WorldWideScience

Sample records for hexagonal core analysis

  1. Comparison between triangular and hexagonal modeling of a hexagonal-structured reactor core using box method

    Energy Technology Data Exchange (ETDEWEB)

    Malmir, Hessam, E-mail: malmir@energy.sharif.edu [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of); Moghaddam, Nader Maleki [Department of Nuclear Engineering and Physics, Amir Kabir University of Technology (Tehran Polytechnique), Hafez Street, Tehran (Iran, Islamic Republic of); Zahedinejad, Ehsan [Department of Energy Engineering, Sharif University of Technology, Azadi Street, Tehran (Iran, Islamic Republic of)

    2011-02-15

    A hexagonal-structured reactor core (e.g. VVER-type) is mostly modeled by structured triangular and hexagonal mesh zones. Although both the triangular and hexagonal models give good approximations over the neutronic calculation of the core, there are some differences between them that seem necessary to be clarified. For this purpose, the neutronic calculations of a hexagonal-structured reactor core have to be performed using the structured triangular and hexagonal meshes based on box method of discretisation and then the results of two models should be benchmarked in different cases. In this paper, the box method of discretisation is derived for triangular and hexagonal meshes. Then, two 2-D 2-group static simulators for triangular and hexagonal geometries (called TRIDIF-2 and HEXDIF-2, respectively) are developed using the box method. The results are benchmarked against the well-known CITATION computer code in case of a VVER-1000 reactor core. Furthermore, the relative powers calculated by the TRIDIF-2 and HEXDIF-2 along with the ones obtained by the CITATION code are compared with the verified results which have been presented in the Final Safety Analysis Report (FSAR) of the aforementioned reactor. Different benchmark cases revealed the reliability of the box method in contrast with the CITATION code. Furthermore, it is shown that the triangular modeling of the core is more acceptable compared with the hexagonal one.

  2. Whole Core Transport Calculation Methodology for a Hexagonal Core

    Energy Technology Data Exchange (ETDEWEB)

    Cho, J. Y.; Kim, K. S.; Lee, C. C.; Zee, S. Q.; Joo, H. G

    2007-07-15

    This report discusses the hexagonal module implemented to the DeCART code and the performance of them. The implemented hexagonal module includes the hexagonal ray tracing and the CMFD acceleration modules. The performance of the implemented hexagonal module is examined for 4 tests of: (1) CMFD acceleration test, (2) the accuracy test of the hexagonal module, (3) the performance test for 2-D NGNP problem and (4) the applicability test for 3-D NGNP problem. The features of the implemented hexagonal modules are: (1) The Modular ray tracing scheme based on a hexagonal assembly and a path linking scheme between the modular rays. (2) Segment generation based on the structure unit. (3) Cell ray approximation: This feature is developed to reduce the memory required to store the segment information. (4) Modified cycle ray scheme that begins the ray tracing at a given surface and finishes if the reflected ray meets the starting surface. This feature is developed to reduce the memory required for the angular flux at the core boundary. (5) Fixed assembly geometry. The pin geometry of the single pin per assembly problem is different from that of the multi-pin problem. The core geometry of a single assembly problem is also different from that of the multi-assembly problem. (6) CMFD module based on unstructured cell. This feature is to deal with the irregular gap cells that are positioned at the assembly boundaries. The examination results of the 4 tests can be summarized as: (1) The CMFD acceleration test shows that the CMFD module speedups about greater than 200 for the core problem. (2) The accuracy test shows that the hexagonal MOC module produces an accurate solution of less than 60 pcm of eigenvalue and less than 2 % of local pin power errors. (3) The performance test for 2-D NGNP problem shows that the implemented hexagonal module works soundly and produces a reasonable solution by cooperating with the existing DeCART library and the other modules. (4) The applicability

  3. Watt loss in three-phase transformers with circular and hexagonal forming contours of twisted spatial magnetic core rods

    Directory of Open Access Journals (Sweden)

    E.A. Avdieieva

    2014-04-01

    Full Text Available For spatial three-phase axial electromagnetic systems with circular and hexagonal cross-section configurations of twisted butt-end magnetic core rods, analytical dependences for optimal geometrical relations determination over the transformer minimum watt loss criterion are obtained, comparative analysis of the systems energy efficiency made.

  4. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  5. Hexagonal Boron Nitride-Graphene Core-Shell Arrays Formed by Self-Symmetrical Etching Growth.

    Science.gov (United States)

    Wang, Chenxiao; Zuo, Junlai; Tan, Lifang; Zeng, Mengqi; Zhang, Qiqi; Xia, Huinan; Zhang, Wenhao; Fu, Yingshuang; Fu, Lei

    2017-09-20

    The synthesis and integration of core-shell materials have been extensively explored in three-dimensional nanostructures, while they are hardly ever extended into the emerging two-dimensional (2D) research field. Herein, demonstrated by graphene (G) and hexagonal boron nitride (h-BN) and via a sequential chemical vapor deposition method, we succeed for the first time in synthesizing 2D h-BN-G core-shell arrays (CSA), which possess extremely high uniformity in shapes, sizes and distributions. Each of the core-shell unit is composed of G ring-shaped shell internally filled with h-BN circular core. In addition, we perform simulations to further explain the self-symmetrical etching growth mechanism of the h-BN-G CSA, demonstrating its potential to be used as an efficient synthetic method suitable for other 2D CSA systems.

  6. Edge-Termination and Core-Modification Effects of Hexagonal Nanosheet Graphene

    Directory of Open Access Journals (Sweden)

    Jin-Pei Deng

    2014-02-01

    Full Text Available Optimized geometries and electronic structures of two different hexagonal grapheme nanosheets (HGNSs, with armchair (n-A-HGNS, n = 3–11 and zigzag (n-Z-HGNS, n = 1–8 edges have been calculated by using the GGA/PBE method implemented in the SIESTA package, with the DZP basis set, where n represents the number of peripheral rings. The computed HOMO-LUMO energy gap (Eg = ELUMO − EHOMO decreases for fully H-terminated A- and Z-HGNSs with increasing n, i.e., with increasing nanosheet size and pπ-orbitals being widely delocalized over the sheet surface. The full terminations, calculated with various functional groups, including the electron-withdrawing (F-, Cl-, and CN- and -donating (OH-, and SH- substitutions, were addressed. Significant lowering of EHOMO and ELUMO was obtained for CN-terminated HGNS as compared to those for H-terminated ones due to the mesomeric effect. The calculated Eg value decreases with increasing n for all terminations, whereby for the SH-termination in HGNS, the termination effect becomes less significant with increasing n. Further, the calculation results for stabilities of HGNS oxides support the tendency toward the oxidative reactivity at the edge site of the sheet, which shows most pronounced C-C bond length alternation, by chemical modification. Physical properties of HGNSs with various numbers of the core-defects, which can be obtained by strong oxidation, were also investigated. Their structures can change drastically from planar to saddle-like shapes. These conformations could be used as stationary phases with controlled interaction in the separation methods such as HPLC and the other chemical analysis techniques.

  7. Conceptual study of advanced PWR core design. Development of advanced PWR core neutronics analysis system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Kim, Seung Cho; Kim, Taek Kyum; Cho, Jin Young; Lee, Hyun Cheol; Lee, Jung Hun; Jung, Gu Young [Seoul National University, Seoul (Korea, Republic of)

    1995-08-01

    The neutronics design system of the advanced PWR consists of (i) hexagonal cell and fuel assembly code for generation of homogenized few-group cross sections and (ii) global core neutronics analysis code for computations of steady-state pin-wise or assembly-wise core power distribution, core reactivity with fuel burnup, control rod worth and reactivity coefficients, transient core power, etc.. The major research target of the first year is to establish the numerical method and solution of multi-group diffusion equations for neutronics code development. Specifically, the following studies are planned; (i) Formulation of various numerical methods such as finite element method(FEM), analytical nodal method(ANM), analytic function expansion nodal(AFEN) method, polynomial expansion nodal(PEN) method that can be applicable for the hexagonal core geometry. (ii) Comparative evaluation of the numerical effectiveness of these methods based on numerical solutions to various hexagonal core neutronics benchmark problems. Results are follows: (i) Formulation of numerical solutions to multi-group diffusion equations based on numerical methods. (ii) Numerical computations by above methods for the hexagonal neutronics benchmark problems such as -VVER-1000 Problem Without Reflector -VVER-440 Problem I With Reflector -Modified IAEA PWR Problem Without Reflector -Modified IAEA PWR Problem With Reflector -ANL Large Heavy Water Reactor Problem -Small HTGR Problem -VVER-440 Problem II With Reactor (iii) Comparative evaluation on the numerical effectiveness of various numerical methods. (iv) Development of HEXFEM code, a multi-dimensional hexagonal core neutronics analysis code based on FEM. In the target year of this research, the spatial neutronics analysis code for hexagonal core geometry(called NEMSNAP-H temporarily) will be completed. Combination of NEMSNAP-H with hexagonal cell and assembly code will then equip us with hexagonal core neutronics design system. (Abstract Truncated)

  8. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2016-10-01

    Full Text Available A refractive index sensor based on dual-core photonic crystal fiber (PCF with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM. Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33–1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  9. High Sensitivity Refractive Index Sensor Based on Dual-Core Photonic Crystal Fiber with Hexagonal Lattice.

    Science.gov (United States)

    Wang, Haiyang; Yan, Xin; Li, Shuguang; An, Guowen; Zhang, Xuenan

    2016-10-08

    A refractive index sensor based on dual-core photonic crystal fiber (PCF) with hexagonal lattice is proposed. The effects of geometrical parameters of the PCF on performances of the sensor are investigated by using the finite element method (FEM). Two fiber cores are separated by two air holes filled with the analyte whose refractive index is in the range of 1.33-1.41. Numerical simulation results show that the highest sensitivity can be up to 22,983 nm/RIU(refractive index unit) when the analyte refractive index is 1.41. The lowest sensitivity can reach to 21,679 nm/RIU when the analyte refractive index is 1.33. The sensor we proposed has significant advantages in the field of biomolecule detection as it provides a wide-range of detection with high sensitivity.

  10. COREMAP: Graphical user interface for displaying reactor core data in an interactive hexagon map

    Energy Technology Data Exchange (ETDEWEB)

    Muscat, F.L.; Derstine, K.L.

    1995-06-01

    COREMAP is a Graphical User Interface (GUI) designed to assist users read and check reactor core data from multidimensional neutronic simulation models in color and/or as text in an interactive 2D planar grid of hexagonal subassemblies. COREMAP is a complete GEODST/RUNDESC viewing tool which enables the user to access multi data set files (e.g. planes, moments, energy groups ,... ) and display up to two data sets simultaneously, one as color and the other as text. The user (1) controls color scale characteristics such as type (linear or logarithmic) and range limits, (2) controls the text display based upon conditional statements on data spelling, and value. (3) chooses zoom features such as core map size, number of rings and surrounding subassemblies, and (4) specifies the data selection for supplied popup subwindows which display a selection of data currently off-screen for a selected cell, as a list of data and/or as a graph. COREMAP includes a RUNDESC file editing tool which creates ``proposed`` Run-description files by point and click revisions to subassembly assignments in an existing EBRII Run-description file. COREMAP includes a fully automated printing option which creates high quality PostScript color or greyscale images of the core map independent of the monitor used, e.g. color prints can be generated with a session from a color or monochrome monitor. The automated PostScript output is an alternative to the xgrabsc based printing option. COREMAP includes a plotting option which creates graphs related to a selected cell. The user specifies the X and Y coordinates types (planes, moment, group, flux ,... ) and a parameter, P, when displaying several curves for the specified (X, Y) pair COREMAP supports hexagonal geometry reactor core configurations specified by: the GEODST file and binary Standard Interface Files and the RUNDESC ordering.

  11. Development of a perturbation code, PERT-K, for hexagonal core geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Taek Kyum; Kim, Sang Ji; Song, Hoon; Kim, Young Il; Kim, Young Jin [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-01-01

    A perturbation code for hexagonal core geometry has been developed based on Nodal Expansion Method. By using relevant output files of DIF3D code, it can calculate the reactivity changes caused by perturbation in composition or/and neutron cross section libraries. The accuracy of PERT-K code has been validated by calculating the reactivity changes due to fuel composition change, the sodium void coefficients, and the sample reactivity worths of BFS-73-1 critical experiments. In the case of 10% reduction in all fuel isotopics at a assembly located in the outer core, PERT-K computation agrees with the direct computation by DIF3D within 60 pcm. The sample reactivity worths of BFS-73-1 critical experiments are predicted with PERT-K code within the experimental error bounds. For 100% sodium void occurrence at the inner core, the maximum difference of reactivity changes between PERT-K and direct DIF3D computations is less than 40 pcm. On the other hand, the same sodium void condition at the outer core leads to a difference of reactivity change greater than 400 pcm. However, as sodium voiding becomes near zero value, the difference becomes less and rapidly falls within the acceptable bound, i.e. 40 pcm. (author). 11 refs., 9 figs., 6 tabs.

  12. Neutron transport in hexagonal reactor cores modeled by trigonal-geometry diffusion and simplified P{sub 3} nodal methods

    Energy Technology Data Exchange (ETDEWEB)

    Duerigen, Susan

    2013-05-15

    The superior advantage of a nodal method for reactor cores with hexagonal fuel assemblies discretized as cells consisting of equilateral triangles is its mesh refinement capability. In this thesis, a diffusion and a simplified P{sub 3} (or SP{sub 3}) neutron transport nodal method are developed based on trigonal geometry. Both models are implemented in the reactor dynamics code DYN3D. As yet, no other well-established nodal core analysis code comprises an SP{sub 3} transport theory model based on trigonal meshes. The development of two methods based on different neutron transport approximations but using identical underlying spatial trigonal discretization allows a profound comparative analysis of both methods with regard to their mathematical derivations, nodal expansion approaches, solution procedures, and their physical performance. The developed nodal approaches can be regarded as a hybrid NEM/AFEN form. They are based on the transverse-integration procedure, which renders them computationally efficient, and they use a combination of polynomial and exponential functions to represent the neutron flux moments of the SP{sub 3} and diffusion equations, which guarantees high accuracy. The SP{sub 3} equations are derived in within-group form thus being of diffusion type. On this basis, the conventional diffusion solver structure can be retained also for the solution of the SP{sub 3} transport problem. The verification analysis provides proof of the methodological reliability of both trigonal DYN3D models. By means of diverse hexagonal academic benchmark and realistic detailed-geometry full-transport-theory problems, the superiority of the SP{sub 3} transport over the diffusion model is demonstrated in cases with pronounced anisotropy effects, which is, e.g., highly relevant to the modeling of fuel assemblies comprising absorber material.

  13. Asymptotic Analysis of Fiber-Reinforced Composites of Hexagonal Structure

    Science.gov (United States)

    Kalamkarov, Alexander L.; Andrianov, Igor V.; Pacheco, Pedro M. C. L.; Savi, Marcelo A.; Starushenko, Galina A.

    2016-08-01

    The fiber-reinforced composite materials with periodic cylindrical inclusions of a circular cross-section arranged in a hexagonal array are analyzed. The governing analytical relations of the thermal conductivity problem for such composites are obtained using the asymptotic homogenization method. The lubrication theory is applied for the asymptotic solution of the unit cell problems in the cases of inclusions of large and close to limit diameters, and for inclusions with high conductivity. The lubrication method is further generalized to the cases of finite values of the physical properties of inclusions, as well as for the cases of medium-sized inclusions. The analytical formulas for the effective coefficient of thermal conductivity of the fiber-reinforced composite materials of a hexagonal structure are derived in the cases of small conductivity of inclusions, as well as in the cases of extremely low conductivity of inclusions. The three-phase composite model (TPhM) is applied for solving the unit cell problems in the cases of the inclusions with small diameters, and the asymptotic analysis of the obtained solutions is performed for inclusions of small sizes. The obtained results are analyzed and illustrated graphically, and the limits of their applicability are evaluated. They are compared with the known numerical and asymptotic data in some particular cases, and very good agreement is demonstrated.

  14. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    NARCIS (Netherlands)

    unknown

    1991-01-01

    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  15. Honeycomb core material for sandwich construction - with common hexagonal walls bonded by thermoplastic resin and free walls carrying layer of resin and masking agent

    NARCIS (Netherlands)

    unknown

    1991-01-01

    Abstract of NL 8902116 (A) In a honeycomb core material for a sandwich construction, the common hexagonal walls are bonded together by a thermoplastic resin, and the free hexagonal walls carry a layer of the same resin and also a masking agent. - A number of plates of raw material are given strips

  16. Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs

    Directory of Open Access Journals (Sweden)

    Xiangcheng Li

    2016-01-01

    Full Text Available Two kinds of hexagonal aluminum honeycombs are tested to study their out-of-plane crushing behavior. In the tests, honeycomb samples, including single hexagonal aluminum honeycomb (SHAH samples and two stack-up combined hexagonal aluminum honeycombs (CHAH samples, are compressed at a fixed quasistatic loading rate. The results show that the inserting process of CHAH can erase the initial peak stress that occurred in SHAH. Meanwhile, energy-absorbing property of combined honeycomb samples is more beneficial than the one of single honeycomb sample with the same thickness if the two types of honeycomb samples are completely crushed. Then, the applicability of the existing theoretical model for single hexagonal honeycomb is discussed, and an area equivalent method is proposed to calculate the crushing stress for nearly regular hexagonal honeycombs. Furthermore, a semiempirical formula is proposed to calculate the inserting plateau stress of two stack-up CHAH, in which structural parameters and mechanics properties of base material are concerned. The results show that the predicted stresses of three kinds of two stack-up combined honeycombs are in good agreement with the experimental data. Based on this study, stress-displacement curve of aluminum honeycombs can be designed in detail, which is very beneficial to optimize the energy-absorbing structures in engineering fields.

  17. Sub-6 nm monodisperse hexagonal core/shell NaGdF4 nanocrystals with enhanced upconversion photoluminescence.

    Science.gov (United States)

    Liu, Jing; Chen, Guanying; Hao, Shuwei; Yang, Chunhui

    2017-01-07

    The ability to fabricate lanthanide-doped upconversion nanocrystals (UCNCs) with tailored size and emission profile has fuelled their uses in a broad spectrum of biological applications. Yet, limited success has been met in the preparation of sub-6 nm UCNCs with efficient upconversion photoluminescence (UCPL), which enable high contrast optical bioimaging with minimized adverse biological effects entailed by size-induced rapid clearance from the body. Here, we present a simple and reproducible approach to synthesize a set of monodispersed hexagonal-phase core NaGdF4:Yb/Ln (Ln = Er, Ho, Tm) of ∼3-4 nm and core/shell NaGdF4:Yb/Ln@NaGdF4 (Ln = Er, Ho, Tm) UCNCs of ∼5-6 nm. We show that the core/shell UCNCs can be up to ∼1000 times more efficient than the corresponding core UCNCs due to the effective suppression of surface-related quenching effects for the core. The observation of prolonged PL lifetime for the core/shell than that for the core UCNCs demonstrates the role of the inert shell layer for the protection of the core. The achievement of sub-6 nm NaGdF4 UCNCs with significantly improved luminescence efficiency constitutes a solid step towards high contrast UCPL optical imaging with secured biological safety.

  18. Low-loss rotated porous core hexagonal single-mode fiber in THz regime

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Hasanuzzaman, G.K.M.; Habib, Selim;

    2015-01-01

    A kind of porous core photonic crystal fiber (PCF) for terahertz (THz) wave propagation is proposed in thispaper. By intentionally rotating the porous core lattice structure, a dispersion of 1.06 ± 0.12 ps/THz/cm ina frequency range of 0.5–1.08 THz is observed. Also, a very low material absorption...

  19. Monte Carlo study of magnetic and thermodynamic properties of a ferrimagnetic Ising nanoparticle with hexagonal core-shell structure

    Science.gov (United States)

    Wang, Wei; Chen, Dong-dong; Lv, Dan; Liu, Jin-ping; Li, Qi; Peng, Zhou

    2017-09-01

    The Monte Carlo method has been used to study the magnetic and thermodynamic properties of a hexagonal ferrimagnetic Ising nanoparticle with spin-3/2 inner core surrounded by spin-1 surface shell layers. The effects of exchange couplings and crystal-fields on the compensation behaviors and critical phenomena of the system have been investigated in detail. Many types of the magnetization curves have been found, depending on the competitions among the exchange couplings, the crystal-fields and the temperature. The phase diagrams for different exchange couplings and crystal-fields have been also obtained. In Particular, we have discovered the double and triple hysteresis loops for certain physical parameters in the present system. An excellent agreement has been achieved from the comparison between our results and the previous studies.

  20. Design of a porous cored hexagonal photonic crystal fiber based optical sensor with high relative sensitivity for lower operating wavelength

    Science.gov (United States)

    Sen, Shuvo; Chowdhury, Sawrab; Ahmed, Kawsar; Asaduzzaman, Sayed

    2017-03-01

    In this article, highly sensitive and low confinement loss enriching micro structured photonic crystal fiber (PCF) has been suggested as an optical sensor. The proposed PCF is porous cored hexagonal (P-HPCF) where cladding contains five layers with circular air holes and core vicinity is formed by two layered elliptical air holes. Two fundamental propagation characteristics such as the relative sensitivity and confinement loss of the proposed P-HPCF have been numerically scrutinized by the full vectorial finite element method (FEM) simulation procedure. The optimized values are modified with different geometrical parameters like diameters of circular or elliptical air holes, pitches of the core, and cladding region over a spacious assortment of wavelength from 0.8 µm to 1.8 µm. All pretending results exhibit that the relative sensitivity is enlarged according to decrement of wavelength of the transmission band (O+E+S+C+L+U). In addition, all useable liquids reveal the maximum sensitivity of 57.00%, 57.18%, and 57.27% for n=1.33, 1.354, and 1.366 respectively by lower band. Moreover, effective area, nonlinear coefficient, frequency, propagation constant, total electric energy, total magnetic energy, and wave number in free space of the proposed P-HPCF have been reported recently.

  1. CFD Analysis of Core Bypass Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2010-03-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the sector grid can be set as a symmetry boundary

  2. CFD Analysis of Core Bypass Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Richard W. Johnson; Hiroyuki Sato; Richard R. Schultz

    2009-11-01

    The U.S. Department of Energy is exploring the potential for the VHTR which will be either of a prismatic or a pebble-bed type. One important design consideration for the reactor core of a prismatic VHTR is coolant bypass flow which occurs in the interstitial regions between fuel blocks. Such gaps are an inherent presence in the reactor core because of tolerances in manufacturing the blocks and the inexact nature of their installation. Furthermore, the geometry of the graphite blocks changes over the lifetime of the reactor because of thermal expansion and irradiation damage. The existence of the gaps induces a flow bias in the fuel blocks and results in unexpected increase of maximum fuel temperature. Traditionally, simplified methods such as flow network calculations employing experimental correlations are used to estimate flow and temperature distributions in the core design. However, the distribution of temperature in the fuel pins and graphite blocks as well as coolant outlet temperatures are strongly coupled with the local heat generation rate within fuel blocks which is not uniformly distributed in the core. Hence, it is crucial to establish mechanistic based methods which can be applied to the reactor core thermal hydraulic design and safety analysis. Computational Fluid Dynamics (CFD) codes, which have a capability of local physics based simulation, are widely used in various industrial fields. This study investigates core bypass flow phenomena with the assistance of commercial CFD codes and establishes a baseline for evaluation methods. A one-twelfth sector of the hexagonal block surface is modeled and extruded down to whole core length of 10.704m. The computational domain is divided vertically with an upper reflector, a fuel section and a lower reflector. Each side of the one-twelfth grid can be set as a symmetry boundary

  3. Hexagonal@Cubic CdS Core@Shell Nanorod Photocatalyst for Highly Active Production of H2 with Unprecedented Stability.

    Science.gov (United States)

    Li, Kui; Han, Min; Chen, Rong; Li, Shun-Li; Xie, Shuai-Lei; Mao, Chengyu; Bu, Xianhui; Cao, Xue-Li; Dong, Long-Zhang; Feng, Pingyun; Lan, Ya-Qian

    2016-10-01

    A highly effective, low-cost strategy for improved photocatalytic efficiency and stability of CdS is described. Based on the integration of hexagonal-cubic core-shell architecture with nanorod morphology, the concentric CdS nanorod phase junctions (NRPJs) obtained demonstrate extremely high H2 production rate and unprecedented photocatalytic stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2013-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  5. HTR-PROTEUS Pebble Bed Experimental Program Cores 1, 1A, 2, and 3: Hexagonal Close Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess; Barbara H. Dolphin; James W. Sterbentz; Luka Snoj; Igor Lengar; Oliver Köberl

    2012-03-01

    In its deployment as a pebble bed reactor (PBR) critical facility from 1992 to 1996, the PROTEUS facility was designated as HTR-PROTEUS. This experimental program was performed as part of an International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) on the Validation of Safety Related Physics Calculations for Low Enriched HTGRs. Within this project, critical experiments were conducted for graphite moderated LEU systems to determine core reactivity, flux and power profiles, reaction-rate ratios, the worth of control rods, both in-core and reflector based, the worth of burnable poisons, kinetic parameters, and the effects of moisture ingress on these parameters. Four benchmark experiments were evaluated in this report: Cores 1, 1A, 2, and 3. These core configurations represent the hexagonal close packing (HCP) configurations of the HTR-PROTEUS experiment with a moderator-to-fuel pebble ratio of 1:2. Core 1 represents the only configuration utilizing ZEBRA control rods. Cores 1A, 2, and 3 use withdrawable, hollow, stainless steel control rods. Cores 1 and 1A are similar except for the use of different control rods; Core 1A also has one less layer of pebbles (21 layers instead of 22). Core 2 retains the first 16 layers of pebbles from Cores 1 and 1A and has 16 layers of moderator pebbles stacked above the fueled layers. Core 3 retains the first 17 layers of pebbles but has polyethylene rods inserted between pebbles to simulate water ingress. The additional partial pebble layer (layer 18) for Core 3 was not included as it was used for core operations and not the reported critical configuration. Cores 1, 1A, 2, and 3 were determined to be acceptable benchmark experiments.

  6. Magnetic vortex dynamics on a picosecond timescale in a hexagonal permalloy pattern

    Energy Technology Data Exchange (ETDEWEB)

    Shim, J.-H.; Kim, D.-H.; Mesler, B.; Moon, J.-H.; Lee, K.-J.; Anderson, E. H.; Fischer, P.

    2009-12-02

    We have observed a motion of magnetic vortex core in a hexagonal Permalloy pattern by means of Soft X-ray microscopy. Pump-probe stroboscopic observation on a picosecond timescale has been carried out after exciting a ground state vortex structure by an external field pulse of 1 ns duration. Vortex core is excited off from the center position of the hexagonal pattern but the analysis of the core trajectory reveals that the motion is nongyrotropic.

  7. Core-seis: a code for LMFBR core seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chellapandi, P.; Ravi, R.; Chetal, S.C.; Bhoje, S.B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Reactor Group

    1995-12-31

    This paper deals with a computer code CORE-SEIS specially developed for seismic analysis of LMFBR core configurations. For demonstrating the prediction capability of the code, results are presented for one of the MONJU reactor core mock ups which deals with a cluster of 37 subassemblies kept in water. (author). 3 refs., 7 figs., 2 tabs.

  8. CFD analysis of transverse flow in a wire-wrapped hexagonal seven-pin bundle

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Pinghui, E-mail: phzhao@mail.ustc.edu.cn [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Liu, Jiaming; Ge, Zhihao [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026 (China); Wang, Xi; Cheng, Xu [Karlsruhe Institute of Technology, Institute of Fusion and Reactor Technologies, Kaiserstrasse 12, Karlsruhe (Germany)

    2017-06-15

    Highlights: • Transverse flow in a wire-wrapped hexagonal seven-pin bundle are simulated. • Four kinds of subchannels are taken as the object. • Effects of wire number and position on transverse velocities are studied. • Parameter studies reveal P/D and H/D have a great influence than Re. • Present transverse velocity correlations need to be modified. - Abstract: Transverse flow induced by helical spacer wires has important effects on the flow and heat transfer behavior of reactor core. In this paper, transverse flow in a wire-wrapped hexagonal seven-pin bundle was simulated by the open source code, OpenFOAM, based on computational fluid dynamic (CFD) method. The Shear Stress Transport (SST) k-ω model and Spalding wall function were used to resolve the momentum field. Hexahedral dominated meshes were generated to achieve high grid quality. Periodic boundary condition and parallel processing were adopted to save the computational cost. Transverse velocity distributions in four different kinds of subchannel gaps were analyzed. The results show that the influence of wire number and position on the transverse velocity distribution is obvious. For an interior gap, transverse flow seems to be dominated by wires near the gap, and its direction changes periodically in one helical pitch. However, for a peripheral gap, transverse velocity is affected by more wires and its direction is decided by the direction of wire rotation. Parameter studies reveal that the Reynolds number (Re, at the range of 6000–100,000) has little effect on the normalized transverse flow, while the pitch to pin diameter ratio (P/D, at the range of 1.11–1.22) and the helical pitch to pin diameter ratio (H/D, at the range of 12–24) have a great influence on it, especially the P/D. Large discrepancies between our simulation results and some existing correlations were observed. This indicates that new correlations comprehensively considering both P/D and H/D effects need to be developed

  9. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core-shell nanoplates from hexagonal-close-packed Au square sheets

    KAUST Repository

    Fan, Zhanxi

    2015-03-17

    The synthesis of ultrathin face-centered-cubic (fcc) Au@Pt rhombic nanoplates is reported through the epitaxial growth of Pt on hexagonal-close-packed (hcp) Au square sheets (AuSSs). The Pt-layer growth results in a hcp-to-fcc phase transformation of the AuSSs under ambient conditions. Interestingly, the obtained fcc Au@Pt rhombic nanoplates demonstrate a unique (101)f orientation with the same atomic arrangement extending from the Au core to the Pt shell. Importantly, this method can be extended to the epitaxial growth of Pd on hcp AuSSs, resulting in the unprecedented formation of fcc Au@Pd rhombic nanoplates with (101)f orientation. Additionally, a small amount of fcc (100)f-oriented Au@Pt and Au@Pd square nanoplates are obtained with the Au@Pt and Au@Pd rhombic nanoplates, respectively. We believe that these findings will shed new light on the synthesis of novel noble bimetallic nanostructures. Phase change: Ultrathin Au@Pt and Au@Pd core-shell nanoplates were prepared from Au square sheets. A phase transformation from hexagonal close-packed (hcp) to face-centered cubic (fcc) is observed upon coating the hcp Au square sheets with Pt or Pd under ambient conditions. The prepared fcc Au@Pt and Au@Pd rhombic nanoplates demonstrate unique (101)f orientation (picture shows a typical fcc Au@Pt rhombic nanoplate). © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fracture analysis of one-dimensional hexagonal quasicrystals: Researches of a finite dimension rectangular plate by boundary collocation method

    Energy Technology Data Exchange (ETDEWEB)

    Jiaxing, Cheng; Dongfa, Sheng [Southwest Forestry University, Yunnan (China)

    2017-05-15

    As an important supplement and development to crystallography, the applications about quasicrystal materials have played a core role in many fields, such as manufacturing and the space industry. Due to the sensitivity of quasicrystals to defects, the research on the fracture problem of quasicrystals has attracted a great deal of attention. We present a boundary collocation method to research fracture problems for a finite dimension rectangular one-dimensional hexagonal quasicrystal plate. Because mode I and mode II problems for one- dimensional hexagonal quasicrystals are like that for the classical elastic materials, only the anti-plane problem is discussed in this paper. The correctness of the present numerical method is verified through a comparison of the present results and the existing results. And then, the size effects on stress field, stress intensity factor and energy release rate are discussed in detail. The obtained results can provide valuable references for the fracture behavior of quasicrystals.

