grain yield of 4756 kg ha/sup -1/. Wheat genotype, V-7002 had significantly (P<0.05) higher grain yield of 5578 kg ha/sup -1/ in comparison with other genotypes. Whereas genotype MPT-6 had grain yield of 5366 kg ha-1 that was also significantly higher than other genotypes. However, V-7004 had minimum grain yield of 4716 kg ha/sup -1/ in comparison with other genotypes. While evaluating performance of different genotypes on different sowing dates, V-7002 resulted in maximum yield on November 15 and late planting. On the other hand, V-7004 had lower yield on all planting dates. Results from the study revealed that maximum grain yield could be achieved with wheat planted in first fortnight of November and any delay in wheat planting might reduce wheat yield. (author)

  1. Yield Interactions of Wheat Genotypes to Dates of Seeding in Eastern Mid Hills of Nepal

    OpenAIRE

    Rudra Bhattarai; Bedanand Chaudhary; Dhruba Bahadur Thapa; Ramesh Raj Puri; Ram Nath Chaudhary; Ram Nath Chaudhary; Bibek Sapkota; Kiran Baral; Shukra Raj Shrestha; Surya Prasad Adhikari

    2015-01-01

    Wheat (Triticum aestivum L.) is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for ...

  2. IDENTIFICATION OF TECHNOLOGICALLY IMPORTANT GENES AND THEIR PRODUCTS IN THE COLLECTION OF BREAD WHEAT GENOTYPES

    Directory of Open Access Journals (Sweden)

    Milan Chňapek

    2015-02-01

    Full Text Available Wheat is the second most cultivated crop on the world and is very important plant for feed not only mankind but also animals. Because of this is necessary to develop new varieties with better properties. Bread making quality of wheat grain is one of the most important paramaters for quality evaluation. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE of wheat storage proteins and allelic specific polymerase chain reaction (AS-PCR are analysis suitable for identification, differentiation and characterization of bread wheat (Triticum aestivum L.. There were analysed 16 genotypes of new varieties of bread wheat in our work by SDS-PAGE and obtained results were verified by AS-PCR. Analysed genotypes of bread wheat genotypes were homogenous and single line with very good bread making quality. Our results confirmed hypothesis, that cultivated bread wheat genotypes are uniformed with high production and quality but there is a risk of sensitivity to environmental conditions. SDS-PAGE analyses of wheat grain proteins are fast and not very expensive technique, which provide us information of bread making quality of grains. However, there is possibility of environmental influence on protein synthesis and because of this is necessary to couple these analysis with analysis of DNA.

  3. Tolerance of wheat genotypes to lead in in vitro culture

    Directory of Open Access Journals (Sweden)

    Šesek Stanislav

    2000-01-01

    Full Text Available We studied the effects of five lead concentrations (10-7, 10-6, 10-5, 10-4 and 10-3 M on callus growth and dry matter content in the callus tissue. Two winter wheat (Triticum aestivum L. cultivars, Balkan and Proteinka, were used to isolate mature embryos. The embryos were grown on a modified MS (Murashige and Skoog, 1962 nutrient medium to which lead in the form of Pb(NO32 was added. Calluses from the control group were grown on a lead-free medium. During cultivation, the growth of callus tissue was observed until, 30 days alter isolation, fresh callus weight and dry matter content were measured The results showed that there were significant differences between the genotypes with regard to their response to certain lead concentrations. The highest concentration (10-3 M significantly decreased fresh callus weight relative to the control- by 43% in Balkan and 22% in Proteinka. At the same lead concentration, the callus tissue dry matter content of Balkan increased significantly (23% relative to the control, while the increase of the same parameter in Proteinka was not significant (8.6% relative to the control. The lower lead concentrations had a lees pronounced effect, although the 10-6 M dose had a stimulatory effect on callus tissue growth in Balkan, while the 10-7 M one had the same effect in Proteinka. .

  4. Chemical compositions as quality parameters of ZP soybean and wheat genotypes

    Directory of Open Access Journals (Sweden)

    Žilić Slađana

    2009-01-01

    Full Text Available This research is focused on the analysis of chemical characteristics of ZP soybean and wheat genotypes, as well as, on nutritional differences between this two complementary plant species. The experimental material consisted of two bread (ZP 96/I and ZP 87/Ip, two durum (ZP 34/I ZP and ZP DSP/01-66M wheat genotypes and four soybean varieties (Nena, Lidija, Lana and Bosa of different genetic background. All ZP soybean genotypes, except the Lana, had over 40% of total proteins by dry matter. Lana and Lidija, variety of recent creation, developed as a result of selection for specific traits, had high oil content. Wheat genotypes had much a lower content of ash, oil, total and water soluble proteins than soybean cultivars. The highest oil, total and water soluble proteins content was detected in grain of durum genotype ZP DSP/01-66M. Lignin content varies much more among soybean than among the wheat genotypes. Generally, contents of total phenolics, carotenes and tocopherol were more abundant in ZP soybean than bread and durum wheat genotypes.

  5. Characterization of some bread wheat genotypes using molecular markers for drought tolerance.

    Science.gov (United States)

    Ateş Sönmezoğlu, Özlem; Terzi, Begüm

    2018-02-01

    Because of its wide geographical adaptation and importance in human nutrition, wheat is one of the most important crops in the world. However, wheat yield has reduced due to drought stress posing threat to sustainability and world food security in agricultural production. The first stage of drought tolerant variety breeding occurs on the molecular and biochemical characterization and classification of wheat genotypes. The aim of the present study is characterization of widely grown bread wheat cultivars and breeding lines for drought tolerance so as to be adapted to different regions in Turkey. The genotypes were screened with molecular markers for the presence of QTLs mapped to different chromosomes. Results of the molecular studies identified and detected 15 polymorphic SSR markers which gave the clearest PCR bands among the control genotypes. At the end of the research, bread wheat genotypes which were classified for tolerance or sensitivity to drought and the genetic similarity within control varieties were determined by molecular markers. According to SSR based dendrogram, two main groups were obtained for drought tolerance. At end of the molecular screening with SSR primers, genetic similarity coefficients were obtained that ranged from 0.14 to 0.71. The ones numbered 8 and 11 were the closest genotypes to drought tolerant cultivar Gerek 79 and the furthest genotypes from this cultivar were number 16 and to drought sensitive cultivar Sultan 95. The genotypes as drought tolerance due to their SSR markers scores are expected to provide useful information for drought related molecular breeding studies.

  6. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    The present study was conducted to assess the genetic diversity of Elite-II synthetic hexaploid (SH) wheat by genome DNA fingerprinting as revealed by random amplified polymorphic DNA (RAPD) analysis. Ten decamer RAPD primers (OPG-1, OPG-2, OPG-3, OPG-4, OPG-5, OPA-3, OPA-4, OPA-5, OPA-8, and OPA-15) ...

  7. Polymorphism of proteins in selected slovak winter wheat genotypes using SDS-PAGE

    Directory of Open Access Journals (Sweden)

    Dana Miháliková

    2016-12-01

    Full Text Available Winter wheat is especially used for bread-making. The specific composition of the grain storage proteins and the representation of individual subunits determines the baking quality of wheat. The aim of this study was to analyze 15 slovak varieties of the winter wheat (Triticum aestivum L. based on protein polymorphism and to predict their technological quality. SDS-PAGE method by ISTA was used to separate glutenin protein subunits. Glutenins were separated into HMW-GS (15.13% and LMW-GS (65.89% on the basis of molecular weight in SDS-PAGE. At the locus Glu-A1 was found allele Null (53% of genotypes and allele 1 (47% of genotypes. The locus Glu-B1 was represented by the HMW-GS subunits 6+8 (33% of genotypes, 7+8 (27% of genotypes, 7+9 (40% of genotypes. At the locus Glu-D1 were detected two subunits, 2+12 (33% of genotypes and 5+10 (67% of genotypes which is correlated with good bread-making properties. The Glu – score was ranged from 4 (genotype Viglanka to 10 (genotypes Viola, Vladarka. According to the representation of individual glutenin subunits in samples, the dendrogram of genetic similarity was constructed. By the prediction of quality the results showed that the best technological quality was significant in the varieties Viola and Vladarka which are suitable for use in food processing.

  8. Characterizing bread wheat genotypes of Pakistani origin for grain zinc biofortification potential.

    Science.gov (United States)

    Rehman, Abdul; Farooq, Muhammad; Nawaz, Ahmad; Al-Sadi, Abdullah M; Al-Hashmi, Khalid S; Nadeem, Faisal; Ullah, Aman

    2018-03-15

    Zinc (Zn) is essential for all life forms and its deficiency is a major issue of malnutrition in humans. This study was carried out to characterize 28 wheat genotypes of Pakistani origin for grain zinc biofortification potential, genetic diversity and relatedness. There was low genetic differentiation among the tested genotypes. However, they differed greatly in yield-related traits, grain mineral (Zn, calcium (Ca) and protein) concentrations and Zn bioavailability. Zinc application increased the concentration of Zn in wheat grain (32.1%), embryo (19.8%), aleurone (47%) and endosperm (23.7%), with an increase in bioavailable Zn (22.2%) and a reduction in phytate concentration (6.8%). Application of Zn also enhanced grain protein and Ca concentrations. Among wheat genotypes, Blue Silver had the highest concentration of Zn in grain, embryo, aleurone and endosperm, with high bioavailable Zn, while Kohinoor-83 had low phytate concentration. Wheat genotypes of Pakistan are genetically less diverse owing to continuous focus on the development of high-yielding varieties only. Therefore genetically diverse wheat genotypes with high endospermic Zn concentration and better grain yield should be used in breeding programs approaches, aiming at improving Zn bioavailability. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  9. Genotype-dependent responses of wheat ( Triticum aestivum L ...

    African Journals Online (AJOL)

    Experiments were conducted under controlled conditions to investigate the growth and physiological - biochemical responses of wheat (Triticum aestivum L.) seedlings to UV-B, drought, and their combined stresses. Both UV-B and drought treatments retarded seedling growth with UV-B having worse impact on wheat plants ...

  10. Effect of different irrigation frequencies on growth and yield of different wheat genotypes in Sindh

    International Nuclear Information System (INIS)

    Khokhar, B.; Hussain, I.

    2010-01-01

    Irrigation at critical growth stages could improve wheat yield significantly. A study was conducted during 2000-2002 to determine effect of different irrigation levels on growth and yield of different wheat genotypes in the province of Sindh. The trial was laid out in split block design at Wheat Research Institute, Sindh, Sakrand, in which four irrigation treatments I3 (irrigation at crown root, booting and soft dough stage), I4 (irrigation at crown root, tillering, booting and soft dough stage), I5 (irrigation at crown root, tillering, booting, anthesis and soft dough stage) and I6 (irrigation at crown root, tillering, booting, anthesis, soft dough and hard dough stage) were in blocks and six wheat genotypes; V-7001, V-7002, V-7004, NARC-9 and CO-9043 and Abadgar-93 were planted. Number of irrigation did not have any significant effect on plant height, whereas plant height was affected significantly in different cultivars. Application of five irrigations at different wheat growth stages resulted in higher spike length, higher number of grains and wheat grain yield. Wheat variety Abadgar-93 and V-7004, had taller plants in comparison with cultivars NARC-9 and V-7004 however, wheat grain yield was not affected significantly among different cultivars. (author)

  11. The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat.

    Science.gov (United States)

    Hao, Chenyang; Wang, Yuquan; Chao, Shiaoman; Li, Tian; Liu, Hongxia; Wang, Lanfen; Zhang, Xueyong

    2017-01-30

    A Chinese wheat mini core collection was genotyped using the wheat 9 K iSelect SNP array. Total 2420 and 2396 polymorphic SNPs were detected on the A and the B genome chromosomes, which formed 878 haplotype blocks. There were more blocks in the B genome, but the average block size was significantly (P polyploidization of wheat (both tetraploidization and hexaploidization) induced revolutionary changes in both the A and the B genomes, with a greater increase of gene diversity compared to their diploid ancestors. Modern breeding has dramatically increased diversity in the gene coding regions, though obvious blocks were formed on most of the chromosomes in both tetraploid and hexaploid wheats. Tag-SNP markers identified in this study can be used for marker assisted selection using haplotype blocks as a wheat breeding strategy. This strategy can also be employed to facilitate genome selection in other self-pollinating crop species.

  12. Evaluation of wheat genotypes for salinity tolerance using physiological indices as screening tool

    International Nuclear Information System (INIS)

    Zafar, S.; Niaz, M.; Kausar, A.

    2015-01-01

    Salinity is a major threat to world food security, to ensure future food needs of an increasing world population, development of salt tolerant crop varieties are necessary. Effective screening techniques for salinity tolerance would be beneficial in developing high yielding and salt tolerant wheat varieties. In the present study, an attempt for rapid screening of wheat genotypes for salt tolerance was made. Twenty wheat genotypes were evaluated for salinity tolerance under laboratory/green-house conditions using different physiological indices like germination stress tolerance index (GSI), shoot length stress tolerance index (SLSI), root length stress tolerance index (RLSI) , shoot dry biomass stress tolerance index (SDSI). The data was pooled together to different multivariate techniques including correlation and cluster analysis to assess the diversity for salt tolerance in wheat genotypes. Highly significant and positive correlations were found between GSI, SDWSI and RDWSI. Cluster analysis classified 20 genotypes into three divergent groups. The members of first cluster (Abadgharr, Bhakkar-2000, Chakwal-86, Kiran-95, LU-26-S, Margalla-99, Marvi Pak-81, Sarsabaz) exhibited adequate degree of salt tolerance on the basis of various physiological stress tolerance indices, whereas, cluster-2 included genotypes (Bhattai, Pasban-90, Shafaq-2006, Soghat-90) with medium level of salt tolerance and cluster-3 consisted of wheat genotypes (Inqilab-91, Iqbal-2000, Kohistan-97, PARI-73, Punjab-90, Sehar-2006 and Uqab-6) with lower level of salt tolerance and did not perform upto the mark. On the basis of results and scores obtained, indicated that physiological indices can be used as a selection tool for salinity tolerance in wheat. (author)

  13. Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate.

    Science.gov (United States)

    Mahmoud, Amer F; Hassan, Mohamed I; Amein, Karam A

    2015-12-01

    Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 2 rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

  14. Morpho-physiological characterization of Indian wheat genotypes ...

    African Journals Online (AJOL)

    SAM

    2014-05-14

    May 14, 2014 ... Key words: Wheat, morphological parameters, physiological growth attributes, proline. INTRODUCTION ... few years, climatic conditions have been drastically changed and ..... Poster presented in the XXVIIIth Meeting of the.

  15. Rust resistance evaluation of advanced wheat (triticum aestivum l.) genotypes using pcr-based dna markers

    International Nuclear Information System (INIS)

    Rahman, S.U.; Younis, M.; Iqbal, M.Z.; Nawaz, M.

    2014-01-01

    The most effective and environmental friendly approach for the control of wheat rust disease is the use of resistant genotypes. The present study was conducted to explore rust resistance potential of 85 elite wheat genotypes (36 varieties and 49 advanced lines) using various types of DNA markers like STS, SCAR and SSR. DNA markers linked with different genes conferring resistance to rusts (Leaf rust=Lr, Yellow rust=Yr and Stem rust=Sr) were employed in this study. A total of 18 genes, consisting of eleven Lr (lr1, lr10, lr19, lr21, lr28, lr34, lr39, lr46, lr47, lr51 and lr52), four Yr (yr5, yr18, yr26 and yr29) and three Sr genes (sr2, sr29, and sr36) were studied through linked DNA markers. Maximum number of Lr genes was found in 17 advanced lines and 9 varieties, Yr genes in 26 advanced lines and 20 wheat varieties, and Sr genes in 43 advanced lines and 27 varieties. Minimum number of Lr genes was found in advanced line D-97 and variety Kohinoor-83, Yr genes in wheat variety Bwp-97 and Sr genes in 6 advanced lines and 8 varieties. Molecular data revealed that genotypes having same origin, from a specified area showed resistance for similar type of genes. In this study, an average similarity of 84% was recorded among wheat genotypes. Out of 18 loci, 15 were found to be polymorphic. (author)

  16. Interpreting genotype × environment interactions for grain yield of rainfed durum wheat in Iran

    Directory of Open Access Journals (Sweden)

    Reza Mohammadi

    2015-12-01

    Full Text Available Clustering genotype × environment (GE interactions and understanding the causes of GE interactions are among the most important tasks in crop breeding programs. Pattern analysis (cluster and ordination techniques was applied to analyze GE interactions for grain yield of 24 durum wheat (Triticum turgidum L. var. durum genotypes (breeding lines and old and new cultivars along with a popular bread wheat (Triticum aestivum cultivar grown in 21 different rainfed environments during the 2010–2013 cropping seasons. To investigate the causes of GE interaction, several genotypic and environmental covariables were used. In a combined ANOVA, environment was the predominant source of variation, accounting for 81.2% of the total sum of squares (TSS, and the remaining TSS due to the GE interaction effect was almost seven times that of the genetic effect. Cluster analysis separated the environments into four groups with similar discriminating ability among genotypes, and genotypes into five groups with similar patterns in yield performance. Pattern analysis confirmed two major environmental clusters (cold and warm, and allowed the discrimination and characterization of genotype adaptation. Within the cold-environment cluster, several subclusters were identified. The breeding lines were most adapted to moderate and warm environments, whereas the old varieties were adapted to cold environments. The results indicated that winter rainfall and plant height were among the environmental and genotypic covariables, respectively, that contributed most to GE interaction for grain yield in rainfed durum wheat.

  17. Breeding of hexaploid triticale for drought resistance

    Directory of Open Access Journals (Sweden)

    Г. В. Щипак

    2016-05-01

    Full Text Available Purpose. Analysis of hexaploid triticale breeding process for drought resistance through the use of systemic ecological tests in contrasting conditions. Methods. Dialectical, field, laboratory and statistical ones. Results. Medium-grown (‘Amos’, ‘Nikanor’, ‘Rarytet’, ‘Yaroslava’ and low-stem (‘HAD 69’, ‘HAD 86’, ‘HAD 110’, ‘Timofei’ multiline varieties of winter and alternate hexaploid triticale were developed with higher adaptability, potential yield of 9–12 tons per ha and high bread-making properties. Among the most drought resistant genotypes, such varieties as ‘Amos’, ‘Buket’, ‘Harne’, ‘Markiian’, ‘Kharroza’, ‘Shalanda’, ‘Nicanor’ and ‘Yaroslava’ showed high values of yield, plasticity and stability. Conclusions. The use of interspecific hybridization instead of intergeneric one in hexaploid triticale breeding, together with systemic testing of the hybrid material in contrasting agro-ecological zones, ensured the creation of multiline competitive varieties with an optimal combination of yield and adaptive properties

  18. The International Heat Stress Genotype Experiment for modeling wheat response to heat: field experiments and AgMIP-Wheat multi-model simulations

    DEFF Research Database (Denmark)

    Martre, Pierre; Reynolds, Matthew; Asseng, Senthold

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown...... dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season...... and end-of-season results from 30 wheat models....

  19. Association of molecular markers with polyphenol oxidase activity in selected wheat genotypes

    International Nuclear Information System (INIS)

    Abbas, Z.; Javad, B.; Majeed, N.; Naqvi, S.

    2016-01-01

    Wheat (Triticum aestivum L.), a major staple food for the people of Pakistan and other Asian countries, is used as bread, chapatti, porridge, noodles and many other. It is established that color quality of wheat products depend on chemical and enzymatic factors especially the polyphenol oxidases (PPOs). These are copper containing enzymes which induce browning in wheat-based products. Various procedures for determining PPO activity available and differences in PPO activity among wheat genotypes have been documented. In present study, an attempt was made to establish the association of molecular markers with polyphenol oxidase activity in wheat genotypes having very high or very low PPO activities. Twelve pairs of markers were used out of which only three primer pairs viz. PPO43, PPO30 and WP2-2 yielded specific pattern discriminating high and low PPO genotypes. Cluster analysis for all 12 markers revealed that all the low PPO lline share the same sub cluster, but high PPO lines were dispersed in different clusters. (author)

  20. Effect of calcium on the salt tolerance of different wheat (triticum aestivum l.) genotypes

    International Nuclear Information System (INIS)

    Arshad, M.; Saqib, M.; Akhtar, J.

    2012-01-01

    In saline soil conditions the availability and uptake of Ca/sup 2+/ is reduced that results in the loss of membrane integrity and other disorders associated with Ca/sup 2+/ deficiency in plants. A wheat genotype efficient in uptake and utilization of calcium under saline conditions may be better able to withstand saline conditions in the field. Very little information is available on wheat response to salinity and low Ca/sup 2+/ as screening of wheat genotypes has usually been done against salinity alone. The present study was designed to evaluate the performance of different wheat genotypes against salinity at low and adequate calcium supply. The experiment was conducted in hydroponics with four treatments including T1: non-saline with adequate Ca/sup 2+/, T2: non-saline with low Ca/sup 2+/ (level of calcium was 1/4 of the adequate level), T3: saline (125 mM NaCl) with adequate Ca/sup 2+/ and T4: saline with low calcium. All the physical growth parameters including shoot length, root length, and shoot and root fresh weights were decreased significantly due to salinity and low calcium alone as well as in combination. Reduction was more pronounced under the combined stress of salinity and low calcium and different genotypes differed significantly in different stress treatments for shoot and root fresh weight production. In saline treatment (T3), the genotypes 25-SAWSN-39 and 25-SAWSN-31 showed better growth performance and accumulated lower Na+ and higher Ca/sup 2+/ where as the genotypes 25-SAWSN-35 and 25-SAWSN-47 showed less growth and had less accumulation of Ca/sup 2+/ and high accumulation of Na+. In salinity + low calcium treatment the genotype 25-SAWSN-39 behaved as a tolerant genotype where as 25-SAWSN-31 behaved similar to the sensitive genotype and these differences were due to high accumulation of Ca/sup 2+/ in 25-SAWSN-39 and vice versa. This study shows that the salt tolerance of wheat genotypes differs with the availability and accumulation of calcium

  1. Protein landmarks for diversity assessment in wheat genotypes

    African Journals Online (AJOL)

    jai ganesha

    2013-07-17

    Jul 17, 2013 ... of genetic diversity in wheat has been on differences in morphological and ... glutenins, are the main components of gluten, which is the main contributor to the .... However, there was no within variety diversity observed as a ...

  2. Protein landmarks for diversity assessment in wheat genotypes

    African Journals Online (AJOL)

    STORAGESEVER

    2009-05-04

    May 4, 2009 ... agronomic performance, biochemical and molecular. (DNA-based) data ... analysis of storage protein variation in wheat has proved to be a useful tool ... concentration: 0.5 M Tris-HCl (pH 6.8), 2.5% SDS, 10 % glycerol and 5% ...

  3. Selection of superior wheat genotypes against end-season drought ...

    African Journals Online (AJOL)

    Irrigated wheat in cold regions of Iran is faced with the end drought stress. Humic substances, as natural biological origin fertilizers have mitigation activity on plants facing the biotic and abiotic stresses. This experiment was conducted by a split plot on the basis of completely randomized block design (RB) in Ardabil in 2008 ...

  4. Effect of terminal drought stress on morpho-physiological traits of wheat genotypes

    International Nuclear Information System (INIS)

    Baloch, M.J.; Chandio, I.A.

    2016-01-01

    Development of wheat varieties with low moisture requirements and their ability to withstand moisture stress may cope-up well with the on-coming peril of drought conditions. Ten wheat genotypes including two new strains, PBGST-3, Hero, Bhittai, Marvi, Inqlab, Sarsabz, Abadgar, Kiran, Khirman and PBGST-4 were sown in split plot design with factorial arrangement in four replications at Experimental Field, Department of Plant Breeding and Genetics, Sindh Agricutlure University, Pakistan during 2012-13. The results revealed that water stress caused significant reductions in all morpho-physiological traits. The genotypes differed significantly for all the yield and physiological traits. The interaction of treatments * genotypes were also significant for all the traits except plant height, productive tillers/plant, grains/spike and harvest index, were non-significant which indicated that cultivars responded variably over the stress treatments suggesting that breeders can select the promising genotypes for both stress and non-stress environments. Among the genotypes evaluated Bhittai, Kiran-95, PBGST-3 and Sarsabz showed good performance as minimum reductions occurred under terminal stress conditions for all the traits studied. Hence, above mentioned genotypes were considered as drought tolerant group. The high positive correlations of physiological traits like chlorophyll content and relative water content with almost all yield traits indicated that these physiological traits could serve as reliable criteria for breeding drought tolerance in wheat. The negative correlations of electrolyte leakage with several important yield traits indicated that though this physiological trait has adverse effect on yield attributes, yet it could reliably be used to distinguish between drought tolerant and susceptible wheat genotypes. (author)

  5. Characterization and Mapping of Leaf Rust and Stripe Rust Resistance Loci in Hexaploid Wheat Lines UC1110 and PI610750 under Mexican Environments.

    Science.gov (United States)

    Lan, Caixia; Hale, Iago L; Herrera-Foessel, Sybil A; Basnet, Bhoja R; Randhawa, Mandeep S; Huerta-Espino, Julio; Dubcovsky, Jorge; Singh, Ravi P

    2017-01-01

    Growing resistant wheat varieties is a key method of minimizing the extent of yield losses caused by the globally important wheat leaf rust (LR) and stripe rust (YR) diseases. In this study, a population of 186 F 8 recombinant inbred lines (RILs) derived from a cross between a synthetic wheat derivative (PI610750) and an adapted common wheat line (cv. "UC1110") were phenotyped for LR and YR response at both seedling and adult plant stages over multiple seasons. Using a genetic linkage map consisting of single sequence repeats and diversity arrays technology markers, in combination with inclusive composite interval mapping analysis, we detected a new LR adult plant resistance (APR) locus, QLr.cim-2DS , contributed by UC1110. One co-located resistance locus to both rusts, QLr.cim-3DC/QYr.cim-3DC , and the known seedling resistance gene Lr26 were also mapped. QLr.cim-2DS and QLr.cim-3DC showed a marginally significant interaction for LR resistance in the adult plant stage. In addition, two previously reported YR APR loci, QYr.ucw-3BS and Yr48 , were found to exhibit stable performances in rust environments in both Mexico and the United States and showed a highly significant interaction in the field. Yr48 was also observed to confer intermediate seedling resistance against Mexican YR races, thus suggesting it should be re-classified as an all-stage resistance gene. We also identified 5 and 2 RILs that possessed all detected YR and LR resistance loci, respectively. With the closely linked molecular markers reported here, these RILs could be used as donors for multiple resistance loci to both rusts in wheat breeding programs.

  6. In situ assessment of morpho-physiological response of wheat (triticum aestivum L.) genotypes to drought

    International Nuclear Information System (INIS)

    Raziuddin; Faratullah; Ullah, N.; Hassan, G.; Swati, Z.A.; Bakht, J.; Shafi, M.; Akmal, M.

    2010-01-01

    In situ studies were conducted to assess the morpho-physiological responses of wheat genotypes to PEG-induced water stress. Wheat genotypes were raised in hydroponic cultures where plants were nourished with half strength Hoagland solution. Plants were exposed to 00, 10, 20, 30 and 40% PEG-6000 at 4-leaf stage. PEG was applied in split doses at the rate of 10% with an interval of 15 days. Significant differences (p=0.05) were recorded for all the parameters studied due to genotypes and PEG concentrations. Wheat genotypes showed negative but variable response to PEG concentrations for shoot length, root length, root/ shoot ratio and root mass whereas PEG imposed stress had positive impact on proline content and abscisic acid (ABA). Genotype Khattakwal attained maximum shoot length in PEG induced stress. Maximum root/shoot ratio and root mass was recorded in Ghaznavi-98 while Tatara and Khattakwal attained maximum relative water content. Endogenous proline and ABA content increased up to 10 fold in response to 40% PEG. Maximum proline was accumulated by Khattakwal whereas maximum ABA by ICP-3. (author)

  7. Nutritional value of dual-purpose wheat genotypes pastures under grazing by dairy cows

    Directory of Open Access Journals (Sweden)

    Mauricio Pase Quatrin

    2017-07-01

    Full Text Available In the south of Brazil, one of the major limitations to milk production is the low forage availability during autumn and early winter. The use of dual-purpose wheat genotypes is one alternative to minimize the impact of low forage availability in addition to produce grains. Therefore, this study aimed to evaluate the nutritional value of two dual-purpose wheat genotypes (BRS Tarumã and BRS Umbu. Structural composition and forage nitrogen uptake were evaluated. The nutritional value of the forage was analyzed for mineral matter (MM, organic matter (OM, neutral detergent fiber (NDF, crude protein (CP, total digestible nutrients (TDN, in situ organic matter digestibility (ISOMD and in situ dry matter digestibility (ISDMD. Differences in NDF (49.03 vs. 46.44%, CP (24.4 vs. 27.4%, ISOMD (83.53 vs. 85.45%, ISDMD (83.59 vs. 86.65% and TDN (75.37 vs. 78.39 for BRS Umbu and BRS Tarumã genotypes were detected, respectively. The BRS Umbu genotype had a lower leaf blade proportion and forage nitrogen uptake. The dual-purpose wheat genotype BRS Tarumã was superior in nutritive value.

  8. Evaluation of salt tolerance in wheat genotypes using growth and carbon isotopes discrimination technique

    International Nuclear Information System (INIS)

    Shirazi, M.U.; Khan, M.A.; Mujtaba, S.M.; Shereen, A.

    2015-01-01

    Studies were conducted in green house to select suitable salt tolerant wheat genotypes on the basis of growth performance and carbon isotopes discrimination (CID) technique. Nine newly developed double haploids (DH) wheat genotypes were tested under gravel culture, along with salt tolerant (LU-26s) and high yielding (Sarsabz) checks. The crop was irrigated by non-saline (control) and saline (12dS/m) water and raised up to maturity, growth parameters (i.e. plant height, plant biomass, productive tillers, spike length, number of spiklets/spike, number of grains / spike, grain weight/ spike and grain yield/ 15 plants) were recorded after harvesting. Plant samples (straw) were collected and were analyzed for carbon isotopic ratio (C12/ C13) from IAEA laboratories Vienna Austria. The data showed that there was significant decrease in all the growth parameters due to salinity. On the basis of performance in different growth parameters it was found that wheat genotypes V3-DH, V9-DH, V10-DH, V13-DH, and LU-26s had good response at 12dSm-1, thus can be categorized as better performing genotypes. Studies on carbon isotopes discrimination (CID) showed a decreasing trend under salinity. Mean CID values were 20.86 and 17.49 under two environments (non saline and saline, respectively), showing an overall 19% decrease under salinity. Generally the wheat genotypes having higher grain yield also had high carbon isotopes discrimination (CID). The relationship between grain yield and CID was positive (R2 = 0.695). The genotypes V10-DH, V13-DH with lower decrease in CID (i.e. 1.2 and 11.0%, respectively), also had high grain yield under salinity. Therefore the studies suggest that we can include CID technique as one of the selection criteria for salt tolerance. (author)

  9. Standardized ileal digestibility of amino acids in eight genotypes of soft winter wheat fed to growing pigs

    DEFF Research Database (Denmark)

    Rosenfelder, P; Mosenthin, R; Spindler, H K

    2015-01-01

    such as fiber fractions are not suitable due to low variation among the 8 genotypes. The present study provides a comprehensive database on nutritional composition and SID of CP and AA of 8 wheat genotypes grown under identical conditions. Because the SID values in these genotypes are lower when compared...

  10. Yield Interactions of Wheat Genotypes to Dates of Seeding in Eastern Mid Hills of Nepal

    Directory of Open Access Journals (Sweden)

    Rudra Bhattarai

    2015-12-01

    Full Text Available Wheat (Triticum aestivum L. is one of the major cereal crops and staple food sources in Nepal. Wheat varieties being popular in mid hill regions are still in the early stages of adoption. Identification of appropriate date of seeding plays important role in enhancing the adoption rate ensuring the sustainable production. Therefore, three dates viz 15th November, 1st and 15th December for seeding and twenty eight wheat genotypes were evaluated in a split plot design with two replications for two consecutive seasons in 2011/12 and 2012/13 at an altitude of 2200 masl of eastern Nepal. The results showed genetic differences and interaction effect of genotypes with the dates of sowing on grain yield, panicle length and effective tillers per square meter. The wheat sown on 1st December showed the highest yield as compared to other sown dates. Similarly, WK1907, WK1911, WK1803, WK1915, WK1909, WK1714 and WK1803 produced highest yield among the tested genotypes with retaining maximum number of effective tillers and posed suitable maturity across all sowing date.

  11. Isolation and Molecular Characterization of High Molecular Weight Glutenin Subunit Genes 1Bx13 and 1By16 from Hexaploid Wheat

    Institute of Scientific and Technical Information of China (English)

    Bin-Shuang Pang; Xue-Yong Zhang

    2008-01-01

    The high molecular weight glutenin subunit (HMW-GS) pair 1Bx13+1Byt6 are recognized to positively correlate with bread-making quality; however, their molecular data remain unknown. In order to reveal the mechanism by which 1By16 and 1Bx13 creates high quality, their open reading frames (ORFs) were amplified from common wheat Atlas66 and Jimai 20 using primers that were designed based on published sequences of HMW glutenin genes. The ORF of 1By16 was 2220bp, deduced into 738 amino acid residues with seven cysteines including 59 hexapeptides and 22 nanopeptides motifs. The ORF of 1Bx13 was 2385bp, deduced into 795 amino acid residues with four cysteines including 68 hexapeptides, 25 nanopeptides and six tripeptides motifs. We found that 1By16 was the largest y-type HMW glutenin gene described to date in common wheat. The 1By16 had 36 amino acid residues inserted in the central repetitive domain compared with 1By15. Expression in bacteria and western-blot tests confirmed that the sequence cloned was the ORF of HMW-GS 1By16, and that 1Bx13 was one of the largest 1Bx genes that have been described so far in common wheat, exhibiting a hexapeptide (PGQGQQ) insertion in the end of central repetitive domain compared with 1Bx7. A phylogenetic tree based on the deduced full-length amino acid sequence alignment of the published HMW-GS genes showed that the 1By16 was clustered with Glu-IB-2, and that the 1Bx13 was clustered with Glu-1B-1 alleles.

  12. Productive performance and industrial quality of wheat genotypes grown in two environments

    Directory of Open Access Journals (Sweden)

    Omar Possatto Junior

    Full Text Available ABSTRACT Wheat flour can be allocated for manufacturing various products, but each purpose requires specificities defined by the industrial quality. The objective of this study was to evaluate the performance of experimental lines and commercial cultivars of wheat, in South and Southeast of Brazil and to identify genotypes with favorable characteristics of industrial quality. Twenty lines in the stage of cultivation and use and three commercial cultivars were evaluated for grain yield components (hectoliter weight and thousand-grain weight and features related to the industrial quality of the flour (protein, flour stability, sedimentation with sodium dodecyl sulfate and color. The genotypes CRX/CD104//ALC, LAJ96010/JSP//ALC and CRX/ALC//ALC showed favorable characteristics for biscuit production, while the genotypes ORL97061/ORL00241//CD104, SUZ6/WEAVER//TUI/3/SUP/4/CD104, ORL99396/ORL97061//SUP, CRX/CD104//ALC, ORL98231/IOR00131//ÔNIX, ORL94346/ALC//AVT/3/ÔNIX, CEP0033/ÔNIX/3/ÔNIX*2//TC14/2*SPEAR, Campo Real/VAN//ÔNIX, ORL97061/CD 104 and PMP/ORL98231//CRX have aptitude for baking. The evaluations were efficient for the classification and selection of genotypes in the wheat breeding program.

  13. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing.

    Science.gov (United States)

    Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A; Nower, Ahmed A; Salem, Khaled F M; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    The availability of information on the genetic diversity and population structure in wheat ( Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F 3:6 ) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon's information index ( I ) = 0.494, diversity index ( h ) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity ( I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.

  14. Zinc finger nuclease-mediated precision genome editing of an endogenous gene in hexaploid bread wheat (Triticum aestivum) using a DNA repair template.

    Science.gov (United States)

    Ran, Yidong; Patron, Nicola; Kay, Pippa; Wong, Debbie; Buchanan, Margaret; Cao, Ying-Ying; Sawbridge, Tim; Davies, John P; Mason, John; Webb, Steven R; Spangenberg, German; Ainley, William M; Walsh, Terence A; Hayden, Matthew J

    2018-05-07

    Sequence-specific nucleases have been used to engineer targeted genome modifications in various plants. While targeted gene knockouts resulting in loss of function have been reported with relatively high rates of success, targeted gene editing using an exogenously supplied DNA repair template and site-specific transgene integration has been more challenging. Here, we report the first application of zinc finger nuclease (ZFN)-mediated, nonhomologous end-joining (NHEJ)-directed editing of a native gene in allohexaploid bread wheat to introduce, via a supplied DNA repair template, a specific single amino acid change into the coding sequence of acetohydroxyacid synthase (AHAS) to confer resistance to imidazolinone herbicides. We recovered edited wheat plants having the targeted amino acid modification in one or more AHAS homoalleles via direct selection for resistance to imazamox, an AHAS-inhibiting imidazolinone herbicide. Using a cotransformation strategy based on chemical selection for an exogenous marker, we achieved a 1.2% recovery rate of edited plants having the desired amino acid change and a 2.9% recovery of plants with targeted mutations at the AHAS locus resulting in a loss-of-function gene knockout. The latter results demonstrate a broadly applicable approach to introduce targeted modifications into native genes for nonselectable traits. All ZFN-mediated changes were faithfully transmitted to the next generation. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Investigation of Zn Use Efficiency and Zn Fertilization Efficiency in Some Genotypes of Wheat

    Directory of Open Access Journals (Sweden)

    P. Keshavarz

    2016-09-01

    Full Text Available Introduction: World cereal demand is growing at the present in accordance with the global expansion of human populations.Bread wheat is the most widely grown cereal grain with 65% (6.5 million hectares of the total crop cultivated area in Iran. Deficiency of micronutrients in cereal cropping is one of the major worldwide problems. Zinc (Zn is an essential micronutrient for plants. It plays a key role as a structural constituent or regulatory co-factor of a wide range of different enzymes and proteins in many important biochemical pathways. Nearly half of the world’s cereal-growing areas are affected by soil zinc deficiency, particularly in calcareous soils of arid and semiarid regions. High pH levels and bicarbonate anion concentration in these soils are the major factors resulting in low availability of Zn. About 40% of the soils, used for wheat production in Iran are Zn-deficient, which results in a decrease in growth and wheat grain yield under field conditions. Although application of zinc fertilizers is a common practice to correct Zn deficiency, growing varieties with high Zn efficiency has been reported to be a more sustainable approach. There is significant genetic variation both within and between plant species in their ability to maintain significant growth and yield under Zn deficiency conditions. Plant response to Zn deficiency and Zn fertilization are two distinct concepts. Knowing about these variations, can be very essential and useful for making correct fertilizer recommendation. Materials and Methods: In order to investigate Zn efficiency in various wheat genotypes, a factorial experiment as a randomized complete block design was carried out with three replications in agricultural research center of Khorasan razavi (Torough Station, during 2009-2011. Treatments consisted of two levels of Zn fertilizer (0 and 40 kg/h as ZnSO4 and six genotyps of wheat including: three cultivars and one line of bread wheat (Alvand, Falat, Toos

  16. Understanding salt tolerance mechanisms in wheat genotypes by exploring antioxidant enzymes

    DEFF Research Database (Denmark)

    Amjad, M.; Akhtar, J.; Haq, M.A.

    2014-01-01

    The activities of antioxidant enzymes were analyzed in six wheat genotypes under different concentrations of NaCl (0, 100 and 200 mM). Plants were harvested after either 15 or 30 days of salt stress. The most salt tolerant genotype (SARC-1) maintained lower Na+ and higher relative growth rate (RGR......), shoot fresh weight (SFW), shoot-root ratio, and K+:Na+ ratio, compared to the most salt sensitive genotypes (S-9189 and S-9476). Superoxide dismutase (SOD) and catalase (CAT) increased significantly in SARC-1 and SARC-2 with increasing salt stress, while there was no difference in S-9189 and S- 9476....... Additionally, glutathione reductase (GR) activity was decreased in salt sensitive (S-9189 and S-9476) than salt tolerant (SARC-1) genotypes. Under salt stress conditions a negative relationship between SOD and leaf Na+, and a positive between SOD and shoot fresh weight (SFW), were observed. The higher...

  17. Genotypic differences in acquisition and utilization of phosphorus in wheat

    Energy Technology Data Exchange (ETDEWEB)

    Horst, W J; Wiesler, F [Hannover Univ., Hannover (Germany). Inst. for Plant Nutrition; Abdou, M [Suez Canal Univ., Ismailia (Egypt). Soil and Water Dept.

    1996-07-01

    In an attempt to evaluate whether breeding and selection for high yielding capacity changed the P requirement of modern wheat cultivars, the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar (Peragis) and a modern cultivar (Cosir) were cultivated in a C-loess low in available P and high in CaCO{sub 3} in 120 cm high PVC tubes. In addition and for comparison, nutrient solution experiments were also conducted. Shoot growth, root growth, P uptake, P translocation and P distribution within the shoot at different developmental stages were compared. The grain yield of the modern cultivar Cosir was higher at limiting and non-limiting P supply and, therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. Grain yield reduction at low P supply was mainly due to an inhibition of tillering and thus lower number of ears per plant, whereas the number of grains per ear was hardly affected. Reduced tillering at low P supply could not be related to P concentrations in the shoot meristematic tissues which were generally much higher than in other plant tissues and kept at an elevated level even at limiting P supply. Root branching (first order laterals) was reduced at limiting P supply in Cosir but not in Peragis which, generally, had lower numbers of laterals at the beginning of tillering. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar Cosir are (i) efficient use of assimilates for root-growth characteristics which enhanced P acquisition: enhanced root branching and thus smaller mean root diameter and longer root hairs; (ii) an efficient P uptake system; (iii) efficient remobilization of P from vegetative plant organs to the grains,; and most importantly (iv) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear. (author). 30 refs, 9 figs, 5 tabs.

  18. Genotypic differences in acquisition and utilization of phosphorus in wheat

    International Nuclear Information System (INIS)

    Horst, W.J.; Wiesler, F.; Abdou, M.

    1996-01-01

    In an attempt to evaluate whether breeding and selection for high yielding capacity changed the P requirement of modern wheat cultivars, the response of two wheat cultivars to different levels of P supply was investigated. A traditional cultivar (Peragis) and a modern cultivar (Cosir) were cultivated in a C-loess low in available P and high in CaCO 3 in 120 cm high PVC tubes. In addition and for comparison, nutrient solution experiments were also conducted. Shoot growth, root growth, P uptake, P translocation and P distribution within the shoot at different developmental stages were compared. The grain yield of the modern cultivar Cosir was higher at limiting and non-limiting P supply and, therefore, this cultivar can be considered as more P-efficient than the traditional cultivar. Grain yield reduction at low P supply was mainly due to an inhibition of tillering and thus lower number of ears per plant, whereas the number of grains per ear was hardly affected. Reduced tillering at low P supply could not be related to P concentrations in the shoot meristematic tissues which were generally much higher than in other plant tissues and kept at an elevated level even at limiting P supply. Root branching (first order laterals) was reduced at limiting P supply in Cosir but not in Peragis which, generally, had lower numbers of laterals at the beginning of tillering. From the results it can be concluded that the main factors contributing to the higher P efficiency of the modern cultivar Cosir are (i) efficient use of assimilates for root-growth characteristics which enhanced P acquisition: enhanced root branching and thus smaller mean root diameter and longer root hairs; (ii) an efficient P uptake system; (iii) efficient remobilization of P from vegetative plant organs to the grains,; and most importantly (iv) lower P requirement for grain yield formation because of lower ear number per plant but higher grain number per ear. (author). 30 refs, 9 figs, 5 tabs

  19. Evaluation of wheat genotypes for performance and adaptability under rainfed conditions

    International Nuclear Information System (INIS)

    Razzaq, A.; Munir, M.

    2002-01-01

    In four wheat varieties/genotypes were evaluated under rainfed areas of northern Punjab on farmer's fields at 47 locations from 1982-83 to 1986-87. The two wheat varieties Pak-81 and S-19 (Junco S) out yielded the check variety Lyp-73 in all four years. On an average, these two varieties out yielded the check variety by more than 16%. The newly developed variety Barani-83 yielded slightly more than Lyp-73 but significantly less than the Pak-81 and S-19. These two varieties/genotypes performed well in drought also. The relative performance of all the four varieties was same with no difference under two tillage treatments (deep vs. shallow) during 1985-86.(author)

  20. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    OpenAIRE

    Costa, Mariana Souza; Scholz, Maria Brígida dos Santos; Miranda, Martha Zavariz; Franco, Célia Maria Landi

    2017-01-01

    ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8), Glu-D1 (5+10), and Glu-A3 (b) were associa...

  1. Role of abscisic acid and proline in salinity tolerance of wheat genotypes

    International Nuclear Information System (INIS)

    Shafi, M.; Bakht, J.; Khan, M.J.; Raziuddin; Khan, M.A.

    2011-01-01

    Wheat genotypes were evaluated for salinity tolerance under 3 diverse environments of Yar Hussain, Baboo Dehari (District Swabi KPK Pakistan) and Khitab Koroona (District Charsadda KPK Pakistan). Eleven genotypes (Local, SR-24, SR-25, SR-7, SR-22, SR-4, SR-20, SR-19, SR-2, SR-23 and SR-40) were tested for their salinity tolerance. These locations had different salinity profile (i.e. Yar Hussain, EC. 3-3.5 dS m/sup -1/; Baboo Dehari, EC. 4-4.5 dS m/sup -1/ and Khitab Koroona, EC. 5-5.30 dSm/sup -1/). Different locations and wheat genotypes had a significant (p < 0.05) effect on endogenous shoot proline, shoot ABA (3, 6 and 9 weeks after emergence) and straw yield. Maximum endogenous shoot proline and ABA levels (3, 6 and 9 weeks after emergence) were recorded in genotype SR-40 followed by genotype SR-23. The results further indicated that minimum endogenous shoot proline and ABA concentrations (3, 6 and 9 weeks after emergence) were recorded at Yar Hussain. Maximum endogenous shoot proline and ABA concentration (3, 6 and 9 weeks after emergence) were observed at Khitab Koroona. (author)

  2. Anther and isolated microspore culture of wheat lines from northwestern and eastern Europe

    DEFF Research Database (Denmark)

    Holme, I B; Olesen, A; Hansen, N J P

    1999-01-01

    Hexaploid wheat genotypes from north-western Europe show low responses to current anther culture techniques. This phenomenon was investigated on 145 north-western European wheat lines. Twenty-seven lines from eastern Europe were included to observe the response pattern of wheat from an area, where...... the technique has been used successfully. On average, eastern European wheat lines produced 3.6 green plants per 111 anthers, while only 1.4 green plants per 111 anthers were obtained in north-western European lines. This difference was due to the high capacity for embryo formation among the eastern European...... lines, while the ability to regenerate green plants was widespread in both germplasm groups. Isolated wheat microspore culture performed on 85 of these wheat lines gave an average 3.7-fold increase in green plants per anther compared with the anther culture response. The increased recovery of green...

  3. COMPARATIVE STUDY OF WHEAT GENOTYPES UNDER OPTIMUM AND WATER DEFICIT CONDITIONS

    Directory of Open Access Journals (Sweden)

    Ihteram Ullah et al

    2012-12-01

    Full Text Available A set of 14 wheat genotypes including two checks were evaluated under irrigated (non-stress and rainfed (stress conditions for yield and yield components during 2009-10 at Khyber Pakhtunkhwa Agricultural University, Peshawar. Analysis across two environments revealed highly significant differences (P ≤ 0.01 between the two production systems for tillers m-2and grain yield, significant differences (P ≤ 0.05 for number of grain spike-1while non significant differences were observed for 1000-grain weight. Similarly, genetic variation among the genotypes was also highly significant for spike length and 1000-grain weight while non significant for the rest of the parameters. Genotype × environment interaction was significant for tillers m-2 and number of grain spike-1 only. Averaged over 14 wheat genotypes, reduction in tillers m-2, spike length, grains spike-1 and grain yield under rainfed environment was 127 m-2, 0.9, 7 and 707 kg ha-1, respectively compared to irrigated environment. For majority of the studied traits heritability was found lower under drought stress conditions compared to non-stressed condition

  4. DNA landmarks for genetic relatedness and diversity assessment in Pakistani wheat genotypes using RAPD markers

    International Nuclear Information System (INIS)

    Siddiqui, M.F.; Iqbal, S.; Naz, N.; Khan, S.; Erum, S.

    2010-01-01

    DNA profiles from 10 Pakistani wheat genotypes were evaluated for diversity assessment based on RAPD markers. A total of 79 DNA fragments were generated by 10 RAPD primers, with an average of 7.9 bands primer-1. Of these, 64 fragments (81%) were polymorphic among 10 genotypes. Genetic diversity was evaluated via UPGMA cluster analysis by constructing dendrogram, which were used for the calculation of similarity coefficients between these genotypes. The greatest similarity (95%) was observed between PR-94 and PR-95, whereas PR-96 with PR-90 showed the lowest similarity (60%). Adoption of this technology would be useful to the plant protection regulatory systems, especially for plant variety identification and registration of new plant varieties, breeding programs and protection purposes. (author)

  5. DNA landmarks for genetic relatedness and diversity assessment in Pakistani wheat genotypes using RAPD markers

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, M F; Iqbal, S; Naz, N; Khan, S [Federal Seed Certification and Registration Dept., Islamabad (Pakistan); Erum, S [National Agricultural Research Centre, Islamabad (Pakistan). Plant Genetic Resources Inst.

    2010-04-15

    DNA profiles from 10 Pakistani wheat genotypes were evaluated for diversity assessment based on RAPD markers. A total of 79 DNA fragments were generated by 10 RAPD primers, with an average of 7.9 bands primer-1. Of these, 64 fragments (81%) were polymorphic among 10 genotypes. Genetic diversity was evaluated via UPGMA cluster analysis by constructing dendrogram, which were used for the calculation of similarity coefficients between these genotypes. The greatest similarity (95%) was observed between PR-94 and PR-95, whereas PR-96 with PR-90 showed the lowest similarity (60%). Adoption of this technology would be useful to the plant protection regulatory systems, especially for plant variety identification and registration of new plant varieties, breeding programs and protection purposes. (author)

  6. Physiological, Biochemical, Epigenetic and Molecular Analyses of Wheat (Triticum aestivum Genotypes with Contrasting Salt Tolerance

    Directory of Open Access Journals (Sweden)

    Suresh Kumar

    2017-06-01

    Full Text Available Abiotic stress exerts significant impact on plant’s growth, development, and productivity. Productivity of crop plants under salt stress is lagging behind because of our limited knowledge about physiological, biochemical, epigenetic, and molecular mechanisms of salt tolerance in plants. This study aimed to investigate physio-biochemical, molecular indices and defense responses of selected wheat cultivars to identify the most contrasting salt-responsive genotypes and the mechanisms associated with their differential responses. Physio-biochemical traits specifically membrane stability index, antioxidant potential, osmoprotectants and chlorophyll contents, measured at vegetative stage, were used for multivariate analysis to identify the most contrasting genotypes. Genetic and epigenetic analyses indicated the possible mechanisms associated with differential response of the wheat genotypes under salt stress. Better antioxidant potential, membrane stability, increased accumulation of osmolytes/phytophenolics, and higher K+/Na+ ratio under 200 mM NaCl stress identified Kharchia-65 to be the most salt-tolerant cultivar. By contrast, increased MDA level, reduced soluble sugar, proline, total chlorophyll, total phenolics contents, and lower antioxidant potential in HD-2329 marked it to be sensitive to the stress. Genetic and bioinformatics analyses of HKT1;4 of contrasting genotypes (Kharchia-65 and HD-2329 revealed deletions, transitions, and transversions resulting into altered structure, loss of conserved motifs (Ser-Gly-Gly-Gly and Gly-Arg and function in salt-sensitive (HD-2329 genotype. Expression analysis of HKTs rationalized the observed responses. Epigenetic variations in cytosine methylation explained tissue- and genotype-specific differential expression of HKT2;1 and HKT2;3.

  7. Effectiveness of Stability Indices for Bread Wheat Genotypes Selection to Water Deficit Tolerant

    Directory of Open Access Journals (Sweden)

    A Naderi

    2013-12-01

    Full Text Available In countries such as Iran which will be faced water deficit as the main challenge in the future and the food production is going to be dependent to water recourses, wheat water-deficit tolerant and adapted genotypes release is one of the most important strategies under such a condition. In order to study the adaptation and terminal water deficit stress tolerance, fifteen bread wheat lines and Chamran cultivar as the check were evaluated. This research was carried out at Ahvaz, Dezfool, Zabol and Darab, south warm region research stations, in 2007-08 and 2008-09, in two separated experiments (1-well-watered and 2- terminal water deficit stress, using complete randomized block design with three replications. Data were analyzed and genotypes response was evaluated based on tolerance indices. Results showed that the difference among stations, years, genotypes and double and triple effects of source variations were significant at 1% probability level. Mean grain yield was 4300 Kg/ha in first year, while grain yield increased significantly in second year and reached to 5692 Kg/ha. Mean grain yield were 5840 and 4591Kg/ha under well-watered and terminal water deficit stress conditions, respectively. Correlation coefficients among STI, GMP ،MP and K1STI were significant. Correlation coefficient between slop of linear regression of grain yield in response to drought stress intensity and grain yield under terminal water deficit stress was positively and, with K2STI, TOL and SSI was negatively significant. Grain yield index, (YIR the proportion of grain yield of each genotype to grand mean of grain yield of all genotypes was the most important components to define grain yield in stepwise regression under both experiment conditions. According to the results of this research and based on tolerance indices, lines No. 2, 14 and 15 were selected as the high potential- terminal water deficit stress tolerant genotypes.

  8. AMMI and GGE biplot analysis for yield stability of promising bread wheat genotypes in bangladesh

    International Nuclear Information System (INIS)

    Ashrafulalam, M.; Li, M.; Farhad, M.; Hakim, M. A.

    2017-01-01

    Identification of stable and high yielding varieties under different environmental conditions prior to release as a variety is the major steps for plant breeding. Eight promising wheat genotypes were evaluated against two standard checks across five locations under terminal heat stress condition. The experimental design was an RCBD with three replications in over one year. AMMI analyses exhibited significant (p<0.01) variation in genotype, location and genotype by location interaction with respect to grain yield. The ASV value revealed that GEN4, GEN9, and GEN8 were stable, while GEN5, GEN1, and GEN6 were the most sensitive genotypes. The GGE results also confirmed GEN3, GEN7, GEN8, GEN9 and GEN4 were the most stable cultivars. Five distant mega-environments were identified including Dinajpur and Jamalpur with GEN3, GEN7 and GEN8 as the most favorable, Joydebpur, Rajshahi and Jessore with GEN4 and GEN9 as the most favorable. Genotype GEN7 and GEN8 showed highly resistant to BpLB, GEN3 and GEN4 showed moderately resistance to BpLB, and GEN9 showed moderate susceptible to BpLB. On the other hand, these five genotypes performed resistance to leaf rust. The genotype GEN7 (BAW 1202) was released as BARI Gom 32. Considering all analysis, GEN3 (BAW 1194), GEN7 (BAW 1202) and GEN8 (BAW 1203) demonstrated more stable genotypes with high mean yield, resistant to BpLB and leaf rust. Thus it is indicated that these genotypes can be used as suitable plant material for future breeding programs. (author)

  9. Callus induction and plant regeneration by Brazilian new elite wheat genotypes

    Directory of Open Access Journals (Sweden)

    Eliane Cristina Gruszka Vendruscolo

    2008-01-01

    Full Text Available The distinction of genotypes responsive to tissue culture and the development of an efficient regenerationsystem are the first steps towards transgenic plant production. Nine Brazilian wheat (Triticum aestivum L. genotypes werecultivated in vitro to evaluate the embryogenetic capacity. The explants (immature zygotic embryos were tested in twodifferent culture media, MS (Murashige and Skoog 1962 and modified MS - MMS (Zhou et al. 1995 with decreasing dosagesof hormone regulators. Three distinct phases were observed in each medium: induction, maintenance and regeneration. Afterinduction, the somatic embryogenesis of calli was evaluated every 21 days. Genotypes responded differently to the differentculture media. The embryogenic response of genotype CD104 was best in both culture media tested. On MMS, the values ofcallus induction, plant regeneration and ratio of regenerated plantlets per rescued embryo of this genotype were 100%, 99.5%and 1.1%, respectively. Genotypes CD104, CD200126 and CDFAPA 2001129 were most responsive on MS (regenerationcapacity of 37.5%, 33.5% and 33% respectively, and therefore interesting for genetic transformation in plant breedingprograms that develop new elite cultivars with a commercial purpose.

  10. In vitro application of integrated selection index for screening drought tolerant genotypes in common wheat

    Directory of Open Access Journals (Sweden)

    Ezatollah FARSHADFAR

    2016-10-01

    Full Text Available This experiment was conducted on 20 wheat genotypes during 2010-2011 growing season at the Razi University, Kermanshah, Iran. A completely randomized design with six replications was used for callus induction and a 20 × 2 factorial experiment with three replications was used for response of genotypes to in vitro drought stress. ANOVA exhibited highly significant differences among the genotypes for callus growth rate, relative fresh mass growth, relative growth rate, callus water content, percent of callus chlorosis and proline content under stress condition (15 % PEG. PCA showed that the integrated selection index was correlated with callus growth index, relative fresh mass growth, relative growth rate and proline content indicating that these screening techniques can be useful for selecting drought tolerant genotypes. Screening drought tolerant genotypes and in vitro indicators of drought tolerance using mean rank, standard deviation of ranks and biplot analysis, discriminated genotypes 2, 18 and 10 as the most drought tolerant. Therefore they are recommended to be used as parents for genetic analysis, gene mapping and improvement of drought tolerance.

  11. The International Heat Stress Genotype Experiment for Modeling Wheat Response to Heat: Field Experiments and AgMIP-Wheat Multi-Model Simulations

    Science.gov (United States)

    Martre, Pierre; Reynolds, Matthew P.; Asseng, Senthold; Ewert, Frank; Alderman, Phillip D.; Cammarano, Davide; Maiorano, Andrea; Ruane, Alexander C.; Aggarwal, Pramod K.; Anothai, Jakarat; hide

    2017-01-01

    The data set contains a portion of the International Heat Stress Genotype Experiment (IHSGE) data used in the AgMIP-Wheat project to analyze the uncertainty of 30 wheat crop models and quantify the impact of heat on global wheat yield productivity. It includes two spring wheat cultivars grown during two consecutive winter cropping cycles at hot, irrigated, and low latitude sites in Mexico (Ciudad Obregon and Tlaltizapan), Egypt (Aswan), India (Dharwar), the Sudan (Wad Medani), and Bangladesh (Dinajpur). Experiments in Mexico included normal (November-December) and late (January-March) sowing dates. Data include local daily weather data, soil characteristics and initial soil conditions, crop measurements (anthesis and maturity dates, anthesis and final total above ground biomass, final grain yields and yields components), and cultivar information. Simulations include both daily in-season and end-of-season results from 30 wheat models.

  12. Effect of glutenin subunits on the baking quality of Brazilian wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    Full Text Available ABSTRACT This study aimed to evaluate the effect of the high and low molecular weight glutenin subunits on the grain traits of sixteen Brazilian wheat genotypes. Grain hardness index, milling traits, physicochemical and rheological properties of the flour, and specific volume and firmness of the bread were evaluated. Physicochemical properties of the flour were not influenced by glutenin subunits. Genotypes with subunits at the Glu-B1 (17+18 or 7+8, Glu-D1 (5+10, and Glu-A3 (b were associated with strong flours and bread with high specific volume and low firmness. The subunits at the Glu-A1 and Glu-B3 had no effect on the rheological properties of the dough and bread quality, while the subunit 2+12 at Glu-D1 negatively affected the resistance to extension, and specific volume and firmness of the bread. Specific volume and firmness of the bread were influenced by the rheological properties of the dough, while the flour protein content was not important to define wheat quality. The identification of glutenin subunits at different loci along with the rheological tests of the flour are fundamental in estimating the potential use of different materials developed in wheat breeding.

  13. Genetic diversity of bread wheat genotypes in Iran for some nutritional value and baking quality traits.

    Science.gov (United States)

    Amiri, Reza; Sasani, Shahryar; Jalali-Honarmand, Saeid; Rasaei, Ali; Seifolahpour, Behnaz; Bahraminejad, Sohbat

    2018-02-01

    Genetic variation among 78 irrigated bread wheat genotypes was studied for their nutritional value and baking quality traits as well as some agronomic traits. The experiment was conducted in a randomized complete block design with three replicates under normal and terminal drought stress conditions in Kermanshah, Iran during 2012-2013 cropping season. The results of combined ANOVA indicated highly significant genotypic differences for all traits. All studied traits except grain yield, hectoliter weight and grain fiber content were significantly affected by genotype × environment interaction. Drought stress reduced grain yield, thousand kernel weight, gluten index, grain starch content and hectoliter weight and slightly promoted grain protein and fiber contents, falling number, total gluten and ratio of wet gluten to grain protein content. Grain yield by 31.66% and falling number by 9.20% attained the highest decrease and increase due to drought stress. There were negative and significant correlations among grain yield with grain protein and fiber contents under both conditions. Results of cluster analysis showed that newer genotypes had more grain yield and gluten index than older ones, but instead, they had the lower grain protein and fiber contents. It is thought that wheat breeders have bred cultivars with high grain yield, low protein content, and improved bread-making attributes during last seven decades. While older genotypes indicated significantly higher protein contents, and some of them had higher gluten index. We concluded from this study that it is imperative for breeders to pay more attention to improve qualitative traits coordinated to grain yield.

  14. In vitro evaluation of boron tolerance in wheat (Triticum aestivum L. genotypes

    Directory of Open Access Journals (Sweden)

    Kondić-Špika Ankica

    2010-01-01

    Full Text Available Wheat tolerance to high boron concentrations was determined using mature embryo culture. The testing was performed on a modified MS nutrient medium to which boric acid was added in two concentrations: 15 mM and 30 mM. The control medium contained no excess boric acid. The experiment involved 14 Serbian varieties. After one month of cultivation callus fresh weight (CFW was measured and reductions of fresh callus weight (RFCW at boron (B concentration of 15 mM in relation to the control were calculated. The genotypes differed significantly according to their reaction to different B concentrations. Six genotypes had RFCWs below 50.0 %, while eight genotypes had RFCWs above 50.1 %. Cultivars Nevesinjka and Pesma were considered the most tolerant genotypes, while cultivars Balada and Vila were the most sensitive. The results confirmed that differences in genotype reactions to excess B are visible at the cellular level and that they may serve as a selection criterion. .

  15. Evaluation of Drought Tolerance in Some Wheat Genotypes Based on Selection Indices

    Directory of Open Access Journals (Sweden)

    M Mohseni

    2016-02-01

    Full Text Available Introduction Wheat is a major crop among cereals and plays a vital role in the national economy of developing countries. Wheat (Triticum aestivum L. is one of the most important crops in terms of acreage and production rates in the world. This crop has an important role in the food supply. According to the FAO (2010 statistics report, the average wheat yield in Iran was 2136 kg ha-1, while the worldwide average yield was 3009 kg ha-1. Iran, with an average annual rainfall of 250 mm, is located in the world desert belt. Yield loss due to drought stress is likely higher than other stresses. Therefore, introducing plants with high production under both drought stress and non-stress conditions is highly regarded. Stress tolerance indices are used for screening drought tolerant varieties. Tolerance (TOL, mean productivity (MP, stress susceptibility index (SSI, geometric mean productivity (GMP, stress tolerance index (STI and modified STI (MSTI have been employed under various conditions. Fischer and Maurer (1978 explained that cultivars with an SSI less than a unit are stress tolerant, since their yield reduction under stress conditions is smaller than the mean yield reduction of all cultivars (Bruckner and Frohberg, 1987. Mean productivity, GMP, harmonic mean (HM and STI were reported as preferred criteria in selection of drought-tolerant barley genotypes by Baheri et al. (2003. Yield Index (YI proposed by Gavuzzi et al. (1997, was significantly correlated with stress yield which ranks cultivars on the basis of their yield under stress. The genotypes with a high Yield Stability Index (YSI are expected to have higher yield under both stress and non-stress conditions (Bouslama and Schapaugh, 1984. Mousavi et al (2008 introduced Stress Susceptibility Percentage Index (SSPI as a powerful index to select extreme tolerant genotypes with yield stability. Fischer and Wood (1979 suggested that relative drought index (RDI is a positive index for indicating

  16. Root phenotypic differences across a historical gradient of wheat genotypes alter soil rhizosphere communities and their impact on nitrogen cycling

    Science.gov (United States)

    Kallenbach, C.; Junaidi, D.; Fonte, S.; Byrne, P. F.; Wallenstein, M. D.

    2017-12-01

    Plants and soil microorganisms can exhibit coevolutionary relationships where, for example, in exchange for root carbon, rhizosphere microbes enhance plant fitness through improved plant nutrient availability. Organic agriculture relies heavily on these interactions to enhance crop nitrogen (N) availability. However, modern agriculture and breeding under high mineral N fertilization may have disrupted these interactions through alterations to belowground carbon inputs and associated impacts on the soil microbiome. As sustainability initiatives lead to a restoration of agricultural soil organic matter, modern crop cultivars may still be constrained by crop roots' ability to effectively support microbial-mediated N mineralization. We investigated how differences in root traits across a historical gradient of spring wheat genotypes influence the rhizosphere microbial community and effects on soil N and wheat yield. Five genotypes, representing wild (Wild), pre-Green Revolution (Old), and modern (Modern) wheat, were grown under greenhouse conditions in soils with and without compost to also compare genotype response to difference in native soil microbiomes and organic resource availability. We analyzed rhizosphere soils for microbial community composition, enzyme activities, inorganic N, and microbial biomass. Root length density, surface area, fine root volume and root:shoot ratio were higher in the Wild and Old genotype (Gypsum) compared to the two Modern genotypes (Psoil inorganic N, compared to Modern genotypes. However, under unamended soils, the microbial community and soil N were not affected by genotypes. We also relate how root traits and N cycling across genotypes correspond to microbial community composition. Our preliminary data suggest that the older wheat genotypes and their root traits are more effective at enhancing microbial N mineralization under organically managed soils. Thus, to optimize crop N availability from organic sources, breeding efforts

  17. Using callus culture to study the drought tolerance of wheat genotypes

    Directory of Open Access Journals (Sweden)

    Kondić Ankica

    2000-01-01

    Full Text Available In this paper, we studied the drought tolerance under in vitro conditions of two winter wheat (T. aestivum L. cultivars, Košuta and Renesansa. The tolerance was tested on a modified MS (Murashige and Skoog, 1962 nutrient medium to which polyethylene glycol (PEG was added at three different concentrations: 10%, 20% and 30%. Calluses from the control group were grown on a medium without PEG. After four months of growing on these mediums, fresh weight and dry matter content in the callus tissue were determined. We found significant differences in genotype response to different PEG concentrations The highest concentration (30% was lethal to the isolated embryos, so at this concentration no calluses formed in any of the genotypes. At 10 and 20% PEG, there was a significant decrease in the fresh callus weight in both genotypes. Thus, at the lowest concentration ( 10% PEG, the fresh weight decreased by 90% in Košuta and by 93% in Renesansa relative to the control. Due to callus dehydration in the presence of PEG, the dry matter content in the calluses of both genotypes increased with increasing PEG concentrations in the medium. In Košuta, the dry matter content increased from 8.7% (control to 24.9% (20% PEG, while in Renesansa it increased from 8.6% (control to 39.7% (20% PEG.

  18. Gene effects and combining ability in some bread wheat genotypes to yellow rust disease.

    Science.gov (United States)

    Razavi, A R; Taeb, M; Afshari, F; Khavari, S; Abbaspoor, M

    2009-01-15

    Ten wheat lines were studied to determine gene effects and combining ability in some bread wheat genotypes to yellow rust disease. Ten parental lines and F1 were evaluated in a randomized complete block design with three replications in Agricultural and Natural Resources Research Center, Mashhad, Iran. Two races (134E134A+ and 4E0A+) were used for this study. Latent Period (LP) and Infection Type (IT) were measured in the field and greenhouse. Results showed significant differences between races in their pathogenicity and between genotypes in their resistance to the pathogen. Diallel cross carried out between the parents and progenies and thereafter were analyzed by the method of Griffing and Haymans. The General Combining Ability (GCA) and Special Combining Ability (SCA) for all traits were significant and showed additive variance was more important. Test for validity of diallel hypothesis proved epistasis effect for all traits. P1, P2 and F1 showed significant difference between all traits in generations mean analysis. Average degree of dominance ranged from partial to over dominance for resistance or susceptibility. Dominance, additive and epistatic types of gene action were responsible for the genetic control of the traits. However, except for additive-additive component, non-additive effect of genes could not be fixed by self-fertilization.

  19. Estimation of genetic variability among elite wheat genotypes using random amplified polymorphic DNA (RAPD) analysis

    International Nuclear Information System (INIS)

    BIBI, S.; Khan, I.A.; Naqvi, M.H.; Siddiqui, M.A.; Yasmeen, S.; Seema, M.

    2012-01-01

    Twenty four wheat varieties/lines were assessed through RAPD for genetic diversity. Of forty primers, thirteen were able to amplify the genomic DNA and yielded 269 polymorphic bands. The percentage of the polymorphic loci was 86.22%. Nei's genetic diversity (h) ranged from 0.248 to 0.393, with an average of 0.330. Shanon's index ranged from 0.382 to 0.567, with an average of 0.487. The proportion of genetic variation among the populations ( Ds) accounted for 28.58 % of the whole genetic diversity. The level of gene flow (Nm) was 1.25. Some specific RAPD bands were also identified, variety C-591, and QM-4531 contain a specific segment of 4.9 kbp. Whereas SARC-1 and PKV-1600 amplified a specific DNA segment with primer A-09. Marvi-2000 contains two specific segments of 3.2 kb and 200 bp amplified with primer B-07. Genetically most similar genotypes were C-591 and Pasban-90 (76%) and most dissimilar genotypes were Rawal-87 and Khirman (36.1%). On the basis of results, 24 wheat varieties under study could be divided into 'two' groups and five clusters 'A' to 'E. (author)

  20. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    2013-02-01

    Full Text Available Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1, 5 + 10 (Glu-D1, c (Glu-A3, and b (Glu-B3, with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.

  1. Effect of different irrigated conditions on some morphological traits of wheat genotypes grown in Saudi Arabia

    International Nuclear Information System (INIS)

    Albokari, A. A.; Majeed, A.; Almuwalid, A.

    2016-01-01

    The Kingdom of Saudi Arabia being one of the driest countries globally needs drought tolerant wheat varieties. Breeding studies were conducted to determine the effects of different irrigation levels on some morphological traits of 4 wheat varieties. A pot-house experiment was conducted in split plot design using two different irrigations (well-watered and partial moisture stress) levels. Presently, the study was laid on different traits viz. plant height (cm), tiller number/plant, number of leaves/plant, leaf length (cm), flowering time (days), maturity time (days), 1000-grain weight (g) and grain yield/plant (g). The mean square from pooled analysis of variance revealed that the genotypes, treatments and genotype x treatment interaction were highly significant (p>0.05) for the traits leaf length, plant height, maturity time,1000-grain weight, grain yield per plot; however, number of leaves, number of tillers/plant, flowering time and 1000-grain weight showed non-significant difference. Similarly, genotype x reading interaction was also highly significant (p>0.05) leaf length, number of tillers per plant and plant height. The varieties Nukrat Zahran, Samrra Najran and Halba Najran and showed better performance for grain yield and maximum 1000-grain weight under both environments. Plant height showed highly significant positive correlation with number of leaves per plant and number of tillers per plant. At partial stress, 1000-grain weight showed highly significant (p>0.01) correlation (r=0.8608) with grain yield and maturity time (r=0.9948). The knowledge obtained through this research will be helpful while selection of best varieties with better tolerance to environmental stresses. (author)

  2. In vitro regeneration of five wheat genotypes from immature zygotic embryos

    International Nuclear Information System (INIS)

    Khokhar, M.I.; Iqbal, M.Z.

    2016-01-01

    This study examined the ability to induce callus from immature zygotic embryos of five wheat genotypes (Lu 26, WH 543, Zamindar 80, BT-002 and Seher-06) in response to 2, 4 and 6 mg/L of 2,4-dichlorophenoxy acetic acid (2,4-D). Callus induction was most effective (41% averaged across the 5 genotypes) in the presence of 2 mg/L 2,4-D. Callus induction was highest in Lu 26 (34%) followed by WH 543 (33%). Highest percentage shoot formation (33%) from callus was possible on Murashige and Skoog (1962) medium containing 300 mg casein hydrolysate. BT-002 responded best to shoot formation (26%) followed by WH 543 (24%). Under these optimal conditions, callus could form within 7.4 days and shoots within 20.87 days (fastest growth averaged across the 5 genotypes). Zamindar-80 responded best by taking fewest days to initiate callus formation (7.88 days) while Lu 26 took the least amount of time to form shoots (23.25 days). This study provides a rapid and efficient, as well as cultivar-independent protocol for the indirect formation of shoots from callus, the first such report for WH 543, Zamindar 80, BT-002 and Seher-06. This protocol may be a useful protocol for transgenic wheat plants that are derived from the genetic transformation of callus, either by particle bombardment or Agrobacterium-mediated transformation, to produce, for example, insect- or herbicide-resistant plants, since a rapid and effective regeneration protocol is an essential first step for the successful regeneration of transgenic plants. (author)

  3. Molecular genetic studies on irradiated wheat plants

    International Nuclear Information System (INIS)

    Saleh, O.M.

    2002-01-01

    Composite genotype(octamer hybrid) was obtained from crossing among eight Egyptian hexaploid wheat cultivars differing in their tolerance to drought stress to produce a genotype, which can economize on the irrigation water requirements or can tolerate drought stress. Gamma irradiation with 10-Krad was used to induce mutations, which could improve drought tolerance for this composite. From eight Egyptian wheat cultivars, two were chosen as drought tolerant and drought sensitive genotypes (G-160 and Sk-61, respectively. They were evaluated along with their F1 and F2 for their relative drought tolerance for some yield-related traits. Bulked segregating analysis developed some RAPD and SSR markers with different primers, which were considered as molecular for drought tolerance in wheat. Hal 2-like gene was introduced into Egyptian wheat cultivar G-164 via micro projectile bombardment. Two putative transgenic plants were successfully detected by leaf painting with the herbicide basta. PCR/ Southern blotting analysis indicated the presence of both/either bar and/or Hal 2-like genes in the genomic background of the two transgenic plants

  4. Quantifying Wheat Sensitivities to Environmental Constraints to Dissect Genotype × Environment Interactions in the Field.

    Science.gov (United States)

    Parent, Boris; Bonneau, Julien; Maphosa, Lance; Kovalchuk, Alex; Langridge, Peter; Fleury, Delphine

    2017-07-01

    Yield is subject to strong genotype-by-environment (G × E) interactions in the field, especially under abiotic constraints such as soil water deficit (drought [D]) and high temperature (heat [H]). Since environmental conditions show strong fluctuations during the whole crop cycle, geneticists usually do not consider environmental measures as quantitative variables but rather as factors in multienvironment analyses. Based on 11 experiments in a field platform with contrasting temperature and soil water deficit, we determined the periods of sensitivity to drought and heat constraints in wheat ( Triticum aestivum ) and determined the average sensitivities for major yield components. G × E interactions were separated into their underlying components, constitutive genotypic effect (G), G × D, G × H, and G × H × D, and were analyzed for two genotypes, highlighting contrasting responses to heat and drought constraints. We then tested the constitutive and responsive behaviors of two strong quantitative trait loci (QTLs) associated previously with yield components. This analysis confirmed the constitutive effect of the chromosome 1B QTL and explained the G × E interaction of the chromosome 3B QTL by a benefit of one allele when temperature rises. In addition to the method itself, which can be applied to other data sets and populations, this study will support the cloning of a major yield QTL on chromosome 3B that is highly dependent on environmental conditions and for which the climatic interaction is now quantified. © 2017 American Society of Plant Biologists. All Rights Reserved.

  5. Inheritance and Bulked Segregant Analysis of Leaf Rust and Stem Rust Resistance in Durum Wheat Genotypes.

    Science.gov (United States)

    Aoun, Meriem; Kolmer, James A; Rouse, Matthew N; Chao, Shiaoman; Bulbula, Worku Denbel; Elias, Elias M; Acevedo, Maricelis

    2017-12-01

    Leaf rust, caused by Puccinia triticina, and stem rust, caused by P. graminis f. sp. tritici, are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to P. triticina race BBBQJ and stem rust resistance (Sr) genes to P. graminis f. sp. tritici race TTKSK in durum accessions. Eight leaf-rust-resistant genotypes were used to develop biparental populations. Accessions PI 192051 and PI 534304 were also resistant to P. graminis f. sp. tritici race TTKSK. The resulting progenies were phenotyped for leaf rust and stem rust response at seedling stage. The Lr and Sr genes were mapped in five populations using single-nucleotide polymorphisms and bulked segregant analysis. Five leaf-rust-resistant genotypes carried single dominant Lr genes whereas, in the remaining accessions, there was deviation from the expected segregation ratio of a single dominant Lr gene. Seven genotypes carried Lr genes different from those previously characterized in durum. The single dominant Lr genes in PI 209274, PI 244061, PI387263, and PI 313096 were mapped to chromosome arms 6BS, 2BS, 6BL, and 6BS, respectively. The Sr gene in PI 534304 mapped to 6AL and is most likely Sr13, while the Sr gene in PI 192051 could be uncharacterized in durum.

  6. Drought tolerance indices and their correlation with yield in exotic wheat genotypes

    International Nuclear Information System (INIS)

    Anwar, J.; Subhani, G.M.; Ahmad, J.; Hussain, M.; Munir, M.

    2011-01-01

    Performance of nineteen exotic genotypes along with local check variety was studied during 2009-10 at Wheat Research Institute, AARI, Faisalabad, Pakistan. The experiment was conducted under two field conditions i.e., stress and irrigated conditions. In case of water stress experiment, only soaking irrigation was applied for seed bed preparation and no further irrigation was applied up to maturity. While, four irrigations were applied at critical growth stages to the second experiment (irrigated). At maturity, grain yield was recorded in both experiments (stress Y/sub s/ and irrigated Y/sub p/). From grain yield data, some drought tolerance/resistance indices such as tolerance index (TOL), mean productivity (MP), harmonic mean (HM), stress susceptibility index (SSI), geometric mean productivity (GMP), stress tolerance index (STI), yield index (YI), yield stability index (YSI) and modified stress tolerance index (k/sub 1/STI and k/sub 2/STI) were calculated. Genotypic correlation, genetic components and heritability were also calculated for grain yield and all indices. Significant differences among genotypes were observed for Y/sub p/, Y/sub s/ and all other drought tolerance indices. Moderate to high heritability and genetic advance were observed for Y/sub p/, Y/sub s/ and all drought tolerance indices. Grain yield under irrigated environment (Y/sub p/) was positively and significantly correlated with MP, HM, GMP, STI and k/sub 1/STI. Similarly, positive and significant association has also been observed between grain yield under stress condition (Y/sub s/) and MP, HM, GMP, STI, YI and k/sub 2/STI so they were the better predictor of potential yield Y/sub p/ and Y/sub s/ than TOL, SSI and YSI. According to Fernandez model; genotypes No. 2, 4, 6, 7, 9 and 13 have uniform superiority under both conditions (stress and irrigated). Genotypes No. 1, 11, 15, 16, 17, 18 and 19 were recommended for irrigated conditions. Genotypes No. 3 and 5 were identified suitable for

  7. Dryland wheat domestication changed the development of aboveground architecture for a well-structured canopy.

    Directory of Open Access Journals (Sweden)

    Pu-Fang Li

    Full Text Available We examined three different-ploidy wheat species to elucidate the development of aboveground architecture and its domesticated mechanism under environment-controlled field conditions. Architecture parameters including leaf, stem, spike and canopy morphology were measured together with biomass allocation, leaf net photosynthetic rate and instantaneous water use efficiency (WUE(i. Canopy biomass density was decreased from diploid to tetraploid wheat, but increased to maximum in hexaploid wheat. Population yield in hexaploid wheat was higher than in diploid wheat, but the population fitness and individual competition ability was higher in diploid wheats. Plant architecture was modified from a compact type in diploid wheats to an incompact type in tetraploid wheats, and then to a more compact type of hexaploid wheats. Biomass accumulation, population yield, harvest index and the seed to leaf ratio increased from diploid to tetraploid and hexaploid, associated with heavier specific internode weight and greater canopy biomass density in hexaploid and tetraploid than in diploid wheat. Leaf photosynthetic rate and WUEi were decreased from diploid to tetraploid and increased from tetraploid to hexaploid due to more compact leaf type in hexaploid and diploid than in tetraploid. Grain yield formation and WUEi were closely associated with spatial stance of leaves and stems. We conclude that the ideotype of dryland wheats could be based on spatial reconstruction of leaf type and further exertion of leaf photosynthetic rate.

  8. Stability of Durum Wheat Genotypes in Some Agronomic Traits Under Bursa Ecological Conditions

    Directory of Open Access Journals (Sweden)

    Esra Aydoğan Çiftçi

    2017-11-01

    Full Text Available In the study it is aimed to determine the stabilities of some agronomic traits of 10 different durum wheats over the years in conditions of Bursa. Research was carried out in randomized complete block design with three replications between the years of 2008-2013. Averages of genotypes of agronomic characteristics, Eberhart and Russell’s regression coefficient and deviation from regression, Francis and Kannenberg’s coefficient of variation and environmental variance used as stability parameters. When the results of the study evaluated at the stability analysis, Amb × Çak-30 lines were determined to be stable in most of the agronomic traits. As for grain yield, which is of great importance for the producer, breeding lines of Amb × Çak -26 and Amb × Çak-30 were determined in good harmony at Bursa under different climatic conditions over five years.

  9. The effects of nitrogen nutrition and glutenin composition on the gluten quality in wheat genotypes

    Directory of Open Access Journals (Sweden)

    NIKOLA HRISTOV

    2010-03-01

    Full Text Available The effect of nitrogen nutrition treatments on the gluten content and some quality parameters of eight winter wheat cultivars has been studied. Six different nitrogen rates were applied (0, 60, 90, 120, 150 and 180 kg N ha-1 to wheat cultivars chosen according to the structure of their high molecular weight glutenin subunits (HMW-GS at the Glu-D1 locus. Four genotypes with HMW-GS 2 + 12 and another four with HMW-GS 5 + 10 were used in the study. The analysis of gluten quality involved the wet gluten content and rheological properties determined by the sensory and instrumental methods (“Instron 4301”. It was determined that in all the cultivars the wet gluten content increased significantly (P < 0.05 in parallel with N rate increase. The cultivars reacted differently regarding their wet gluten rheological properties. Libellula, a cultivar with poor bread making quality (HMW-GS 2 + 12, did not react to different N rates. Sremica, a cultivar with excellent bread making quality (HMW-GS 5 + 10, reduced its gluten quality as the N rate increased. The values obtained by the instrumental method “Instron 4301” at 90% wet gluten compression varied widely (from 0.002 to 0.041 kN. The increase of N fertilizer rate was significantly positively correlated (r2 = 0.811 with the wet gluten content and strength in the cultivars with HMW-GS 5+10.

  10. Association of water spectral indices with plant and soil water relations in contrasting wheat genotypes.

    Science.gov (United States)

    Gutierrez, Mario; Reynolds, Matthew P; Klatt, Arthur R

    2010-07-01

    Spectral reflectance indices can be used to estimate the water status of plants in a rapid, non-destructive manner. Water spectral indices were measured on wheat under a range of water-deficit conditions in field-based yield trials to establish their relationship with water relations parameters as well as available volumetric soil water (AVSW) to indicate soil water extraction patterns. Three types of wheat germplasm were studied which showed a range of drought adaptation; near-isomorphic sister lines from an elite/elite cross, advanced breeding lines, and lines derived from interspecific hybridization with wild relatives (synthetic derivative lines). Five water spectral indices (one water index and four normalized water indices) based on near infrared wavelengths were determined under field conditions between the booting and grain-filling stages of crop development. Among all water spectral indices, one in particular, which was denominated as NWI-3, showed the most consistent associations with water relations parameters and demonstrated the strongest associations in all three germplasm sets. NWI-3 showed a strong linear relationship (r(2) >0.6-0.8) with leaf water potential (psi(leaf)) across a broad range of values (-2.0 to -4.0 MPa) that were determined by natural variation in the environment associated with intra- and inter-seasonal affects. Association observed between NWI-3 and canopy temperature (CT) was consistent with the idea that genotypes with a better hydration status have a larger water flux (increased stomatal conductance) during the day. NWI-3 was also related to soil water potential (psi(soil)) and AVSW, indicating that drought-adapted lines could extract more water from deeper soil profiles to maintain favourable water relations. NWI-3 was sufficiently sensitive to detect genotypic differences (indicated by phenotypic and genetic correlations) in water status at the canopy and soil levels indicating its potential application in precision

  11. Understanding the Effects of Genotype, Growing Year, and Breeding on Tunisian Durum Wheat Allergenicity. 1. The Baker's Asthma Case.

    Science.gov (United States)

    Boukid, Fatma; Prandi, Barbara; Sforza, Stefano; Sayar, Rhouma; Seo, Yong Weon; Mejri, Mondher; Yacoubi, Ines

    2017-07-19

    Baker's asthma is a serious airway disease triggered by wheat protein CM3 α-amylase/trypsin inhibitor. The purpose of the present study was to investigate the impact of genotype and crop year on allergen CM3 α-amylase/trypsin inhibitor associated with baker's asthma. A historical series of Tunisian durum wheat (100 accessions), derived from three crop years, was used to compare the amount of CM3 from landraces to advanced cultivars. CM3 protein quantification was assessed after an enzymatic cleavage of the soluble protein extracts on a UPLC/ESI-MS system, using a marker peptide for its quantification. Combined data analysis of variance revealed an important effect of genotype, crop year, and their interaction. The CM3 allergenic proteins were found to significantly vary among studied genotypes, as confirmed by genetic variability, coefficient of variance, heritability, and genetic advance.

  12. Wheat ferritins: Improving the iron content of the wheat grain

    DEFF Research Database (Denmark)

    Borg, Søren; Brinch-Pedersen, Henrik; Tauris, Birgitte

    2012-01-01

    The characterization of the full complement of wheat ferritins show that the modern hexaploid wheat genome contains two ferritin genes, TaFer1 and TaFer2, each represented by three homeoalleles and placed on chromosome 5 and 4, respectively. The two genes are differentially regulated and expresse...

  13. Genetic controls on starch amylose content in wheat and rice grains

    Indian Academy of Sciences (India)

    2014-04-07

    Apr 7, 2014 ... cuboid in appearance and smaller than wheat or maize. (figure 3; Kaur et al. 2007). ..... gaps in our knowledge. Due to the hexaploid ...... Makino A 2011 Photosynthesis, grain yield, and nitrogen utilization in rice and wheat.

  14. Reaction to diseases of six gamma-irradiated genotypes of wheat (Triticum spp.)

    International Nuclear Information System (INIS)

    Parodi, P.C.; Nebreda, I.M.

    1977-01-01

    Seed from six genotypes of spring wheat: Huelquen, Collafen, Yafen, PLA771 and Bluebird No.3 (Triticum aestivum L.), and also Quilafen (Triticum durum Desf.) was exposed to gamma radiation in doses of 10 and 25 krad. The aim of the research is to produce cultivars resistant to the main diseases, with a high protein content and grain yield, for the north-central region of Chile (29-35 0 latitude south). The selection process up to the generation M 5 has made it possible to identify mutants with a higher level of resistance to Puccinia graminis, Puccinia recondita and Puccinia striiformis than the original genotypes. Progress made in improving resistance to a fungal complex attacking the spikelets of the mutant cultivars Huelquen and Yafen, to Erysiphe graminis, and to the yellow dwarf virus in barley (BYDV), has been slighter. The yield of grain and protein per unit surface of the mutants studied during repeated experiments has been greater than for the controls. If this trend continues, there should be a number of mutants that could be used for commercial cultivation. (author)

  15. Comparative study of P uptake and utilization from P fertilizers by Chilean wheat genotypes in volcanic ash soils

    International Nuclear Information System (INIS)

    Pino, I.; Parada, A.M.; Zapata, F.; Navia, M.; Luzio, W.

    2002-01-01

    The intensification of the agricultural production in Southern Chile demand the application of P fertilizers to volcanic ash soils for optimum plant growth and crop yields. Due to the high P sorption capacities of these soils, high amounts of water-soluble phosphatic fertilizers need to be applied. Therefore, the direct application of locally available Bahia Inglesa phosphate rock has been utilized to supply P to crops in these acid soils. Phosphate rock is a very efficient P input for crops with long growth cycles or crop rotations nevertheless water-soluble P fertilizers must still be applied to crops of short growth cycle. Combined with these strategic P inputs, the use of acid-tolerant and P-efficient genotypes can further contribute to agricultural sustainability. Greenhouse studies were undertaken to explore and identify genotypic variations in P efficiency of wheat grown in Andisols of Southern Chile. 32 P isotopic techniques were utilized to measure the uptake of P from triple superphosphate, a water-soluble P fertilizer and the locally available Bahia Inglesa phosphate rock. Substantial genotypic variations in P use efficiency were found among the Chilean wheat genotypes tested. The utilization of the 32 P isotopic techniques enabled to quantify the P taken up from the P fertilizer and the assessment of differences among the genotypes. Significant genotypic differences were obtained in the P uptake from the local phosphate rock Bahia Inglesa. Much higher applications of phosphate rock were required in Santa Barbara soil series (Andisol) due to its high P retention. A sustainable strategy for agricultural production in the Andisols of Chile would therefore, be the combined utilization of those efficient wheat genotypes and the local phosphate rock Bahia Inglesa. As P efficiency is a multi-faceted trait, which interacts with a range of environmental factors, further field-testing and validation is required accompanied by in depth studies to assess the

  16. Characteristics of spring wheat genotypes exhibiting high resistance to FHB in terms of their resistance to other fungal diseases

    Directory of Open Access Journals (Sweden)

    Danuta Kurasiak-Popowska

    2016-09-01

    Full Text Available The field experiment was carried out in 2010–2012 at the Dłoń Agricultural Research Station, the Poznań University of Life Sciences, Poland. The study was designed to evaluate the degree of infection by powdery mildew, brown rust, and septoria leaf blotch in 61 spring wheat genotypes differing in their resistance to Fusarium ssp. The vast majority of spring wheat genotypes in the collection of gene resources in the USA defined as resistant to Fusarium ssp. confirmed their resistance under Polish climatic conditions. The B .graminis infection rate of genotypes that are considered to be resistant to Fusarium head blight was high. The resistance ranged from 7 for Sumai 3 (PL2 up to 8.8 for Ning 8331 (in a 9-point scale. Most of the genotypes (56.5% were infected by Puccinia recondita at a level of 1–3 (in a 9-point scale. The genotypes of Sumai 3 exhibited high resistance to septoria leaf blotch, amounting to 1–2 in a 9-point scale; the resistance of Frontana ranged from 1 to 3.5, while the genotypes of Ning were infected by Mycosphaerella graminicola at 5–6.

  17. Association of yield-related traits in founder genotypes and derivatives of common wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jie Guo

    2018-02-01

    Full Text Available Abstract Background Yield improvement is an ever-important objective of wheat breeding. Studying and understanding the phenotypes and genotypes of yield-related traits has potential for genetic improvement of crops. Results The genotypes of 215 wheat cultivars including 11 founder parents and 106 derivatives were analyzed by the 9 K wheat SNP iSelect assay. A total of 4138 polymorphic single nucleotide polymorphism (SNP loci were detected on 21 chromosomes, of which 3792 were mapped to single chromosome locations. All genotypes were phenotyped for six yield-related traits including plant height (PH, spike length (SL, spikelet number per spike (SNPS, kernel number per spike (KNPS, kernel weight per spike (KWPS, and thousand kernel weight (TKW in six irrigated environments. Genome-wide association analysis detected 117 significant associations of 76 SNPs on 15 chromosomes with phenotypic explanation rates (R 2 ranging from 2.03 to 12.76%. In comparing allelic variation between founder parents and their derivatives (106 and other cultivars (98 using the 76 associated SNPs, we found that the region 116.0–133.2 cM on chromosome 5A in founder parents and derivatives carried alleles positively influencing kernel weight per spike (KWPS, rarely found in other cultivars. Conclusion The identified favorable alleles could mark important chromosome regions in derivatives that were inherited from founder parents. Our results unravel the genetic of yield in founder genotypes, and provide tools for marker-assisted selection for yield improvement.

  18. Assessment of adaptability and stability of grain yield in bread wheat genotypes under different sowing times in Punjab

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, M.; Ali, M.A.; Subhani, G.M.; Munir, M.

    2011-01-01

    Twenty advanced lines/genotypes of wheat including two check varieties were sown under two different sowing times through out the Punjab province at 18 different locations with diverse environments to study their stability and adaptability. Normal sowing was done in second week of November 2007 while the delayed sowing was completed during second week of December 2007 during crop season 2007-08. The pooled analysis of variance showed significant differences among environments and genotypes for grain yield demonstrating the presence of considerable variations (p<0.01) among genotypes as well as diversity of growing environments at various locations for both normal and late sown wheat crops. The highest average grain yield was obtained at Jalandar Seed Farm, Arifwala and Pak. German Farm, Multan for normal and delayed sown crops, respectively. Most of the locations emerged as high yielding in normal sowing compared to late sown crop. Dendrograms of 18 locations based on the average yield of 20 wheat genotypes grown under normal and late sown crop revealed two main clusters. Under both normal and late sowing, none of the varieties exceeded the check Seher-2006, however, the check was followed by the advanced lines V-04022 and V-05066 for normal sown crop and Shafaq-2006, V-05066 and V-04022 under delayed sowing. All the genotypes revealed decline in grain yield for late sown wheat crop. The analysis of stability based on mean grain yield, regression coefficient and deviation from regression advocated that the cultivars V-05066 and V-03BT007 were most stable and adapted to diverse environmental conditions of Punjab. These cultivars revealed unit regression and non-significant deviations from regression. The check variety Seher-2006 produced maximum yield for both sowing times that suggested its consistent and stable performance across the environments. (author)

  19. Understanding the Effects of Genotype, Growing Year, and Breeding on Tunisian Durum Wheat Allergenicity. 2. The Celiac Disease Case.

    Science.gov (United States)

    Boukid, Fatma; Prandi, Barbara; Sforza, Stefano; Sayar, Rhouma; Seo, Yong Weon; Mejri, Mondher; Yacoubi, Ines

    2017-07-19

    The aim of this study was to compare immunogenic and toxic gluten peptides related to celiac disease (CD). 100 accessions of genotypes selected during the 20th century in Tunisia were in vitro digested and then analyzed by UPLC/ESI-MS technique using an isotopically labeled internal standard. The first MANOVA confirmed a high variability in the content of immunogenic and toxic peptides reflecting high genetic diversity in the germplasm released during the past century in Tunisia, consistently with PCA and clustering analysis results. Our finding showed also important variability in CD epitopes due to growing season's climate scenarios. Moreover, the second MANOVA revealed significant differences between abandoned and modern cultivars' CD-related peptide amounts. Although we could not conclude that there was an augment of allergens in newly selected durum wheat lines compared to abandoned ones, we demonstrated that modern genotype peptides were less sensitive to climate variation, which is a useful indicator for wheat breeders.

  20. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  1. Genotype, environment, seeding rate, and top-dressed nitrogen effects on end-use quality of modern Nebraska winter wheat.

    Science.gov (United States)

    Bhatta, Madhav; Regassa, Teshome; Rose, Devin J; Baenziger, P Stephen; Eskridge, Kent M; Santra, Dipak K; Poudel, Rachana

    2017-12-01

    Fine-tuning production inputs such as seeding rate, nitrogen (N), and genotype may improve end-use quality of hard red winter wheat (Triticum aestivium L.) when growing conditions are unpredictable. Studies were conducted at the Agronomy Research Farm (ARF; Lincoln, NE, USA) and the High Plains Agricultural Laboratory (HPAL; Sidney, NE, USA) in 2014 and 2015 in Nebraska, USA, to determine the effects of genotype (6), environment (4), seeding rate (3), and flag leaf top-dressed N (0 and 34 kg N ha -1 ) on the end-use quality of winter wheat. End-use quality traits were influenced by environment, genotype, seeding rate, top-dressed N, and their interactions. Mixograph parameters had a strong correlation with grain volume weight and flour yield. Doubling the recommended seeding rate and N at the flag leaf stage increased grain protein content by 8.1% in 2014 and 1.5% in 2015 at ARF and 4.2% in 2014 and 8.4% in 2015 at HPAL. The key finding of this research is that increasing seeding rates up to double the current recommendations with N at the flag leaf stage improved most of the end-use quality traits. This will have a significant effect on the premium for protein a farmer could receive when marketing wheat. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Productivity performance of bread winter wheat genotypes of local and foreign origin

    Directory of Open Access Journals (Sweden)

    P. Chamurliyski

    2016-12-01

    Full Text Available Abstract. The proper choice of parental forms is the basis for developing superior varieties with valuable agronomic properties. A priority in modern breeding is increased productivity. The aim of this study was to establish the relative contribution of the yield traits to the productivity of common wheat accessions of different geographical origin. The trial was conducted during 2012 – 2014 at Dobrudzha Agricultural Institute, General Toshevo. The study included 118 varieties and lines originating from Europe, Asia and North America. The tested materials were grown in a randomized block design in three replications, the 2 plot size being 7.5 m . Six cultivars were used as standards: Aglika, Pobeda, Enola, Sadovo 1, Antonovka and Pryaspa. Number of grains per spike, number of 2 grains per m and thousand kernel weight had the highest positive influence on grain yield. The highest levels of productivity were reported in cultivars PKB -1 Vizelika, PKB Rodika, Joana and Midas averaged for the two years of the study, cultivar Vizelika with origin from PKB - Serbia realizing a yield of 9.03 t.ha . Despite environmental effect and interaction, significant genotypic modality on the investigated traits was observed and analysed. All studied accessions can be successfully included in a breeding program to increase productivity.

  3. Evolution of bread-making quality of Spanish bread-wheat genotypes

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, M.; Aparicio, N.; Ruiz-Paris, E.; Oliete, B.; Caballero, P. A.

    2009-07-01

    In this study, 36 Spanish wheat genotypes (five modern commercial cultivars, four cultivars introduced after the green revolution and 27 land races from northwestern Spain) were evaluated. Grain (yield, specific weight, protein content and falling number) and flour (yield, protein content, Zeleny index, wet gluten and gluten index) properties were analyzed. Dough behaviour during mixing (DoughLAB) and handling (alveograph) was also considered. An evolution in grain and flour properties was observed over time. In modern cultivars, grain yield was improved owing to higher grain production. In land races, higher grain yields were related to larger grain size. Unlike in land races, an inverse correlation between grain yield and protein content was found in modern cultivars. In addition, because of their high protein quality, modern cultivars surpassed land races in bread-making properties. Land races showed considerable variability in protein quality and scored lower curve configuration ratio values than other cultivars with similar strength. Cultivars introduced after the green revolution reached the highest levels of bread-making quality, a feature attributable to their high protein quality. (Author) 24 refs.

  4. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L.) and spelt (Triticum spelta L.).

    Science.gov (United States)

    Goriewa-Duba, Klaudia; Duba, Adrian; Kwiatek, Michał; Wiśniewska, Halina; Wachowska, Urszula; Wiwart, Marian

    2018-01-01

    Fluorescent in situ hybridization (FISH) relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines), to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  5. Chromosomal distribution of pTa-535, pTa-86, pTa-713, 35S rDNA repetitive sequences in interspecific hexaploid hybrids of common wheat (Triticum aestivum L. and spelt (Triticum spelta L..

    Directory of Open Access Journals (Sweden)

    Klaudia Goriewa-Duba

    Full Text Available Fluorescent in situ hybridization (FISH relies on fluorescent-labeled probes to detect specific DNA sequences in the genome, and it is widely used in cytogenetic analyses. The aim of this study was to determine the karyotype of T. aestivum and T. spelta hybrids and their parental components (three common wheat cultivars and five spelt breeding lines, to identify chromosomal aberrations in the evaluated wheat lines, and to analyze the distribution of polymorphisms of repetitive sequences in the examined hybrids. The FISH procedure was carried out with four DNA clones, pTa-86, pTa-535, pTa-713 and 35S rDNA used as probes. The observed polymorphisms between the investigated lines of common wheat, spelt and their hybrids was relatively low. However, differences were observed in the distribution of repetitive sequences on chromosomes 4A, 6A, 1B and 6B in selected hybrid genomes. The polymorphisms observed in common wheat and spelt hybrids carry valuable information for wheat breeders. The results of our study are also a valuable source of knowledge about genome organization and diversification in common wheat, spelt and their hybrids. The relevant information is essential for common wheat breeders, and it can contribute to breeding programs aimed at biodiversity preservation.

  6. Genetic mapping of a novel recessive allele for non-glaucousness in wild diploid wheat Aegilops tauschii: implications for the evolution of common wheat.

    Science.gov (United States)

    Nishijima, Ryo; Tanaka, Chisa; Yoshida, Kentaro; Takumi, Shigeo

    2018-04-01

    Cuticular wax on the aerial surface of plants has a protective function against many environmental stresses. The bluish-whitish appearance of wheat leaves and stems is called glaucousness. Most modern cultivars of polyploid wheat species exhibit the glaucous phenotype, while in a wild wheat progenitor, Ae. tauschii, both glaucous and non-glaucous accessions exist. Iw2, a wax inhibitor locus on the short arm of chromosome 2D, is the main contributor to this phenotypic variation in Ae. tauschii, and the glaucous/non-glaucous phenotype of Ae. tauschii is usually inherited by synthetic hexaploid wheat. However, a few synthetic lines show the glaucous phenotype although the parental Ae. tauschii accessions are non-glaucous. Molecular marker genotypes indicate that the exceptional non-glaucous Ae. tauschii accessions share the same genotype in the Iw2 chromosomal region as glaucous accessions, suggesting that these accessions have a different causal locus for their phenotype. This locus was assigned to the long arm of chromosome 3D using an F 2 mapping population and designated W4, a novel glaucous locus in Ae. tauschii. The dominant W4 allele confers glaucousness, consistent with phenotypic observation of Ae. tauschii accessions and the derived synthetic lines. These results implied that glaucous accessions of Ae. tauschii with the W2W2iw2iw2W4W4 genotype could have been the D-genome donor of common wheat.

  7. Evaluation of diverse wheat genotypes for potential biomass production through physiological parameters at seedling stage under controlled environment

    International Nuclear Information System (INIS)

    Khattak, G.S.S.

    2014-01-01

    Thirty wheat genotypes from UK, CIMMYT and Pakistan were evaluated under controlled environment conditions for their potential biomass production by measuring stomatal conductance (gs; porometry), leaf photosynthesis (IRGA), carbon isotope discrimination and carbon content (isotope ratio and mass analysis) at Rothamsted Research, Harpenden, UK during 2011. Amongst the dwarf genotypes, Rht2 and Rht3 showed lower stomatal conductance than Seri 32B, Seri 87B and Bathoor-07. For these 5 genotypes and another genotype Inqalab photosynthetic performance was determined by means of IRGA measurements. Of these genotypes Inqalab had the highest photosynthetic activity (A), stomatal conductance (gs), transpiration (E) and leaf intercellular CO/sub 2/ but it also had the lowest water use efficiency (A/gs) and intrinsic water use efficiency (A/E). Seri-87B had the greatest water use efficiency (A/gs) and intrinsic water use efficiency (A/E). All the Pakistani genotypes had large stomatal conductances and high 13C delta and thus may be expected to produce high biomass under irrigations and optimum inputs. (author)

  8. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus

    Science.gov (United States)

    2012-01-01

    Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic

  9. Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.

    Science.gov (United States)

    Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline

    2012-05-17

    The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough

  10. BreedWheat genotyping and phenotyping data in GnpIS information system

    OpenAIRE

    Laine, Marie; Letellier, Thomas; Flores, Raphaël-Gauthier; couderc, Loïc; Mohellibi, Nacer; Pommier, Cyril; Steinbach, Delphine; Quesneville, Hadi; Sapet, Frederic; Rivière, Nathalie; Paux, Etienne; Didier, Audrey; Balfourier, Francois; Charmet, Jean-Francois; Le Gouis, Jacques

    2015-01-01

    BreedWheat project aims to support the competitiveness of the French wheat breeding sector, answering to societal challenges for a sustainable and quality production. Moreover, the BreedWheat project will characterize yet poorly exploited genetic resources to expand the diversity of the elite germplasm. Finally, new breeding methods will be developed and evaluated for their socioeconomic impact. In this frame, bioinformatics goals are (i) to establish and maintain a centralized repository ...

  11. Genome-Wide Association Mapping of Fusarium Head Blight Resistance in Wheat using Genotyping-by-Sequencing

    Directory of Open Access Journals (Sweden)

    Marcio P. Arruda

    2016-03-01

    Full Text Available Fusarium head blight (FHB is one of the most important wheat ( L. diseases worldwide, and host resistance displays complex genetic control. A genome-wide association study (GWAS was performed on 273 winter wheat breeding lines from the midwestern and eastern regions of the United States to identify chromosomal regions associated with FHB resistance. Genotyping-by-sequencing (GBS was used to identify 19,992 single-nucleotide polymorphisms (SNPs covering all 21 wheat chromosomes. Marker–trait associations were performed with different statistical models, the most appropriate being a compressed mixed linear model (cMLM controlling for relatedness and population structure. Ten significant SNP–trait associations were detected on chromosomes 4A, 6A, 7A, 1D, 4D, and 7D, and multiple SNPs were associated with on chromosome 3B. Although combination of favorable alleles of these SNPs resulted in lower levels of severity (SEV, incidence (INC, and deoxynivalenol concentration (DON, lines carrying multiple beneficial alleles were in very low frequency for most traits. These SNPs can now be used for creating new breeding lines with different combinations of favorable alleles. This is one of the first GWAS using genomic resources from the International Wheat Genome Sequencing Consortium (IWGSC.

  12. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought.

    Science.gov (United States)

    Ouyang, Wenjing; Struik, Paul C; Yin, Xinyou; Yang, Jianchang

    2017-11-02

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (gs) and mesophyll conductance (gm) and their anatomical determinants were evaluated in two cultivars from each of lowland, aerobic, and upland groups of Oryza sativa, one cultivar of O. glaberrima, and two cultivars of T. aestivum, under three water regimes. The TE of upland rice, O. glaberrima, and wheat was more responsive to the gm/gs ratio than that of lowland and aerobic rice. Overall, the explanatory power of the particular anatomical trait varied among species. Low stomatal density mostly explained the low gs in drought-tolerant rice, whereas rice genotypes with smaller stomata generally responded more strongly to drought. Compared with rice, wheat had a higher gm, which was associated with thicker mesophyll tissue, mesophyll and chloroplasts more exposed to intercellular spaces, and thinner cell walls. Upland rice, O. glaberrima, and wheat cultivars minimized the decrease in gm under drought by maintaining high ratios of chloroplasts to exposed mesophyll cell walls. Rice TE could be improved by increasing the gm/gs ratio via modifying anatomical traits. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  13. Wheat genotypes differing in aluminum tolerance differ in their growth response to CO2 enrichment in acid soils

    OpenAIRE

    Tian, Qiuying; Zhang, Xinxin; Gao, Yan; Bai, Wenming; Ge, Feng; Ma, Yibing; Zhang, Wen-Hao

    2013-01-01

    Aluminum (Al) toxicity is a major factor limiting plant growth in acid soils. Elevated atmospheric CO2 [CO2] enhances plant growth. However, there is no report on the effect of elevated [CO2] on growth of plant genotypes differing in Al tolerance grown in acid soils. We investigated the effect of short-term elevated [CO2] on growth of Al-tolerant (ET8) and Al-sensitive (ES8) wheat plants and malate exudation from root apices by growing them in acid soils under ambient [CO2] and elevated [CO2]...

  14. Principal coordinate analysis of genotype × environment interaction for grain yield of bread wheat in the semi-arid regions

    Directory of Open Access Journals (Sweden)

    Sabaghnia Naser

    2013-01-01

    Full Text Available Multi-environmental trials have significant main effects and significant multiplicative genotype × environment (GE interaction effect. Principal coordinate analysis (PCOA offers a more appropriate statistical analysis to deal with such situations, compared to traditional statistical methods. Eighteen bread wheat genotypes were grown in four semi-arid regions over three year seasons to study the GE interaction and yield stability and obtained data on grain yield were analyzed using PCOA. Combined analysis of variance indicated that all of the studied effects including the main effects of genotype and environments as well as the GE interaction were highly significant. According to grand means and total mean yield, test environments were grouped to two main groups as high mean yield (H and low mean yield (L. There were five H test environments and six L test environments which analyzed in the sequential cycles. For each cycle, both scatter point diagram and minimum spanning tree plot were drawn. The identified most stable genotypes with dynamic stability concept and based on the minimum spanning tree plots and centroid distances were G1 (3310.2 kg ha-1 and G5 (3065.6 kg ha-1, and therefore could be recommended for unfavorable or poor conditions. Also, genotypes G7 (3047.2 kg ha-1 and G16 (3132.3 kg ha-1 were located several times in the vertex positions of high cycles according to the principal coordinates analysis. The principal coordinates analysis provided useful and interesting ways of investigating GE interaction of barley genotypes. Finally, the results of principal coordinates analysis in general confirmed the breeding value of the genotypes, obtained on the basis of the yield stability evaluation.

  15. Evaluation of Photosynthesis Capacity of Some Winter Wheat Genotypes in Transylvanian Plain Conditions

    Directory of Open Access Journals (Sweden)

    Ionuț RACZ

    2018-05-01

    Full Text Available Leaf photosynthetic capacity is a key parameter determining crop yield; it is enhanced by moderate soil moisture and reduced in both severe water deficit and excessive water conditions. The aim of this work was to evaluate the wheat variety photosynthetic capacity in two main phenological stages. The evaluation of photosynthesis capacity of studied winter wheat varieties in Transylvanian Plain conditions offer relevant information on Romanian genetic material type and paving the way of new research directed to a new wheat breeding program criteria and for improvement of those.

  16. Allelic state at the microsatellite locus Xgwm261 marking the dwarfing gene Rht8 in Egyptian bread wheat (Triticum aestivum L. genotypes released from 1947 to 2004

    Directory of Open Access Journals (Sweden)

    Salem Khaled F.M.

    2015-01-01

    Full Text Available Rht8 is widely used in dry environments such as Mediterranean regions where it increases plant adaptability. Variation at the Gatersleben wheat microsatellite Xgwm261 locus, whose 192-bp allele closely linked to the dwarfing gene Rht8, on chromosome 2D within 0.6 cM, was used to screen thirty Egyptian bread wheat genotypes released from (1947-2004 to assess the variation at this locus. There were three microsatellite allelic variants based on size. Screening of this wheat collection showed that the three alleles Xgwm261-165, Xgwm261-174 and Xgwm261-192 bp were the most frequent. The highest allele frequency was observed for a Xgwm261-165 bp fragment (65.52% followed by a Xgwm261-174 bp fragment (24.14%. However, the allele frequency of a Xgwm261-192 bp fragment among these wheat genotypes was 10.34%. The percentage distribution of dwarfing alleles for the microsatellite locus Xgwm261 in the Egyptian wheat breeding programs was 30, 20, 20 and 30% for the wheat breeding program Giza, Sakha, Gemmiza and Sids, respectively. PIC for Xgwm261 was 0.527. Genetic heritage of Egyptian genotypes at the microsatellite locus Xgwm261 is consequence of new parental components usage, carriers short plant and early maturity attributes and consequent selection progeny with these traits in breeding programs. The present study will be helpful in characterization Egyptian wheat genotypes, as well as in accurate selection of parents for wheat breeding program in Egypt.

  17. Performance analysis of spring wheat genotypes under rain-fed conditions in warm humid environment of Nepal

    Directory of Open Access Journals (Sweden)

    Ramesh Raj Puri

    2015-06-01

    Full Text Available Around 25% of total wheat area in Terai of Nepal falls under rain-fed and partially irrigated condition. A Coordinated varietal trial (CVT was conducted during two consecutive crop cycles (2011-12 and 2012-13 under timely sown rain-fed conditions of Terai. The trial was conducted in Alpha Lattice design with two replications at Nepal Agricultural Research Council, National Wheat Research Program, Bhairahawa and Nepal Agricultural Research Council, Regional Agriculture Research Station, Nepalgunj. Observations were recorded for yield and yield traits and analyzed using statistical software Cropstat 7.2.The combined analysis of coordinated varietal trial showed that BL 3978 possessed the highest yield (2469.2 Kg ha-1 followed by NL 1097 (2373.2 Kg ha-1 and NL 1094 (2334.06 Kg ha-1. Genotype x Environment interaction for grain yield was significant (p<0.05 over locations and years. BL 3978 with early maturity (111 days escaped the heat stress environment. Among the top three genotypes, BL 3978 was consistently higher in both favorable and unfavorable conditions. Earliness was one of the major traits for heat tolerant genotypes. The three identified genotypes will be further evaluated in participatory varietal selection or coordinated farmers field trial followed by small plot seed multiplication (seed increase and release in the future for timely sown rain-fed conditions. These lines also appear suitable for inclusion in crossing program targeted for water stress tolerance variety development. DOI: http://dx.doi.org/10.3126/ije.v4i2.12649 International Journal of Environment Vol.4(2 2015: 289-295

  18. Seasonal growth attributes of wheat (triticum aestivum l.) genotypes in response to moisture regimes under semi arid environment

    International Nuclear Information System (INIS)

    Maqsood, M.; Shehzad, M.A.; Ahmed, M.; Ahmad, W.