  11. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites.

    Science.gov (United States)

    Ling, Florence T; Post, Jeffrey E; Heaney, Peter J; Kubicki, James D; Santelli, Cara M

    2017-05-05

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from MnO lattice vibrations between 400 and 750cm(-1) yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~1628cm(-1) may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.

  12. Conceptual study of advanced PWR core design

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young Jin; Chang, Moon Hee; Kim, Keung Ku; Joo, Hyung Kuk; Kim, Young Il; Noh, Jae Man; Hwang, Dae Hyun; Kim, Taek Kyum; Yoo, Yon Jong

    1997-09-01

    The purpose of this project is for developing and verifying the core design concepts with enhanced safety and economy, and associated methodologies for core analyses. From the study of the sate-of-art of foreign advanced reactor cores, we developed core concepts such as soluble boron free, high convertible and enhanced safety core loaded semi-tight lattice hexagonal fuel assemblies. To analyze this hexagonal core, we have developed and verified some neutronic and T/H analysis methodologies. HELIOS code was adopted as the assembly code and HEXFEM code was developed for hexagonal core analysis. Based on experimental data in hexagonal lattices and the COBRA-IV-I code, we developed a thermal-hydraulic analysis code for hexagonal lattices. Using the core analysis code systems developed in this project, we designed a 600 MWe core and studied the feasibility of the core concepts. Two additional scopes were performed in this project : study on the operational strategies of soluble boron free core and conceptual design of large scale passive core. By using the axial BP zoning concept and suitable design of control rods, this project showed that it was possible to design a soluble boron free core in 600 MWe PWR. The results of large scale core design showed that passive concepts and daily load follow operation could be practiced. (author). 15 refs., 52 tabs., 101 figs.

  13. Analysis of circuits including magnetic cores (MTRAC)

    Science.gov (United States)

    Hanzen, G. R.; Nitzan, D.; Herndon, J. R.

    1972-01-01

    Development of automated circuit analysis computer program to provide transient analysis of circuits with magnetic cores is discussed. Allowance is made for complications caused by nonlinearity of switching core model and magnetic coupling among loop currents. Computer program is conducted on Univac 1108 computer using FORTRAN IV.

  14. Fabrication Improvement of Cold Forging Hexagonal Nuts by Computational Analysis and Experiment Verification

    Directory of Open Access Journals (Sweden)

    Shao-Yi Hsia

    2015-01-01

    Full Text Available Cold forging has played a critical role in fasteners and has been applied to the automobile industry, construction industry, aerospace industry, and living products so that cold forging presents the opportunities for manufacturing more products. By using computer simulation, this study attempts to analyze the process of creating machine parts, such as hexagonal nuts. The DEFORM-3D forming software is applied to analyze the process at various stages in the computer simulation, and the compression test is also used for the flow stress equation in order to compare the differences between the experimental results and the equation that is built into the computer simulation software. At the same time, the metallography and hardness of experiments are utilized to understand the cold forging characteristics of hexagonal nuts. The research results would benefit machinery businesses to realize the forging load and forming conditions at various stages before the fastener formation. In addition to planning proper die design and production, the quality of the produced hexagonal nuts would be more stable to promote industrial competitiveness.

  15. Fourier-transform infrared spectroscopy (FTIR) analysis of triclinic and hexagonal birnessites

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Florence T.; Post, Jeffrey E.; Heaney, Peter J.; Kubicki, James D.; Santelli, Cara M.

    2017-05-01

    The characterization of birnessite structures is particularly challenging for poorly crystalline materials of biogenic origin, and a determination of the relative concentrations of triclinic and hexagonal birnessite in a mixed assemblage has typically required synchrotron-based spectroscopy and diffraction approaches. In this study, Fourier-transform infrared spectroscopy (FTIR) is demonstrated to be capable of differentiating synthetic triclinic Na-birnessite and synthetic hexagonal H-birnessite. Furthermore, IR spectral deconvolution of peaks resulting from Mnsingle bondO lattice vibrations between 400 and 750 cm- 1 yield results comparable to those obtained by linear combination fitting of synchrotron X-ray absorption fine structure (EXAFS) data when applied to known mixtures of triclinic and hexagonal birnessites. Density functional theory (DFT) calculations suggest that an infrared absorbance peak at ~ 1628 cm- 1 may be related to OH vibrations near vacancy sites. The integrated intensity of this peak may show sensitivity to vacancy concentrations in the Mn octahedral sheet for different birnessites.

  16. Surface Analysis of Hexagonal Boron Nitride Grown by Chemical Vapor Deposition

    Science.gov (United States)

    Robinson, Zachary; Hite, J. K.; Eddy, C. R., Jr.; Bermudez, V. M.; Feigelson, B. N.

    Hexagonal boron nitride (hBN) is an important material for development of 2-dimensional heterostructures. Chemical vapor deposition of hBN on Cu-foil substrates is one possible route towards large-scale production of hBN films with low defect density. Therefore, studying the growth kinetics of hBN on different orientations of Cu is an important first step towards understanding and controlling the growth process. In this work, hBN was simultaneously grown on Cu(111), Cu(100), Cu(110), and Cu-foil in order to investigate how the different substrate orientations affect the hBN overlayer. The post-growth crystallographic orientations were measured with electron backscatter diffraction (EBSD), and film coverages we measured with XPS. In addition, a grazing-incidence infrared reflection absorption spectroscopy (IRRAS) technique was developed to quickly characterize each hBN film. It was found that the growth rate was inversely proportional to the surface free energy of the Cu surface, with Cu(111) having the most h-BN surface coverage. The Cu foil predominately crystallized with a (100) surface orientation, and had a film coverage very close to the Cu(100).

  17. Degraded core analysis for the PWR

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-10-01

    The paper presents an analysis of the probability and consequences of degraded core accidents for the PWR. The article is based on a paper which was presented by the author to the Sizewell-B public inquiry. Degraded core accidents are examined with respect to:- the initiating events, safety plant failure, and processes with a bearing on containment failure. Accident types and frequencies are discussed, as well as the dispersion of radionuclides. Accident risks, i.e. individual and societal risks in degraded core accidents are assessed from:- the amount of radionuclides released, the weather, the population distribution, and the accident frequencies. Uncertainties in the assessment of degraded core accidents are also summarized. (U.K.).

  18. Overview on Hydrate Coring, Handling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Jon Burger; Deepak Gupta; Patrick Jacobs; John Shillinglaw

    2003-06-30

    Gas hydrates are crystalline, ice-like compounds of gas and water molecules that are formed under certain thermodynamic conditions. Hydrate deposits occur naturally within ocean sediments just below the sea floor at temperatures and pressures existing below about 500 meters water depth. Gas hydrate is also stable in conjunction with the permafrost in the Arctic. Most marine gas hydrate is formed of microbially generated gas. It binds huge amounts of methane into the sediments. Worldwide, gas hydrate is estimated to hold about 1016 kg of organic carbon in the form of methane (Kvenvolden et al., 1993). Gas hydrate is one of the fossil fuel resources that is yet untapped, but may play a major role in meeting the energy challenge of this century. In June 2002, Westport Technology Center was requested by the Department of Energy (DOE) to prepare a ''Best Practices Manual on Gas Hydrate Coring, Handling and Analysis'' under Award No. DE-FC26-02NT41327. The scope of the task was specifically targeted for coring sediments with hydrates in Alaska, the Gulf of Mexico (GOM) and from the present Ocean Drilling Program (ODP) drillship. The specific subjects under this scope were defined in 3 stages as follows: Stage 1: Collect information on coring sediments with hydrates, core handling, core preservation, sample transportation, analysis of the core, and long term preservation. Stage 2: Provide copies of the first draft to a list of experts and stakeholders designated by DOE. Stage 3: Produce a second draft of the manual with benefit of input from external review for delivery. The manual provides an overview of existing information available in the published literature and reports on coring, analysis, preservation and transport of gas hydrates for laboratory analysis as of June 2003. The manual was delivered as draft version 3 to the DOE Project Manager for distribution in July 2003. This Final Report is provided for records purposes.

  19. Hexagonal tessellations in image algebra

    Science.gov (United States)

    Eberly, David H.; Wenzel, Dennis J.; Longbotham, Harold G.

    1990-11-01

    In image algebra '' the concept of a coordinate set X is general in that such a set is simply a subset of ndimensional Euclidean space . The standard applications in 2-dimensional image processing use coordinate sets which are rectangular arrays X 72 x ZZm. However some applications may require other geometries for the coordinate set. We look at three such related applications in the context of image algebra. The first application is the modeling of photoreceptors in primate retinas. These receptors are inhomogeneously distributed on the retina. The largest receptor density occurs in the center of the fovea and decreases radially outwards. One can construct a hexagonal tessellation of the retina such that each hexagon contains approximately the same number of receptors. The resulting tessellation called a sunflower heart2 consists of concentric rings of hexagons whose sizes increase as the radius of the ring increases. The second application is the modeling of the primary visual . The neurons are assumed to be uniformly distributed as a regular hexagonal lattice. Cortical neural image coding is modeled by a recursive convolution of the retinal neural image using a special set of filters. The third application involves analysis of a hexagonally-tessellated image where the pixel resolution is variable .

  20. Influence of the implant diameter with different sizes of hexagon: analysis by 3-dimensional finite element method.

    Science.gov (United States)

    Pellizzer, Eduardo Piza; Verri, Fellippo Ramos; de Moraes, Sandra Lúcia Dantas; Falcón-Antenucci, Rosse Mary; de Carvalho, Paulo Sérgio Perri; Noritomi, Pedro Yoshito

    2013-08-01

    The aim of this study was to evaluate the stress distribution in implants of regular platforms and of wide diameter with different sizes of hexagon by the 3-dimensional finite element method. We used simulated 3-dimensional models with the aid of Solidworks 2006 and Rhinoceros 4.0 software for the design of the implant and abutment and the InVesalius software for the design of the bone. Each model represented a block of bone from the mandibular molar region with an implant 10 mm in length and different diameters. Model A was an implant 3.75 mm/regular hexagon, model B was an implant 5.00 mm/regular hexagon, and model C was an implant 5.00 mm/expanded hexagon. A load of 200 N was applied in the axial, lateral, and oblique directions. At implant, applying the load (axial, lateral, and oblique), the 3 models presented stress concentration at the threads in the cervical and middle regions, and the stress was higher for model A. At the abutment, models A and B showed a similar stress distribution, concentrated at the cervical and middle third; model C showed the highest stresses. On the cortical bone, the stress was concentrated at the cervical region for the 3 models and was higher for model A. In the trabecular bone, the stresses were less intense and concentrated around the implant body, and were more intense for model A. Among the models of wide diameter (models B and C), model B (implant 5.00 mm/regular hexagon) was more favorable with regard to distribution of stresses. Model A (implant 3.75 mm/regular hexagon) showed the largest areas and the most intense stress, and model B (implant 5.00 mm/regular hexagon) showed a more favorable stress distribution. The highest stresses were observed in the application of lateral load.

  1. Double hexagonal close-packed structure revealed in a single colloidal crystal grain by Bragg rod analysis

    NARCIS (Netherlands)

    Meijer, J. M.; Shabalin, A.; Dronyak, R.; Yefanov, O. M.; Singer, A.; Kurta, R. P.; Lorenz, U.; Gorobstov, O.; Dzhigaev, D.; Gulden, J.; Byelov, D. V.; Zozulya, A. V.; Sprung, M.; Vartanyants, I. A.; Petukhov, Andrei V.

    2014-01-01

    A coherent X-ray diffraction study of a single colloidal crystal grain composed of silica spheres is reported. The diffraction data contain Bragg peaks and additional features in the form of Bragg rods, which are related to the stacking of the hexagonally close-packed layers. The profile of the Brag

  2. Evaluation of the Sealing Capability of the Implant Healing Screw by Using Real Time Volatile Organic Compounds Analysis: Internal Hexagon Versus Cone Morse.

    Science.gov (United States)

    Scarano, A; Lorusso, C; Di Giulio, C; Mazzatenta, A

    2016-12-01

    Implant sealing capability is a crucial issue in assessment of implant success and peri-implant marginal bone loss. Clinical studies demonstrated presence of viable bacteria in the internal part of functioning implants during tissue healing. For this study, a volatile organic compounds (VOCs) emission test was developed to evaluate the existing "seal" between implant and healing screw. Two kinds of implant-screw connection were compared: 1) internal hexagon; and 2) cone Morse. Fifteen patients were enrolled in the study, three males and 12 females, who required fixed prosthetic rehabilitation. A total of 37 implants was placed, 23 with a cone Morse taper internal connection and 14 with a screw-retained internal hexagon abutment. VOCs real-time measures were performed in the implant site immediately after removing the healing screw. Statistical analysis was carried out. Results showed VOCs maximum peak amplitude in cone Morse versus internal hexagon showed significant difference (P <0.001), whereas VOCs time to peak showed no significant difference (P = 0.7). Use of the new methodology for the VOCs emission test may lead to important new data for understanding how the "failed" attachment of implant components, in two-part assemblies, may contribute to implant losses. In particular, study results support the hypothesis that the microgap of the implant-screw healing junction could cause differences in bacterial penetration. VOCs emission test evaluation represents a new diagnostic tool with an effective approach to quickly analyze, in real time, sealing capability of dental implants with healing screw interfaces.

  3. Core Backbone Convergence Mechanisms and Microloops Analysis

    Directory of Open Access Journals (Sweden)

    Abdelali Ala

    2012-07-01

    Full Text Available In this article we study approaches that can be used to minimise the convergence time, we also make a focus on microloops phenomenon, analysis and means to mitigate them. The convergence time reflects the time required by a network to react to a failure of a link or a router failure itself. When all nodes (routers have updated their respective routing and forwarding databases, we can say the network has converged. This study will help in building real-time and resilient network infrastructure, the goal is to make any evenement in the core network, as transparent as possible to any sensitive and real-time flows. This study is also, a deepening of earlier works presented in [10] and [11].

  4. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2014-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  5. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 9 & 10: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:1 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  6. Multi-Core Processor Memory Contention Benchmark Analysis Case Study

    Science.gov (United States)

    Simon, Tyler; McGalliard, James

    2009-01-01

    Multi-core processors dominate current mainframe, server, and high performance computing (HPC) systems. This paper provides synthetic kernel and natural benchmark results from an HPC system at the NASA Goddard Space Flight Center that illustrate the performance impacts of multi-core (dual- and quad-core) vs. single core processor systems. Analysis of processor design, application source code, and synthetic and natural test results all indicate that multi-core processors can suffer from significant memory subsystem contention compared to similar single-core processors.

  7. Why Hexagonal Basalt Columns?

    Science.gov (United States)

    Hofmann, Martin; Anderssohn, Robert; Bahr, Hans-Achim; Weiß, Hans-Jürgen; Nellesen, Jens

    2015-10-09

    Basalt columns with their preferably hexagonal cross sections are a fascinating example of pattern formation by crack propagation. Junctions of three propagating crack faces rearrange such that the initial right angles between them tend to approach 120°, which enables the cracks to form a pattern of regular hexagons. To promote understanding of the path on which the ideal configuration can be reached, two periodically repeatable models are presented here involving linear elastic fracture mechanics and applying the principle of maximum energy release rate. They describe the evolution of the crack pattern as a transition from rectangular start configuration to the hexagonal pattern. This is done analytically and by means of three-dimensional finite element simulation. The latter technique reproduces the curved crack path involved in this transition.

  8. Matchings in hexagonal cacti

    Directory of Open Access Journals (Sweden)

    E. J. Farrell

    1987-01-01

    Full Text Available Explicit recurrences are derived for the matching polynomials of the basic types of hexagonal cacti, the linear cactus and the star cactus and also for an associated graph, called the hexagonal crown. Tables of the polynomials are given for each type of graph. Explicit formulae are then obtained for the number of defect-d matchings in the graphs, for various values of d. In particular, formulae are derived for the number of perfect matchings in all three types of graphs. Finally, results are given for the total number of matchings in the graphs.

  9. Preliminaries on core image analysis using fault drilling samples; Core image kaiseki kotohajime (danso kussaku core kaisekirei)

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, T.; Ito, H. [Geological Survey of Japan, Tsukuba (Japan)

    1996-05-01

    This paper introduces examples of image data analysis on fault drilling samples. The paper describes the following matters: core samples used in the analysis are those obtained from wells drilled piercing the Nojima fault which has moved in the Hygoken-Nanbu Earthquake; the CORESCAN system made by DMT Corporation, Germany, used in acquiring the image data consists of a CCD camera, a light source and core rotation mechanism, and a personal computer, its resolution being about 5 pixels/mm in both axial and circumferential directions, and 24-bit full color; with respect to the opening fractures in core samples collected by using a constant azimuth coring, it was possible to derive values of the opening width, inclination angle, and travel from the image data by using a commercially available software for the personal computer; and comparison of this core image with the BHTV record and the hydrophone VSP record (travel and inclination obtained from the BHTV record agree well with those obtained from the core image). 4 refs., 4 figs.

  10. Hybrid Analysis of Engine Core Noise

    Science.gov (United States)

    O'Brien, Jeffrey; Kim, Jeonglae; Ihme, Matthias

    2015-11-01

    Core noise, or the noise generated within an aircraft engine, is becoming an increasing concern for the aviation industry as other noise sources are progressively reduced. The prediction of core noise generation and propagation is especially challenging for computationalists since it involves extensive multiphysics including chemical reaction and moving blades in addition to the aerothermochemical effects of heated jets. In this work, a representative engine flow path is constructed using experimentally verified geometries to simulate the physics of core noise. A combustor, single-stage turbine, nozzle and jet are modeled in separate calculations using appropriate high fidelity techniques including LES, actuator disk theory and Ffowcs-Williams Hawkings surfaces. A one way coupling procedure is developed for passing fluctuations downstream through the flowpath. This method effectively isolates the core noise from other acoustic sources, enables straightforward study of the interaction between core noise and jet exhaust, and allows for simple distinction between direct and indirect noise. The impact of core noise on the farfield jet acoustics is studied extensively and the relative efficiency of different disturbance types and shapes is examined in detail.

  11. Advanced Materials and Solids Analysis Research Core (AMSARC)

    Science.gov (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  12. Advanced Materials and Solids Analysis Research Core (AMSARC)

    Science.gov (United States)

    The Advanced Materials and Solids Analysis Research Core (AMSARC), centered at the U.S. Environmental Protection Agency's (EPA) Andrew W. Breidenbach Environmental Research Center in Cincinnati, Ohio, is the foundation for the Agency's solids and surfaces analysis capabilities. ...

  13. Molecular double core-hole electron spectroscopy for chemical analysis

    CERN Document Server

    Tashiro, Motomichi; Fukuzawa, Hironobu; Ueda, Kiyoshi; Buth, Christian; Kryzhevoi, Nikolai V; Cederbaum, Lorenz S

    2010-01-01

    We explore the potential of double core hole electron spectroscopy for chemical analysis in terms of x-ray two-photon photoelectron spectroscopy (XTPPS). The creation of deep single and double core vacancies induces significant reorganization of valence electrons. The corresponding relaxation energies and the interatomic relaxation energies are evaluated by CASSCF calculations. We propose a method how to experimentally extract these quantities by the measurement of single and double core-hole ionization potentials (IPs and DIPs). The influence of the chemical environment on these DIPs is also discussed for states with two holes at the same atomic site and states with two holes at two different atomic sites. Electron density difference between the ground and double core-hole states clearly shows the relaxations accompanying the double core-hole ionization. The effect is also compared with the sensitivity of single core hole ionization potentials (IPs) arising in single core hole electron spectroscopy. We have ...

  14. Hexagonal quartz resonator

    Science.gov (United States)

    Peters, Roswell D. M.

    1982-01-01

    A generally flat, relatively thin AT-cut piezoelectric resonator element structured to minimize the force-frequency effect when mounted and energized in a housing. The resonator is in the form of an equilateral hexagon with the X crystallographic axis of the crystal passing through one set of opposing corners with mounting being effected at an adjacent set of corners respectively .+-.60.degree. away from the X axis which thereby results in a substantially zero frequency shift of the operating frequency.

  15. Core Competence Analysis--Toyota Production System

    Institute of Scientific and Technical Information of China (English)

    钱璐宜

    2013-01-01

      Core competencies are the wel spring of new business development. It is the sharpest sword to penetrate the mature market, hold and enlarge the existing share. Toyota makes wel use of its TPS and form its own style which other car manufacturers hard to imitate.In contrast,the Chinese company---FAW only imitating the superficial aspects from Toyota and ignoring its own problems in manufacture line.

  16. Hexagonalization of Correlation Functions

    CERN Document Server

    Fleury, Thiago

    2016-01-01

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in $\\mathcal{N}=4$ supersymmetric Yang-Mills theory at large $N$. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases,...

  17. CAC - NUCLEAR THERMAL ROCKET CORE ANALYSIS CODE

    Science.gov (United States)

    Clark, J. S.

    1994-01-01

    One of the most important factors in the development of nuclear rocket engine designs is to be able to accurately predict temperatures and pressures throughout a fission nuclear reactor core with axial hydrogen flow through circular coolant passages. CAC is an analytical prediction program to study the heat transfer and fluid flow characteristics of a circular coolant passage. CAC predicts as a function of time axial and radial fluid conditions, passage wall temperatures, flow rates in each coolant passage, and approximate maximum material temperatures. CAC incorporates the hydrogen properties model STATE to provide fluid-state relations, thermodynamic properties, and transport properties of molecular hydrogen in any fixed ortho-para combination. The program requires the general core geometry, the core material properties as a function of temperature, the core power profile, and the core inlet conditions as function of time. Although CAC was originally developed in FORTRAN IV for use on an IBM 7094, this version is written in ANSI standard FORTRAN 77 and is designed to be machine independent. It has been successfully compiled on IBM PC series and compatible computers running MS-DOS with Lahey F77L, a Sun4 series computer running SunOS 4.1.1, and a VAX series computer running VMS 5.4-3. CAC requires 300K of RAM under MS-DOS, 422K of RAM under SunOS, and 220K of RAM under VMS. No sample executable is provided on the distribution medium. Sample input and output data are included. The standard distribution medium for this program is a 5.25 inch 360K MS-DOS format diskette. CAC was developed in 1966, and this machine independent version was released in 1992. IBM-PC and IBM are registered trademarks of International Business Machines. Lahey F77L is a registered trademark of Lahey Computer Systems, Inc. SunOS is a trademark of Sun Microsystems, Inc. VMS is a trademark of Digital Equipment Corporation. MS-DOS is a registered trademark of Microsoft Corporation.

  18. NEW SOIL VOC SAMPLERS: EN CORE AND ACCU CORE SAMPLING/STORAGE DEVICES FOR VOC ANALYSIS

    Energy Technology Data Exchange (ETDEWEB)

    Susan S. Sorini; John F. Schabron; Joseph F. Rovani Jr

    2006-06-01

    Soil sampling and storage practices for volatile organic analysis must be designed to minimize loss of volatile organic compounds (VOCs) from samples. The En Core{reg_sign} sampler is designed to collect and store soil samples in a manner that minimizes loss of contaminants due to volatilization and/or biodegradation. An ASTM International (ASTM) standard practice, D 6418, Standard Practice for Using the Disposable En Core Sampler for Sampling and Storing Soil for Volatile Organic Analysis, describes use of the En Core sampler to collect and store a soil sample of approximately 5 grams or 25 grams for volatile organic analysis and specifies sample storage in the En Core sampler at 4 {+-} 2 C for up to 48 hours; -7 to -21 C for up to 14 days; or 4 {+-} 2 C for up to 48 hours followed by storage at -7 to -21 C for up to five days. This report discusses activities performed during the past year to promote and continue acceptance of the En Core samplers based on their performance to store soil samples for VOC analysis. The En Core sampler is designed to collect soil samples for VOC analysis at the soil surface. To date, a sampling tool for collecting and storing subsurface soil samples for VOC analysis is not available. Development of a subsurface VOC sampling/storage device was initiated in 1999. This device, which is called the Accu Core{trademark} sampler, is designed so that a soil sample can be collected below the surface using a dual-tube penetrometer and transported to the laboratory for analysis in the same container. Laboratory testing of the current Accu Core design shows that the device holds low-level concentrations of VOCs in soil samples during 48-hour storage at 4 {+-} 2 C and that the device is ready for field evaluation to generate additional performance data. This report discusses a field validation exercise that was attempted in Pennsylvania in 2004 and activities being performed to plan and conduct a field validation study in 2006. A draft ASTM

  19. Heat transfer analysis of fuel assemblies in a heterogeneous gas core nuclear rocket

    Science.gov (United States)

    Watanabe, Yoichi; Appelbaum, Jacob; Diaz, Nils; Maya, Isaac

    1991-01-01

    Heat transfer problems of a heterogeneous gaseous core nuclear rocket were studied. The reactor core consists of 1.5-m long hexagonal fuel assemblies filled with pressurized uranium tetrafluoride (UF4) gas. The fuel gas temperature ranges from 3500 to 7000 K at a nominal operating condition of 40 atm. Each fuel assembly has seven coolant tubes, through which hydrogen propellant flows. The propellant temperature is not constrained by the fuel temperature but by the maximum temperature of the graphite coolant tube. For a core achieving a fission power density of 1000 MW/cu m, the propellant core exit temperature can be as high as 3200 K. The physical size of a 1250 MW gaseous core nuclear rocket is comparable with that of a NERVA-type solid core nuclear rocket. The engine can deliver a specific impulse of 1020 seconds and a thrust of 330 kN.

  20. An Analysis of MENG's Hexagon View Borrowing Theory%试析孟氏六边形借景理法

    Institute of Scientific and Technical Information of China (English)

    顾孟潮

    2014-01-01

    被《园冶》作者计成称为“园林之最要者的”“借景”则是最能体现中国人习惯、生活,即追求“诗意栖居”的华夏意匠。孟氏六边形借景理法是借鉴古今园林经验创制的借景理法新篇,它源于《园冶》又高于《园冶》。作者从理法由来、理法创新、设计思维、环境艺术4个角度论述孟氏借景理法的理论价值和实践意义,指出它将促进园林设计理论和实践水平整体提升。%"View borrowing", which is considered “the most important element in gardens” by JI Chen, the author of Yuan Ye, is the best reflection of Chinese people's way of life, which is the pursuit for a poetic living. MENG’s Hexagon View Borrowing Theory is an innovative garden design theory based on the reference of ancient and modern garden design experience. It derives fromYuan Ye but it is more than justYuan Ye. The author tries to discuss the theoretical value and practical significance of MENG’s view borrowing theory from the aspects of the origin of view borrowing method, the innovation of view borrowing method, design thinking and environmental art, pointing out that it is beneficial for the improvement of the theory and practice of garden design.

  1. Continuous flow analysis of labile iron in ice-cores.

    Science.gov (United States)

    Hiscock, William T; Fischer, Hubertus; Bigler, Matthias; Gfeller, Gideon; Leuenberger, Daiana; Mini, Olivia

    2013-05-07

    The important active and passive role of mineral dust aerosol in the climate and the global carbon cycle over the last glacial/interglacial cycles has been recognized. However, little data on the most important aeolian dust-derived biological micronutrient, iron (Fe), has so far been available from ice-cores from Greenland or Antarctica. Furthermore, Fe deposition reconstructions derived from the palaeoproxies particulate dust and calcium differ significantly from the Fe flux data available. The ability to measure high temporal resolution Fe data in polar ice-cores is crucial for the study of the timing and magnitude of relationships between geochemical events and biological responses in the open ocean. This work adapts an existing flow injection analysis (FIA) methodology for low-level trace Fe determinations with an existing glaciochemical analysis system, continuous flow analysis (CFA) of ice-cores. Fe-induced oxidation of N,N'-dimethyl-p-pheylenediamine (DPD) is used to quantify the biologically more important and easily leachable Fe fraction released in a controlled digestion step at pH ~1.0. The developed method was successfully applied to the determination of labile Fe in ice-core samples collected from the Antarctic Byrd ice-core and the Greenland Ice-Core Project (GRIP) ice-core.

  2. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, S.

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  3. Application Analysis of Strengthened Story in Frame-Core Structures

    Institute of Scientific and Technical Information of China (English)

    SU Yuan; CHEN Chuan-yao; LI Li

    2009-01-01

    Lateral deflection formulas are presented for analysis of the strengthened story applied to frame-core structures. For the frame-core structures with top outriggers and with middle outriggers, the relationship between stiffness characteristic parameters of frame and outriggers and the top drift of structures under different loads is analyzed. It is indicated that when stiffness characteristic parameter of frame is large, outrigger efficiency for top drift reduction is low, and the mutation of internal forces occurs; when the stiffness characteristic parameter of frame is less than 3, installing the strengthened story is advantageous to frame-core structures.

  4. TMI-2 accident: core heat-up analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ardron, K.H.; Cain, D.G.

    1981-01-01

    This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

  5. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  6. CORE

    DEFF Research Database (Denmark)

    Krigslund, Jeppe; Hansen, Jonas; Hundebøll, Martin

    2013-01-01

    different flows. Instead of maintaining these approaches separate, we propose a protocol (CORE) that brings together these coding mechanisms. Our protocol uses random linear network coding (RLNC) for intra- session coding but allows nodes in the network to setup inter- session coding regions where flows...... intersect. Routes for unicast sessions are agnostic to other sessions and setup beforehand, CORE will then discover and exploit intersecting routes. Our approach allows the inter-session regions to leverage RLNC to compensate for losses or failures in the overhearing or transmitting process. Thus, we...... increase the benefits of XORing by exploiting the underlying RLNC structure of individual flows. This goes beyond providing additional reliability to each individual session and beyond exploiting coding opportunistically. Our numerical results show that CORE outperforms both forwarding and COPE...