    2012-01-01

    A field experiment for the comparison among different wheat genotypes (Iqbal-2000, Chenab-2000, Aqab-2000) for its maximum yield potential in response to different moisture regimes, a randomized complete block design (RCBD) with split plot arrangement in triplicate run was carried out during the year 2006-07. Factors were: wheat genotypes (Iqbal-2000, Chenab-2000, Aqab-2000) in main plots and five irrigation levels 0= no irrigation (control), 1= irrigation at tillering, 2= irrigation at tillering + booting, 3= irrigation at tillering + booting + anthesis and 4= irrigation at tillering + booting + anthesis + milking in subplots. Results showed that maximum LAI was attained on 2 February and 4 March harvest and genotype Iqbal-2000 was superior compared to other genotypes. Irrigated treatments significantly increased LAI than control (0) treatments at all harvest dates. Iqbal-2000 showed maximum CGR (32.69 g m/sup -2/ d/sup -1/) and LAD (319.42) compared with lowest CGR (25.49 g m/sup -2/ d/sup -1/) and LAD (278.50) given by genotype Chenab-2000 under 3 and 4 treatments throughout the growing season. Radiation use efficiency ranged from 17.58-18.27 DM MJ-1 of intercepted radiation. Mean accumulated radiation interception (754, 736 and 784 MJm-2) was assessed in genotypes (Iqbal-2000, Chenab-2000 and Aqab-2000), respectively but not significant effect on net assimilation rate. Genotype Iqbal-2000 and Aqab-2000 had highest TDM (21670; 21220 kg ha/sup -1/) respectively while 4 (Irrigation at tillering + booting + anthesis + milking) had the highest TDM 22240 kg ha/sup -1/ verses I0 (no irrigation) 18070 kg ha/sup -1/. Aqab-2000 showed the highest grain yield (5458.78 kg ha/sup -1/) as compared to Chenab-2000 (4536.71 kg ha/sup -1/) whereas 4 (Irrigation at tillering + booting + anthesis + milking) produced more grain yield (6376.25 kg ha/sup -1/) than all other irrigation treatments. (author)

  19. NEW GENOTYPES AND TECHNOLOGICAL INDICATORS OF WINTER TRITICALE

    Directory of Open Access Journals (Sweden)

    T. Z.

    2016-02-01

    Full Text Available The aim of the research was to conduct basic screening of new lines and cultivars of winter hexaploid triticale by the technological and molecular genetics indicators. Molecular and genetic research conducted by polymerase chain reaction allelic variants of gene loci Wx-A1, Wx-B1, and quality parameters of grain, flour and bread – on technological markers. The new cultivars and lines of winter hexaploid triticale of Nosivka Breeding and Research Station of Remeslo Myronivka Institute of Wheat by technological indicators of grain, flour and bread quality were studied. According to representative criteria’s the most promising genotypes, which are the main products in terms Forest-Steppe ecotypes’ and a high-quality raw materials for bakeries and bioethanol were identified. Molecular and genetic identifications of allelic variants of genes loci Wx-A1, Wx-B1 triticale, which in the early stages of ontogenesis to predict targeted uses genotypes were conducted. The first among a series of triticale cultivars and lines Forest-Steppe ecotypes and biotypes with nonfunctional b gene allele WxA1, which defines a high content of amylopectin of starch, an important release for more ethanol was identified. It was found that technological characteristics of grain, flour and bread of new cultivars and lines of winter triticale meet the modern requirements production dietetic food and bioenergy products is important and relevant in the context of food security of Ukraine.

  20. Effects of location and year on grain yield and its components in wheat genotypes developed from seed irradiation treatment

    International Nuclear Information System (INIS)

    Amer, I.M.; El-Rassas, H.N.; Abdel-Aleem, M.M.

    1994-01-01

    Eight mutant lines derived from gamma ray treatments and their parental cultivar sokha 69 of bread wheat were evaluated for grain yield per feddan, straw yield per feddan, harvest index, spike length, spike yield and weight of 1000-kernels at two locations (El-Fayoum and Inshas) in two seasons, 1991/92 and 1992/93. Significant effects of location on yield and yield components were found and the year significantly affects all the studied traits except grain yield per feddan. A significant location genotype interaction was detected for spike length, 1000-kernel weight and straw yield per feddan. In addition, year genotype interaction was significant in weight of 1000-kernels, straw yield per feddan and harvest index. The statistical analysis showed a significant difference among genotypes over all environments for spike length, 1000-kernel weight, straw yield per feddan and harvest index. However, these did not reflect significant effect on grain yield per feddan over all environments because it has a highly compensation ability. Meanwhile, mutant L 1 2 -1 exhibited significantly higher straw yield than sokha 69, when averaged over two seasons at El-Fayoum. Mutant L 1 9 -1 gave higher weight of 1000-kernels, spike length and harvest index than the other genotypes at low-yielding location (Inshas). It seems to be stable over a wide range of environments. 3 tabs

  1. Slow rusting response of different wheat genotypes against the leaf rust in relation to epidemiological factors in Faisalabad

    International Nuclear Information System (INIS)

    Khan, M.A.; Haider, M.M.; Hussain, M.; Ahmad, S.

    2007-01-01

    Wheat genotypes were screened against leaf rust to evaluate slow rusting response. Among one hundred and sixty varieties/lines, 86 showed response to leaf rust while all other remained immune or showed no response. The slow rusting, wheat varieties/ lines displayed 20-40% severity level and these were Maxi-Pak65, Blue silver, Pothohar, Punjab81, Faisalabd-83, Shalimar-88, Kohnoor-83, Pasban-90, Inqilab-91, Uqab-99-94105, Punjab-76, Parwaz-94, HD2169, HD2179, HD2204, HD2285, Lr27+31, LrB, LR17, Lr14A, Lr15 and Yr1-E-1 while the fast rusting varieties/lines that showed severity level up to 90% were WL-711, Morocco, PAK-1, Punjab-85 and Chakwal-86 SA42, SA75, Lr1, Lr2A, Lr2B. Lr23, Lr3KA, Lr3g, Lr10, Lr18, Lr21, Lr24, Yr2-E35 and 95153 respectively. Slow rusting genotypes exhibited low AUDPC (200-400) values while fast rusters displayed high AUDPC (400-1500) values. Leaf rust severity displayed significant correlation with maximum and minimum temperatures, rainfall and sunshine radiation. It was observed that with an increase of these environmental conditions a significant increase in disease severity was recorded

  2. Effect of ovary induction on bread wheat anther culture: ovary genotype and developmental stage, and candidate gene association.

    Directory of Open Access Journals (Sweden)

    Ana María Castillo

    2015-06-01

    Full Text Available Ovary pre-conditioned medium and ovary co-culture increased the efficiency of green doubled haploid plant production in bread wheat anther culture. The positive effect of this medium led to a 6- and 11-fold increase in the numbers of embryos and green plants, respectively, having a greater effect on a medium-low responding cultivar. Ovary genotype and developmental stage significantly affected microspore embryogenesis. By he use of Caramba ovaries it was possible to reach a 2-fold increase in the number of embryos and green plants, and to decrease the rate of albinism. Mature ovaries from flowers containing microspores at a late binucleate stage raised the number of embryos and green plants by 25% and 46% as compared to immature ovaries (excised from flowers with microspores at a mid-late uninucleate stage. The highest numbers of embryos and green plants were produced when using mature Caramba ovaries. Ovaries from Galeón, Tigre and Kilopondio cultivars successfully induced microspore embryogenesis at the same rate as Caramba ovaries. Moreover, Tigre ovaries raised the percentage of spontaneous chromosome doubling up to 71%. Attempts were made to identify molecular mechanisms associated to the inductive effect of the ovaries on microspore embryogenesis. The genes TAA1b, FLA26 and WALI6 associated to wheat microspore embryogenesis, the CGL1 gene involved in glycan biosynthesis or degradation, and the FER gene involved in the ovary signalling process were expressed and/or induced at different rates during ovary culture. The expression pattern of FLA26 and FER could be related to the differences between genotypes and developmental stages in the inductive effect of the ovary. Our results open opportunities for new approaches to increase bread wheat doubled haploid production by anther culture, and to identify the functional components of the ovary inductive effect on microspore embryogenesis.

  3. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Bardees M. Mickky

    2017-03-01

    Full Text Available The objective of the present study was to find out a straightforward technique for screening the tolerance of ten wheat genotypes to two levels of osmotic stress at early seedling stage. Data revealed that polyethylene glycol-induced drought had general negative effect on seedling morphological characters indicated by plumule and radicle length, number of adventitious roots as well as seedling biomass and water content. Water deficit could also suppress membrane integrity by stimulating lipid peroxidation with marked increase in membrane leakage and subsequent decrease in its stability index. For all the addressed germination parameters and seedling membrane features, the impact of severe drought was more pronounced than that of moderate drought. Simultaneously, moderate stress could activate peroxidase, polyphenol oxidase and ascorbic peroxidase of the studied genotypes; but these enzymes were inhibited by severe stress. The activity of catalase, superoxide dismutase and glutathione reductase was conversely retarded by drought whether at moderate or severe level. More interestingly, a novel function “Stress Impact Index; SII” was introduced to rank the estimated morpho-physiological traits (SIItrait as well as the considered genotypes (SIIgenotype according to their sensitivity to stress. Values of SIItrait implied that germination parameters were generally affected by drought more intensively than membrane characteristics and finally came the antioxidant enzymes with the least degree of suppression when applying stress. Based on the magnitudes of SIIgenotype, Sids 13 seemed to be the most drought-tolerant wheat cultivar while Shandawel 1 could be the most sensitive one at their juvenile growth stage.

  4. Comparison of Grain Yield and Some Characteristics of Hulled, Durum and Bread Wheat Genotypes Varieties

    Directory of Open Access Journals (Sweden)

    Bekir Atar

    2017-02-01

    Full Text Available In spite of the low grain yield they produce, the hulled wheat have become even more important in recent years because of their resistance to negative environmental conditions and healthy nutritional content. The research was carry out in order to comparison the yield and yield characteristics of durum (Kiziltan-91 and C-1252, hulled (Einkorn and Emmer and bread wheat (Tir varieties in Isparta ecological conditions in 2013-14 and 2014-15 vegetation periods. In both years, the highest grain yield was obtained in Kiziltan-91 variety (3992 and 3758 kg ha-1 respectively. The grain yield of hulled wheats in the first year (Einkorn 1269 kg ha-1, Emmer 2125 kg ha-1 was around Turkey averages. However, grain yield decreased of commercial wheat varieties due to the negative effect of high amount of rainfall in June in the second year, but considerably increased in (Einkorn 2150 kg ha-1, Emmer 2533 kg ha-1. N uptake was found to be lower in the than durum wheats. In terms of grain protein content, the highest values were obtained in Emmer variety (16.4%-15.3%.

  5. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat.

    Directory of Open Access Journals (Sweden)

    Ram Sewak Singh Tomar

    Full Text Available Water availability is a major limiting factor for wheat (Triticum aestivum L. production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72 and Indian (86 origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010-11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L. and 3 tetraploid (T. durum were characterized for root traits at reproductive stage in polyvinyl chloride (PVC pipes. Roots of drought tolerant genotypes grew upto137cm (C306 as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439 and drought sensitive (HD2877, HD2012, HD2851 and MACS2496 genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and

  6. Molecular and Morpho-Agronomical Characterization of Root Architecture at Seedling and Reproductive Stages for Drought Tolerance in Wheat

    Science.gov (United States)

    Vinod; Naik, Bhojaraja K.; Chand, Suresh; Deshmukh, Rupesh; Mallick, Niharika; Singh, Sanjay; Singh, Nagendra Kumar; Tomar, S. M. S.

    2016-01-01

    Water availability is a major limiting factor for wheat (Triticum aestivum L.) production in rain-fed agricultural systems worldwide. Root architecture is important for water and nutrition acquisition for all crops, including wheat. A set of 158 diverse wheat genotypes of Australian (72) and Indian (86) origin were studied for morpho-agronomical traits in field under irrigated and drought stress conditions during 2010–11 and 2011-12.Out of these 31 Indian wheat genotypes comprising 28 hexaploid (Triticum aestivum L.) and 3 tetraploid (T. durum) were characterized for root traits at reproductive stage in polyvinyl chloride (PVC) pipes. Roots of drought tolerant genotypes grew upto137cm (C306) as compared to sensitive one of 63cm with a mean value of 94.8cm. Root architecture traits of four drought tolerant (C306, HW2004, HD2888 and NI5439) and drought sensitive (HD2877, HD2012, HD2851 and MACS2496) genotypes were also observed at 6 and 9 days old seedling stage. The genotypes did not show any significant variation for root traits except for longer coleoptiles and shoot and higher absorptive surface area in drought tolerant genotypes. The visible evaluation of root images using WinRhizo Tron root scanner of drought tolerant genotype HW2004 indicated compact root system with longer depth while drought sensitive genotype HD2877 exhibited higher horizontal root spread and less depth at reproductive stage. Thirty SSR markers were used to study genetic variation which ranged from 0.12 to 0.77 with an average value of 0.57. The genotypes were categorized into three subgroups as highly tolerant, sensitive, moderately sensitive and tolerant as intermediate group based on UPGMA cluster, STRUCTURE and principal coordinate analyses. The genotypic clustering was positively correlated to grouping based on root and morpho-agronomical traits. The genetic variability identified in current study demonstrated these traits can be used to improve drought tolerance and association

  7. Seed maturation associated transcriptional programs and regulatory networks underlying genotypic difference in seed dormancy and size/weight in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Yamasaki, Yuji; Gao, Feng; Jordan, Mark C; Ayele, Belay T

    2017-09-16

    Maturation forms one of the critical seed developmental phases and it is characterized mainly by programmed cell death, dormancy and desiccation, however, the transcriptional programs and regulatory networks underlying acquisition of dormancy and deposition of storage reserves during the maturation phase of seed development are poorly understood in wheat. The present study performed comparative spatiotemporal transcriptomic analysis of seed maturation in two wheat genotypes with contrasting seed weight/size and dormancy phenotype. The embryo and endosperm tissues of maturing seeds appeared to exhibit genotype-specific temporal shifts in gene expression profile that might contribute to the seed phenotypic variations. Functional annotations of gene clusters suggest that the two tissues exhibit distinct but genotypically overlapping molecular functions. Motif enrichment predicts genotypically distinct abscisic acid (ABA) and gibberellin (GA) regulated transcriptional networks contribute to the contrasting seed weight/size and dormancy phenotypes between the two genotypes. While other ABA responsive element (ABRE) motifs are enriched in both genotypes, the prevalence of G-box-like motif specifically in tissues of the dormant genotype suggests distinct ABA mediated transcriptional mechanisms control the establishment of dormancy during seed maturation. In agreement with this, the bZIP transcription factors that co-express with ABRE enriched embryonic genes differ with genotype. The enrichment of SITEIIATCYTC motif specifically in embryo clusters of maturing seeds irrespective of genotype predicts a tissue specific role for the respective TCP transcription factors with no or minimal contribution to the variations in seed dormancy. The results of this study advance our understanding of the seed maturation associated molecular mechanisms underlying variation in dormancy and weight/size in wheat seeds, which is a critical step towards the designing of molecular strategies

  8. Response of water use efficiency and carbon emission to no-tillage and winter wheat genotypes in the North China Plain.

    Science.gov (United States)

    Ren, Yujie; Gao, Chao; Han, Huifang; Li, Quanqi

    2018-04-20

    No-tillage management practices reduce net CO 2 losses from farmland and keep soil from degrading, but also decrease winter wheat grain yield and water use efficiency (WUE) in the North China Plain (NCP). Suitable management practices, namely, the choice of genotypes, could enhance crop yield and WUE; however, how the WUE and CO 2 exchange responds to no-tillage practices and winter wheat genotypes remains unclear. In the 2015-2016 and 2016-2017 winter wheat growing seasons in the NCP, a field experiment was carried out, and tested two tillage methods (no-tillage with mulching and conventional tillage) and two winter wheat genotypes ('Tainong 18' and 'Jimai 22'). The goal of the study was to identify the relationship between winter wheat grain yield, water consumption, and carbon emissions in no-tillage practices. The results showed that, compared to conventional tillage, no-tillage significantly reduced the net CO 2 -C cumulative emissions and water consumption; however, the grain yield was significantly reduced by 6.8% and 12.0% in the first and second growing seasons, respectively. Compared with Jimai 22, Tainong 18 had a compensatory effect on the yield reduction caused by no-tillage. As a result, the yield carbon utilization efficiency (R) and WUE were the highest in no-tillage with Tainong 18 (NT18), and the carbon emission per unit water consumption was the lowest in NT18. The results support the idea that a combination of no-tillage with genotype can improve the regulation of soil carbon emissions and water consumption of winter wheat, thus, providing theoretical support for sustainable crop production and soil development in the NCP. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Genotypic response of detached leaves versus intact plants for chlorophyll fluorescence parameters under high temperature stress in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Fernández, Juan Olivares; Rosenqvist, Eva

    2014-01-01

    The genotypic response of wheat cultivars as affected by two methods of heat stress treatment (treatment of intact plants in growth chambers versus treatment of detached leaves in test tubes) in a temperature controlled water bath were compared to investigate how such different methods of heat...... to high temperatures. Further, the results suggest that genetic factors associated with cultivar differences are different for the two methods of heat treatment........ The responses of the same cultivars to heat stress were compared between the two methods of heat treatment. The results showed that in detached leaves, all of the fluorescence parameters remained almost unaffected in control (20°C at all durations tested), indicating that the detachment itself did not affect...

  10. Calidad panadera de nuevos genotipos de trigo pan Bread-making quality of new genotypes of bread wheat

    Directory of Open Access Journals (Sweden)

    M. E. Dubois

    2006-12-01

    Full Text Available Se evaluó la calidad panadera de los dos mejores genotipos de trigo pan obtenidos por selección recurrente por rendimiento (C1-00-83 y C3-00-42 y seis cultivares comerciales, cultivados en la región semiárida central argentina. Se utilizó un diseño de bloques completamente aleatorizado con cuatro repeticiones. Se determinó peso hectolítrico, peso de mil semillas, contenido proteico, rendimiento en harina, gluten húmedo, parámetros alveográficos y panificación experimental. Las variables de calidad del genotipo C3-00-42 corresponden a un trigo de gran fuerza, muy tenaz, alta absorción de agua y buen volumen de pan, por consiguiente puede usarse como corrector de harinas débiles o para elaboraciones que requieran trigos fuertes. El genotipo C1-00-83 presentó los mejores valores de proteína, gluten y volumen del pan de todos los analizados, conjuntamente con un alto rendimiento en harina y gluten muy fuerte y bastante equilibrado. Los dos nuevos genotipos presentan excelentes características panaderas y ofrecen calidades industriales diferenciales.The bread- making quality of the two best genotypes of bread wheat obtained by recurrent selection by yield (C1-00-83 and C3-00-42 vs. six commercial cultivars from the Argentine central semiarid region were evaluated. A completely randomized block design with 4 repetitions was utilized. The parameters measured were: test weight, thousand kernel weight, grain proteins, yield flour, gluten test, alveograph parameters and baking test. The quality parameters of the C3-00-42 genotype corresponded to very tenacious strong gluten, with high water absorption and which produces good loaf volume. Therefore, it can be used to compensate weaker flours or to manufacture products that require strong wheat. The C1-00-83 genotype presented high yield in flour, very strong and almost balanced gluten and the best values in protein content, gluten and loaf volume of all those Trianalyzed. The two new

  11. Identification of QoI fungicide-resistant genotypes of the wheat pathogen Zymoseptoria tritici in Algeria

    Directory of Open Access Journals (Sweden)

    Nora ALLIOUI

    2016-05-01

    Full Text Available Septoria tritici blotch caused by Zymoseptoria tritici is currently one of the most damaging diseases on bread and durum wheat crops worldwide. A total of 120 monoconidial isolates of this fungus were sampled in 2012 from five distinct geographical locations of Algeria (Guelma, Annaba, Constantine, Skikda and Oran and assessed for resistance to Quinone outside Inhibitors (QoI, a widely used class of fungicides for the control of fungal diseases of wheat. Resistance was screened using a mismatch PCR assay that identified the G143A mitochondrial cytochrome b substitution associated with QoI resistance. The isolates were QoI-sensitive, since all possessed the G143 wild-type allele, except for three isolates (two from Guelma and one from Annaba, which had fungicide resistance and possessed the A143 resistant allele. QoI resistance was confirmed phenotypically using a microplate bioassay in which the resistant isolates displayed high levels of half-maximal inhibitory azoxystrobin concentrations (IC50s when compared to sensitive reference isolates. Genetic fingerprinting of all isolates with microsatellite markers revealed that the three resistant isolates were distinct haplotypes, and were are not genetically distinguishable from the sensitive isolates. This study highlights QoI-resistant genotypes of Z. tritici in Algeria for the first time, and proposes a management strategy for QoI fungicide application to prevent further spread of resistance across the country or to other areas of Northern Africa.

  12. Marker-Assisted Selection for Recognizing Wheat Mutant Genotypes Carrying HMW Glutenin Alleles Related to Baking Quality

    Directory of Open Access Journals (Sweden)

    Mohammad Javad Zamani

    2014-01-01

    Full Text Available Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker’s results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism.

  13. Marker-assisted selection for recognizing wheat mutant genotypes carrying HMW glutenin alleles related to baking quality.

    Science.gov (United States)

    Zamani, Mohammad Javad; Bihamta, Mohammad Reza; Naserian Khiabani, Behnam; Tahernezhad, Zahra; Hallajian, Mohammad Taher; Shamsi, Marzieh Varasteh

    2014-01-01

    Allelic diversity of HMW glutenin loci in several studies revealed that allelic combinations affect dough quality. Dx5 + Dy10 subunits are related to good baking quality and Dx2 + Dy12 are related to undesirable baking quality. One of the most regular methods to evaluate the baking quality is SDS-PAGE which is used to improve baking quality labs. Marker-assisted selection is the method which can recognize the alleles related to baking quality and this method is based on polymerase chain reaction. 10 pairs of specific primers related to Dx2, Dx2.1, Dx5, Dy10, and Dy12 subunits were used for recognizing baking quality of some wheat varieties and some mutant genotypes. Only 5 pairs of them could show the specific bands. All subunits were recognized by the primers except Dx2.1. Some of the primers were extracted from previous studies and the others were designed based on D genome subunits of wheat. SDS-PAGE method accomplished having confidence in these marker's results. To realize the effect of mutation, seed storage proteins were measured. It showed that mutation had effect on the amount of seed storage protein on the mutant seeds (which showed polymorphism).

  14. Water Use Efficiency and Water Deficit Tolerance Indices in Terminal Growth Stages in Promising Bread Wheat genotypes

    Directory of Open Access Journals (Sweden)

    M. Nazeri

    2016-02-01

    Full Text Available Introduction During growth stages of wheat, anthesis and grain filling periods are the most susceptible to drought. Wheat cultivars that are more tolerant to terminal drought are more suitable to Mediterranean conditions. To increase water use efficiency, the target environment should be taken into account, because one trait might be effective in an environment but ineffective in another environment. In general, some traits like early vigour and root absorbtion capacity are so important in water deficient conditions. In recent years, increasing grain yield was due to increasing grain numbers. Although both the source and sink is considered as the limitation factors in increasing grain yield in old cultivars, even in the new cultivars sink seems to be more important. In fact, phenological adjustment adapted with seasonal precipitation pattern can improve water use efficiency in drought conditions. Suitable flowering time is the most important trait that is correlated with increasing water use efficiency in drought conditions. Materials and Methods In order to evaluate the level of drought tolerance in promising bread wheat lines, a split plot arrangements using randomized complete block design with three replications was carried out in 2008-09 and 2009-10 growing seasons at Torogh Agricultural Research Field Station, Mashhad. in. water limited conditions at three levels Optimum moisture conditions (L1, removal irrigation and using rain shelter from milky grain stage to maturity (L2, removal irrigation and using rainshelter from anthesis to maturity (L3 were assigned to main plots. Ten bread wheat lines include suitable for cold and dry regions (V1: (Toos, V2: (C-81-10, V3: (pishgam, V4: (C-84-4, V5: (C-84-8, V6: (C-D-85-15, V7: (C-D-85-9, V8: (C-D-84-5502, V9: (C-D-85-5502 and V10: (C-85-6 were randomized in sub-plots. Stress susceptibility index (SSI, stress tolerance index (STI and tolerance (TOL were calculated using following equations: D = 1

  15. Stress selection indices an acceptable tool to screen superior wheat genotypes under irrigated and rain-fed conditions

    International Nuclear Information System (INIS)

    Ullah, H.; Alam, M.

    2014-01-01

    The climate is changing day by day and water scarcity has developed a milieu for the breeder to think accordingly. Twenty-four advanced wheat lines along with four prominent check cultivars were evaluated independently in irrigated (IRE) and rain-fed environments (RFE) for yield related traits at Khyber Pakhtunkhwa, Pakistan during 2010-11, using randomized complete block design with three replications under each test environment. Analysis of variance across the two environments exhibited highly significant variation (p=0.01) among the genotypes for yield and associated traits. Differences among the two test environments (E) were significant for tillers m/sup -2/, 1000-grain weight and harvest index. Genotype * environment interaction (G*E) effects were significant only for 1000-grain weight and grain yield. There was general reduction in 1000-grain weight, biological yield and grain yield of all genotypes under RFE as compared to IRE. Magnitude of heritabilities estimates were greater for tillers m/sup -2/, spikelets spike-1 and grains spike-1 under IRE than RFE. Heritabilities were greater in RFE than IRE for spike length (0.31 vs 0.26), biological yield (0.80 vs 0.22), grain yield (0.94 vs 0.20) and harvest index (0.41 and 0.39). Relative high expected selection response was recorded for all characters under IRE except spike length, grains spike-1 and grain yield. In IRE, highest grain yield was produced by genotypes BRF-7 (5123 kg ha/sup -1/), B-VI(N)16 (5111 kg ha/sup -1/), B-IV(N)1 (5086 kg ha/sup -1/) and B-VI(N)5 (5049 kg ha/sup -1/), while genotypes B-VI(N)5 (4649 kg ha/sup -1/), B-IV(N)1 (4595 kg ha/sup -1/), BRF-7 (4486 kg ha/sup -1/) and B-IV(N)16 (4462 kg ha/sup -1/) were high yielding under RFE. Prominent stress selection indices used in the experiments were mean productivity (MP), tolerance (TOL), stress tolerance index (STI), trait index (TI) and trait stability index (TSI). MP and STI were the efficient and reliable selection indices in both

  16. PCR-Based EST Mapping in Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    J. PERRY GUSTAFSON

    2009-04-01

    Full Text Available Mapping expressed sequence tags (ESTs to hexaploid wheat is aimed to reveal the structure and function of the hexaploid wheat genome. Sixty eight ESTs representing 26 genes were mapped into all seven homologous chromosome groups of wheat (Triticum aestivum L using a polymerase chain reaction technique. The majority of the ESTs were mapped to homologous chromosome group 2, and the least were mapped to homologous chromosome group 6. Comparative analysis between the EST map from this study and the EST map based on RFLPs showed 14 genes that have been mapped by both approaches were mapped to the same arm of the same homologous chromosome, which indicated that using PCR-based ESTs was a reliable approach in mapping ESTs in hexaploid wheat.

  17. Genetic variability in arbuscular mycorrhizal fungi compatibility supports the selection of durum wheat genotypes for enhancing soil ecological services and cropping systems in Canada.

    Science.gov (United States)

    Singh, A K; Hamel, C; Depauw, R M; Knox, R E

    2012-03-01

    Crop nutrient- and water-use efficiency could be improved by using crop varieties highly compatible with arbuscular mycorrhizal fungi (AMF). Two greenhouse experiments demonstrated the presence of genetic variability for this trait in modern durum wheat ( Triticum turgidum L. var. durum Desf.) germplasm. Among the five cultivars tested, 'AC Morse' had consistently low levels of AM root colonization and DT710 had consistently high levels of AM root colonization, whereas 'Commander', which had the highest colonization levels under low soil fertility conditions, developed poor colonization levels under medium fertility level. The presence of genetic variability in durum wheat compatibility with AMF was further evidenced by significant genotype × inoculation interaction effects in grain and straw biomass production; grain P, straw P, and straw K concentrations under medium soil fertility level; and straw K and grain Fe concentrations at low soil fertility. Mycorrhizal dependency was an undesirable trait of 'Mongibello', which showed poor growth and nutrient balance in the absence of AMF. An AMF-mediated reduction in grain Cd under low soil fertility indicated that breeding durum wheat for compatibility with AMF could help reduce grain Cd concentration in durum wheat. Durum wheat genotypes should be selected for compatibility with AMF rather than for mycorrhizal dependency.

  18. Effects of grown origin, genotype, harvest year, and their interactions of wheat kernels on near infrared spectral fingerprints for geographical traceability.

    Science.gov (United States)

    Zhao, Haiyan; Guo, Boli; Wei, Yimin; Zhang, Bo

    2014-01-01

    The effects of origin, genotype, harvest year, and their interactions on wheat near infrared (NIR) spectra were studied to find the reasons for differences in NIR fingerprints of wheat from different geographical origins and the stability of NIR fingerprints among different years. Ten varieties were grown in three regions of China for 2 years. 180 kernel samples were analysed by NIR. The spectra after pre-treatment were analysed by principal component analysis, multi-way analysis of variance, and discriminant partial least-squares. The results showed that origin, genotype, year, and their interactions all had significant effects on wheat NIR fingerprints. The second overtones of N-H and C-H stretching vibrations and a combination of stretch and deformation of C-H group in wheat were mainly influenced by the geographical origin. The wavelength ranges 975-990 nm, 1200 nm, and 1355-1380 nm contained plenty of origin information to build robust discriminant models of wheat geographical origin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Genomic Imprinting Was Evolutionarily Conserved during Wheat Polyploidization.

    Science.gov (United States)

    Yang, Guanghui; Liu, Zhenshan; Gao, Lulu; Yu, Kuohai; Feng, Man; Yao, Yingyin; Peng, Huiru; Hu, Zhaorong; Sun, Qixin; Ni, Zhongfu; Xin, Mingming

    2018-01-01

    Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid ( Aegilops spp), tetraploid, and hexaploid wheat ( Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera. © 2018 American Society of Plant Biologists. All rights reserved.

  20. Harnessing Genetic Diversity of Wild Gene Pools to Enhance Wheat Crop Production and Sustainability: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Carla Ceoloni

    2017-12-01

    Full Text Available Wild species are extremely rich resources of useful genes not available in the cultivated gene pool. For species providing staple food to mankind, such as the cultivated Triticum species, including hexaploid bread wheat (Triticum aestivum, 6x and tetraploid durum wheat (T. durum, 4x, widening the genetic base is a priority and primary target to cope with the many challenges that the crop has to face. These include recent climate changes, as well as actual and projected demographic growth, contrasting with reduction of arable land and water reserves. All of these environmental and societal modifications pose major constraints to the required production increase in the wheat crop. A sustainable approach to address this task implies resorting to non-conventional breeding strategies, such as “chromosome engineering”. This is based on cytogenetic methodologies, which ultimately allow for the incorporation into wheat chromosomes of targeted, and ideally small, chromosomal segments from the genome of wild relatives, containing the gene(s of interest. Chromosome engineering has been successfully applied to introduce into wheat genes/QTL for resistance to biotic and abiotic stresses, quality attributes, and even yield-related traits. In recent years, a substantial upsurge in effective alien gene exploitation for wheat improvement has come from modern technologies, including use of molecular markers, molecular cytogenetic techniques, and sequencing, which have greatly expanded our knowledge and ability to finely manipulate wheat and alien genomes. Examples will be provided of various types of stable introgressions, including pyramiding of different alien genes/QTL, into the background of bread and durum wheat genotypes, representing valuable materials for both species to respond to the needed novelty in current and future breeding programs. Challenging contexts, such as that inherent to the 4x nature of durum wheat when compared to 6x bread wheat, or

  1. Remobilization of Dry Matter, Nitrogen and Phosphorus in Durum Wheat as Affected by Genotype and Environment

    Directory of Open Access Journals (Sweden)

    Silvia Pampana

    2007-09-01

    Full Text Available Field studies were carried out to determine dry matter (DM, nitrogen (N and phosphorus (P assimilation until anthesis and DM, N and P remobilization during grain filling in wheat. Twentyfive durum wheat (Triticum durum L. varieties were grown in Tuscany at Grosseto and at Arezzo. At Grosseto 76% of DM was assimilated during pre-anthesis while at Arezzo the amount was 81%. At Grosseto 44% and at Arezzo 35% of N was accumulated until anthesis, while 33% of P was stored until anthesis in both localities. Cultivar differences in DM and N remobilization were positively related to pre-anthesis dry matter and N content at anthesis (r > 0.74. Environmental contraints on carbon, N and P availability in the plant are crucial factors in determining grain yield and N and P content in grain, affecting both accumulation and remobilization. In the low rainfall site of Grosseto, most of the grain yield originated from dry matter accumulation, while in the wetter environment of Arezzo remobilization and accumulation contributed equally to grain yield. Conversely, at Grosseto grain N content relied most on remobilization and at Arezzo remobilization and accumulation contributed equally. Finally, at Grosseto and at Arezzo accumulation of P was the main source of grain P content.

  2. Study on Yield and Yield Components of Wheat Genotypes under Different Moisture Regimes

    Directory of Open Access Journals (Sweden)

    E. Mogtader

    2012-10-01

    Full Text Available In order to study grain yield and yield components of 16 advanced wheat lines under rainfed and supplementary irrigation conditions, this research was conducted in randomized block design with 3 replications at Maragheh Research Station during 2008-09 seasons. Analysis of variance revealed significant differences for date to heading, plant height, 1000 kernel weight, tiller number, spike length, seed number per spike, spikelet number per spike, peduncle length, harvest index, leaf, sheath length and grain yield. Results also showed that the lines No. 4 (91-142 a 61/3/F35.70/MO73//1D13.1/MLT and 16 (Azar2 with 1895 and 1878 Kg/ha, lines No. 4 and 7 (YUMAI13/5/NAI60/3/14.53/ODIN//CI13441 with 2132 and 2285 Kg/ha had highest grain yield under rainfed and supplementary irrigated conditions respectively. Based on results these 16 lines and cultivars were grouped in 4 and 3 distinct classes using Ward’s Method of cluster analysis under rainfed and irrigated conditions. Path analysis indicated that vigor at shooting stage, seed number per spike and HI were positive important traits to select lines for high yielding potential in this study. HI and TKW had also positive effects on grain under supplementary irrigation.

  3. Genome interplay in the grain transcriptome of hexaploid bread wheat

    Czech Academy of Sciences Publication Activity Database

    Pfeifer, M.; Kugler, K.G.; Sandve, S. R.; Zhang, B.; Rudi, H.; Hvidsten, T.R.; Rogers, J.; Doležel, Jaroslav; Pozniak, C.; Eversole, K.; Feuillet, C.; Gill, B.; Friebe, B.; Lukaszewski, A.J.; Sourdille, P.; Endo, T. R.; Kubaláková, Marie; Čihalíková, Jarmila; Dubská, Zdeňka; Vrána, Jan; Šperková, Romana; Šimková, Hana; Febrer, M.; Clissold, L.; McLay, K.; Singh, K.; Chhuneja, P.; Singh, N.K.; Khurana, J.; Praud, S.; Mayer, K. F.; Olsen, O.A.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 Institutional support: RVO:61389030 Keywords : RNA-SEQ * ARABIDOPSIS-THALIANA * STARCHY ENDOSPERM Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014

  4. Identification of durum wheat genotypes with efficiency on the uptake and Use of water using Carbon-13 discrimination and neutron moisture meter

    International Nuclear Information System (INIS)

    Mechergui, M.; Daaloul, A.; Snane, M.H.

    1995-01-01

    Carbon-13 isotope discrimination method and water balance model Using neutron probe are the two tools used in this study to genotypes for water use efficiency. It is a three years experiment and the results presented will be for the last year. Four durum wheat Cvs were selected and planted in a randomnized block design with 6 replicates. Total consumption of water was calculated. Grain and strow yields and other parameters were recorded. The carbon isotope ratio which illustrates carbon 13 dicrimination is measured for each genotype in grain and strow. The total and the grain water use efficiency were calculated and correlated to the G C-13 isotope dicrimination to compare genotypes between them. The main results presented in this paper revealed that. Carbon-13 discrimination technique is an excellent screening technique for screening for water use in cultivars in semi-arid conditions. 2 fig., 3 tabs

  5. Identification of durum wheat genotypes with efficiency on the uptake and Use of water using Carbon-13 discrimination and neutron moisture meter

    Energy Technology Data Exchange (ETDEWEB)

    Mechergui, M; Daaloul, A [Institut National Agronomique de Tunisie, 43, Avenue Charles Nicolle - 1082 Tunis Mahrajene - (Tunisia); Snane, M H [Institut National Agronomique de (Tunisia)

    1995-10-01

    Carbon-13 isotope discrimination method and water balance model Using neutron probe are the two tools used in this study to genotypes for water use efficiency. It is a three years experiment and the results presented will be for the last year. Four durum wheat Cvs were selected and planted in a randomnized block design with 6 replicates. Total consumption of water was calculated. Grain and strow yields and other parameters were recorded. The carbon isotope ratio which illustrates carbon 13 dicrimination is measured for each genotype in grain and strow. The total and the grain water use efficiency were calculated and correlated to the G C-13 isotope dicrimination to compare genotypes between them. The main results presented in this paper revealed that. Carbon-13 discrimination technique is an excellent screening technique for screening for water use in cultivars in semi-arid conditions. 2 fig., 3 tabs.

  6. Effect of Water Stress and Spraying of Potassium Iodide on Agronomic Traits and Grain Yield of Bread Wheat (Tiriticum aistivum L. Genotypes

    Directory of Open Access Journals (Sweden)

    N. Pooladsaz

    2011-01-01

    Full Text Available Abstract In order to study the effect of water stress and chemical desiccation (potassium iodide on grain yield and agronomic traits of 8 wheat genotypes, a field experiment was conducted using a split split plot design based on a randomized complete block design with three replications in Torogh Agricultural and Natural Resources Research Station (Mashhad, Iran in 2006-2007 and 2007-2008. Main plots were assigned to two levels of water stress treatments; D1: optimum irrigation, and D2: cessation of watering from anthesis to maturity stages. Sub plots were assigned to eight bread wheat genotypes: 9103, 9116, 9203, 9205, 9207, 9212, C-81-10 and Cross Shahi (drought sensitive; and photosynthetic conditions with two levels: P1: using of current photosynthesis and P2: inhibition of current photosynthesis were in sub-sub plots. The results showed that the effects of water stress and photosynthetic conditions on number of total florets per spike (NTF/S, seed set percentage (SSP, spike harvest index (SHI, duration of grain filling (DGF and grain yield (GY were significant. There was a significant difference between genotypes for spike dry weight at anthesis (SDWA, number of spikletes per spike (NSP/S, NTF/S, SSP, SHI, spike partitioning coefficient (SPC, plant height (PLH, spike length (SL, DGF and GY. 9103 genotype produced the most GY (7870 kg/ha under D1P1 treatment. The least GY ( 1114 kg/ha related to Cross Shahi cultivar under D2P2 treatment. Considering that C-81-10, 9103 and 9116 genotypes showed the highest grain yield, potential for reserves and remobilizations of assimilates under different irrigation conditions thus, these genotypes could be introduced as promising in breeding programs for arid and semi-arid regions. Keywords: Triticum aestivum L., Cessation of watering, Chemical Desiccation, Spike, Grain yield

  7. Comparison Of The Caused Physiologic Effects For The GAMMA Radiations And The Sodium Azide (NAN3) In Four Genotypes Of Wheat

    International Nuclear Information System (INIS)

    Quevedo C, Luis A.

    1994-01-01

    As it happens in many countries of the world. The wheat occupies an important line in the feeding of the Colombian town, what demands the continuous obtaining of new cultivations to assist the necessities of the farmers and consumers. The induction of mutations is a tool by means of which excellent results have been obtained in the improvement of cereals, especially in wheat, rice and barley, where mutants have been obtained that have been used directly by the farming ones and indirectly for the programs of improvement. Keeping in mind that in Colombia it is sought to use the induction of mutations in the programs of wheat improvement, and that it doesn't have deep investigations in this respect, it was solved to carry out the present work, where the main objective was to compare the tired physiologic effects after the treatment with different dose and concentrations of gamma rays and sodium azide in four genotypes of wheat of national interest. The work was carried out in two phases, the first one (generation M1) in the one that the seeds of the four genotypes were sowed (ICA-Tenza, Pav -76, Bonza-63 and Creole Pelao) tried with dose of 0, 10, 20, 30 and 40 krad of gamma rays and concentrations of 0, 0.1, 0.2, 0.3 and 0.4 m Molar of sodium azide. The data have more than enough emergency, plant height, longitude of the spike, grains/tassel number and weight of 100 grains, they were tabulated, processed and drawing for each one of the treatments being obtained this way, the radio curves and chemical- sensitivity. The second phase denominated generation M2, makes reference to the seeds coming from the plants M1, which were collected in form singular, taking 2 tassel/plant of the total of plants survivors planted in field

  8. BAC Libraries from Wheat Chromosome 7D: Efficient Tool for Positional Cloning of Aphid Resistance Genes

    Czech Academy of Sciences Publication Activity Database

    Šimková, Hana; Šafář, Jan; Kubaláková, Marie; Suchánková, Pavla; Čihalíková, Jarmila; Robert-Quatre, Heda; Azhaguvel, P.; Weng, Y. Q.; Peng, J.; Lapitan, N. L. V.; Ma, Y. Q.; You, F. M.; Luo, M. C.; Bartoš, Jan; Doležel, Jaroslav

    -, č. 302543 (2011), s. 1-11 ISSN 1110-7243 R&D Projects: GA ČR GA521/07/1573; GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.436, year: 2011

  9. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035

    Science.gov (United States)

    Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.). Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this resear...

  10. A haplotype specific to North European wheat (Triticum aestivum L.)

    Czech Academy of Sciences Publication Activity Database

    Tsombalova, J.; Karafiátová, Miroslava; Vrána, Jan; Kubaláková, Marie; Peusa, H.; Jakobson, I.; Jarve, M.; Valárik, Miroslav; Doležel, Jaroslav; Jarve, K.

    2017-01-01

    Roč. 64, č. 4 (2017), s. 653-664 ISSN 0925-9864 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : bread wheat * genetic diversity * polyploid wheat * introgression lines * molecular analysis * tetraploid wheat * hexaploid wheat * powdery mildew * spelta l. * map * Common wheat * Triticum aestivum L * Spelt * Triticum spelta L * Chromosome 4A * Zero alleles * Haplotype * Linkage disequilibrium Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 1.294, year: 2016

  11. Salt tolerance in wheat - an overview. (abstract)

    International Nuclear Information System (INIS)

    Ashraf, M.

    2005-01-01

    Considerable efforts have been made during the past few years to overcome the problem of salinity through the development of salt tolerant lines of important crop species using screening, breeding and molecular biology techniques. In view of considerable importance of spring wheat as a major staple food crop of many countries, plant scientists have directed there attention to identify and develop salt tolerant genotypes that can be of direct use on salt-affected soils. Although considerable progress in understanding individual phenomenon and genes involved in plant response to salinity stress has been made over the past few years, underlying physiological mechanisms producing salt tolerant plants is still unclear. It has been suggested that salt tolerance of plants could be improved by defining genes or characters. Twenty years ago, it was suggested that genes located on the D genome of bread wheat confer salinity tolerance to hexaploid wheat by reducing Na/sup +/ accumulation in the leaf tissue and increasing discrimination in favour of K/sup +/. However, recently, low Na/sup +/ accumulation and high K/sup +/Na/sup +/ discrimination, of similar magnitude to bread wheat, in several selections of durum wheat has been observed, supporting the notion that salt tolerance is controlled by multiple genes, which are distributed throughout the entire set of chromosomes. In addition, various physiological selection criteria such as compatible osmolytes (glycinebetaine, proline, trehalose, mannitol etc.), antioxidants, carbon discrimination, high K/sup +//Na/sup +/ ratio etc. have been discussed. Although tolerance to salinity is known to have a multigenic inheritance, mediated by a large number of genes, knowledge of heritability and the genetic mode of salinity tolerance is still lacking because few studies have yet been conducted in these areas. Indeed, genetic information is lagging behind the physiological information. Modern methods such as recombinant DNA technology

  12. The study of genotype, cold pretreatment, low-dose gamma irradiation and 2,4-D concentration effect on wheat doubled haploid production

    International Nuclear Information System (INIS)

    Naserian, B.; Vedadi, C.; Karbalaii, S.

    2005-01-01

    Full text: In this study, response of a cultivar (Atrak) and two lines (F3 2005 and F3 2104) of wheat , and effect of cold pretreatment, low dose gamma irradiation and 2,4-D (2,4 mg l -1 ) were investigated to anther culture response. Donar plants were grown under field conditions in early spring. Anthers were plated on modified CHB medium containing 2, 4-D (2, 4 mg l -1 ), 0.5 mg l -1 Kinetin and 90 g l -1 Sucrose. Percent of Callus formation in 100 anther and percent of plantlet in 100 calli were measured. Results indicated that genotype, cold pretreatment and 2,4-D concentrations had significant effect on anther culture response. F3 2005 showed highest callus induction and plantlet production and F3 2104 had lowest response. This experiment indicated that androgenic traits are controlled by genotype and environmental factors. Further more these traits are controlled independently. (author)

  13. A Consensus Map in Cultivated Hexaploid Oat Reveals Conserved Grass Synteny with Substantial Subgenome Rearrangement

    Directory of Open Access Journals (Sweden)

    Ashley S. Chaffin

    2016-07-01

    Full Text Available Hexaploid oat ( L., 2 = 6 = 42 is a member of the Poaceae family and has a large genome (∼12.5 Gb containing 21 chromosome pairs from three ancestral genomes. Physical rearrangements among parental genomes have hindered the development of linkage maps in this species. The objective of this work was to develop a single high-density consensus linkage map that is representative of the majority of commonly grown oat varieties. Data from a cDNA-derived single-nucleotide polymorphism (SNP array and genotyping-by-sequencing (GBS were collected from the progeny of 12 biparental recombinant inbred line populations derived from 19 parents representing oat germplasm cultivated primarily in North America. Linkage groups from all mapping populations were compared to identify 21 clusters of conserved collinearity. Linkage groups within each cluster were then merged into 21 consensus chromosomes, generating a framework consensus map of 7202 markers spanning 2843 cM. An additional 9678 markers were placed on this map with a lower degree of certainty. Assignment to physical chromosomes with high confidence was made for nine chromosomes. Comparison of homeologous regions among oat chromosomes and matches to orthologous regions of rice ( L. reveal that the hexaploid oat genome has been highly rearranged relative to its ancestral diploid genomes as a result of frequent translocations among chromosomes. Heterogeneous chromosome rearrangements among populations were also evident, probably accounting for the failure of some linkage groups to match the consensus. This work contributes to a further understanding of the organization and evolution of hexaploid grass genomes.

  14. Qtl mapping of wheat doubled haploids for chlorophyll content and chlorophyll fluorescence kinetics under drought stress imposed at anthesis stage

    International Nuclear Information System (INIS)

    Ilyas, M.; Ilyas, N.; Arshad, M.; Kazi, A.G.

    2014-01-01

    Drought stress is one of the major environmental constraints to crop plants including wheat worldwide. Synthetic hexaploid can act as a vehicle for improving crop tolerance against biotic and abiotic stresses. Doubled haploid population consisting of one hundred and forty individuals derived from cross of Opata and SH223 was used in the present study to identify genomic regions associated with various quantitative attributes of physiological nature. Doubled haploid mapping population was phenotyped for chlorophyll content and chlorophyll fluorescence kinetics under control and drought stress imposed at anthesis stage. Genotyping of population was accomplished by utilizing two hundred and sixty one polymorphic Gaterslaben wheat microsatellites and Beltsville agriculture research center simple sequence repeats. Linkage map of doubled haploid population comprising of 19 linkage groups and covering map length of two thousands six hundred and twenty six (2626) cM was constructed using map maker software. Major and minor QTLs associated with quantitative traits were identified using QGene software. Major QTL for chlorophyll content (QTc.wwc-1B-S11) of doubled haploid mapping population under anthesis drought stress was mapped on chromosome 1B and explained 10.09 percent of phenotypic variation at LOD score of 5.5. Seven major and minor QTLs for PCFK of doubled haploids were identified on chromosome 1B, 7A and 7D under control and drought stress at anthesis stage. The identified QTLs are of prime importance for high resolution mapping in synthetic hexaploid wheat. Genomic synteny of doubled haploids was observed with rice chromosome 2, 4, 7 and maize chromosome 7 owing to occurrence of orthologous QTLs for chlorophyll content and chlorophyll fluorescence respectively. (author)

  15. Subgenomic Diversity Patterns Caused by Directional Selection in Bread Wheat Gene Pools

    Directory of Open Access Journals (Sweden)

    Kai Voss-Fels

    2015-07-01

    Full Text Available Genetic diversity represents the fundamental key to breeding success, providing the basis for breeders to select varieties with constantly improving yield performance. On the other hand, strong selection during domestication and breeding have eliminated considerable genetic diversity in the breeding pools of major crops, causing erosion of genetic potential for adaptation to emerging challenges like climate change. High-throughput genomic technologies can address this dilemma by providing detailed knowledge to characterize and replenish genetic diversity in breeding programs. In hexaploid bread wheat ( L., the staple food for 35% of the world’s population, bottlenecks during allopolyploidisation followed by strong artificial selection have considerably narrowed diversity to the extent that yields in many regions appear to be unexpectedly stagnating. In this study, we used a 90,000 single nucleotide polymorphism (SNP wheat genotyping array to assay high-frequency, polymorphic SNP markers in 460 accessions representing different phenological diversity groups from Asian, Australian, European, and North American bread wheat breeding materials. Detailed analysis of subgroup diversity at the chromosome and subgenome scale revealed highly distinct patterns of conserved linkage disequilibrium between different gene pools. The data enable identification of genome regions in most need of rejuvenation with novel diversity and provide a high-resolution molecular basis for genomic-assisted introgression of new variation into chromosome segments surrounding directionally selected metaloci conferring important adaptation and quality traits.

  16. The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution

    Czech Academy of Sciences Publication Activity Database

    Raats, D.; Frenkel, Z.; Krugman, T.; Šimková, Hana; Paux, E.; Doležel, Jaroslav; Feuillet, C.; Korol, A.; Fahima, T.

    2013-01-01

    Roč. 14, č. 12 (2013) ISSN 1465-6906 Institutional research plan: CEZ:AV0Z50380511 Keywords : TRITICUM-AESTIVUM L. * HEXAPLOID WHEAT * BREAD WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 10.465, year: 2013

  17. End-use quality of CIMMYT-derived soft kernel durum wheat germplasm. II. Dough strength and pan bread quality

    Science.gov (United States)

    Durum wheat (Triticum turgidum ssp. durum) is considered unsuitable for the majority of commercial bread production because its weak gluten strength combined with flour particle size and flour starch damage after milling are not commensurate with hexaploid wheat flours. Recently a new durum cultivar...

  18. Putative Microsatellite DNA Marker-Based Wheat Genomic Resource for Varietal Improvement and Management

    Directory of Open Access Journals (Sweden)

    Sarika Jaiswal

    2017-11-01

    Full Text Available Wheat fulfills 20% of global caloric requirement. World needs 60% more wheat for 9 billion population by 2050 but climate change with increasing temperature is projected to affect wheat productivity adversely. Trait improvement and management of wheat germplasm requires genomic resource. Simple Sequence Repeats (SSRs being highly polymorphic and ubiquitously distributed in the genome, can be a marker of choice but there is no structured marker database with options to generate primer pairs for genotyping on desired chromosome/physical location. Previously associated markers with different wheat trait are also not available in any database. Limitations of in vitro SSR discovery can be overcome by genome-wide in silico mining of SSR. Triticum aestivum SSR database (TaSSRDb is an integrated online database with three-tier architecture, developed using PHP and MySQL and accessible at http://webtom.cabgrid.res.in/wheatssr/. For genotyping, Primer3 standalone code computes primers on user request. Chromosome-wise SSR calling for all the three sub genomes along with choice of motif types is provided in addition to the primer generation for desired marker. We report here a database of highest number of SSRs (476,169 from complex, hexaploid wheat genome (~17 GB along with previously reported 268 SSR markers associated with 11 traits. Highest (116.93 SSRs/Mb and lowest (74.57 SSRs/Mb SSR densities were found on 2D and 3A chromosome, respectively. To obtain homozygous locus, e-PCR was done. Such 30 loci were randomly selected for PCR validation in panel of 18 wheat Advance Varietal Trial (AVT lines. TaSSRDb can be a valuable genomic resource tool for linkage mapping, gene/QTL (Quantitative trait locus discovery, diversity analysis, traceability and variety identification. Varietal specific profiling and differentiation can supplement DUS (Distinctiveness, Uniformity, and Stability testing, EDV (Essentially Derived Variety/IV (Initial Variety disputes, seed

  19. Inheritance and bulked segregant analysis of leaf rust and stem rust resistance genes in eight durum wheat genotypes

    Science.gov (United States)

    Leaf rust, caused by Puccinia triticina (Pt) and stem rust caused by Puccinia graminis f. sp. tritici (Pgt) are important diseases of durum wheat. This study determined the inheritance and genomic locations of leaf rust resistance (Lr) genes to Pt-race BBBQJ and stem rust resistance (Sr) genes to Pg...

  20. Stomatal conductance, mesophyll conductance, and trans piration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought

    NARCIS (Netherlands)

    Ouyang, Wenjing; Struik, Paul C.; Yin, Xinyou; Yang, Jianchang

    2017-01-01

    Increasing leaf transpiration efficiency (TE) may provide leads for growing rice like dryland cereals such as wheat (Triticum aestivum). To explore avenues for improving TE in rice, variations in stomatal conductance (g s) and mesophyll conductance (g m) and their anatomical determinants were

  1. Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno

    Czech Academy of Sciences Publication Activity Database

    Shatalina, M.; Wicker, T.; Buchmann, J. P.; Oberhaensli, S.; Šimková, Hana; Doležel, Jaroslav; Keller, B.

    2013-01-01

    Roč. 11, č. 1 (2013), s. 23-32 ISSN 1467-7644 Institutional research plan: CEZ:AV0Z50380511 Keywords : wheat * genetic mapping * single-nucleotide polymorphism Subject RIV: EB - Genetic s ; Molecular Biology Impact factor: 5.677, year: 2013

  2. Mapping genes for resistance to stripe rust in spring wheat landrace PI 480035.

    Directory of Open Access Journals (Sweden)

    Jinita Sthapit Kandel

    Full Text Available Stripe rust caused by Puccinia striiformis Westend. f. sp. tritici Erikks. is an economically important disease of wheat (Triticum aestivum L.. Hexaploid spring wheat landrace PI 480035 was highly resistant to stripe rust in the field in Washington during 2011 and 2012. The objective of this research was to identify quantitative trait loci (QTL for stripe rust resistance in PI 480035. A spring wheat, "Avocet Susceptible" (AvS, was crossed with PI 480035 to develop a biparental population of 110 recombinant inbred lines (RIL. The population was evaluated in the field in 2013 and 2014 and seedling reactions were examined against three races (PSTv-14, PSTv-37, and PSTv-40 of the pathogen under controlled conditions. The population was genotyped with genotyping-by-sequencing and microsatellite markers across the whole wheat genome. A major QTL, QYr.wrsggl1-1BS was identified on chromosome 1B. The closest flanking markers were Xgwm273, Xgwm11, and Xbarc187 1.01 cM distal to QYr.wrsggl1-1BS, Xcfd59 0.59 cM proximal and XA365 3.19 cM proximal to QYr.wrsggl1-1BS. Another QTL, QYr.wrsggl1-3B, was identified on 3B, which was significant only for PSTv-40 and was not significant in the field, indicating it confers a race-specific resistance. Comparison with markers associated with previously reported Yr genes on 1B (Yr64, Yr65, and YrH52 indicated that QYr.wrsggl1-1BS is potentially a novel stripe rust resistance gene that can be incorporated into modern breeding materials, along with other all-stage and adult-plant resistance genes to develop cultivars that can provide durable resistance.

  3. Accounting for Genotype-by-Environment Interactions and Residual Genetic Variation in Genomic Selection for Water-Soluble Carbohydrate Concentration in Wheat.

    Science.gov (United States)

    Ovenden, Ben; Milgate, Andrew; Wade, Len J; Rebetzke, Greg J; Holland, James B

    2018-05-31

    Abiotic stress tolerance traits are often complex and recalcitrant targets for conventional breeding improvement in many crop species. This study evaluated the potential of genomic selection to predict water-soluble carbohydrate concentration (WSCC), an important drought tolerance trait, in wheat under field conditions. A panel of 358 varieties and breeding lines constrained for maturity was evaluated under rainfed and irrigated treatments across two locations and two years. Whole-genome marker profiles and factor analytic mixed models were used to generate genomic estimated breeding values (GEBVs) for specific environments and environment groups. Additive genetic variance was smaller than residual genetic variance for WSCC, such that genotypic values were dominated by residual genetic effects rather than additive breeding values. As a result, GEBVs were not accurate predictors of genotypic values of the extant lines, but GEBVs should be reliable selection criteria to choose parents for intermating to produce new populations. The accuracy of GEBVs for untested lines was sufficient to increase predicted genetic gain from genomic selection per unit time compared to phenotypic selection if the breeding cycle is reduced by half by the use of GEBVs in off-season generations. Further, genomic prediction accuracy depended on having phenotypic data from environments with strong correlations with target production environments to build prediction models. By combining high-density marker genotypes, stress-managed field evaluations, and mixed models that model simultaneously covariances among genotypes and covariances of complex trait performance between pairs of environments, we were able to train models with good accuracy to facilitate genetic gain from genomic selection. Copyright © 2018 Ovenden et al.

  4. Genomic Prediction with Pedigree and Genotype × Environment Interaction in Spring Wheat Grown in South and West Asia, North Africa, and Mexico

    Directory of Open Access Journals (Sweden)

    Sivakumar Sukumaran

    2017-02-01

    Full Text Available Developing genomic selection (GS models is an important step in applying GS to accelerate the rate of genetic gain in grain yield in plant breeding. In this study, seven genomic prediction models under two cross-validation (CV scenarios were tested on 287 advanced elite spring wheat lines phenotyped for grain yield (GY, thousand-grain weight (GW, grain number (GN, and thermal time for flowering (TTF in 18 international environments (year-location combinations in major wheat-producing countries in 2010 and 2011. Prediction models with genomic and pedigree information included main effects and interaction with environments. Two random CV schemes were applied to predict a subset of lines that were not observed in any of the 18 environments (CV1, and a subset of lines that were not observed in a set of the environments, but were observed in other environments (CV2. Genomic prediction models, including genotype × environment (G×E interaction, had the highest average prediction ability under the CV1 scenario for GY (0.31, GN (0.32, GW (0.45, and TTF (0.27. For CV2, the average prediction ability of the model including the interaction terms was generally high for GY (0.38, GN (0.43, GW (0.63, and TTF (0.53. Wheat lines in site-year combinations in Mexico and India had relatively high prediction ability for GY and GW. Results indicated that prediction ability of lines not observed in certain environments could be relatively high for genomic selection when predicting G×E interaction in multi-environment trials.

  5. A comparison between genotyping-by-sequencing and array-based scoring of SNPs for genomic prediction accuracy in winter wheat.

    Science.gov (United States)

    Elbasyoni, Ibrahim S; Lorenz, A J; Guttieri, M; Frels, K; Baenziger, P S; Poland, J; Akhunov, E

    2018-05-01

    The utilization of DNA molecular markers in plant breeding to maximize selection response via marker-assisted selection (MAS) and genomic selection (GS) has revolutionized plant breeding. A key factor affecting GS applicability is the choice of molecular marker platform. Genotyping-by-sequencing scored SNPs (GBS-scored SNPs) provides a large number of markers, albeit with high rates of missing data. Array scored SNPs are of high quality, but the cost per sample is substantially higher. The objectives of this study were 1) compare GBS-scored SNPs, and array scored SNPs for genomic selection applications, and 2) compare estimates of genomic kinship and population structure calculated using the two marker platforms. SNPs were compared in a diversity panel consisting of 299 hard winter wheat (Triticum aestivum L.) accessions that were part of a multi-year, multi-environments association mapping study. The panel was phenotyped in Ithaca, Nebraska for heading date, plant height, days to physiological maturity and grain yield in 2012 and 2013. The panel was genotyped using GBS-scored SNPs, and array scored SNPs. Results indicate that GBS-scored SNPs is comparable to or better than Array-scored SNPs for genomic prediction application. Both platforms identified the same genetic patterns in the panel where 90% of the lines were classified to common genetic groups. Overall, we concluded that GBS-scored SNPs have the potential to be the marker platform of choice for genetic diversity and genomic selection in winter wheat. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Interaction of soft wheat Triticum aestivum L. gene ph1b with the Aegilops speltoides Tausch. genotype

    Energy Technology Data Exchange (ETDEWEB)

    Lapochkina, I.F. [Agricultural Research Institute of Central Non-Chernozem Region, Moscow (Russian Federation)

    1995-04-01

    It is demonstrated that genotypes of Aegilops speltoides and the phi1b mutant have an additive effect on the level of homeologous chromosome pairing in their F{sub 1} hybrids (2n = 28, ABDS). The contribution of gene ph1b to the total pairing level is 16% and that of the Ae. speltoides genotype is 42%. 9 refs., 1 fig., 2 tabs.

  7. Chromosomal Behavior during Meiosis in the Progeny of Triticum timopheevii × Hexaploid Wild Oat.

    Directory of Open Access Journals (Sweden)

    Hongzhou An

    Full Text Available The meiotic behavior of pollen mother cells (PMCs of the F2 and F3 progeny from Triticum timopheevii × hexaploid wild oat was investigated by cytological analysis and sequential C-banding-genomic in situ hybridization (GISH in the present study. A cytological analysis showed that the chromosome numbers of the F2 and F3 progeny ranged from 28 to 41. A large number of univalents, lagging chromosomes, chromosome bridges and micronuclei were found at the metaphase I, anaphase I, anaphase II and tetrad stages in the F2 and F3 progeny. The averages of univalents were 3.50 and 2.73 per cell, and those of lagging chromosomes were 3.37 and 1.87 in the F2 and F3 progeny, respectively. The PMC meiotic indices of the F2 and F3 progeny were 12.22 and 20.34, respectively, indicating considerable genetic instability. A sequential C-banding-GISH analysis revealed that some chromosomes and fragments from the hexaploid wild oat were detected at metaphase I and anaphase I in the progeny, showing that the progeny were of true intergeneric hybrid origin. The alien chromosomes 6A, 7A, 3C and 2D were lost during transmission from F2 to F3. In addition, partial T. timopheevii chromosomes appeared in the form of univalents or lagging chromosomes, which might result from large genome differences between the parents, and the wild oat chromosome introgression interfered with the wheat homologues' normally pairing.

  8. Heterosis for yield and its components in bread wheat crosses among powdery mildew resistant and susceptible genotypes

    International Nuclear Information System (INIS)

    Ilker, E.; Tonk, F.A.; Tosun, M.

    2010-01-01

    The objective of this research was to investigate heterotic effects between five powdery mildew resistant wheat lines derived from CIMMYT and three susceptible commercial wheat varieties growing in Turkey and to determine mode of gene actions of the parents for yield characters in F1 generation. All 15 F1 crosses and their parents were planted in randomized complete block design in three replications. Measurements were done for plant height, pike length, spike let and kernel number per spike, grain weight per spike and 1000-kernel weight. Promising findings of the crosses 72 x Golia, 70 x Golia, 70 x Basribey, 48 x Basribey, 48 x Atilla-12 and 72 x Atilla12 were obtained to breed new varieties or pure lines having shorter plant height and taller spike length, more number of spike let and kernel per spike, besides higher grain yield than their mid or better parents to improve powdery mildew resistant varieties. (author)

  9. Comparative cytogenetic analysis of diploid and hexaploid Chenopodium album Agg

    Directory of Open Access Journals (Sweden)

    Bożena Kolano

    2011-01-01

    Full Text Available Two cytotypes of Chenopodium album, diploid (2n=2x=18 and hexaploid (2n=6x=54, were analysed using flow cytometry and a FISH experiment. The genome size was indicated as 1.795 pg for the diploid and 3.845 pg for the hexaploid plants which suggested genome downsizing in the evolution of hexaploid cytotype. Double FISH with 25S rDNA and 5S rDNA allowed three to five homologue chromosome pairs to be distinguished depending on the cytotype. The Variation in size and number of rDNA sites between the polyploid C. album and its putative diploid ancestor indicated that rDNA loci underwent rearrangements after polyploidization. Flow cytometry measurements of the relative nuclear DNA content in the somatic tissue of C. album revealed extensive endopolyploidization resulting in tissues comprising a mixture of cells with a different DNA content (from 2C to 32C in varying proportions. The pattern of endopolyploidy was characteristic for the developmental stage of the plant and for the individual organ. Polysomaty was not observed in the embryo tissues however endopolyploidization had taken place in most tested organs of seedlings. The endopolyploidy in diploid and hexaploid C. album was compared to find any relationship between the pattern of polysomaty and polyploidy level in this species. This revealed that polyploid plants showed a decline in the number of endocycles as well as in the frequency of endopolyploidy cells compared to diploid plants.

  10. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Jiping Wang

    2017-09-01

    Full Text Available Calreticulin (CRT, an endoplasmic reticulum (ER-localized Ca2+-binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat (Triticum aestivum L., particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL population (114 lines developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  11. Functional Analysis and Marker Development of TaCRT-D Gene in Common Wheat (Triticum aestivum L.).

    Science.gov (United States)

    Wang, Jiping; Li, Runzhi; Mao, Xinguo; Jing, Ruilian

    2017-01-01

    Calreticulin (CRT), an endoplasmic reticulum (ER)-localized Ca 2+ -binding/buffering protein, is highly conserved and extensively expressed in animal and plant cells. To understand the function of CRTs in wheat ( Triticum aestivum L.), particularly their roles in stress tolerance, we cloned the full-length genomic sequence of the TaCRT-D isoform from D genome of common hexaploid wheat, and characterized its function by transgenic Arabidopsis system. TaCRT-D exhibited different expression patterns in wheat seedling under different abiotic stresses. Transgenic Arabidopsis plants overexpressing ORF of TaCRT-D displayed more tolerance to drought, cold, salt, mannitol, and other abiotic stresses at both seed germination and seedling stages, compared with the wild-type controls. Furthermore, DNA polymorphism analysis and gene mapping were employed to develop the functional markers of this gene for marker-assistant selection in wheat breeding program. One SNP, S440 (T→C) was detected at the TaCRT-D locus by genotyping a wheat recombinant inbred line (RIL) population (114 lines) developed from Opata 85 × W7984. The TaCRT-D was then fine mapped between markers Xgwm645 and Xgwm664 on chromosome 3DL, corresponding to genetic distances of 3.5 and 4.4 cM, respectively, using the RIL population and Chinese Spring nulli-tetrasomic lines. Finally, the genome-specific and allele-specific markers were developed for the TaCRT-D gene. These findings indicate that TaCRT-D function importantly in plant stress responses, providing a gene target for genetic engineering to increase plant stress tolerance and the functional markers of TaCRT-D for marker-assistant selection in wheat breeding.

  12. Tissue Culture Technique and Gamma Irradiation Used in Evaluation of Five Genotypes of Bread Wheat to Salinity Tolerance

    International Nuclear Information System (INIS)

    AL Jibouri, A. A. M.; Sulaiman, A. A.; Dallul, R. A.

    2005-01-01

    Callus has been induced from immature embryos of five genotypes of Triticum aestivum L (i.e. Maxipak, IPA99, 113, Tamus 3 and Babylon) on MS culture media. The calli were irradiated by Gamma ray at doses (0,15, 30,45, And 60) Gray, and cultured on MS media supplemented with salt mixture consist of sodium, calcium and magnesium chlorides in portions 3; 3; 1 respectively.The results showed significant differences in genotype responses to irradiation and salinity . A significant reduction in fresh and dry weights with increasing of irradiation dose and salt concentration in culture media in all genotypes. The genotype IPA99 showed a highest fresh and dry weight than the other genotypes . The proline contents increased significantly in callus with irradiation doses and concentration increases. On the other hand callus carbohydrate content reduced significantly with increased salt concentration in culture media. The capability of callus regeneration was reduced by increasing irradiation doses and salt concentration in culture media. (author)

  13. Reference-quality genome sequence of Aegilops tauschii, the source of wheat D genome, shows that recombination shapes genome structure and evolution

    Science.gov (United States)

    Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...

  14. A genotype, environment and management (GxExM) analysis of adaptation in winter wheat to climate change in Denmark

    DEFF Research Database (Denmark)

    Montesino San Martin, Manuel; Olesen, Jørgen Eivind; Porter, John Roy

    2014-01-01

    version of AFRCWHEAT2 to model several combinations of genotypes (varying in crop growth, development and tolerance to water and nitrogen scarcity) and management (sowing dates and nitrogen fertilization rate). The simulations showed a slight improvement of grain yields (0.3–1.2 Mg ha−1) in the medium...... consistently points towards need for cultivars with a longer reproductive phases (2.9–7.5% per 1 °C) and lower photoperiod sensitivities. Due to the positive synergies between several genotypic characteristics, multiple-target breeding programmes would be necessary, possibly assisted by model-based assessments...... of optimal phenotypic characteristics....

  15. A High Resolution Radiation Hybrid Map of Wheat Chromosome 4A

    Czech Academy of Sciences Publication Activity Database

    Balcárková, Barbora; Frenkel, Z.; Škopová, Monika; Abrouk, Michael; Kumar, A.; Chao, S.; Kianian, S. F.; Akhunov, E.; Korol, A.; Doležel, Jaroslav; Valárik, Miroslav

    2017-01-01

    Roč. 7, JAN 10 (2017), č. článku 2063. ISSN 1664-462X R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * bread wheat * high-density * agronomic traits * tetraploid wheat * hexaploid wheat * polyploid wheat * genetic maps * genomes * recombination * endosperm radiation hybrid panel * radiation hybrid map * wheat chromosome 4A * chromosome deletion bin map * Triticum aestivum * SNP iSelect array Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 4.298, year: 2016

  16. Environment characterization as an aid to wheat improvement: interpreting genotype-environment interactions by modelling water-deficit patterns in North-Eastern Australia.

    Science.gov (United States)

    Chenu, K; Cooper, M; Hammer, G L; Mathews, K L; Dreccer, M F; Chapman, S C

    2011-03-01

    Genotype-environment interactions (GEI) limit genetic gain for complex traits such as tolerance to drought. Characterization of the crop environment is an important step in understanding GEI. A modelling approach is proposed here to characterize broadly (large geographic area, long-term period) and locally (field experiment) drought-related environmental stresses, which enables breeders to analyse their experimental trials with regard to the broad population of environments that they target. Water-deficit patterns experienced by wheat crops were determined for drought-prone north-eastern Australia, using the APSIM crop model to account for the interactions of crops with their environment (e.g. feedback of plant growth on water depletion). Simulations based on more than 100 years of historical climate data were conducted for representative locations, soils, and management systems, for a check cultivar, Hartog. The three main environment types identified differed in their patterns of simulated water stress around flowering and during grain-filling. Over the entire region, the terminal drought-stress pattern was most common (50% of production environments) followed by a flowering stress (24%), although the frequencies of occurrence of the three types varied greatly across regions, years, and management. This environment classification was applied to 16 trials relevant to late stages testing of a breeding programme. The incorporation of the independently-determined environment types in a statistical analysis assisted interpretation of the GEI for yield among the 18 representative genotypes by reducing the relative effect of GEI compared with genotypic variance, and helped to identify opportunities to improve breeding and germplasm-testing strategies for this region.

  17. Forward Genetics Approach Reveals Host Genotype-Dependent Importance of Accessory Chromosomes in the Fungal Wheat Pathogen Zymoseptoria tritici

    Directory of Open Access Journals (Sweden)

    Michael Habig

    2017-11-01

    Full Text Available The fungal wheat pathogen Zymoseptoria tritici possesses a large complement of accessory chromosomes showing presence/absence polymorphism among isolates. These chromosomes encode hundreds of genes; however, their functional role and why the chromosomes have been maintained over long evolutionary times are so far not known. In this study, we addressed the functional relevance of eight accessory chromosomes in reference isolate IPO323. We induced chromosome losses by inhibiting the β-tubulin assembly during mitosis using carbendazim and generated several independent isogenic strains, each lacking one of the accessory chromosomes. We confirmed chromosome losses by electrophoretic karyotyping and whole-genome sequencing. To assess the importance of the individual chromosomes during host infection, we performed in planta assays comparing disease development results in wild-type and chromosome mutant strains. Loss of the accessory chromosomes 14, 16, 18, 19, and 21 resulted in increased virulence on wheat cultivar Runal but not on cultivars Obelisk, Titlis, and Riband. Moreover, some accessory chromosomes affected the switch from biotrophy to necrotrophy as strains lacking accessory chromosomes 14, 18, 19, and 21 showed a significantly earlier onset of necrosis than the wild type on the Runal cultivar. In general, we observed that the timing of the lifestyle switch affects the fitness of Z. tritici. Taking the results together, this study was the first to use a forward-genetics approach to demonstrate a cultivar-dependent functional relevance of the accessory chromosomes of Z. tritici during host infection.

  18. Response of different genotypes of wheat, rice and black beans to anther, embryo and other tissue cultures

    International Nuclear Information System (INIS)

    Franco, E.; Amador, D.; Calderon, J.; Alvarez, G.; Alvarado, J.; Ramazzini, H.; Ramos, S.; Acuna, G.; Zuniga, B.

    1996-01-01

    The objective of the basic studies we have been conducting in our laboratory is to establish callus induction and in vitro plant regeneration protocols starting with several tissues of Guatemalan varieties of wheat (Triticum aesticum L.), rice (Oryza sativa L.) and especially black bean (Phaseolus vulgaris L.) in order to obtain disease resistance, earliness, and dwarf plants. Wheat anthers and immature embryos of varieties Patzun, Comalapa, Chocoyo, and Xequijel cultured in N 6 , Potato II, and MS basal media supplemented with auxin and cytokinin gave the best responses in callus induction and plant regeneration. Anthers and mature embryos of indica rice varieties Precozicta and Virginai, when cultured in MS, B 5 , N 6 , and Potato II basal media with different hormonal combinations gave a good response in callus induction. However, a satisfactory response in plant regeneration was not obtained. With black beans, when hypocotyls and mature embryos of black bean varieties Quinack Che and Parramos were cultured in MS basal medium supplemented with different concentrations of NAA and kinetin, more than 60% callus induction was produced. When Quinack Che calli were transferred to MS basal medium supplemented with 1 mg/l NAA plus 0.5 mg/l BAP, green points of regeneration were visible in these calli. (author). 34 refs, 28 tabs

  19. Eco-physiolgoical role of root-sourced signal in three genotypes of spring wheat cultivars: a cue of evolution

    International Nuclear Information System (INIS)

    Liu, X.; Kong, H.Y.; Sun, G.J.; Cheng, Z.G.; Batool, A.; Jiang, H.M.

    2014-01-01

    Non-hydraulic root-sourced signal (nHRS) is so far affirmed to be a unique and positive early-warning response of plant to drying soil, but its functional role and potential evolutionary implication is little known in dryland wheat. Three spring wheat cultivars, Monkhead (1940-1960s), Dingxi 24 (1970-1980s) and Longchun 8139 (1990-present) with different drought sensitivity were chosen as materials for the research. Physiological and agronomic parameters were measured and analyzed in two relatively separated but closely related trials under environment-controlled conditions. The results showed that characteristics of nHRS and its eco-physiological effects varied from cultivars. Threshold ranges (TR) of soil moisture at which nHRS was switched on and off were 60.1-51.4% (% of FWC) in Monkhead, 63.8-47.3% in Dingxi 24 and 66.5-44.8% in Longchun 8139 respectively, suggesting that earlier onset of nHRS took place in modern cultivars. Leaf abscisic acid (ABA) concentration was significantly greater and increased more rapidly in old cultivars, Monkhead and Dingxi 24 than that of Longchun 8139 during the operation of nHRS. As a result of nHRS regulation, maintenance rate of grain yield was 43.4%, 60.8% and 79.3%, and water use efficiency was 1.47, 1.65 and 2.25 g/L in Monkhead, Dingxi 24 and Longchun 8139 respectively. In addition, drought susceptibility indices were 0.8858, 0.6037 and 0.3182 for the three cultivars, respectively. This suggests that earlier trigger of nHRS led to lower ABA-led signal intensity and better drought adaptability. It can be argued that the advances in yield performance and drought tolerance might be made by targeted selection for an earlier onset of nHRS. Finally, we attempted developing a conceptual model regarding root-sourced signal weakening and its evolutionary cue in dryland wheat. (author)

  20. Effect of the genotype and gamma irradiation on the anther cultures of a 10x10 diallel cross of wheat

    International Nuclear Information System (INIS)

    Molina, L.; Aldana, F.

    2001-01-01

    Anther culture responsiveness, irradiation effect and reciprocal effect were evaluated on ten genotypes (V1-V10) and a 101x0 diallel cross. Gamma irradiation dose of 100 Gy was applied to seeds of parents and F 1 cross from which the donor plants were grown. Non-irradiated donor plants were also used for comparison. Anthers were plated on potato-2 callus induction medium and calli formed were transferred to MS medium supplemented with sucrose (3%), indolacetic acid (1.0 mg/L), kinetin (1.0 mg/L), inositol (100 mg/L) and solidified with agar (0.7%). Genotypes showed big differences for callus induction, plant regeneration and anther culturability rate. The most responsive materials were V2, V10 and V5 with 76.0, 27.4 and 10.8 green plants per 100 anthers respectively. No irradiation effect was found for the parents nor the F 1 crosses on the pooled data. Mean anther culture response of specific genotypes showed that irradiation significantly increased anther culturability rate of V3 from 0.1 to 27.6 green plants per 100 anthers. No reciprocal effect was observed. (author)

  1. Screening of Bread Wheat Genotypes for Stem Reserves Remobilization, Relative Water Content and Osmotic Adjustment under Drought Stress

    Directory of Open Access Journals (Sweden)

    Z Soleimani

    2015-05-01

    Full Text Available Drought one of the most important global threats against bread wheat production. In order to identify physiological traits associated with drought tolerance, 52 bread wheat varieties were cultured under two normal and drought stress condition in a randomized complete block desigen with three replications. RWC (in three independent times, leaf rolling, leaf silvering, days to flowering, days to maturity and stem reserve remobilization were investigeted. Also in a pot experiment osmotic adjustment of the varieties were measured at seedling stage. varieties Star and Bezostaya had the highest RWC (0.79 and 0.78, respectively. Osmotic adjustment in Rasol and Unknown11 were highest (0.58 and 0.56, respectively. Varieties Tipik, Unknown11 and Azar2 showed the least decrease in thousand grain weight after spraying with KI (4.8, 5.5 and 5.5, respectively. Also varieties Dez, Gaspard and MV-17 have the highest degree of leaf silvering and varieties Niknejad, Star and Kohdasht under drought stress were able than the other varieties bring their leaves to form a rolling and cope with water deficit. Under drought stress, Varieties Alborz, Zagros and Inia were observed premature than the other varieties and Gaspard and Kaslojen varieties were observed late mature than the other varieties. Altogetehr varieties Kohdasht, Star and Bezostaya can be used as genetic resources for leaf water retention under drought stress condition for imjproving other varieties. Also as Azar2 and Unknown11 had highest amount of thousand grain weight under normal condition and simoultanously showed high ability in stem reserves remobilization they can be selected as parents in crosses for improving these traits.

  2. Massive expansion and differential evolution of small heat shock proteins with wheat (Triticum aestivum L.) polyploidization.

    Science.gov (United States)

    Wang, Xiaoming; Wang, Ruochen; Ma, Chuang; Shi, Xue; Liu, Zhenshan; Wang, Zhonghua; Sun, Qixin; Cao, Jun; Xu, Shengbao

    2017-05-31

    Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.

  3. Synthetic Hexaploids Derived from Wild Species Related to Sweet Potato

    OpenAIRE

    SHIOTANI, Itaru; KAWASE, Tsuneo; 塩谷, 格; 川瀬, 恒男

    1987-01-01

    The utilization of germplasm of the wild species in sweet-potato breeding has been conducted for the last three decades. Such attempts brought some remarkable achievments in improving root yield, starch content and resistance to the nematodes of sweet potato. Some wild plants in polyploid series may have many genes potentially important for further improvement of the agronomic traits. However, the genomic relationship between the wild relatives and hexaploid sweet potato (2n=6x=90) has been u...

  4. A physical map of the 1-gigabase bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Paux, E.; Sourdille, P.; Salse, J.; Saintenac, C.; Choulet, F.; LeRoy, P.; Korol, A.; Michalak, M.; Kianian, S.; Spielmeyer, W.; Lagudah, E.; Somers, D.; Kilian, A.; Alaux, M.; Vautrin, S.; Bergès, H.; Eversole, K.; Appels, R.; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Bernard, M.; Feuillet, C.

    2008-01-01

    Roč. 322, č. 5898 (2008), s. 101-104 ISSN 0036-8075 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z5038910 Keywords : RUST RESISTANCE GENE * TRITICUM-AESTIVUM * HEXAPLOID WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 28.103, year: 2008

  5. Characterization of new allele influencing flowering time in bread wheat introgressed from Triticum militinae

    Czech Academy of Sciences Publication Activity Database

    Ivaničová, Zuzana; Jakobson, I.; Reis, D.; Šafář, Jan; Milec, Zbyněk; Abrouk, Michael; Doležel, Jaroslav; Jarve, K.; Valárik, Miroslav

    2016-01-01

    Roč. 33, č. 5 (2016), s. 718-727 ISSN 1871-6784 R&D Projects: GA MŠk(CZ) LO1204; GA ČR(CZ) GA14-07164S Institutional support: RVO:61389030 Keywords : GENE-EXPRESSION * HEXAPLOID WHEAT * LIGHT QUALITY Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.813, year: 2016

  6. The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements

    Czech Academy of Sciences Publication Activity Database

    Akpinar, B.A.; Magni, F.; Yuce, M.; Lucas, S. J.; Šimková, Hana; Šafář, Jan; Vautrin, S.; Berges, H.; Cattonaro, F.; Doležel, Jaroslav; Budak, H.

    2015-01-01

    Roč. 16, JUN 13 (2015) ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Triticum aestivum * 5DS * Hexaploid wheat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.867, year: 2015

  7. Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome.

    Science.gov (United States)

    Belova, Tatiana; Grønvold, Lars; Kumar, Ajay; Kianian, Shahryar; He, Xinyao; Lillemo, Morten; Springer, Nathan M; Lien, Sigbjørn; Olsen, Odd-Arne; Sandve, Simen R

    2014-09-01

    A total of 3,671 sequence contigs and scaffolds were mapped to deletion bins on wheat chromosome 7B providing a foundation for developing high-resolution integrated physical map for this chromosome. Bread wheat (Triticum aestivum L.) has a large, complex and highly repetitive genome which is challenging to assemble into high quality pseudo-chromosomes. As part of the international effort to sequence the hexaploid bread wheat genome by the international wheat genome sequencing consortium (IWGSC) we are focused on assembling a reference sequence for chromosome 7B. The successful completion of the reference chromosome sequence is highly dependent on the integration of genetic and physical maps. To aid the integration of these two types of maps, we have constructed a high-density deletion bin map of chromosome 7B. Using the 270 K Nimblegen comparative genomic hybridization (CGH) array on a set of cv. Chinese spring deletion lines, a total of 3,671 sequence contigs and scaffolds (~7.8 % of chromosome 7B physical length) were mapped into nine deletion bins. Our method of genotyping deletions on chromosome 7B relied on a model-based clustering algorithm (Mclust) to accurately predict the presence or absence of a given genomic sequence in a deletion line. The bin mapping results were validated using three different approaches, viz. (a) PCR-based amplification of randomly selected bin mapped sequences (b) comparison with previously mapped ESTs and (c) comparison with a 7B genetic map developed in the present study. Validation of the bin mapping results suggested a high accuracy of the assignment of 7B sequence contigs and scaffolds to the 7B deletion bins.

  8. Postulation of rust resistance genes in Nordic spring wheat genotypes and identification of widely effective sources of resistance against the Australian rust flora.

    Science.gov (United States)

    Randhawa, Mandeep; Bansal, Urmil; Lillemo, Morten; Miah, Hanif; Bariana, Harbans

    2016-11-01

    Wild relatives, landraces and cultivars from different geographical regions have been demonstrated as the sources of genetic variation for resistance to rust diseases. This study involved assessment of diversity for resistance to three rust diseases among a set of Nordic spring wheat cultivars. These cultivars were tested at the seedling stage against several pathotypes of three rust pathogens in the greenhouse. All stage stem rust resistance genes Sr7b, Sr8a, Sr12, Sr15, Sr17, Sr23 and Sr30, and leaf rust resistance genes Lr1, Lr3a, Lr13, Lr14a, Lr16 and Lr20 were postulated either singly or in different combinations among these cultivars. A high proportion of cultivars were identified to carry linked rust resistance genes Sr15 and Lr20. Although 51 cultivars showed variation against Puccinia striiformis f. sp. tritici (Pst) pathotypes used in this study, results were not clearly contrasting to enable postulation of stripe rust resistance genes in these genotypes. Stripe rust resistance gene Yr27 was postulated in four cultivars and Yr1 was present in cultivar Zebra. Cultivar Tjalve produced low stripe rust response against all Pst pathotypes indicating the presence either of a widely effective resistance gene or combination of genes with compensating pathogenic specificities. Several cultivars carried moderate to high level of APR to leaf rust and stripe rust. Seedling stem rust susceptible cultivar Aston exhibited moderately resistant to moderately susceptible response, whereas other cultivars belonging to this class were rated moderately susceptible or higher. Molecular markers linked with APR genes Yr48, Lr34/Yr18/Sr57, Lr68 and Sr2 detected the presence of these genes in some genotypes.

  9. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference

    Energy Technology Data Exchange (ETDEWEB)

    Loureiro, I.; Escorial, C.; Garcia-Baudin, J. M.; Chueca, M. C.

    2009-07-01

    Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F{sub 1} hybrids bearing F{sub 2} seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with Astral wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphiploids (2n=10x=70). The present study evidences the possibility of spontaneous formation of amphiploids between these three Aegilops species and hexaploid wheat and discusses their relevance for gene transference. Future risk assessment of transgenic wheat cultivars needs to evaluate the importance of amphiploids as a bridge for transgene introgression and for gene escape to the wild. (Author)

  10. Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens.

    Science.gov (United States)

    Manfroi, Ernandes; Yamazaki-Lau, Elene; Grando, Magali F; Roesler, Eduardo A

    2015-12-01

    Low transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037). Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciens overgrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future.

  11. Acetosyringone, pH and temperature effects on transient genetic transformation of immature embryos of Brazilian wheat genotypes by Agrobacterium tumefaciens

    Directory of Open Access Journals (Sweden)

    Ernandes Manfroi

    2015-01-01

    Full Text Available AbstractLow transformation efficiency is one of the main limiting factors in the establishment of genetic transformation of wheat via Agrobacterium tumefaciens. To determine more favorable conditions for T-DNA delivery and explant regeneration after infection, this study investigated combinations of acetosyringone concentration and pH variation in the inoculation and co-cultivation media and co-culture temperatures using immature embryos from two Brazilian genotypes (BR 18 Terena and PF 020037. Based on transient expression of uidA, the most favorable conditions for T-DNA delivery were culture media with pH 5.0 and 5.4 combined with co-culture temperatures of 22 °C and 25 °C, and a 400 μM acetosyringone supplement. These conditions resulted in blue foci in 81% of the embryos. Media with more acidic pH also presented reduced A. tumefaciensovergrowth during co-culture, and improved regeneration frequency of the inoculated explants. BR 18 Terena was more susceptible to infection by A. tumefaciens than PF 020037. We found that it is possible to improve T-DNA delivery and explant regeneration by adjusting factors involved in the early stages of A. tumefaciens infection. This can contribute to establishing a stable transformation procedure in the future.

  12. Comparative analysis of root transcriptome profiles between drought-tolerant and susceptible wheat genotypes in response to water stress.

    Science.gov (United States)

    Hu, Ling; Xie, Yan; Fan, Shoujin; Wang, Zongshuai; Wang, Fahong; Zhang, Bin; Li, Haosheng; Song, Jie; Kong, Lingan

    2018-07-01

    Water deficit is one of the major factors limiting crop productivity worldwide. Plant roots play a key role in uptaking water, perceiving and transducing of water deficit signals to shoot. Although the mechanisms of drought-tolerance have been reported recently, the transcriptional regulatory network of wheat root response to water stress has not been fully understood. In this study, drought-tolerant cultivar JM-262 and susceptible cultivar LM-2 are planted to characterize the root transcriptional changes and physiological responses to water deficit. A total of 8197 drought tolerance-associated differentially expressed genes (DEGs) are identified, these genes are mainly mapped to carbon metabolism, flavonoid biosynthesis, and phytohormone signal transduction. The number and expression level of DEGs involved in antioxidative and antiosmotic stresses are more enhanced in JM-262 under water stress. Furthermore, we find the DEGs related to root development are much more induced in JM-262 in phytohormone signal transduction and carbon metabolism pathway. In conclusion, JM-262 may alleviate the damage of drought by producing more osmoprotectants, ROS scavengers, biomass and energy. Interestingly, hormone signaling and cross-talk probably play an important role in promoting JM-262 greater root systems to take up more water, higher capabilities to induce more drought-related DEGs and higher resisitance to oxidative stresse. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Developmental responses of bread wheat to changes in ambient temperature following deletion of a locus that includes FLOWERING LOCUS T1.

    Science.gov (United States)

    Dixon, Laura E; Farré, Alba; Finnegan, E Jean; Orford, Simon; Griffiths, Simon; Boden, Scott A

    2018-01-04

    FLOWERING LOCUS T (FT) is a central integrator of environmental signals that regulates the timing of vegetative to reproductive transition in flowering plants. In model plants, these environmental signals have been shown to include photoperiod, vernalization, and ambient temperature pathways, and in crop species, the integration of the ambient temperature pathway remains less well understood. In hexaploid wheat, at least 5 FT-like genes have been identified, each with a copy on the A, B, and D genomes. Here, we report the characterization of FT-B1 through analysis of FT-B1 null and overexpression genotypes under different ambient temperature conditions. This analysis has identified that the FT-B1 alleles perform differently under diverse environmental conditions; most notably, the FT-B1 null produces an increase in spikelet and tiller number when grown at lower temperature conditions. Additionally, absence of FT-B1 facilitates more rapid germination under both light and dark conditions. These results provide an opportunity to understand the FT-dependent pathways that underpin key responses of wheat development to changes in ambient temperature. This is particularly important for wheat, for which development and grain productivity are sensitive to changes in temperature. © 2018 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  14. The Lr34 adult plant rust resistance gene provides seedling resistance in durum wheat without senescence.

    Science.gov (United States)

    Rinaldo, Amy; Gilbert, Brian; Boni, Rainer; Krattinger, Simon G; Singh, Davinder; Park, Robert F; Lagudah, Evans; Ayliffe, Michael

    2017-07-01

    The hexaploid wheat (Triticum aestivum) adult plant resistance gene, Lr34/Yr18/Sr57/Pm38/Ltn1, provides broad-spectrum resistance to wheat leaf rust (Lr34), stripe rust (Yr18), stem rust (Sr57) and powdery mildew (Pm38) pathogens, and has remained effective in wheat crops for many decades. The partial resistance provided by this gene is only apparent in adult plants and not effective in field-grown seedlings. Lr34 also causes leaf tip necrosis (Ltn1) in mature adult plant leaves when grown under field conditions. This D genome-encoded bread wheat gene was transferred to tetraploid durum wheat (T. turgidum) cultivar Stewart by transformation. Transgenic durum lines were produced with elevated gene expression levels when compared with the endogenous hexaploid gene. Unlike nontransgenic hexaploid and durum control lines, these transgenic plants showed robust seedling resistance to pathogens causing wheat leaf rust, stripe rust and powdery mildew disease. The effectiveness of seedling resistance against each pathogen correlated with the level of transgene expression. No evidence of accelerated leaf necrosis or up-regulation of senescence gene markers was apparent in these seedlings, suggesting senescence is not required for Lr34 resistance, although leaf tip necrosis occurred in mature plant flag leaves. Several abiotic stress-response genes were up-regulated in these seedlings in the absence of rust infection as previously observed in adult plant flag leaves of hexaploid wheat. Increasing day length significantly increased Lr34 seedling resistance. These data demonstrate that expression of a highly durable, broad-spectrum adult plant resistance gene can be modified to provide seedling resistance in durum wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  15. Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat

    Czech Academy of Sciences Publication Activity Database

    Liu, M.; Stiller, J.; Holušová, Kateřina; Vrána, Jan; Liu, D.; Doležel, Jaroslav; Liu, C.

    2016-01-01

    Roč. 6, NOV 8 (2016), č. článku 36398. ISSN 2045-2322 R&D Projects: GA MŠk(CZ) LO1204; GA ČR GBP501/12/G090 Institutional support: RVO:61389030 Keywords : triticum-aestivum l. * fusarium crown rot * pan-genome * hexaploid wheat * bread wheat * draft genome * rna-seq * maize * transcriptome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.259, year: 2016

  16. An ultra-dense integrated linkage map for hexaploid chrysanthemum enables multi-allelic QTL analysis

    NARCIS (Netherlands)

    Geest, van Geert; Bourke, Peter M.; Voorrips, Roeland E.; Marasek-Ciolakowska, Agnieszka; Liao, Yanlin; Post, Aike; Meeteren, van Uulke; Visser, Richard G.F.; Maliepaard, Chris; Arens, Paul

    2017-01-01

    Key message: We constructed the first integrated genetic linkage map in a polysomic hexaploid. This enabled us to estimate inheritance of parental haplotypes in the offspring and detect multi-allelic QTL.Abstract: Construction and use of linkage maps are challenging in hexaploids with polysomic

  17. Structural and functional partitioning of bread wheat chromosome 3B

    Czech Academy of Sciences Publication Activity Database

    Choulet, F.; Alberti, A.; Theil, S.; Glover, N.; Barbe, V.; Daron, J.; Pingault, L.; Sourdille, P.; Couloux, A.; Paux, E.; LeRoy, P.; Bellec, A.; Gaspin, Ch.; Šafář, Jan; Doležel, Jaroslav; Rogers, J.; Vandepoele, K.; Mayer, K.; Wincker, P.; Feuillet, C.

    2014-01-01

    Roč. 345, č. 6194 (2014) ISSN 0036-8075 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : hexaploid wheat * sequencing * meiotic recombination Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 33.611, year: 2014 http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Alerting&SrcApp=Alerting&DestApp=MEDLINE&DestLinkType=FullRecord&UT=25035497

  18. Combined use of δ¹³C, δ18O and δ15N tracks nitrogen metabolism and genotypic adaptation of durum wheat to salinity and water deficit.

    Science.gov (United States)

    Yousfi, Salima; Serret, Maria Dolores; Márquez, Antonio José; Voltas, Jordi; Araus, José Luis

    2012-04-01

    • Accurate phenotyping remains a bottleneck in breeding for salinity and drought resistance. Here the combined use of stable isotope compositions of carbon (δ¹³C), oxygen (δ¹⁸O) and nitrogen (δ¹⁵N) in dry matter is aimed at assessing genotypic responses of durum wheat under different combinations of these stresses. • Two tolerant and two susceptible genotypes to salinity were grown under five combinations of salinity and irrigation regimes. Plant biomass, δ¹³C, δ¹⁸O and δ¹⁵N, gas-exchange parameters, ion and N concentrations, and nitrate reductase (NR) and glutamine synthetase (GS) activities were measured. • Stresses significantly affected all traits studied. However, only δ¹³C, δ¹⁸O, δ¹⁵N, GS and NR activities, and N concentration allowed for clear differentiation between tolerant and susceptible genotypes. Further, a conceptual model explaining differences in biomass based on such traits was developed for each growing condition. • Differences in acclimation responses among durum wheat genotypes under different stress treatments were associated with δ¹³C. However, except for the most severe stress, δ¹³C did not have a direct (negative) relationship to biomass, being mediated through factors affecting δ¹⁸O or N metabolism. Based upon these results, the key role of N metabolism in durum wheat adaptation to salinity and water stress is highlighted. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  19. Genetic analyses using GGE model and a mixed linear model approach, and stability analyses using AMMI bi-plot for late-maturity alpha-amylase activity in bread wheat genotypes.

    Science.gov (United States)

    Rasul, Golam; Glover, Karl D; Krishnan, Padmanaban G; Wu, Jixiang; Berzonsky, William A; Fofana, Bourlaye

    2017-06-01

    Low falling number and discounting grain when it is downgraded in class are the consequences of excessive late-maturity α-amylase activity (LMAA) in bread wheat (Triticum aestivum L.). Grain expressing high LMAA produces poorer quality bread products. To effectively breed for low LMAA, it is necessary to understand what genes control it and how they are expressed, particularly when genotypes are grown in different environments. In this study, an International Collection (IC) of 18 spring wheat genotypes and another set of 15 spring wheat cultivars adapted to South Dakota (SD), USA were assessed to characterize the genetic component of LMAA over 5 and 13 environments, respectively. The data were analysed using a GGE model with a mixed linear model approach and stability analysis was presented using an AMMI bi-plot on R software. All estimated variance components and their proportions to the total phenotypic variance were highly significant for both sets of genotypes, which were validated by the AMMI model analysis. Broad-sense heritability for LMAA was higher in SD adapted cultivars (53%) compared to that in IC (49%). Significant genetic effects and stability analyses showed some genotypes, e.g. 'Lancer', 'Chester' and 'LoSprout' from IC, and 'Alsen', 'Traverse' and 'Forefront' from SD cultivars could be used as parents to develop new cultivars expressing low levels of LMAA. Stability analysis using an AMMI bi-plot revealed that 'Chester', 'Lancer' and 'Advance' were the most stable across environments, while in contrast, 'Kinsman', 'Lerma52' and 'Traverse' exhibited the lowest stability for LMAA across environments.

  20. Identification and Phylogenetic Analysis of a CC-NBS-LRR Encoding Gene Assigned on Chromosome 7B of Wheat

    Directory of Open Access Journals (Sweden)

    Xiangqi Zhang

    2013-07-01

    Full Text Available Hexaploid wheat displays limited genetic variation. As a direct A and B genome donor of hexaploid wheat, tetraploid wheat represents an important gene pool for cultivated bread wheat. Many disease resistant genes express conserved domains of the nucleotide-binding site and leucine-rich repeats (NBS-LRR. In this study, we isolated a CC-NBS-LRR gene locating on chromosome 7B from durum wheat variety Italy 363, and designated it TdRGA-7Ba. Its open reading frame was 4014 bp, encoding a 1337 amino acid protein with a complete NBS domain and 18 LRR repeats, sharing 44.7% identity with the PM3B protein. TdRGA-7Ba expression was continuously seen at low levels and was highest in leaves. TdRGA-7Ba has another allele TdRGA-7Bb with a 4 bp deletion at position +1892 in other cultivars of tetraploid wheat. In Ae. speltoides, as a B genome progenitor, both TdRGA-7Ba and TdRGA-7Bb were detected. In all six species of hexaploid wheats (AABBDD, only TdRGA-7Bb existed. Phylogenic analysis showed that all TdRGA-7Bb type genes were grouped in one sub-branch. We speculate that TdRGA-7Bb was derived from a TdRGA-7Ba mutation, and it happened in Ae. speltoides. Both types of TdRGA-7B participated in tetraploid wheat formation. However, only the TdRGA-7Bb was retained in hexaploid wheat.

  1. Características tecnológicas de genótipos de trigo (Triticum aestivum L. cultivados no cerrado Technological characteristics of wheat (Triticum aestivum L. genotypes grown in the Brazilian Cerrado

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Gutkoski

    2007-06-01

    Full Text Available Realizou-se este estudo com o objetivo de estudar as características grau de extração, proteína bruta, número de queda, alveografia, farinografia, volume específico e escore de pontos dos pães obtidos de amostras de grãos de genótipos de trigo (Triticum aestivum L. plantados no cerrado brasileiro. Amostras de grãos de trigo dos genótipos Embrapa 22, Embrapa 42, Önix, Taurum e Fundacep 27, plantados no cerrado brasileiro, safra 2003/2004 foram avaliadas em delineamento inteiramente casualizado, no laboratório de Cereais do Centro de Pesquisa em Alimentação da Universidade de Passo Fundo, sendo os resultados experimentais analisados pelo emprego da análise de variância (Anova e nos modelos significativos as médias comparadas entre si pelo teste de Tukey a 5% de probabilidade de erro. As cultivares de trigo foram classificadas com base na alveografia e número de queda em melhorador, pão e brando. Nos trigos classificados como melhoradores as propriedades funcionais dos pães foram inferiores, o que define a utilização destas farinhas para mesclas com trigos de menor força de glúten. No cerrado brasileiro é possível produzir trigo classe melhorador.The aim of this study was to investigate the characteristics of flour extraction grade, protein content, falling number, alveography, farinography, specific volume and point score of bread made from samples of grain of wheat genotypes grown in the Brazilian Cerrado. Samples of wheat grains of genotypes Embrapa 22, Embrapa 42, Önix, Taurum and Fundacep 27, grown in the Brazilian Cerrado, 2003/2004 crop, were disposed in fully randomized design, in the Cereal Laboratory at the Centro de Pesquisa em Alimentação of the University of Passo Fundo. The results were analyzed by variance analysis and the means compared by Tukey's test at 5% error probability. The wheat cultivars were classified according to alveography and falling number in improved, bread and bland. In the wheat

  2. High resolution melting analysis for the detection of EMS induced mutations in wheat SbeIIa genes

    Directory of Open Access Journals (Sweden)

    Botticella Ermelinda

    2011-11-01

    Full Text Available Abstract Background Manipulation of the amylose-amylopectin ratio in cereal starch has been identified as a major target for the production of starches with novel functional properties. In wheat, silencing of starch branching enzyme genes by a transgenic approach reportedly caused an increase of amylose content up to 70% of total starch, exhibiting novel and interesting nutritional characteristics. In this work, the functionality of starch branching enzyme IIa (SBEIIa has been targeted in bread wheat by TILLING. An EMS-mutagenised wheat population has been screened using High Resolution Melting of PCR products to identify functional SNPs in the three homoeologous genes encoding the target enzyme in the hexaploid genome. Results This analysis resulted in the identification of 56, 14 and 53 new allelic variants respectively for SBEIIa-A, SBEIIa-B and SBEIIa-D. The effects of the mutations on protein structure and functionality were evaluated by a bioinformatic approach. Two putative null alleles containing non-sense or splice site mutations were identified for each of the three homoeologous SBEIIa genes; qRT-PCR analysis showed a significant decrease of their gene expression and resulted in increased amylose content. Pyramiding of different single null homoeologous allowed to isolate double null mutants showing an increase of amylose content up to 21% compared to the control. Conclusion TILLING has successfully been used to generate novel alleles for SBEIIa genes known to control amylose content in wheat. Single and double null SBEIIa genotypes have been found to show a significant increase in amylose content.

  3. Characterization and expression patterns of small RNAs in synthesized Brassica hexaploids.

    Science.gov (United States)

    Shen, Yanyue; Zhao, Qin; Zou, Jun; Wang, Wenliang; Gao, Yi; Meng, Jinling; Wang, Jianbo

    2014-06-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log(2)Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.

  4. Semi-dwarf mutant lines of hexaploid triticale

    International Nuclear Information System (INIS)

    Pidra, M.

    1989-01-01

    A spring form of hexaploid secondary triticale ADD 143/71, bred by MOGILEVA at the Plant Breeding Station at Uhretice was used for the mutagen treatment. The mutation experiment started in 1979. Seeds were treated with a 0.8 mM water solution of N-methyl-N-nitrosourea (MNH) (CETL and RELICHOVA, unpublished). From 180 M 1 plants, one spike was harvested per plant. A random sample of these seeds was sown as M 2 in 1980 and several plants with shorter main culm were selected. Selfed progenies of eight mutant plants designated ADD 143-m1, ADD 143-m2, ADD 143-m3 etc. were further tested in M 3 and M 4 . There were significant differences in culm length and in some other characters between the original line and the mutant lines. Especially the line m8 looks like a promising source of semi-dwarfness for breeding programmes of hexaploid triticale. During 1985-1987 genetic analysis was performed on the ADD 143/71 and the mutant lines m2, m6, m7 and m8, which suggest that their mutant genes are allelic and recessive

  5. The mechanism on rhizosphere phosphorus activation of two wheat ...

    African Journals Online (AJOL)

    The mechanism on rhizosphere phosphorus activation of two wheat genotypes with different phosphorus efficiency. ... genotype would be a potential approach for maintaining wheat yield potential in soils with low P bioavailability. Key words: Wheat, P efficiency, rhizosphere properties, P fractions, phosphates activity.

  6. Herbicide resistance-endowing ACCase gene mutations in hexaploid wild oat (Avena fatua): insights into resistance evolution in a hexaploid species

    Science.gov (United States)

    Yu, Q; Ahmad-Hamdani, M S; Han, H; Christoffers, M J; Powles, S B

    2013-01-01

    Many herbicide-resistant weed species are polyploids, but far too little about the evolution of resistance mutations in polyploids is understood. Hexaploid wild oat (Avena fatua) is a global crop weed and many populations have evolved herbicide resistance. We studied plastidic acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicide resistance in hexaploid wild oat and revealed that resistant individuals can express one, two or three different plastidic ACCase gene resistance mutations (Ile-1781-Leu, Asp-2078-Gly and Cys-2088-Arg). Using ACCase resistance mutations as molecular markers, combined with genetic, molecular and biochemical approaches, we found in individual resistant wild-oat plants that (1) up to three unlinked ACCase gene loci assort independently following Mendelian laws for disomic inheritance, (2) all three of these homoeologous ACCase genes were transcribed, with each able to carry its own mutation and (3) in a hexaploid background, each individual ACCase resistance mutation confers relatively low-level herbicide resistance, in contrast to high-level resistance conferred by the same mutations in unrelated diploid weed species of the Poaceae (grass) family. Low resistance conferred by individual ACCase resistance mutations is likely due to a dilution effect by susceptible ACCase expressed by homoeologs in hexaploid wild oat and/or differential expression of homoeologous ACCase gene copies. Thus, polyploidy in hexaploid wild oat may slow resistance evolution. Evidence of coexisting non-target-site resistance mechanisms among wild-oat populations was also revealed. In all, these results demonstrate that herbicide resistance and its evolution can be more complex in hexaploid wild oat than in unrelated diploid grass weeds. Our data provide a starting point for the daunting task of understanding resistance evolution in polyploids. PMID:23047200

  7. Comparative Analysis of Syntenic Genes in Grass Genomes Reveals Accelerated Rates of Gene Structure and Coding Sequence Evolution in Polyploid Wheat

    Czech Academy of Sciences Publication Activity Database

    Akhunov, E. D.; Sehgal, S.; Liang, H. Q.; Wang, S. C.; Akhunova, A. R.; Kaur, G.; Li, W. L.; Forrest, K. L.; See, D.; Šimková, Hana; Ma, Y. Q.; Hayden, M. J.; Luo, M. C.; Faris, J. D.; Doležel, Jaroslav; Gill, B. S.

    2013-01-01

    Roč. 161, č. 1 (2013), s. 252-265 ISSN 0032-0889 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional research plan: CEZ:AV0Z50380511 Keywords : MESSENGER-RNA DECAY * HEXAPLOID WHEAT * NUCLEOTIDE SUBSTITUTION Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.394, year: 2013

  8. Identification of novel QTL for sawfly resistance in wheat

    Science.gov (United States)

    J. D. Sherman; D. K. Weaver; M. L. Hofland; S. E. Sing; M. Buteler; S. P. Lanning; Y. Naruoka; F. Crutcher; N. K. Blake; J. M. Martin; P. F. Lamb; G. R. Carlson; L. E. Talbert

    2010-01-01

    The wheat stem sawfly (WSS) (Cephus cinctus Nort.) is an important pest of wheat (Triticum aestivum L. em. Thell.) in the Northern Great Plains. This paper reports the genetic analysis of antixenosis for egg-laying WSS females in recombinant inbred lines (RIL) of hard red spring wheat. Female WSS preferentially choose certain wheat genotypes for egg-laying, with the...

  9. Desenvolvimento de afilhos e componentes do rendimento em genótipos de trigo sob diferentes densidades de semeadura Tiller development and yield components in wheat genotypes under different seeding densities

    Directory of Open Access Journals (Sweden)

    Igor Pirez Valério

    2008-03-01

    Full Text Available O objetivo deste trabalho foi determinar o padrão de desenvolvimento de afilhos em genótipos de trigo contrastantes para esse caráter, em diferentes densidades de semeadura, bem como seus efeitos sobre os componentes do rendimento de grãos. O experimento foi conduzido no Município de Capão do Leão, RS, em 2006. Dez cultivares de trigo, selecionadas com base na capacidade de afilhamento, foram utilizadas em delineamento de parcelas divididas, com a parcela composta pelo fator cultivar, e as subparcelas pelas densidades de semeadura, com 50, 200, 350, 500 e 650 sementes aptas por metro quadrado. Observou-se que a senescência de afilhos esteve diretamente relacionada ao potencial de afilhamento dos genótipos. Os genótipos com elevada capacidade de afilhamento apresentaram efeito mais pronunciado da senescência, com o aumento da densidade de semeadura. O melhor ajuste dos componentes do rendimento foi obtido por meio da adequada densidade de semeadura, que deve ser realizada com base no potencial de afilhamento dos genótipos. Além disto, o efeito compensatório de genótipos com reduzido potencial de afilhamento é resultante de maior massa de grãos por espiga, em detrimento do número de espigas por unidade de área.The objective of this work was to determine the developmental pattern of tillers in wheat genotypes showing contrasting number of tillers. The genotypes were tested under different seeding densities, in order to evaluate their effect on grain yield components. The experiment was performed in Capão do Leão County, Rio Grande do Sul State, Brazil, in 2006. Ten wheat cultivars, selected by their tillering ability, were tested in a split plot design, where plots were formed by the genotype (cultivar, and subplots by different seeding densities: 50, 200, 350, 500 and 650 seeds per square meter. Results indicated that tiller senescence is directly correlated to tillering potential of the genotypes, and genotypes with higher

  10. SNP discovery and chromosome anchoring provide the first physically-anchored hexaploid oat map and reveal synteny with model species.

    Directory of Open Access Journals (Sweden)

    Rebekah E Oliver

    Full Text Available A physically anchored consensus map is foundational to modern genomics research; however, construction of such a map in oat (Avena sativa L., 2n = 6x = 42 has been hindered by the size and complexity of the genome, the scarcity of robust molecular markers, and the lack of aneuploid stocks. Resources developed in this study include a modified SNP discovery method for complex genomes, a diverse set of oat SNP markers, and a novel chromosome-deficient SNP anchoring strategy. These resources were applied to build the first complete, physically-anchored consensus map of hexaploid oat. Approximately 11,000 high-confidence in silico SNPs were discovered based on nine million inter-varietal sequence reads of genomic and cDNA origin. GoldenGate genotyping of 3,072 SNP assays yielded 1,311 robust markers, of which 985 were mapped in 390 recombinant-inbred lines from six bi-parental mapping populations ranging in size from 49 to 97 progeny. The consensus map included 985 SNPs and 68 previously-published markers, resolving 21 linkage groups with a total map distance of 1,838.8 cM. Consensus linkage groups were assigned to 21 chromosomes using SNP deletion analysis of chromosome-deficient monosomic hybrid stocks. Alignments with sequenced genomes of rice and Brachypodium provide evidence for extensive conservation of genomic regions, and renewed encouragement for orthology-based genomic discovery in this important hexaploid species. These results also provide a framework for high-resolution genetic analysis in oat, and a model for marker development and map construction in other species with complex genomes and limited resources.

  11. Heterologous expression of a plastid EF-Tu reduces protein thermal aggregation and enhances CO2 fixation in wheat (Triticum aestivum) following heat stress.

    Science.gov (United States)

    Fu, Jianming; Momcilović, Ivana; Clemente, Thomas E; Nersesian, Natalya; Trick, Harold N; Ristic, Zoran

    2008-10-01

    Heat stress is a major constraint to wheat production and negatively impacts grain quality, causing tremendous economic losses, and may become a more troublesome factor due to global warming. At the cellular level, heat stress causes denaturation and aggregation of proteins and injury to membranes leading to alterations in metabolic fluxes. Protein aggregation is irreversible, and protection of proteins from thermal aggregation is a strategy a cell uses to tolerate heat stress. Here we report on the development of transgenic wheat (Triticum aestivum) events, expressing a maize gene coding for plastidal protein synthesis elongation factor (EF-Tu), which, compared to non-transgenic plants, display reduced thermal aggregation of leaf proteins, reduced heat injury to photosynthetic membranes (thylakoids), and enhanced rate of CO(2) fixation after exposure to heat stress. The results support the concept that EF-Tu ameliorates negative effects of heat stress by acting as a molecular chaperone. This is the first demonstration of the introduction of a plastidal EF-Tu in plants that leads to protection against heat injury and enhanced photosynthesis after heat stress. This is also the first demonstration that a gene other than HSP gene can be used for improvement of heat tolerance and that the improvement is possible in a species that has a complex genome, hexaploid wheat. The results strongly suggest that heat tolerance of wheat, and possibly other crop plants, can be improved by modulating expression of plastidal EF-Tu and/or by selection of genotypes with increased endogenous levels of this protein.

  12. Augmenting the salt tolerance in wheat ( Triticum aestivum ) through ...

    African Journals Online (AJOL)

    Augmenting the salt tolerance in wheat ( Triticum aestivum ) through exogenously applied silicon. ... African Journal of Biotechnology ... physiology and biochemistry of wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5) ...

  13. Wheat Breeding Technologies for a Shifting Global Climate

    Data.gov (United States)

    US Agency for International Development — This dataset will contain phenotypic observations of a large number of wheat genotypes evaluated in 2016-2017 and 2017-2018 at the International Maize and Wheat...

  14. Phosphorus supply, arbuscular mycorrhizal fungal species, and plant genotype impact on the protective efficacy of mycorrhizal inoculation against wheat powdery mildew.

    Science.gov (United States)

    Mustafa, G; Randoux, B; Tisserant, B; Fontaine, J; Magnin-Robert, M; Lounès-Hadj Sahraoui, A; Reignault, Ph

    2016-10-01

    A potential alternative strategy to chemical control of plant diseases could be the stimulation of plant defense by arbuscular mycorrhizal fungi (AMF). In the present study, the influence of three parameters (phosphorus supply, mycorrhizal inoculation, and wheat cultivar) on AMF protective efficiency against Blumeria graminis f. sp. tritici, responsible for powdery mildew, was investigated under controlled conditions. A 5-fold reduction (P/5) in the level of phosphorus supply commonly recommended for wheat in France improved Funneliformis mosseae colonization and promoted protection against B. graminis f. sp. tritici in a more susceptible wheat cultivar. However, a further decrease in P affected plant growth, even under mycorrhizal conditions. Two commercially available AMF inocula (F. mosseae, Solrize®) and one laboratory inoculum (Rhizophagus irregularis) were tested for mycorrhizal development and protection against B. graminis f. sp. tritici of two moderately susceptible and resistant wheat cultivars at P/5. Mycorrhizal levels were the highest with F. mosseae (38 %), followed by R. irregularis (19 %) and Solrize® (SZE, 8 %). On the other hand, the highest protection level against B. graminis f. sp. tritici was obtained with F. mosseae (74 %), followed by SZE (58 %) and R. irregularis (34 %), suggesting that inoculum type rather than mycorrhizal levels determines the protection level of wheat against B. graminis f. sp. tritici. The mycorrhizal protective effect was associated with a reduction in the number of conidia with haustorium and with an accumulation of polyphenolic compounds at B. graminis f. sp. tritici infection sites. Both the moderately susceptible and the most resistant wheat cultivar were protected against B. graminis f. sp. tritici infection by F. mosseae inoculation at P/5, although the underlying mechanisms appear rather different between the two cultivars. This study emphasizes the importance of taking into account the considered

  15. Induced multiple disease resistance in wheat

    International Nuclear Information System (INIS)

    Borojevic, K.; Worland, A.J.