  7. Thermal hydraulic analysis of the JMTR improved LEU-core

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Toshio; Nagao, Yoshiharu; Komukai, Bunsaku; Naka, Michihiro; Fujiki, Kazuo [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment; Takeda, Takashi [Radioactive Waste Management and Nuclear Facility Decommissioning Technology Center, Tokai, Ibaraki (Japan)

    2003-01-01

    After the investigation of the new core arrangement for the JMTR reactor in order to enhance the fuel burn-up and consequently extend the operation period, the ''improved LEU core'' that utilized 2 additional fuel elements instead of formerly installed reflector elements, was adopted. This report describes the results of the thermal-hydraulic analysis of the improved LEU core as a part of safety analysis for the licensing. The analysis covers steady state, abnormal operational transients and accidents, which were described in the annexes of the licensing documents as design bases events. Calculation conditions for the computer codes were conservatively determined based on the neutronic analysis results and others. The results of the analysis, that revealed the safety criteria were satisfied on the fuel temperature, DNBR and primary coolant temperature, were used in the licensing. The operation license of the JMTR with the improved LEU core was granted in March 2001, and the reactor operation with new core started in November 2001 as 142nd operation cycle. (author)

  8. Petrographic Analysis of Cores from Plant 42

    Science.gov (United States)

    2016-10-01

    27  DISCLAIMER: The contents of this report are not to be used for advertising , publication...Department of the Army position unless so designated by other authorized documents. DESTROY THIS REPORT WHEN NO LONGER NEEDED. DO NOT RETURN IT TO THE... graphic analysis was polished using diamond incrusted polishing pads. The polished sample was imaged using a Zeiss Stereo Discovery V20 mi- croscope

  9. Core Handling and Real-Time Non-Destructive Characterization at the Kochi Core Center: An Example of Core Analysis from the Chelungpu Fault

    Directory of Open Access Journals (Sweden)

    W. Lin

    2007-11-01

    Full Text Available As an example of core analysis carried out inactive fault drilling programs, we report the procedures of core handling on the drilling site and non-destructive characterization in the laboratory. This analysis was employed onthe core samples taken from HoleBof the Taiwan Chelungpu-fault Drilling Project (TCDP, which penetrated through the active fault that slipped during the 1999 Chi-Chi, Taiwan earthquake. We show results of the non-destructive physical property measurements carried out at the Kochi Core Center (KCC, Japan. Distinct anomalies of lower bulk density and higher magnetic susceptibilitywere recognized in all three fault zones encountered in HoleB. To keep the core samples in good condition before they are used for variousanalyses is crucial. In addition, careful planning for core handlingand core analyses is necessary for successfulinvestigations. doi:10.2204/iodp.sd.s01.35.2007

  10. Comparative analysis of the core inflation for Russia

    Directory of Open Access Journals (Sweden)

    A. K. Sapova

    2016-01-01

    Full Text Available Consumer price index is a measure of inflation and it consists of two parts: persistent component (trend inflation and short-term shocks. Inflation targeting requires index of core inflation, that independent from shortterm shocks and demonstrates the changes of the trend inflation. Reserve Banks pay attention on the changes in the trend inflation, when they take decisions about monetary policy, because it’s more informative than consumer price index for estimation of medium-term inflation risks. The objective of this article is detecting the index of core inflation that could be appropriate for monetary policy. There are some different measures of core inflation based on practice of Reserve Banks from different countries and economic articles. The comparative analysis presented in this article is based on several types of tests. The result of the research is that core consumer price index that is used today has got both advantages and weaknesses. Moreover, there is index of core inflation based on new methodology that is better than core consumer price index of Federal Sate Statistics Service. It is concluded that the Central Bank should focus precisely on this indicator when it takes decisions about monetary policy.

  11. Solid-state 13C NMR study of banana liquid crystals - 3: Alkyl-tail-group packing environments of an acute-angle bent-core molecule in the hexagonal columnar and cubic phases

    Science.gov (United States)

    Kurosu, Hiromichi; Endo, Yumi; Kimura, Saori; Hashimoto, Tomoko; Harada, Motoi; Lee, Eun-Woo; Sone, Masato; Watanabe, Junji; Kang, Sungmin

    2016-02-01

    Solid-state 13C nuclear magnetic resonance (NMR) measurements were performed on the hexagonal columnar and cubic phases of an acute-angle banana-shaped molecule, N(1,7)-S30. In the hexagonal columnar phase, three peaks appear at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that the two alkyl tails have different packing structures, and one of the tails has two different conformations within a single molecule. Combined cross-polarization/magic-angle spinning and pulse saturation transfer/magic-angle spinning measurements show that one of the alkyl chains is located inside and the other is located outside the columnar structure. In the cubic phase, pulse saturation transfer/magic-angle spinning measurement shows that only one peak appears at the NMR chemical shifts assigned to the internal methylene carbons of alkyl tails, indicating that both of the alkyl chains are located outside the cubic structure.

  12. Use of bone core biopsies for cytogenetic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.; Rowley, J.D.; Baron, J.M.

    1979-01-01

    Cultures of bone core specimens have proved satisfactory for cytogenetic analysis in patients from whom it was impossible to obtain a bone marrow aspirate, or in whose peripheral blood dividing myeloid cells were absent or insufficient in number. The quality of the metaphase chromosome is adequate for banding studies.

  13. Stress analysis of portable safety platform (Core Sampler Truck)

    Energy Technology Data Exchange (ETDEWEB)

    Ziada, H.H.

    1995-03-30

    This document provides the stress analysis and evaluation of the portable platform of the rotary mode core sampler truck No. 2 (RMCST {number_sign}2). The platform comprises railing, posts, deck, legs, and a portable ladder; it is restrained from lateral motion by means of two brackets added to the drill-head service platform.

  14. The features of Drosophila core promoters revealed by statistical analysis

    Directory of Open Access Journals (Sweden)

    Trifonov Edward N

    2006-06-01

    Full Text Available Abstract Background Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters. In this study, we reveal various transcription initiation mechanisms by statistical analysis of 3393 nonredundant Drosophila promoters. Results Using Drosophila-specific position-weight matrices, we identified promoters containing TATA box, Initiator, Downstream Promoter Element (DPE, and Motif Ten Element (MTE, as well as core elements discovered in Human (TFIIB Recognition Element (BRE and Downstream Core Element (DCE. Promoters utilizing known synergetic combinations of two core elements (TATA_Inr, Inr_MTE, Inr_DPE, and DPE_MTE were identified. We also establish the existence of promoters with potentially novel synergetic combinations: TATA_DPE and TATA_MTE. Our analysis revealed several motifs with the features of promoter elements, including possible novel core promoter element(s. Comparison of Human and Drosophila showed consistent percentages of promoters with TATA, Inr, DPE, and synergetic combinations thereof, as well as most of the same functional and mutual positions of the core elements. No statistical evidence of MTE utilization in Human was found. Distinct nucleosome positioning in particular promoter classes was revealed. Conclusion We present lists of promoters that potentially utilize the aforementioned elements/combinations. The number of these promoters is two orders of magnitude larger than the number of promoters in which transcription initiation was experimentally studied. The sequences are ready to be experimentally tested or used for further statistical analysis. The developed approach may be utilized for other species.

  15. Magnetic resonance imaging in laboratory petrophysical core analysis

    Science.gov (United States)

    Mitchell, J.; Chandrasekera, T. C.; Holland, D. J.; Gladden, L. F.; Fordham, E. J.

    2013-05-01

    Magnetic resonance imaging (MRI) is a well-known technique in medical diagnosis and materials science. In the more specialized arena of laboratory-scale petrophysical rock core analysis, the role of MRI has undergone a substantial change in focus over the last three decades. Initially, alongside the continual drive to exploit higher magnetic field strengths in MRI applications for medicine and chemistry, the same trend was followed in core analysis. However, the spatial resolution achievable in heterogeneous porous media is inherently limited due to the magnetic susceptibility contrast between solid and fluid. As a result, imaging resolution at the length-scale of typical pore diameters is not practical and so MRI of core-plugs has often been viewed as an inappropriate use of expensive magnetic resonance facilities. Recently, there has been a paradigm shift in the use of MRI in laboratory-scale core analysis. The focus is now on acquiring data in the laboratory that are directly comparable to data obtained from magnetic resonance well-logging tools (i.e., a common physics of measurement). To maintain consistency with well-logging instrumentation, it is desirable to measure distributions of transverse (T2) relaxation time-the industry-standard metric in well-logging-at the laboratory-scale. These T2 distributions can be spatially resolved over the length of a core-plug. The use of low-field magnets in the laboratory environment is optimal for core analysis not only because the magnetic field strength is closer to that of well-logging tools, but also because the magnetic susceptibility contrast is minimized, allowing the acquisition of quantitative image voxel (or pixel) intensities that are directly scalable to liquid volume. Beyond simple determination of macroscopic rock heterogeneity, it is possible to utilize the spatial resolution for monitoring forced displacement of oil by water or chemical agents, determining capillary pressure curves, and estimating

  16. Code Coupling for Multi-Dimensional Core Transient Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jin-Woo; Park, Guen-Tae; Park, Min-Ho; Ryu, Seok-Hee; Um, Kil-Sup; Lee Jae-Il [KEPCO NF, Daejeon (Korea, Republic of)

    2015-05-15

    After the CEA ejection, the nuclear power of the reactor dramatically increases in an exponential behavior until the Doppler effect becomes important and turns the reactivity balance and power down to lower levels. Although this happens in a very short period of time, only few seconds, the energy generated can be very significant and cause fuel failures. The current safety analysis methodology which is based on overly conservative assumptions with the point kinetics model results in quite adverse consequences. Thus, KEPCO Nuclear Fuel(KNF) is developing the multi-dimensional safety analysis methodology to mitigate the consequences of the single CEA ejection accident. For this purpose, three-dimensional core neutron kinetics code ASTRA, sub-channel analysis code THALES, and fuel performance analysis code FROST, which have transient calculation performance, were coupled using message passing interface (MPI). This paper presents the methodology used for code coupling and the preliminary simulation results with the coupled code system (CHASER). Multi-dimensional core transient analysis code system, CHASER, has been developed and it was applied to simulate a single CEA ejection accident. CHASER gave a good prediction of multi-dimensional core transient behaviors during transient. In the near future, the multi-dimension CEA ejection analysis methodology using CHASER is planning to be developed. CHASER is expected to be a useful tool to gain safety margin for reactivity initiated accidents (RIAs), such as a single CEA ejection accident.

  17. Size analysis of single-core magnetic nanoparticles

    Science.gov (United States)

    Ludwig, Frank; Balceris, Christoph; Viereck, Thilo; Posth, Oliver; Steinhoff, Uwe; Gavilan, Helena; Costo, Rocio; Zeng, Lunjie; Olsson, Eva; Jonasson, Christian; Johansson, Christer

    2017-04-01

    Single-core iron-oxide nanoparticles with nominal core diameters of 14 nm and 19 nm were analyzed with a variety of non-magnetic and magnetic analysis techniques, including transmission electron microscopy (TEM), dynamic light scattering (DLS), static magnetization vs. magnetic field (M-H) measurements, ac susceptibility (ACS) and magnetorelaxometry (MRX). From the experimental data, distributions of core and hydrodynamic sizes are derived. Except for TEM where a number-weighted distribution is directly obtained, models have to be applied in order to determine size distributions from the measurand. It was found that the mean core diameters determined from TEM, M-H, ACS and MRX measurements agree well although they are based on different models (Langevin function, Brownian and Néel relaxation times). Especially for the sample with large cores, particle interaction effects come into play, causing agglomerates which were detected in DLS, ACS and MRX measurements. We observed that the number and size of agglomerates can be minimized by sufficiently strong diluting the suspension.

  18. Optimization Design and Finite Element Analysis of Core Cutter

    Institute of Scientific and Technical Information of China (English)

    CAO Pin-lu; YIN Kun; PENG Jian-ming; LIU Jian-lin

    2007-01-01

    The hydro-hammer sampler is a new type of sampler compared with traditional ones. An important part of this new offshore sampler is that the structure of the core cutter has a significant effect on penetration and core recovery. In our experiments, a commercial finite element code with a capability of simulating large-strain frictional contact between two or more solid bodies is used to simulate the core cutter-soil interaction. The effects of the cutting edge shape, the diameter and the edge angle on penetration are analyzed by non-liner transient dynamic analysis using a finite element method (FEM). Simulation results show that the cutter shape clearly has an effect on the penetration and core recovery. In addition, the penetration of the sampler increases with an increase in the inside diameter of the cutter, but decreases with an increase in the cutting angle. Based on these analyses, an optimum structure of the core cutter is designed and tested in the north margin of the Dalian gulf. Experiment results show that the penetration rate is about 16.5 m/h in silty clay and 15.4 m/h in cohesive clay, while the recovery is 68% and 83.3% respectively.

  19. Constitutive modeling and finite element procedure development for stress analysis of prismatic high temperature gas cooled reactor graphite core components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Majumdar, Saurindranath [Argonne National Laboratory, South Cass Avenue, Argonne, IL 60439 (United States); Srinivasan, Makuteswara [U.S. Nuclear Regulatory Commission, Washington, DC 20555 (United States)

    2013-07-15

    Highlights: • Finite element procedure developed for stress analysis of HTGR graphite component. • Realistic fluence profile and reflector brick shape considered for the simulation. • Also realistic H-451 grade material properties considered for simulation. • Typical outer reflector of a GT-MHR type reactor considered for numerical study. • Based on the simulation results replacement of graphite bricks can be scheduled. -- Abstract: High temperature gas cooled reactors, such as prismatic and pebble bed reactors, are increasingly becoming popular because of their inherent safety, high temperature process heat output, and high efficiency in nuclear power generation. In prismatic reactors, hexagonal graphite bricks are used as reflectors and fuel bricks. In the reactor environment, graphite bricks experience high temperature and neutron dose. This leads to dimensional changes (swelling and or shrinkage) of these bricks. Irradiation dimensional changes may affect the structural integrity of the individual bricks as well as of the overall core. The present paper presents a generic procedure for stress analysis of prismatic core graphite components using graphite reflector as an example. The procedure is demonstrated through commercially available ABAQUS finite element software using the option of user material subroutine (UMAT). This paper considers General Atomics Gas Turbine-Modular Helium Reactor (GT-MHR) as a bench mark design to perform the time integrated stress analysis of a typical reflector brick considering realistic geometry, flux distribution and realistic irradiation material properties of transversely isotropic H-451 grade graphite.

  20. Degraded core analysis for the pressurized-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gittus, J.H.

    1987-02-09

    An analysis of the likelihood and the consequences of 'degraded-core accidents' has been undertaken for the proposed Sizewell B PWR. In such accidents, degradation of the core geometry occurs as a result of overheating. Radionuclides are released and may enter the environment, causing harmful effects. The analysis concludes that degraded-core accidents are highly improbable, the plant having been designed to reduce the frequency of such accidents to a value of order 10/sup -6/ per year. Tbe building containing the reactor would only fail in a small proportion of degraded-core accidents. In the great majority of cases the containment would remain intact and the release of radioactivity to the environment would be small. The risk to individuals have been calculated for both immediate and long term effects. Although the estimates of risk are approximate, studies to investigate the uncertainties, and sensitivities to different assumptions, show that potential errors are small compared with the very large 'margin of safety' between the risks estimated for Sizewell B and those that already exist in society.

  1. High Resolution Continuous Flow Analysis System for Polar Ice Cores

    Science.gov (United States)

    Dallmayr, Remi; Azuma, Kumiko; Yamada, Hironobu; Kjær, Helle Astrid; Vallelonga, Paul; Azuma, Nobuhiko; Takata, Morimasa

    2014-05-01

    In the last decades, Continuous Flow Analysis (CFA) technology for ice core analyses has been developed to reconstruct the past changes of the climate system 1), 2). Compared with traditional analyses of discrete samples, a CFA system offers much faster and higher depth resolution analyses. It also generates a decontaminated sample stream without time-consuming sample processing procedure by using the inner area of an ice-core sample.. The CFA system that we have been developing is currently able to continuously measure stable water isotopes 3) and electrolytic conductivity, as well as to collect discrete samples for the both inner and outer areas with variable depth resolutions. Chemistry analyses4) and methane-gas analysis 5) are planned to be added using the continuous water stream system 5). In order to optimize the resolution of the current system with minimal sample volumes necessary for different analyses, our CFA system typically melts an ice core at 1.6 cm/min. Instead of using a wire position encoder with typical 1mm positioning resolution 6), we decided to use a high-accuracy CCD Laser displacement sensor (LKG-G505, Keyence). At the 1.6 cm/min melt rate, the positioning resolution was increased to 0.27mm. Also, the mixing volume that occurs in our open split debubbler is regulated using its weight. The overflow pumping rate is smoothly PID controlled to maintain the weight as low as possible, while keeping a safety buffer of water to avoid air bubbles downstream. To evaluate the system's depth-resolution, we will present the preliminary data of electrolytic conductivity obtained by melting 12 bags of the North Greenland Eemian Ice Drilling (NEEM) ice core. The samples correspond to different climate intervals (Greenland Stadial 21, 22, Greenland Stadial 5, Greenland Interstadial 5, Greenland Interstadial 7, Greenland Stadial 8). We will present results for the Greenland Stadial -8, whose depths and ages are between 1723.7 and 1724.8 meters, and 35.520 to

  2. Experimental investigations of hexagonal crimping die failure

    Directory of Open Access Journals (Sweden)

    Veera kumar M

    2016-06-01

    Full Text Available This paper deals with the hexagonal crimping die failure of high carbon high chromium steel material. The failure modes were initially revealed and identified by the visual examination. Then the chemical analysis and metallographic examination havebeen carried at different positions of the failure die surface using scanning electron microscope (SEM. The microstructure evaluation reveals that failure occurs due to undissolved austenitic structure resulting in improper transition duringheat treatment.

  3. Preliminary Core Analysis of a Micro Modular Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Chang Keun; Chang, Jongwa [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Venneri, Francesco [Ultra Safe Nuclear Corporation, Los Alamos (United States); Hawari, Ayman [NC State Univ., Raleigh (United States)

    2014-05-15

    The Micro Modular Reactor (MMR) will be 'melt-down proof'(MDP) under all circumstances, including the complete loss of coolant, and will be easily transportable and retrievable, and suitable for use with very little site preparation and Balance of Plant (BOP) requirements for a variety of applications, from power generation and process heat applications in remote areas to grid-unattached locations, including ship propulsion. The Micro Modular Reactor design proposed in this paper has 3 meter diameter core (2 meter active core) which is suitable for 'factory manufactured' and has few tens year of service life for remote deployment. We confirmed the feasibility of long term service life by a preliminary neutronic analysis in terms of the excess reactivity, the temperature feedback coefficient, and the control margins. We are able to achieve a reasonably long core life time of 5 ∼ 10 years under typical thermal hydraulic condition of a helium cooled reactor. However, on a situation where longer service period and safety is important, we can reduce the power density to the level of typical pebble bed reactor. In this case we can design 10 MWt MMR with core diameter for 10 ∼ 40 years core life time without much loss in the economics. Several burnable poisons are studied and it is found that erbia mixed in the compact matrix seems reasonably good poison. The temperature feedback coefficients were remaining negative during lifetime. Drum type control rods at reflector region and few control rods inside core region are sufficient to control the reactivity during operation and to achieve safe cold shutdown state.

  4. An Explanation for Saturn's Hexagon

    Science.gov (United States)

    Kohler, Susanna

    2015-08-01

    For over three decades, weve been gathering observations of the mysterious hexagonal cloud pattern encircling Saturns north pole. Now, researchers believe they have a model that can better explain its formation.Fascinating GeometrySaturns northern Hexagon is a cloud band circling Saturns north pole at 78 N, first observed by the Voyager flybys in 198081. This remarkable pattern has now persisted for more than a Saturn year (29.5 Earth years).Eight frames demonstrating the motion within Saturns Hexagon. Click to watch the animation! The view is from a reference frame rotating with Saturn. [NASA/JPL-Caltech/SSI/Hampton University]Observations by Voyager and, more recently, Cassini have helped to identify many key characteristics of this bizarre structure. Two interesting things weve learned are:The Hexagon is associated with an eastward zonal jet moving at more than 200 mph.The cause of the Hexagon is believed to be a jet stream, similar to the ones that we experience on Earth. The path of the jet itself appears to follow the hexagons outline.The Hexagon rotates at roughly the same rate as Saturns overall rotation.While we observe individual storms and cloud patterns moving at different speeds within the Hexagon, the vertices of the Hexagon move at almost exactly the same rotational speed as that of Saturn itself.Attempts to model the formation of the Hexagon with a jet stream have yet to fully reproduce all of the observed features and behavior. But now, a team led by Ral Morales-Juberas of the New Mexico Institute of Mining and Technology believes they have created a model that better matches what we see.Simulating a Meandering JetThe team ran a series of simulations of an eastward, Gaussian-profile jet around Saturns pole. They introduced small perturbations to the jet and demonstrated that, as a result of the perturbations, the jet can meander into a hexagonal shape. With the initial conditions of the teams model, the meandering jet is able to settle into a

  5. Analysis of the core genome and pangenome of Pseudomonas putida.

    Science.gov (United States)

    Udaondo, Zulema; Molina, Lázaro; Segura, Ana; Duque, Estrella; Ramos, Juan L

    2016-10-01

    Pseudomonas putida are strict aerobes that proliferate in a range of temperate niches and are of interest for environmental applications due to their capacity to degrade pollutants and ability to promote plant growth. Furthermore solvent-tolerant strains are useful for biosynthesis of added-value chemicals. We present a comprehensive comparative analysis of nine strains and the first characterization of the Pseudomonas putida pangenome. The core genome of P. putida comprises approximately 3386 genes. The most abundant genes within the core genome are those that encode nutrient transporters. Other conserved genes include those for central carbon metabolism through the Entner-Doudoroff pathway, the pentose phosphate cycle, arginine and proline metabolism, and pathways for degradation of aromatic chemicals. Genes that encode transporters, enzymes and regulators for amino acid metabolism (synthesis and degradation) are all part of the core genome, as well as various electron transporters, which enable aerobic metabolism under different oxygen regimes. Within the core genome are 30 genes for flagella biosynthesis and 12 key genes for biofilm formation. Pseudomonas putida strains share 85% of the coding regions with Pseudomonas aeruginosa; however, in P. putida, virulence factors such as exotoxins and type III secretion systems are absent.

  6. Bifurcation theory for hexagonal agglomeration in economic geography

    CERN Document Server

    Ikeda, Kiyohiro

    2014-01-01

    This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...

  7. Preparation and characterization of hexagonal close-packed Ni nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Hexagonal close-packed Ni nanoparticles were synthesized using a heat-treating technique with the precursors prepared by the sol-gel method.The synthesis condition,structure,and morphology of the samples were characterized and analysed by thermogravimetric analysis (TG),differential thermal analysis (DTA),X-ray diffraction (XRD) and transmission electron microscopy (TEM).Results indicate that the hexagonal close packed Ni nanoparticles were synthesized at a heat-treating temperature of 300℃.The cell constants are calculated at a=0.2652 nm and c=0.4334 nm.The average grain size of the hexagonal close-packed Ni particles evaluated by Scherrer equation is about 12 nm.The phase transformation from a hexagonal close-packed Ni to a face-centered cubic Ni structure occurred when the heat-treating temperature was increased.

  8. Discrete breathers in hexagonal dusty plasma lattices.

    Science.gov (United States)

    Koukouloyannis, V; Kourakis, I

    2009-08-01

    The occurrence of single-site or multisite localized vibrational modes, also called discrete breathers, in two-dimensional hexagonal dusty plasma lattices is investigated. The system is described by a Klein-Gordon hexagonal lattice characterized by a negative coupling parameter epsilon in account of its inverse dispersive behavior. A theoretical analysis is performed in order to establish the possibility of existence of single as well as three-site discrete breathers in such systems. The study is complemented by a numerical investigation based on experimentally provided potential forms. This investigation shows that a dusty plasma lattice can support single-site discrete breathers, while three-site in phase breathers could exist if specific conditions, about the intergrain interaction strength, would hold. On the other hand, out of phase and vortex three-site breathers cannot be supported since they are highly unstable.

  9. Error Analysis of High Frequency Core Loss Measurement for Low-Permeability Low-Loss Magnetic Cores

    DEFF Research Database (Denmark)

    Niroumand, Farideh Javidi; Nymand, Morten

    2016-01-01

    in magnetic cores is B-H loop measurement where two windings are placed on the core under test. However, this method is highly vulnerable to phase shift error, especially for low-permeability, low-loss cores. Due to soft saturation and very low core loss, low-permeability low-loss magnetic cores are favorable....... The analysis has been validated by experimental measurements for relatively low-loss magnetic cores with different permeability values.......Magnetic components significantly contribute to the dissipated loss in power electronic converters. Measuring the true value of dissipated power in these components is highly desirable, since it can be used to verify the optimum design of these components. The common approach for measuring the loss...

  10. Multivariate Regression Analysis of Gravitational Waves from Rotating Core Collapse

    CERN Document Server

    Engels, William J; Ott, Christian D

    2014-01-01

    We present a new multivariate regression model for analysis and parameter estimation of gravitational waves observed from well but not perfectly modeled sources such as core-collapse supernovae. Our approach is based on a principal component decomposition of simulated waveform catalogs. Instead of reconstructing waveforms by direct linear combination of physically meaningless principal components, we solve via least squares for the relationship that encodes the connection between chosen physical parameters and the principal component basis. Although our approach is linear, the waveforms' parameter dependence may be non-linear. For the case of gravitational waves from rotating core collapse, we show, using statistical hypothesis testing, that our method is capable of identifying the most important physical parameters that govern waveform morphology in the presence of simulated detector noise. We also demonstrate our method's ability to predict waveforms from a principal component basis given a set of physical ...

  11. Neutronic analysis of LMFBRs during severe core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Tomlinson, E.T.

    1979-01-01

    A number of numerical experiments were performed to assess the validity of diffusion theory and various perturbation methods for calculating the reactivity state of a severely disrupted liquid metal cooled fast breeder reactor (LMFBR). The disrupted configurations correspond, in general, to phases through which an LMFBR core could pass during a core disruptive accident (CDA). Two-reactor models were chosen for this study, the two zone, homogeneous Clinch River Breeder Reactor and the Large Heterogeneous Reactor Design Study Core. The various phases were chosen to approximate the CDA results predicted by the safety analysis code SAS3D. The calculational methods investigated in this study include the eigenvalue difference technique based on both discrete ordinate transport theory and diffusion theory, first-order perturbation theory, exact perturbation theory, and a new hybrid perturbation theory. Selected cases were analyzed using Monte Carlo methods. It was found that in all cases, diffusion theory and perturbation theory yielded results for the change in reactivity that significantly disagreed with both the discrete ordinate and Monte Carlo results. These differences were, in most cases, in a nonconservative direction.

  12. Analysis of threading dislocations in void shape controlled GaN re-grown on hexagonally patterned mask-less GaN

    Science.gov (United States)

    Ali, M.; Romanov, A. E.; Suihkonen, S.; Svensk, O.; Sintonen, S.; Sopanen, M.; Lipsanen, H.; Nevedomsky, V. N.; Bert, N. A.; Odnoblyudov, M. A.; Bougrov, V. E.

    2012-04-01

    In this article, we analyze the behavior of threading dislocations in GaN layers re-grown on hexagonally patterned mask-less GaN. The growth mode of the material with patterned hexagonal morphology changes with the diameter and the periodicity of the hexagonal patterns. The growth mode directly affects the shape of the voids that are formed in this kind of lateral epitaxy. Transmission electron microscopy has been used to study threading dislocations in GaN layers with voids having different sizes and sidewall angles. The results show that a significant number of threading dislocations near the tapered void's surface undergo a 90° reorientation in their propagation trajectory whereas almost no dislocations bend in the case of smaller voids having more vertical sidewalls. Different types of dislocations in the vicinity of the voids have also been identified using the invisibility g·b criteria. The full width at half maximum values for XRD ω-scan recorded in (002) reflection drop from 256″ to 181″ as the void sidewall inclination changes from 85° to 60°. A similar dropping trend in the full width at half maximum values for asymmetric diffraction reflections has also been observed.

  13. Computation system for nuclear reactor core analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.; Petrie, L.M.

    1977-04-01

    This report documents a system which contains computer codes as modules developed to evaluate nuclear reactor core performance. The diffusion theory approximation to neutron transport may be applied with the VENTURE code treating up to three dimensions. The effect of exposure may be determined with the BURNER code, allowing depletion calculations to be made. The features and requirements of the system are discussed and aspects common to the computational modules, but the latter are documented elsewhere. User input data requirements, data file management, control, and the modules which perform general functions are described. Continuing development and implementation effort is enhancing the analysis capability available locally and to other installations from remote terminals.

  14. Eigenvalue analysis using a full-core Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Okafor, K.C.; Zino, J.F. (Westinghouse Savannah River Co., Aiken, SC (United States))

    1992-01-01

    The reactor physics codes used at the Savannah River Site (SRS) to predict reactor behavior have been continually benchmarked against experimental and operational data. A particular benchmark variable is the observed initial critical control rod position. Historically, there has been some difficulty predicting this position because of the difficulties inherent in using computer codes to model experimental or operational data. The Monte Carlo method is applied in this paper to study the initial critical control rod positions for the SRS K Reactor. A three-dimensional, full-core MCNP model of the reactor was developed for this analysis.

  15. On Processing Hexagonally Sampled Images

    Science.gov (United States)

    2011-07-01

    Definition Addition Negation Subtraction Scalar Multiplication                  2121 2121 21 2 aacc aarr aa pp1...coordinate system for addressing a hexagonal grid that provides support for efficient image processing • Efficient ASA methods were shown for gradient

  16. Analysis of three-phase power transformer laminated magnetic core designs

    Directory of Open Access Journals (Sweden)

    M.I. Levin

    2014-03-01

    Full Text Available Analysis and research into properties and parameters of different-type laminated magnetic cores of three-phase power transformers are conducted. Most of new laminated magnetic core designs are found to have significant shortcomings resulted from design and technological features of their manufacturing. These shortcomings cause increase in ohmic loss in the magnetic core, which eliminates advantages of the new core configurations and makes them uncompetitive as compared with the classical laminated magnetic core design.

  17. Transient Analysis of Air-Core Coils by Moment Method

    Science.gov (United States)

    Fujita, Akira; Kato, Shohei; Hirai, Takao; Okabe, Shigemitu

    In electric power system a threat of lighting surge is decreased by using ground wire and arrester, but the risk of failure of transformer is still high. Winding is the most familiar conductor configuration of electromagnetic field components such as transformer, resistors, reactance device etc. Therefore, it is important that we invest the lighting surge how to advance into winding, but the electromagnet coupling in a winding makes lighting surge analysis difficult. In this paper we present transient characteristics analysis of an air-core coils by moment method in frequency domain. We calculate the inductance from time response and impedance in low frequency, and compare them with the analytical equation which is based on Nagaoka factor.

  18. Developing engineering design core competences through analysis of industrial products

    DEFF Research Database (Denmark)

    Hansen, Claus Thorp; Lenau, Torben Anker

    2011-01-01

    Most product development work carried out in industrial practice is characterised by being incremental, i.e. the industrial company has had a product in production and on the market for some time, and now time has come to design a new and upgraded variant. This type of redesign project requires...... that the engineering designers have core design competences to carry through an analysis of the existing product encompassing both a user-oriented side and a technical side, as well as to synthesise solution proposals for the new and upgraded product. The authors of this paper see an educational challenge in staging...... a course module, in which students develop knowledge, understanding and skills, which will prepare them for being able to participate in and contribute to redesign projects in industrial practice. In the course module Product Analysis and Redesign that has run for 8 years we have developed and refined...