    1990-01-01

    Full text: The existence of genes suppressing resistance to leaf rust, stem rust and yellow rust in hexaploid wheat has been suggested. If such genes are deleted or inactivated, a more resistant variety may be obtained. In mutant lines of the wheat variety San Pastore, selected after treatment with 20,000 rad of gamma-rays, resistance to leaf rust, yellow rust, stem rust, and to some extent to Erysiphe graminis was determined. The mutants responded to infection by producing necrotic flecks in the presence of high level of disease inoculum. Similar flecks develop under stress condition. It is likely that the mother variety San Pastore carries genes for resistance which are masked by suppressor genes. Irradiation inactivates suppressors so that resistance genes which were previously masked are expressed. The first results of monosomic analysis indicate that chromosomes of groups 4 and 5 or possibly 7 may be critical for expression of resistance in the mutant lines. (author)

  16. Structural rearrangements detected in newly-formed hexaploid ...

    Indian Academy of Sciences (India)

    signals were observed on the Epifluorescence microscope ... Images were cap- ... the chromosome pairs 1B and 6B in durum wheat (figure. 1e). The number and physical location ... 6B chromosome probably experienced an inverted pericen-.

  17. Molecular analysis of genetic diversity in elite II synthetic hexaploid ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-07-20

    Jul 20, 2009 ... The presence of sufficient genetic diversity in the germplam is an important ..... Figure 1. PCR amplification profile of Elite-II SH Wheat using the primer OPG-2. .... genetic relationships among cowpea breeding lines and local.

  18. Thermal niches of two invasive genotypes of the wheat curl mite Aceria tosichella (Acari: Eriophyidae): congruence between physiological and geographical distribution data

    Science.gov (United States)

    The wheat curl mite (WCM; Aceria tosichella) is a major pest of cereals worldwide. It is also a complex of well-defined genetic lineages with divergent physiological traits, which has not been accounted for in applied contexts. The aims of the study were to model the thermal niches of the two most p...

  19. Genotyping-by-Sequencing derived High-Density Linkage Map and its Application to QTL Mapping of Flag Leaf Traits in Bread Wheat

    Science.gov (United States)

    Hard red winter wheat parents ‘Harry’ (drought tolerant) and ‘Wesley’ (drought susceptible) was used to develop a recombinant inbred population to identify genomic regions associated with drought and adaptation. To precisely map genomic regions high-density linkage maps are a prerequisite. In this s...

  20. Transferring alien genes to wheat

    International Nuclear Information System (INIS)

    Knott, D.R.

    1987-01-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized

  1. Transferring alien genes to wheat

    Energy Technology Data Exchange (ETDEWEB)

    Knott, D. R.

    1987-07-01

    In broad terms an alien gene can be considered to be any gene transferred to wheat from a related species. As described above by Maan (section 7D) the genus Triticum contains a broad range of species, some of which cross readily with the cultivated tetraploid (T. Turgidum L.) or hexaploid (T. aestivum L.) wheats, and others only with great difficulty. In addition, wheat will also cross with species in a number of other genera including Agropyron, Elymus, Elytrigia (=Agropyron), Haynaldia, Hordeum, and Secale (Riley and Kimber, 1966; Knobloch, 1968; Feldman and Sears, 1981). In discussing the Triticum and Aegilops spp., the classification by Kimber and Sears, section SA-I, above, will be followed. For the Agropyron and related species the classification described by Dewey (1983) will be used. To avoid confusion, in referring to the literature the designations used by the authors will be given, followed by the new designation. The wild relatives of wheat are adapted to a broad range of environments and carry a large reservoir of useful genes (Zohary et al., 1969; Kerber and Dyck, 1973; Brezhnev, 1977; Feldman and Sears, 1981; Limin and Fowler, 1981; Sharma et aI., 1981; McGuire and Dvorak, 1981). Initially they were considered to be primarily sources of disease resistance, but more recently they have been recognized as potential sources of genes for high protein, cold tolerance, salt tolerance, drought tolerance, lodging resistance, early maturity, and even yield. Extensive screening of the wild relatives of wheat needs to be done before their useful genes can be fully utilized.

  2. Features of the organization of bread wheat chromosome 5BS based on physical mapping

    Czech Academy of Sciences Publication Activity Database

    Salina, E.A.; Nesterov, V.; Frenkel, Z.; Kiseleva, V. I.; Timonova, E. M.; Magni, F.; Vrána, Jan; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Korol, A.; Sergeeva, E.M.

    2018-01-01

    Roč. 19, FEB 9 (2018), č. článku 80. ISSN 1471-2164 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : Chromosome 5BS * Genetic markers * Hexaploid wheat * Physical mapping * Sequencing * Synteny * Triticum aestivum Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 3.729, year: 2016

  3. Condensation of rye chromatin in somatic interphase nuclei of Ph1 and ph1b wheat

    Czech Academy of Sciences Publication Activity Database

    Kopecký, David; Allen, D.C.; Duchoslav, M.; Doležel, Jaroslav; Lukaszewski, A.J.

    2007-01-01

    Roč. 119, 3-4 (2007), s. 263-267 ISSN 1424-8581 R&D Projects: GA MŠk(CZ) LC06004 Institutional research plan: CEZ:AV0Z50380511 Source of funding: V - iné verejné zdroje Keywords : hexaploid wheat * Ph1 and ph1b * rye chromatin Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.402, year: 2007

  4. Common Wheat Chromosome 5B Composition Analysis Using Low-Coverage 454 Sequencing

    Czech Academy of Sciences Publication Activity Database

    Sergeeva, E.M.; Afonnikov, D. A.; Koltunova, M. K.; Gusev, V.D.; Miroshnichenko, L. A.; Vrána, Jan; Kubaláková, Marie; Poncet, C.; Sourdille, P.; Feuillet, C.; Doležel, Jaroslav; Salina, E.A.

    2014-01-01

    Roč. 7, č. 2 (2014) ISSN 1940-3372 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : GENOME SHOTGUN SEQUENCES * IN-SITU HYBRIDIZATION * HEXAPLOID WHEAT Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.933, year: 2014

  5. Microsatellites in wheat and their applications

    International Nuclear Information System (INIS)

    Stephenson, P.; Bryan, G.J.; Kirby, J.; Gale, M.D.

    1998-01-01

    The development of large panels of simply analyzable genetic markers for diversity studies and tagging, agronomically important genes in hexaploid bread wheat is an important goal in applied cereal genetic research. We have isolated and sequenced over two-hundred clones containing microsatellites from the wheat genome, and have tested 150 primer pairs for genetic polymorphism using a panel of ten wheat varieties, including the parents of our main mapping cross. A total of 125 loci were detected by 82 primer pairs, of which 105 loci from 63 primer pairs can be unequivocally allocated to one of the wheat chromosomes. A relatively low frequency of the loci detected are from the D-genome (24%). Generally, the microsatellites show high levels of genetic polymorphism and an average 3.5 alleles per locus with an average polymorphism information content (PIC) value of 0.5. The observed levels of polymorphism are positively correlated with the length of the microsatellite repeats. A high proportion, approximately one half, of primer pairs designed to detect simple sequence repeat (SSR) variation in wheat do not generate the expected amplification products and, more significantly, often generate unresolvable Polymerase Chain Reaction (PCR) products. In general our results agree closely with those obtained from other recent studies using microsatellites in plants. (author)

  6. Spontaneous wheat-Aegilops biuncialis, Ae. geniculata and Ae. triuncialis amphiploid production, a potential way of gene transference

    OpenAIRE

    Loureiro, I.; Escorial, C.; García-Baudin, J.M.; Chueca, C.

    2009-01-01

    Some F1 hybrid plants between three species of the Aegilops genus and different hexaploid wheat Triticum aestivum cultivars show certain self-fertility, with averages of F1 hybrids bearing F2 seeds of 8.17%, 5.12% and 48.14% for Aegilops biuncialis, Aegilops geniculata and Aegilops triuncialis respectively. In the Ae. triuncialis-wheat combination with ";Astral" wheat cultivar, the fertility was higher than that found in the other combinations. All the F2 seeds studied were spontaneous amphip...

  7. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Vrána, Jan; Burešová, Veronika; Cápal, Petr; Farkas, A.; Darko, E.; Cseh, A.; Kubaláková, Marie; Molnár-Láng, M.; Doležel, Jaroslav

    2016-01-01

    Roč. 88, č. 3 (2016), s. 452-467 ISSN 0960-7412 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : tertiary gene pool * triticum-aestivum * common wheat * addition lines * mitotic chromosomes * plant chromosomes * hexaploid wheat * ae. speltoides * dna-sequences * rye genome * Aegilops umbellulata * Aegilops comosa * Aegilops speltoides * Aegilops markgrafii * flow cytometric chromosome sorting * fluorescence insitu hybridization * conserved orthologous set markers Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.901, year: 2016

  8. Tolerância de genótipos de trigo comum, trigo duro e triticale à toxicidade de alumínio em soluções nutritivas Tolerance of bread wheat, durum wheat and triticale genotypes to aluminum toxicity in nutrient solution

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    2006-01-01

    Full Text Available Foi estudado o comportamento diferencial de 12 genótipos de trigo comum (Triticum aestivum L., um genótipo de trigo duro (Triticum durum L., e um de triticale (Triticosecale sp em soluções nutritivas de tratamento contendo duas concentrações salinas (1/5 e 1/10 da completa e seis concentrações de alumínio ( 0, 2, 4, 6, 8 e 10 mg L-1, à temperatura de 25 ± 1ºC e pH 4,0. Foram utilizadas dez plântulas por parcela e quatro repetições. A tolerância foi medida pela capacidade de as raízes primárias continuarem a crescer em solução sem alumínio, após permanecer 48 horas em solução nutritiva completa, contendo uma concentração conhecida de alumínio combinada com cada uma das concentrações salinas. Os genótipos de trigo comum IAC-289, IAC-350 e IAC-370 e a cultivar controle Anahuac, e os genótipos de trigo duro IAC-1003 e de triticale IAC-5 foram os mais sensíveis a níveis crescentes de Al3+nas soluções nutritivas de tratamento e, portanto, somente seriam indicados para cultivo em solos corrigidos. Os genótipos de trigo comum IAC-24 e IAC-378 e a cultivar controle BH-1146 destacaram-se pela tolerância à toxicidade de Al3+, com potencial para uso em solos ácidos e como fontes genéticas de tolerância nos futuros cruzamentos. Os sintomas de toxicidade de alumínio foram maiores com a elevação da concentração de alumínio e da diminuição das concentrações de sais da solução nutritiva para todos os genótipos estudados.Twelve bread wheat (Triticum aestivum L., one durum wheat (Triticum durum L. and one triticale (Triticosecale sp genotypes were studied in nutrient solutions with a high salt concentration in experiment 1 and a weak salt concentration in experiment 2, for aluminum tolerance at six levels: 0, 2, 4, 6, 8 and 10 mg L-1, under temperature 25 ± 1ºC and pH 4,0. Four replications were used per experiment. Aluminum tolerance was evaluated by measuring root growth in an aluminum-free complete

  9. Trigo duro: comportamento de genótipos no estado de São Paulo Durum wheat: evaluation of genotypes for the state of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo de Oliveira Camargo

    1995-01-01

    medium stature. These lines presented good grain yield in soils with low acidity. However, they did not differ in yield from the wheat cultivar IAC-60, the most cultivated actually in the State of São Paulo and from the triticale Álamos. The durum wheat line 19 (Mindum/Kingfisher "S"//Sandpiper showed at the same time immunity to the causal agents of stem (with exception of line 21 and leaf rusts and moderate resistance to the causal agent of powdery mildew. The cultivars Álamos (triticale and IAC-29 (wheat exhibited immunity to the causal agents of powdery mildew. All considered genotypes were susceptible to the leaf spots patogens, with exception of the durum wheat line 6 (Dackiye/Gerardo Vezio 394 which was moderately resistant.

  10. Alien DNA introgression and wheat DNA rearrangements in a stable wheat line derived from the early generation of distant hybridization.

    Science.gov (United States)

    Zhang, Lianquan; Liu, Dengcai; Yan, Zehong; Zheng, Youliang

    2005-10-01

    Polyploidy has been found to be common in plants. Bread or common wheat (Triticum aestivum L., 2n=42) is a good example of allopolyploid made up of three diploid genomes A, B and D. In recent years, by the study of mimicking the origination of common wheat, it was found that changes of DNA sequence and gene expression occurred at the early stages of artificial allohexaploid between tetraploid wheat and Aegilops tauschii, which was probably favorable to genetic diploidization of new synthetic hexaploid wheat. Common wheat 99L2 is a new line stable in genetic, which was derived from the early self-pollinated generation of wide hybrids between common wheat and rye. In this study, it was found that at least two rye DNA segments had been introgressed into 99L2. This result suggested that a mechanism of alien DNA introgression may exist, which was different from the traditional mechanism of chromosome pairing and DNA recombination between wheat and alien species. Meanwhile, during the introgression process of alien rye DNA segments, the changes in DNA sequences of wheat itself occurred.

  11. Quality of synthetic hexaploid wheat containing null alleles at Glu-A1 ...

    Indian Academy of Sciences (India)

    2013-08-02

    Aug 2, 2013 ... Xinkun Hu and Shoufen Dai contributed equally to this work. been recognized ... 87 (PE company, USA) in 50 μL reaction volumes contain- ing 200–300 ng .... flours for the food industry and the balance between these.

  12. Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly

    Czech Academy of Sciences Publication Activity Database

    Thind, A. K.; Wicker, T.; Šimková, Hana; Fossati, D.; Moullet, O.; Brabant, C.; Vrána, Jan; Doležel, Jaroslav; Krattinger, S.G.

    2017-01-01

    Roč. 35, č. 8 (2017), s. 793-796 ISSN 1087-0156 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : adult-plant resistance * leaf rust * sequence capture * genome * arabidopsis * virulence * barley * canada * locus * lr22a Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Plant sciences, botany Impact factor: 41.667, year: 2016

  13. Relationship between grain colour and preharvest sprouting-resistance in wheat.

    OpenAIRE

    BASSOI, M.C.; FLINTHAM, J.

    2006-01-01

    Since red alleles (R) of the genes that control grain colour are important for the improvement of preharvest sprouting resistance in wheat and there are three independently inherited loci, on chromosomes 3A, 3B and 3D of hexaploid wheat, it is possible to vary the dosage of dominant alleles in a breeding program. The objective of this work was to evaluate the dosage effect of R genes on preharvest sprouting, in a single seed descent population, named TRL, derived from the cross between Timgal...

  14. Mutation breeding for disease resistance in wheat and field beans in Egypt

    International Nuclear Information System (INIS)

    Abdel-Hak, T.M.

    1983-01-01

    Seeds of three varieties of hexaploid wheat and of one variety of tetraploid wheat were treated with gamma rays in order to obtain mutants with improved resistance to stem rust, leaf rust and stripe rust. Mutants with resistance to prevailing races of rusts were selected; however, the race spectrum shifted and made the mutants useless for the time being. Induction of mutations for resistance to chocolate spot and rusts was attempted in Vicia faba. No resistant mutant was found but some mutants with lower levels of infection were. (author)

  15. Effects of Foliar Application Time of Nano-micronutrients on Quantity and Qualitative Traits in Rainfed durum Wheat Genotypes in Moghan

    Directory of Open Access Journals (Sweden)

    Y Firoozi

    2018-05-01

    Full Text Available Introduction Durum wheat (Triticum turgidum var.durum because of the high protein content compared to other grain products plays a major role in providing the protein needed by humans. Different crop varieties have different performance potential even a figure from region to region does not have the same performance. Nano slow and controlled release fertilizers because of root elements in a good area, have high efficiency. In Iran, 300 to 400 tons of durum wheat annually produced which 60% is recoverable for production of pasta and other domestic needs is imported. Per capita consumption of pasta in the country is 5 kg per year (about one quarter of Europe and with regard to nutrients such as gluten and beta-carotene in pasta and very low losses, it is necessary to increase the amount of its consumption. For this purpose, the government has taken incentive policies such as higher rates order of durum wheat (about 6% compared to bread wheat and prizes export to exporters of this product, to increase its production and exports. This study aimed to evaluate the effect of foliar application time of Nano-chelate Super Plus on yield and its components and protein content in durum wheat varieties in Parsabad Moghan area was conducted. Materials and Methods The study was conducted as the form of randomly split-plot based on randomized complete block design with three replications. Treatments include the application of Nano-chelate fertilizer Super Plus (Biozar with a concentration of two per thousand in four levels, (tilling, flowering, seed and control (no application as the main factor and cultivars of durum wheat lines operating in 18 level as were minor. Studied traits including plant height, number of tillers and fertile tillers, peduncle length, ear length, number of spikelets, number of seeds per plant, grain weight, straw weight, total seed weight per plant, total plant weight, number of days to heading, days to maturity, grain weight, protein

  16. Bread wheat progenitors: Aegilops tauschii (DD genome) and Triticum dicoccoides (AABB genome) reveal differential antioxidative response under water stress.

    Science.gov (United States)

    Suneja, Yadhu; Gupta, Anil Kumar; Bains, Navtej Singh

    2017-01-01

    Antioxidant enzymes are known to play a significant role in scavenging reactive oxygen species and maintaining cellular homeostasis. Activity of four antioxidant enzymes viz., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR) was examined in the flag leaves of nine Aegilops tauschii and three Triticum dicoccoides accessions along with two bread wheat cultivars under irrigated and rain-fed conditions. These accessions were shortlisted from a larger set on the basis of field performance for a set of morpho-physiological traits. At anthesis, significant differences were observed in enzyme activities in two environments. A 45% elevation in average GR activity was observed under rain-fed conditions. Genotypic variation was evident within each environment as well as in terms of response to stress environment. Aegilops tauschii accession 3769 (86% increase in SOD, 41% in CAT, 72% in APX, 48% in GR activity) and acc. 14096 (37% increase in SOD, 32% CAT, 25% APX, 42% GR) showed up-regulation in the activity of all the four studied antioxidant enzymes. Aegilops tauschii accessions-9809, 14189 and 14113 also seemed to have strong induction mechanism as elevated activity of at least three enzymes was observed in them under rain-fed conditions. T. dicoccoides , on the other hand, maintained active antioxidative machinery under irrigated condition with relatively lower induction under stress. A significant positive correlation (r = 0.760) was identified between change in the activity of CAT and GR under stress. Changes in plant height, spike length and grain weight were recorded under stress and non-stress conditions on the basis of which a cumulative tolerance index was deduced and accessions were ranked for drought tolerance. Overall, Ae. tauschii accession 3769, 14096, 14113 (DD-genome) and T. dicoccoides accession 7054 (AABB-genome) may be used as donors to combine beneficial stress adaptive traits of all the three sub

  17. Natural polyploidization within tetraploid and hexaploid populations of the desert shrub Atriplex confertifolia

    Science.gov (United States)

    Stewart C. Sanderson

    2011-01-01

    Shadscale (Atriplex confertifolia) is a wind-pollinated dioecious shrub of western North America with an unusual development of apparently autoploid races, showing all even ploidy levels from 2x to 12x (base x = 9). Of these, tetraploid races are the most frequently encountered, with octoploids the next most common, and hexaploids being much less common. In this study...

  18. Genetic diversity of the African hexaploid species Solanum scabrum Mill. and S. nigrum L. (Solanaceae)

    NARCIS (Netherlands)

    Manoko, M.L.K.; Berg, van den R.G.; Feron, R.M.C.; Weerden, van der G.M.; Mariani, C.

    2008-01-01

    Two hexaploid species of Solanum sect. Solanum are present in Africa: Solanum scabrum and S. nigrum. Solanum scabrum is a widely cultivated species and is used as a leafy vegetable, as a source of medicine and as a source of ink dye. In previous studies a wide range of morphological diversity has

  19. Population dynamics of diploid and hexaploid populations of a perennial herb

    Czech Academy of Sciences Publication Activity Database

    Münzbergová, Zuzana

    2007-01-01

    Roč. 100, č. 6 (2007), s. 1259-1270 ISSN 0305-7364 R&D Projects: GA ČR(CZ) GA206/06/0598; GA AV ČR(CZ) KJB6111303 Institutional research plan: CEZ:AV0Z60050516 Keywords : Aster amellus * diploid * hexaploid Subject RIV: EF - Botanics Impact factor: 2.939, year: 2007

  20. Ocorrência e efeito de bactérias diazotróficas em genótipos de trigo Occurrence and effect of diazotrophic bacteria in wheat genotypes

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2005-06-01

    Full Text Available A pesquisa sobre bactérias diazotróficas na cultura do trigo tem demonstrado a necessidade de associar bactérias eficientes a genótipos promissores, os quais se beneficiariam dessa associação. Em um experimento com parcelas subdivididas, instalado em condições de campo, em Mococa (SP, empregando os tratamentos: três doses de N (0, 60 e 120 kg ha-1 e três genótipos de trigo (IAC-24, ITD-19 e IAC-355, foi avaliada a ocorrência de microrganismos diazotróficos endofíticos em raízes desinfestadas superficialmente, utilizando-se três meios de cultivo distintos, NFb, JNFb e LGI-P. Somente para o genótipo IAC-355, houve um ajuste linear ascendente da quantidade de bactérias diazotróficas com o aumento na quantidade de N adicionada, apesar de o mesmo genótipo apresentar o menor número de bactérias diazotróficas endofíticas nos três meios de cultivo utilizados para quantificação. Foram obtidos oito isolados bacterianos do meio NFb com as características de Azospirillum e doze do meio JNFb com as características de Herbaspirillum. Esses isolados foram testados "in vitro", nos genótipos dos quais foram originalmente isolados, ou seja, ITD-19 e IAC-24. Todos os isolados testados no genótipo ITD-19 causaram maior crescimento radicular que a testemunha e apenas um isolado do meio JNFb propiciou aumento significativo do N acumulado na parte aérea. A interação planta-bactéria diazotrófica associativa indicou que é possível obter benefícios desta associação.Research on wheat root diazotrophic bacteria has demonstrated the need to associate effective bacteria to promising genotypes, which would benefit from this association. A field experiment was carried out in Mococa County, State of São Paulo, Brazil, using a split-plot design. Treatments consisted of 3 wheat genotypes (IAC-24, ITD-19 and IAC-355 under 3 nitrogen doses (0, 60 and 120 kg ha-1. The occurrence of diazotrophic bacteria was evaluated in three growth media

  1. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, Ae. speltoides and Ae. tauschii

    Czech Academy of Sciences Publication Activity Database

    Molnár, I.; Kubaláková, Marie; Šimková, Hana; Farkas, A.; Cseh, A.; Megyeri, M.; Vrána, Jan; Molnár-Láng, M.; Doležel, Jaroslav

    2014-01-01

    Roč. 127, č. 5 (2014), s. 1091-1104 ISSN 0040-5752 R&D Projects: GA ČR GBP501/12/G090; GA MŠk(CZ) LO1204 Grant - others:GA MŠk(CZ) ED0007/01/01 Program:ED Institutional support: RVO:61389030 Keywords : SYNTHETIC HEXAPLOID WHEAT * AEGILOPS-TRITICUM GROUP * GENETIC-LINKAGE MAP Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.790, year: 2014

  2. Study on genetic diversity in Pakistani wheat varieties using simple ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-09-01

    Sep 1, 2009 ... Common wheat (Triticum aestivum L.) is a grass species, cultivated world wide. Globally, it is ... A high degree of genetic polymorphism was observed among the wheat varieties with average ... cold, heat, soil salinization and water logging and (ii) ... and to find genetically most diverse genotypes of wheat.

  3. Influences of the genotype and of the environment in the inheritable and the correlations among seven characteristics of quality in wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Brito Molina, R.

    1991-01-01

    This study, carried out in 7 towns of Cundinamarca and Boyaca departments, looks for to know the contributions of the genotype, of the environment and its interaction on 7 characteristics of quality, at the same time that to estimate the inheritable of these characters and the different interrelations among them. The contribution of the genotype is bigger than that of the environment in the expression of the hardness of the grain (index of pearly), being its comparable contribution in the expression of the levels of extraction of flour and volume of bread. Nevertheless, the genetic effects seem to be but stable in the volume of the bread that in the other 2 factors of quality. The inheritable values in wide sense bigger than 0.5 make denounce that in all the variables it can reach some progress by means of the selection. The positive correlations between the hecto liter weight and the percentage of extraction of flour, protein percentage in the flour and the volume of the bread, and among this finish and the time of development of the mass and the negative correlations between the hardness index and the percentage of extraction of flour and between the hardness index and the water absorption, they are conserved in most of the individual environment and when considering all the environment; But, the maintenance of such interrelations seems to depend much of the genotype. In anyone of the 3 previous cases, individual environment, all the atmospheres or genotypes, the values of the 5 correlations are low, with few examples of having rising to the 2 superiors at 0.5

  4. Genetic Parameters of Common Wheat in Nepal

    OpenAIRE

    Bal Krishna Joshi; Dhruba Bahadur Thapa; Madan Raj Bhatta

    2015-01-01

    Knowledge on variation within traits and their genetics are prerequisites in crop improvement program. Thus, in present paper we aimed to estimate genetic and environmental indices of common wheat genotypes. For the purpose, eight quantitative traits were measured from 30 wheat genotypes, which were in randomized complete block design with 3 replicates. Components of variance and covariance were estimated along with heritability, genetic gain, realized heritability, coheritability and correla...

  5. Divergence in homoeolog expression of the grain length-associated gene GASR7 during wheat allohexaploidization

    Directory of Open Access Journals (Sweden)

    Dongdong Zhang

    2015-02-01

    Full Text Available Hexaploid wheat has triplicated homoeologs for most of the genes that are located in subgenomes A, B, and D. GASR7, a member of the Snakin/GASA gene family, has been associated with grain length development in wheat. However, little is known about divergence of its homoeolog expression in wheat polyploids. We studied the expression patterns of the GASR7 homoeologs in immature seeds in a synthetic hexaploid wheat line whose kernels are slender like those of its maternal parent (Triticum turgidum, AABB, PI 94655 in contrast to the round seed shape of its paternal progenitor (Aegilops tauschii, DD, AS2404. We found that the B homoeolog of GASR7 was the main contributor to the total expression level of this gene in both the maternal tetraploid progenitor and the hexaploid progeny, whereas the expression levels of the A and D homoeologs were much lower. To understand possible mechanisms regulating different GASR7 homoeologs, we firstly analyzed the promoter sequences of three homoeologous genes and found that all of them contained gibberellic acid (GA response elements, with the TaGASR7B promoter (pTaGASR7B uniquely characterized by an additional predicted transcriptional enhancer. This was confirmed by the GA treatment of spikes where all three homoeologs were induced, with a much stronger response for TaGASR7B. McrBC enzyme assays showed that the methylation status at pTaGASR7D was increased during allohexaploidization, consistent with the repressed expression of TaGASR7D. For pTaGASR7A, the distribution of repetitive sequence-derived 24-nucleotide (nt small interfering RNAs (siRNAs were found which suggests possible epigenetic regulation because 24-nt siRNAs are known to mediate RNA-dependent DNA methylation. Our results thus indicate that both genetic and epigenetic mechanisms may be involved in the divergence of GASR7 homoeolog expression in polyploid wheat.

  6. Wheat and barley differently affect porcine intestinal microbiota

    DEFF Research Database (Denmark)

    Weiss, Eva; Aumiller, Tobias; Spindler, Hanns K

    2016-01-01

    Diet influences the porcine intestinal microbial ecosystem. Barrows were fitted with ileal T-cannulas to compare short-term effects of eight different wheat or barley genotypes and period-to-period effects on seven bacterial groups in ileal digesta and faeces by qPCR. Within genotypes of wheat an...

  7. Tillering of two wheat genotypes as affected by phosphorus levels=Perfilhamento de dois genótipos de trigo em função de doses de fósforo

    Directory of Open Access Journals (Sweden)

    Leonardo Theodoro Büll

    2012-07-01

    Full Text Available Tillering plays an important role in wheat yield potential and it is affected by genotype and environmental conditions. This work aimed to study the effects of phosphorus levels on tiller emergence, survival and contribution to yield potential of two wheat cultivars. The experiment was carried out under greenhouse conditions in Botucatu, São Paulo State, Brazil. A 2 x 5 factorial randomized block design with four replications was applied. Two wheat cultivars (IAC 370 and IAC 375 and five phosphorus levels (0, 150, 300, 450 and 600 mg dm-3 were evaluated in pots with 10 dm3 of a clayey Oxisol. Higher P levels increased tiller emergence, survival and yield, especially for secondary tillers. Tiller abortion levels were higher in IAC 370 cultivar whereas retention of formed tillers was higher in IAC 375. A participação de perfilhos na produção de grãos é de grande importância para a cultura do trigo, sendo influenciável pelas características do genótipo e condições do ambiente. O presente trabalho teve o objetivo de estudar o efeito de doses de fósforo (P na emissão, sobrevivência e contribuição produtiva de perfilhos de duas cultivares de trigo. O experimento foi conduzido em casa de vegetação em Botucatu, Estado de São Paulo. Foi adotado um esquema fatorial 2 x 5 em blocos casualizados com quatro repetições, sendo avaliadas duas cultivares de trigo (IAC 370 e IAC 375 e cinco doses de P (0, 150, 300, 450 e 600 mg dm-3. Quanto maior a dose de P, maior a emissão, a sobrevivência e a participação de perfilhos na produ��ão total de grãos, em especial para perfilhos secundários. A cultivar IAC 370 apresentou altas taxas de abortamento de perfilhos, enquanto a IAC 375 manteve grande parte dos perfilhos emitidos.

  8. Wheat Allergy

    Science.gov (United States)

    ... of reactions. Learn more here. Milk Egg Peanut Tree Nuts Soy Wheat Fish Shellfish Sesame Other Food ... federal law. Download our resource on how to identify wheat on food labels. Avoid foods that contain ...

  9. Fungicide Effect on Glomus Intrarradices in Different Genotypes of Beans (Phaseolus Vulgaris L., OAT (Avena Sativa L., and Wheat (Triticum Aaestivum L. Growth Cultivated in Two Soil Types under Greenhouse Conditions

    Directory of Open Access Journals (Sweden)

    Abdul Khalil Gardezi

    2013-12-01

    Full Text Available The objective of this research was to evaluate the effect of fungicides on the association with Glomus intraradices and soil contamination on three genotypes of beans (Phaseolus vulgaris L., one of oat (Avena sativa L., and another one of wheat (Triticum aestivum L.. The study was done under greenhouse conditions at the Montecillo Campus of the Postgraduate College, Mexico. Two soils were used, one irrigated with sewage water and the other one with clean water from a well. Half of the plants were inoculated with Glomus intraradices. Metacaptan was used as a fungicide applied to half of the seeds. The pH of the soil was alkaline. Electric conductivity, and organic matter, nitric and ammoniac nitrogen, phosphorous, copper and nickel quantities were higher on the soils irrigated with sewage water. The soil contamination did not affect significantly plant responses in this study. It is concluded that endomycorrhiza inoculation (Glomus intraradices gave better growth and yield, especially in beans. The application of fungicides improved plant growth.

  10. An efficient and reproducible protocol for the production of salt tolerant transgenic wheat plants expressing the Arabidopsis AtNHX1 gene.

    Science.gov (United States)

    Moghaieb, Reda E A; Sharaf, Ahmed N; Soliman, Mohamed H; El-Arabi, Nagwa I; Momtaz, Osama A

    2014-01-01

    We present an efficient method for the production of transgenic salt tolerant hexaploid wheat plants expressing the Arabidopsis AtNHX1 gene. Wheat mature zygotic embryos were isolated from two hexaploid bread wheat (Triticum aestivum) cultivars (namely: Gemmeiza 9 and Gemmeiza 10) and were transformed with the A. tumefaciens LBA4404 harboring the pBI-121 vector containing the AtNHX1 gene. Transgenic wheat lines that express the gus intron was obtained and used as control. The results confirmed that npt-II gene could be transmitted and expressed in the T2 following 3:1 Mendelian segregation while the control plant couldn't. The data indicate that, the AtNHX1 gene was integrated in a stable manner into the wheat genome and the corresponding transcripts were expressed. The transformation efficiency was 5.7 and 7.5% for cultivars Gemmeiza 10 and Gemmeiza 9, respectively. A greenhouse experiment was conducted to investigate the effect of AtNHX1 gene in wheat salt tolerance. The transgenic wheat lines could maintain high growth rate under salt stress condition (350 mM NaCl) while the control plant couldn't. The results confirmed that Na(+)/H(+) antiporter gene AtNHX1 increased salt tolerance by increasing Na(+) accumulation and keeping K+/Na(+) balance. Thus, transgenic plants showed high tolerance to salt stress and can be considered as a new genetic resource in breeding programs.

  11. Evolution of Grain Yield and its Components Relationships in Bread Wheat Genotypes under Full Irrigation and Terminal Water Stress Conditions Using Multivariate Statistical Analysis

    Directory of Open Access Journals (Sweden)

    S Mohammadi

    2014-07-01

    Full Text Available To study relationships between effective traits on wheat grain yield, the varieties Zarrin and Alvand, and some promising lines i.e. C-81-4, C-81-10, C-81-14 and C-82-12 were investigated at three sowing dates including 10 October, 1 November and 21 November. The experiment was carried out using strip plot in RCBD with three replications under two different water conditions including full-irrigation and terminal water stress at Miyandoab Agricultural Research Station in 2005-06 and 2006-07 cropping seasons. The results showed that under both full irrigation and terminal water stress conditions, grain yield had positive and significant correlation with days to heading, days to maturity, plant height, number of spikes/m2 and 1000 grain weight. Stepwise regression analysis revealed that 83 percent of yield variation under non-stressed conditions could be determined by days to maturity and number of spikes/m2 (R2 = 83% whereas these traits explained 87% of yield variation under stress conditions (R2= 87%. Path analysis indicated that number of spikes/m2 and days to maturity had the greatest positive direct and indirect effect on grain yield, under both conditions. The results of factor analysis under non-stressed condition showed that three factors explained 77% of total variation; these factors were called grain yield components, grain characteristics and plant phonology. Under non-stressed condition two factors (that were called grain yield and phenology, and plant morphology explained 88% of total variation. Cluster analysis through ward method, classified days to maturity and number of spikes/m2 in the same cluster where the grain yield was put under both conditions. It was concluded that under different sowing dates, selection based on days to maturity and number spikes/m2 could indirectly led to higher yield under both normal and water stress conditions.

  12. Comparing two approaches for introgression of germplasm from Aegilops tauschii into common wheat

    Directory of Open Access Journals (Sweden)

    Thomas S. Cox

    2017-10-01

    Full Text Available Allelic diversity in the wild grass Aegilops tauschii is vastly greater than that in the D genome of common wheat (Triticum aestivum, of which Ae. tauschii is the source. Since the 1980s, there have been numerous efforts to harness a much larger share of Ae. tauschii's extensive and highly variable gene pool for wheat improvement. Those efforts have followed two distinct approaches: production of amphiploids, known as “synthetic hexaploids,” between T. turgidum and Ae. tauschii, and direct hybridization between T. aestivum and Ae. tauschii; both approaches then involve backcrossing to T. aestivum. Both synthetic hexaploid production and direct hybridization have led to the transfer of numerous new genes into common wheat that confer improvements in many traits. This work has led to release of improved cultivars in China, the United States, and many other countries. Each approach to D-genome improvement has advantages and disadvantages. For example, production of synthetic hexaploids can incorporate useful germplasm from both T. turgidum and Ae. tauschii, thereby enhancing the A, B, and D genomes; on the other hand, direct hybridization rapidly restores the recurrent parent's A and B genomes and avoids incorporation of genes with adverse effects on threshability, hybrid necrosis, vernalization response, milling and baking quality, and other traits, which are often transferred when T. turgidum is used as a parent. Choice of method will depend in part on the type of wheat being developed and the target environment. However, more extensive use of the so-far underexploited direct hybridization approach is especially warranted.

  13. Genetics of mycorrhizal symbiosis in winter wheat (Triticum aestivum).

    Science.gov (United States)

    Lehnert, Heike; Serfling, Albrecht; Enders, Matthias; Friedt, Wolfgang; Ordon, Frank

    2017-07-01

    Bread wheat (Triticum aestivum) is a major staple food and therefore of prime importance for feeding the Earth's growing population. Mycorrhiza is known to improve plant growth, but although extensive knowledge concerning the interaction between mycorrhizal fungi and plants is available, genotypic differences concerning the ability of wheat to form mycorrhizal symbiosis and quantitative trait loci (QTLs) involved in mycorrhization are largely unknown. Therefore, a diverse set of 94 bread wheat genotypes was evaluated with regard to root colonization by arbuscular mycorrhizal fungi. In order to identify genomic regions involved in mycorrhization, these genotypes were analyzed using the wheat 90k iSelect chip, resulting in 17 823 polymorphic mapped markers, which were used in a genome-wide association study. Significant genotypic differences (P wheat. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  14. Potencial de genótipos de trigo duro para produtividade e caracteres agronômicos no Estado de São Paulo Potential of durum wheat genotypes for productivity and agronomic traits in São Paulo State

    Directory of Open Access Journals (Sweden)

    Allan Henrique da Silva

    2010-01-01

    , introduced from International Maize and Wheat Improvement Center (CIMMYT, Mexico. The experiments were carried out in upland conditions at Capão Bonito and under irrigation at Mococa, in 2007 and 2008. The following characters were evaluated: yield (kg ha-1, plant height, head length and raquis internode length (cm, number of grains per spike and 100 grains weight (g. The tolerance to aluminum toxicity was evaluated in nutrient solution, under laboratory conditions. 'IAC-1001' and 'IAC-1003' showed good performance in relation to grain yield at the two locations. The inbred lines 2, 9 and 13 showed shorter semi dwarf plant type; inbred lines 4, 15 and the cultivar IAC-1001 had longer heads; 'IAC-1001' and 'IAC-1002' exhibited more fertile spikes; 'IAC-1003' heavier grains and the inbred lines 1, 4, 15 and 17 presented higher raquis internode length. The more productive genotypes tent to present taller semi dwarf plant types, more of grain per spike and heavier grains. The inbred lines from the IAC breeding program were tolerant to aluminum toxicity and the check cultivars were sensitive.

  15. Variabilidade genética em trigos brasileiros a partir de caracteres componentes da qualidade industrial e produção de grãos Genetic variability for bread making quality and grain yield among Brazilian wheat genotypes

    Directory of Open Access Journals (Sweden)

    Douglas André Mallmann Schmidt

    2009-01-01

    Full Text Available O melhoramento genético para a qualidade industrial do trigo pode representar uma oportunidade de agregar valor de mercado aos produtos agrícolas, sendo o trigo um dos cereais com maior associação entre a qualidade intrínseca e a remuneração ao agricultor. O objetivo do trabalho foi o de determinar a variabilidade genética a partir de caracteres indicativos da qualidade industrial e o rendimento de grãos, e estimar o grau de associação entre estes caracteres em 22 genótipos de trigo. O experimento foi desenvolvido em área experimental pertencente à Universidade Federal de Pelotas, Capão do Leão (RS. Os resultados indicaram a provável existência de variabilidade genética para os caracteres em estudo, a qual pode auxiliar pesquisadores na escolha de genitores. Cruzamentos artificiais envolvendo os genótipos BRS 208, Rubi e Safira podem ser os mais promissores no intuito de incrementar o ganho genético, tanto para a qualidade industrial quanto para a produtividade de grãos. O rendimento de grãos manifestou correlação negativa com o conteúdo de proteína da farinha revelando que a superioridade genotípica para o rendimento de grãos pode afetar negativamente a proporção protéica. Entretanto, o conteúdo de proteína não evidenciou associação significativa com a força de glúten (indicador da qualidade industrial, revelando que a concentração de proteína da farinha não foi eficiente para predizer a qualidade industrial. Este resultado sugere a possibilidade de obtenção de genótipos superiores para o rendimento de grãos sem comprometer a qualidade industrial.The breeding for wheat bread making quality represents a great opportunity to incorporate commercial value to agricultural products. Wheat has one of the best relationship between end product quality and farmer earnings. Genetic variability among 22 different genotypes based on bread making quality traits and grain yield and the degree of their association

  16. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  17. Identification and Validation of a New Source of Low Grain Cadmium Accumulation in Durum Wheat

    Directory of Open Access Journals (Sweden)

    Atena Oladzad-Abbasabadi

    2018-03-01

    Full Text Available Cadmium (Cd is a heavy metal that has no known biological function and is toxic for many living organisms. The maximum level of Cd concentration allowed in the international market for wheat grain is 0.2 mg kg−1. Because phenotyping for Cd uptake is expensive and time consuming, molecular markers associated with genes conferring low Cd uptake would expedite selection and lead to the development of durum cultivars with reduced Cd concentrations. Here, we identified single nucleotide polymorphisms (SNPs associated with a novel low Cd uptake locus in the durum experimental line D041735, which has hexaploid common wheat in its pedigree. Genetic analysis revealed a single major QTL for Cd uptake on chromosome arm 5BL within a 0.3 cM interval flanked by SNP markers. Analysis of the intervening sequence revealed a gene with homology to an aluminum-induced protein as a candidate gene. Validation and allelism tests revealed that the low Cd uptake gene identified in this study is different from the closely linked Cdu1-B gene, which also resides on 5BL. This study therefore showed that the durum experimental line D041735 contains a novel low Cd uptake gene that was likely acquired from hexaploid wheat.

  18. New mechanism for the control of sodium transport in wheat

    International Nuclear Information System (INIS)

    James, R.A.; Munns, R.; Huang, C.X.

    2002-01-01

    Full text: Durum and other tetraploid wheats are typically very salt-sensitive compared to hexaploid bread wheats. This is primarily due to high rates of Na + accumulation in the leaves in tetraploid wheat. Recently, we have discovered a durum landrace with low Na + accumulation and enhanced K + /Na + discrimination, much lower than current durum cultivars and similar to bread wheat. We have identified 3 different mechanisms for the control of Na + transport to the leaves in this landrace, 1) control of Na + uptake at the epidermis of the root, 2) control of Na + loading into the xylem and 3) partitioning of Na + into the leaf sheath. The low Na + durum landrace had 3-4 fold lower Na + uptake rates than durum cultivars. Using X ray microanalysis on snap-frozen root sections, we found Na + to be high in the epidermis, a decreasing gradient through the cortex, low in the endodermis and again high in the stele (pencycle and xylem parenchyma), indicative of control points at the epidermis and in the stele. Partitioning of Na + between shoot and root was at least 5 times lower in the durum landrace, suggestive of greater control of Na + transport at the site of xylem loading. A third and novel control mechanism was found in the leaf sheath. Short and long term salinity treatments showed that Na + was partitioned preferentially into the sheaths of the low Na + durum landrace, keeping leaf blade Na + levels very low and similar to that of bread wheat Na + partitioned in the leaf sheath was stored primarily in the parenchyma cells and Cl - in the epidermal cells. Collectively, these data show that we have identified germplasm that has the potential to increase the salt tolerance of durum wheat. Additionally, as bread wheat does not contain the mechanism for partitioning Na + into the sheath, this trait may be useful for further increasing the salt tolerance of this species

  19. allelic variation of hmw glutenin subunits of ethiopian bread wheat

    African Journals Online (AJOL)

    journal

    High molecular weight glutenins are often effective in identifying wheat (Triticum ... There were highly significant differences between genotypes and banding ... was without deliberate selection pressure towards high Glu-1 scoring alleles ...

  20. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  1. Resistance to Wheat Curl Mite in Arthropod-Resistant Rye-Wheat Translocation Lines

    Directory of Open Access Journals (Sweden)

    Lina Maria Aguirre-Rojas

    2017-11-01

    Full Text Available The wheat curl mite, Aceria toschiella (Keifer, and a complex of viruses vectored by A. toschiella substantially reduce wheat yields in every wheat-producing continent in the world. The development of A. toschiella-resistant wheat cultivars is a proven economically and ecologically viable method of controlling this pest. This study assessed A. toschiella resistance in wheat genotypes containing the H13, H21, H25, H26, H18 and Hdic genes for resistance to the Hessian fly, Mayetiola destructor (Say and in 94M370 wheat, which contains the Dn7 gene for resistance to the Russian wheat aphid, Diuraphis noxia (Kurdjumov. A. toschiella populations produced on plants containing Dn7 and H21 were significantly lower than those on plants of the susceptible control and no different than those on the resistant control. Dn7 resistance to D. noxia and H21 resistance to M. destructor resulted from translocations of chromatin from rye into wheat (H21—2BS/2RL, Dn7—1BL/1RS. These results provide new wheat pest management information, indicating that Dn7 and H21 constitute resources that can be used to reduce yield losses caused by A. toschiella, M. destructor, D. noxia, and wheat streak mosaic virus infection by transferring multi-pest resistance to single sources of germplasm.

  2. Allelopathy regulates wheat genotypes performance at the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-08-16

    Aug 16, 2010 ... Water deficit and PDJ would lead to plant phenotype and ... regulation mechanism of water stress, PDJ showed active transport of energy supply in allelopathic stimulation ...... as influenced by varietal and seasonal variation.

  3. Self-sterility in the hexaploid Handroanthus serratifolius (Bignoniaceae, the national flower of Brazil

    Directory of Open Access Journals (Sweden)

    Mariana Ferreira Alves

    2013-12-01

    Full Text Available Polyploidization is common among angiosperms and might induce typically allogamous plants to become autogamous (self-compatible, relying on sexual self-fertilization or apomictic (achieving asexual reproduction through seeds. This work aimed to determine whether neopolyploidy leads to the breakdown of the self-incompatibility system in the hexaploid non-apomictic species Handroanthus serratifolius (Vahl S. Grose, through analyses of its floral biology, pollination biology and breeding system. Although anthesis lasted for three days, increasing the overall floral display, receptivity decreased as of the second day. Centridini and Euglossini bees were the main pollinators, and low nectar availability (1.95 ± 1.91 µl/flower might have obliged them to visit multiple flowers. We observed low reproductive efficacy. That might be explained by self-sterility and by the great number of flowers per individual, which could increase the frequency of geitonogamy. Ovule penetration by the pollen tubes in self-pollinated pistils with posterior abscission indicated late-acting self-incompatibility in H. serratifolius, as observed in other diploid Bignoniaceae species, although inbreeding depression cannot be excluded. The self-sterility found in the monoembryonic, hexaploid individuals studied here contrasts with the results for other neopolyploid Handroanthus and Anemopaegma species, which are often autogamous and apomictic. Our results suggest that neopolyploidy is not the main factor leading to self-fertility in Handroanthus.

  4. Assessment of genotype x environment interaction on yield and ...

    African Journals Online (AJOL)

    user

    2011-04-11

    Apr 11, 2011 ... yield and yield components of durum wheat genotypes ... The results of combined analysis of variance showed a strong influence of the ... Stability is defined as the early prediction of environmental im- ... Many resear-.

  5. Flowering time control in European winter wheat

    Directory of Open Access Journals (Sweden)

    Simon Martin Langer

    2014-10-01

    Full Text Available Flowering time is an important trait in wheat breeding as it affects adaptation and yield potential. The aim of this study was to investigate the genetic architecture of flowering time in European winter bread wheat cultivars. To this end a population of 410 winter wheat varieties was evaluated in multi-location field trials and genotyped by a genotyping-by-sequencing approach and candidate gene markers. Our analyses revealed that the photoperiod regulator Ppd-D1 is the major factor affecting flowering time in this germplasm set, explaining 58% of the genotypic variance. Copy number variation at the Ppd-B1 locus was present but explains only 3.2% and thus a comparably small proportion of genotypic variance. By contrast, the plant height loci Rht-B1 and Rht-D1 had no effect on flowering time. The genome-wide scan identified six QTL which each explain only a small proportion of genotypic variance and in addition we identified a number of epistatic QTL, also with small effects. Taken together, our results show that flowering time in European winter bread wheat cultivars is mainly controlled by Ppd-D1 while the fine tuning to local climatic conditions is achieved through Ppd-B1 copy number variation and a larger number of QTL with small effects.

  6. Accelerated Senescence and Enhanced Disease Resistance in Hybrid Chlorosis Lines Derived from Interspecific Crosses between Tetraploid Wheat and Aegilops tauschii

    Science.gov (United States)

    Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo

    2015-01-01

    Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790

  7. Accelerated senescence and enhanced disease resistance in hybrid chlorosis lines derived from interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Hiroki Nakano

    Full Text Available Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions.

  8. Pushing Wheat

    DEFF Research Database (Denmark)

    Sharp, Paul Richard

    This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between these varia......This paper documents the evolution of variables central to understanding the creation of an Atlantic Economy in wheat between the US and the UK in the nineteenth century. The cointegrated VAR model is then applied to the period 1838-1913 in order to find long-run relationships between...

  9. Genetic Parameters of Common Wheat in Nepal

    Directory of Open Access Journals (Sweden)

    Bal Krishna Joshi

    2015-12-01

    Full Text Available Knowledge on variation within traits and their genetics are prerequisites in crop improvement program. Thus, in present paper we aimed to estimate genetic and environmental indices of common wheat genotypes. For the purpose, eight quantitative traits were measured from 30 wheat genotypes, which were in randomized complete block design with 3 replicates. Components of variance and covariance were estimated along with heritability, genetic gain, realized heritability, coheritability and correlated response. Differences between phenotypic and genotypic variances in heading days, maturity days and plant height were not large. Grain yield and plant height showed the highest phenotypic (18.189% and genotypic (12.06% coefficient of variances, respectively. Phenotypic covariance was higher than genotypic and environmental covariance in most of the traits. The highest heritability and realized heritability were of heading days followed by maturity days. Genetic gain for plant height was the highest. Co-heritability of 1000-grain weight with tillers number was the highest. The highest correlated response was expressed by grain yield with tillers number. This study indicates the possibility of improving wheat genotypes through selection utilizing existing variation in these traits.

  10. Alterations in reducing sugar in Triticum aestivum under irrigated ...

    African Journals Online (AJOL)

    This research was conducted with the objective of observing alterations in reducing sugars, which may play a part in distinguishing tolerant and susceptible genotypes. The experimental material consisted of thirteen wheat genotypes including eleven bread wheat advanced lines, one synthetic hexaploid and its durum ...

  11. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes Efeito das subunidades de glutenina de alto e baixo peso molecular e das subunidades de gliadina sobre os parâmetros físico-químicos de diferentes genótipos de trigo

    Directory of Open Access Journals (Sweden)

    Mariana Souza Costa

    2013-02-01

    Full Text Available Identification of functional properties of wheat flour by specific tests allows genotypes with appropriate characteristics to be selected for specific industrial uses. The objective of wheat breeding programs is to improve the quality of germplasm bank in order to be able to develop wheat with suitable gluten strength and extensibility for bread making. The aim of this study was to evaluate 16 wheat genotypes by correlating both glutenin subunits of high and low molecular weight and gliadin subunits with the physicochemical characteristics of the grain. Protein content, sedimentation volume, sedimentation index, and falling number values were analyzed after the grains were milled. Hectoliter weight and mass of 1000 seeds were also determined. The glutenin and gliadin subunits were separated using polyacrylamide gel in the presence of sodium dodecyl sulfate. The data were evaluated using variance analysis, Pearson's correlation, principal component analysis, and cluster analysis. The IPR 85, IPR Catuara TM, T 091015, and T 091069 genotypes stood out from the others, which indicate their possibly superior grain quality with higher sedimentation volume, higher sedimentation index, and higher mass of 1000 seeds; these genotypes possessed the subunits 1 (Glu-A1, 5 + 10 (Glu-D1, c (Glu-A3, and b (Glu-B3, with exception of T 091069 genotype that possessed the g allele instead of b in the Glu-B3.A identificação das propriedades funcionais de farinhas de trigo através de testes específicos possibilita selecionar genótipos de trigo com características adequadas a cada uso industrial. O principal objetivo dos programas de melhoramento genético é melhorar a qualidade do banco de germoplasma para que seja possível desenvolver trigos com força de glúten e extensibilidade adequadas para produção de produtos panificáveis. O objetivo deste estudo foi avaliar 16 genótipos de trigo correlacionando as subunidades de gluteninas de alto e baixo peso

  12. Genetics of dwarfness in induced mutants of hexaploid triticale and its response to exogenous GA3

    International Nuclear Information System (INIS)

    Reddy, V.D.; Reddy, G.M.

    1991-01-01

    Genetics of dwarfism in two induced mutant (d 1 and d 2 ) of hexaploid triticale, DTS 330, revealed that this trait is governed by single recessive gene. Both d 1 and d 2 were allelic to each other and d 1 was dominant over d 2 . Both d 1 , d 2 and their F 1 showed no response to exogenous GA 3 , whereas, DTS 330, d 1 x DTS 330 and d 2 x DTS 330 were responsive. The endogenous levels of GA 3 were more in the dwarf mutants than control, suggesting that dwarfness in these may be due to a partial block in the GA utilizing mechanism, rather than a block in GA biosynthesis. (author). 5 refs., 2 tabs

  13. Assessment of genetic diversity among Syrian durum (Triticum turgidum ssp. durum) and bread wheat (Triticum aestivum L.) using SSR markers.

    Science.gov (United States)

    Achtar, S; Moualla, M Y; Kalhout, A; Röder, M S; MirAli, N

    2010-11-01

    Genetic diversity among 49 wheat varieties (37 durum and 12 bread wheat) was assayed using 32 microsatellites representing 34 loci covering almost the whole wheat genome. The polymorphic information content (PIC) across the tested loci ranged from 0 to 0.88 with average values of 0.57 and 0.65 for durum and bread wheat respectively. B genome had the highest mean number of alleles (10.91) followed by A genome (8.3) whereas D genome had the lowest number (4.73). The correlation between PIC and allele number was significant in all genome groups accounting for 0.87, 074 and 0.84 for A, B and D genomes respectively, and over all genomes, the correlation was higher in tetraploid (0.8) than in hexaploid wheat varieties (0.5). The cluster analysis discriminated all varieties and clearly divided the two ploidy levels into two separate clusters that reflect the differences in genetic diversity within each cluster. This study demonstrates that microsatellites markers have unique advantages compared to other molecular and biochemical fingerprinting techniques in revealing the genetic diversity in Syrian wheat varieties that is crucial for wheat improvement.

  14. Proteínas del gluten y reología de trigos harineros mexicanos influeciados por factores ambientales y genotípicos Gluten proteins and rheology of Mexican bread wheats as affected by environmental and genotypic factors

    Directory of Open Access Journals (Sweden)

    Micaela De la O Olán

    2010-09-01

    Full Text Available El objetivo de este estudio fue conocer el efecto de factores ambientales y genotípicos sobre los parámetros de calidad industrial y sobre la cantidad y relación de proteínas monoméricas y poliméricas del gluten en 24 líneas recombinantes de trigos harineros de temporal. El cultivo se desarrolló en cinco condiciones ambientales generadas por manejo agronómico, ciclo otoño-invierno 2006/2007, en Roque, Guanajuato, México. Se evaluaron el tiempo de amasado (TMA, fuerza (ALVW, extensibilidad (ALVPL de la masa, fracción rica en gliadina (50PS y en glutenina (50PI, y su relación (50PS/50PI. Las mejores combinaciones de gluteninas de alto y bajo peso molecular para TMA y ALVW fueron los genotipos con 1, 17+18, 5+10/Glu-A3c, Glu-B3g, Glu-D3b; 1, 17+18, 5+10/Glu-A3c, Glu-B3h, Glu-D3b, y 2*, 17+18, 5+10/Glu-A3c, Glu-B3g, Glu-D3b; para ALVPL, 2*, 17+18, 2+12/Glu-A3e, Glu-B3h, Glu-D3b; para 50PS, 2*, 17+18, 2+12/Glu-A3e, Glu-B3h, Glu-D3b; y 1, 17+18, 5+10/Glu-A3e, Glu-B3h, Glu-D3b. La relación 50PS/50PI fue mayor en genotipos con 2*, 17+18, 2+12/Glu-A3e, Glu-B3g, Glu-D3b. El TMA es mayor cuando aumenta la temperatura y la mejor ALVPL se obtiene en el ambiente bajo condiciones normales. La fracción 50PS y la relación 50PS/50PI son mayores cuando se realiza la fertilización con azufre, y se obtiene incremento de 50PI con riego limitado y aumento de temperaturas durante el llenado de grano.The objective of this study was to determine the effect of environmental and genotypic factors on industrial quality and on the monomeric and polymeric protein contents and ratio of 24 rainfed bread wheat recombinant lines. The cultivation was done in five environmental conditions generated by agronomic management in the autumn-winter 2006/2007 cycle, at Roque, Guanajuato, Mexico. The mixing time (TMA, strength (ALVW and extensibility (ALVPL of the dough, gliadin (50PS and glutenin (50PI rich fractions, and their ratio (50PS/50PI, were evaluated. The best

  15. Karyotype characterization and comparison of three hexaploid species of Bromus Linnaeus, 1753 (Poaceae

    Directory of Open Access Journals (Sweden)

    Leonardo Luís Artico

    2017-04-01

    Full Text Available Chromosome morphometry and nuclear DNA content are useful data for cytotaxonomy and to understand the evolutionary history of different taxa. For the genus Bromus Linnaeus, 1753, distinct ploidy levels have been reported, occurring from diploid to duodecaploid species. The geographic distribution of Bromus species has been correlated with chromosome number and ploidy level. In this study, the aims were to determine the nuclear genome size and characterize the karyotype of the South American Bromus species: Bromus auleticus Trinius ex Nees, 1829, Bromus brachyanthera Döll, 1878 and Bromus catharticus Vahl, 1791. The mean nuclear 2C value ranged from 2C = 12.64 pg for B. catharticus to 2C = 17.92 pg for B. auleticus, meaning a maximum variation of 2C = 5.28 pg, equivalent to 41.70%. Despite this significant difference in 2C value, the three species exhibit the same chromosome number, 2n = 6x = 42, which confirms their hexaploid origin. Corroborating the genome size, the chromosome morphometry (total, short- and long-arm length and, consequently, the class differed among the karyotypes of the species. Based on the first karyograms for these Bromus species, some morphologically similar and several distinct chromosome pairs were found. Therefore, the karyotype characterization confirmed the hexaploid origin of the studied Bromus species, which differ in relation to the karyogram and the nuclear 2C value. Considering this, cytogenetics and flow cytometry can be used to discriminate Bromus species, contributing to taxonomy and systematic studies and providing information on the evolutionary history of this taxa.