  19. Core Stability in Athletes: A Critical Analysis of Current Guidelines.

    Science.gov (United States)

    Wirth, Klaus; Hartmann, Hagen; Mickel, Christoph; Szilvas, Elena; Keiner, Michael; Sander, Andre

    2017-03-01

    Over the last two decades, exercise of the core muscles has gained major interest in professional sports. Research has focused on injury prevention and increasing athletic performance. We analyzed the guidelines for so-called functional strength training for back pain prevention and found that programs were similar to those for back pain rehabilitation; even the arguments were identical. Surprisingly, most exercise specifications have neither been tested for their effectiveness nor compared with the load specifications normally used for strength training. Analysis of the scientific literature on core stability exercises shows that adaptations in the central nervous system (voluntary activation of trunk muscles) have been used to justify exercise guidelines. Adaptations of morphological structures, important for the stability of the trunk and therefore the athlete's health, have not been adequately addressed in experimental studies or in reviews. In this article, we explain why the guidelines created for back pain rehabilitation are insufficient for strength training in professional athletes. We critically analyze common concepts such as 'selective activation' and training on unstable surfaces.

  20. EDGE-ORIENTED HEXAGONAL ELEMENTS

    Institute of Scientific and Technical Information of China (English)

    Chao Yang; Jiachang Sun

    2007-01-01

    In this paper, two new nonconforming hexagonal elements are presented, which are based on the trilinear function space Q(3)1 and are edge-oriented, analogical to the case of the rotated Q1 quadrilateral element. A priori error estimates are given to show that the new elements achieve first-order accuracy in the energy norm and second-order accuracy in the L2 norm. This theoretical result is confirmed by the numerical tests.

  1. Deconvolution-based resolution enhancement of chemical ice core records obtained by continuous flow analysis

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Andersen, Katrine K.; Johnsen, Sigfus Johann;

    2005-01-01

    Continuous flow analysis (CFA) has become a popular measuring technique for obtaining high-resolution chemical ice core records due to an attractive combination of measuring speed and resolution. However, when analyzing the deeper sections of ice cores or cores from low-accumulation areas, there ...

  2. Technique for continuous high-resolution analysis of trace substances in firn and ice cores

    Energy Technology Data Exchange (ETDEWEB)

    Roethlisberger, R.; Bigler, M.; Hutterli, M.; Sommer, S.; Stauffer, B.; Junghans, H.G.; Wagenbach, D.

    2000-01-15

    The very successful application of a CFA (Continuous flow analysis) system in the GRIP project (Greenland Ice Core Project) for high-resolution ammonium, calcium, hydrogen peroxide, and formaldehyde measurements along a deep ice core led to further development of this analysis technique. The authors included methods for continuous analysis technique. The authors included methods for continuous analysis of sodium, nitrate, sulfate, and electrolytical conductivity, while the existing methods have been improved. The melting device has been optimized to allow the simultaneous analysis of eight components. Furthermore, a new melter was developed for analyzing firn cores. The system has been used in the frame of the European Project for Ice Coring in Antarctica (EPICA) for in-situ analysis of several firn cores from Dronning Maud Land, Antarctica, and for the new ice core drilled at Dome C, Antarctica.

  3. HTR-PROTEUS PEBBLE BED EXPERIMENTAL PROGRAM CORES 5, 6, 7, & 8: COLUMNAR HEXAGONAL POINT-ON-POINT PACKING WITH A 1:2 MODERATOR-TO-FUEL PEBBLE RATIO

    Energy Technology Data Exchange (ETDEWEB)

    John D. Bess

    2013-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  4. HTR-Proteus Pebble Bed Experimental Program Cores 5,6,7,&8: Columnar Hexagonal Point-on-Point Packing with a 1:2 Moderator-to-Fuel Pebble Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Bess, John D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sterbentz, James W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Snoj, Luka [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lengar, Igor [Idaho National Lab. (INL), Idaho Falls, ID (United States); Koberl, Oliver [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    PROTEUS is a zero-power research reactor based on a cylindrical graphite annulus with a central cylindrical cavity. The graphite annulus remains basically the same for all experimental programs, but the contents of the central cavity are changed according to the type of reactor being investigated. Through most of its service history, PROTEUS has represented light-water reactors, but from 1992 to 1996 PROTEUS was configured as a pebble-bed reactor (PBR) critical facility and designated as HTR-PROTEUS. The nomenclature was used to indicate that this series consisted of High Temperature Reactor experiments performed in the PROTEUS assembly. During this period, seventeen critical configurations were assembled and various reactor physics experiments were conducted. These experiments included measurements of criticality, differential and integral control rod and safety rod worths, kinetics, reaction rates, water ingress effects, and small sample reactivity effects (Ref. 3). HTR-PROTEUS was constructed, and the experimental program was conducted, for the purpose of providing experimental benchmark data for assessment of reactor physics computer codes. Considerable effort was devoted to benchmark calculations as a part of the HTR-PROTEUS program. References 1 and 2 provide detailed data for use in constructing models for codes to be assessed. Reference 3 is a comprehensive summary of the HTR-PROTEUS experiments and the associated benchmark program. This document draws freely from these references. Only Cores 9 and 10 are evaluated in this benchmark report due to similarities in their construction. The other core configurations of the HTR-PROTEUS program are evaluated in their respective reports as outlined in Section 1.0. Cores 9 and 10 were evaluated and determined to be acceptable benchmark experiments.

  5. Earth's core and inner-core resonances from analysis of VLBI nutation and superconducting gravimeter data

    Science.gov (United States)

    Rosat, S.; Lambert, S. B.; Gattano, C.; Calvo, M.

    2017-01-01

    Geophysical parameters of the deep Earth's interior can be evaluated through the resonance effects associated with the core and inner-core wobbles on the forced nutations of the Earth's figure axis, as observed by very long baseline interferometry (VLBI), or on the diurnal tidal waves, retrieved from the time-varying surface gravity recorded by superconducting gravimeters (SGs). In this paper, we inverse for the rotational mode parameters from both techniques to retrieve geophysical parameters of the deep Earth. We analyse surface gravity data from 15 SG stations and VLBI delays accumulated over the last 35 yr. We show existing correlations between several basic Earth parameters and then decide to inverse for the rotational modes parameters. We employ a Bayesian inversion based on the Metropolis-Hastings algorithm with a Markov-chain Monte Carlo method. We obtain estimates of the free core nutation resonant period and quality factor that are consistent for both techniques. We also attempt an inversion for the free inner-core nutation (FICN) resonant period from gravity data. The most probable solution gives a period close to the annual prograde term (or S1 tide). However the 95 per cent confidence interval extends the possible values between roughly 28 and 725 d for gravity, and from 362 to 414 d from nutation data, depending on the prior bounds. The precisions of the estimated long-period nutation and respective small diurnal tidal constituents are hence not accurate enough for a correct determination of the FICN complex frequency.

  6. Genome-wide analysis of core promoter elements from conserved human and mouse orthologous pairs

    OpenAIRE

    Jin, Victor X.; Singer, Gregory AC; Agosto-Pérez, Francisco J; Liyanarachchi, Sandya; Davuluri, Ramana V.

    2006-01-01

    Background The canonical core promoter elements consist of the TATA box, initiator (Inr), downstream core promoter element (DPE), TFIIB recognition element (BRE) and the newly-discovered motif 10 element (MTE). The motifs for these core promoter elements are highly degenerate, which tends to lead to a high false discovery rate when attempting to detect them in promoter sequences. Results In this study, we have performed the first analysis of these core promoter elements in orthologous mouse a...

  7. Core Flow Distribution from Coupled Supercritical Water Reactor Analysis

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.

  8. Improvements in practical applicability of NSHEX: nodal transport calculation code for three-dimensional hexagonal-Z geometry

    Energy Technology Data Exchange (ETDEWEB)

    Sugino, Kazuteru [Power Reactor and Nuclear Fuel Development Corp., Oarai, Ibaraki (Japan). Oarai Engineering Center

    1998-07-01

    As a tool to perform a fast reactor core calculations with high accuracy, NSHEX the nodal transport calculation code for three-dimensional hexagonal-Z geometry is under development. To improve the practical applicability of NSHEX, for instance, in its application to safety analysis and commercial reactor core design studies, we investigated the basic theory used in it, improved the program performance, and evaluated its applicability to the analysis of commercial reactor cores. The current studies show the following: (1) An improvement in the treatment of radial leakage in the radial nodal coupling equation bettered calculational convergence for safety analysis calculation, so the applicability of NSHEX to safety analysis was improved. (2) As a result of comparison of results from NSHEX and the standard core calculation code, it was confirmed that there was consistency between them. (3) According to the evaluation of the effect due to the difference of calculational condition, it was found that the calculation under appropriate nodal expansion orders and Sn orders correspond to the one under most detailed condition. However further investigation is required to reduce the uncertainty in calculational results due to the treatment of high order flux moments. (4) A whole core version of NSHEX enabling calculation for any FBR core geometry has been developed, this improved general applicability of NSHEX. (5) An investigation of the applicability of the rebalance method to acceleration clarified that this improved calculational convergence and it was effective. (J.P.N.)

  9. Buckling and dynamic analysis of drill strings for core sampling

    Energy Technology Data Exchange (ETDEWEB)

    Ziada, H.H., Westinghouse Hanford

    1996-05-15

    This supporting document presents buckling and dynamic stability analyses of the drill strings used for core sampling. The results of the drill string analyses provide limiting operating axial loads and rotational speeds to prevent drill string failure, instability and drill bit overheating during core sampling. The recommended loads and speeds provide controls necessary for Tank Waste Remediation System (TWRS) programmatic field operations.

  10. Development and analysis of U-core switched reluctance machine

    DEFF Research Database (Denmark)

    Jæger, Rasmus; Nielsen, Simon Staal; Rasmussen, Peter Omand

    2016-01-01

    these disadvantages have been presented, but not all of them have been demonstrated practically. This paper presents a practical demonstration and assessment of a segmented U-core SRM, which copes with some of the disadvantages of the regular SRM. The U-core SRM has a segmented stator, with a short flux path...

  11. Self-Healing Many-Core Architecture: Analysis and Evaluation

    Directory of Open Access Journals (Sweden)

    Arezoo Kamran

    2016-01-01

    Full Text Available More pronounced aging effects, more frequent early-life failures, and incomplete testing and verification processes due to time-to-market pressure in new fabrication technologies impose reliability challenges on forthcoming systems. A promising solution to these reliability challenges is self-test and self-reconfiguration with no or limited external control. In this work a scalable self-test mechanism for periodic online testing of many-core processor has been proposed. This test mechanism facilitates autonomous detection and omission of faulty cores and makes graceful degradation of the many-core architecture possible. Several test components are incorporated in the many-core architecture that distribute test stimuli, suspend normal operation of individual processing cores, apply test, and detect faulty cores. Test is performed concurrently with the system normal operation without any noticeable downtime at the application level. Experimental results show that the proposed test architecture is extensively scalable in terms of hardware overhead and performance overhead that makes it applicable to many-cores with more than a thousand processing cores.

  12. The Discrete Fourier Transform on hexagonal remote sensing image

    Science.gov (United States)

    Li, Yalu; Ben, Jin; Wang, Rui; Du, Lingyu

    2016-11-01

    Global discrete grid system will subdivide the earth recursively to form a multi-resolution grid hierarchy with no Overlap and seamless which help build global uniform spatial reference datum and multi-source data processing mode which takes the position as the object and in the aspect of data structure supports the organization, process and analysis of the remote sensing big data. This paper adopts the base transform to realize the mutual transformation of square pixel and hexagonal pixel. This paper designs the corresponding discrete Fourier transform algorithm for any lattice. Finally, the paper show the result of the DFT of the remote sensing image of the hexagonal pixel.

  13. Study of core support barrel vibration monitoring using ex-core neutron noise analysis and fuzzy logic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Robby; Song, Seon Ho [Nuclear and Quantum Engineering Department, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kang, Hyun Gook [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-03-15

    The application of neutron noise analysis (NNA) to the ex-core neutron detector signal for monitoring the vibration characteristics of a reactor core support barrel (CSB) was investigated. Ex-core flux data were generated by using a nonanalog Monte Carlo neutron transport method in a simulated CSB model where the implicit capture and Russian roulette technique were utilized. First and third order beam and shell modes of CSB vibration were modeled based on parallel processing simulation. A NNA module was developed to analyze the ex-core flux data based on its time variation, normalized power spectral density, normalized cross-power spectral density, coherence, and phase differences. The data were then analyzed with a fuzzy logic module to determine the vibration characteristics. The ex-core neutron signal fluctuation was directly proportional to the CSB's vibration observed at 8Hz and15Hzin the beam mode vibration, and at 8Hz in the shell mode vibration. The coherence result between flux pairs was unity at the vibration peak frequencies. A distinct pattern of phase differences was observed for each of the vibration models. The developed fuzzy logic module demonstrated successful recognition of the vibration frequencies, modes, orders, directions, and phase differences within 0.4 ms for the beam and shell mode vibrations.

  14. Homogeneous protein analysis by magnetic core-shell nanorod probes

    KAUST Repository

    Schrittwieser, Stefan

    2016-03-29

    Studying protein interactions is of vital importance both to fundamental biology research and to medical applications. Here, we report on the experimental proof of a universally applicable label-free homogeneous platform for rapid protein analysis. It is based on optically detecting changes in the rotational dynamics of magnetically agitated core-shell nanorods upon their specific interaction with proteins. By adjusting the excitation frequency, we are able to optimize the measurement signal for each analyte protein size. In addition, due to the locking of the optical signal to the magnetic excitation frequency, background signals are suppressed, thus allowing exclusive studies of processes at the nanoprobe surface only. We study target proteins (soluble domain of the human epidermal growth factor receptor 2 - sHER2) specifically binding to antibodies (trastuzumab) immobilized on the surface of our nanoprobes and demonstrate direct deduction of their respective sizes. Additionally, we examine the dependence of our measurement signal on the concentration of the analyte protein, and deduce a minimally detectable sHER2 concentration of 440 pM. For our homogeneous measurement platform, good dispersion stability of the applied nanoprobes under physiological conditions is of vital importance. To that end, we support our measurement data by theoretical modeling of the total particle-particle interaction energies. The successful implementation of our platform offers scope for applications in biomarker-based diagnostics as well as for answering basic biology questions.

  15. 100-KE REACTOR CORE REMOVAL PROJECT ALTERNATIVE ANALYSIS WORKSHOP REPORT

    Energy Technology Data Exchange (ETDEWEB)

    HARRINGTON RA

    2010-01-15

    On December 15-16, 2009, a 100-KE Reactor Core Removal Project Alternative Analysis Workshop was conducted at the Washington State University Consolidated Information Center, Room 214. Colburn Kennedy, Project Director, CH2M HILL Plateau Remediation Company (CHPRC) requested the workshop and Richard Harrington provided facilitation. The purpose of the session was to select the preferred Bio Shield Alternative, for integration with the Thermal Shield and Core Removal and develop the path forward to proceed with project delivery. Prior to this workshop, the S.A. Robotics (SAR) Obstruction Removal Alternatives Analysis (565-DLV-062) report was issued, for use prior to and throughout the session, to all the team members. The multidisciplinary team consisted ofrepresentatives from 100-KE Project Management, Engineering, Radcon, Nuclear Safety, Fire Protection, Crane/Rigging, SAR Project Engineering, the Department of Energy Richland Field Office, Environmental Protection Agency, Washington State Department of Ecology, Defense Nuclear Facility Safety Board, and Deactivation and Decommission subject matter experts from corporate CH2M HILL and Lucas. Appendix D contains the workshop agenda, guidelines and expectations, opening remarks, and attendance roster going into followed throughout the workshop. The team was successful in selecting the preferred alternative and developing an eight-point path forward action plan to proceed with conceptual design. Conventional Demolition was selected as the preferred alternative over two other alternatives: Diamond Wire with Options, and Harmonic Delamination with Conventional Demolition. The teams preferred alternative aligned with the SAR Obstruction Removal Alternative Analysis report conclusion. However, the team identified several Path Forward actions, in Appendix A, which upon completion will solidify and potentially enhance the Conventional Demolition alternative with multiple options and approaches to achieve project delivery

  16. Calculation of Accurate Hexagonal Discontinuity Factors for PARCS

    Energy Technology Data Exchange (ETDEWEB)

    Pounders. J., Bandini, B. R. , Xu, Y, and Downar, T. J.

    2007-11-01

    In this study we derive a methodology for calculating discontinuity factors consistent with the Triangle-based Polynomial Expansion Nodal (TPEN) method implemented in PARCS for hexagonal reactor geometries. The accuracy of coarse-mesh nodal methods is greatly enhanced by permitting flux discontinuities at node boundaries, but the practice of calculating discontinuity factors from infinite-medium (zero-current) single bundle calculations may not be sufficiently accurate for more challenging problems in which there is a large amount of internodal neutron streaming. The authors therefore derive a TPEN-based method for calculating discontinuity factors that are exact with respect to generalized equivalence theory. The method is validated by reproducing the reference solution for a small hexagonal core.

  17. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  18. Knowledge Economy Core Journals: Identification through LISTA Database Analysis.

    Science.gov (United States)

    Nouri, Rasool; Karimi, Saeed; Ashrafi-rizi, Hassan; Nouri, Azadeh

    2013-03-01

    Knowledge economy has become increasingly broad over the years and identification of core journals in this field can be useful for librarians in journal selection process and also for researchers to select their studies and finding Appropriate Journal for publishing their articles. Present research attempts to determine core journals of Knowledge Economy indexed in LISTA (Library and Information Science and Technology). The research method was bibliometric and research population include the journals indexed in LISTA (From the start until the beginning of 2011) with at least one article a bout "knowledge economy". For data collection, keywords about "knowledge economy"-were extracted from the literature in this area-have searched in LISTA by using title, keyword and abstract fields and also taking advantage of LISTA thesaurus. By using this search strategy, 1608 articles from 390 journals were retrieved. The retrieved records import in to the excel sheet and after that the journals were grouped and the Bradford's coefficient was measured for each group. Finally the average of the Bradford's coefficients were calculated and core journals with subject area of "Knowledge economy" were determined by using Bradford's formula. By using Bradford's scattering law, 15 journals with the highest publication rates were identified as "Knowledge economy" core journals indexed in LISTA. In this list "Library and Information update" with 64 articles was at the top. "ASLIB Proceedings" and "Serials" with 51 and 40 articles are next in rank. Also 41 journals were identified as beyond core that "Library Hi Tech" with 20 articles was at the top. Increased importance of knowledge economy has led to growth of production of articles in this subject area. So the evaluation of journals for ranking these journals becomes a very challenging task for librarians and generating core journal list can provide a useful tool for journal selection and also quick and easy access to information. Core

  19. Knowledge Economy Core Journals: Identification through LISTA Database Analysis

    OpenAIRE

    Nouri, Rasool; Karimi, Saeed; Ashrafi-rizi, Hassan; Nouri, Azadeh

    2013-01-01

    Background Knowledge economy has become increasingly broad over the years and identification of core journals in this field can be useful for librarians in journal selection process and also for researchers to select their studies and finding Appropriate Journal for publishing their articles. Present research attempts to determine core journals of Knowledge Economy indexed in LISTA (Library and Information Science and Technology). Methods The research method was bibliometric and research popu...

  20. Theoretical Analysis of Thermal Transport in Graphene Supported on Hexagonal Boron Nitride: The Importance of Strong Adhesion Due to π -Bond Polarization

    Science.gov (United States)

    Pak, Alexander J.; Hwang, Gyeong S.

    2016-09-01

    One important attribute of graphene that makes it attractive for high-performance electronics is its inherently large thermal conductivity (κ ) for the purposes of thermal management. Using a combined density-functional theory and classical molecular-dynamics approach, we predict that the κ of graphene supported on hexagonal boron nitride (h -BN) can be as large as 90% of the κ of suspended graphene, in contrast to the significant suppression of κ (more than 70% reduction) on amorphous silica. Interestingly, we find that this enhanced thermal transport is largely attributed to increased lifetimes of the in-plane acoustic phonon modes, which is a notable contrast from the dominant contribution of out-of-plane acoustic modes in suspended graphene. This behavior is possible due to the charge polarization throughout graphene that induces strong interlayer adhesion between graphene and h -BN. These findings highlight the potential benefit of layered dielectric substrates such as h -BN for graphene-based thermal management, in addition to their electronic advantages. Furthermore, our study brings attention to the importance of understanding the interlayer interactions of graphene with layered dielectric materials which may offer an alternative technological platform for substrates in electronics.

  1. TREAT Transient Analysis Benchmarking for the HEU Core

    Energy Technology Data Exchange (ETDEWEB)

    Kontogeorgakos, D. C. [Argonne National Lab. (ANL), Argonne, IL (United States); Connaway, H. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, A. E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-05-01

    This work was performed to support the feasibility study on the potential conversion of the Transient Reactor Test Facility (TREAT) at Idaho National Laboratory from the use of high enriched uranium (HEU) fuel to the use of low enriched uranium (LEU) fuel. The analyses were performed by the GTRI Reactor Conversion staff at the Argonne National Laboratory (ANL). The objective of this study was to benchmark the transient calculations against temperature-limited transients performed in the final operating HEU TREAT core configuration. The MCNP code was used to evaluate steady-state neutronics behavior, and the point kinetics code TREKIN was used to determine core power and energy during transients. The first part of the benchmarking process was to calculate with MCNP all the neutronic parameters required by TREKIN to simulate the transients: the transient rod-bank worth, the prompt neutron generation lifetime, the temperature reactivity feedback as a function of total core energy, and the core-average temperature and peak temperature as a functions of total core energy. The results of these calculations were compared against measurements or against reported values as documented in the available TREAT reports. The heating of the fuel was simulated as an adiabatic process. The reported values were extracted from ANL reports, intra-laboratory memos and experiment logsheets and in some cases it was not clear if the values were based on measurements, on calculations or a combination of both. Therefore, it was decided to use the term “reported” values when referring to such data. The methods and results from the HEU core transient analyses will be used for the potential LEU core configurations to predict the converted (LEU) core’s performance.

  2. Structure of grain boundaries in hexagonal materials

    CERN Document Server

    Sarrazit, F

    1998-01-01

    which allows the behaviour of line-defects to be studied in complex interfacial processes. The work presented in this thesis describes experimental and theoretical aspects associated with the structure of grain boundaries in hexagonal materials. It has been found useful to classify grain boundaries as low-angle, special or general on the basis of their structure. High-angle grain boundaries were investigated in tungsten carbide (WC) using conventional electron microscopy techniques, and three examples characteristic of the interfaces observed in this material were studied extensively. Three-dimensionally periodic patterns are proposed as plausible reference configurations, and the Burgers vectors of observed interfacial dislocations were predicted using a theory developed recently. The comparison of experimental observations with theoretical predictions proved to be difficult as contrast simulation techniques require further development for analysis to be completed confidently. Another part of this work invol...

  3. Finite Element Analysis of Bend Test of Sandwich Structures Using Strain Energy Based Homogenization Method

    Directory of Open Access Journals (Sweden)

    Hassan Ijaz

    2017-01-01

    Full Text Available The purpose of this article is to present a simplified methodology for analysis of sandwich structures using the homogenization method. This methodology is based upon the strain energy criterion. Normally, sandwich structures are composed of hexagonal core and face sheets and a complete and complex hexagonal core is modeled for finite element (FE structural analysis. In the present work, the hexagonal core is replaced by a simple equivalent volume for FE analysis. The properties of an equivalent volume were calculated by taking a single representative cell for the entire core structure and the analysis was performed to determine the effective elastic orthotropic modulus of the equivalent volume. Since each elemental cell of the hexagonal core repeats itself within the in-plane direction, periodic boundary conditions were applied to the single cell to obtain the more realistic values of effective modulus. A sandwich beam was then modeled using determined effective properties. 3D FE analysis of Three- and Four-Point Bend Tests (3PBT and 4PBT for sandwich structures having an equivalent polypropylene honeycomb core and Glass Fiber Reinforced Plastic (GFRP composite face sheets are performed in the present study. The authenticity of the proposed methodology has been verified by comparing the simulation results with the experimental bend test results on hexagonal core sandwich beams.

  4. Analysis and Design of ITER 1 MV Core Snubber

    Institute of Scientific and Technical Information of China (English)

    王海田; 李格

    2012-01-01

    The core snubber, as a passive protection device, can suppress arc current and absorb stored energy in stray capacitance during the electrical breakdown in accelerating electrodes of ITER NBI. In order to design the core snubber of ITER, the control parameters of the arc peak current have been firstly analyzed by the Fink-Baker-Owren (FBO) method, which are used for designing the DIIID 100 kV snubber. The B-H curve can be derived from the measured voltage and current waveforms, and the hysteresis loss of the core snubber can be derived using the revised parallelogram method. The core snubber can be a simplified representation as an equivalent parallel resistance and inductance, which has been neglected by the FBO method. A simulation code including the parallel equivalent resistance and inductance has been set up. The simulation and experiments result in dramatically large arc shorting currents due to the parallel inductance effect. The case shows that the core snubber utilizing the FBO method gives more compact design.

  5. Extremal hexagonal chains concerning largest eigenvalue

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, we define a roll-attaching operation of a hexagonal chain, and prove Gutman's conjecture affirmatively by using the operation. The idea of the proof is also applicable to the results concerning extremal hexagonal chains for the Hosoya index and Merrifield-Simmons index.

  6. Preliminary Uncertainty Analysis for SMART Digital Core Protection and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Korea Atomic Energy Research Institute (KAERI) developed on-line digital core protection and monitoring systems, called SCOPS and SCOMS as a part of SMART plant protection and monitoring system. SCOPS simplified the protection system by directly connecting the four RSPT signals to each core protection channel and eliminated the control element assembly calculator (CEAC) hardware. SCOMS adopted DPCM3D method in synthesizing core power distribution instead of Fourier expansion method being used in conventional PWRs. The DPCM3D method produces a synthetic 3-D power distribution by coupling a neutronics code and measured in-core detector signals. The overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system was developed. In this paper, preliminary overall uncertainty factors for SCOPS/SCOMS of SMART initial core were evaluated by applying newly developed uncertainty analysis method

  7. Magnetic, Structural, and Particle Size Analysis of Single- and Multi-Core Magnetic Nanoparticles

    DEFF Research Database (Denmark)

    Ludwig, Frank; Kazakova, Olga; Barquin, Luis Fernandez

    2014-01-01

    We have measured and analyzed three different commercial magnetic nanoparticle systems, both multi-core and single-core in nature, with the particle (core) size ranging from 20 to 100 nm. Complementary analysis methods and same characterization techniques were carried out in different labs...... and the results are compared with each other. The presented results primarily focus on determining the particle size—both the hydrodynamic size and the individual magnetic core size—as well as magnetic and structural properties. The used analysis methods include transmission electron microscopy, static...... and dynamic magnetization measurements, and Mössbauer spectroscopy. We show that particle (hydrodynamic and core) size parameters can be determined from different analysis techniques and the individual analysis results agree reasonably well. However, in order to compare size parameters precisely determined...

  8. McCARD for Neutronics Design and Analysis of Research Reactor Cores

    Science.gov (United States)

    Shim, Hyung Jin; Park, Ho Jin; Kwon, Soonwoo; Seo, Geon Ho; Hyo Kim, Chang

    2014-06-01

    McCARD is a Monte Carlo (MC) neutron-photon transport simulation code developed exclusively for the neutronics design and analysis of nuclear reactor cores. McCARD is equipped with the hierarchical modeling and scripting functions, the CAD-based geometry processing module, the adjoint-weighted kinetics parameter and source multiplication factor estimation modules as well as the burnup analysis capability for the neutronics design and analysis of both research and power reactor cores. This paper highlights applicability of McCARD for the research reactor core neutronics analysis, as demonstrated for Kyoto University Critical Assembly, HANARO, and YALINA.

  9. Single-crystalline EuF3 hollow hexagonal microdisks: synthesis and application as a background-free matrix for MALDI-TOF-MS analysis of small molecules and polyethylene glycols.

    Science.gov (United States)

    Chen, Zhiming; Geng, Zhirong; Shao, Dalin; Mei, Yuhua; Wang, Zhilin

    2009-09-15

    Single-crystalline EuF(3) hexagonal microdisks with hollow interior were fabricated to serve as a background-free matrix for analysis of small molecules and polyethylene glycols (PEGs) by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS). The long-lived excited state of europium ions can transfer energy to high-energy vibrations of organic molecules, which provides the potential technological application in MALDI-TOF-MS analysis of small molecules and PEGs. The efficiency of the hollow microdisks as a novel matrix of low molecular weight compounds was verified by analysis of small peptide, amino acid, organic compounds, and hydroxypropyl beta-cyclodextrin (HP-beta-CD). The advantage of this matrix in comparison with alpha-cyano-4-hydroxycinnamic acid (CHCA) and 2,5-dihydroxybenzoic acid (DHB) was demonstrated by MALDI-TOF-MS analysis of an amino acid mixture and a peptide mixture. This matrix is successfully used for analysis of PEGs (PEG 2000, PEG 4000, PEG 8000, PEG 15000, and PEG 30000), suggesting a potential for monitoring reactions and for synthetic polymer quality control. The upper limit of detectable mass range was approximately 35,000 Da (PEG 30000). It is believed that this work will not only offer a new technique for high-speed analysis of small molecules and PEGs but also open a new field for applications of rare earth fluorides.

  10. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors.

    Science.gov (United States)

    Kang, Joongoo; Zhang, Lijun; Wei, Su-Huai

    2016-02-18

    Many important layered semiconductors, such as hexagonal boron nitride (hBN) and transition-metal dichalcogenides (TMDs), are derived from a hexagonal lattice. A single layer of such hexagonal semiconductors generally has a direct bandgap at the high-symmetry point K, whereas it becomes an indirect, optically inactive semiconductor as the number of layers increases to two or more. Here, taking hBN and MoS2 as examples, we reveal the microscopic origin of the direct-to-indirect bandgap transition of hexagonal layered materials. Our symmetry analysis and first-principles calculations show that the bandgap transition arises from the lack of the interlayer orbital couplings for the band-edge states at K, which are inherently weak because of the crystal symmetries of hexagonal layered materials. Therefore, it is necessary to judiciously break the underlying crystal symmetries to design more optically active, multilayered semiconductors from hBN or TMDs.

  11. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  12. The Veldkamp Space of the Smallest Slim Dense Near Hexagon

    CERN Document Server

    Green, Richard M

    2009-01-01

    We give a detailed description of the Veldkamp space of the smallest slim dense near hexagon. This space is isomorphic to PG(7, 2) and its 2^8 - 1 = 255 Veldkamp points (that is, geometric hyperplanes of the near hexagon) fall into five distinct classes, each of which is uniquely characterized by the number of points/lines as well as by a sequence of the cardinalities of points of given orders and/or that of (grid-)quads of given types. For each type we also give its weight, stabilizer group within the full automorphism group of the near hexagon and the total number of copies. The totality of (255 choose 2)/3 = 10795 Veldkamp lines split into 41 different types. We give a complete classification of them in terms of the properties of their cores (i. e., subconfigurations of points and lines common to all the three hyperplanes comprising a given Veldkamp line) and the types of the hyperplanes they are composed of. These findings may lend themselves into important physical applications, especially in view of rec...

  13. Discussion about modeling the effects of neutron flux exposure for nuclear reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.

    1986-04-01

    Methods used to calculate the effects of exposure to a neutron flux are described. The modeling of the nuclear-reactor core history presents an analysis challenge. The nuclide chain equations must be solved, and some of the methods in use for this are described. Techniques for treating reactor-core histories are discussed and evaluated.