  16. Karyotype characterization and comparison of three hexaploid species of Bromus Linnaeus, 1753 (Poaceae).

    Science.gov (United States)

    Artico, Leonardo Luís; Mazzocato, Ana Cristina; Ferreira, Juliano Lino; Carvalho, Carlos Roberto; Clarindo, Wellington Ronildo

    2017-01-01

    Chromosome morphometry and nuclear DNA content are useful data for cytotaxonomy and to understand the evolutionary history of different taxa. For the genus Bromus Linnaeus, 1753, distinct ploidy levels have been reported, occurring from diploid to duodecaploid species. The geographic distribution of Bromus species has been correlated with chromosome number and ploidy level. In this study, the aims were to determine the nuclear genome size and characterize the karyotype of the South American Bromus species: Bromus auleticus Trinius ex Nees, 1829, Bromus brachyanthera Döll, 1878 and Bromus catharticus Vahl, 1791. The mean nuclear 2C value ranged from 2C = 12.64 pg for B. catharticus to 2C = 17.92 pg for B. auleticus , meaning a maximum variation of 2C = 5.28 pg, equivalent to 41.70%. Despite this significant difference in 2C value, the three species exhibit the same chromosome number, 2n = 6x = 42, which confirms their hexaploid origin. Corroborating the genome size, the chromosome morphometry (total, short- and long-arm length) and, consequently, the class differed among the karyotypes of the species. Based on the first karyograms for these Bromus species, some morphologically similar and several distinct chromosome pairs were found. Therefore, the karyotype characterization confirmed the hexaploid origin of the studied Bromus species, which differ in relation to the karyogram and the nuclear 2C value. Considering this, cytogenetics and flow cytometry can be used to discriminate Bromus species, contributing to taxonomy and systematic studies and providing information on the evolutionary history of this taxa.

  17. Diversification of the celiac disease α-gliadin complex in wheat: a 33-mer peptide with six overlapping epitopes, evolved following polyploidization.

    Science.gov (United States)

    Ozuna, Carmen V; Iehisa, Julio C M; Giménez, María J; Alvarez, Juan B; Sousa, Carolina; Barro, Francisco

    2015-06-01

    The gluten proteins from wheat, barley and rye are responsible both for celiac disease (CD) and for non-celiac gluten sensitivity, two pathologies affecting up to 6-8% of the human population worldwide. The wheat α-gliadin proteins contain three major CD immunogenic peptides: p31-43, which induces the innate immune response; the 33-mer, formed by six overlapping copies of three highly stimulatory epitopes; and an additional DQ2.5-glia-α3 epitope which partially overlaps with the 33-mer. Next-generation sequencing (NGS) and Sanger sequencing of α-gliadin genes from diploid and polyploid wheat provided six types of α-gliadins (named 1-6) with strong differences in their frequencies in diploid and polyploid wheat, and in the presence and abundance of these CD immunogenic peptides. Immunogenic variants of the p31-43 peptide were found in most of the α-gliadins. Variants of the DQ2.5-glia-α3 epitope were associated with specific types of α-gliadins. Remarkably, only type 1 α-gliadins contained 33-mer epitopes. Moreover, the full immunodominant 33-mer fragment was only present in hexaploid wheat at low abundance, probably as the result of allohexaploidization events from subtype 1.2 α-gliadins found only in Aegilops tauschii, the D-genome donor of hexaploid wheat. Type 3 α-gliadins seem to be the ancestral type as they are found in most of the α-gliadin-expressing Triticeae species. These findings are important for reducing the incidence of CD by the breeding/selection of wheat varieties with low stimulatory capacity of T cells. Moreover, advanced genome-editing techniques (TALENs, CRISPR) will be easier to implement on the small group of α-gliadins containing only immunogenic peptides. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd.

  18. Phylogenetic relationships of hexaploid large-sized barbs (genus Labeobarbus, Cyprinidae) based on mtDNA data.

    Science.gov (United States)

    Tsigenopoulos, Costas S; Kasapidis, Panagiotis; Berrebi, Patrick

    2010-08-01

    The phylogenetic relationships among species of the Labeobarbus genus (Teleostei, Cyprinidae) which comprises large body-sized hexaploid taxa were inferred using complete cytochrome b mitochondrial gene sequences. Molecular data suggest two main evolutionary groups which roughly correspond to a Northern (Middle East and Northwest Africa) and a sub-Saharan lineage. The splitting of the African hexaploids from their Asian ancestors and their subsequent diversification on the African continent occurred in the Late Miocene, a period in which other cyprinins also invaded Africa and radiated in the Mediterranean region. Finally, systematic implications of these results to the taxonomic validity of genera or subgenera such as Varicorhinus, Kosswigobarbus, Carasobarbus and Capoeta are further discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Submergence sensitivity of durum wheat, bread wheat and barley at the germination stage

    Directory of Open Access Journals (Sweden)

    Iduna Arduini

    2016-06-01

    Full Text Available Soil waterlogging at initial growth stages can cause heavy yield losses of winter cereals. Therefore, the screening for submergence tolerance traits in seeds of commercial varieties is of high concern worldwide. Ten Italian varieties of durum wheat (Triticum durum Desf., bread wheat (T. aestivum L. and barley (Hordeum vulgare L. were investigated for their ability to germinate in submerged conditions and to recover after submergence periods of three to 15 days. Submergence prevented germination and decreased germinability, at rates that increased with duration of submergence. Sensitivity ranked in the order: barley >durum wheat >bread wheat. We related the higher sensitivity of barley to its slower germination and slightly higher leakage of electrolytes, whereas the percentage of abnormal seedlings was lower than in other species. It was less than 4%, compared to less than 15 and 8% in durum wheat and bread wheat, respectively. Wide varietal differences were found in all species. According to variety, after 6-day submergence, germinability ranged from 2 to 42% in barley, from 5 to 80% in durum wheat, and from 30 to 77% in bread wheat. Varieties with more than 40% seed survival were three, six and seven per species, in the same order. The differential submergence sensitivity of varieties indicates a potential to select for waterlogging tolerance within Italian genotypes of winter cereal crops.

  20. Alpha-gliadin genes from the A, B, and D genomes of wheat contain different sets of celiac disease epitopes

    Directory of Open Access Journals (Sweden)

    van Veelen Peter A

    2006-01-01

    Full Text Available Abstract Background Bread wheat (Triticum aestivum is an important staple food. However, wheat gluten proteins cause celiac disease (CD in 0.5 to 1% of the general population. Among these proteins, the α-gliadins contain several peptides that are associated to the disease. Results We obtained 230 distinct α-gliadin gene sequences from severaldiploid wheat species representing the ancestral A, B, and D genomes of the hexaploid bread wheat. The large majority of these sequences (87% contained an internal stop codon. All α-gliadin sequences could be distinguished according to the genome of origin on the basis of sequence similarity, of the average length of the polyglutamine repeats, and of the differences in the presence of four peptides that have been identified as T cell stimulatory epitopes in CD patients through binding to HLA-DQ2/8. By sequence similarity, α-gliadins from the public database of hexaploid T. aestivum could be assigned directly to chromosome 6A, 6B, or 6D. T. monococcum (A genome sequences, as well as those from chromosome 6A of bread wheat, almost invariably contained epitope glia-α9 and glia-α20, but never the intact epitopes glia-α and glia-α2. A number of sequences from T. speltoides, as well as a number of sequences fromchromosome 6B of bread wheat, did not contain any of the four T cell epitopes screened for. The sequences from T. tauschii (D genome, as well as those from chromosome 6D of bread wheat, were found to contain all of these T cell epitopes in variable combinations per gene. The differences in epitope composition resulted mainly from point mutations. These substitutions appeared to be genome specific. Conclusion Our analysis shows that α-gliadin sequences from the three genomes of bread wheat form distinct groups. The four known T cell stimulatory epitopes are distributed non-randomly across the sequences, indicating that the three genomes contribute differently to epitope content. A systematic

  1. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits

    NARCIS (Netherlands)

    Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; Putten, P.E.L. van der

    2006-01-01

    Heat stress effects on grain dry mass and quality were studied in spring wheat genotypes (Triticum aestivum L.). Three cultivars were chosen with respect to heat tolerance: Lavett (genotype 1), selected for temperate growing conditions and two CIMMYT cultivars, Ciano-79 (genotype 2) and Attila

  2. Do ancient types of wheat have health benefits compared with modern bread wheat?

    Science.gov (United States)

    Shewry, Peter R

    2018-01-01

    A number of studies have suggested that ancient wheats have health benefits compared with modern bread wheat. However, the mechanisms are unclear and limited numbers of genotypes have been studied, with a particular focus on Kamut ® (Khorasan wheat). This is important because published analyses have shown wide variation in composition between genotypes, with further effects of growth conditions. The present article therefore critically reviews published comparisons of the health benefits of ancient and modern wheats, in relation to the selection and growth of the lines, including dietary interventions and comparisons of adverse effects (allergy, intolerance, sensitivity). It is concluded that further studies are urgently required, particularly from a wider range of research groups, but also on a wider range of genotypes of ancient and modern wheat species. Furthermore, although most published studies have made efforts to ensure the comparability of material in terms of growth conditions and processing, it is essential that these are standardised in future studies and this should perhaps be a condition of publication.

  3. A wheat cinnamyl alcohol dehydrogenase TaCAD12 contributes to host resistance to the sharp eyespot disease

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2016-11-01

    Full Text Available Sharp eyespot, caused mainly by the necrotrophic fungus Rhizoctonia cerealis, is a destructive disease in hexaploid wheat (Triticum aestivum L.. In Arabidopsis, certain cinnamyl alcohol dehydrogenases (CADs have been implicated in monolignol biosynthesis and in defense response to bacterial pathogen infection. However, little is known about CADs in wheat defense responses to necrotrophic or soil-borne pathogens. In this study, we isolate a wheat CAD gene TaCAD12 in response to R. cerealis infection through microarray-based comparative transcriptomics, and study the enzyme activity and defense role of TaCAD12 in wheat. The transcriptional levels of TaCAD12 in sharp eyespot-resistant wheat lines were significantly higher compared with those in susceptible wheat lines. The sequence and phylogenetic analyses revealed that TaCAD12 belongs to IV group in CAD family. The biochemical assay proved that TaCAD12 protein is an authentic CAD enzyme and possesses catalytic efficiencies towards both coniferyl aldehyde and sinapyl aldehyde. Knock-down of TaCAD12 transcript significantly repressed resistance of the gene-silenced wheat plants to sharp eyespot caused by R. cerealis, whereas TaCAD12 overexpression markedly enhanced resistance of the transgenic wheat lines to sharp eyespot. Furthermore, certain defense genes (Defensin, PR10, PR17c, and Chitinase1 and monolignol biosynthesis-related genes (TaCAD1, TaCCR, and TaCOMT1 were up-regulated in the TaCAD12-overexpressing wheat plants but down-regulated in TaCAD12-silencing plants. These results suggest that TaCAD12 positively contributes to resistance against sharp eyespot through regulation of the expression of certain defense genes and monolignol biosynthesis-related genes in wheat.

  4. Simultaneous modification of three homoeologs of TaEDR1 by genome editing enhances powdery mildew resistance in wheat.

    Science.gov (United States)

    Zhang, Yunwei; Bai, Yang; Wu, Guangheng; Zou, Shenghao; Chen, Yongfang; Gao, Caixia; Tang, Dingzhong

    2017-08-01

    Wheat (Triticum aestivum L.) incurs significant yield losses from powdery mildew, a major fungal disease caused by Blumeria graminis f. sp. tritici (Bgt). enhanced disease resistance1 (EDR1) plays a negative role in the defense response against powdery mildew in Arabidopsis thaliana; however, the edr1 mutant does not show constitutively activated defense responses. This makes EDR1 an ideal target for approaches using new genome-editing tools to improve resistance to powdery mildew. We cloned TaEDR1 from hexaploid wheat and found high similarity among the three homoeologs of EDR1. Knock-down of TaEDR1 by virus-induced gene silencing or RNA interference enhanced resistance to powdery mildew, indicating that TaEDR1 negatively regulates powdery mildew resistance in wheat. We used CRISPR/Cas9 technology to generate Taedr1 wheat plants by simultaneous modification of the three homoeologs of wheat EDR1. No off-target mutations were detected in the Taedr1 mutant plants. The Taedr1 plants were resistant to powdery mildew and did not show mildew-induced cell death. Our study represents the successful generation of a potentially valuable trait using genome-editing technology in wheat and provides germplasm for disease resistance breeding. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  5. Improved wheat for baking.

    Science.gov (United States)

    Faridi, H; Finley, J W

    1989-01-01

    To bakers, wheat quality means the performance characteristics of the flour milled from the wheat when used in specific wheat products. The tremendous increase in the number of wheat cultivars grown in the U.S. in recent years, along with the unusual climate, new advances in milling technology, and increased automation of baking lines, have resulted in bakery production problems partly attributed to wheat flour quality. In this review various factors affecting wheat quality are explained. Concerns of bread and cookie/cracker manufacturers on deterioration of the wheat quality are discussed, and, finally, some solutions are proposed.

  6. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Duan Jialei

    2012-08-01

    Full Text Available Abstract Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq. The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.

  7. Ancestral QTL alleles from wild emmer wheat improve drought resistance and productivity in modern wheat cultivars

    Directory of Open Access Journals (Sweden)

    Lianne eMerchuk-Ovnat

    2016-04-01

    Full Text Available Wild emmer wheat (Triticum turgidum ssp. dicoccoides is considered a promising source for improving stress resistances in domesticated wheat. Here we explored the potential of selected quantitative trait loci (QTLs from wild emmer wheat, introgressed via marker-assisted selection, to enhance drought resistance in elite durum (T. turgidum ssp. durum and bread (T. aestivum wheat cultivars. The resultant near-isogenic lines (BC3F3 and BC3F4 were genotyped using SNP array to confirm the introgressed genomic regions and evaluated in two consecutive years under well-watered (690–710 mm and water-limited (290–320 mm conditions. Three of the introgressed QTLs were successfully validated, two in the background of durum wheat cv. Uzan (on chromosomes 1BL and 2BS, and one in the background of bread wheat cvs. Bar Nir and Zahir (chromosome 7AS. In most cases, the QTL x environment interaction was validated in terms of improved grain yield and biomass - specifically under drought (7AS QTL in cv. Bar Nir background, under both treatments (2BS QTL, and a greater stability across treatments (1BL QTL. The results provide a first demonstration that introgression of wild emmer QTL alleles can enhance productivity and yield stability across environments in domesticated wheat, thereby enriching the modern gene pool with essential diversity for the improvement of drought resistance.

  8. Grain filling parameters and yield components in wheat

    OpenAIRE

    Brdar Milka; Kobiljski Borislav; Balalić-Kraljević Marija

    2006-01-01

    Grain yield of wheat (Triticum aestivum L.) is influenced by number of grains per unit area and grain weight, which is result of grain filling duration and rate. The aim of the study was to investigate the relationships between grain filling parameters in 4 wheat genotypes of different earliness and yield components. Nonlinear regression estimated and observed parameters were analyzed. Rang of estimated parameters corresponds to rang of observed parameters. Stepwise MANOVA indicated that the ...

  9. A SNP-Based Molecular Barcode for Characterization of Common Wheat.

    Directory of Open Access Journals (Sweden)

    LiFeng Gao

    Full Text Available Wheat is grown as a staple crop worldwide. It is important to develop an effective genotyping tool for this cereal grain both to identify germplasm diversity and to protect the rights of breeders. Single-nucleotide polymorphism (SNP genotyping provides a means for developing a practical, rapid, inexpensive and high-throughput assay. Here, we investigated SNPs as robust markers of genetic variation for typing wheat cultivars. We identified SNPs from an array of 9000 across a collection of 429 well-known wheat cultivars grown in China, of which 43 SNP markers with high minor allele frequency and variations discriminated the selected wheat varieties and their wild ancestors. This SNP-based barcode will allow for the rapid and precise identification of wheat germplasm resources and newly released varieties and will further assist in the wheat breeding program.

  10. Transfer of genes for stem rust resistance from Agropyron elongatum and imperial rye to durum wheat

    International Nuclear Information System (INIS)

    Prabhakara Rao, M.V.

    1977-01-01

    The Agropyron elongatum gene for stem rust resistance on chromosome 6A of Knott's Thatcher translocation line was transferred to a susceptible local durum wheat variety, Jaya, through a series of back-crosses. Plants heterozygous for the Agropyron translocation always show at least one open bivalent. Homozygotes have not been obtained, probably because of the absence of male transmission in durum background. Monotelosomic addition of the short arm of Imperial rye chromosome 3R (formerly ''G'' of Sears), which carries a gene(s) for resistance to wheat stem rust, was obtained in the local durum variety. Rust-resistant plants from parents having the added rye telocentric were irradiated with gamma rays just before meiosis, and the pollen obtained from the irradiated spikes was used to pollinate euploid plants. In addition, seeds harvested from 2n+1 resistant plants were irradiated with thermal neutrons and the resistant M 1 plants were selfed to raise M 2 families. Two durum-rye translocation lines were obtained following irradiation. DRT-1 was transmitted normally through the female gametes but showed no male transmission. As a result of this, homozygotes have not been obtained. Gametic transmission rates of DRT-2 are being tested. Alien translocations, which show normal gametic and zygotic transmissions in the hexaploid wheat, may behave differently in a tetraploid background. The results indicate that alien genetic transfers may be more difficult to obtain in durum wheat, probably owing to the reduced buffering effect of the tetraploid genome. (author)

  11. Desmanthus GENOTYPES

    Directory of Open Access Journals (Sweden)

    JOSÉ HENRIQUE DE ALBUQUERQUE RANGEL

    2015-01-01

    Full Text Available Desmanthus is a genus of forage legumes with potential to improve pastures and livestock produc-tion on clay soils of dry tropical and subtropical regions such as the existing in Brazil and Australia. Despite this patterns of natural or enforced after-ripening of Desmanthus seeds have not been well established. Four year old seed banks of nine Desmanthus genotypes at James Cook University were accessed for their patterns of seed softe-ning in response to a range of temperatures. Persistent seed banks were found to exist under all of the studied ge-notypes. The largest seeds banks were found in the genotypes CPI 78373 and CPI 78382 and the smallest in the genotypes CPI’s 37143, 67643, and 83563. An increase in the percentage of softened seeds was correlated with higher temperatures, in two patterns of response: in some accessions seeds were not significantly affected by tempe-ratures below 80º C; and in others, seeds become soft when temperature rose to as little as 60 ºC. At 80 °C the heat started to depress germination. High seed production of Desmanthus associated with dependence of seeds on eleva-ted temperatures to softening can be a very important strategy for plants to survive in dry tropical regions.

  12. Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat.

    Science.gov (United States)

    Placido, Dante F; Campbell, Malachy T; Folsom, Jing J; Cui, Xinping; Kruger, Greg R; Baenziger, P Stephen; Walia, Harkamal

    2013-04-01

    Root architecture traits are an important component for improving water stress adaptation. However, selection for aboveground traits under favorable environments in modern cultivars may have led to an inadvertent loss of genes and novel alleles beneficial for adapting to environments with limited water. In this study, we elucidate the physiological and molecular consequences of introgressing an alien chromosome segment (7DL) from a wild wheat relative species (Agropyron elongatum) into cultivated wheat (Triticum aestivum). The wheat translocation line had improved water stress adaptation and higher root and shoot biomass compared with the control genotypes, which showed significant drops in root and shoot biomass during stress. Enhanced access to water due to higher root biomass enabled the translocation line to maintain more favorable gas-exchange and carbon assimilation levels relative to the wild-type wheat genotypes during water stress. Transcriptome analysis identified candidate genes associated with root development. Two of these candidate genes mapped to the site of translocation on chromosome 7DL based on single-feature polymorphism analysis. A brassinosteroid signaling pathway was predicted to be involved in the novel root responses observed in the A. elongatum translocation line, based on the coexpression-based gene network generated by seeding the network with the candidate genes. We present an effective and highly integrated approach that combines root phenotyping, whole-plant physiology, and functional genomics to discover novel root traits and the underlying genes from a wild related species to improve drought adaptation in cultivated wheat.

  13. Comparative proteomic study on Brassica hexaploid and its parents provides new insights into the effects of polyploidization.

    Science.gov (United States)

    Shen, Yanyue; Zhang, Yu; Zou, Jun; Meng, Jinling; Wang, Jianbo

    2015-01-01

    Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. Although genomic and transcriptomic changes have been observed in polyploids, the effects of polyploidization on proteomic divergence are poorly understood. In this study, we reported quantitative analysis of proteomic changes in leaves of Brassica hexaploid and its parents using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with mass spectrometry. A total of 2044 reproducible proteins were quantified by at least two unique peptides. We detected 452 proteins differentially expressed between Brassica hexaploid and its parents, and 100 proteins were non-additively expressed in Brassica hexaploid, which suggested a trend of non-additive protein regulation following genomic merger and doubling. Functional categories of cellular component biogenesis, immune system process, and response to stimulus, were significantly enriched in non-additive proteins, probably providing a driving force for variation and adaptation in allopolyploids. In particular, majority of the total 452 differentially expressed proteins showed expression level dominance of one parental expression, and there was an expression level dominance bias toward the tetraploid progenitor. In addition, the percentage of differentially expressed proteins that matched previously reported differentially genes were relatively low. This study aimed to get new insights into the effects of polyploidization on proteomic divergence. Using iTRAQ LC-MS/MS technology, we identified 452 differentially expressed proteins between allopolyploid and its parents which involved in response to stimulus, multi-organism process, and immune system process, much more than previous studies using 2-DE coupled with mass spectrometry technology. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in allopolyploid and its parents, which will lead to a better understanding of

  14. Identification and characterization of more than 4 million intervarietal SNPs across the group 7 chromosomes of bread wheat.

    Science.gov (United States)

    Lai, Kaitao; Lorenc, Michał T; Lee, Hong Ching; Berkman, Paul J; Bayer, Philipp Emanuel; Visendi, Paul; Ruperao, Pradeep; Fitzgerald, Timothy L; Zander, Manuel; Chan, Chon-Kit Kenneth; Manoli, Sahana; Stiller, Jiri; Batley, Jacqueline; Edwards, David

    2015-01-01

    Despite being a major international crop, our understanding of the wheat genome is relatively poor due to its large size and complexity. To gain a greater understanding of wheat genome diversity, we have identified single nucleotide polymorphisms between 16 Australian bread wheat varieties. Whole-genome shotgun Illumina paired read sequence data were mapped to the draft assemblies of chromosomes 7A, 7B and 7D to identify more than 4 million intervarietal SNPs. SNP density varied between the three genomes, with much greater density observed on the A and B genomes than the D genome. This variation may be a result of substantial gene flow from the tetraploid Triticum turgidum, which possesses A and B genomes, during early co-cultivation of tetraploid and hexaploid wheat. In addition, we examined SNP density variation along the chromosome syntenic builds and identified genes in low-density regions which may have been selected during domestication and breeding. This study highlights the impact of evolution and breeding on the bread wheat genome and provides a substantial resource for trait association and crop improvement. All SNP data are publically available on a generic genome browser GBrowse at www.wheatgenome.info. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  15. An Advanced Backcross Population through Synthetic Octaploid Wheat as a “Bridge”: Development and QTL Detection for Seed Dormancy

    Directory of Open Access Journals (Sweden)

    Zhang Dale

    2017-12-01

    Full Text Available The seed dormancy characteristic is regarded as one of the most critical factors for pre-harvest sprouting (PHS resistance. As a wild wheat relative species, Aegilops tauschii is a potential genetic resource for improving common wheat. In this study, an advanced backcross population (201 strains containing only Ae. tauschii segments was developed by means of synthetic octaploid wheat (hexaploid wheat Zhoumai 18 × Ae. tauschii T093. Subsequently, seed dormancy rate (Dor in the advanced backcross population was evaluated on the day 3, 5 and 7, in which 2 major QTLs (QDor-2D and QDor-3D were observed on chromosomes 2D and 3D with phenotypic variance explained values (PVEs of 10.25 and 20.40%, respectively. Further investigation revealed significant correlation between QDor-3D and Tamyb10 gene, while no association was found between the former and TaVp1 gene, implying that QDor-3D site could be of closer position to Tamyb10. The obtained quantitative trait locus sites (QTLs in this work could be applied to develop wheat cultivars with PHS resistance.

  16. Genetic improvement of drought tolerance in semi-dwarf wheat

    International Nuclear Information System (INIS)

    Sial, M.A.; Laghari, K.A.

    2012-01-01

    Water stress is one of the main environmental constraints for the wheat crop. Drought stress from anthesis to maturity, especially if accompanied by heat stress, affects every morphological and physiological aspect of wheat plant and significantly reduces final yield. Genetic improvement for drought tolerance in wheat could be possible through conventional and mutation breeding tools. There is a dire need to identify stress tolerant genotypes which can grow and flourish well under harsh environments (low water requirements). Twelve newly evolved bread wheat genotypes alongwith 3 drought-tolerant commercial check varieties, viz., Sarsabz, Khirman and Chakwal-86 were screened under three water stresses (zero, single and two irrigations). Different yield associated traits were studied. At severe water stress (zero irrigation), six genotypes (BWM-3, NIA-8/7, NIA-9/5, NIA-28/4, NIA-25/5, MSH-36) produced significantly higher grain yield (ranged from 1522 to 2022 kg/ha) than check varieties. These genotypes had higher seed index and less spike sterility at severe stress, which indicated that these genotypes were less responsive to water stress and possessed more tolerance to drought stress. (author)

  17. EFFECTS OF DIFFERENT GROWING CONDITIONS ON THE MORPHOLOGICAL FEATURES OF THE SPIKE OF HEXAPLOID TRITICALE

    Directory of Open Access Journals (Sweden)

    K. U. Kurkiev

    2016-01-01

    Full Text Available Aim. The aim is to study the effect of different environmental conditions on the morphological traits of the spike of hexaploid triticale varieties.Methods. We analyzed 507 samples of triticale of various eco-geographical origins, in different years of study and at different seeding times. To investigate the influence of environmental conditions on the phenotypic expression of the studied traits we held a comparative analysis of the spike of two years and, in addition, of spring triticale during winter and spring crops. Analysis on the features was carried out on the main spikes. We studied the following morphological characteristics of the spike: length, number of spikelets and density.Results and discussion. The study of differences in individual variety samples showed that more than 60% triticale samples had significant differences in the length of the spike, depending on the weather conditions of the year – with the winter crops number of spikelets per spike was significantly higher than with the spring crops. A comparative analysis of the impact of the weather conditions of the year on triticale showed that significant differences in the density of the spike were observed in less than 30%.Conclusion. Study of the influence of conditions of the year and sowing dates on the main features of the spike of triticale showed that the density of the spike is the least affected by the external environment. The length of the spikes and the number of spikelets per spike differed significantly when growing in a various conditions.

  18. TaCPK2-A, a calcium-dependent protein kinase gene that is required for wheat powdery mildew resistance enhances bacterial blight resistance in transgenic rice.

    Science.gov (United States)

    Geng, Shuaifeng; Li, Aili; Tang, Lichuan; Yin, Lingjie; Wu, Liang; Lei, Cailin; Guo, Xiuping; Zhang, Xin; Jiang, Guanghuai; Zhai, Wenxue; Wei, Yuming; Zheng, Youliang; Lan, Xiujin; Mao, Long

    2013-08-01

    Calcium-dependent protein kinases (CPKs) are important Ca2+ signalling components involved in complex immune and stress signalling networks; but the knowledge of CPK gene functions in the hexaploid wheat is limited. Previously, TaCPK2 was shown to be inducible by powdery mildew (Blumeria graminis tritici, Bgt) infection in wheat. Here, its functions in disease resistance are characterized further. This study shows the presence of defence-response and cold-response cis-elements on the promoters of the A subgenome homoeologue (TaCPK2-A) and D subgenome homoeologue (TaCPK2-D), respectively. Their expression patterns were then confirmed by quantitative real-time PCR (qRT-PCR) using genome-specific primers, where TaCPK2-A was induced by Bgt treatment while TaCPK2-D mainly responded to cold treatment. Downregulation of TaCPK2-A by virus-induced gene silencing (VIGS) causes loss of resistance to Bgt in resistant wheat lines, indicating that TaCPK2-A is required for powdery mildew resistance. Furthermore, overexpression of TaCPK2-A in rice enhanced bacterial blight (Xanthomonas oryzae pv. oryzae, Xoo) resistance. qRT-PCR analysis showed that overexpression of TaCPK2-A in rice promoted the expression of OsWRKY45-1, a transcription factor involved in both fungal and bacterial resistance by regulating jasmonic acid and salicylic acid signalling genes. The opposite effect was found in wheat TaCPK2-A VIGS plants, where the homologue of OsWRKY45-1 was significantly repressed. These data suggest that modulation of WRKY45-1 and associated defence-response genes by CPK2 genes may be the common mechanism for multiple disease resistance in grass species, which may have undergone subfunctionalization in promoters before the formation of hexaploid wheat.

  19. Molecular, Physicochemical and Rheological Characteristics of Introgressive Triticale/Triticum monococcum ssp. monococcum Lines with Wheat 1D/1A Chromosome Substitution

    Directory of Open Access Journals (Sweden)

    Lidia Błaszczyk

    2013-07-01

    Full Text Available Three sets of hexaploid introgressive triticale lines, with Triticum monococcum ssp. monococcum (cultivated einkorn wheat genes and a bread wheat chromosome 1D substituted for chromosome 1A, and one set of secondary triticale lines were evaluated for grain and flour physicochemical and dough rheological characteristics in two generations (F7 and F8. Genomic in situ hybridization (GISH and fluorescence in situ hybridization (FISH confirmed the 1D/1A chromosome substitution. The presence or absence of einkorn high-molecular-weight (HMW glutenin subunits and the wheat Glu-D1d locus encoding the 5 + 10 subunits was assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE, capillary zone electrophoresis, and allele-specific molecular markers. Significant differences were found among physicochemical properties (with the exception of the Hagberg falling number of all introgressive Triticale/T. monococcum lines and the secondary triticale lines. The wheat 1D/1A chromosome substitution also affected these properties. The results showed that in all introgressive triticale lines, the protein and gluten content, Zeleny sedimentation value, and water absorption capacity, were increased. The rheological parameters estimated using micro-farinograph, reomixer, and Kieffer dough extensibility systems also showed an appreciable increase in dough-mixing properties, maximum resistance to extension (Rmax, and dough extensibility. Introgressive Triticale/T. monococcum lines with 5 + 10 subunits have particularly favorable rheological parameters. The results obtained in this study suggest that the cultivated einkorn genome Am, in the context of hexaploid secondary triticale lines and with a wheat 1D/1A substitution, has the potential to improve gluten polymer interactions and be a valuable genetic resource for triticale quality improvement.

  20. Comparative assessment of wheat landraces against polyethylene glycol simulated drought stress

    International Nuclear Information System (INIS)

    Jatoi, S.A.; Latif, M.M.; Arif, M.; Ahson, M.; Siddiqui, S.U.

    2014-01-01

    Current investigation reports a comparative assessment and relative performance of 10 wheat accessions including check variety Inqilab-91 against polyethylene glycol (PEG) simulated drought stress at seedling. Wheat genotypes were tested against 0, 19, 21, 23 and 25% solutions of PEG 6000. The young seedlings were observed for germination (%) and root length (cm). In general, a decrease in germination percentage was observed with the increase in PEG concentration. All the investigated wheat genotypes performed better than the check variety Inqilab-91. The wheat accession 18699 that had more than 30% surviving seedlings at the highest concentration of used PEG was rated as the tolerant genotype. On the other hand, 18671 and 18698 appeared to be less tolerant having less than 5% germination at 25% PEG. Similarly, the root length decreased with the increase in PEG concentrations. The mean root length of all the wheat accessions, which were studied, was comparatively less affected than the control (Inqilab-91). The wheat genotypes 18670 and 18671 were the better performers than the rest of genotypes investigated and belonged to rainfed area of the Pothowar region. A detailed investigation of these genotypes in the field conditions is suggested. (author)

  1. THE INFLUENCE OF SOWING TERM ON THE DURUM WHEAT INDUCTION ABILITY IN SOUTH UKRAINE

    Directory of Open Access Journals (Sweden)

    Zambriborsh I. S.

    2014-08-01

    Full Text Available The sowing term of spring durum wheat influence on the induction ability in the South Ukraine was evaluated. Wheat was sowed in two terms: April, 11 and April, 18 of 2013. Two sowing term were different in the growing conditions. The second term is characterized with higher temperature and lower soil humidity during wheat germination and growing. Wheat spikes were cut in appropriate microspore development stage according to standard protocol. Anthers were cultivated on different cultural media. We used standard protocols as well as our own improved protocols of media preparation. The level of sowing term and plant culture media on the induction ability of different wheat genotypes was estimated. Stress growing conditions increased the induction ability of durum wheat. The new formation percentage was higher for the second sowing term wheat on different media. However it was shown that the level of sowing term influence was lower on appropriate cultural media.

  2. Development and characterization of a new TILLING population of common bread wheat (Triticum aestivum L..

    Directory of Open Access Journals (Sweden)

    Liang Chen

    Full Text Available Mutagenesis is an important tool in crop improvement. However, the hexaploid genome of wheat (Triticum aestivum L. presents problems in identifying desirable genetic changes based on phenotypic screening due to gene redundancy. TILLING (Targeting Induced Local Lesions IN Genomes, a powerful reverse genetic strategy that allows the detection of induced point mutations in individuals of the mutagenized populations, can address the major challenge of linking sequence information to the biological function of genes and can also identify novel variation for crop breeding. Wheat is especially well-suited for TILLING due to the high mutation densities tolerated by polyploids. However, only a few wheat TILLING populations are currently available in the world, which is far from satisfying the requirement of researchers and breeders in different growing environments. In addition, current TILLING screening protocols require costly fluorescence detection systems, limiting their use, especially in developing countries. We developed a new TILLING resource comprising 2610 M(2 mutants in a common wheat cultivar 'Jinmai 47'. Numerous phenotypes with altered morphological and agronomic traits were observed from the M(2 and M(3 lines in the field. To simplify the procedure and decrease costs, we use unlabeled primers and either non-denaturing polyacrylamide gels or agarose gels for mutation detection. The value of this new resource was tested using PCR with RAPD and Intron-spliced junction (ISJ primers, and also TILLING in three selected candidate genes, in 300 and 512 mutant lines, revealing high mutation densities of 1/34 kb by RAPD/ISJ analysis and 1/47 kb by TILLING. In total, 31 novel alleles were identified in the 3 targeted genes and confirmed by sequencing. The results indicate that this mutant population represents a useful resource for the wheat research community. We hope that the use of this reverse genetics resource will provide novel allelic

  3. Radiation-induced chromosome breakages in bread wheat (Triticum aestivum L.)

    International Nuclear Information System (INIS)

    Larik, A.S.

    1975-01-01

    Meiosis and pollen fertility were studied in the M 2 generation in four varieties of hexaploid wheat. Meiosis was characterized by the formation of interchange configurations, such as rings and chains of four chromosomes in several cells. Chromosomal aberrations showed linear relationship with gamma irradiation; 45 kR dose induced the highest chromosomal abnormalities. Most multivalents were interchange rings of four chromosomes. Translocations involving two pairs of homologous or nonhomologous chromosomes seemed to be higher in frequency than those involving more than two pairs of chromosomes. Anaphase abnormalities, such as laggards, bridges and fragments and unequal segregation of chromosomes, were frequently observed. Pollen fertility was considerably reduced in the M 2 plants arising form the treatments of higher doses of gamma rays because of the induced chromosome interchanges. (author)

  4. Mixtures of genetically modified wheat lines outperform monocultures

    OpenAIRE

    Zeller, Simon L; Kalinina, Olena; Flynn, Dan F B; Schmid, Bernhard

    2012-01-01

    Biodiversity research shows that diverse plant communities are more stable and productive than monocultures. Similarly, populations in which genotypes with different pathogen resistance are mixed may have lower pathogen levels and thus higher productivity than genetically uniform populations. We used genetically modified (GM) wheat as a model system to test this prediction, because it allowed us to use genotypes that differed only in the trait pathogen resistance but were otherwise identical....

  5. Estudio de parámetros hídricos foliares en trigo (Triticum aestivum L. y su uso en selección de genotipos resistentes a sequía Leaf water parameters of wheat (Triticum aestivum L. and their use in the selection of drought resistant genotypes

    Directory of Open Access Journals (Sweden)

    MAURICIO ORTIZ

    2003-06-01

    , CRA y AO, y otra que consideró la pendiente y el promedio de psish y CRA. Luego se correlacionó el orden de los genotipos de ambas selecciones con los ordenes establecidos para los métodos de calculo de AO y se estableció que el orden que considera la pendiente y el promedio de ysh, CRA y AO se correlaciona con los ordenes establecidos por los tres métodos de cálculo de AO. Los parámetros hídricos foliares CRA, psish y AO no estuvieron correlacionados con el rendimiento bajo estrés hídrico. La pendiente de psish se correlacionó negativamente con el rendimiento, lo que indica que el AO permite a la planta sobrevivir al estrés pero no tener mayor rendimiento. Se concluye que con la metodología utilizada es posible seleccionar genotipos resistentes a sequía en base a la pendiente y el promedio de los parámetros psish, CRA y AO obtenidos en campo, removiendo parte del ruido ambientalThe leaf water parameters ys (solute potential, RWC (relative water content and OA (osmotic adjustment characterize the response of plants to water stress and presumably allow the identification of better adapted genotypes. These parameters, however, are highly influenced by the environment what makes their analysis difficult. In this work we hypothesize that it is possible to characterize and select drought resistant wheat genotypes based on the field value of the leaf water parameters using the appropriate analytical techniques. Thirty one wheat (Triticum aestivum L. genotypes were grown in two field trials, one irrigated and one non-irrigated that received 218.3 mm of winter rain. The statistical design was a randomized complete block with two replicates. Between 77 and 121 days after emergence (DC 41 to DC 77, five samplings of relative water content (RWC and solute potential of hydrated flag leaves (psish were made in each replication of each trial (10 observations per trial. The replicates were sampled in alternate days with a 24-h interval between 12:00 and 14:00 h

  6. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  7. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat.

    Science.gov (United States)

    Joukhadar, Reem; Daetwyler, Hans D; Bansal, Urmil K; Gendall, Anthony R; Hayden, Matthew J

    2017-01-01

    Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT) germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to assist with

  8. Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes

    Directory of Open Access Journals (Sweden)

    McGuire Patrick E

    2010-12-01

    Full Text Available Abstract Background A genome-wide assessment of nucleotide diversity in a polyploid species must minimize the inclusion of homoeologous sequences into diversity estimates and reliably allocate individual haplotypes into their respective genomes. The same requirements complicate the development and deployment of single nucleotide polymorphism (SNP markers in polyploid species. We report here a strategy that satisfies these requirements and deploy it in the sequencing of genes in cultivated hexaploid wheat (Triticum aestivum, genomes AABBDD and wild tetraploid wheat (Triticum turgidum ssp. dicoccoides, genomes AABB from the putative site of wheat domestication in Turkey. Data are used to assess the distribution of diversity among and within wheat genomes and to develop a panel of SNP markers for polyploid wheat. Results Nucleotide diversity was estimated in 2114 wheat genes and was similar between the A and B genomes and reduced in the D genome. Within a genome, diversity was diminished on some chromosomes. Low diversity was always accompanied by an excess of rare alleles. A total of 5,471 SNPs was discovered in 1791 wheat genes. Totals of 1,271, 1,218, and 2,203 SNPs were discovered in 488, 463, and 641 genes of wheat putative diploid ancestors, T. urartu, Aegilops speltoides, and Ae. tauschii, respectively. A public database containing genome-specific primers, SNPs, and other information was constructed. A total of 987 genes with nucleotide diversity estimated in one or more of the wheat genomes was placed on an Ae. tauschii genetic map, and the map was superimposed on wheat deletion-bin maps. The agreement between the maps was assessed. Conclusions In a young polyploid, exemplified by T. aestivum, ancestral species are the primary source of genetic diversity. Low effective recombination due to self-pollination and a genetic mechanism precluding homoeologous chromosome pairing during polyploid meiosis can lead to the loss of diversity from large

  9. The Effect of Zinc Fertilizer Application on Grain Yield of Different Zinc-Efficient Spring and Winter Wheat Cultivars

    Directory of Open Access Journals (Sweden)

    M. Malian

    2014-08-01

    Full Text Available These field trials were carried out to investigate the effect of various zinc (Zn fertilizer application treatments on grain yield of some spring (Isfahan and Neishabour and winter wheat cultivars (Mashhad and Jolge-e-Rokh with different Zn efficiency during 2009-2010 growth seasons. Five Zn fertilizer treatments were applied including: no added Zn (control, soil application of Zn-sulfate, and foliar spray of Zn-sulfate, Omex1, and Omex2. Omex1 and Omex2 contained 4 and 17% Zn, respectively. Foliar spray was performed at the anthesis stage. Both spring and winter wheat genotypes significantly differed in grain yield. The results showed that wheat genotypes largely varied in their grain yield response to different Zn application treatments. Some spring (Sholeh in Isfahan and winter (Sabalan in Jolg-e-Rokh wheat genotypes had greater response to Zn fertilization so that Zn addition increased grain yield of Sholeh by 48% and Sabalan by 17% as compared with no added Zn control. In contrast, Zn addition had no effect on grain yield of some other genotypes. Yield response of wheat genotypes to Zn application treatments significantly varied upon location. According to the results obtained from this study, the efficacy of Zn fertilizer treatments on grain yield of wheat is dependent on the genotype and location. Therefore, this concern should be considered in fertilizer recommendation programs that a specific Zn fertilizer treatment may not be recommended for all wheat cultivars and locations.

  10. Resposta de genótipos de trigo à inoculação de bactérias diazotróficas em condições de campo Wheat genotypes response to inoculation of diazotrophic bacteria in field conditions

    Directory of Open Access Journals (Sweden)

    Valéria Marino Rodrigues Sala

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar, em condições de campo, o efeito e a viabilidade econômica da inoculação de novos isolados homólogos de bactérias diazotróficas endofíticas, sob diferentes doses de nitrogênio, em dois genótipos de trigo, em duas localidades. Foram utilizados: três isolados de bactérias diazotróficas endofíticas (IAC-AT-8, Azospirillum brasilense; IAC-HT-11, Achromobacter insolitus; IAC-HT-12, Zoogloea ramigera, dois genótipos de trigo (ITD-19 e IAC-370 e três doses de N, na forma de uréia (0, 60 e 120 kg ha-1. No estádio de quatro folhas e no perfilhamento, foram avaliados a massa de matéria seca e o N acumulado na parte aérea. Na colheita, foram avaliados o teor de N, a massa de 1.000 sementes e a produtividade de grãos. A inoculação promoveu maior massa de matéria seca e N acumulado e aumentou a produtividade de grãos, principalmente na presença de adubo nitrogenado, com lucro para o agricultor. Entretanto, o maior aumento na produtividade de grãos foi obtido nas plantas do genótipo IAC-370, com o emprego do isolado IAC-HT-12, na ausência de N, que superou em 45% o tratamento testemunha. As respostas variaram em relação ao local de cultivo, o que sugere expressiva interação planta-bactéria-ambiente.The aim of this work was to evaluate, in field conditions, the effect and the economic viability of inoculation of new homologous strains endophytic diazotrophic bacteria, under different nitrogen doses on two wheat genotypes. Three strains of diazotrophic bacteria (IAC-AT-8, Azospirillum brasilense; IAC-HT-11, Achromobacter insolitus; IAC-HT-12, Zoogloea ramigera, two wheat genotypes (ITD-19 and IAC-370, and three levels of nitrogen fertilizer as urea (0, 60 e 120 kg ha-1 were tested. Shoot dry matter and total shoot nitrogen were evaluated, at four leaves and at tillering stages. Nitrogen concentration in the grain, 1,000 grains weight and yield were evaluated at harvest. Plants with

  11. Field Screening of Waterlogging Tolerance in Spring Wheat and Spring Barley

    Directory of Open Access Journals (Sweden)

    Tove Kristina Sundgren

    2018-03-01

    Full Text Available Improved waterlogging tolerance of wheat and barley varieties may alleviate yield constraints caused by heavy or long-lasting precipitation. The waterlogging tolerance of 181 wheat and 210 barley genotypes was investigated in field trials between 2013 and 2014. A subset of wheat genotypes were selected for yield trials in 2015 and 2016. Our aim was to: (1 characterize the waterlogging tolerance of genotypes with importance for Norwegian wheat and barley breeding, and (2 identify which phenotypic traits that most accurately determine the waterlogging tolerance of wheat in our field trials. Waterlogging tolerance was determined by principal component analysis (PCA where best linear unbiased predictors (BLUPs of the traits chlorosis, relative plant height, heading delay, relative spike number, relative biomass and an overall condition score were used as input variables. Six wheat and five barley genotypes were identified as consistently more tolerant in 2013 and 2014. This included the waterlogging tolerant CIMMYT line CETA/Ae. tauschii (895. Chlorosis and the overall condition score were the traits that best explained the yield response of the genotypes selected for the yield trials. Our results show that early stress symptoms did not necessarily reflect the ability to recover post treatment. Thus, records from full crop cycles appear as fundamental when screening populations with unknown tolerance properties.

  12. Performance of diverse wheat genetic stocks under moisture stress condition

    International Nuclear Information System (INIS)

    Seher, M.; Shabbir, G.; Rasheed, A.

    2015-01-01

    This study was conducted to evaluate divergent wheat germplasm for their performance under drought and control conditions. The germplasm consists of wheat land races of Pakistan, advanced D-genome synthetic derivatives and high yielding varieties of Pakistan. This wide array of germplasm was selected to identify sources, which can be opted later by the wheat breeders while breeding for drought tolerance. The evaluation parameters involved some important physiochemical testing and morphological characteristics in the field under drought and control conditions. Based on these parameters, 13 wheat genotypes were selected on the basis of their best performance regarding morphological and physiological parameters. These genotypes exhibited higher yield under drought stress conditions and increased percentage of proline, sugar, SOD and protein content under laboratory conditions as compared to the susceptible genotypes. Correlation studies revealed that grains per spike (GPS) and thousand grain weight (TGW) had direct relationship with spike length (SL), proline and sugar content under both control and drought conditions. Thus, these parameters can be used as selection criteria for the identification of tolerant genotypes. (author)

  13. Diallel analysis of anther culture response in wheat ( Triticum ...

    African Journals Online (AJOL)

    The four wheat (Triticum aestivum L.) genotypes differing in their ability to produce embryogenic callus from anther culture were reciprocally crossed and inheritance of anther culture response [callus induction frequency (CIF, %), embryogenic callus induction frequency (ECIF, %), regeneration capacity of callus (RCC, %) ...

  14. COMPUTER APPROACHES TO WHEAT HIGH-THROUGHPUT PHENOTYPING

    Directory of Open Access Journals (Sweden)

    Afonnikov D.

    2012-08-01

    Full Text Available The growing need for rapid and accurate approaches for large-scale assessment of phenotypic characters in plants becomes more and more obvious in the studies looking into relationships between genotype and phenotype. This need is due to the advent of high throughput methods for analysis of genomes. Nowadays, any genetic experiment involves data on thousands and dozens of thousands of plants. Traditional ways of assessing most phenotypic characteristics (those with reliance on the eye, the touch, the ruler are little effective on samples of such sizes. Modern approaches seek to take advantage of automated phenotyping, which warrants a much more rapid data acquisition, higher accuracy of the assessment of phenotypic features, measurement of new parameters of these features and exclusion of human subjectivity from the process. Additionally, automation allows measurement data to be rapidly loaded into computer databases, which reduces data processing time.In this work, we present the WheatPGE information system designed to solve the problem of integration of genotypic and phenotypic data and parameters of the environment, as well as to analyze the relationships between the genotype and phenotype in wheat. The system is used to consolidate miscellaneous data on a plant for storing and processing various morphological traits and genotypes of wheat plants as well as data on various environmental factors. The system is available at www.wheatdb.org. Its potential in genetic experiments has been demonstrated in high-throughput phenotyping of wheat leaf pubescence.

  15. Molecular markers associated with salt tolerance in Egyptian wheats ...

    African Journals Online (AJOL)

    Salinity affects plant growth by the osmotic stress of the salt around the roots, as well as by toxicity caused by excessive accumulation of salt in leaves. In the present study, seven common (Triticum aestivum) and two durum (T. turgidum ssp. Durum) wheat genotypes were subjected to salt stress for 2 weeks. Salt stress ...

  16. Soluble carbohydrates in cereal (wheat, rye, triticale seed after storage under accelerated ageing conditions

    Directory of Open Access Journals (Sweden)

    Agnieszka I. Piotrowicz-Cieślak

    2011-01-01

    Full Text Available Germinability and the content of soluble carbohydrates were analysed in cereal seed (winter rye, cv. Warko; spring wheat, cv. Santa; hexaploid winter triticale, cv. Fidelio and cv. Woltario. Seed moisture content (mc was equilibrated over silica gel to 0.08 g H2O/g dry mass and stored in a desiccator at 20oC for up to 205 weeks or were equilibrated to mc 0.06, 0.08 or 0.10 g H2O/g dm and subjected to artificial aging at 35oC in air-tight laminated aluminium foil packages for 205 weeks. It was shown that the rate of seed aging depended on the species and seed moisture content. The fastest decrease of germinability upon storage was observed in seed with the highest moisture level. Complete germinability loss for winter rye, winter triticale cv. Fidelio, winter triticale cv. Woltario and spring wheat seed with mc 0.10 g H2O/g dm3 occurred after 81, 81, 101 and 133 weeks, respectively. Fructose, glucose, galactose, myo-inositol, sucrose, galactinol, raffinose, stachyose and verbascose were the main soluble carbohydrates found in the seed. The obtained data on the contents of specific sugars and the composition of soluble sugars fraction in seed of rye, wheat and triticale did not corroborate any profound effect of reducing sugars, sucrose and oligosaccharides on seed longevity.

  17. Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat.

    Science.gov (United States)

    Bonneau, Julien; Baumann, Ute; Beasley, Jesse; Li, Yuan; Johnson, Alexander A T

    2016-12-01

    Nicotianamine (NA) is a non-protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S-adenosyl-L-methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up-regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Influência do ambiente no rendimento e na qualidade de grãos de genótipos de trigo com irrigação por aspersão no Estado de São Paulo Environmental influence on grain yield and grain quality of wheat genotypes with sprinkler irrigation in the State of São paulo, Brazil

    Directory of Open Access Journals (Sweden)

    JOÃO CARLOS FELICIO

    2001-01-01

    Full Text Available Avaliaram-se a influência do ambiente em 20 genótipos de trigo, no rendimento e qualidade de grãos, a adaptabilidade e a reação a doenças, em regiões onde a irrigação se faz necessária para permitir o bom desempenho agronômico de um genótipo. Instalaram-se os experimentos em Tatuí, Votuporanga, Ribeirão Preto e Mococa, Estado de São Paulo, no período de 1995-98. Avaliaram-se, também, a tolerância dos genótipos ao alumínio tóxico em solução nutritiva e a qualidade industrial para panificação. Com bom rendimento de grãos destacaram-se: em Tatuí, os genótipos IAC 351, IAC 335, IAC 289 e Mochis; em Votuporanga, IAC 289, TUI"S" e SERI*3/BUC; em Ribeirão Preto e Mococa, o IAC 370. No conceito de genótipo ideal, o IAC 370 apresentou alta capacidade produtiva, foi responsivo à melhoria do ambiente e sensível às condições desfavoráveis do ambiente. Entre as doenças, a ferrugem-da-folha foi a de abrangência generalizada com maior incidência em Tatuí. Anahuac, IAC 287, CAL/CHKW//VEE"S" e IAC 370 foram os mais suscetíveis ao oídio. Os genótipos Anahuac, IAC 287, JCAM//EMU"S"/YACO"S", PFAU e IAC 339 foram os mais sensíveis à toxicidade por Al3+. Os genótipos Anahuac, IAC 24, IAC 287, IAC 289, IAC 334, PFAU, TUI"S", IAC 339, IAC 370 e IAC 351 apresentaram características de farinha com bom potencial para panificação.Environmental influence was evaluated in 20 wheat genotypes in relation to grain yield and quality, adaptability and disease reaction in regions where irrigation is necessary for good agronomical performance. The experiments were carried out at Tatuí, Votuporanga, Ribeirão Preto, and Mococa in the State of São Paulo, Brazil, during 1995-98. Genotypes were also evaluated for tolerance to aluminum toxicity in nutrient solutions and for industrial quality for bread production. The genotypes IAC 351, IAC 335, IAC 289 and Mochis presented high grain yield in Tatuí; IAC 289, TUI"S" and SERI*3/BUC in

  19. Starch facilitates enzymatic wheat gluten hydrolysis

    NARCIS (Netherlands)

    Hardt, N.A.; Boom, R.M.; Goot, van der A.J.

    2015-01-01

    Wheat gluten can be hydrolyzed by either using (vital) wheat gluten or directly from wheat flour. This study investigates the influence of the presence of starch, the main component of wheat, on enzymatic wheat gluten hydrolysis. Wheat gluten present in wheat flour (WFG) and vital wheat gluten (VWG)

  20. Transfer of Hessian fly resistance from rye to wheat via radiation-induced terminal and intercalary chromosomal translocations

    International Nuclear Information System (INIS)

    Friebe, B.; Hatchett, J.H.; Gill, B.S.; Mukai, Y.; Sebesta, E.E.

    1991-01-01

    A new Hessian fly (Mayetiola destructor) resistance gene derived from 'Balbo' rye and its transfer to hexaploid wheat via radiation-induced terminal and intercalary chromosomal translocations are described. Crosses between resistant 'Balbo' rye and susceptible 'Suwon 92' wheat and between the F1 amphidiploids and susceptible 'TAM 106' and 'Amigo' wheats produced resistant BC2F3 lines that were identified by C-banding analysis as being 6RL telocentric addition lines. Comparative chromosomal analyses and resistance tests revealed that the resistance gene is located on the 6RL telocentric chromosome. X-irradiated pollen of 6RL addition plants was used to fertilize plants of susceptible wheats 'TAM 106,' 'TAM 101,' and 'Vona.' After several generations of selection for resistance, new sublines were obtained that were homogeneous for resistance. Thirteen of these lines were analyzed by C-banding, and three different wheat-6RL chromosomal translocations (T) were identified. Wheat chromosomes involved in the translocations were 6B, 4B, and 4A. Almost the complete 6RL arm is present in T6BS · 6BL-6RL. Only the distal half of 6RL is present in T4BS · 4BL-6RL, which locates the resistance gene in the distal half of 6RL. Only a very small segment (ca 1.0 μm) of the distal region of 6RL is present in an intercalary translocation (Ti) Ti4AS · 4AL-6RL-4AL. The 6RL segment is inserted in the intercalary region between the centromere of chromosome 4A and the large proximal C-band of 4AL. The break-points of the translocations are outside the region of the centromere, indicating that they were induced by the X-ray treatment. All three translocations are cytologically stable and can be used directly in wheat breeding programs

  1. Genetic diversity, population structure and marker-trait associations for agronomic and grain traits in wild diploid wheat Triticum urartu.

    Science.gov (United States)

    Wang, Xin; Luo, Guangbin; Yang, Wenlong; Li, Yiwen; Sun, Jiazhu; Zhan, Kehui; Liu, Dongcheng; Zhang, Aimin

    2017-07-01

    Wild diploid wheat, Triticum urartu (T. urartu) is the progenitor of bread wheat, and understanding its genetic diversity and genome function will provide considerable reference for dissecting genomic information of common wheat. In this study, we investigated the morphological and genetic diversity and population structure of 238 T. urartu accessions collected from different geographic regions. This collection had 19.37 alleles per SSR locus and its polymorphic information content (PIC) value was 0.76, and the PIC and Nei's gene diversity (GD) of high-molecular-weight glutenin subunits (HMW-GSs) were 0.86 and 0.88, respectively. UPGMA clustering analysis indicated that the 238 T. urartu accessions could be classified into two subpopulations, of which Cluster I contained accessions from Eastern Mediterranean coast and those from Mesopotamia and Transcaucasia belonged to Cluster II. The wide range of genetic diversity along with the manageable number of accessions makes it one of the best collections for mining valuable genes based on marker-trait association. Significant associations were observed between simple sequence repeats (SSR) or HMW-GSs and six morphological traits: heading date (HD), plant height (PH), spike length (SPL), spikelet number per spike (SPLN), tiller angle (TA) and grain length (GL). Our data demonstrated that SSRs and HMW-GSs were useful markers for identification of beneficial genes controlling important traits in T. urartu, and subsequently for their conservation and future utilization, which may be useful for genetic improvement of the cultivated hexaploid wheat.

  2. Cause and effect relationship for some biometric traits in bread wheat

    International Nuclear Information System (INIS)

    Cheema, M.N.; Mian, A.M.; Ihsan, M.; Tariq, A.M.; Rabbani, G.; Mahmood, A.