  14. Performance modeling and analysis of parallel Gaussian elimination on multi-core computers

    Directory of Open Access Journals (Sweden)

    Fadi N. Sibai

    2014-01-01

    Full Text Available Gaussian elimination is used in many applications and in particular in the solution of systems of linear equations. This paper presents mathematical performance models and analysis of four parallel Gaussian Elimination methods (precisely the Original method and the new Meet in the Middle –MiM– algorithms and their variants with SIMD vectorization on multi-core systems. Analytical performance models of the four methods are formulated and presented followed by evaluations of these models with modern multi-core systems’ operation latencies. Our results reveal that the four methods generally exhibit good performance scaling with increasing matrix size and number of cores. SIMD vectorization only makes a large difference in performance for low number of cores. For a large matrix size (n ⩾ 16 K, the performance difference between the MiM and Original methods falls from 16× with four cores to 4× with 16 K cores. The efficiencies of all four methods are low with 1 K cores or more stressing a major problem of multi-core systems where the network-on-chip and memory latencies are too high in relation to basic arithmetic operations. Thus Gaussian Elimination can greatly benefit from the resources of multi-core systems, but higher performance gains can be achieved if multi-core systems can be designed with lower memory operation, synchronization, and interconnect communication latencies, requirements of utmost importance and challenge in the exascale computing age.

  15. Core influence on the frequency response analysis (FRA of power transformers through the finite element method

    Directory of Open Access Journals (Sweden)

    D. L. Alvarez

    2015-11-01

    Full Text Available In this paper the influence of core parameters in Frequency Response Analysis is analyzed through the equivalent circuit impedance matrix of the transformer winding; the parameters of the circuit have been computed using the Finite Element Method. In order to appreciate the behavior of the iron core in comparison to the air core, the frequency dependence of resonances is calculated to show how the air core only influences the results at low frequencies. The core is modeled using a complex permeability, and the parameters of conductivity and permeability are varied to show their influence in the resonances, which turned out to be negligible. In order to explain this behavior, the eigenvalues of the inverse impedance matrix are calculated showing that they are similar for different values of conductivity and permeability. Finally, the magnetic flux inside and outside the core and its influence in the frequency response is studied.

  16. Supermode analysis of the 18-core photonic crystal fiber laser

    Institute of Scientific and Technical Information of China (English)

    王远; 姚建铨; 郑一博; 温午麒; 陆颖; 王鹏

    2012-01-01

    The modal of 18-core photonic crystal fiber laser is discussed and calculated.And corresponding far-field distribution of the supermodes is given by Fresnel diffraction integral.For improving beam quality,the mode selection method based on the Talbot effect is introduced.The reflection coefficients are calculated,and the result shows that an in-phase supermode can be locked better at a large propagation distance.

  17. Analysis of White Dwarfs with Strange-Matter Cores

    CERN Document Server

    Mathews, G J; O'Gorman, B; Lan, N Q; Zech, W; Otsuki, K; Weber, F

    2006-01-01

    We summarize masses and radii for a number of white dwarfs as deduced from a combination of proper motion studies, Hipparcos parallax distances, effective temperatures, and binary or spectroscopic masses. A puzzling feature of these data is that some stars appear to have radii which are significantly smaller than that expected for a standard electron-degenerate white-dwarf equations of state. We construct a projection of white-dwarf radii for fixed effective mass and conclude that there is at least marginal evidence for bimodality in the radius distribution forwhite dwarfs. We argue that if such compact white dwarfs exist it is unlikely that they contain an iron core. We propose an alternative of strange-quark matter within the white-dwarf core. We also discuss the impact of the so-called color-flavor locked (CFL) state in strange-matter core associated with color superconductivity. We show that the data exhibit several features consistent with the expected mass-radius relation of strange dwarfs. We identify ...

  18. Description and Analysis of Core Samples: The Lunar Experience

    Science.gov (United States)

    McKay, David S.; Allton, Judith H.

    1997-01-01

    Although no samples yet have been returned from a comet, extensive experience from sampling another solar system body, the Moon, does exist. While, in overall structure, composition, and physical properties the Moon bears little resemblance to what is expected for a comet, sampling the Moon has provided some basic lessons in how to do things which may be equally applicable to cometary samples. In particular, an extensive series of core samples has been taken on the Moon, and coring is the best way to sample a comet in three dimensions. Data from cores taken at 24 Apollo collection stations and 3 Luna sites have been used to provide insight into the evolution of the lunar regolith. It is now well understood that this regolith is very complex and reflects gardening (stirring of grains by micrometeorites), erosion (from impacts and solar wind sputtering), maturation (exposure on the bare lunar surface to solar winds ions and micrometeorite impacts) and comminution of coarse grains into finer grains, blanket deposition of coarse-grained layers, and other processes. All of these processes have been documented in cores. While a cometary regolith should not be expected to parallel in detail the lunar regolith, it is possible that the upper part of a cometary regolith may include textural, mineralogical, and chemical features which reflect the original accretion of the comet, including a form of gardening. Differences in relative velocities and gravitational attraction no doubt made this accretionary gardening qualitatively much different than the lunar version. Furthermore, at least some comets, depending on their orbits, have been subjected to impacts of the uppermost surface by small projectiles at some time in their history. Consequently, a more recent post-accretional gardening may have occurred. Finally, for comets which approach the sun, large scale erosion may have occurred driven by gas loss. The uppermost material of these comets may reflect some of the features

  19. Hexagonal image processing a practical approach

    CERN Document Server

    Middleton, Lee

    2006-01-01

    This book provides an introduction to the processing of hexagonally sampled images, includes a survey of the work done in the field, and presents a novel framework for hexagonal image processing (HIP) based on hierarchical aggregates. The strengths offered by hexagonal lattices over square lattices to define digital images are considerable: higher packing density; uniform connectivity of points (pixels) in the lattice; better angular resolution by virtue of having more nearest neighbours; and superlative representation of curves. The utility of the HIP framework is shown by implementing severa

  20. Characterization of the secondary flow in hexagonal ducts

    Science.gov (United States)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  1. Grain-size analysis of sediment cores collected in 2009 offshore from Palos Verdes, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of the data release includes grain-size analysis of sediment cores collected in 2009 offshore of Palos Verdes, California. It is one of seven files...

  2. Development of the core safety regulation technology for the SMART-P

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Nam Zin; Kim, Do Sam; Lee, Kyeong Taek; Park, Young Ryoung; Lee, Gil Soo; Kim, Jong Woon; Yun, Sung Hwan; Lee, Jae Jun; Lee, Myung Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2003-06-15

    As the SMART-P is different from existing general reactors, new regulation technology is required to understand and assess the SMART-P for its regulatory reviews. One of the these technologies is related to the core design analysis. Because the SMART-P used metallic fuels, this study also collects general metallic nuclear fuel data and SMART-P's metallic fuel data from the materials studied by KAERI. The core design methodologies of KWU, ABB-CE, Westinghouse, Studsvik, Scandpower, US NRC and domestic research centers were investigated. Specially, The Hellios lattice core was studied for hexagonal nuclear fuel assembly calculation. Also, the VVER-1000 benchmark problem was analyzed by the PARCS code which has been developed by U.S. NRC. In this study, a AFEN-based computing code KORDAX os developed for the regulatory review of the SMART-P. KORDAX which is a nodal code using AFEN method dose not use transverse integration and this it can give higher accuracy results. Also, Because KORDAX is useful for hexagonal core and uses a method different with the core design code of the SMART-P developed by KAERI, it is judged that KORDAX can be an independent and reliable regulation verification code. In the next year study, HELIOS will be further studied as a core lattice code, and a hexagonal kinetics code which is based on AFEN method will be developed more systematically.

  3. Analysis of suprathermal nuclear processes in the solar core plasma

    Science.gov (United States)

    Voronchev, Victor T.; Nakao, Yasuyuki; Watanabe, Yukinobu

    2017-04-01

    A consistent model for the description of suprathermal processes in the solar core plasma naturally triggered by fast particles generated in exoergic nuclear reactions is formulated. This model, based on the formalism of in-flight reaction probability, operates with different methods of treating particle slow-down in the plasma, and allows for the influence of electron degeneracy and electron screening on processes in the matter. The model is applied to examine slowing-down of 8.7 MeV α-particles produced in the {}7{Li}(p,α )α reaction of the pp chain, and to analyze suprathermal processes in the solar CNO cycle induced by them. Particular attention is paid to the suprathermal {}14{{N}}{(α ,{{p}})}17{{O}} reaction unappreciated in standard solar model simulations. It is found that an appreciable non-standard (α ,p) nuclear flow due to this reaction appears in the matter and modifies running of the CNO cycle in ∼95% of the solar core region. In this region at R> 0.1{R}ȯ , normal branching of nuclear flow {}14{{N}}≤ftarrow {}17{{O}}\\to {(}18{{F}})\\to {}18{{O}} transforms to abnormal sequential flow {}14{{N}}\\to {}17{{O}}\\to {(}18{{F}})\\to {}18{{O}}, altering some element abundances. In particular, nuclear network calculations reveal that in the outer core the abundances of 17O and 18O isotopes can increase by a factor of 20 as compared with standard estimates. A conjecture is made that other CNO suprathermal (α ,p) reactions may also affect abundances of CNO elements, including those generating solar neutrinos.

  4. Coupled-mode analysis for single-helix chiral fiber gratings with small core-offset

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Linlin Xue; Jue Su; Jingren Qian

    2011-01-01

    Using conventional coupled-mode theory,a set of coupled-mode equations are formulated for single-helix chiral fiber long-period gratings.A helical-core fiber is analyzed as an example.The analysis is simple in mathematical form and intuitive in physical concept.Based on the analysis,the polarization independence of mode coupling in special fiber gratings is revealed.The transmission characteristics of helical-core fibers are also simulated and discussed.

  5. New hexagonal structure for silicon atoms

    Science.gov (United States)

    Naji, S.; Belhaj, A.; Labrim, H.; Benyoussef, A.; El Kenz, A.

    2012-11-01

    Motivated by recent experimental and theoretical works on silicene and its derived materials and based on the exceptional Lie algebra G2 we propose a new hexagonal symmetry producing the (√3 × √3)R30° superstructure for silicon atoms. The principal hexagonal unit cell contains twelve atoms instead of the usual structure involving only six ones and it is associated with the G2 root system. In this silicon atom configuration appears two hexagons of unequal side length at angle 30°. This atomic structure can be tessellated to exhibit two superstructures (1 × 1) and (√3 × √3)R30° on the same atomic sheet. To test this double hexagonal structure, we perform a numerical study using Ab-initio calculations based on FPLO9.00-34 code. We observe that the usual silicon electronic properties and the lattice parameters of planar geometry are modified. In particular, the corresponding material becomes a conductor rather than zero gaped semi-conductor arising in single hexagonal structure. Although the calculation is done for silicon atoms, we expect that this structure could be adapted to all two dimensional materials having a single hexagonal flat geometry.

  6. Comparative bacterial proteomics: analysis of the core genome concept.

    Directory of Open Access Journals (Sweden)

    Stephen J Callister

    Full Text Available While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.

  7. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    Energy Technology Data Exchange (ETDEWEB)

    Callister, Stephen J.; McCue, Lee Ann; Turse, Josh E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-02-06

    Comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry. Experimental validation of the existence of this core genome requires extensive measurement and is not typically undertaken. Enabled by an extensive proteome database development over a six year period, we experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. While genomic studies establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits.

  8. Dendritic Structure Analysis of CMSX-4 Cored Turbine Blades Roots

    Directory of Open Access Journals (Sweden)

    Krawczyk J.

    2016-06-01

    Full Text Available The microstructure of as-cast cored turbine blades roots, made of the single-crystal CMSX-4 nickel-based superalloy was investigated. Analysed blades were obtained by directional solidification technique in the industrial ALD Bridgman induction furnace. The investigations of the microstructure of blades roots were performed using SEM and X-ray techniques including diffraction topography with the use of Auleytner method. Characteristic shapes of dendrites with various arrangement were observed on the SEM images taken from the cross-sections, made transversely to the main blades axis. The differences in quality of the structure in particular areas of blades roots were revealed. Based on the results, the influence of cooling bores on blades root structure was analysed and the changes in the distribution and geometry of cooling bores were proposed.

  9. Comparative Bacterial Proteomics: Analysis of the Core Genome Concept

    Science.gov (United States)

    Callister, Stephen J.; McCue, Lee Ann; Turse, Joshua E.; Monroe, Matthew E.; Auberry, Kenneth J.; Smith, Richard D.; Adkins, Joshua N.; Lipton, Mary S.

    2008-01-01

    While comparative bacterial genomic studies commonly predict a set of genes indicative of common ancestry, experimental validation of the existence of this core genome requires extensive measurement and is typically not undertaken. Enabled by an extensive proteome database developed over six years, we have experimentally verified the expression of proteins predicted from genomic ortholog comparisons among 17 environmental and pathogenic bacteria. More exclusive relationships were observed among the expressed protein content of phenotypically related bacteria, which is indicative of the specific lifestyles associated with these organisms. Although genomic studies can establish relative orthologous relationships among a set of bacteria and propose a set of ancestral genes, our proteomics study establishes expressed lifestyle differences among conserved genes and proposes a set of expressed ancestral traits. PMID:18253490

  10. Thermal analysis of HTS air-core transformer used in voltage compensation type active SFCL

    Science.gov (United States)

    Song, M.; Tang, Y.; Li, J.; Zhou, Y.; Chen, L.; Ren, L.

    2010-11-01

    The three-phase voltage compensation type active superconducting fault current limiter (SFCL) is composed of three HTS air-core transformers and a three-phase four-wire Pulse Width Modulation (PWM) converter. The primary winding of the each phase HTS air-core transformer is in series with the main system, and the second winding is connected with the PWM converter. The single-phase conduction-cooled HTS air-core transformer is consisting of four double-pancakes wound by the Bi2223/Ag tape. In this paper, according to the electromagnetic analysis on the single-phase HTS air-core transformer, its AC loss corresponding to different operation modes is calculated. Furthermore, the thermal behaviors are studied by the time-stepping numerical simulations. On the basis of the simulation results, the related problems with the HTS air-core transformer's thermal stability are discussed.

  11. Two dimensional dynamic analysis of sandwich plates with gradient foam cores

    Energy Technology Data Exchange (ETDEWEB)

    Mu, Lin; Xiao, Deng Bao; Zhao, Guiping [State Key Laboratory for Mechanical structure Strength and Vibration, School of AerospaceXi' an Jiaotong University, Xi' an (China); Cho, Chong Du [Dept. of Mechanical Engineering, Inha University, Inchon (Korea, Republic of)

    2016-09-15

    Present investigation is concerned about dynamic response of composite sandwich plates with the functionally gradient foam cores under time-dependent impulse. The analysis is based on a model of the gradient sandwich plate, in which the face sheets and the core adopt the Kirchhoff theory and a [2, 1]-order theory, respectively. The material properties of the gradient foam core vary continuously along the thickness direction. The gradient plate model is validated with the finite element code ABAQUS®. And the results show that the proposed model can predict well the free vibration of composite sandwich plates with gradient foam cores. The influences of gradient foam cores on the natural frequency, deflection and energy absorbing of the sandwich plates are also investigated.

  12. Uncertainty analysis for the assembly and core simulation of BEAVRS at the HZP conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wan, Chenghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Cao, Liangzhi, E-mail: caolz@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wu, Hongchun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Shen, Wei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Canadian Nuclear Safety Commission, Ottawa, Ontario (Canada)

    2017-04-15

    Highlights: • Uncertainty analysis has been completed based on the “two-step” scheme. • Uncertainty analysis has been performed to BEAVRS at HZP. • For lattice calculations, the few-group constant’s uncertainty was quantified. • For core simulation, uncertainties of k{sub eff} and power distributions were quantified. - Abstract: Based on the “two-step” scheme for the reactor-physics calculations, the capability of uncertainty analysis for the core simulations has been implemented in the UNICORN code, an in-house code for the sensitivity and uncertainty analysis of the reactor-physics calculations. Applying the statistical sampling method, the nuclear-data uncertainties can be propagated to the important predictions of the core simulations. The uncertainties of the few-group constants introduced by the uncertainties of the multigroup microscopic cross sections are quantified first for the lattice calculations; the uncertainties of the few-group constants are then propagated to the core multiplication factor and core power distributions for the core simulations. Up to now, our in-house lattice code NECP-CACTI and the neutron-diffusion solver NECP-VIOLET have been implemented in UNICORN for the steady-state core simulations based on the “two-step” scheme. With NECP-CACTI and NECP-VIOLET, the modeling and simulation of the steady-state BEAVRS benchmark problem at the HZP conditions was performed, and the results were compared with those obtained by CASMO-4E. Based on the modeling and simulation, the UNICORN code has been applied to perform the uncertainty analysis for BAEVRS at HZP. The uncertainty results of the eigenvalues and two-group constants for the lattice calculations and the multiplication factor and the power distributions for the steady-state core simulations are obtained and analyzed in detail.

  13. Identifying and Tracking Individual Updraft Cores using Cluster Analysis: A TWP-ICE case study

    Science.gov (United States)

    Li, X.; Tao, W.; Collis, S. M.; Varble, A.

    2013-12-01

    Cumulus parameterizations in GCMs depend strongly on the vertical velocity structures of convective updraft cores, or plumes. There hasn't been an accurate way of identifying these cores. The majority of previous studies treat the updraft as a single grid column entity, thus missing many intrinsic characteristics, e.g., the size, strength and spatial orientation of an individual core, its life cycle, and the time variations of the entrainment/detrainment rates associated with its life cycle. In this study, we attempt to apply an innovative algorithm based on the centroid-based k-means cluster analysis to improve our understanding of convection and its associated updraft cores. Both 3-D Doppler radar retrievals and cloud-resolving model simulations of a TWP-ICE campaign case during the monsoon period will be used to test and improve this algorithm. This will provide for more in-depth comparisons between CRM simulations and observations that were not possible previously using the traditional piecewise analysis with each updraft column. The first step is to identify the strongest cores (maximum velocity >10 m/s), since they are well defined and produce definite answers when the cluster analysis algorithm is applied. The preliminary results show that the radar retrieved updraft cores are smaller in size and with the maximum velocity located uniformly at higher levels compared with model simulations. Overall, the model simulations produce much stronger cores compared with the radar retrievals. Within the model simulations, the bulk microphysical scheme simulation produces stronger cores than the spectral bin microphysical scheme. Planned researches include using high temporal-resolution simulations to further track the life cycle of individual updraft cores and study their characteristics.

  14. S-nitrosothiol tethered polymer hexagons: synthesis, characterisation and antibacterial effect.

    Science.gov (United States)

    Priya, S; Nithya, R; Berchmans, Sheela

    2014-01-01

    In this work, we portray a new controlled nitric oxide (NO) delivery platform by grafting S-nitrosothiol derived from cysteine into the polymeric backbone of poly(vinyl methyl ether-co-maleic anhydride). Nitrosothiols (RSNO's) are linked to the polymeric backbone through solvent displacement method. By adjusting solvent polarity, materials of different shapes and sizes varying between μm and nm are prepared. More often our method of preparation resulted in hexagonally shaped polymeric materials. The structure and RSNO conjugation analysis was investigated using scanning electron microscopy (SEM), FT-IR, UV-Vis spectroscopy and thermogravimetric analysis (TGA). Bactericidal efficacy of nitric oxide releasing polymer hexagons, a novel antibacterial agent is demonstrated against Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Confocal microscopic studies revealed the enhanced bactericidal effect of polymer hexagons via membrane destruction. Results suggest that this biocompatible NO releasing RSNO conjugated polymer hexagons could be potentially useful for antimicrobial applications.

  15. Deconvolution-based resolution enhancement of chemical ice core records obtained by continuous flow analysis

    DEFF Research Database (Denmark)

    Rasmussen, Sune Olander; Andersen, Katrine K.; Johnsen, Sigfus Johann

    2005-01-01

    Continuous flow analysis (CFA) has become a popular measuring technique for obtaining high-resolution chemical ice core records due to an attractive combination of measuring speed and resolution. However, when analyzing the deeper sections of ice cores or cores from low-accumulation areas......, there is still need for further improvement of the resolution. Here a method for resolution enhancement of CFA data is presented. It is demonstrated that it is possible to improve the resolution of CFA data by restoring some of the detail that was lost in the measuring process, thus improving the usefulness...

  16. Using Profile Analysis via Multidimensional Scaling (PAMS) to identify core profiles from the WMS-III.

    Science.gov (United States)

    Frisby, Craig L; Kim, Se-Kang

    2008-03-01

    Profile Analysis via Multidimensional Scaling (PAMS) is a procedure for extracting latent core profiles in a multitest data set. The PAMS procedure offers several advantages compared with other profile analysis procedures. Most notably, PAMS estimates individual profile weights that reflect the degree to which an individual's observed profile approximates the shape and scatter of latent core profiles. The PAMS procedure was applied to index scores of nonreplicated participants from the standardization sample (N = 1,033) for the Wechsler Memory Scale--Third Edition (D. Tulsky, J. Zhu, & M. F. Ledbetter, 2002). PAMS extracted discrepant visual memory and auditory memory versus working memory core profiles for the complete 16- to 89-year-old sample and discrepant working memory and auditory memory versus working memory core profiles for the 75- to 89-year-old cohort. Implications for use of PAMS in future research are discussed.

  17. Coherent Network Analysis of Gravitational Waves from Three-Dimensional Core-Collapse Supernova Models

    CERN Document Server

    Hayama, Kazuhiro; Kotake, Kei; Takiwaki, Tomoya

    2015-01-01

    Using predictions from three-dimensional (3D) hydrodynamics simulations of core-collapse supernovae (CCSNe), we present a coherent network analysis to detection, reconstruction, and the source localization of the gravitational-wave (GW) signals. By combining with the GW spectrogram analysis, we show that several important hydrodynamics features imprinted in the original waveforms persist in the waveforms of the reconstructed signals. The characteristic excess in the GW spectrograms originates not only from rotating core-collapse and bounce, the subsequent ring down of the proto-neutron star (PNS) as previously identified, but also from the formation of magnetohydrodynamics jets and non-axisymmetric instabilities in the vicinity of the PNS. Regarding the GW signals emitted near at the rotating core bounce, the horizon distance, which we set by a SNR exceeding 8, extends up to $\\sim$ 18 kpc for the most rapidly rotating 3D model among the employed waveform libraries. Following the rotating core bounce, the domi...

  18. ASTEC adaptation for PHWR limited core damage accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, P., E-mail: pmajum@barc.gov.in [Bhabha Atomic Research Centre, Reactor Safety Division, Mumbai 400085 (India); Chatterjee, B.; Lele, H.G. [Bhabha Atomic Research Centre, Reactor Safety Division, Mumbai 400085 (India); Guillard, G.; Fichot, F. [Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSN-RES/SAG, Cadarache, 13115 Saint-Paul-lez-Durance (France)

    2014-06-01

    Under limited core damage accidents (LCDAs) of Pressurized Heavy Water Reactor (PHWR), coolable geometry of the channel might be retained thanks to the presence of moderator heat sink. Indeed, the pressure tube is amenable to creep deformation at high temperature due to internal pressure and fuel bundles weight. Partial or complete circumferential contact between pressure tube and calandria tube aids heat dissipation to the moderator. A new module has been developed by Bhabha Atomic Research Centre (BARC) for simulating this phenomenon which is specific to horizontal-type of reactors. It requires additional calculation of pressure tube sagging/ballooning and temperature field in the circumferential direction. The module is well validated with available experimental results concerning pressure tube deformation and the associated heat transfer in the area of contact. It is then used in analysing typical LCDAs scenarios in Indian PHWR under low and medium internal pressure conditions. This module is implemented in the ASTEC IRSN-GRS severe accident code version under development and will thus be available in the next major version V2.1.

  19. Thermal buckling analysis of truss-core sandwich plates

    Institute of Scientific and Technical Information of China (English)

    陈继伟; 刘咏泉; 刘伟; 苏先樾

    2013-01-01

    Truss-core sandwich plates have received much attention in virtue of the high values of strength-to-weight and stiffness-to-weight as well as the great ability of impulse-resistance recently. It is necessary to study the stability of sandwich panels under the influence of the thermal load. However, the sandwich plates are such complex three-dimensional (3D) systems that direct analytical solutions do not exist, and the finite element method (FEM) cannot represent the relationship between structural parameters and mechanical properties well. In this paper, an equivalent homogeneous continuous plate is idealized by obtaining the effective bending and transverse shear stiffness based on the characteristics of periodically distributed unit cells. The first order shear deformation theory for plates is used to derive the stability equation. The buckling temperature of a simply supported sandwich plate is given and verified by the FEM. The effect of related parameters on mechanical properties is investigated. The geometric parameters of the unit cell are optimized to attain the maximum buckling temperature. It is shown that the optimized sandwich plate can improve the resistance to thermal buckling significantly.

  20. Experimental Observation of Travelling Hexagon Patterns in Dielectric Barrier Discharge

    Institute of Scientific and Technical Information of China (English)

    董丽芳; 贺亚峰; 尹增谦; 柴志方

    2003-01-01

    Travelling hexagon patterns have been observed in dielectric barrier discharge in an air-argon mixture. The phase diagram of hexagon pattern appearance as functions of applied voltage and air concentration is given. The spatial frequency of hexagon pattern increases with increasing applied voltage and air concentration. The current waveforms of hexagon pattern also vary with the air concentration. The drift velocity of travelling hexagon pattern changes from 4mm/s to 18mm/s.

  1. Steady state thermal hydraulic analysis of LMR core using COBRA-K code

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eui Kwang; Kim, Young Gyun; Kim Young In; Kim Young Cheol

    1997-02-01

    A thermal hydraulics analysis code COBRA-K is being developed by the KAERI LMR core design technology development team. COBRA-K is a part of the integrated computation system for LMR core design and analysis, the K-CORE system. COBRA-K is supposed to predict the flow and temperature distributions in LMR core. COBRA-K is an extension of the previously published COBRA-IV-I code with several functional improvements. Specially COBRA-K has been improved to analyze single and multi-assembly, and whole-core in the transient condition. This report describes the overall features of COBRA-K and gives general input descriptions. The 19 pin assembly experimental data of ORNL were used to verify the accuracy of this code for the steady state analysis. The comparative results show good agreements between the calculated and the measured data. And COBRA-K can be used to predict flow and temperature distributions for the LMR core design. (author). 7 refs., 6 tabs., 13 figs.

  2. Analysis of core samples from the BPXA-DOE-USGS Mount Elbert gas hydrate stratigraphic test well: Insights into core disturbance and handling

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, Timothy J.; Lu, Hailong; Winters, William; Boswell, Ray; Hunter, Robert; Collett, Timothy S.

    2009-09-01

    Collecting and preserving undamaged core samples containing gas hydrates from depth is difficult because of the pressure and temperature changes encountered upon retrieval. Hydrate-bearing core samples were collected at the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well in February 2007. Coring was performed while using a custom oil-based drilling mud, and the cores were retrieved by a wireline. The samples were characterized and subsampled at the surface under ambient winter arctic conditions. Samples thought to be hydrate bearing were preserved either by immersion in liquid nitrogen (LN), or by storage under methane pressure at ambient arctic conditions, and later depressurized and immersed in LN. Eleven core samples from hydrate-bearing zones were scanned using x-ray computed tomography to examine core structure and homogeneity. Features observed include radial fractures, spalling-type fractures, and reduced density near the periphery. These features were induced during sample collection, handling, and preservation. Isotopic analysis of the methane from hydrate in an initially LN-preserved core and a pressure-preserved core indicate that secondary hydrate formation occurred throughout the pressurized core, whereas none occurred in the LN-preserved core, however no hydrate was found near the periphery of the LN-preserved core. To replicate some aspects of the preservation methods, natural and laboratory-made saturated porous media samples were frozen in a variety of ways, with radial fractures observed in some LN-frozen sands, and needle-like ice crystals forming in slowly frozen clay-rich sediments. Suggestions for hydrate-bearing core preservation are presented.

  3. Development of inherent core technologies for advanced reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Keung Koo; Noh, J.M.; Hwang, D.H. [and others

    1999-03-01

    Recently, the developed countries made their effort on developing the advanced reactor which will result in significantly enhanced safety and economy. However, they will protect the advanced reactor and its design technology with patent and proprietary right. Therefore, it is very important to develop our own key core concepts and inherent core design technologies which can form a foundation of indigenous technologies for development of the domestic advanced reactor in order to keep the superiority in the nuclear plant building market among the developing countries. In order to provide the basic technology for the core design of advanced reactor, this project is for developing the inherent core design concepts with enhanced safety and economy, and associated methodologies and technologies for core analyses. The feasibility study of constructing domestic critical facilities are performed by surveying the status and utilization of foreign facilities and by investigating the demand for domestic facilities. The research results developed in this project, such as core analysis methodologies for hexagonal core, conceptual core design based on hexagonal fuel assemblies and soluble boron core design and control strategies, will provide a technical foundation in developing core design of domestic advanced reactor. Furthermore, they will strengthen the competitiveness of Korean nuclear technology. We also expect that some of the design concepts developed in this project to improve the reactor safety and economy can be applicable to the design of advanced reactor. This will significantly reduce the public anxiety on the nuclear power plant, and will contribute to the economy of construction and operation for the future domestic reactors. Even though the critical facility will not be constructed right now, the investigation of the status and utilization of foreign critical facility will contribute to the future critical facility construction. (author). 150 refs., 34 tabs., 103

  4. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid;

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect......In recent decades, the development of continuous flow analysis (CFA) technology for ice core analysis has enabled greater sample throughput and greater depth resolution compared with the classic discrete sampling technique. We developed the first Japanese CFA system at the National Institute...

  5. Transient and stability analysis of a BWR core with thorium-uranium fuel

    Energy Technology Data Exchange (ETDEWEB)

    Nunez-Carrera, Alejandro [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779 Col. Narvarte, 03020 Mexico, DF (Mexico); Espinosa-Paredes, Gilberto [Division de Ciencias Basicas e Ingenieria, Universidad Autonoma Metropolitana, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico, DF (Mexico)], E-mail: gepe@xanum.uam.mx; Francois, Juan-Luis [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac 8532, 62550 Jiutepec Mor. (Mexico)

    2008-08-15

    The kinetic response of a boiling water reactor (BWR) equilibrium core using thorium as a nuclear material, in an integrated blanket-seed assembly, is presented in this work. Additionally an in-house code was developed to evaluate this core under steady state and transient conditions including a stability analysis. The code has two modules: (a) the time domain module for transient analysis and (b) the frequency domain module for stability analysis. The thermal-hydraulic process is modeled by a set of five equations, considering no homogeneous flow with drift-flux approximation and non-equilibrium thermodynamic. The neutronic process is calculated with a point kinetics model. Typical BWR reactivity effects are considered: void fraction, fuel temperature, moderator temperature and control rod density. Collapsed parameters were included in the code to represent the core using an average fuel channel. For the stability analysis, in the frequency domain, the transfer function is determined by applying Laplace-transforming to the calculated pressure drop perturbations in each of the considered regions where a constant total pressure drop was considered. The transfer function was used to study the system response in the frequency domain when an inlet flow perturbation is applied. The results show that the neutronic behavior of the core with thorium uranium fuel is similar to a UO{sub 2} core, even during transient conditions. The stability and transient analysis show that the thorium-uranium fuel can be operated safely in current BWRs.

  6. Using Profile Analysis via Multidimensional Scaling (PAMS) to Identify Core Profiles from the WMS-III

    Science.gov (United States)

    Frisby, Craig L.; Kim, Se-Kang

    2008-01-01

    Profile Analysis via Multidimensional Scaling (PAMS) is a procedure for extracting latent core profiles in a multitest data set. The PAMS procedure offers several advantages compared with other profile analysis procedures. Most notably, PAMS estimates individual profile weights that reflect the degree to which an individual's observed profile…

  7. A Methodology for Loading the Advanced Test Reactor Driver Core for Experiment Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cowherd, Wilson M.; Nielsen, Joseph W.; Choe, Dong O.

    2016-11-01

    In support of experiments in the ATR, a new methodology was devised for loading the ATR Driver Core. This methodology will replace the existing methodology used by the INL Neutronic Analysis group to analyze experiments. Studied in this paper was the as-run analysis for ATR Cycle 152B, specifically comparing measured lobe powers and eigenvalue calculations.

  8. David Coleman and the Technologisation of the Common Core: A Critical Discourse Analysis

    Science.gov (United States)

    Johnson, Lindy L.

    2014-01-01

    Drawing on sociocultural perspectives and New Literacies Studies this study uses Critical Discourse Analysis (CDA) as a tool to closely analyse one way the Common Core State Standards in the United States are being produced, disseminated and consumed. The analysis focuses on a section of the CCSS, a model lesson given by one of the primary…

  9. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal micro-resonators

    Science.gov (United States)

    Sono, Tleyane J.; Riziotis, Christos; Mailis, Sakellaris; Eason, Robert W.

    2017-09-01

    Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities. Such nonlinear optical hexagonal micro-resonators are proposed as a platform for second harmonic generation (SHG) by the combined mechanisms of total internal reflection (TIR) and quasi-phase-matching (QPM). The proposed scheme for SHG via TIR-QPM in a hexagonal microcavity can improve the efficiency and also the compactness of SHG devices compared to traditional linear-type based devices. A simple theoretical model based on six-bounce trajectory and phase matching conditions was capable for obtaining the optimal cavity size. Furthermore numerical simulation results based on finite difference time domain beam propagation method analysis confirmed the solutions obtained by demonstrating resonant operation of the microcavity for the second harmonic wave produced by TIR-QPM. Design aspects, optimization issues and characteristics of the proposed nonlinear device are presented.

  10. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  11. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Science.gov (United States)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-10-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  12. Exploring ice core drilling chips from a cold Alpine glacier for cosmogenic radionuclide (10Be) analysis

    Science.gov (United States)

    Zipf, Lars; Merchel, Silke; Bohleber, Pascal; Rugel, Georg; Scharf, Andreas

    Ice cores offer unique multi-proxy paleoclimate records, but provide only very limited sample material, which has to be carefully distributed for various proxy analyses. Beryllium-10, for example, is analysed in polar ice cores to investigate past changes of the geomagnetic field, solar activity, and the aerosol cycle, as well as to more accurately date the material. This paper explores the suitability of a drilling by-product, the so-called drilling chips, for 10Be-analysis. An ice core recently drilled at a cold Alpine glacier is used to directly compare 10Be-data from ice core samples with corresponding drilling chips. Both sample types have been spiked with 9Be-carrier and identically treated to chemically isolate beryllium. The resulting BeO has been investigated by accelerator mass spectrometry (AMS) for 10Be/9Be-ratios to calculate 10Be-concentrations in the ice. As a promising first result, four out of five sample-combinations (ice core and drilling chips) agree within 2-sigma uncertainty range. However, further studies are needed in order to fully demonstrate the potential of drilling chips for 10Be-analysis in alpine and shallow polar ice cores.

  13. Prompt Gamma Activation Analysis of the Nyírlugos obsidian core depot find

    Directory of Open Access Journals (Sweden)

    Zsolt Kasztovszky

    2014-03-01

    Full Text Available The Nyírlugos obsidian core depot find is one of the most important lithic assemblages in the collection of the Hungarian National Museum (HNM. The original set comprised 12 giant obsidian cores, of which 11 are currently on the permanent archaeological exhibition of the HNM. One of the cores is known to be inDebrecen. The first publication attributed the hoard, on the strength of giant (flint blades known from the Early and Middle Copper Age Tiszapolgár and Bodrogkeresztúr cultures, to the Copper Age. In the light of recent finds it is more likely to belong to the Middle Neolithic period. The source area was defined as Tokaj Mts., about100 kmto the NW from Nyírlugos. The size and beauty of the exceptional pieces exclude any invasive analysis. Using Prompt Gamma Activation Analysis (PGAA, we can measure major chemical components and some key trace elements of stone artefacts with adequate accuracy to successfully determine provenance of obsidian. Recent methodological development also facilitated the study of relatively large objects like the Nyírlugos cores. The cores were individually measured by PGAA. The results show that the cores originate from the Carpathian 1 sources, most probably the Viničky variety (C1b. The study of the hoard as a batch is an important contribution to the assessment of prehistoric trade and allows us to reconsider the so-called Carpathian, especially Carpathian 1 (Slovakian sources.

  14. Analysis of ferroresonance in a neutral grounding system with nonlinear core loss

    Institute of Scientific and Technical Information of China (English)

    Hui Meng; Zhang Yan-Bin; Liu Chong-Xin

    2009-01-01

    The chaotic behaviour exhibited by a typical ferroresonant circuit in a neutral grounding system is investigated in this paper. In most earlier ferroresonance studies the core loss of the power transformer was neglected or represented by a linear resistance. However, this is not always true. In this paper the core loss of the power transformer is modelled by a third order series in voltage and the magnetization characteristics of the transformer are modelled by an 11th order two-term polynomial. Extensive simulations are carried out to analyse the effect of nonlinear core loss on transformer ferroresonance. A detailed analysis of simulation results demonstrates that, with the nonlinear core loss model used, the onset of chaos appears at a larger source voltage and the transient duration is shorter.

  15. Gap analysis: a method to assess core competency development in the curriculum.

    Science.gov (United States)

    Fater, Kerry H

    2013-01-01

    To determine the extent to which safety and quality improvement core competency development occurs in an undergraduate nursing program. Rapid change and increased complexity of health care environments demands that health care professionals are adequately prepared to provide high quality, safe care. A gap analysis compared the present state of competency development to a desirable (ideal) state. The core competencies, Nurse of the Future Nursing Core Competencies, reflect the ideal state and represent minimal expectations for entry into practice from pre-licensure programs. Findings from the gap analysis suggest significant strengths in numerous competency domains, deficiencies in two competency domains, and areas of redundancy in the curriculum. Gap analysis provides valuable data to direct curriculum revision. Opportunities for competency development were identified, and strategies were created jointly with the practice partner, thereby enhancing relevant knowledge, attitudes, and skills nurses need for clinical practice currently and in the future.

  16. Basic Functionalization of Hexagonal Mesoporous Silica

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    3-Aminopropyltricthoxysilanc (AM), 3-cthyldiaminopropyltrimcthoxysilane (ED) and 3-piperazinylpropyltriethoxysilanc (PZ), were used to chemically couple with the silanol groups of calcined hexagonal and hexagonal-like mesoporous silica SBA-3 and HMS, respectively, to produce functionalised alkaline mesoporous materials. The inerease in the dosage of organosilanes, or in reaction temperature, or in the humidity (i.e., water content) of support, is favorable to the grafting of functional molecules on the surface. When functionalization conditions are the same, the order of loadings on SBA-3 and DDA-HMS is ED>AM>PZ. However, on ODA-HMS, the loading of AM is similar to that of ED.

  17. Hexagonal Structure of Baby Skyrmion Lattices

    CERN Document Server

    Hen, Itay

    2007-01-01

    We study the zero-temperature crystalline structure of baby Skyrmions by applying a full-field numerical minimization algorithm to baby Skyrmions placed inside different parallelogramic unit-cells and imposing periodic boundary conditions. We find that within this setup, the minimal energy is obtained for the hexagonal lattice, and that in the resulting configuration the Skyrmion splits into quarter-Skyrmions. In particular, we find that the energy in the hexagonal case is lower than the one obtained on the well-known rectangular lattice, in which splitting into half-Skyrmions is observed.

  18. Thermally induced microstrain broadening in hexagonal zinc

    Energy Technology Data Exchange (ETDEWEB)

    Lawson, Andrew C [Los Alamos National Laboratory; Valdez, James A [Los Alamos National Laboratory; Roberts, Joyce A [Los Alamos National Laboratory; Leineweber, Andreas [STUTTGART, GERMANY; Mittemeijer, E J [STUTTGART, GERMANY; Kreher, W [DRESDEN UNIV

    2008-01-01

    Neutron powder-diffraction experiments on polycrystalline hexagonal zinc show considerable temperature-dependent line broadening. Whereas as-received zinc at 300 K exhibits narrow reflections, during cooling to a minimum temperature of 10K considerable line-broadening appears, which largely disappears again during reheating. The line broadening may be ascribed to microstrains induced by thermal microstresses due to the anisotropy of the thermal expansion (shrinkage) of hexagonal zinc. Differences between the thermal microstrains and theoretical predictions considering elastic deformation of the grains can be explained by plastic deformation and surface effects.

  19. Full core analysis of IRIS reactor by using MCNPX.

    Science.gov (United States)

    Amin, E A; Bashter, I I; Hassan, Nabil M; Mustafa, S S

    2016-07-01

    This paper describes neutronic analysis for fresh fuelled IRIS (International Reactor Innovative and Secure) reactor by MCNPX code. The analysis included criticality calculations, radial power and axial power distribution, nuclear peaking factor and axial offset percent at the beginning of fuel cycle. The effective multiplication factor obtained by MCNPX code is compared with previous calculations by HELIOS/NESTLE, CASMO/SIMULATE, modified CORD-2 nodal calculations and SAS2H/KENO-V code systems. It is found that k-eff value obtained by MCNPX is closer to CORD-2 value. The radial and axial powers are compared with other published results carried out using SAS2H/KENO-V code. Moreover, the WIMS-D5 code is used for studying the effect of enriched boron in form of ZrB2 on the effective multiplication factor (K-eff) of the fuel pin. In this part of calculation, K-eff is calculated at different concentrations of Boron-10 in mg/cm at different stages of burnup of unit cell. The results of this part are compared with published results performed by HELIOS code.

  20. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    Energy Technology Data Exchange (ETDEWEB)

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  1. Determination of power distribution in the VVER-440 core on the basis of data from in-core monitors by means of a metric analysis

    Science.gov (United States)

    Kryanev, A. V.; Udumyan, D. K.; Kurchenkov, A. Yu.; Gagarinskiy, A. A.

    2014-12-01

    Problems associated with determining the power distribution in the VVER-440 core on the basis of a neutron-physics calculation and data from in-core monitors are considered. A new mathematical scheme is proposed for this on the basis of a metric analysis. In relation to the existing mathematical schemes, the scheme in question improves the accuracy and reliability of the resulting power distribution.

  2. Analysis of pan-genome to identify the core genes and essential genes of Brucella spp.

    Science.gov (United States)

    Yang, Xiaowen; Li, Yajie; Zang, Juan; Li, Yexia; Bie, Pengfei; Lu, Yanli; Wu, Qingmin

    2016-04-01

    Brucella spp. are facultative intracellular pathogens, that cause a contagious zoonotic disease, that can result in such outcomes as abortion or sterility in susceptible animal hosts and grave, debilitating illness in humans. For deciphering the survival mechanism of Brucella spp. in vivo, 42 Brucella complete genomes from NCBI were analyzed for the pan-genome and core genome by identification of their composition and function of Brucella genomes. The results showed that the total 132,143 protein-coding genes in these genomes were divided into 5369 clusters. Among these, 1710 clusters were associated with the core genome, 1182 clusters with strain-specific genes and 2477 clusters with dispensable genomes. COG analysis indicated that 44 % of the core genes were devoted to metabolism, which were mainly responsible for energy production and conversion (COG category C), and amino acid transport and metabolism (COG category E). Meanwhile, approximately 35 % of the core genes were in positive selection. In addition, 1252 potential essential genes were predicted in the core genome by comparison with a prokaryote database of essential genes. The results suggested that the core genes in Brucella genomes are relatively conservation, and the energy and amino acid metabolism play a more important role in the process of growth and reproduction in Brucella spp. This study might help us to better understand the mechanisms of Brucella persistent infection and provide some clues for further exploring the gene modules of the intracellular survival in Brucella spp.

  3. Free vibration analysis of simply supported sandwich beams with lattice truss core

    Energy Technology Data Exchange (ETDEWEB)

    Lou, Jia, E-mail: jiajia_smile@163.com [Center for Composite Materials and Structures, Harbin Institute of Technology, P.O. Box 3011, Science Park of HIT, No. 2 Yi-Kuang Street, Harbin 150080 (China); Ma, Li, E-mail: mali@hit.edu.cn [Center for Composite Materials and Structures, Harbin Institute of Technology, P.O. Box 3011, Science Park of HIT, No. 2 Yi-Kuang Street, Harbin 150080 (China); Wu, Lin-Zhi, E-mail: wlz@hit.edu.cn [Center for Composite Materials and Structures, Harbin Institute of Technology, P.O. Box 3011, Science Park of HIT, No. 2 Yi-Kuang Street, Harbin 150080 (China)

    2012-11-20

    Free vibration of AISI 304 stainless steel sandwich beams with pyramidal truss core is investigated in the present paper. The lattice truss core is transformed to a continuous homogeneous material. Considering the deformation characteristics of the sandwich beam, the following assumptions are made: (1) the thickness of the sandwich beam remains constant during deformation; (2) for the thin face sheets, only bending deformation is considered, neglecting the effect of transverse shear deformation; (3) for the core, only shear deformation is considered as the core is too weak to provide a significant contribution to the bending stiffness of the sandwich beam. The shear stress is assumed to be constant along the thickness of the core. The governing equation of free vibration is derived from Hamilton's principle, and the natural frequencies are calculated under simply supported boundary conditions. Finally, numerical simulation is carried out to get the mode shapes and natural frequencies. Our results show that the theoretical solutions agree well with the numerical results. It indicates the present method would be useful for free vibration analysis of sandwich beams with lattice truss core.

  4. Analysis of heterogeneous boron dilution transients during outages with APROS 3D nodal core model

    Energy Technology Data Exchange (ETDEWEB)

    Kuopanportti, Jaakko [Fortum Power and Heat Ltd, Nuclear Production, Fortum (Finland)

    2015-09-15

    A diluted water plug can form inside the primary coolant circuit if the coolant flow has stopped at least temporarily. The source of the clean water can be external or the fresh water can build up internally during boiling/condensing heat transfer mode, which can occur if the primary coolant inventory has decreased enough during an accident. If the flow restarts in the stagnant primary loop, the diluted water plug can enter the reactor core. During outages after the fresh fuel has been loaded and the temperature of the coolant is low, the dilution potential is the highest because the critical boron concentration is at the maximum. This paper examines the behaviour of the core as clean or diluted water plugs of different sizes enter the core during outages. The analysis were performed with the APROS 3D nodal core model of Loviisa VVER-440, which contains an own flow channel and 10 axial nodes for each fuel assembly. The widerange cross section data was calculated with CASMO-4E. According to the results, the core can withstand even large pure water plugs without fuel failures on natural circulation. The analyses emphasize the importance of the simulation of the backflows inside the core when the reactor is on natural circulation.

  5. Analysis of Stainless Steel Sandwich Panels with a Metal Foam Core for Lightweight Fan Blade Design

    Science.gov (United States)

    Min, James B.; Ghosn, Louis J.; Lerch, Bradley A.; Raj, Sai V.; Holland, Frederic A., Jr.; Hebsur, Mohan G.

    2004-01-01

    The quest for cheap, low density and high performance materials in the design of aircraft and rotorcraft engine fan and propeller blades poses immense challenges to the materials and structural design engineers. The present study investigates the use of a sandwich foam fan blade mae up of solid face sheets and a metal foam core. The face sheets and the metal foam core material were an aerospace grade precipitation hardened 17-4 PH stainless steel with high strength and high toughness. The resulting structures possesses a high stiffness while being lighter than a similar solid construction. The material properties of 17-4 PH metal foam are reviewed briefly to describe the characteristics of sandwich structure for a fan blade application. A vibration analysis for natural frequencies and a detailed stress analysis on the 17-4 PH sandwich foam blade design for different combinations of kin thickness and core volume are presented with a comparison to a solid titanium blade.

  6. A method for analysis of vanillic acid in polar ice cores

    Directory of Open Access Journals (Sweden)

    M. M. Grieman

    2014-07-01

    Full Text Available Biomass burning generates a wide range of organic compounds that are transported via aerosols to the polar ice sheets. Vanillic acid is a product of conifer lignin combustion, which has previously been observed in laboratory and ambient biomass burning aerosols. In this study a method was developed for analysis of vanillic acid in melted polar ice core samples. Vanillic acid was chromatographically separated using reversed phase LC and detected using electrospray triple quadrupole mass spectrometry (ESI-MS/MS. Using a 100 μL injection loop and analysis time of 4 min, we obtained a detection limit (S : N = 2 of 58 ppt (parts per trillion by mass and an analytical precision of ±10 %. Measurements of vanillic acid in Arctic ice core samples from the Siberian Akademii Nauk core are shown as an example application of the method.

  7. Development of Uncertainty Analysis Method for SMART Digital Core Protection and Monitoring System

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Bon Seung; In, Wang Kee; Hwang, Dae Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-05-15

    The Korea Atomic Energy Research Institute has developed a system-integrated modular advanced reactor (SMART) for a seawater desalination and electricity generation. Online digital core protection and monitoring systems, called SCOPS and SCOMS respectively were developed. SCOPS calculates minimum DNBR and maximum LPD based on the several online measured system parameters. SCOMS calculates the variables of limiting conditions for operation. KAERI developed overall uncertainty analysis methodology which is used statistically combining uncertainty components of SMART core protection and monitoring system. By applying overall uncertainty factors in on-line SCOPS/SCOMS calculation, calculated LPD and DNBR are conservative with a 95/95 probability/confidence level. In this paper, uncertainty analysis method is described for SMART core protection and monitoring system

  8. Compression After Impact on Honeycomb Core Sandwich Panels with Thin Facesheets, Part 2: Analysis

    Science.gov (United States)

    Mcquigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2012-01-01

    A two part research study has been completed on the topic of compression after impact (CAI) of thin facesheet honeycomb core sandwich panels. The research has focused on both experiments and analysis in an effort to establish and validate a new understanding of the damage tolerance of these materials. Part 2, the subject of the current paper, is focused on the analysis, which corresponds to the CAI testings described in Part 1. Of interest, are sandwich panels, with aerospace applications, which consist of very thin, woven S2-fiberglass (with MTM45-1 epoxy) facesheets adhered to a Nomex honeycomb core. Two sets of materials, which were identical with the exception of the density of the honeycomb core, were tested in Part 1. The results highlighted the need for analysis methods which taken into account multiple failure modes. A finite element model (FEM) is developed here, in Part 2. A commercial implementation of the Multicontinuum Failure Theory (MCT) for progressive failure analysis (PFA) in composite laminates, Helius:MCT, is included in this model. The inclusion of PFA in the present model provided a new, unique ability to account for multiple failure modes. In addition, significant impact damage detail is included in the model. A sensitivity study, used to assess the effect of each damage parameter on overall analysis results, is included in an appendix. Analysis results are compared to the experimental results for each of the 32 CAI sandwich panel specimens tested to failure. The failure of each specimen is predicted using the high-fidelity, physicsbased analysis model developed here, and the results highlight key improvements in the understanding of honeycomb core sandwich panel CAI failure. Finally, a parametric study highlights the strength benefits compared to mass penalty for various core densities.

  9. HEXAGONAL CLOSE-PACKED C-60

    NARCIS (Netherlands)

    de Boer, Jan; van Smaalen, Sander; Petricek, Vaclav; Dusek, Michal P.; Verheijen, Marcel A.; Meijer, G.

    1994-01-01

    C60 crystals were grown from purified powder material with a multiple sublimation technique. In addition to crystals wit a cubic close-packed (ccp) arrangement, crystals were found with a hexagonal close-packed (hcp) structure. Detailed crystallographic evidence is given, including complete refineme

  10. Hexagonal LuMnO3 revisited

    NARCIS (Netherlands)

    Aken, Bas B. van; Meetsma, Auke; Palstra, Thomas T.M.

    2001-01-01

    The crystal structure of hexagonal LuMnO3 at room temperature is isomorphous with YMnO3 and deviates in important details from early work. Mn is near the centre of its oxygen coordination environment. On the threefold axes, the apical O-Lu bonds have alternating long and short bond lengths, leading

  11. Powdered Hexagonal Boron Nitride Reducing Nanoscale Wear

    Science.gov (United States)

    Chkhartishvili, L.; Matcharashvili, T.; Esiava, R.; Tsagareishvili, O.; Gabunia, D.; Margiev, B.; Gachechiladze, A.

    2013-05-01

    A morphology model is suggested for nano-powdered hexagonal boron nitride that can serve as an effective solid additive to liquid lubricants. It allows to estimate the specific surface, that is a hard-to-measure parameter, based on average size of powder particles. The model can be used also to control nanoscale wear processes.

  12. Computational Design and Analysis of Core Material of Single-Phase Capacitor Run Induction Motor

    Directory of Open Access Journals (Sweden)

    Gurmeet Singh

    2014-07-01

    Full Text Available A Single-phase induction motor (SPIM has very crucial role in industrial, domestic and commercial sectors. So, the efficient SPIM is a foremost requirement of today's market. For efficient motors, many research methodologies and propositions have been given by researchers in past. Various parameters like as stator/rotor slot variation, size and shape of stator/rotor slots, stator/rotor winding configuration, choice of core material etc. have momentous impact on machine design. Core material influences the motor performance to a degree. Magnetic flux linkage and leakage preliminary depends upon the magnetic properties of core material and air gap. The analysis of effects of core material on the magnetic flux distribution and the performance of induction motor is of immense importance to meet out the desirable performance. An increase in the air gap length will result in the air gap performance characteristics deterioration and decrease in air gap length will lead to serious mechanical balancing concern. So possibility of much variation in air gap beyond the limits on both sides is not feasible. For the optimized performance of the induction motor the core material plays a significant role. Using higher magnetic flux density, reduction on a magnetizing reactance and leakage of flux can be achieved. In this thesis work the analysis of single phase induction motor has been carried out with different core materials. The four models have been simulated using Ansys Maxwell 15.0. Higher flux density selection for same machine dimensions result into huge amount of reduction in iron core losses and thereby improve the efficiency. In this paper 2% higher efficiency has been achieved with Steel_1010 as compared to the machine using conventional D23 material. Out of four models result reflected by the machine using steel_1010 and steel_1008 are found to be better.

  13. Electronic reconstruction of hexagonal FeS: a view from density functional dynamical mean-field theory

    Science.gov (United States)

    Craco, L.; Faria, J. L. B.; Leoni, S.

    2017-03-01

    We present a detailed study of correlation- and pressure-induced electronic reconstruction in hexagonal iron monosulfide, a system which is widely found in meteorites and one of the components of Earth’s core. Based on a perusal of experimental data, we stress the importance of multi-orbital electron-electron interactions in concert with first-principles band structure calculations for a consistent understanding of its intrinsic Mott–Hubbard insulating state. We explain the anomalous nature of pressure-induced insulator-metal-insulator transition seen in experiment, showing that it is driven by dynamical spectral weight transfer in response to changes in the crystal-field splittings under pressure. As a byproduct of this analysis, we confirm that the electronic transitions observed in pristine FeS at moderated pressures are triggered by changes in the spin state which causes orbital-selective Kondo quasiparticle electronic reconstruction at low energies.

  14. A study on the core analysis methodology for SMART CEA ejection accident-I

    Energy Technology Data Exchange (ETDEWEB)

    Zee, Sung Kyun; Lee, Chung Chan; Kim, Kyo Yoon; Cho, Byung Oh

    1999-04-01

    A methodology to analyze the fuel enthalpy is developed based on MASTER that is a time dependent 3 dimensional core analysis code. Using the proposed methodology, SMART CEA ejection accident is analyzed. Moreover, radiation doses are estimated at the exclusion area boundary and low population zone to confirm the criteria for the accident. (Author). 31 refs., 13 tabs., 18 figs.

  15. Direct chemical analysis of frozen ice cores by UV-laser ablation ICPMS

    DEFF Research Database (Denmark)

    Müller, Wolfgang; Shelley, J. Michael G.; Rasmussen, Sune Olander

    2011-01-01

    Cryo-cell UV-LA-ICPMS is a new technique for direct chemical analysis of frozen ice cores at high spatial resolution (micrometer). It was tested in a pilot study on NGRIP ice and reveals sea ice/dust records and annual layer signatures at unprecedented spatial/time resolution. Uniquely...

  16. Controllable synthesis of hexagonal ZnO–carbon core–shell microrods and the removal of ZnO to form hexagonal carbon microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yong, E-mail: xy91007@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); He, Wenqi; Gao, Chuang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zheng, Mingtao; Lie, Bingfu; Liu, Xiaotang [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); Liu, Yingliang, E-mail: tliuyl@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China)

    2013-06-15

    A simple and efficient approach was developed to produce regular and uniform shaped hexagonal ZnO–C core–shell micro-rods and carbon micro-tubes. A single-source raw material, zinc acetate dihydrate, has been used for the in situ generation of the hexagonal ZnO–C micro-rods in a sealed autoclave system at 500 °C for 12 h without a catalyst. The resulting products were characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray analysis and room-temperature photoluminescence spectroscopy (PL). The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. Impacting factors including thermolysis temperature, time and dose of the reactant on the evolution of the hexagonal shape were investigated. A possible formation diagram for the materials has been proposed and discussed based on the features of the reaction system. - Highlights: • Hexagonal ZnO–C core–shell microrods were synthesized by the lower temperature decomposition of zinc acetate. • The novel hexagonal carbon microtubes can gain by simply handling with dilute acid. • The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. • A possible formation diagram for the materials has been proposed.

  17. Lyotropic hexagonal columnar liquid crystals of large colloidal gibbsite platelets

    NARCIS (Netherlands)

    Mourad, M.C.D.; Petukhov, A.V.; Vroege, G.J.; Lekkerkerker, H.N.W.

    2010-01-01

    We report the formation of hexagonal columnar liquid crystal phases in suspensions of large (570 nm diameter), sterically stabilized, colloidal gibbsite platelets in organic solvent. In thin cells these systems display strong iridescence originating from hexagonally arranged columns that are

  18. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic...... meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...

  19. A High-Resolution Continuous Flow Analysis System for Polar Ice Cores

    DEFF Research Database (Denmark)

    Dallmayr, Remi; Goto-Azuma, Kumiko; Kjær, Helle Astrid

    2016-01-01

    of Polar Research (NIPR) in Tokyo. The system allows the continuous analysis of stable water isotopes and electrical conductivity, as well as the collection of discrete samples from both inner and outer parts of the core. This CFA system was designed to have sufficiently high temporal resolution to detect...... signals of abrupt climate change in deep polar ice cores. To test its performance, we used the system to analyze different climate intervals in ice drilled at the NEEM (North Greenland Eemian Ice Drilling) site, Greenland. The quality of our continuous measurement of stable water isotopes has been...

  20. Stability Analysis of the EBR-I Mark-II Core Meltdown Accident

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Jae-Yong; Kang, Chang Mu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The purpose of this paper is to analyze the stability of the EBR-I core meltdown accident using the NuSTAB code. The result of NuSTAB analysis is compared with previous stability analysis by Sandmeier using the root locus method. The Experimental Breeder Reactor I (EBR-1) at Argonne National Laboratory was designed to demonstrate fast reactor breeding and to prove the use of liquid-metal coolant for power production and reached criticality in August 1951. The EBR-I reactor was undergoing a series of physics experiments and the Mark-II core was melted accidentally on Nov. 29, 1955. The experiment was going to increase core temperature to 500C to see if the reactor loses reactivity, and scram when the power reached 1500 kW or doubling of fission rate per second. However the operator scrammed with a slow moving control and missed the shutdown by two seconds and caused the core meltdown. The NuSTAB code has an advantage of analyzing space-dependent fast reactors and predicting regional oscillations compared to the point kinetics. Also, NuSTAB can be useful when the coupled neutronic-thermal-hydraulic codes cannot be used for stability analysis. Future work includes analyses of the PGSFR for various operating conditions as well as further validation of the NuSTAB calculations against SFR stability experiments when such experiments become available.

  1. Modal analysis of kagome-lattice structures

    Science.gov (United States)

    Perez, H.; Blakley, S.; Zheltikov, A. M.

    2015-05-01

    The first few lowest order circularly symmetric electromagnetic eigenmodes of a full kagome lattice are compared to those of a kagome lattice with a hexagonal defect. This analysis offers important insights into the physics behind the waveguiding properties of hollow-core fibers with a kagome-lattice cladding.

  2. Comparative Neutronics Analysis of DIMPLE S06 Criticality Benchmark with Contemporary Reactor Core Analysis Computer Code Systems

    Directory of Open Access Journals (Sweden)

    Wonkyeong Kim

    2015-01-01

    Full Text Available A high-leakage core has been known to be a challenging problem not only for a two-step homogenization approach but also for a direct heterogeneous approach. In this paper the DIMPLE S06 core, which is a small high-leakage core, has been analyzed by a direct heterogeneous modeling approach and by a two-step homogenization modeling approach, using contemporary code systems developed for reactor core analysis. The focus of this work is a comprehensive comparative analysis of the conventional approaches and codes with a small core design, DIMPLE S06 critical experiment. The calculation procedure for the two approaches is explicitly presented in this paper. Comprehensive comparative analysis is performed by neutronics parameters: multiplication factor and assembly power distribution. Comparison of two-group homogenized cross sections from each lattice physics codes shows that the generated transport cross section has significant difference according to the transport approximation to treat anisotropic scattering effect. The necessity of the ADF to correct the discontinuity at the assembly interfaces is clearly presented by the flux distributions and the result of two-step approach. Finally, the two approaches show consistent results for all codes, while the comparison with the reference generated by MCNP shows significant error except for another Monte Carlo code, SERPENT2.

  3. High Level Analysis, Design and Validation of Distributed Mobile Systems with CoreASM

    Science.gov (United States)

    Farahbod, R.; Glässer, U.; Jackson, P. J.; Vajihollahi, M.

    System design is a creative activity calling for abstract models that facilitate reasoning about the key system attributes (desired requirements and resulting properties) so as to ensure these attributes are properly established prior to actually building a system. We explore here the practical side of using the abstract state machine (ASM) formalism in combination with the CoreASM open source tool environment for high-level design and experimental validation of complex distributed systems. Emphasizing the early phases of the design process, a guiding principle is to support freedom of experimentation by minimizing the need for encoding. CoreASM has been developed and tested building on a broad scope of applications, spanning computational criminology, maritime surveillance and situation analysis. We critically reexamine here the CoreASM project in light of three different application scenarios.