    2005-01-01

    Genotypic and phenotypic correlations and path coefficient analysis were conducted for grains yield and some biometric traits in 25 cross-combinations of break wheat under the rain fed conditions. Significant positive genotypic and phenotypic association was observed between grain yield per plant, and the yield components, such as productive tillers per plant, spike-length, spike lets per spike, grains per spike and 1000-grain weight. The path coefficient analysis revealed that the number of grains per spike and 1000-grain weight had the maximum direct effect on grain yield. These traits may be considered as the selection criteria for developing highly yielding wheat genotypes for rain fed areas. (author)

  3. Genotype-by-environment interaction and grain yield stability of ...

    African Journals Online (AJOL)

    The objective of this paper is to identify stable and high yielding varieties among 20 Ethiopian Bread wheat (Triticum aestivum L.) genotypes on the basis of experiments conducted during the 2007 and 2008 growing seasons. The additive main effects and multiplicative interaction (ammi) model has been used to estimate ...

  4. Field reaction of cassava genotypes to anthracnose, bacterial blight ...

    African Journals Online (AJOL)

    Field reaction of cassava genotypes to anthracnose, bacterial blight, cassava mosaic disease and their effects on yield. ... The BYDV-PAV and BYDV-RPV serotypes were identified from 9 and 10 of the 11 surveyed fields, respectively, with the two serotypes co-infecting some plants. Of the nine wheat cultivars surveyed, four ...

  5. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sun, Tao; Wang, Yan; Wang, Meng; Li, Tingting; Zhou, Yi; Wang, Xiatian; Wei, Shuya; He, Guangyuan; Yang, Guangxiao

    2015-11-04

    Calcineurin B-like (CBL) proteins belong to a unique group of calcium sensors in plant that decode the Ca(2+) signature by interacting with CBL-interacting protein kinases (CIPKs). Although CBL-CIPK complexes have been shown to play important roles in the responses to various stresses in plants, little is known about their functions in wheat. A total of seven TaCBL and 20 TaCIPK genes were amplified from bread wheat, Triticum aestivum cv. Chinese Spring. Reverse-transcriptase-polymerase chain reaction (RT-PCR) and in silico expression analyses showed that TaCBL and TaCIPK genes were expressed at different levels in different tissues, or maintained at nearly constant expression levels during the whole life cycle of the wheat plant. Some TaCBL and TaCIPK genes showed up- or down-regulated expressions during seed germination. Preferential interactions between TaCBLs and TaCIPKs were observed in yeast two-hybrid and bimolecular fluorescence complementation experiments. Analyses of a deletion series of TaCIPK proteins with amino acid variations at the C-terminus provided new insights into the specificity of the interactions between TaCIPKs and TaCBLs, and indicated that the TaCBL-TaCIPK signaling pathway is very complex in wheat because of its hexaploid genome. The expressions of many TaCBLs and TaCIPKs were responsive to abiotic stresses (salt, cold, and simulated drought) and abscisic acid treatment. Transgenic Arabidopsis plants overexpressing TaCIPK24 exhibited improved salt tolerance through increased Na(+) efflux and an enhanced reactive oxygen species scavenging capacity. These results contribute to our understanding of the functions of CBL-CIPK complexes and provide the basis for selecting appropriate genes for in-depth functional studies of CBL-CIPK in wheat.

  6. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale).

    Science.gov (United States)

    Kalinka, Anna; Achrem, Magdalena

    2018-04-01

    The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.

  7. Wheat homologs of yeast ATG6 function in autophagy and are implicated in powdery mildew immunity.

    Science.gov (United States)

    Yue, Jieyu; Sun, Hong; Zhang, Wei; Pei, Dan; He, Yang; Wang, Huazhong

    2015-04-01

    Autophagy-related ATG6 proteins are pleiotropic proteins functioning in autophagy and the phosphatidylinositol 3-phosphate-signaling pathways. Arabidopsis ATG6 regulates normal plant growth, pollen development and germination, and plant responses to biotic/abiotic stresses. However, the ATG6 functions in wheat (Triticum aestivum L.), an important food crop, are lacking. We identified three members, TaATG6a-6c, of the ATG6 family from common wheat. TaATG6a, 6b and 6c were localized on homeologous chromosomes 3DL, 3BL and 3AL, respectively, of the allo-hexaploid wheat genome, and evidence was provided for their essential role in autophagy. The TaATG6a-GFP fusion protein was found in punctate pre-autophagosomal structures. The expression of each TaATG6 gene restored the accumulation of autophagic bodies in atg6-mutant yeast. Additionally, TaATG6 knockdown plants showed impaired constitutive and pathogen-induced autophagy and growth abnormalities under normal conditions. We also examined the expression patterns of wheat ATG6s for clues to their physiological roles, and found that their expression was induced by the fungus Blumeria graminis f. sp. tritici (Bgt), the causal agent of powdery mildew, and by abiotic stress factors. A role for TaATG6s in wheat immunity to powdery mildew was further implied when knockdowns of TaATG6s weakly compromised the broad-spectrum powdery mildew resistance gene Pm21-triggered resistance response and, conversely and significantly, enhanced the basal resistance of susceptible plants. In addition, leaf cell death was sometimes induced by growth-retarded small Bgt mycelia on susceptible TaATG6 knockdown plants after a long period of interaction. Thus, we provide an important extension of the previous characterization of plant ATG6 genes in wheat, and observed a role for autophagy genes in wheat immune responses to fungal pathogens. Three wheat ATG6s were identified and shown to be essential for autophagy biogenesis. Wheat ATG6s are

  8. Characterization of FLOWERING LOCUS T1 (FT1 gene in Brachypodium and wheat.

    Directory of Open Access Journals (Sweden)

    Bo Lv

    Full Text Available The phase transition from vegetative to reproductive growth is a critical event in the life cycle of flowering plants. FLOWERING LOCUS T (FT plays a central role in the regulation of this transition by integrating signals from multiple flowering pathways in the leaves and transmitting them to the shoot apical meristem. In this study, we characterized FT homologs in the temperate grasses Brachypodium distachyon and polyploid wheat using transgenic and mutant approaches. Downregulation of FT1 by RNAi was associated with a significant downregulation of the FT-like genes FT2 and FT4 in Brachypodium and FT2 and FT5 in wheat. In a transgenic wheat line carrying a highly-expressed FT1 allele, FT2 and FT3 were upregulated under both long and short days. Overexpression of FT1 caused extremely early flowering during shoot regeneration in both Brachypodium and hexaploid wheat, and resulted in insufficient vegetative tissue to support the production of viable seeds. Downregulation of FT1 transcripts by RNA interference (RNAi resulted in non-flowering Brachypodium plants and late flowering plants (2-4 weeks delay in wheat. A similar delay in heading time was observed in tetraploid wheat plants carrying mutations for both FT-A1 and FT-B1. Plants homozygous only for mutations in FT-B1 flowered later than plants homozygous only for mutations in FT-A1, which corresponded with higher transcript levels of FT-B1 relative to FT-A1 in the early stages of development. Taken together, our data indicate that FT1 plays a critical role in the regulation of flowering in Brachypodium and wheat, and that this role is associated with the simultaneous regulation of other FT-like genes. The differential effects of mutations in FT-A1 and FT-B1 on wheat heading time suggest that different allelic combinations of FT1 homoeologs could be used to adjust wheat heading time to improve adaptation to changing environments.

  9. Isolation and sequence analysis of the wheat B genome subtelomeric DNA

    Directory of Open Access Journals (Sweden)

    Huneau Cecile

    2009-09-01

    Full Text Available Abstract Background Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. Results The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119 737 bp was annotated. It is composed of 33% transposable elements (TEs, 8.2% Spelt52 (namely, the subfamily Spelt52.2 and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11 666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0. Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Conclusion Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat

  10. Isolation and sequence analysis of the wheat B genome subtelomeric DNA.

    Science.gov (United States)

    Salina, Elena A; Sergeeva, Ekaterina M; Adonina, Irina G; Shcherban, Andrey B; Afonnikov, Dmitry A; Belcram, Harry; Huneau, Cecile; Chalhoub, Boulos

    2009-09-05

    Telomeric and subtelomeric regions are essential for genome stability and regular chromosome replication. In this work, we have characterized the wheat BAC (bacterial artificial chromosome) clones containing Spelt1 and Spelt52 sequences, which belong to the subtelomeric repeats of the B/G genomes of wheats and Aegilops species from the section Sitopsis. The BAC library from Triticum aestivum cv. Renan was screened using Spelt1 and Spelt52 as probes. Nine positive clones were isolated; of them, clone 2050O8 was localized mainly to the distal parts of wheat chromosomes by in situ hybridization. The distribution of the other clones indicated the presence of different types of repetitive sequences in BACs. Use of different approaches allowed us to prove that seven of the nine isolated clones belonged to the subtelomeric chromosomal regions. Clone 2050O8 was sequenced and its sequence of 119,737 bp was annotated. It is composed of 33% transposable elements (TEs), 8.2% Spelt52 (namely, the subfamily Spelt52.2) and five non-TE-related genes. DNA transposons are predominant, making up 24.6% of the entire BAC clone, whereas retroelements account for 8.4% of the clone length. The full-length CACTA transposon Caspar covers 11,666 bp, encoding a transposase and CTG-2 proteins, and this transposon accounts for 40% of the DNA transposons. The in situ hybridization data for 2050O8 derived subclones in combination with the BLAST search against wheat mapped ESTs (expressed sequence tags) suggest that clone 2050O8 is located in the terminal bin 4BL-10 (0.95-1.0). Additionally, four of the predicted 2050O8 genes showed significant homology to four putative orthologous rice genes in the distal part of rice chromosome 3S and confirm the synteny to wheat 4BL. Satellite DNA sequences from the subtelomeric regions of diploid wheat progenitor can be used for selecting the BAC clones from the corresponding regions of hexaploid wheat chromosomes. It has been demonstrated for the first time

  11. Prediction and analysis of three gene families related to leaf rust (Puccinia triticina) resistance in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Peng, Fred Y; Yang, Rong-Cai

    2017-06-20

    The resistance to leaf rust (Lr) caused by Puccinia triticina in wheat (Triticum aestivum L.) has been well studied over the past decades with over 70 Lr genes being mapped on different chromosomes and numerous QTLs (quantitative trait loci) being detected or mapped using DNA markers. Such resistance is often divided into race-specific and race-nonspecific resistance. The race-nonspecific resistance can be further divided into resistance to most or all races of the same pathogen and resistance to multiple pathogens. At the molecular level, these three types of resistance may cover across the whole spectrum of pathogen specificities that are controlled by genes encoding different protein families in wheat. The objective of this study is to predict and analyze genes in three such families: NBS-LRR (nucleotide-binding sites and leucine-rich repeats or NLR), START (Steroidogenic Acute Regulatory protein [STaR] related lipid-transfer) and ABC (ATP-Binding Cassette) transporter. The focus of the analysis is on the patterns of relationships between these protein-coding genes within the gene families and QTLs detected for leaf rust resistance. We predicted 526 ABC, 1117 NLR and 144 START genes in the hexaploid wheat genome through a domain analysis of wheat proteome. Of the 1809 SNPs from leaf rust resistance QTLs in seedling and adult stages of wheat, 126 SNPs were found within coding regions of these genes or their neighborhood (5 Kb upstream from transcription start site [TSS] or downstream from transcription termination site [TTS] of the genes). Forty-three of these SNPs for adult resistance and 18 SNPs for seedling resistance reside within coding or neighboring regions of the ABC genes whereas 14 SNPs for adult resistance and 29 SNPs for seedling resistance reside within coding or neighboring regions of the NLR gene. Moreover, we found 17 nonsynonymous SNPs for adult resistance and five SNPs for seedling resistance in the ABC genes, and five nonsynonymous SNPs for

  12. Wheat biotechnology: A minireview

    OpenAIRE

    Patnaik, Debasis; Khurana, Paramjit

    2001-01-01

    Due to the inherent difficulties associated with gene delivery into regenerable explants and recovery of plantlets with the introduced transgene, wheat was the last among cereals to be genetically transformed. This review attempts to summarize different efforts in the direction of achieving genetic transformation of wheat by various methods. Particle bombardment is the most widely employed procedure for the introduction of marker genes and also for the generation of transformed wheat with int...

  13. Can Growing Degree Days and Photoperiod Predict Spring Wheat Phenology?

    Directory of Open Access Journals (Sweden)

    Muhammad A. Aslam

    2017-09-01

    Full Text Available Wheat (Triticum aestivum production in the rainfed area of Pothwar Pakistan is extremely vulnerable to high temperature. The expected increase in temperature due to global warming should result in shorter crop life cycles, and thus lower biomass and grain yield. Two major factors control wheat phenological development: temperature and photoperiod. To evaluate wheat development in response to these factors, we conducted experiments that created diverse temperature and daylength conditions by adjusting the crop sowing time. The study was conducted during 2013–14 and 2014–15 using five spring wheat genotypes, four sowing times, at three sites under rainfed management in Pothwar, Pakistan. Wheat crops experienced more cold days with early sowing, but later sowing dates resulted in higher temperatures, especially from anthesis to maturity. These treatments produced large differences in phenology, biomass production, and yield. To investigate whether growing degree days (GDD and photoperiod algorithms could predict wheat phenology under these changing conditions, GDD was calculated based on the method proposed by Wang and Engel while photoperiod followed the approach introduced in the APSIM crop growth model. GDD was calculated separately and in combination with photoperiod from germination to anthesis. For the grain filling period, only GDD was calculated. The observed and predicted number of days to anthesis and maturity were in good agreement, showing that the combination of GDD and photoperiod algorithms provided good estimations of spring wheat phenology under variable temperature and daylength conditions.

  14. Epistatic determinism of durum wheat resistance to the wheat spindle streak mosaic virus.

    Science.gov (United States)

    Holtz, Yan; Bonnefoy, Michel; Viader, Véronique; Ardisson, Morgane; Rode, Nicolas O; Poux, Gérard; Roumet, Pierre; Marie-Jeanne, Véronique; Ranwez, Vincent; Santoni, Sylvain; Gouache, David; David, Jacques L

    2017-07-01

    The resistance of durum wheat to the Wheat spindle streak mosaic virus (WSSMV) is controlled by two main QTLs on chromosomes 7A and 7B, with a huge epistatic effect. Wheat spindle streak mosaic virus (WSSMV) is a major disease of durum wheat in Europe and North America. Breeding WSSMV-resistant cultivars is currently the only way to control the virus since no treatment is available. This paper reports studies of the inheritance of WSSMV resistance using two related durum wheat populations obtained by crossing two elite cultivars with a WSSMV-resistant emmer cultivar. In 2012 and 2015, 354 recombinant inbred lines (RIL) were phenotyped using visual notations, ELISA and qPCR and genotyped using locus targeted capture and sequencing. This allowed us to build a consensus genetic map of 8568 markers and identify three chromosomal regions involved in WSSMV resistance. Two major regions (located on chromosomes 7A and 7B) jointly explain, on the basis of epistatic interactions, up to 43% of the phenotypic variation. Flanking sequences of our genetic markers are provided to facilitate future marker-assisted selection of WSSMV-resistant cultivars.

  15. Fertile transgenic wheat from microprojectile bombardment of scutellar tissue.

    Science.gov (United States)

    Becker, D; Brettschneider, R; Lörz, H

    1994-02-01

    A reproducible transformation system for hexaploid wheat was developed based on particle bombardment of scutellar tissue of immature embryos. Particle bombardment was carried out using a PDS 1000/He gun. Plant material was bombarded with the plasmid pDB1 containing the beta-glucuronidase gene (uidA) under the control of the actin-1 promoter of rice, and the selectable marker gene bar (phosphinothricin acetyltransferase) under the control of the CaMV 35S promoter. Selection was carried out using the herbicide Basta (Glufosinate-ammonium). From a total number of 1050 bombarded immature embryos, in seven independent transformation experiments, 59 plants could be regenerated. Putative transformants were screened for enzyme activity by the histochemical GUS assay using cut leaf material and by spraying the whole plants with an aqueous solution of the herbicide Basta. Twelve regenerants survived Basta spraying and showed GUS-activity. Southern-blot analysis indicated the presence of introduced foreign genes in the genomic DNA of the transformants and both marker genes were present in all plants analysed. To date, four plants have been grown to maturity and set seed. Histochemically stained pollen grains showed a 1:1 segregation of the uidA gene in all plants tested. A 3:1 segregation of the introduced genes was demonstrated by enzyme activity tests and Southern blot analysis of R1 plants.

  16. Boron rates for triticale and wheat crops

    Directory of Open Access Journals (Sweden)

    Corrêa Juliano Corulli

    2005-01-01

    Full Text Available No reports are registered on responses to boron fertilization nutrient deficiency and toxicity in triticale crops. The aim of this study was to evaluate triticale response to different rates of boron in comparison to wheat in an hapludox with initial boron level at 0.08 mg dm-3 4 4 factorial design trial completely randomized blocks design (n = 4. Boron rates were 0; 0.62; 1.24 and 1.86 mg dm-3; triticale cultivars were IAC 3, BR 4 and BR 53 and IAPAR 38 wheat crop was used for comparison. The wheat (IAPAR 38 crop presented the highest boron absorption level of all. Among triticale cultivars, the most responsive was IAC 53, presenting similar characteristics to wheat, followed by BR 4; these two crops are considered tolerant to higher boron rates in soil. Regarding to BR 53, no absorption effect was observed, and the cultivars was sensitive to boron toxicity. Absorption responses differed for each genotype. That makes it possible to choose and use the best-adapted plants to soils with different boron rates.

  17. Characterization of an Integrated Active Glu-1Ay Allele in Common Wheat from Wild Emmer and Its Potential Role in Flour Improvement

    Directory of Open Access Journals (Sweden)

    Zhenzhen Wang

    2018-03-01

    Full Text Available Glu-1Ay, one of six genes encoding a high molecular weight glutenin subunit (HMW-GS, is frequently silenced in hexaploid common wheat. Here, an active allele of Glu-1Ay was integrated from wild emmer wheat (Triticum turgidum ssp. dicoccoides accession D97 into the common wheat (Triticum aestivum cultivar Chuannong 16 via the repeated self-fertilization of the pentaploid interspecific hybrid, culminating in the selection of a line TaAy7-40 shown to express the wild emmer Glu-1Ay allele. The open reading frame of this allele was a 1830 bp long sequence, demonstrated by its heterologous expression in Escherichia coli to encode a 608-residue polypeptide. Its nucleotide sequence was 99.2% identical to that of the sequence within the wild emmer parent. The TaAy7-40 introgression line containing the active Glu-1Ay allele showed higher protein content, higher sodium dodecyl sulfate (SDS sedimentation value, higher content of wet gluten in the flour, higher grain weight, and bigger grain size than Chuannong 16. The end-use quality parameters of the TaAy7-40 were superior to those of the medium gluten common wheat cultivars Mianmai 37 and Neimai 9. Thus, the active Glu-1Ay allele might be of potential value in breeding programs designed to improve wheat flour quality.

  18. Transcriptome analysis of an mvp mutant reveals important changes in global gene expression and a role for methyl jasmonate in vernalization and flowering in wheat.

    Science.gov (United States)

    Diallo, Amadou Oury; Agharbaoui, Zahra; Badawi, Mohamed A; Ali-Benali, Mohamed Ali; Moheb, Amira; Houde, Mario; Sarhan, Fathey

    2014-06-01

    The einkorn wheat mutant mvp-1 (maintained vegetative phase 1) has a non-flowering phenotype caused by deletions including, but not limited to, the genes CYS, PHYC, and VRN1. However, the impact of these deletions on global gene expression is still unknown. Transcriptome analysis showed that these deletions caused the upregulation of several pathogenesis-related (PR) and jasmonate-responsive genes. These results suggest that jasmonates may be involved in flowering and vernalization in wheat. To test this hypothesis, jasmonic acid (JA) and methyl jasmonate (MeJA) content in mvp and wild-type plants was measured. The content of JA was comparable in all plants, whereas the content of MeJA was higher by more than 6-fold in mvp plants. The accumulation of MeJA was also observed in vernalization-sensitive hexaploid winter wheat during cold exposure. This accumulation declined rapidly once plants were deacclimated under floral-inductive growth conditions. This suggests that MeJA may have a role in floral transition. To confirm this result, we treated vernalization-insensitive spring wheat with MeJA. The treatment delayed flowering with significant downregulation of both TaVRN1 and TaFT1 genes. These data suggest a role for MeJA in modulating vernalization and flowering time in wheat. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  19. Low-P tolerance mechanisms and differential gene expression in contrasting wheat genotypes Mecanismos de tolerância à deficiência de fósforo e expressão diferenciada de genes em genótipos de trigo contrastantes

    Directory of Open Access Journals (Sweden)

    Laize Fraga Espindula

    2009-09-01

    Full Text Available The objectives of this study were to determine low-P tolerance mechanisms in contrasting wheat genotypes and to evaluate the association of these mechanisms to differential gene expression. Wheat seedlings of cultivars Toropi (tolerant to low-P availability and Anahuac (sensitive were evaluated. Seedlings were hydroponically grown in the absence or presence of P (1.0 mmol L-1 during three different time periods: 24, 120 and 240 hours. Free phosphate (Pi and total P contents were measured in shoots and roots. The experiment's design was in randomized blocks with three replicates, each formed by ten plants. The relative expression of genes encoding the malate transporter TaALMT1 and the transcription factor PTF1 was evaluated. Phosphorus starvation beyond ten days increased the expression of TaALMT1 only in 'Toropi'. PTF1's expression was early induced in both genotypes under P starvation, but remained significant after ten days only in 'Toropi'. Shoot Pi concentration in 'Toropi' was independent from P availability; under starvation, 'Toropi' favored the maintenance of shoot Pi concentration. The low-P tolerance of Toropi cultivar at initial growth stages is mainly due to its ability to maintain constant the Pi shoot level.Os objetivos deste estudo foram determinar os mecanismos da tolerância à deficiência de P em genótipos de trigo contrastantes e avaliar a associação desses mecanismos à expressão diferenciada de genes. Foram avaliadas plântulas das cultivares de trigo Toropi (tolerante à deficiência de P e Anahuac (sensível. As plântulas foram cultivadas em hidroponia, na ausência ou presença (1,0 mmol L-1 de P, durante três períodos de tempo: 24, 120 e 240 horas. Os teores de fosfato livre (Pi e P total foram medidos na parte aérea e nas raízes. O delineamento experimental foi em blocos ao acaso com três repetições, cada uma formada por dez plantas. Foi avaliada a expressão relativa dos genes que codificam o

  20. Infestation of transgenic powdery mildew-resistant wheat by naturally occurring insect herbivores under different environmental conditions.

    Directory of Open Access Journals (Sweden)

    Fernando Álvarez-Alfageme

    Full Text Available A concern associated with the growing of genetically modified (GM crops is that they could adversely affect non-target organisms. We assessed the impact of several transgenic powdery mildew-resistant spring wheat lines on insect herbivores. The GM lines carried either the Pm3b gene from hexaploid wheat, which confers race-specific resistance to powdery mildew, or the less specific anti-fungal barley seed chitinase and β-1,3-glucanase. In addition to the non-transformed control lines, several conventional spring wheat varieties and barley and triticale were included for comparison. During two consecutive growing seasons, powdery mildew infection and the abundance of and damage by naturally occurring herbivores were estimated under semi-field conditions in a convertible glasshouse and in the field. Mildew was reduced on the Pm3b-transgenic lines but not on the chitinase/glucanase-expressing lines. Abundance of aphids was negatively correlated with powdery mildew in the convertible glasshouse, with Pm3b wheat plants hosting significantly more aphids than their mildew-susceptible controls. In contrast, aphid densities did not differ between GM plants and their non-transformed controls in the field, probably because of low mildew and aphid pressure at this location. Likewise, the GM wheat lines did not affect the abundance of or damage by the herbivores Oulema melanopus (L. and Chlorops pumilionis Bjerk. Although a previous study has revealed that some of the GM wheat lines show pleiotropic effects under field conditions, their effect on herbivorous insects appears to be low.

  1. Global gene expression profiling related to temperature-sensitive growth abnormalities in interspecific crosses between tetraploid wheat and Aegilops tauschii.

    Directory of Open Access Journals (Sweden)

    Ryusuke Matsuda

    Full Text Available Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids.

  2. 21 CFR 137.195 - Crushed wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Crushed wheat. 137.195 Section 137.195 Food and... Related Products § 137.195 Crushed wheat. Crushed wheat, coarse ground wheat, is the food prepared by so crushing cleaned wheat other than durum wheat and red durum wheat that, when tested by the method...

  3. Sina and Sinb genes in triticale do not determine grain hardness contrary to their orthologs Pina and Pinb in wheat.

    Science.gov (United States)

    Gasparis, Sebastian; Orczyk, Waclaw; Nadolska-Orczyk, Anna

    2013-11-26

    Secaloindoline a (Sina) and secaloindoline b (Sinb) genes of hexaploid triticale (x Triticosecale Wittmack) are orthologs of puroindoline a (Pina) and puroindoline b (Pinb) in hexaploid wheat (Triticum aestivum L.). It has already been proven that RNA interference (RNAi)-based silencing of Pina and Pinb genes significantly decreased the puroindoline a and puroindoline b proteins in wheat and essentially increased grain hardness (J Exp Bot 62:4025-4036, 2011). The function of Sina and Sinb in triticale was tested by means of RNAi silencing and compared to wheat. Novel Sina and Sinb alleles in wild-type plants of cv. Wanad were identified and their expression profiles characterized. Alignment with wheat Pina-D1a and Pinb-D1a alleles showed 95% and 93.3% homology with Sina and Sinb coding sequences. Twenty transgenic lines transformed with two hpRNA silencing cassettes directed to silence Sina or Sinb were obtained by the Agrobacterium-mediated method. A significant decrease of expression of both Sin genes in segregating progeny of tested T1 lines was observed independent of the silencing cassette used. The silencing was transmitted to the T4 kernel generation. The relative transcript level was reduced by up to 99% in T3 progeny with the mean for the sublines being around 90%. Silencing of the Sin genes resulted in a substantial decrease of secaloindoline a and secaloindoline b content. The identity of SIN peptides was confirmed by mass spectrometry. The hardness index, measured by the SKCS (Single Kernel Characterization System) method, ranged from 22 to 56 in silent lines and from 37 to 49 in the control, and the mean values were insignificantly lower in the silent ones, proving increased softness. Additionally, the mean total seed protein content of silenced lines was about 6% lower compared with control lines. Correlation coefficients between hardness and transcript level were weakly positive. We documented that RNAi-based silencing of Sin genes resulted in

  4. TaFlo2-A1, an ortholog of rice Flo2, is associated with thousand grain weight in bread wheat (Triticum aestivum L.).

    Science.gov (United States)

    Sajjad, Muhammad; Ma, Xiaoling; Habibullah Khan, Sultan; Shoaib, Muhammad; Song, Yanhong; Yang, Wenlong; Zhang, Aimin; Liu, Dongcheng

    2017-10-16

    The Flo2 gene is a member of a conserved gene family in plants. This gene has been found to be related to thousand grain weight (TGW) in rice. Its orthologs in hexaploid wheat were cloned, and the haplotype variation in TaFlo2-A1 was tested for association with TGW. The cloned sequences of TaFlo2-A1, TaFlo2-B1 and TaFlo2-D1 contained 23, 23 and 24 exons, respectively. The deduced proteins of TaFlo2-A1 (1734 aa), TaFlo2-B1 (1698 aa) and TaFlo2-D1 (1682 aa) were highly similar (>94%) and exhibited >77% similarity with the rice FLO2 protein. Like the rice FLO2 protein, four tetratricopeptide repeat (TPR) motifs were observed in the deduced TaFLO2 protein. An 8-bp InDel (-10 to -17 bp) in the promoter region and five SNPs in first intron of TaFlo2-A1 together formed two haplotypes, TaFlo2-A1a and TaFlo2-A1b, in bread wheat. TaFlo2 was located on homeologous group 2 chromosomes. TaFlo2-A1 was inferred to be located on deletion bin '2AL1-0.85-1.00'. The TaFlo2-A1 haplotypes were characterized in the Chinese Micro Core Collection (MCC) and Pakistani wheat collection using the molecular marker TaFlo2-Indel8. TaFlo2-A1 was found to be associated with TGW but not with grain number per spike (GpS) in both the MCC and Pakistani wheat collections. The frequency of TaFlo2-A1b (positive haplotype) was low in commercial wheat cultivars; thus this haplotype can be selected to improve grain weight without negatively affecting GpS. The expression level of TaFlo2-A1 in developing grains at 5 DAF (days after flowering) was positively correlated with TGW in cultivars carrying the positive haplotype. This study will likely lead to additional investigations to understand the regulatory mechanism of the Flo2 gene in hexaploid wheat. Furthermore, the newly developed molecular marker 'TaFlo2-InDel8' could be incorporated into the kit of wheat breeders for use in marker-assisted selection.

  5. Relationship between grain colour and preharvest sprouting-resistance in wheat Relação entre cor de grão e resistência à germinação pré-colheita em trigo

    Directory of Open Access Journals (Sweden)

    Manoel Carlos Bassoi

    2005-10-01

    Full Text Available Since red alleles (R of the genes that control grain colour are important for the improvement of preharvest sprouting resistance in wheat and there are three independently inherited loci, on chromosomes 3A, 3B and 3D of hexaploid wheat, it is possible to vary the dosage of dominant alleles in a breeding program. The objective of this work was to evaluate the dosage effect of R genes on preharvest sprouting, in a single seed descent population, named TRL, derived from the cross between Timgalen, white-grained wheat, and RL 4137, red-grained wheat. The study was carried out using sprouting data in ripe ears obtained under artificial conditions in a rainfall simulator over three years. According to the results there is a significant effect on preharvest sprouting provided by colour and a weaker effect of increasing R dosage. However, the significant residual genotypic variation between red lines and all lines (reds and whites at 0.1% level showed that preharvest sprouting was also controlled by other genes. There are no significant correlations between sprouting and date of ripeness or between ripeness, R dosage and colour intensity.Uma vez que os alelos dominantes para cor vermelha (R, dos genes que controlam a cor do grão, têm importância no incremento da resistência à germinação pré-colheita, em trigo, e há três locos herdados independentemente, nos cromossomos 3A, 3B e 3D do trigo hexaplóide, é possível variar sua dosagem em um programa de melhoramento. O objetivo deste trabalho foi avaliar o efeito de dosagem dos genes R na germinação pré-colheita, em uma população de descendência por semente única, batizada de TRL, derivada do cruzamento entre Timgalen, trigo de grão branco, e RL 4137, trigo de grão vermelho. O estudo utilizou dados de germinação em espigas maduras, obtidos sob condições artificiais em um simulador de chuva, em três anos. De acordo com os resultados, o efeito da cor de grão e, menos acentuadamente

  6. Improvement of some quantitative characters by mutation breeding in durum wheat

    International Nuclear Information System (INIS)

    Başer, İ.; Bİlgİn, O.; Korkut, K.Z.; Balkan, A.

    2007-01-01

    In this research conducted in the Department of Field Crops, Agricultural Faculty, Namık Kemal University, the effect of six different gamma ray doses on plant growth in M 1 and M 2 generations derived from two durum wheat cultivars was investigated. When mutants and control genotypes in M 2 generation were investigated for seven characters, a considerable number of mutants having the desired characteristics were obtained. The application of 200 gray dose resulted in significantly short genotypes among selected mutant genotypes. After 300 gray dose applications, suitable genotypes were obtained in terms of plant height, seed yield per main spike, the number of seeds per spike, harvesting index and spike length. In addition, mutagen application increased number of tillers per plant. For obtained protein band design using the SDS-PAGE method in the Standard and mutant durum wheat genotypes were observed different in 300, 400 and 500 gray mutagen doses. (author) [tr

  7. Validation of a 1DL earliness per se (eps) flowering QTL in bread wheat (Triticum aestivum).

    Science.gov (United States)

    Zikhali, Meluleki; Leverington-Waite, Michelle; Fish, Lesley; Simmonds, James; Orford, Simon; Wingen, Luzie U; Goram, Richard; Gosman, Nick; Bentley, Alison; Griffiths, Simon

    2014-01-01

    Vernalization, photoperiod and the relatively poorly defined earliness per se ( eps ) genes regulate flowering in plants. We report here the validation of a major eps quantitative trait locus (QTL) located on wheat 1DL using near isogenic lines (NILs). We used four independent pairs of NILs derived from a cross between Spark and Rialto winter wheat varieties, grown in both the field and controlled environments. NILs carrying the Spark allele, defined by QTL flanking markers Xgdm111 and Xbarc62 , consistently flowered 3-5 days earlier when fully vernalized relative to those with the Rialto. The effect was independent of photoperiod under field conditions, short days (10-h light), long days (16-h light) and very long days (20-h light). These results validate our original QTL identified using doubled haploid (DH) populations. This QTL represents variation maintained in elite north-western European winter wheat germplasm. The two DH lines used to develop the NILs, SR9 and SR23 enabled us to define the location of the 1DL QTL downstream of marker Xgdm111 . SR9 has the Spark 1DL arm while SR23 has a recombinant 1DL arm with the Spark allele from Xgdm111 to the distal end. Our work suggests that marker assisted selection of eps effects is feasible and useful even before the genes are cloned. This means eps genes can be defined and positionally cloned in the same way as the photoperiod and vernalization genes have been. This validation study is a first step towards fine mapping and eventually cloning the gene directly in hexaploid wheat.

  8. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC.

    Science.gov (United States)

    Butow, B J; Gale, K R; Ikea, J; Juhász, A; Bedö, Z; Tamás, L; Gianibelli, M C

    2004-11-01

    Increased expression of the high molecular weight glutenin subunit (HMW-GS) Bx7 is associated with improved dough strength of wheat (Triticum aestivum L.) flour. Several cultivars and landraces of widely different genetic backgrounds from around the world have now been found to contain this so-called 'over-expressing' allelic form of the Bx7 subunit encoded by Glu-B1al. Using three methods of identification, SDS-PAGE, RP-HPLC and PCR marker analysis, as well as pedigree information, we have traced the distribution and source of this allele from a Uruguayan landrace, Americano 44D, in the mid-nineteenth century. Results are supported by knowledge of the movement of wheat lines with migrants. All cultivars possessing the Glu-B1al allele can be identified by the following attributes: (1) the elution of the By sub-unit peak before the Dx sub-unit peak by RP-HPLC, (2) high expression levels of Bx7 (>39% Mol% Bx), (3) a 43 bp insertion in the matrix-attachment region (MAR) upstream of the gene promoter relative to Bx7 and an 18 bp nucleotide duplication in the coding region of the gene. Evidence is presented indicating that these 18 and 43 bp sequence insertions are not causal for the high expression levels of Bx7 as they were also found to be present in a small number of hexaploid species, including Chinese Spring, and species expressing Glu-B1ak and Glu-B1a alleles. In addition, these sequence inserts were found in different isolates of the tetraploid wheat, T. turgidum, indicating that these insertion/deletion events occurred prior to hexaploidization.

  9. Optimizing silicon application to improve salinity tolerance in wheat

    Directory of Open Access Journals (Sweden)

    A. Ali

    2009-05-01

    Full Text Available Salinity often suppresses the wheat performance. As wheat is designated as silicon (Si accumulator, hence Si application may alleviate the salinity induced damages. With the objective to combat the salinity stress in wheat by Si application (0, 50, 100, 150 and 200 mg L-1 using calcium silicate, an experiment was conducted on two contrasting wheat genotypes (salt sensitive; Auqab-2000 and salt tolerant; SARC-5 in salinized (10 dS m-1 and non-salinized (2 dS m-1 solutions. Plants were harvested 32 days after transplanting and evaluation was done on the basis of different morphological and analytical characters. Silicon supplementation into the solution culture improved wheat growth and K+/Na+ with reduced Na+ and enhanced K+ uptake. Concomitant improvement in shoot growth was observed; nonetheless the root growth remained unaffected by Si application. Better results were obtained with 150 and 200 mg L-1 of Si which were found almost equally effective. It was concluded that SARC-5 is better than Auqab-2000 against salt stress and Si inclusion into the solution medium is beneficial for wheat and can improve the crop growth both under optimal and salt stressful conditions.

  10. Opportunities in Tajikistan to breed wheat varieties resistant to seed-borne diseases and improved baking quality

    OpenAIRE

    Husenov, Bahromiddin

    2013-01-01

    Wheat seed-borne diseases and options for improving baking quality of wheat, as well as the role of genotypes for breeding to achieve high yield and quality are the key issues discussed in this introductory paper. The importance of wheat for Tajikistan and how to achieve food security goals in the country is also elucidated. Wheat seed-borne diseases are caused mostly by fungi. Loose Smut (Ustilago tritici), Common Bunt (Tilletia laevis and T.caries), Karnal Bunt (T.indica), Dwarf Bunt (T....

  11. Adaptability and Genotype x Environment Interaction of Spring Wheat Cultivars in Chile using Regression Analysis, AMMI, and SRAG Adaptabilidad e Interacción Genotipo x Ambiente en Trigos de Primavera utilizando Análisis de Regresión, AMMI y SREG

    Directory of Open Access Journals (Sweden)

    Dalma Castillo

    2012-06-01

    Full Text Available Wheat (Triticum aestivum L. genetic improvement objectives include obtaining cultivars capable of expressing their maximum potential yield and quality in diverse environments. This make necessary to know and define the environment in which a variety can express its maximum potential yield and quality. The objective of this study was to assess which method is the most efficient to study cultivars response in multiple environments. For this, we analyze the adaptability, stability, and genotype x environment (GxE interaction effect, grain yield, sedimentation, and wet gluten content of 13 spring wheat cultivars sown in six environments in the central-south and southern zones of Chile during two seasons. The data were analyzed by regression analysis, additive main effects and multiplicative interaction (AMMI, and the sites regression (SREG model. By this was thus established that SREG analysis is the most efficient for this type of study since, in addition to analyzing stability, adaptability, and effect (GxE, it allows identifying the best cultivar. In this case, 'Pandora-INIA' stands out by exhibiting the best yield (7.38 t ha-1, high sedimentation (36.95 cm³, and wet gluten (41.54% indices in all the environments, and this positions it as a variety having both high yield and quality.Dentro de los objetivos del mejoramiento genético del trigo (Triticum aestivum L. figura la obtención de variedades capaces de expresar su máximo potencial de rendimiento y calidad en diversos ambientes. Por lo cual es necesario conocer y definir el ambiente en que una variedad puede expresar al máximo su potencial de rendimiento y de calidad. El objetivo de este trabajo fue determinar una metodología eficiente para analizar la respuesta de diversos cultivares de trigo a distintos ambientes. Para ello se analizó la adaptabilidad, estabilidad y la interacción Genotipo x Ambiente (GxE de 13 variedades de trigo de primavera, sembradas, en seis ambientes de la

  12. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Science.gov (United States)

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  13. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    Directory of Open Access Journals (Sweden)

    Zuzana Ivaničová

    Full Text Available The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (insensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  14. Studies on increasing fertility of distant hybrid by irradiation of androgametes of wheat

    International Nuclear Information System (INIS)

    Chen Yichun; Sun Guangzu; Zhang Yuexue

    1994-01-01

    Distant hybridization was carried out by using hexaploid triticale, Heizha 266, as female parent and 2 varieties of spring wheat, Longfumai 3 and Longfumai 5, as male parent which were irradiated by slow irradiation of living bodies with 60 Co gamma rays from 600 to 2400 rad before distant hybridization. Through the observation of pollen mother cells of first generation of distant hybrilization (M 1 ), it was found that the amount of bivalents at meiosis metaphase was 13.65 on average, and was 14.55 on maximum, which were close to theoretical value, but the corresponding amount of bivalents at the same stage produced by unirradiated pollen mother cells were 12.80, which were lower than theorectical value. Chromosome pairing was improved by irradiation. Average setting ratio of M 1 generation affected by irradiation was 52.85%, but the corresponding figure for F 1 generation affected by un-irradiation was 6.49%. It is obvious that irradiation treatment increases setting rate of M 1 hybrid generation. The optimum doses for irradiating androgametes are 1600 and 2400 rad, respectively. However, there are significant differences of irradiation sensibility between different varieties of wheat

  15. Gliadin and glutenin polymorphism in durum wheat landraces and breeding varieties of Azerbaijan

    Directory of Open Access Journals (Sweden)

    Sadigov-Baykishi Hamlet

    2015-01-01

    Full Text Available Durum wheat genotypes including 7 landraces and 17 breeding varieties were studied. Polyacrylamide gel electrophoresis under acidic conditions of pH 3.1 was used to study gliadin and glutenin polymorphisms. In total, 32 gliadin and 8 high molecular weight glutenin alleles were identified. The contribution of B genome (58.5% to the allelic variation of durum wheat varieties was higher than of A genome. The cluster analysis delineated genotypes into four main clusters. According to cluster analysis, legitimacy identifying the distribution of botanical varieties through the tree was observed. The study confirms the suitability of biochemical markers for cultivar identification and genetic relation study in durum wheat genotypes.

  16. Induced spherococcoid hard wheat

    International Nuclear Information System (INIS)

    Yanev, Sh.

    1981-01-01

    A mutant has been obtained - a spheroccocoid line -through irradiation of hard wheat seed with fast neutrons. It is distinguished by semispherical glumes and smaller grain; the plants have low stem with erect leaves but with shorter spikes and with lesser number of spikelets than those of the initial cultivar. Good productive tillering and resistance to lodging contributed to 23.5% higher yield. The line was superior to the standard and the initial cultivars by 14.2% as regards protein content, and by up to 22.8% - as to flour gluten. It has been successfully used in hybridization producing high-yielding hard wheat lines resistant to lodging, with good technological and other indicators. The possibility stated is of obtaining a spherococcoid mutant in tetraploid (hard) wheat out of the D-genome as well as its being suited to hard wheat breeding to enhance protein content, resistance to lodging, etc. (author)

  17. Metabolite profiling of a diverse collection of wheat lines using ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry.

    Directory of Open Access Journals (Sweden)

    Shawna B Matthews

    Full Text Available Genetic differences among major types of wheat are well characterized; however, little is known about how these distinctions affect the small molecule profile of the wheat seed. Ethanol/water (65% v/v extracts of seed from 45 wheat lines representing 3 genetically distinct classes, tetraploid durum (Triticum turgidum subspecies durum (DW and hexaploid hard and soft bread wheat (T. aestivum subspecies aestivum (BW were subjected to ultraperformance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-TOF-MS. Discriminant analyses distinguished DW from BW with 100% accuracy due to differences in expression of nonpolar and polar ions, with differences attributed to sterol lipids/fatty acids and phospholipids/glycerolipids, respectively. Hard versus soft BW was distinguished with 100% accuracy by polar ions, with differences attributed to heterocyclic amines and polyketides versus phospholipid ions, respectively. This work provides a foundation for identification of metabolite profiles associated with desirable agronomic and human health traits and for assessing how environmental factors impact these characteristics.

  18. Soil nutrient patchiness and genotypes interact on the quantity, quality and decomposition of roots versus shoots of Triticum aestivum.

    NARCIS (Netherlands)

    He, W.M.; Shen, Y.; Cornelissen, J.H.C.

    2012-01-01

    Aims: The purpose of this study was to test the hypotheses that soil nutrient patchiness can differentially benefit the decomposition of root and shoot litters and that this facilitation depends on plant genotypes. Methods: We grew 15 cultivars (i. e. genotypes) of winter wheat (Triticum aestivum

  19. Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS

    Directory of Open Access Journals (Sweden)

    You Frank M

    2010-06-01

    Full Text Available Abstract Background Physical maps employing libraries of bacterial artificial chromosome (BAC clones are essential for comparative genomics and sequencing of large and repetitive genomes such as those of the hexaploid bread wheat. The diploid ancestor of the D-genome of hexaploid wheat (Triticum aestivum, Aegilops tauschii, is used as a resource for wheat genomics. The barley diploid genome also provides a good model for the Triticeae and T. aestivum since it is only slightly larger than the ancestor wheat D genome. Gene co-linearity between the grasses can be exploited by extrapolating from rice and Brachypodium distachyon to Ae. tauschii or barley, and then to wheat. Results We report the use of Ae. tauschii for the construction of the physical map of a large distal region of chromosome arm 3DS. A physical map of 25.4 Mb was constructed by anchoring BAC clones of Ae. tauschii with 85 EST on the Ae. tauschii and barley genetic maps. The 24 contigs were aligned to the rice and B. distachyon genomic sequences and a high density SNP genetic map of barley. As expected, the mapped region is highly collinear to the orthologous chromosome 1 in rice, chromosome 2 in B. distachyon and chromosome 3H in barley. However, the chromosome scale of the comparative maps presented provides new insights into grass genome organization. The disruptions of the Ae. tauschii-rice and Ae. tauschii-Brachypodium syntenies were identical. We observed chromosomal rearrangements between Ae. tauschii and barley. The comparison of Ae. tauschii physical and genetic maps showed that the recombination rate across the region dropped from 2.19 cM/Mb in the distal region to 0.09 cM/Mb in the proximal region. The size of the gaps between contigs was evaluated by comparing the recombination rate along the map with the local recombination rates calculated on single contigs. Conclusions The physical map reported here is the first physical map using fingerprinting of a complete

  20. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat.

    Science.gov (United States)

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2012-06-06

    As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.

  1. Boron tolerance in NS wheat lines

    Directory of Open Access Journals (Sweden)

    Brdar Milka

    2006-01-01

    Full Text Available Boron is an essential micronutrient for higher plants. Present in excessive amounts boron becomes toxic and can limit plant growth and yield. Suppression of root growth is one of the symptoms of boron toxicity in wheat. This study was undertaken to investigate the response of 10 perspective NS lines of wheat to high concentrations of boron. Analysis of root growth was done on young plants, germinated and grown in the presence of different concentrations of boric acid (0, 50,100 and 150 mg/1. Significant differences occurred between analyzed genotypes and treatments regarding root length. Average suppression of root growth was between 11,6 and 34,2%, for line NS 252/02 are even noted 61,4% longer roots at treatments in relation to the control. Lines with mean suppression of root growth less than 20% (NS 101/02, NS 138/01, NS 53/03 and NS 73/02 may be considered as boron tolerant. Spearmans coefficients showed high level of agreement regarding rang of root length for genotypes treated with 100 and 150 mg H3BO3/l.

  2. 21 CFR 137.190 - Cracked wheat.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Cracked wheat. 137.190 Section 137.190 Food and... Related Products § 137.190 Cracked wheat. Cracked wheat is the food prepared by so cracking or cutting into angular fragments cleaned wheat other than durum wheat and red durum wheat that, when tested by...

  3. Wheat for Kids! [and] Teacher's Guide.

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    "Wheat for Kids" contains information at the elementary school level about: the structure of the wheat kernel; varieties of wheat and their uses; growing wheat; making wheat dough; the U.S. Department of Agriculture Food Guide Pyramid and nutrition; Idaho's part of the international wheat market; recipes; and word games based on the…

  4. Allergen relative abundance in several wheat varieties as revealed via a targeted quantitative approach using MS.

    Science.gov (United States)

    Rogniaux, Hélène; Pavlovic, Marija; Lupi, Roberta; Lollier, Virginie; Joint, Mathilde; Mameri, Hamza; Denery, Sandra; Larré, Colette

    2015-05-01

    Food allergy has become a major health issue in developed countries, therefore there is an urgent need to develop analytical methods able to detect and quantify with a good sensitivity and reliability some specific allergens in complex food matrices. In this paper, we present a targeted MS/MS approach to compare the relative abundance of the major recognized wheat allergens in the salt-soluble (albumin/globulin) fraction of wheat grains. Twelve allergens were quantified in seven wheat varieties, selected from three Triticum species: T. aestivum (bread wheat), T. durum (durum wheat), and T. monococcum. The allergens were monitored from one or two proteotypic peptides and their relative abundance was deduced from the intensity of one fragment measured in MS/MS. Whereas the abundance of some of the targeted allergens was quite stable across the genotypes, others like alpha-amylase inhibitors showed clear differences according to the wheat species, in accordance with the results of earlier functional studies. This study enriches the scarce knowledge available on allergens content in wheat genotypes, and brings new perspectives for food safety and plant breeding. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Study of Winter Wheat Yield Quality Analysis at ARDS Turda

    Directory of Open Access Journals (Sweden)

    Ovidiu Adrian Ceclan

    2016-11-01

    Full Text Available The purpose of this research is to study the potential for yield and quality indicators for winter wheat genotypes in terms of pedological and climate condition and applied technology, at ARDS Turda during 2014 – 2015. Depending on the climatic conditions that are associated with applied technology is a decisive factor in successful wheat crop for all genotypes that were studied at Ards Turda during the 2014 – 2016. That’s wy each genotype responded differently to the conditions of the ARDS Turda also through the two levels of fertilisations applied in the winter with fertilizers 20:20:0, 250 kg/ha assuring 50 kg/ha N and P active substance and second level of fertilisations with 150 kg/ha ammonium nitrate assuring 50 kg/ha N active substance. All genotype that were studied in terms of yield and quality indicators were influenced by the fertilization level. The influence of pedo-climatic conditions, applied technologies and fertilizers level at ARDS Turda showed that all genotypes with small yield had higher protein and gluten content respectively Zeleny index.

  6. Genetic evaluation of spring wheat (Triticum aestivum L.) genotypes ...

    African Journals Online (AJOL)

    SAM

    2014-04-30

    Apr 30, 2014 ... (early milk) and GS 77 (late milk) (Zadoks et al., 1974). Disease severity ... PRL/2 *PASTOR/4/CHOIX/STAR/3/HE1/3*CNO79//2*SERI. NDUA&T. .... (dwarf). RAJ 4286. (84.75). HD 3108. (87.00). DBW 17. (87.75). K 1101.

  7. Response of bread wheat genotypes to drought simulation under a ...

    African Journals Online (AJOL)

    From this study, it is possible to select drought tolerant cultivars using mobile rain shelters by drought simulations in Kenya. Key Words: Duma, irrigation, dryland, moisture stress. Résumé La sélection des génotypes tolérant a la sécheresse pour les terres arides et semi-arides (ASALS) du Kenya, lesquelles consistent a ...

  8. Genotype x Environment interaction for quality traits in durum wheat ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-05-24

    May 24, 2010 ... E6. Merchouch. 2005 – 2006. 83.56d. 17.85c. 55.08b. -. 79.68c. E7. Douyet .... Y e llo w p ig m e n t in d e x. (b. ) S. D. S s e d im e n ta tio n v o lu m e. P ro te in c o n ...... extensively by environmental effects than genetics. Sum.

  9. A 3,000-Loci Transcription Map of Chromosome 3B Unravels the Structural and Functional Features of Gene Islands in Hexaploid Wheat

    Czech Academy of Sciences Publication Activity Database

    Rustenholz, C.; Choulet, F.; Laugier, Ch.; Šafář, Jan; Šimková, Hana; Doležel, Jaroslav; Magni, F.; Scalabrin, S.; Cattonaro, F.; Vautrin, S.; Bellec, A.; Berges, H.; Feuillet, C.; Paux, E.

    2011-01-01

    Roč. 157, č. 4 (2011), s. 1596-1608 ISSN 0032-0889 R&D Projects: GA MŠk ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511 Keywords : LOCAL COEXPRESSION DOMAINS * ARABIDOPSIS-THALIANA * NEIGHBORING GENES Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.535, year: 2011

  10. Cytogenetic characteristics of soft wheat mutants under x-irradiation

    International Nuclear Information System (INIS)

    Shakaryan, Zh.O.; Avakyan, V.A.; Amirbekyan, V.A.

    1981-01-01

    Radiosensitivity of induced mutants of soft wheat is studied by criteria of frequency and character of changes in 1 and 2 divisions of meiosis. Two constant induced mutant forms of soft wheat were investigated. Mutant lines of squareheads with red ear (re) and erectoids 37/1 were obtained by X-ray irradiating hydride seeds F 1 of hybride combination of Alty-Agach Awnless 1. Seeds of mutants and initial kinds were exposed to X-rays at a dose of 10 kR. A conclusion may be drawn on the basis of studying the meiosis process in mutants and initial kinds of soft wheat on X-ray radiation that the mutants are more radiosensitive. This testifies to that that the induced mutants of soft wheat represent new genotypes in comparison with the initial kinds and differ from the latter not only in morphological characters but in the reaction norm with respect to external medium factors, i.e. the limit of possible changeability of the genotype has been extended [ru

  11. Effect of seeding rate on grain quality of winter wheat

    Directory of Open Access Journals (Sweden)

    Veselinka Zecevic

    2014-03-01

    Full Text Available Planting density is important factor which influence yield and quality of wheat (Triticum aestivum L. For this reason, in scientific investigations is constantly investigated optimization of plant number per unit area. The objective of this study was to determine the influence of seeding rate in grain quality of winter wheat cultivars. The experiment was conducted with four winter wheat genotypes ('Ana Morava', 'Vizija', 'L-3027', and 'Perla' at the Small Grains Research Centre of Kragujevac, Serbia, in 3 yr at two seeding rates (SR1 = 500 and SR2 = 650 germinating seeds m-2. The 1000-kernel weight, Zeleny sedimentation, and wet gluten content in divergent wheat genotypes were investigated depending on the seeding rate and ecological factors. Significant differences in quality components were established between investigated seeding rates. The highest values of all investigated quality traits were established in SR2 variant when applied 650 seeds m-2. Genotypes reacted differently to seeding rate. 'Perla' in average had the highest mean sedimentation value (42.2 mL and wet gluten content (33.76% in SR2 variant and this cultivar responded the best to seeding rate. Significant differences for sedimentation value and wet gluten content were found among cultivars, years, seeding rate, and for all their interactions. Also, ANOVA for 1000-kernel weight showed highly significant differences among investigated varieties, seeding rate and growing seasons, but all their interactions were not significant. In all investigated genotypes, better quality was established in SR2 variant when applied 650 seeds m-2.

  12. Wheat Quality Council, Hard Spring Wheat Technical Committee, 2017 Crop

    Science.gov (United States)

    Nine experimental lines of hard spring wheat were grown at up to six locations in 2017 and evaluated for kernel, milling, and bread baking quality against the check variety Glenn. Wheat samples were submitted through the Wheat Quality Council and processed and milled at the USDA-ARS Hard Red Spring...

  13. Genetic diversity of wheat grain quality and determination the best clustering technique and data type for diversity assessment

    Directory of Open Access Journals (Sweden)

    Khodadadi Mostafa

    2014-01-01

    Full Text Available Wheat is an important staple in human nutrition and improvement of its grain quality characters will have high impact on population's health. The objectives of this study were assessing variation of some grain quality characteristics in the Iranian wheat genotypes and identify the best type of data and clustering method for grouping genotypes. In this study 30 spring wheat genotypes were cultivated through randomized complete block design with three replications in 2009 and 2010 years. High significant difference among genotypes for all traits except for Sulfate, K, Br and Cl content, also deference among two years mean for all traits were no significant. Meanwhile there were significant interaction between year and genotype for all traits except Sulfate and F content. Mean values for crude protein, Zn, Fe and Ca in Mahdavi, Falat, Star, Sistan genotypes were the highest. The Ca and Br content showed the highest and the lowest broadcast heritability respectively. In this study indicated that the Root Mean Square Standard Deviation is efficient than R Squared and R Squared efficient than Semi Partial R Squared criteria for determining the best clustering technique. Also Ward method and canonical scores identified as the best clustering method and data type for grouping genotypes, respectively. Genotypes were grouped into six completely separate clusters and Roshan, Niknejad and Star genotypes from the fourth, fifth and sixth clusters had high grain quality characters in overall.

  14. Short, natural, and extended photoperiod response in BC2F4 lines of bread wheat with different photoperiod-1 (Ppd-1) alleles.

    Science.gov (United States)

    Bentley, A R; Horsnell, R; Werner, C P; Turner, A S; Rose, G A; Bedard, C; Howell, P; Wilhelm, E P; Mackay, I J; Howells, R M; Greenland, A; Laurie, D A; Gosman, N

    2013-04-01

    Flowering is a critical period in the life cycle of flowering plant species, resulting in an irreversible commitment of significant resources. Wheat is photoperiod sensitive, flowering only when daylength surpasses a critical length; however, photoperiod insensitivity (PI) has been selected by plant breeders for >40 years to enhance yield in certain environments. Control of flowering time has been greatly facilitated by the development of molecular markers for the Photoperiod-1 (Ppd-1) homeoloci, on the group 2 chromosomes. In the current study, an allelic series of BC2F4 lines in the winter wheat cultivars 'Robigus' and 'Alchemy' was developed to elucidate the influence on flowering of eight gene variants from the B- and D-genomes of bread wheat and the A-genome of durum wheat. Allele effects were tested in short, natural, and extended photoperiods in the field and controlled environments. Across genetic background and treatment, the D-genome PI allele, Ppd-D1a, had a more potent effect on reducing flowering time than Ppd-B1a. However, there was significant donor allele effect for both Ppd-D1a and Ppd-B1a, suggesting the presence of linked modifier genes and/or additional sources of latent sensitivity. Development of Ppd-A1a BC2F4 lines derived from synthetic hexaploid wheat provided an opportunity to compare directly the flowering time effect of the A-genome allele from durum with the B- and D-genome variants from bread wheat for the first time. Analyses indicated that the reducing effect of Ppd-A1a is comparable with that of Ppd-D1a, confirming it as a useful alternative source of PI.