  4. An improved continuous flow analysis system for high-resolution field measurements on ice cores.

    Science.gov (United States)

    Kaufmann, Patrik R; Federer, Urs; Hutterli, Manuel A; Bigler, Matthias; Schüpbach, Simon; Ruth, Urs; Schmitt, Jochen; Stocker, Thomas F

    2008-11-01

    Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.

  5. Analysis and experiment of eddy current loss in Homopolar magnetic bearings with laminated rotor cores

    Science.gov (United States)

    Jinji, Sun; Dong, Chen

    2013-08-01

    This paper analyses the eddy current loss in Homopolar magnetic bearings with laminated rotor cores produced by the high speed rotation in order to reduce the power loss for the aerospace applications. The analytical model of rotational power loss is proposed in Homopolar magnetic bearings with laminated rotor cores considering the magnetic circuit difference between Homopolar and Heteropolar magnetic bearings. Therefore, the eddy current power loss can be calculated accurately using the analytical model by magnetic field solutions according to the distribution of magnetic fields around the pole surface and boundary conditions at the surface of the rotor cores. The measurement method of rotational power loss in Homopolar magnetic bearing is proposed, and the results of the theoretical analysis are verified by experiments in the prototype MSCMG. The experimental results show the correctness of calculation results.

  6. Optimization of high-resolution continuous flow analysis for transient climate signals in ice cores.

    Science.gov (United States)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto; Vallelonga, Paul; Nielsen, Maibritt E; Steffensen, Jørgen Peder

    2011-05-15

    Over the past two decades, continuous flow analysis (CFA) systems have been refined and widely used to measure aerosol constituents in polar and alpine ice cores in very high-depth resolution. Here we present a newly designed system consisting of sodium, ammonium, dust particles, and electrolytic meltwater conductivity detection modules. The system is optimized for high-resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features a depth resolution in the ice of a few millimeters which is considerably better than other CFA systems. Thus, the new system can resolve ice strata down to 10 mm thickness and has the potential of identifying annual layers in both Greenland and Antarctic ice cores throughout the last glacial cycle.

  7. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    Science.gov (United States)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  8. Vibroacoustic optimization of anti-tetrachiral and auxetic hexagonal sandwich panels with gradient geometry

    Science.gov (United States)

    Ranjbar, Mostafa; Boldrin, Luca; Scarpa, Fabrizio; Neild, Simon; Patsias, Sophoclis

    2016-05-01

    The work describes the vibroacoustic behavior of anti-tetrachiral and auxetic hexagonal gradient sandwich panels using homogenized finite element models to determine the mechanical properties of the auxetic structures, the natural frequencies and radiated sound power level of sandwich panels made by the auxetic cores. The mechanical properties and the vibroacoustic behavior of auxetic hexagonal sandwich panels are investigated as a benchmark. The radiated sound power level of the structure over the frequency range of 0-1000 Hz is minimized by modifying the core geometry of the gradient auxetic sandwich panels. Several excitation cases are considered. First-order and random optimization methods are used for the minimization of radiated sound power level of the structures. The results of this study present significant insights into the design of auxetic structures with respect to their vibroacoustical properties.

  9. Stable Tetrahedral Aluminum Sites in Hexagonal Mesoporous Aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    韩宇; 刘宪春; 等

    2002-01-01

    A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nacoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described ,The obtained materials of MAS-5 are hydrothermally stable,which is shown by X-ray diffraction (XRD) analysis,Further-more,as charaacterized by NMR technique ,MAS-5 has taable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve ,and on non-frame-work aluminium species in the saples was observed.

  10. Chromatic Dispersion Compensation Using Photonic Crystal Fibers with Hexagonal Distribution

    Directory of Open Access Journals (Sweden)

    Erick E. Reyes-Vera

    2013-11-01

    Full Text Available In this paper we show various configurations of photonic crystal fiber with hexagonal holes distribution for compensation of chromatic dispersion in optical communications links. The vectorial finite element method with scattering boundary condition was used for the analysis of the fibers. From these results it was estimated variation of the dispersion and the dispersion slope with respect to change in the diameter of the holes in the microstructure. With the above was possible to obtain values of dispersion in the C and L bands of telecommunications close to -850 ps / nm * km, with confinement losses 10-3 dB / km

  11. Stable Tetrahedral Aluminum Sites in Hexagonal Mesoporous Aluminosilicates

    Institute of Scientific and Technical Information of China (English)

    HAN,Yu(韩宇); YU,Yi(于沂); XU,Xian-Zhu(许宪祝); XIAO,Feng-Shou(肖丰收); LIU,Xian-Chun(刘宪春); HAN,Xiu-Wen(韩秀文); BAO,Xin-He(包信和)

    2002-01-01

    A unique templating approach for the synthesis of hexagonal mesoporous aluminosilicates via self-assembly of pre-formed aluminosilcate nanoclusters with the templating micella formed by cetyltrimethylammonium bromide (CTAB) is described.The obtained materials of MAS-5 are hydrothermally stable,which is shown by X-ray diffraction (XRD) analysis. Furthermore, as characterized by NMR technique, MAS-5 has stable tetrahedral aluminum sites that is the major contributions to the acidity of aluminosilicate molecular sieve, and on non-framework aluminium species in the samples was observed.

  12. Chain hexagonal cacti with the extremal eccentric distance sum.

    Science.gov (United States)

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  13. Dynamical analysis of innovative core designs facing unprotected transients with the MAT5 DYN code

    Energy Technology Data Exchange (ETDEWEB)

    Darmet, G.; Massara, S. [EDF R and D, 1 avenue du general de Gaulle, 92140 Clamart (France)

    2012-07-01

    Since 2007, advanced Sodium-cooled Fast Reactors (SFR) are investigated by CEA, AREVA and EDF in the framework of a joint French collaboration. A prototype called ASTRID, sets out to demonstrate progress made in SFR technology, is due to operate in the years 2020's. The modeling of unprotected transients by computer codes is one of the key safety issues in the design approach to such SFR systems. For that purpose, the activity on CATHARE, which is the reference code for the transient analysis of ASTRID, has been strengthened during last years by CEA. In the meantime, EDF has developed a simplified and multi-channel code, named MAT5 DYN, to analyze and validate innovative core designs facing protected and unprotected transients. First, the paper consists in a description of MAT5 DYN: a code based on the existing code MAT4 DYN including major improvements on geometry description and physical modeling. Second, two core designs based on the CFV core design developed at CEA are presented. Then, the dynamic response of those heterogeneous cores is analyzed during unprotected loss of flow (ULOF) transient and unprotected transient of power (UTOP). The results highlight the importance of the low void core effect specific to the CFV design. Such an effect, when combined with a sufficient primary pump halving time and an optimized cooling group scheme, allows to delay (or, possibly, avoid) the sodium boiling onset during ULOF accidents. (authors)

  14. 3D Finite element analysis of functionally graded multilayered dental ceramic cores.

    Science.gov (United States)

    Al-Maqtari, Ali Abdullah; Razak, Abdul Aziz Abdul; Hamdi, Mohd

    2014-01-01

    This study aimed at investigating and establishing stress distributions in graded multilayered zirconia/alumina ceramic cores and at veneer-core-cement-dentin interfaces, using finite element analysis (FEA), to facilitate the structural design of ceramic cores through computer modeling. An intact maxillary premolar was digitized using CT scanning. An imaging software, Mimics, was used to reconstruct 3D models based on computed tomography (CT) data saved in DICOM format. Eight different 3D models were created for FEA, where each 3D model was meshed and its bottom boundaries constrained. A static load was applied in the oblique direction. The materials were assumed to be isotropic and homogeneous. Highest von Mises stress values were found in areas directly below the load application point, and stress gradually decreased in occlusal loading direction from the external surface toward the dentin. Stress levels occurring at veneer-ceramic core-cement-dentin interfaces were shown to be lower in multilayered ceramic cores than in single-layer models.

  15. Conceptual Core Analysis of Long Life PWR Utilizing Thorium-Uranium Fuel Cycle

    Science.gov (United States)

    Rouf; Su'ud, Zaki

    2016-08-01

    Conceptual core analysis of long life PWR utilizing thorium-uranium based fuel has conducted. The purpose of this study is to evaluate neutronic behavior of reactor core using combined thorium and enriched uranium fuel. Based on this fuel composition, reactor core have higher conversion ratio rather than conventional fuel which could give longer operation length. This simulation performed using SRAC Code System based on library SRACLIB-JDL32. The calculation carried out for (Th-U)O2 and (Th-U)C fuel with uranium composition 30 - 40% and gadolinium (Gd2O3) as burnable poison 0,0125%. The fuel composition adjusted to obtain burn up length 10 - 15 years under thermal power 600 - 1000 MWt. The key properties such as uranium enrichment, fuel volume fraction, percentage of uranium are evaluated. Core calculation on this study adopted R-Z geometry divided by 3 region, each region have different uranium enrichment. The result show multiplication factor every burn up step for 15 years operation length, power distribution behavior, power peaking factor, and conversion ratio. The optimum core design achieved when thermal power 600 MWt, percentage of uranium 35%, U-235 enrichment 11 - 13%, with 14 years operation length, axial and radial power peaking factor about 1.5 and 1.2 respectively.

  16. PWR core and spent fuel pool analysis using scale and nestle

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. E.; Maldonado, G. I. [Dept. of Nuclear Engineering, Univ. of Tennessee, Knoxville, TN 37996-2300 (United States); St Clair, R.; Orr, D. [Duke Energy, 526 S. Church St, Charlotte, NC 28202 (United States)

    2012-07-01

    The SCALE nuclear analysis code system [SCALE, 2011], developed and maintained at Oak Ridge National Laboratory (ORNL) is widely recognized as high quality software for analyzing nuclear systems. The SCALE code system is composed of several validated computer codes and methods with standard control sequences, such as the TRITON/NEWT lattice physics sequence, which supplies dependable and accurate analyses for industry, regulators, and academia. Although TRITON generates energy-collapsed and space-homogenized few group cross sections, SCALE does not include a full-core nodal neutron diffusion simulation module within. However, in the past few years, the open-source NESTLE core simulator [NESTLE, 2003], originally developed at North Carolina State Univ. (NCSU), has been updated and upgraded via collaboration between ORNL and the Univ. of Tennessee (UT), so it now has a growingly seamless coupling to the TRITON/NEWT lattice physics [Galloway, 2010]. This study presents the methodology used to couple lattice physics data between TRITON and NESTLE in order to perform a three-dimensional full-core analysis employing a 'real-life' Duke Energy PWR as the test bed. The focus for this step was to compare the key parameters of core reactivity and radial power distribution versus plant data. Following the core analysis, following a three cycle burn, a spent fuel pool analysis was done using information generated from NESTLE for the discharged bundles and was compared to Duke Energy spent fuel pool models. The KENO control module from SCALE was employed for this latter stage of the project. (authors)

  17. A Novel Low-Loss Diamond-Core Porous Fiber for Polarization Maintaining Terahertz Transmission

    DEFF Research Database (Denmark)

    Islam, Raonaqul; Habib, Selim; Hasanuzzaman, G. K. M.;

    2016-01-01

    We report on the numerical design optimization of a new kind of relatively simple porous-core photonic crystal fiber (PCF) for terahertz (THz) waveguiding. A novel twist is introduced in the regular hexagonal PCF by including a diamond-shaped porous-core inside the hexagonal cladding. The numerical...

  18. Promoting Utilization of Saccharum spp. Genetic Resources through Genetic Diversity Analysis and Core Collection Construction

    Science.gov (United States)

    Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C.; Kuhn, David N.; Glaz, Barry; Gilbert, Robert A.; Comstock, Jack C.; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance. PMID:25333358

  19. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Directory of Open Access Journals (Sweden)

    Spurthi N Nayak

    Full Text Available Sugarcane (Saccharum spp. and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1 genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2 form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  20. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Science.gov (United States)

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  1. A meta-analysis of core stability exercise versus general exercise for chronic low back pain.

    Science.gov (United States)

    Wang, Xue-Qiang; Zheng, Jie-Jiao; Yu, Zhuo-Wei; Bi, Xia; Lou, Shu-Jie; Liu, Jing; Cai, Bin; Hua, Ying-Hui; Wu, Mark; Wei, Mao-Ling; Shen, Hai-Min; Chen, Yi; Pan, Yu-Jian; Xu, Guo-Hui; Chen, Pei-Jie

    2012-01-01

    To review the effects of core stability exercise or general exercise for patients with chronic low back pain (LBP). Exercise therapy appears to be effective at decreasing pain and improving function for patients with chronic LBP in practice guidelines. Core stability exercise is becoming increasingly popular for LBP. However, it is currently unknown whether core stability exercise produces more beneficial effects than general exercise in patients with chronic LBP. Published articles from 1970 to October 2011 were identified using electronic searches. For this meta-analysis, two reviewers independently selected relevant randomized controlled trials (RCTs) investigating core stability exercise versus general exercise for the treatment of patients with chronic LBP. Data were extracted independently by the same two individuals who selected the studies. From the 28 potentially relevant trials, a total of 5 trials involving 414 participants were included in the current analysis. The pooling revealed that core stability exercise was better than general exercise for reducing pain [mean difference (-1.29); 95% confidence interval (-2.47, -0.11); P = 0.003] and disability [mean difference (-7.14); 95% confidence interval (-11.64, -2.65); P = 0.002] at the time of the short-term follow-up. However, no significant differences were observed between core stability exercise and general exercise in reducing pain at 6 months [mean difference (-0.50); 95% confidence interval (-1.36, 0.36); P = 0.26] and 12 months [mean difference (-0.32); 95% confidence interval (-0.87, 0.23); P = 0.25]. Compared to general exercise, core stability exercise is more effective in decreasing pain and may improve physical function in patients with chronic LBP in the short term. However, no significant long-term differences in pain severity were observed between patients who engaged in core stability exercise versus those who engaged in general exercise. http

  2. Synthesis of silicon carbide hexagonal nanoprisms

    Science.gov (United States)

    Wu, R. B.; Yang, G. Y.; Pan, Y.; Chen, J. J.

    2007-02-01

    SiC hexagonal nanoprisms have been prepared by a reaction of multiwall carbon nanotubes and Si vapor in an Astro furnace at 1450 °C for 3 h. The polytype, morphology, crystal structure of the nanoprisms were studied by X-ray powder diffraction, scanning electron microscopy and high resolution transmission electron microscopy, showing their hexagonal nanoprism shapes with a 3C-SiC single crystal structure with a diameter of about 100 nm and 2 μm in length. The photoluminescence spectrum of the nanoprisms exhibits a significant blue-shift relative to bulk 3C-SiC and other nanostructured SiC. The possible growth mechanism that controls the nanostructure formation is also analysed.

  3. Layered graphene structure of a hexagonal carbon

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bin, E-mail: beenchang@nuaa.edu.cn

    2013-06-01

    Experiments show that there is a novel hexagonal carbon polymorph restricted to the space group of P-62c, but the detailed atomic structure is not determined. Here we set carbon atoms occupying P-62c 4f or P-62c 2c and 2d Wyckoff positions, and calculate the total energy of the different cell structures changing the internal parameter by first-principles calculations, which demonstrates that the stable structures in energy (at local minima) are hexagonal carbon (P-62c 2c and 2d) and hexagonal diamond (P-62c 4f, z=1/16). The calculated bulk modulus 437±16 GPa and interlayer distance 2.062 Å of the layered graphene structure P-62c 2c and 2d are in good agreement with those of the proposed new carbon, which indicates that P-62c 2c and 2d is a possible precursor or intermediate hard phase during the structural transformation of carbon.

  4. Magnetic properties of hexagonal closed-packed iron deduced from direct observations in a diamond anvil cell

    Science.gov (United States)

    Gilder; Glen

    1998-01-02

    The attraction of hexagonal closed packed (hcp) iron to a magnet at 16.9 gigapascals and 261 degrees centigrade suggests that hcp iron is either paramagnetic or ferromagnetic with susceptibilities from 0. 15 to 0.001 and magnetizations from 1800 to 15 amperes per meter. If dominant in Earth's inner core, paramagnetic hcp iron could stabilize the geodynamo.

  5. Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures.

    Science.gov (United States)

    Bona, Alvaro Della; Anusavice, Kenneth J; DeHoff, Paul H

    2003-11-01

    To test the hypothesis that the Weibull moduli of single- and multilayer ceramics are controlled primarily by the structural reliability of the core ceramic.Methods. Seven groups of 20 bar specimens (25 x 4 x 1.2 mm) were made from the following materials: (1) IPS Empress--a hot-pressed (HP) leucite-based core ceramic; (2) IPS Empress2--a HP lithia-based core ceramic; (3 and 7) Evision--a HP lithia-based core ceramic (ES); (4) IPS Empress2 body--a glass veneer; (5) ES (1.1 mm thick) plus a glaze layer (0.1 mm); and (6) ES (0.8 mm thick) plus veneer (0.3 mm) and glaze (0.1 mm). Each specimen was subjected to four-point flexure loading at a cross-head speed of 0.5 mm/min while immersed in distilled water at 37 degrees C, except for Group 7 that was tested in a dry environment. Failure loads were recorded and the fracture surfaces were examined using SEM. ANOVA and Duncan's multiple range test were used for statistical analysis. No significant differences were found between the mean flexural strength values of Groups 2, 3, 5, and 6 or between Groups 1 and 4 (p>0.05). However, significant differences were found for dry (Group 7) and wet (Groups 1-6) conditions. Glazing had no significant effect on the flexural strength or Weibull modulus. The strength and Weibull modulus of the ES ceramic were similar to those of Groups 5 and 6. The structural reliability of veneered core ceramic is controlled primarily by that of the core ceramic.

  6. Quantification of LOCA core damage frequency based on thermal-hydraulics analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jaehyun, E-mail: chojh@kaeri.re.kr; Park, Jin Hee; Kim, Dong-San; Lim, Ho-Gon

    2017-04-15

    Highlights: • We quantified the LOCA core damage frequency based on the best-estimated success criteria analysis. • The thermal-hydraulic analysis using MARS code has been applied to Korea Standard Nuclear Power Plants. • Five new event trees with new break size boundaries and new success criteria were developed. • The core damage frequency is 5.80E−07 (/y), which is 12% less than the conventional PSA event trees. - Abstract: A loss-of-coolant accident (LOCA) has always been significantly considered one of the most important initiating events. However, most probabilistic safety assessment models, up to now, have undoubtedly adopted the three groups of LOCA, and even an exact break size boundary that used in WASH-1400 reports was published in 1975. With an awareness of the importance of a realistic PSA for a risk-informed application, several studies have tried to find the realistic thermal-hydraulic behavior of a LOCA, and improve the PSA model. The purpose of this research is to obtain realistic results of the LOCA core damage frequency based on a success criteria analysis using the best-estimate thermal-hydraulics code. To do so, the Korea Standard Nuclear Power Plant (KSNP) was selected for this study. The MARS code was used for a thermal hydraulics analysis and the AIMS code was used for the core damage quantification. One of the major findings in the thermal hydraulics analysis was that the decay power is well removed by only a normal secondary cooling in LOCAs of below 1.4 in and by only a high pressure safety injection in LOCAs of 0.8–9.4 in. Based on the thermal hydraulics results regarding new break size boundaries and new success criteria, five new event trees (ETs) were developed. The core damage frequency of new LOCA ETs is 5.80E−07 (/y), which is 12% less than the conventional PSA ETs. In this research, we obtained not only thermal-hydraulics characteristics for the entire break size of a LOCA in view of the deterministic safety

  7. CoreFlow: a computational platform for integration, analysis and modeling of complex biological data.

    Science.gov (United States)

    Pasculescu, Adrian; Schoof, Erwin M; Creixell, Pau; Zheng, Yong; Olhovsky, Marina; Tian, Ruijun; So, Jonathan; Vanderlaan, Rachel D; Pawson, Tony; Linding, Rune; Colwill, Karen

    2014-04-04

    A major challenge in mass spectrometry and other large-scale applications is how to handle, integrate, and model the data that is produced. Given the speed at which technology advances and the need to keep pace with biological experiments, we designed a computational platform, CoreFlow, which provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts into project-specific pipelines, tracks interdependencies between related tasks, and enables the generation of summary reports as well as publication-quality images. As a result, the gap between experimental and computational components of a typical large-scale biology project is reduced, decreasing the time between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion, and modeling of multiple/selected reaction monitoring (MRM/SRM) results. CoreFlow was purposely designed as an environment for programmers to rapidly perform data analysis. These analyses are assembled into project-specific workflows that are readily shared with biologists to guide the next stages of experimentation. Its simple yet powerful interface provides a structure where scripts can be written and tested virtually simultaneously to shorten the life cycle of code development for a particular task. The scripts are exposed at every step so that a user can quickly see the relationships between the data, the assumptions that have been made, and the manipulations that have been performed. Since the scripts use commonly available programming languages, they can easily be

  8. Core-scale solute transport model selection using Monte Carlo analysis

    CERN Document Server

    Malama, Bwalya; James, Scott C

    2013-01-01

    Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (H-3) and sodium-22, and the retarding solute uranium-232. The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single- and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows ...

  9. 2D analysis of polydisperse core-shell nanoparticles using analytical ultracentrifugation.

    Science.gov (United States)

    Walter, Johannes; Gorbet, Gary; Akdas, Tugce; Segets, Doris; Demeler, Borries; Peukert, Wolfgang

    2016-12-19

    Accurate knowledge of the size, density and composition of nanoparticles (NPs) is of major importance for their applications. In this work the hydrodynamic characterization of polydisperse core-shell NPs by means of analytical ultracentrifugation (AUC) is addressed. AUC is one of the most accurate techniques for the characterization of NPs in the liquid phase because it can resolve particle size distributions (PSDs) with unrivaled resolution and detail. Small NPs have to be considered as core-shell systems when dispersed in a liquid since a solvation layer and a stabilizer shell will significantly contribute to the particle's hydrodynamic diameter and effective density. AUC measures the sedimentation and diffusion transport of the analytes, which are affected by the core-shell compositional properties. This work demonstrates that polydisperse and thus widely distributed NPs pose significant challenges for current state-of-the-art data evaluation methods. The existing methods either have insufficient resolution or do not correctly reproduce the core-shell properties. First, we investigate the performance of different data evaluation models by means of simulated data. Then, we propose a new methodology to address the core-shell properties of NPs. This method is based on the parametrically constrained spectrum analysis and offers complete access to the size and effective density of polydisperse NPs. Our study is complemented using experimental data derived for ZnO and CuInS2 NPs, which do not have a monodisperse PSD. For the first time, the size and effective density of such structures could be resolved with high resolution by means of a two-dimensional AUC analysis approach.

  10. CFD analysis of PWR core top and reactor vessel upper plenum internal subdomain models

    Energy Technology Data Exchange (ETDEWEB)

    Kao, Min-Tsung; Wu, Chung-Yun [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Chieng, Ching-Chang, E-mail: cchieng@ess.nthu.edu.tw [National Tsing Hua University, Hsinchu 30043, Taiwan (China); Xu Yiban; Yuan Kun; Dzodzo, Milorad; Conner, Michael; Beltz, Steven; Ray, Sumit; Bissett, Teresa [Westinghouse Electric Company, Cranberry Township, PA 16066 (United States)

    2011-10-15

    , CFD analysis is presented for two subdomain models: the top core region and control rod guide tube region. These models are chosen for simulation because guide tube and top core region (including top grid, top nozzle, and hold-down device) are the major components of upper plenum effecting the flow patterns and pressure distribution. The top core region, corresponding to 1/4 of fuel assembly, includes components as upper part of the fuel assemblies (top grid, fuel rods, top nozzle), core component hold-down devices, and upper core plates. These components distribute the core flow to different sections of guidetube regions. Mesh sensitivity studies have been conducted for each individual part in order to determine the proper geometrical simplifications. Pressure drop measurement data are compared with the predicted CFD results and act as a guideline for the mesh selection. The guidetube region includes control rod guidetubes themselves, adjacent support columns and open regions. In this study, two models of subdomains are analyzed: (1) a 1/4 section of one control rod guide tube by itself and (2) a representative unit cell containing two 1/4 sections of adjacent control rod guide tubes and one 1/4 section of a neighboring support column. Predicted flow rates at each of the outflow locations in conjunction with results from the mesh sensitivity studies provide guidance on (1) what geometry to preserve or remove, (2) what geometry can be simplified to reduce the required mesh, and (3) an estimate of the total mesh required to model the entire upper plenum and top fuel domain. The commercial CFD code STAR-CCM+ is employed to generate the computational mesh, to solve the Reynolds-averaged Navier-Stokes equations for incompressible flow with a Realizable k-{epsilon} turbulence model, and to post-process the results.

  11. Petrographic Analysis of Portland Cement Concrete Cores from Pease Air National Guard Base, New Hampshire

    Science.gov (United States)

    2016-11-01

    Petrographic Analysis of Portland Cement Concrete Cores from Pease Air National Guard Base, New Hampshire E n g in e e r R e s e a rc h a n d...id, age of the concrete being evaluated and tests performed...4 3 Preface This study was conducted in support of the Air Force Civil Engineer Center (AFCEC) to assess concrete obtained from Pease

  12. Numerical analysis of sandwich beam with corrugated core under three-point bending

    Energy Technology Data Exchange (ETDEWEB)

    Wittenbeck, Leszek [Poznan University of Technology, Institute of Mathematics Piotrowo Street No. 5, 60-965 Poznan (Poland); Grygorowicz, Magdalena; Paczos, Piotr [Poznan University of Technology, Institute of Applied Mechanics Jana Pawla IIStreet No. 24, 60-965 Poznan (Poland)

    2015-03-10

    The strength problem of sandwich beam with corrugated core under three-point bending is presented.The beam are made of steel and formed by three mutually orthogonal corrugated layers. The finite element analysis (FEA) of the sandwich beam is performed with the use of the FEM system - ABAQUS. The relationship between the applied load and deflection in three-point bending is considered.

  13. Analysis of Core Degradation in Fukushima Unit 1 Accident with MELCOR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Il; Kim, Tae Woon; Ha, Kwang Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    In this study, an accident analysis of Fukushima Daiichi Unit 1 was performed using MELCOR 1.8.6. The behavior of the initial stage of the accident was focused during 30 hours after the reactor scram, because it was predicted that the vessel failure (severe accident) occurred before 20 hours. A hydrogen explosion also occurred at about 24 hours after the accident, and thus the phenomenon of core degradation before 30 hours was highlighted. Moreover, the effect of the amount of fresh water injection on the core degradation was performed by changing the amount of injection water. It was expected that a large portion of the injection water could not reach the core because of leakage. Thus, core damage was observed according to the amount of water that reached the core. The plant geometries and operating conditions were obtained from TEPCO (Tokyo Electric Power Company) through the OECD/NEA BSAF (Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Station) Project. An analysis of the Fukushima accident was also performed by Sandia National Laboratories, but several conditions were revised and added in this study. First, the flow rate of the steam into turbine and water into downcomer were considered at the initial stage of accident. The water level followed well the measured data by adding this mechanism. Second, SRV stuck open was included in this calculation. SRV stuck open can occur due to high temperature and frequent operation, and was modeled in calculation. The timing of SRV stuck open was closed to the timing of MSL failure, and thus the depressurization of RPV could have originated from both of MSL failure and SRV stuck open. The effect of injection water was observed, and it was found that the proper water injection can prevent a severe accident at the initial stage of the accident. In conclusion, an analysis of the severe accident occurring in Fukushima Unit 1 was conducted by using MELCOR. The analysis results were consistent with the

  14. Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores

    Science.gov (United States)

    Jones, Tyler R.; White, James W. C.; Steig, Eric J.; Vaughn, Bruce H.; Morris, Valerie; Gkinis, Vasileios; Markle, Bradley R.; Schoenemann, Spruce W.

    2017-02-01

    Water isotopes in ice cores are used as a climate proxy for local temperature and regional atmospheric circulation as well as evaporative conditions in moisture source regions. Traditional measurements of water isotopes have been achieved using magnetic sector isotope ratio mass spectrometry (IRMS). However, a number of recent studies have shown that laser absorption spectrometry (LAS) performs as well or better than IRMS. The new LAS technology has been combined with continuous-flow analysis (CFA) to improve data density and sample throughput in numerous prior ice coring projects. Here, we present a comparable semi-automated LAS-CFA system for measuring high-resolution water isotopes of ice cores. We outline new methods for partitioning both system precision and mixing length into liquid and vapor components - useful measures for defining and improving the overall performance of the system. Critically, these methods take into account the uncertainty of depth registration that is not present in IRMS nor fully accounted for in other CFA studies. These analyses are achieved using samples from a South Pole firn core, a Greenland ice core, and the West Antarctic Ice Sheet (WAIS) Divide ice core. The measurement system utilizes a 16-position carousel contained in a freezer to consecutively deliver ˜ 1 m × 1.3 cm2 ice sticks to a temperature-controlled melt head, where the ice is converted to a continuous liquid stream and eventually vaporized using a concentric nebulizer for isotopic analysis. An integrated delivery system for water isotope standards is used for calibration to the Vienna Standard Mean Ocean Water (VSMOW) scale, and depth registration is achieved using a precise overhead laser distance device with an uncertainty of ±0.2 mm. As an added check on the system, we perform inter-lab LAS comparisons using WAIS Divide ice samples, a corroboratory step not taken in prior CFA studies. The overall results are important for substantiating data obtained from LAS

  15. Analysis of a German BWR core with TRACE/PARCS using different cross section sets

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, C., E-mail: Christoph.Hartmann@kit.edu [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Westinghouse Electric Germany GmbH, Mannheim (Germany); Sanchez, V.H. [Karlsruhe Inst. of Tech. (KIT), Inst. for Neutron Physics and Reactor Technology (INR), Eggenstein-Leopoldshafen (Germany); Tietsch, W. [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2011-07-01

    'Full text:' Coupled Thermal-hydraulic/Neutron-kinetic (TH/NK) simulations of Boiling Water Reactor transients require well validated and accurate simulation tools as well as appropriate cross sections (XS) libraries depending on the individual thermal hydraulic state parameters. Problem-dependent XS-sets for 3D core simulations are being generated mainly by well validated, fast running and user-friendly lattice codes such as Casco and Helios. At research institutions and universities, alternative tools to the commercial ones with full access to the source code as well as moderate cost are urgently needed. The Scale system is being developed and improved for lattice physics calculations of real core loading of Light Water Reactors (LWR). It represents a promising alternative to the commercial lattice codes. At Karlsruhe Institute of Technology (Kit) a computational route based on Scale/Triton/Newt for BWR core loading is under development. The generated XS-data sets have to be transformed in PMAXS-format for use in the reactor dynamic code PARCS. This task is performed by the module GenPMAXS being developed and tested at the Michigan University. To verify the computational route, a BWR fuel assembly depletion problem was calculated by PARCS and compared to the CASMO results. Since the SCALE/TRITON XS-file does actually not contain all required neutronic data, FORTRAN routines have been developed to incorporate the missing data e.g. the yields of Iodine, Xenon and Promethium into the XS-data sets in the PMAXS-format. The comparison of the results obtained with PARCS (using the corrected PMAXS file) and CASMO for the depletion problem exhibited a good agreement. Consequently, this approach was followed for the generation of a complete XS-set for a real BWR core to be used in subsequent transient analysis. Then 3D neutronic and thermal hydraulic core model were elaborated for a TRACE/PARCS analysis. The thermal hydraulic model is based on the 3D VESSEL

  16. Fundamental Frequency Analysis of Sandwich Beams with Functionally Graded Face and Metallic Foam Core

    Directory of Open Access Journals (Sweden)

    Lin Mu

    2016-01-01

    Full Text Available This study is interested in assessing a way to analyze fundamental frequency of sandwich beams with functionally graded face sheet and homogeneous core. The face sheet, which is an exponentially graded material (EGM varying smoothly in the thickness direction only, is composed of a mixture of metal and ceramic. The core which is made of foam metal is homogeneous. The classical plate theory (CPT is used to analyze the face sheet and a higher-order theory (HOT is used to analyze the core of sandwich beams, in which both the transverse normal and shear strains of the core are considered. The extended Galerkin method is used to solve the governing equations to obtain the vibration equations of the sandwich beams suitable for numerical analysis. The fundamental frequency obtained by the theoretical model is validated by using the finite element code ABAQUS and comparison with earlier works. The influences of material and geometric properties on the fundamental frequency of the sandwich beams are analyzed.