  15. Heat tolerance in wheat

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari

    As a consequence of global climate change, heat stress together with other abiotic stresses will remain an important determinant of future food security. Wheat (Triticum aestivum L.) is the third most important crop of the world feeding one third of the world population. Being a crop of temperate...... climate, wheat is sensitive to heat stress. We need to understand how our crops will perform in these changing climatic conditions and how we can develop varieties, which are more tolerant. The PhD study focussed on understanding heat tolerance in wheat with a combined approach of plant physiology...... and quantitative genetics in particular, plant phenotyping based quantitative trait loci (QTL) discovery for a physiological trait under heat stress. Chlorophyll a fluorescence trait, Fv/Fm was used as a phenotyping tool, as it reflects the effect of heat stress on maximum photochemical efficiency of photosystem...

  16. Low crop plant population densities promote pollen-mediated gene flow in spring wheat (Triticum aestivum L.).

    Science.gov (United States)

    Willenborg, Christian J; Brûlé-Babel, Anita L; Van Acker, Rene C

    2009-12-01

    Transgenic wheat is currently being field tested with the intent of eventual commercialization. The development of wheat genotypes with novel traits has raised concerns regarding the presence of volunteer wheat populations and the role they may play in facilitating transgene movement. Here, we report the results of a field experiment that investigated the potential of spring wheat plant population density and crop height to minimize gene flow from a herbicide-resistant (HR) volunteer population to a non-HR crop. Pollen-mediated gene flow (PMGF) between the HR volunteer wheat population and four conventional spring wheat genotypes varying in height was assessed over a range of plant population densities. Natural hybridization events between the two cultivars were detected by phenotypically scoring plants in F(1) populations followed by verification with Mendelian segregation ratios in the F(1:2) families. PMGF was strongly associated with crop yield components, but showed no association with flowering synchrony. Maximum observed PMGF was always less than 0.6%, regardless of crop height and density. The frequency of PMGF in spring wheat decreased exponentially with increasing plant population density, but showed no dependence on either crop genotype or height. However, increasing plant densities beyond the recommended planting rate of 300 cropped wheat plants m(-2) provided no obvious benefit to reducing PMGF. Nevertheless, our results demonstrate a critical plant density of 175-200 cropped wheat plants m(-2) below which PMGF frequencies rise exponentially with decreasing plant density. These results will be useful in the development of mechanistic models and best management practices that collectively facilitate the coexistence of transgenic and nontransgenic wheat crops.

  17. Variability in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers.

    Science.gov (United States)

    Chandna, Ruby; Gupta, Sarika; Ahmad, Altaf; Iqbal, Muhammad; Prasad, Manoj

    2010-06-01

    Wheat (Triticum aestivum L.) is a staple food for half of the world. Its productivity and agronomical practices, especially for nitrogen supplementation, is governed by the nitrogen efficiency (NE) of the genotypes. We analyzed 16 popular cultivated Indian varieties of wheat for their NE and variability estimates using a set of 21 simple sequence repeat (SSR) markers, derived from each wheat chromosome. These genotypes were categorized into three groups, viz., low, moderate, and high nitrogen efficient. Of these 16 genotypes, we have reported six, eight, and two genotypes in high, moderate, and low NE categories, respectively. The differential NE in these genotypes was supported by nitrogen uptake and assimilation parameters. The values of average polymorphic information content and marker index for these SSR markers were estimated to be 0.32 and 0.59, respectively. The genetic similarity coefficient for all possible pairs of varieties ranged from 0.41 to 0.76, indicating the presence of considerable range of genetic diversity at molecular level. The dendrogram prepared on the basis of unweighted pair-group method of arithmetic average algorithm grouped the 16 wheat varieties into three major clusters. The clustering was strongly supported by high bootstrap values. The distribution of the varieties in different clusters and subclusters appeared to be related to their variability in NE parameter that was scored. Genetically diverse parents were identified that could potentially be used for their desirable characteristics in breeding programs for improvement of NE in wheat.

  18. Near infrared hyperspectral imaging of blends of conventional and waxy hard wheats

    Directory of Open Access Journals (Sweden)

    Stephen R. Delwiche

    2018-02-01

    Full Text Available Recent development of hard winter waxy (amylose-free wheat adapted to the North American climate has prompted the quest to find a rapid method that will determine mixture levels of conventional wheat in lots of identity preserved waxy wheat. Previous work documented the use of conventional near infrared (NIR reflectance spectroscopy to determine the mixture level of conventional wheat in waxy wheat, with an examined range, through binary sample mixture preparation, of 0–100% (weight conventional / weight total. The current study examines the ability of NIR hyperspectral imaging of intact kernels to determine mixture levels. Twenty-nine mixtures (0, 1, 2, 3, 4, 5, 10, 15, …, 95, 96, 97, 98, 99, 100% were formed from known genotypes of waxy and conventional wheat. Two-class partial least squares discriminant analysis (PLSDA and statistical pattern recognition classifier models were developed for identifying each kernel in the images as conventional or waxy. Along with these approaches, conventional PLS1 regression modelling was performed on means of kernel spectra within each mixture test sample. Results indicated close agreement between all three approaches, with standard errors of prediction for the better preprocess transformations (PLSDA models or better classifiers (pattern recognition models of approximately 9 percentage units. Although such error rates were slightly greater than ones previously published using non-imaging NIR analysis of bulk whole kernel wheat and wheat meal, the HSI technique offers an advantage of its potential use in sorting operations.

  19. THE INFLUENCE OF SOWING TERM ON THE DURUM WHEAT INDUCTION ABILITY IN SOUTH UKRAINE

    Directory of Open Access Journals (Sweden)

    I. S. Zambriborsh

    2014-08-01

    Full Text Available The sowing term of spring durum wheat influence on the induction ability in the South Ukraine was evaluated. Wheat was sowed in two terms: April, 11 and April, 18 of 2013. Two sowing term were different in the growing conditions. The second term is characterized with higher temperature and lower soil humidity during wheat germination and growing. Wheat spikes were cut in appropriate microspore development stage according to standard protocol. Anthers were cultivated on different cultural media. We used standard protocols as well as our own improved protocols of media preparation. The level of sowing term and plant culture media on the induction ability of different wheat genotypes was estimated. Stress growing conditions increased the induction ability of durum wheat. The new formation percentage was higher for the second sowing term wheat on different media. However it was shown that the level of sowing term influence was lower on appropriate cultural media. Key words: in vitro anther culture, durum wheat, sowing term, new formation induction.

  20. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples

    Directory of Open Access Journals (Sweden)

    Abboud Al-Saleh

    2012-11-01

    Full Text Available The relationships between breadmaking quality, kernel properties (physical and chemical, and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%–95.0%, 1000-kernel weight (35.2–46.9 g and the test weight (82.2–88.0 kg/hL. All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours. A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **, as well as with the vitreousness of the kernel (r = 0.54 *. Protein content was also correlated with dough stability (r = 0.86 **, extensibility (r = 0.8 **, and negatively correlated with dough weakness (r = −0.69 **. Bread firmness and dough weakness were positively correlated (r = 0.66 **. Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  1. Bread Wheat Quality: Some Physical, Chemical and Rheological Characteristics of Syrian and English Bread Wheat Samples.

    Science.gov (United States)

    Al-Saleh, Abboud; Brennan, Charles S

    2012-11-22

    The relationships between breadmaking quality, kernel properties (physical and chemical), and dough rheology were investigated using flours from six genotypes of Syrian wheat lines, comprising both commercially grown cultivars and advanced breeding lines. Genotypes were grown in 2008/2009 season in irrigated plots in the Eastern part of Syria. Grain samples were evaluated for vitreousness, test weight, 1000-kernel weight and then milled and tested for protein content, ash, and water content. Dough rheology of the samples was studied by the determination of the mixing time, stability, weakness, resistance and the extensibility of the dough. Loaf baking quality was evaluated by the measurement of the specific weight, resilience and firmness in addition to the sensory analysis. A comparative study between the six Syrian wheat genotypes and two English flour samples was conducted. Significant differences were observed among Syrian genotypes in vitreousness (69.3%-95.0%), 1000-kernel weight (35.2-46.9 g) and the test weight (82.2-88.0 kg/hL). All samples exhibited high falling numbers (346 to 417 s for the Syrian samples and 285 and 305 s for the English flours). A significant positive correlation was exhibited between the protein content of the flour and its absorption of water (r = 0.84 **), as well as with the vitreousness of the kernel (r = 0.54 *). Protein content was also correlated with dough stability (r = 0.86 **), extensibility (r = 0.8 **), and negatively correlated with dough weakness (r = -0.69 **). Bread firmness and dough weakness were positively correlated (r = 0.66 **). Sensory analysis indicated Doumah-2 was the best appreciated whilst Doumah 40765 and 46055 were the least appreciated which may suggest their suitability for biscuit preparation rather than bread making.

  2. Biolistics Transformation of Wheat

    Science.gov (United States)

    Sparks, Caroline A.; Jones, Huw D.

    We present a complete, step-by-step guide to the production of transformed wheat plants using a particle bombardment device to deliver plasmid DNA into immature embryos and the regeneration of transgenic plants via somatic embryogenesis. Currently, this is the most commonly used method for transforming wheat and it offers some advantages. However, it will be interesting to see whether this position is challenged as facile methods are developed for delivering DNA by Agrobacterium tumefaciens or by the production of transformants via a germ-line process (see other chapters in this book).

  3. Comparison of agrobacterium mediated wheat and barley transformation with nucleoside diphosphate kinase 2 (NDPK2) gene

    International Nuclear Information System (INIS)

    Waheed, U.; Shah, M.M.; Smedley, M.; Harwood, W.

    2016-01-01

    An efficient and reliable transformation system is imperative for improvement of important crop species like barley and wheat. Wheat transformation is complex due to larger genome size and polyploidy while barley has a limitation of genotypic dependency. The objective of current study was to compare the relative transformation efficiency of wheat and barley using specific expression vector pBRACT 214-NDPK2 constructed through gateway cloning carrying Nucleoside Diphosphate Kinase 2 (NDPK2) gene. The vector was used to compare the transformation response in both crops using immature embryos through Agrobacterium mediated transformation. Both wheat and barley showed different responses towards callus induction and regeneration. Immature embryos of 1.5 to 2 mm in diameter was found optimum for wheat callus induction while 1 to 1.5 mm for barley. Both embryogenic and non-embryogenic calli were found in wheat with significantly greater tendency for embryogenecity in barley. The overall regeneration response was found different for all transformed wheat and barley cultivars. Wheat cultivars showed good response initially that drastically slowed down in later stages with the exception of Fielder that reached to the green shoots with good roots. The barley transformed lines showed good regeneration response as compared to wheat. PCR analysis of putative transformants using genomic DNA showed a maximum of 27% transformation efficiency in barely. No true transformation response was obtained in all cultivars of wheat used in this study. The protocol developed for wheat and barley transformation will greatly be helpful in crop improvement programme through genetic engineering especially in diploid relatives of cereals. (author)

  4. Optimizing Winter Wheat Resilience to Climate Change in Rain Fed Crop Systems of Turkey and Iran

    Directory of Open Access Journals (Sweden)

    Marta S. Lopes

    2018-05-01

    Full Text Available Erratic weather patterns associated with increased temperatures and decreasing rainfall pose unique challenges for wheat breeders playing a key part in the fight to ensure global food security. Within rain fed winter wheat areas of Turkey and Iran, unusual weather patterns may prevent attaining maximum potential increases in winter wheat genetic gains. This is primarily related to the fact that the yield ranking of tested genotypes may change from one year to the next. Changing weather patterns may interfere with the decisions breeders make about the ideotype(s they should aim for during selection. To inform breeding decisions, this study aimed to optimize major traits by modeling different combinations of environments (locations and years and by defining a probabilistic range of trait variations [phenology and plant height (PH] that maximized grain yields (GYs; one wheat line with optimal heading and height is suggested for use as a testing line to aid selection calibration decisions. Research revealed that optimal phenology was highly related to the temperature and to rainfall at which winter wheat genotypes were exposed around heading time (20 days before and after heading. Specifically, later winter wheat genotypes were exposed to higher temperatures both before and after heading, increased rainfall at the vegetative stage, and reduced rainfall during grain filling compared to early genotypes. These variations in exposure to weather conditions resulted in shorter grain filling duration and lower GYs in long-duration genotypes. This research tested if diversity within species may increase resilience to erratic weather patterns. For the study, calculated production of a selection of five high yielding genotypes (if grown in five plots was tested against monoculture (if only a single genotype grown in the same area and revealed that a set of diverse genotypes with different phenologies and PHs was not beneficial. New strategies of progeny

  5. A comparative ideotype, yield component and cultivation value analysis for spring wheat adaptation in Finland

    Directory of Open Access Journals (Sweden)

    Heikki Laurila

    2012-12-01

    Full Text Available In this study Mixed structural covariance, Path and Cultivation Value analyses and the CERES-Wheat crop model were used to evaluate vegetation and yield component variation affecting yield potential between different high-latitude (> 60° N lat. and mid-European (< 60° N lat. spring wheat (Triticum aestivum L. genotypes currently cultivated in southern Finland. Path modeling results from this study suggest that especially grains/ear, harvest index (HI and maximum 1000 kernel weight were significant factors defining the highest yield potential. Mixed and Cultivation value modeling results suggest that when compared with genotypes introduced for cultivation before 1990s, modern spring wheat genotypes have a significantly higher yielding capacity, current high yielding mid-European genotypes even exceeding the 5 t ha-1 non-potential baseline yield level (yb. Because of a forthcoming climate change, the new high yielding wheat genotypes have to adapt for elevated temperatures and atmospheric CO2 growing conditions in northern latitudes. The optimized ideotype profiles derived from the generic high-latitude and mid-European genotypes are presented in the results. High-latitude and mid-European ideotype profiles with factors estimating the effects of concurrent elevated CO2 and temperature levels with photoperiodical daylength effects can be utilized when designing future high yielding ideotypes adapted to future growing conditions. The CERES-Wheat ideotype modeling results imply, that with new high yielding mid-European ideotypes, the non-potential baseline yield (yb would be on average 5150 kg ha-1 level (+ 108 % vs. new high-latitude ideotypes (yb 4770 kg ha-1, 100% grown under the elevated CO2(700ppm×temperature(+3ºC growing conditions projected by the year 2100 climate change scenario in southern Finland.

  6. Identification and Preliminary Analysis of Several Centromere-associated Bacterial Artificial Chromosome Clones from a Diploid Wheat Library

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Although the centromeres of some plants have been investigated previously, our knowledge of the wheat centromere is still very limited. To understand the structure and function of the wheat centromere, we used two centromeric repeats (RCS1 and CCS1-5ab) to obtain some centromere-associated bacterial artificial chromosome (BAC) clones in 32 RCS1-related BAC clones that had been screened out from a diploid wheat (Triticum boeoticum Boiss.; 2n=2x=14) BAC library. Southern hybridization results indicated that, of the 32 candidates,there were 28 RCS1-positive clones. Based on gel blot patterns, the frequency of RCS1 was approximately one copy every 69.4 kb in these 28 RCS1-positive BAC clones. More bands were detected when the same filter was probed with CCS1-5ab. Furthermore, the CCS1 bands covered all the bands detected by RCS1, which suggests that some CCS1 repeats were distributed together with RCS1. The frequency of CCS1 families was once every 35.8 kb, nearly twice that of RCS1. Fluorescence in situ hybridization (FISH) analysis indicated that the five BAC clones containing RCS1 and CCS1 sequences all detected signals at the centromeric regions in hexaploid wheat, but the signal intensities on the A-genome chromosomes were stronger than those on the B- and/or D-genome chromosomes. The FISH analysis among nine Triticeae cereals indicated that there were A-genomespecific (or rich) sequences dispersing on chromosome arms in the BAC clone TbBAC5. In addition, at the interphase cells, the centromeres of diploid species usually clustered at one pole and formed a ring-like allocation in the period before metaphase.

  7. In vitro wheat haploid embryo production by wheat x maize cross system under different environmental conditions

    International Nuclear Information System (INIS)

    Khan, M.A.; Ahmad, J.

    2011-01-01

    Haploids are helpful in studies for inter genomic relationship, identifying molecular markers, reducing time period of varietal development and increasing efficiency of breeding program. In case of bread wheat (Triticum aestivum L.), wheat x maize cross system is the most successful system due to its higher efficiency, more haploid embryo production and low genetic specificity. The haploid embryo production is affected by many factors i.e. light, temperature, relative humidity and tiller culture media. A study was carried out comprising 25 genotypes of bread wheat for haploid embryo production using 100 mgL/sup -1/ 2,4-D, 40Gl/sup -1/ Sucrose and 8mlL/sup -1/ Sulphurous acid. Haploid embryo production was observed at various levels of environmental factors i.e. maize pollen collection temperature, time of pollination after tiller emasculation, light intensity and relative humidity during haploid seed formation. Maximum haploid embryo formation recorded was 9.52%. Best temperature observed for pollination was 21-26 degree C, optimum time duration for pollination was 24 hours after emasculation, light intensity was 10,000 Lux and relative humidity was 60-65% at 20-22 degree C. (author)

  8. Involvement of Disperse Repetitive Sequences in Wheat/Rye Genome Adjustment

    Directory of Open Access Journals (Sweden)

    Manuela Silva

    2012-07-01

    Full Text Available The union of different genomes in the same nucleus frequently results in hybrid genotypes with improved genome plasticity related to both genome remodeling events and changes in gene expression. Most modern cereal crops are polyploid species. Triticale, synthesized by the cross between wheat and rye, constitutes an excellent model to study polyploidization functional implications. We intend to attain a deeper knowledge of dispersed repetitive sequence involvement in parental genome reshuffle in triticale and in wheat-rye addition lines that have the entire wheat genome plus each rye chromosome pair. Through Random Amplified Polymorphic DNA (RAPD analysis with OPH20 10-mer primer we unraveled clear alterations corresponding to the loss of specific bands from both parental genomes. Moreover, the sequential nature of those events was revealed by the increased absence of rye-origin bands in wheat-rye addition lines in comparison with triticale. Remodeled band sequencing revealed that both repetitive and coding genome domains are affected in wheat-rye hybrid genotypes. Additionally, the amplification and sequencing of pSc20H internal segments showed that the disappearance of parental bands may result from restricted sequence alterations and unraveled the involvement of wheat/rye related repetitive sequences in genome adjustment needed for hybrid plant stabilization.

  9. Registration of 'Tiger' wheat

    Science.gov (United States)

    ‘Tiger’ hard white winter wheat (Triticum aestivum L.) was developed at Research Center-Hays, Kansas State University and released by Kansas Agricultural Experiment Station in 2010. Tiger was selected from a three-way cross KS98H245/’Trego’//KS98HW518 made in 1999 at Hays, KS. The objective of this ...

  10. Evaluation of genetic diversity in different Pakistani wheat land races

    International Nuclear Information System (INIS)

    Mahmood, T.; Siddiqua, A.; Rasheed, A.; Nazar, N.

    2011-01-01

    Wheat is one of the main sources of nutrition worldwide. Genetic improvement of the seed makes wheat a source of high quality flour for human consumption and for other industrial uses. With the help of molecular markers, the available germplasm of wheat can be assessed for future breeding programs. Therefore, the aim of the present work was to analyze the genetic diversity among 15 Pakistani wheat land races based on Random Amplified Polymorphism DNA (RAPD) markers. A total of 284 DNA fragments were amplified, ranging in size from 200bp to 1100bp by using six primers. The number of DNA fragments for each primer varied from 2 (OPC-6) to 9 (OPC-8) with an average of 6 fragments per primer. Out of 284 amplified products, 120 were monomorphic and 137 were polymorphic showing an average of 7.8% polymorphism per primer. One specific marker was detected both for OPC-1 and OPC-8, two for OPC-5, while no RAPD specific marker was detected for the remaining primers. The genetic similarity index values ranged from 0.36 to 0.93, with an average of 0.64. Maximum genetic similarity (91%) was observed between Sur bej and Khushkawa. On the contrary, minimum genetic similarity (32%) was observed in Khushkaba-1 and Khushkawa. The dendrogram resulting from the NTSYS cluster analysis showed that the studied genotypes are divided into two main clusters from the same node. The first cluster contained 13 land races, while the second cluster contained only 2 land races. The dendrogram clustered the genotypes into 5 groups and showed efficiency in identifying genetic variability. These results indicated the usefulness of RAPD technique in estimating the genetic diversity among wheat genetic resources. (author)

  11. 21 CFR 184.1322 - Wheat gluten.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Wheat gluten. 184.1322 Section 184.1322 Food and... Substances Affirmed as GRAS § 184.1322 Wheat gluten. (a) Wheat gluten (CAS Reg. No. 8002-80-0) is the principal protein component of wheat and consists mainly of gliadin and glutenin. Wheat gluten is obtained...

  12. Genetic variability in common wheat germplasm based on coefficients of parentage

    Directory of Open Access Journals (Sweden)

    Fernanda Bered

    2002-01-01

    Full Text Available The characterization of genetic variability and an estimate of the genetic relationship among varieties are essential to any breeding program, because artificial crosses among less similar parents allow a larger segregation and the combination of different favorable alleles. Genetic variability can be evaluated in different ways, including the Coefficient of Parentage (COP, which estimates the probability of two alleles in two different individuals being identical by descent. In this study, we evaluated the degree of genetic relationship among 53 wheat genotypes, and identified the ancestor genotypes which contributed the most to the current wheat germplasm, as a prediction of the width of the genetic base of this cereal. The results revealed a mean COP of 0.07 and the formation of 22 similarity groups. The ancestor genotypes Ciano 67 and Mentana were those which contributed the most to the current wheat germplasm. According to the COP analyses, the genetic base of wheat rests on a small number of ancestral genotypes.

  13. Use of some chemical inducers to improve wheat resistance to Puccinia striiformis f. Sp. Tritici

    Directory of Open Access Journals (Sweden)

    Al-Maaroof Emad

    2014-01-01

    Full Text Available The effect of DL-β-aminobutyric acid (BABA, benzothiadiazole (BTH, indoleacetic acid (IAA and salicylic acid (SA on induced systemic resistance was investigated in moderately susceptible and susceptible wheat genotypes Tamuz-2 and AL-8/70 against Puccinia striiformis f. sp. tritici. Resistance was characterized by reduced infection of yellow rust disease (Yrd. Changes in peroxidase, phenylalanine ammonia-lyase activities and in total phenolic compound content demonstrated that the resistance to Puccinia striiformis can be induced by BABA, BTH, IAA and SA in these two wheat genotypes. Further studies are needed before a practical method using many analogue compounds, such as potassium phosphate and biotic agent for Yrd resistance in wheat is developed.

  14. Effect of gamma radiation on immature winter wheat embryo culture

    International Nuclear Information System (INIS)

    Sidorova, N.; Morgun, V.; Logvinenko, V.; Karpets, A.

    1990-01-01

    Full text: The aim was to study the effect of mutagenic treatment on callus initiation, shoot differentiation and enhancement of the variation frequency and spectrum. Seven winter wheat genotypes were used as donors for immature embryos. Spikes 14 days after anthesis were treated with 4 Gy gamma rays, then embryos were isolated. According to the effect of gamma rays on the callus induction frequency (CIF) the genotypes were divided into three groups, in the first group we observed GIF stimulation (Kiyanka, Stepnyak, UK-8, Ironovskaya 61) as compared with the control (C); the second group - CIF on the C level (Mironovskaya 806, Kharkovskaya II) and the third group - CIF is lower than in C (Lutescens 7). Regeneration frequency was reduced greatly in all genotypes under mutagenic treatment. Variation has been found for plant height, number of productive tillers, length of vegetation period, spike morphology and size, awn type. (author)

  15. A Proteomics Approach to Discover Drought Tolerance Proteins in Wheat Pollen Grain at Meiosis Stage.

    Science.gov (United States)

    Fotovat, Reza; Alikhani, Mehdi; Valizadeh, Mostafa; Mirzaei, Mehdi; Salekdeh, Ghasem H

    2017-01-01

    Plants reproductive phase, when grain yield and consequently farmers' investment is most in jeopardy, is considered as the most sensitive stage to drought stress. In this study, we aimed to explore the proteomic response of wheat anther at meiosis stage in a drought tolerant, Darab, and susceptible, Shiraz, wheat genotypes. Wheat plants were exposed to drought stress at meiosis stage for four days under controlled environmental conditions. Then, anthers from both genotypes were sampled, and their proteomes were examined via quantitative proteomics analysis. Our results demonstrated that short-term stress at meiosis stage reduced plant seed-setting compared to well-watered plants. This reduction was more pronounced in the susceptible genotype, Shiraz, by 51%, compared to the drought tolerant Darab by 14.3%. Proteome analysis revealed that 60 protein spots were drought responsive, out of which 44 were identified using a mass spectrometer. We observed a dramatic up-regulation of several heat shock proteins, as well as induction of Bet v I allergen family proteins, peroxiredoxin-5, and glutathione transferase with similar abundance in both genotypes. However, the abundance of proteins such as several stress response related proteins, including glutaredoxin, proteasome subunit alpha type 5, and ribosomal proteins showed a different response to drought stress in two genotypes. The differential abundance of proteins in two genotypes may suggest mechanisms by which tolerant genotype cope with drought stress. To the best of our knowledge, this is the first proteome analysis of plant reproductive tissue response to drought stress in wheat and could broaden our insight into plant adaptation to drought stress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Effect of NaCl induced salinity on some physiological and agronomic traits of wheat

    International Nuclear Information System (INIS)

    Bilkis, A.; Islam, M.H.R.; Hasan, M.A.

    2016-01-01

    Wheat genotypes were evaluated for salt stress at early seedling stage (solution culture) and maturity (pot culture) at Crop Physiology and Ecology Laboratory, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh. Shoot length, root length, root to shoot length ratio and seedling dry weight of 15 days old seedlings were found to be reduced at 12 dS m-1 salinity level compared to control condition. Based on seedling dry weight Shatabdi, BARI Gom 25, BARI Gom 26, BAW 1111, BAW 1146, BAW 1154 and BAW 1156 were identified as salt tolerant (STI = >0.70); BAW 1130, BAW 1135 and BAW 1142 were salt sensitive (STI = <0.60) and other ten were screened as moderately salt tolerant (STI = 0.60 to 0.70) wheat genotypes. Out of twenty genotypes, two salt tolerant (Shatabdi and BARI Gom 25) and two salt sensitive (BAW 1130 and BAW 1142) wheat genotypes were grown in pot irrigated with three levels of saline water (control, 6 dS m/sup -1/ and 12 dS m/sup -1/). Salt tolerant wheat genotypes maintained lower level of leaf Na, higher level of leaf K, greater K to Na ratio, increased level of flag leaf proline and greater flag leaf SPAD value in saline condition than the sensitive ones. Salt sensitive genotypes affected more in spikes plant-1, grains spike/sup -1/, grain dry weight spike-1, 100 grain weight and grain yield plant-1 under saline condition than salt tolerant genotypes. (author)

  17. REARRANGEMENT IN THE B-GENOME FROM DIPLOID PROGENITOR TO WHEAT ALLOPOLYPOLID

    Directory of Open Access Journals (Sweden)

    Salina E.A.

    2012-08-01

    Full Text Available Three key periods that were accompanied by considerable rearrangements in the B genome of wheat and its progenitor can be considered. The first period covers the period from the divergence of diploid Triticum and Aegilops species from their common progenitor (2.5–6 million years ago to formation of the tetraploid T. diccocoides (about 500 thousand years ago. Significant genomic rearrangements in the diploid progenitor of the B genome, Ae. speltoides (SS genome, involved a considerable amplification of repeated DNA sequences, which led to an increase in the number of heterochromatin blocks on chromosomes relative to other diploid Aegilops and Triticum species. Our analysis has demonstrated that during this period the Spelt1 repeats intensively amplified as well as several mobile elements proliferated, in particular, the genome-specific gypsy LTR-retrotransposon Fatima and CACTA DNA-transposon Caspar. The second period in the B-genome evolution was associated with the emergence of tetraploid (BBAA genome and its subsequent evolution. The third most important event leading to the next rearrangement of the B genome took place relatively recently, 7000–9500 years ago, being associated with the emergence of hexaploid wheat with the genomic formula BBAADD. The evolution of the B/S genome involved intergenomic and intragenomic translocations and chromosome inversions. So far, five rearrangements in the B-genome chromosomes of polyploid wheats has been observed and described; the majority of them took place during the formation and evolution of tetraploid species. The mapping of the S-genome chromosomes and comparison with the B-genome chromosome maps have demonstrated that individual rearrangements pre-existed in Ae. speltoides; moreover, Ae. speltoides is polymorphic for these rearrangements.Chromosome 5B is nearly 870 Mbp (5BL = 580 Mbp and 5BS = 290 Mbp and is known to carry important genes controlling the key aspects of wheat biology, in

  18. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor.

    Science.gov (United States)

    Ben-David, Roi; Dinoor, Amos; Peleg, Zvi; Fahima, Tzion

    2018-01-01

    The biotroph wheat powdery mildew, Blumeria graminis (DC.) E.O. Speer, f. sp. tritici Em. Marchal ( Bgt ), has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes ( Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum , and T. aestivum ) and 241 accessions of its direct progenitor, wild emmer wheat ( T. turgidum ssp. dicoccoides )]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant). Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host). Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [ P (F) < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance). By

  19. Reciprocal Hosts' Responses to Powdery Mildew Isolates Originating from Domesticated Wheats and Their Wild Progenitor

    Directory of Open Access Journals (Sweden)

    Roi Ben-David

    2018-02-01

    Full Text Available The biotroph wheat powdery mildew, Blumeria graminis (DC. E.O. Speer, f. sp. tritici Em. Marchal (Bgt, has undergone long and dynamic co-evolution with its hosts. In the last 10,000 years, processes involved in plant evolution under domestication, altered host-population structure. Recently both virulence and genomic profiling separated Bgt into two groups based on their origin from domestic host and from wild emmer wheat. While most studies focused on the Bgt pathogen, there is significant knowledge gaps in the role of wheat host diversity in this specification. This study aimed to fill this gap by exploring qualitatively and also quantitatively the disease response of diverse host panel to powdery mildew [105 domesticated wheat genotypes (Triticum turgidum ssp. dicoccum, T. turgidum ssp. durum, and T. aestivum and 241 accessions of its direct progenitor, wild emmer wheat (T. turgidum ssp. dicoccoides]. A set of eight Bgt isolates, originally collected from domesticated and wild wheat was used for screening this wheat collection. The isolates from domesticated wheat elicited susceptible to moderate plant responses on domesticated wheat lines and high resistance on wild genotypes (51.7% of the tested lines were resistant. Isolates from wild emmer elicited reciprocal disease responses: high resistance of domesticated germplasm and high susceptibility of the wild material (their original host. Analysis of variance of the quantitative phenotypic responses showed a significant Isolates × Host species interaction [P(F < 0.0001] and further supported these findings. Furthermore, analysis of the range of disease severity values showed that when the group of host genotypes was inoculated with Bgt isolate from the reciprocal host, coefficient of variation was significantly higher than when inoculated with its own isolates. This trend was attributed to the role of major resistance genes in the latter scenario (high proportion of complete resistance. By

  20. Studies on phosphate use efficiency of wheat in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Abdou, M [Suez Canal Univ., Ismailia (Egypt). Soil and Water Dept.

    1996-07-01

    Genotypic differences in the efficiency of use of phosphorus and other nutrients in wheat was evaluated in a field study. The experiment was conducted during the 1991/92 and 1992/93 seasons on a virgin loamy sandy soil (pH 7.9) with low available phosphorus, in Ismailia, Suez Canal, Egypt. Because of arid climate, water was applied through sprinkler irrigation throughout the growing period (November to May). Shoot samples were taken at four developmental stages. Results show that there are substantial differences in phosphorus use efficiency of wheat. Biomass production, grain yield, straw yield, number of ears per m{sup 2}, and the number of grain per ear differed substantially at different phosphorus levels but there was no major difference in the 1000 grain weight. Wheat cultivars also showed significant differences in their P, K, Ca, and Mg contents. Eighteen local wheat cultivars (Triticum aestivum L.) were grown in the field to obtain information about root characteristics and vesicular-arbiscular mycorrhiza fungi infection that known to play a role in phosphate use efficiency of crops. Some root parameters such as root volume, root dry matter, root length and vesicular-arbiscular mycorrhiza infection rate were measured at three development stages. In addition, root diameter and root density were also measured. Wheat cultivars efficient in phosphorus use have a high root density in the sub soil region and this is accompanied with a high vesicular-arbiscular mycorrhiza infection rate. Cultivars showed differences in root morphology and vesicular-arbiscular mycorrhiza infection rate. Some cultivars had a low root density and vesicular-arbiscular mycorrhiza infection rate and these cultivars exhibited a high phosphorus use efficiency. This was particularly true with cultivars 14, 16, and 18. This information may be useful to plant breeders in their attempts to breed wheat cultivars efficient in phosphate uptake and use. 41 refs, 2 figs, 4 tabs.

  1. Studies on phosphate use efficiency of wheat in Egypt

    International Nuclear Information System (INIS)

    Abdou, M.

    1996-01-01

    Genotypic differences in the efficiency of use of phosphorus and other nutrients in wheat was evaluated in a field study. The experiment was conducted during the 1991/92 and 1992/93 seasons on a virgin loamy sandy soil (pH 7.9) with low available phosphorus, in Ismailia, Suez Canal, Egypt. Because of arid climate, water was applied through sprinkler irrigation throughout the growing period (November to May). Shoot samples were taken at four developmental stages. Results show that there are substantial differences in phosphorus use efficiency of wheat. Biomass production, grain yield, straw yield, number of ears per m 2 , and the number of grain per ear differed substantially at different phosphorus levels but there was no major difference in the 1000 grain weight. Wheat cultivars also showed significant differences in their P, K, Ca, and Mg contents. Eighteen local wheat cultivars (Triticum aestivum L.) were grown in the field to obtain information about root characteristics and vesicular-arbiscular mycorrhiza fungi infection that known to play a role in phosphate use efficiency of crops. Some root parameters such as root volume, root dry matter, root length and vesicular-arbiscular mycorrhiza infection rate were measured at three development stages. In addition, root diameter and root density were also measured. Wheat cultivars efficient in phosphorus use have a high root density in the sub soil region and this is accompanied with a high vesicular-arbiscular mycorrhiza infection rate. Cultivars showed differences in root morphology and vesicular-arbiscular mycorrhiza infection rate. Some cultivars had a low root density and vesicular-arbiscular mycorrhiza infection rate and these cultivars exhibited a high phosphorus use efficiency. This was particularly true with cultivars 14, 16, and 18. This information may be useful to plant breeders in their attempts to breed wheat cultivars efficient in phosphate uptake and use. 41 refs, 2 figs, 4 tabs

  2. Application of fluorescence-based semi-automated AFLP analysis in barley and wheat

    DEFF Research Database (Denmark)

    Schwarz, G.; Herz, M.; Huang, X.Q.

    2000-01-01

    of semi-automated codominant analysis for hemizygous AFLP markers in an F-2 population was too low, proposing the use of dominant allele-typing defaults. Nevertheless, the efficiency of genetic mapping, especially of complex plant genomes, will be accelerated by combining the presented genotyping......Genetic mapping and the selection of closely linked molecular markers for important agronomic traits require efficient, large-scale genotyping methods. A semi-automated multifluorophore technique was applied for genotyping AFLP marker loci in barley and wheat. In comparison to conventional P-33...

  3. Distribution of photoperiod-insensitive alleles Ppd-B1a and Ppd-D1a and their effect on heading time in Japanese wheat cultivars

    OpenAIRE

    Seki, Masako; Chono, Makiko; Matsunaka, Hitoshi; Fujita, Masaya; Oda, Shunsuke; Kubo, Katashi; Kiribuchi-Otobe, Chikako; Kojima, Hisayo; Nishida, Hidetaka; Kato, Kenji

    2011-01-01

    The genotypes of photoperiod response genes Ppd-B1 and Ppd-D1 in Japanese wheat cultivars were determined by a PCR-based method, and heading times were compared among genotypes. Most of the Japanese wheat cultivars, except those from the Hokkaido region, carried the photoperiod-insensitive allele Ppd-D1a, and heading was accelerated 10.3 days compared with the Ppd-D1b genotype. Early cultivars with Ppd-D1a may have been selected to avoid damage from preharvest rain. In the Hokkaido region, Pp...

  4. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.).

    Science.gov (United States)

    Beales, James; Turner, Adrian; Griffiths, Simon; Snape, John W; Laurie, David A

    2007-09-01

    Ppd-D1 on chromosome 2D is the major photoperiod response locus in hexaploid wheat (Triticum aestivum). A semi-dominant mutation widely used in the "green revolution" converts wheat from a long day (LD) to a photoperiod insensitive (day neutral) plant, providing adaptation to a broad range of environments. Comparative mapping shows Ppd-D1 to be colinear with the Ppd-H1 gene of barley (Hordeum vulgare) which is a member of the pseudo-response regulator (PRR) gene family. To investigate the relationship between wheat and barley photoperiod genes we isolated homologues of Ppd-H1 from a 'Chinese Spring' wheat BAC library and compared them to sequences from other wheat varieties with known Ppd alleles. Varieties with the photoperiod insensitive Ppd-D1a allele which causes early flowering in short (SD) or LDs had a 2 kb deletion upstream of the coding region. This was associated with misexpression of the 2D PRR gene and expression of the key floral regulator FT in SDs, showing that photoperiod insensitivity is due to activation of a known photoperiod pathway irrespective of day length. Five Ppd-D1 alleles were found but only the 2 kb deletion was associated with photoperiod insensitivity. Photoperiod insensitivity can also be conferred by mutation at a homoeologous locus on chromosome 2B (Ppd-B1). No candidate mutation was found in the 2B PRR gene but polymorphism within the 2B PRR gene cosegregated with the Ppd-B1 locus in a doubled haploid population, suggesting that insensitivity on 2B is due to a mutation outside the sequenced region or to a closely linked gene.

  5. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum).

    Science.gov (United States)

    Evens, Nicholas P; Buchner, Peter; Williams, Lorraine E; Hawkesford, Malcolm J

    2017-10-01

    Understanding the molecular basis of zinc (Zn) uptake and transport in staple cereal crops is critical for improving both Zn content and tolerance to low-Zn soils. This study demonstrates the importance of group F bZIP transcription factors and ZIP transporters in responses to Zn deficiency in wheat (Triticum aestivum). Seven group F TabZIP genes and 14 ZIPs with homeologs were identified in hexaploid wheat. Promoter analysis revealed the presence of Zn-deficiency-response elements (ZDREs) in a number of the ZIPs. Functional complementation of the zrt1/zrt2 yeast mutant by TaZIP3, -6, -7, -9 and -13 supported an ability to transport Zn. Group F TabZIPs contain the group-defining cysteine-histidine-rich motifs, which are the predicted binding site of Zn 2+ in the Zn-deficiency response. Conservation of these motifs varied between the TabZIPs suggesting that individual TabZIPs may have specific roles in the wheat Zn-homeostatic network. Increased expression in response to low Zn levels was observed for several of the wheat ZIPs and bZIPs; this varied temporally and spatially suggesting specific functions in the response mechanism. The ability of the group F TabZIPs to bind to specific ZDREs in the promoters of TaZIPs indicates a conserved mechanism in monocots and dicots in responding to Zn deficiency. In support of this, TabZIPF1-7DL and TabZIPF4-7AL afforded a strong level of rescue to the Arabidopsis hypersensitive bzip19 bzip23 double mutant under Zn deficiency. These results provide a greater understanding of Zn-homeostatic mechanisms in wheat, demonstrating an expanded repertoire of group F bZIP transcription factors, adding to the complexity of Zn homeostasis. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.

  6. RNAi-Mediated Downregulation of Inositol Pentakisphosphate Kinase (IPK1 in Wheat Grains Decreases Phytic Acid Levels and Increases Fe and Zn Accumulation

    Directory of Open Access Journals (Sweden)

    Sipla Aggarwal

    2018-03-01

    Full Text Available Enhancement of micronutrient bioavailability is crucial to address the malnutrition in the developing countries. Various approaches employed to address the micronutrient bioavailability are showing promising signs, especially in cereal crops. Phytic acid (PA is considered as a major antinutrient due to its ability to chelate important micronutrients and thereby restricting their bioavailability. Therefore, manipulating PA biosynthesis pathway has largely been explored to overcome the pleiotropic effect in different crop species. Recently, we reported that functional wheat inositol pentakisphosphate kinase (TaIPK1 is involved in PA biosynthesis, however, the functional roles of the IPK1 gene in wheat remains elusive. In this study, RNAi-mediated gene silencing was performed for IPK1 transcripts in hexaploid wheat. Four non-segregating RNAi lines of wheat were selected for detailed study (S3-D-6-1; S6-K-3-3; S6-K-6-10 and S16-D-9-5. Homozygous transgenic RNAi lines at T4 seeds with a decreased transcript of TaIPK1 showed 28–56% reduction of the PA. Silencing of IPK1 also resulted in increased free phosphate in mature grains. Although, no phenotypic changes in the spike was observed but, lowering of grain PA resulted in the reduced number of seeds per spikelet. The lowering of grain PA was also accompanied by a significant increase in iron (Fe and zinc (Zn content, thereby enhancing their molar ratios (Zn:PA and Fe:PA. Overall, this work suggests that IPK1 is a promising candidate for employing genome editing tools to address the mineral accumulation in wheat grains.

  7. Models for genotype by environment interaction estimation on halomorphic soil

    Directory of Open Access Journals (Sweden)

    Dimitrijević Miodrag

    2006-01-01

    Full Text Available In genotype by environment interaction estimation, as well as, in total trial variability anal­ysis several models are in use. The most often used are Analysis of variance, Eberhart and Russell model and AMMI model. Each of the models has its own specificities, in the way of sources of varia­tion comprehension and treatment. It is known that agriculturally less productive environments increase errors, dimmish reaction differences between genotypes and decrease repeatability of conditions during years. A sample consisting on six bread wheat varieties was studied in three veg­etation periods on halomorphic soil, solonetz type in Banat (vil. Kumane. Genotype by environ­ment interaction was quantified using ANOVA, Eberhart and Russell model and AMMI model. The results were compared not only on pure solonetz soil (control, but also on two level of ameliora­tion (25 and 50t/ha phosphor-gypsum.

  8. Exogenous application of molybdenum affects the expression of CBF14 and the development of frost tolerance in wheat.

    Science.gov (United States)

    Al-Issawi, Mohammed; Rihan, Hail Z; Woldie, Wondwossen Abate; Burchett, Stephen; Fuller, Michael P

    2013-02-01

    Wheat is able to cold acclimate in response to low temperatures and thereby increase its frost tolerance and the extent of this acclimation is greater in winter genotypes compared to spring genotypes. Such up-regulation of frost tolerance is controlled by Cbf transcription factors. Molybdenum (Mo) application has been shown to enhance frost tolerance of wheat and this study aimed to investigate the effect of Mo on the development of frost tolerance in winter and spring wheat. Results showed that Mo treatment increased the expression of Cbf14 in wheat under non-acclimating condition but did not alter frost tolerance. However, when Mo was applied in conjunction with exposure of plants to low temperature, Mo increased the expression of Cbf14 and enhanced frost tolerance in both spring and winter genotypes but the effect was more pronounced in the winter genotype. It was concluded that the application of Mo could be useful in situations where enhanced frost resistance is required. Further studies are proposed to elucidate the effect of exogenous of applications of Mo on frost resistance in spring and winter wheat at different growth stages. Crown Copyright © 2012. Published by Elsevier Masson SAS. All rights reserved.

  9. Induced variability for protein content in bread wheat

    International Nuclear Information System (INIS)

    Singhal, N.C.; Jain, H.K.; Austin, A.

    1978-01-01

    The negative correlation observed between seed weight and percentage of protein in the seeds of bread wheat is a function of the fact that increase in seed size is commonly associated with a disproportionately large deposition of starch relative to the protein. The present study, as well as our earlier analysis, shows that exceptional genotypes of bread wheat do exist in which increase in seed weight is associated with a relatively larger synthesis of protein. In the course of the present investigation on radiation-induced variability, genotypes showing more efficient synthesis of storage proteins in their seeds have been identified in the M 2 and M 3 generations. The induced variability, thus, makes it possible to break the negative correlation between seed weight and percentage of protein in the seed. Based on these findings, it has been suggested that in a protein improvement programme on bread wheat it should be useful to select in the segregating generation plants showing increase in seed size, some of which can be expected to be relatively more efficient in protein synthesis and give higher protein yields. (author)

  10. Induction of Mutants in Durum Wheat

    International Nuclear Information System (INIS)

    AL-Ubaidi, M.; Ibrahim, I.; AL-Hadithi, A.

    2002-01-01

    This investigation presents a breeding program for induction and development of a new genotype of durum wheat, resistant to lodging with high yield, by irradiation durum wheat hybrids (F2) with gamma rays 100 Gy, during 1990-1997 cultivation seasons. This program involves: induction of variability, selection evaluation of the mutants at three locations: Twaitha (Baghdad) Latifya ( Babylon) and Swari (Kutt). All mutants showed resistance to lodging and there was a significant reduction in plant height. Mutant SIXIZ-22 surpassed other mutants and its origin in lodging resistance and plant height (83.5,82.8 and 89.4 cm) in the three locations at generation M5 and M6, respectively. Also, there were significant differences between mutant and their origin in the number of spikes/M 2 and grain yild during the two successive generation. On the other hand, mutant IZxCO-105 surpassed other mutants in the number of spikes/M 2 (231.8,242.3 and 292) and grain yield (4336,3376 and 5232 kg/ha) in all testing location, respectively . (authors) 14 refs., 4 tabs

  11. Bread winter wheat breeding (Triticum aestivum L. using spring varieties genepool in forest-steppe Environments of Ukraine

    Directory of Open Access Journals (Sweden)

    В. С. Кочмарський

    2010-10-01

    Full Text Available It is concluded by investigations that wheat crossing of various development types between themselves cause increase of formbuilding process in hybrid progeny, promoting the selection of practically valuable recombinats. The genotypes which present the practical valuable by complex of adaptive traits and properties have been selected by phenotype stability in the breeding process. The new bread winter wheat variety Pamyati Remesla developed with participation of spring wheat variety Hja 22139 (Finland has been proposed for including it into the Register of Plant varieties of Ukraine adapted for use in Steppe, Forest- Steppe and Woodland of Ukraine since 2010.

  12. The carotenoid biosynthetic and catabolic genes in wheat and their association with yellow pigments.

    Science.gov (United States)

    Colasuonno, Pasqualina; Lozito, Maria Luisa; Marcotuli, Ilaria; Nigro, Domenica; Giancaspro, Angelica; Mangini, Giacomo; De Vita, Pasquale; Mastrangelo, Anna Maria; Pecchioni, Nicola; Houston, Kelly; Simeone, Rosanna; Gadaleta, Agata; Blanco, Antonio

    2017-01-31

    In plants carotenoids play an important role in the photosynthetic process and photo-oxidative protection, and are the substrate for the synthesis of abscisic acid and strigolactones. In addition to their protective role as antioxidants and precursors of vitamin A, in wheat carotenoids are important as they influence the colour (whiteness vs. yellowness) of the grain. Understanding the genetic basis of grain yellow pigments, and identifying associated markers provide the basis for improving wheat quality by molecular breeding. Twenty-four candidate genes involved in the biosynthesis and catabolism of carotenoid compounds have been identified in wheat by comparative genomics. Single nucleotide polymorphisms (SNPs) found in the coding sequences of 19 candidate genes allowed their chromosomal location and accurate map position on two reference consensus maps to be determined. The genome-wide association study based on genotyping a tetraploid wheat collection with 81,587 gene-associated SNPs validated quantitative trait loci (QTLs) previously detected in biparental populations and discovered new QTLs for grain colour-related traits. Ten carotenoid genes mapped in chromosome regions underlying pigment content QTLs indicating possible functional relationships between candidate genes and the trait. The availability of linked, candidate gene-based markers can facilitate breeding wheat cultivars with desirable levels of carotenoids. Identifying QTLs linked to carotenoid pigmentation can contribute to understanding genes underlying carotenoid accumulation in the wheat kernels. Together these outputs can be combined to exploit the genetic variability of colour-related traits for the nutritional and commercial improvement of wheat products.

  13. PROTEIN COMPLEX OF WHEAT, BUCKWHEAT AND MAIZE IN RELATION TO CELIAC DISEASE

    Directory of Open Access Journals (Sweden)

    Milan Chňapek

    2014-02-01

    Full Text Available Cereals are the most wide spread and very important plants utilized as a food source for mankind and for animals where they play role in energetical metabolism and proteosynthesis. Cereals contain proteins with unique properties. These properties allow us to produce leavened bread. Technological characteristic of cereal grain is determined by quantity and quality of storage proteins which represent alcohol soluble prolamins and glutenins soluble in acids and basis solutions. Celiac disease is one of the most frequent food intolerance caused by cereal storage proteins. Therapy consists of strict diet without consumptions of cereals or gluten. Pseudocereals are very perspective groups of plants in gluten free diet, due to absence of celiac active proteins, but on the other hand, flour from pseudocereals is not very suitable for baking. There are a lot of analytical methods applicable for detection of celiac active proteins in cereal and pseudocereal grain. Electrophoretical and immunochemical methods are the most utilized. Genotypes of wheat and maize were homogeneous and singlelined in contrast with genotypes of buckwheat. Average content of HMW-GS was highest in genotypes of bread wheat and lowest in buckwheat varieties. A celiac active fraction of storage proteins (LMW-GS and gliadins was detected at the highest content level in wheat genotypes. Genotypes of buckwheat and maize showed similar low content of this protein fraction. Presence of residual albumins and globulins in buckwheat varieties showed the highest value.

  14. Population genetic analysis and trichothecene profiling of Fusarium graminearum from wheat in Uruguay.

    Science.gov (United States)

    Pan, D; Mionetto, A; Calero, N; Reynoso, M M; Torres, A; Bettucci, L

    2016-03-11

    Fusarium graminearum sensu stricto (F. graminearum s.s.) is the major causal agent of Fusarium head blight of wheat worldwide, and contaminates grains with trichothecene mycotoxins that cause serious threats to food safety and animal health. An important aspect of managing this pathogen and reducing mycotoxin contamination of wheat is knowledge regarding its population genetics. Therefore, isolates of F. graminearum s.s. from the major wheat-growing region of Uruguay were analyzed by amplified fragment length polymorphism assays, PCR genotyping, and chemical analysis of trichothecene production. Of the 102 isolates identified as having the 15-ADON genotype via PCR genotyping, all were DON producers, but only 41 strains were also 15-ADON producers, as determined by chemical analysis. The populations were genotypically diverse but genetically similar, with significant genetic exchange occurring between them. Analysis of molecular variance indicated that most of the genetic variability resulted from differences between isolates within populations. Multilocus linkage disequilibrium analysis suggested that the isolates had a panmictic population genetic structure and that there is significant recombination occurs in F. graminearum s.s. In conclusion, tour findings provide the first detailed description of the genetic structure and trichothecene production of populations of F. graminearum s.s. from Uruguay, and expands our understanding of the agroecology of F. graminearum and of the correlation between genotypes and trichothecene chemotypes.

  15. Evaluation of Salt Stress Effect on the Agro-Physiological Traits of Bread Wheat (Triticum aestivum L. and Durum Wheat (Triticum turgidum L. at the Seedling Stage

    Directory of Open Access Journals (Sweden)

    P. Golkar

    2016-07-01

    Full Text Available This experiment was conducted to evaluate the effects of salt stress on some agro-physiological traits in ten varieties of bread (Triticum aestivum L. and durum (Triticum turgidum L. wheats in seedling stage. A greenhouse experiment was carried out as a split plot experiment based on a completely randomized design with four replications in hydroponic condition. Different agronomic and physiological traits (such as Na+, K+, Ca+2 contents and relative water content (RWC were studied. Salinity showed significant effect on all of the studied traits, except for root dry weight and the ratio of Na+/Ca+2. Increase in NaCl level led to significant reductions in all studied traits. The studied genotypes showed significant difference for radicle length, leaf length, seedling dry weight, leaf dry weight, root dry weight, RWC and Na+, K+, Ca+2 concentrations and Na+/K+ and Na+/Ca+2 ratios. The genotype × salinity interaction was significant for RWC, Na+, Ca+2 and Na+/Ca+2. The salt stress increased the leaf Na+ while it decreased the K+ and Ca2+ concentrations. The greatest shoot dry weight (0.035 g, root dry weight (0.024 g and Na+/Ca+2 ratio (1.71 were found in genotype Alamot (bread wheat and the greatest plantlet length (12 cm was observed in genotype Verinak. The greatest rootlet length (14.63 cm, dry weight of seedlings (0.057 g, RWC (82.20%, membrane stability (0.59, K+ (3.38 mg/g dry weight and the smallest Na+/K+ ratio (0.17 were detected in genotype Toos (bread wheat. The genotype Toos was identified as the most tolerant genotype to salt stress.

  16. Use of wheat and maize protein mutants in breeding for improved protein quantity and quality

    International Nuclear Information System (INIS)

    Denic, M.; Dumanovic, J.; Misevic, D.; Konstantinov, K.; Fidler, D.; Stojanovic, Z.

    1984-01-01

    Selected offspring progenies (50 mutant lines) originating from mutation experiments with hexaploid wheat (cv. Bezostaya 1) were analysed for induced heritable variation in protein content, lysine content, grain yield and protein and lysine yields. Ten of these mutant lines were crossed with 11 local varieties. The protein and lysine contents were measured in the progenies of these crossings. The data showed better correlations of grain yield with protein and lysine yields than the protein and lysine contents with their corresponding yields. F 1 seeds showed higher lysine and protein contents than local varieties. Data with maize showed that: (1) the total endosperm protein content of modified opaque-2 types increases with an increase in the degree of normalization; (2) the lysine content in dry matter and protein in normalized o 2 kernels usually decreases with the increasing degree of normalization; (3) the lysine content in protein of modified o 2 kernels, is, in general, satisfactory up to the normalization of about 50% of endosperm. A desirable modification of o 2 endosperm within line A632o 2 was selected and crossed with o 2 lines. Most of the tested hybrids had a good protein quality, but endosperm modification was not evident in all hybrids. The o 2 gene was incorporated into high protein backgrounds. Besides a high protein content and quality, some of the hybrids tested had a comparable or higher yield than the o 2 check. (author)

  17. Study on Prevalence of Mycoflora in Wheat Seeds

    Directory of Open Access Journals (Sweden)

    Pratishtha Adhikari

    2016-01-01

    Full Text Available Forty seed sample of wheat (Triticum aestivum were collected from four locations viz. Chitwan, Kaski, Banke and Lalitpur and tested by blotter method at laboratory during 2013 for determining fungal pathogens associated with wheat seeds in Nepal. Eighteen species representing thirteen genera of fungi were recovered from the seed. Alternaria alternata and Bipolaris sorokiniana were predominant in all the varieties/genotypes from all the locations, where B. sorokiniana was strongly pathogenic in wheat crop. Percentage frequency and type of fungi detected varied with variety and locations. Bipolaris sorokiniana was highest (64.40% in Banke than remaining three locations. Seeds of Chitwan had lowest percentage (5.50% of seed infection as compared to other locations. Relative abundance of Alternaria alternata (55.10% was highest as it was the most prevalent component of seed borne mycoflora, followed by Bipolaris sorokiniana (34.69% and Cladosporium herbarum (7.19%. Differences in quantity of precipitation and relative humidity might be the possible reason for variation in frequency and type of fungi detected in wheat seeds of four locations.

  18. Generation of amphidiploids from hybrids of wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum as a source of genetic variation for wheat improvement.

    Science.gov (United States)

    Nemeth, Csilla; Yang, Cai-yun; Kasprzak, Paul; Hubbart, Stella; Scholefield, Duncan; Mehra, Surbhi; Skipper, Emma; King, Ian; King, Julie

    2015-02-01

    We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.

  19. High production of wheat double haploids via anther culture

    Directory of Open Access Journals (Sweden)

    Kondić-Šipka Ankica

    2007-01-01

    Full Text Available Androgenous and regeneration abilities of 14 randomly selected F1 hybrids of wheat (Triticum aestivum L. were analyzed. Anthers were grown in vitro on a modified Potato-2 inductive medium. The hybrid NS111-95/Ana had the highest average values for androgenous capacity (33% and callus yield (119%, while the hybrid NS 92-250/Tiha had the lowest values for these traits (9 and 21%, respectively. Seven genotypes (50% had a frequency of green plants relative to the number of isolated anthers of over 10%, with the highest frequency of 21.3% (NS111-95/Sremica. This hybrid produced 12.8 doubled haploid (DH lines per spike used for isolation. In the other genotypes, the number of produced DH lines per spike ranged from 1 (30­Sc.Smoc.88-89/Hays-2 to 11.2 (NS111-95/Ana. As half of the randomly selected genotypes exhibited high green plant regeneration ability and a high production of DH lines per spike, it can be concluded that in vitro anther culture can be successfully used in breeding programs for rapid production of homozygous wheat lines.

  20. Molecular evaluation of genetic variability of wheat elite breeding material

    Directory of Open Access Journals (Sweden)

    Brbaklić Ljiljana

    2009-01-01

    Full Text Available Estimation of genetic variability of breeding material is essential for yield improvement in wheat cultivars. Modern techniques based on molecular markers application are more efficient and precise in genetic variability evaluation then conventional methods. Variability of 96 wheat cultivars and lines was analyzed using four microsatellite markers (Gwm11, Gwm428, Psp3200, Psp3071. The markers were chosen according to their potential association with important agronomical traits indicated in the literature. Total of 31 alleles were detected with maximum number of alleles (11 in Xgwm11 locus. The highest polymorphism information content (PIC value (0,831 was found in the locus Xpsp3071. The genotypes were grouped into three subpopulations based on their similarity in the analyzed loci. The results have indicated wide genetic variability of the studied material and possibility of its application in further breeding process after validation of marker-trait association. .