  17. Core and Conal Component Analysis of Pulsar B1237+25

    CERN Document Server

    Srostlik, Z; Srostlik, Zuzana; Rankin, Joanna M.

    2005-01-01

    The paper provides a new analysis of this famous five-component ({\\bf M}) pulsar. In addition to the star's core-active ``abnormal'' mode, we find two distinct behaviors within its ``normal'' mode, a ``quiet-normal'' mode with regular 2.8-period subpulse modulation and little or no core activity, and a ``flare-normal'' mode, where the core is regularly bright and a nearly 4-period modulation is maintained. The ``flare-normal'' mode appears to be an intermediate state between the ``quiet normal'' and ``abnormal'' behaviors. Short 5--15-pulse ``flare-normal''-mode ``bursts'' and ``quiet normal'' intervals alternate with each other quasi-periodically, making a cycle some 60--80 pulses in duration. ``Abnormal''-mode intervals are interspersed within this overall cycle, usually persisting for only a few pulses, but occasionally lasting for scores or even many hundreds of pulses. Within subsequences where the core is exceptionally quiet, the pulsar provides a nearly ``textbook'' example of a central PA sightline tr...

  18. Consequence analysis of core meltdown accidents in liquid metal fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Suk, S.D.; Hahn, D. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2001-07-01

    Core disruptive accidents have been investigated at Korea Atomic Energy Research Institute(KAERI) as part of work to demonstrate the inherent and ultimate safety of the conceptual design of the Korea Advanced Liquid Metal Reactor(KALIMER), a 150 Mw pool-type sodium cooled prototype fast reactor that uses U-Pu-Zr metallic fuel. In this study, a simple method was developed using a modified Bethe-Tait method to simulate the kinetics and hydraulic behavior of a homogeneous spherical core over the period of the super-prompt critical power excursion induced by the ramp reactivity insertion. Calculations of energy release during excursions in the sodium-voided core of the KALIMER were subsequently performed using the method for various reactivity insertion rates up to 100 $/s, which has been widely considered to be the upper limit of ramp rates due to fuel compaction. Benchmark calculations were made to compare with the results of more detailed analysis for core meltdown energetics of the oxide fuelled fast reactor. A set of parametric studies was also performed to investigate the sensitivity of the results on the various thermodynamics and reactor parameters. (author)

  19. Core-scale solute transport model selection using Monte Carlo analysis

    Science.gov (United States)

    Malama, Bwalya; Kuhlman, Kristopher L.; James, Scott C.

    2013-06-01

    Model applicability to core-scale solute transport is evaluated using breakthrough data from column experiments conducted with conservative tracers tritium (3H) and sodium-22 (22Na ), and the retarding solute uranium-232 (232U). The three models considered are single-porosity, double-porosity with single-rate mobile-immobile mass-exchange, and the multirate model, which is a deterministic model that admits the statistics of a random mobile-immobile mass-exchange rate coefficient. The experiments were conducted on intact Culebra Dolomite core samples. Previously, data were analyzed using single-porosity and double-porosity models although the Culebra Dolomite is known to possess multiple types and scales of porosity, and to exhibit multirate mobile-immobile-domain mass transfer characteristics at field scale. The data are reanalyzed here and null-space Monte Carlo analysis is used to facilitate objective model selection. Prediction (or residual) bias is adopted as a measure of the model structural error. The analysis clearly shows single-porosity and double-porosity models are structurally deficient, yielding late-time residual bias that grows with time. On the other hand, the multirate model yields unbiased predictions consistent with the late-time -5/2 slope diagnostic of multirate mass transfer. The analysis indicates the multirate model is better suited to describing core-scale solute breakthrough in the Culebra Dolomite than the other two models.

  20. Coupled neutronic core and subchannel analysis of nanofluids in VVER-1000 type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zarifi, Ehsan; Sepanloo, Kamran [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of). Reactor and Nuclear Safety School; Jahanfarnia, Golamreza [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch

    2017-05-15

    This study is aimed to perform the coupled thermal-hydraulic/neutronic analysis of nanofluids as the coolant in the hot fuel assembly of VVER-1000 reactor core. Water-based nanofluid containing various volume fractions of Al{sub 2}O{sub 3} nanoparticle is analyzed. WIMS and CITATION codes are used for neutronic simulation of the reactor core, calculating neutron flux and thermal power distribution. In the thermal-hydraulic modeling, the porous media approach is used to analyze the thermal behavior of the reactor core and the subchannel analysis is used to calculate the hottest fuel assembly thermal-hydraulic parameters. The derived conservation equations for coolant and conduction heat transfer equation for fuel and clad are discretized by Finite volume method and solved numerically using visual FORTRAN program. Finally the analysis results for nanofluids and pure water are compared together. The achieved results show that at low concentration (0.1 percent volume fraction) alumina is the optimum nanoparticles for normal reactor operation.

  1. The accuracy of frozen section analysis in ultrasound- guided core needle biopsy of breast lesions

    Directory of Open Access Journals (Sweden)

    Riss Paul

    2009-09-01

    Full Text Available Abstract Background Limited data are available to evaluate the accuracy of frozen section analysis and ultrasound- guided core needle biopsy of the breast. Methods In a retrospective analysis data of 120 consecutive handheldultrasound- guided 14- gauge automated core needle biopsies (CNB in 109 consecutive patients with breast lesions between 2006 and 2007 were evaluated. Results In our outpatient clinic120 CNB were performed. In 59/120 (49.2% cases we compared histological diagnosis on frozen sections with those on paraffin sections of CNB and finally with the result of open biopsy. Of the cases 42/59 (71.2% were proved to be malignant and 17/59 (28.8% to be benign in the definitive histology. 2/59 (3.3% biopsies had a false negative frozen section result. No false positive results of the intraoperative frozen section analysis were obtained, resulting in a sensitivity, specificity and positive predicting value (PPV and negative predicting value (NPV of 95%, 100%, 100% and 90%, respectively. Histological and morphobiological parameters did not show up relevance for correct frozen section analysis. In cases of malignancy time between diagnosis and definitive treatment could not be reduced due to frozen section analysis. Conclusion The frozen section analysis of suspect breast lesions performed by CNB displays good sensitivity/specificity characteristics. Immediate investigations of CNB is an accurate diagnostic tool and an important step in reducing psychological strain by minimizing the period of uncertainty in patients with breast tumor.

  2. NODAL3 Sensitivity Analysis for NEACRP 3D LWR Core Transient Benchmark (PWR

    Directory of Open Access Journals (Sweden)

    Surian Pinem

    2016-01-01

    Full Text Available This paper reports the results of sensitivity analysis of the multidimension, multigroup neutron diffusion NODAL3 code for the NEACRP 3D LWR core transient benchmarks (PWR. The code input parameters covered in the sensitivity analysis are the radial and axial node sizes (the number of radial node per fuel assembly and the number of axial layers, heat conduction node size in the fuel pellet and cladding, and the maximum time step. The output parameters considered in this analysis followed the above-mentioned core transient benchmarks, that is, power peak, time of power peak, power, averaged Doppler temperature, maximum fuel centerline temperature, and coolant outlet temperature at the end of simulation (5 s. The sensitivity analysis results showed that the radial node size and maximum time step give a significant effect on the transient parameters, especially the time of power peak, for the HZP and HFP conditions. The number of ring divisions for fuel pellet and cladding gives negligible effect on the transient solutions. For productive work of the PWR transient analysis, based on the present sensitivity analysis results, we recommend NODAL3 users to use 2×2 radial nodes per assembly, 1×18 axial layers per assembly, the maximum time step of 10 ms, and 9 and 1 ring divisions for fuel pellet and cladding, respectively.

  3. An approach to model reactor core nodalization for deterministic safety analysis

    Science.gov (United States)

    Salim, Mohd Faiz; Samsudin, Mohd Rafie; Mamat @ Ibrahim, Mohd Rizal; Roslan, Ridha; Sadri, Abd Aziz; Farid, Mohd Fairus Abd

    2016-01-01

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH1.6, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D® computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  4. An approach to model reactor core nodalization for deterministic safety analysis

    Energy Technology Data Exchange (ETDEWEB)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my; Samsudin, Mohd Rafie, E-mail: rafies@tnb.com.my [Nuclear Energy Department, Regulatory Economics & Planning Division, Tenaga Nasional Berhad (Malaysia); Mamat Ibrahim, Mohd Rizal, E-mail: m-rizal@nuclearmalaysia.gov.my [Prototypes & Plant Development Center, Malaysian Nuclear Agency (Malaysia); Roslan, Ridha, E-mail: ridha@aelb.gov.my; Sadri, Abd Aziz [Nuclear Installation Divisions, Atomic Energy Licensing Board (Malaysia); Farid, Mohd Fairus Abd [Reactor Technology Center, Malaysian Nuclear Agency (Malaysia)

    2016-01-22

    Adopting good nodalization strategy is essential to produce an accurate and high quality input model for Deterministic Safety Analysis (DSA) using System Thermal-Hydraulic (SYS-TH) computer code. The purpose of such analysis is to demonstrate the compliance against regulatory requirements and to verify the behavior of the reactor during normal and accident conditions as it was originally designed. Numerous studies in the past have been devoted to the development of the nodalization strategy for small research reactor (e.g. 250kW) up to the bigger research reactor (e.g. 30MW). As such, this paper aims to discuss the state-of-arts thermal hydraulics channel to be employed in the nodalization for RTP-TRIGA Research Reactor specifically for the reactor core. At present, the required thermal-hydraulic parameters for reactor core, such as core geometrical data (length, coolant flow area, hydraulic diameters, and axial power profile) and material properties (including the UZrH{sub 1.6}, stainless steel clad, graphite reflector) have been collected, analyzed and consolidated in the Reference Database of RTP using standardized methodology, mainly derived from the available technical documentations. Based on the available information in the database, assumptions made on the nodalization approach and calculations performed will be discussed and presented. The development and identification of the thermal hydraulics channel for the reactor core will be implemented during the SYS-TH calculation using RELAP5-3D{sup ®} computer code. This activity presented in this paper is part of the development of overall nodalization description for RTP-TRIGA Research Reactor under the IAEA Norwegian Extra-Budgetary Programme (NOKEBP) mentoring project on Expertise Development through the Analysis of Reactor Thermal-Hydraulics for Malaysia, denoted as EARTH-M.

  5. Pan-genome sequence analysis using Panseq: an online tool for the rapid analysis of core and accessory genomic regions

    Directory of Open Access Journals (Sweden)

    Villegas Andre

    2010-09-01

    Full Text Available Abstract Background The pan-genome of a bacterial species consists of a core and an accessory gene pool. The accessory genome is thought to be an important source of genetic variability in bacterial populations and is gained through lateral gene transfer, allowing subpopulations of bacteria to better adapt to specific niches. Low-cost and high-throughput sequencing platforms have created an exponential increase in genome sequence data and an opportunity to study the pan-genomes of many bacterial species. In this study, we describe a new online pan-genome sequence analysis program, Panseq. Results Panseq was used to identify Escherichia coli O157:H7 and E. coli K-12 genomic islands. Within a population of 60 E. coli O157:H7 strains, the existence of 65 accessory genomic regions identified by Panseq analysis was confirmed by PCR. The accessory genome and binary presence/absence data, and core genome and single nucleotide polymorphisms (SNPs of six L. monocytogenes strains were extracted with Panseq and hierarchically clustered and visualized. The nucleotide core and binary accessory data were also used to construct maximum parsimony (MP trees, which were compared to the MP tree generated by multi-locus sequence typing (MLST. The topology of the accessory and core trees was identical but differed from the tree produced using seven MLST loci. The Loci Selector module found the most variable and discriminatory combinations of four loci within a 100 loci set among 10 strains in 1 s, compared to the 449 s required to exhaustively search for all possible combinations; it also found the most discriminatory 20 loci from a 96 loci E. coli O157:H7 SNP dataset. Conclusion Panseq determines the core and accessory regions among a collection of genomic sequences based on user-defined parameters. It readily extracts regions unique to a genome or group of genomes, identifies SNPs within shared core genomic regions, constructs files for use in phylogeny programs

  6. Nuclear reactor core modelling in multifunctional simulators

    Energy Technology Data Exchange (ETDEWEB)

    Puska, E.K. [VTT Energy, Nuclear Energy, Espoo (Finland)

    1999-06-01

    The thesis concentrates on the development of nuclear reactor core models for the APROS multifunctional simulation environment and the use of the core models in various kinds of applications. The work was started in 1986 as a part of the development of the entire APROS simulation system. The aim was to create core models that would serve in a reliable manner in an interactive, modular and multifunctional simulator/plant analyser environment. One-dimensional and three-dimensional core neutronics models have been developed. Both models have two energy groups and six delayed neutron groups. The three-dimensional finite difference type core model is able to describe both BWR- and PWR-type cores with quadratic fuel assemblies and VVER-type cores with hexagonal fuel assemblies. The one- and three-dimensional core neutronics models can be connected with the homogeneous, the five-equation or the six-equation thermal hydraulic models of APROS. The key feature of APROS is that the same physical models can be used in various applications. The nuclear reactor core models of APROS have been built in such a manner that the same models can be used in simulator and plant analyser applications, as well as in safety analysis. In the APROS environment the user can select the number of flow channels in the three-dimensional reactor core and either the homogeneous, the five- or the six-equation thermal hydraulic model for these channels. The thermal hydraulic model and the number of flow channels have a decisive effect on the calculation time of the three-dimensional core model and thus, at present, these particular selections make the major difference between a safety analysis core model and a training simulator core model. The emphasis on this thesis is on the three-dimensional core model and its capability to analyse symmetric and asymmetric events in the core. The factors affecting the calculation times of various three-dimensional BWR, PWR and WWER-type APROS core models have been

  7. Faulting evidence of isostatic uplift in the Rincon Mountains metamorphic core complex: An image processing analysis

    Science.gov (United States)

    Rodriguez-Guerra, Edna Patricia

    This study focuses on the applications of remote sensing techniques and digital analysis to characterizing of tectonic features of the Rincon Mountains metamorphic core complex. Data included Landsat Thematic Mapper (TM) images, digital elevation models (DEM), and digital orthophoto quadrangle quads (DOQQ). The main findings in this study are two nearly orthogonal systems of structures that have never been reported in the Rincon Mountains. The first system, a penetrative faulting system of the footwall rocks, trends N10--30°W. Similar structures identified in other metamorphic core complexes. The second system trends N60--70°E, and has only been alluded indirectly in the literature of metamorphic core complexes. The structures pervade mylonites in Tanque Verde Mountain, Mica Mountain, and the Rincon Peak area. As measured on the imagery, spacing between the N10--30°W lineaments ranges from ˜0.5 to 2 km, and from 0.25 to 1 km for the N60--70°E system. Field inspection reveals that the N10--30°W trending system, are high-angle normal faults dipping mainly to the west. One of the main faults, named here the Cabeza de Vaca fault, has a polished, planar, striated and grooved surface with slickenlines indicating pure normal dip-slip movement (N10°W, 83°SW; slickensides rake 85°SW). The Cabeza de Vaca fault is the eastern boundary of a 2 km-wide graben, with displacement as great as 400 meters. The N10--30°W faults are syn- to post-mylonitic, high-angle normal faults that formed during isostatic uplift of the Rincon core complex during mid-Tertiary time. This interpretation is based on previous works, which report similar fault patterns in other metamorphic core complexes. Faults trending N20--30°W, shape the east flank of Mica Mountain. These faults, on the back dipping mylonitic zone, dip east and may represent late-stage antithetic shear zones. The Cabeza de Vaca fault and the back dipping antithetic faults accommodate as much as 65% of the extension due to

  8. Subchannel analysis of a small ultra-long cycle fast reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Han; Kim, Ji Hyun; Bang, In Cheol, E-mail: icbang@unist.ac.kr

    2014-04-01

    Highlights: • The UCFR-100 is small-sized one of 60 years long-life nuclear reactors without refueling. • The design safety limits of the UCFR-100 are evaluated using MATRA-LMR. • The subchannel results are below the safety limits of general SFR design criteria. - Abstract: Thermal-hydraulic evaluation of a small ultra-long cycle fast reactor (UCFR) core is performed based on existing safety regulations. The UCFR is an innovative reactor newly designed with long-life core based on the breed-and-burn strategy and has a target electric power of 100 MWe (UCFR-100). Low enriched uranium (LEU) located at the bottom region of the core play the role of igniter to operate the UCFR for 60 years without refueling. A metallic form is selected as a burning fuel region material after the LEU location. HT-9 and sodium are used as cladding and coolant materials, respectively. In the present study, MATRA-LMR, subchannel analysis code, is used for evaluating the safety design limit of the UCFR-100 in terms of fuel, cladding, and coolant temperature distributions in the core as design criteria of a general fast reactor. The start-up period (0 year of operation), the middle of operating period (30 years of operation), and the end of operating cycle (60 years of operation) are analyzed and evaluated. The maximum cladding surface temperature (MCST) at the BOC (beginning of core life) is 498 °C on average and 551 °C when considering peaking factor, while the MCST at the MOC (middle of core life) is 498 °C on average and 548 °C in the hot channel, respectively, and the MCST at the EOC (end of core life) is 499 °C on average and 538 °C in the hot channel, respectively. The maximum cladding surface temperature over the long cycle is found at the BOC due to its high peaking factor. It is found that all results including fuel rods, cladding, and coolant exit temperature are below the safety limit of general SFR design criteria.

  9. Ultra-sensitive Flow Injection Analysis (FIA) determination of calcium in ice cores at ppt level.

    Science.gov (United States)

    Traversi, R; Becagli, S; Castellano, E; Maggi, V; Morganti, A; Severi, M; Udisti, R

    2007-07-02

    A Flow Injection Analysis (FIA) spectrofluorimetric method for calcium determination in ice cores was optimised in order to achieve better analytical performances which would make it suitable for reliable calcium measurements at ppt level. The method here optimised is based on the formation of a fluorescent compound between Ca and Quin-2 in buffered environment. A careful evaluation of operative parameters (reagent concentration, buffer composition and concentration, pH), influence of interfering species possibly present in real samples and potential favourable effect of surfactant addition was carried out. The obtained detection limit is around 15 ppt, which is one order of magnitude lower than the most sensitive Flow Analysis method for Ca determination currently available in literature and reproducibility is better than 4% for Ca concentrations of 0.2 ppb. The method was validated through measurements performed in parallel with Ion Chromatography on 200 samples from an alpine ice core (Lys Glacier) revealing an excellent fit between the two chemical series. Calcium stratigraphy in Lys ice core was discussed in terms of seasonal pattern and occurrence of Saharan dust events.

  10. Analysis of three-dimensional thermo-hydraulic phenomena in the reactor core of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S.; Lee, Y. B.; Jang, W. P.; Ha, K. S.; Jung, H. Y. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    The mismatch between power and flow under the transient condition of LMFBR (Liquid Metal cooled Fast Breeder Reactor) core results in thermal stratification in hot pool. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response, therefore three-dimensional analysis of thermo-hydraulic phenomena is necessary. In this study, the thermo-hydraulic phenomena under normal operating condition and unprotected transient condition of LMFBR is investigated using which is the three-dimensional analysis code, COMMIX-1AR/P. The basic input data is based on the design data of KALIMER-600, which is sodium-cooled fast breeder reactor developed by KAERI. COMMIX-1AR/P code has not a reactivity model and the power and core flowrate must be supplied in the input data. In this study, results of SSC-K calculation is used. The temperature and velocity distributions are calculated and compared with those of SSC-K calculation results. The UTOF(Unprotected Loss Of Flow) accident is calculated using COMMIX-1AR/P and the temperature and velocity distributions in the total reactor core are calculated and the natural circulation mode under this transient condition is investigated.

  11. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Jonathan, E-mail: JMitchell16@slb.com; Fordham, Edmund J. [Schlumberger Gould Research, High Cross, Madingley Road, Cambridge CB3 0EL (United Kingdom)

    2014-11-15

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  12. Calculation and analysis of generator limiting regimes with respect to stator end core heating

    Directory of Open Access Journals (Sweden)

    Kostić Miloje

    2015-01-01

    Full Text Available A new simplified procedure for defining the limiting operating regimes on the generator capability curve, with respect to stator end core heating, is proposed and described in this paper. First of all, a simplified analysis of axial flux leakage that penetrates into the end plates of the stator is carried out and the corresponding power losses are calculated. Then the analysis of measured point temperature increases over the stator end core, and a qualitative and quantitative overview of the effects, are presented. A simplified procedure for defining the limiting regime with regard to the heating stator end core, which is illustrated for the case of an operating diagram for a given generator of apparent power of 727 MVA (B2 is also described. The given limiting line constructed using this method is similar to the appropriate line constructed on the basis of complex and lengthy factory and on-site tests performed by the manufacturer and the user. According to the results and the check, the proposed method has been proved and the application of the simplified procedure can be recommended for use along with other procedures, at least when it comes to similar synchronous generators in Serbia's Electric Power Industry.

  13. Contributed review: nuclear magnetic resonance core analysis at 0.3 T.

    Science.gov (United States)

    Mitchell, Jonathan; Fordham, Edmund J

    2014-11-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general.

  14. Spin-orbit coupling in a hexagonal ring of pendula

    CERN Document Server

    Salerno, Grazia; Ozawa, Tomoki; Price, Hannah M; Taxis, Ludovic; Pugno, Nicola M; Carusotto, Iacopo

    2016-01-01

    We consider the mechanical motion of a system of six macroscopic pendula which are connected with springs and arranged in a hexagonal geometry. When the springs are pre-tensioned, the coupling between neighbouring pendula along the longitudinal (L) and the transverse (T) directions are different: identifying the motion along the L and T directions as a spin-like degree of freedom, we theoretically and experimentally verify that the pre-tensioned springs result in a tunable spin-orbit coupling. We elucidate the structure of such a spin-orbit coupling in the extended two-dimensional honeycomb lattice, making connections to physics of graphene. The experimental frequencies and the oscillation patterns of the eigenmodes for the hexagonal ring of pendula are extracted from a spectral analysis of the motion of the pendula in response to an external excitation and are found to be in good agreement with our theoretical predictions. We anticipate that extending this classical analogue of quantum mechanical spin-orbit ...

  15. OUT-OF-PLANE COMPRESSIVE PROPERTIES OF HEXAGONAL PAPER HONEYCOMBS

    Institute of Scientific and Technical Information of China (English)

    WANG Dongmei; WANG Zhiwei

    2007-01-01

    The compressive behaviour of paper honeycombs is studied by means of an experimental analysis. Experiment results show how geometry aspects of hexagonal paper honeycombs, e.g. the height of paper honeycomb, the thickness and length of honeycomb cell-wall, the drawing ratio of hexagonal honeycomb, affect the compressive properties of the paper honeycombs. It is in good agreement with the theory model. The constraint factor K of the critical buckling stress is mainly determined by the length of honeycomb cell-wall. It can be described as K=1.54 for B type paper honeycombs and K=3.32 for D type paper honeycombs. The plateau stress is the power exponent function of the thickness to length ratio of honeycomb cell-wall, and the experiment results show that the constant is 13.2 and the power exponent is 1.77. The research results can be used to characterize and improve efficiently the compressive properties of paper honeycombs.

  16. Analysis of containment venting following a core damage at a BWR Mark I using THALES-2

    Energy Technology Data Exchange (ETDEWEB)

    Widodo, Surip [Nuclear Safety Technology Development Center, National Nuclear Energy Agency (BATAN), Tangerang (Indonesia); Ishikawa, Jun; Muramatsu, Ken [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Sakamoto, Toru [Toshiba Advanced System Co., Kawasaki, Kanagawa (Japan)

    2000-11-01

    Analysis of containment venting following a core damage at a boiling water reactor (BWR) Mark I using THALES-2 was performed. In this analysis, the effect of various parameters, namely, the areas of the vent path, containment venting pressure, and accident sequences on the containment thermodynamic response, and radionuclide transport and release in the containment venting at a BWR was examined. The code THALES-2B developed by the Japan Atomic Energy Research Institute (JAERI) was used in this analysis. The model plant in this analysis was the Browns Ferry plant. From this analysis was found that the 4-inch pipe of containment venting flow path is sufficient to maintain the containment pressure in the specified range if the containment was pressurized by the decay heat power. The entrainment by the pool swelling as well as by the flashing was not occurred during the containment venting. The source terms are not sensitive to the variation of containment venting flow path area. The containment venting pressure operation setting point has important rule in the containment venting. In the containment venting, the source terms are not sensitive to the accident sequence, except for Sr source term. In order to get better understanding on the containment venting strategy, the following analyses are necessary. Analyses of accident sequence which has a high power such as anticipated transient without scram are necessary, as well as analyses of accident sequence which pressurize the containment before the core damage. (author)

  17. Tank 241-AZ-102 Privatization Push Mode Core Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    TEMPLETON, A.M.

    1999-07-08

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for samples obtained from tank 241-AZ-102. The purpose of this sampling event is to obtain information about the characteristics of the contents of 241-AZ-102. Push mode core samples will be obtained from risers 15C and 24A to provide sufficient material for the chemical analyses and tests required to satisfy these data quality objectives. The 222-S Laboratory will extrude core samples, composite the liquids and solids, perform chemical analyses, and provide subsamples to the Process Chemistry Laboratory. The Process Chemistry Laboratory will prepare test plans and perform process tests to evaluate the behavior of the 241-AZ-102 waste undergoing the retrieval and treatment scenarios defined in the applicable DQOs. Requirements for analyses of samples originating in the process tests will be documented in the corresponding test plan.

  18. Failure analysis of bolted joints in foam-core sandwich composites

    DEFF Research Database (Denmark)

    Zabihpoor, M.; Moslemian, Ramin; Afshin, M.

    2008-01-01

    This study represents an effort to predict the bearing strength, failure modes, and failure load of bolted joints in foam-core sandwich composites. The studied joints have been used in a light full composite airplane. By using solid laminates, a new design for the joint zone is developed....... These solid laminates include a number of glass plies with total thickness equal to core thickness. The effect of solid laminate size and interface angle of foam -solid laminate in the bonding zone on the bearing strength, failure loads and type of modes are investigated. The numerical study is performed...... using 3D FEM in ANSYS commercial code. Tsai-Wu failure criterion is used in the failure analysis. The results indicate that the most important parameter in the proposed joint zone design is the foam -solid laminate interface angle which plays an important role on the value of failure criterion (damage...

  19. Low time resolution analysis of polar ice cores cannot detect impulsive nitrate events

    CERN Document Server

    Smart, D F; Melott, A L; Laird, C M

    2015-01-01

    Ice cores are archives of climate change and possibly large solar proton events (SPEs). Wolff et al. (2012) used a single event, a nitrate peak in the GISP2-H core, which McCracken et al. (2001a) time associated with the poorly quantified 1859 Carrington event, to discredit SPE-produced, impulsive nitrate deposition in polar ice. This is not the ideal test case. We critique the Wolff et al. analysis and demonstrate that the data they used cannot detect impulsive nitrate events because of resolution limitations. We suggest re-examination of the top of the Greenland ice sheet at key intervals over the last two millennia with attention to fine resolution and replicate sampling of multiple species. This will allow further insight into polar depositional processes on a sub-seasonal scale, including atmospheric sources, transport mechanisms to the ice sheet, post-depositional interactions, and a potential SPE association.

  20. Review of core disruptive accident analysis for liquid-metal cooled fast reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. C.; Na, B. C.; Hahn, D. H

    1997-04-01

    Analysis methodologies of core disruptive accidents (CDAs) are reviewed. The role of CDAS in the overall safety evaluation of fast reactors has not always been well defined nor universally agreed upon. However, they have become a traditional issue in LMR safety, design, and licensing. The study is for the understanding of fast reactor behavior under CDA conditions to establish the consequences of such conditions and to provide a basis for evaluating consequence limiting design features for the KALIMER developments. The methods used to analyze CDAs from initiating event to complete core disruption are described. Two examples of CDA analyses for CRBRP and ALMR are given and R and D needed for better understanding of CDA phenomena are proposed. (author). 10 refs., 2 tabs., 3 figs

  1. CoreFlow: A computational platform for integration, analysis and modeling of complex biological data

    DEFF Research Database (Denmark)

    Pasculescu, Adrian; Schoof, Erwin; Creixell, Pau

    2014-01-01

    between data generation, analysis and manuscript writing. CoreFlow is being released to the scientific community as an open-sourced software package complete with proteomics-specific examples, which include corrections for incomplete isotopic labeling of peptides (SILAC) or arginine-to-proline conversion...... provides programmers with a framework to manage data in real-time. It allows users to upload data into a relational database (MySQL), and to create custom scripts in high-level languages such as R, Python, or Perl for processing, correcting and modeling this data. CoreFlow organizes these scripts...... into project-specific pipelines, tracks interdependencies between related tasks, and enables the generation of summary reports as well as publication-quality images. As a result, the gap between experimental and computational components of a typical large-scale biology project is reduced, decreasing the time...

  2. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  3. Core-annular miscible two-fluid flow in a slippery pipe: A stability analysis

    Science.gov (United States)

    Chattopadhyay, Geetanjali; Usha, Ranganathan; Sahu, Kirti Chandra

    2017-09-01

    This study is motivated by the preliminary direct numerical simulations in double-diffusive (DD) core-annular flows with slip at the wall which displayed elliptical shaped instability patterns as in a rigid pipe case; however, slip at the pipe wall delays the onset of instability for a range of parameters and increases the phase speed. This increased our curiosity to have a thorough understanding of the linear stability characteristics of the miscible DD two-fluid flow in a pipe with slip at the pipe wall. The present study, therefore, addresses the linear stability of viscosity-stratified core-annular Poiseuille flow of miscible fluids with matched density in a slippery pipe in the presence of two scalars diffusing at different rates. The physical mechanisms responsible for the occurrence of instabilities in the DD system are explained through an energy budget analysis. The differences and similarities between core-annular flow in a slippery pipe and in a plane channel with velocity slip at the walls are explored. The stability characteristics are significantly affected by the presence of slip. The diffusivity effect is non-monotonic in a DD system. A striking feature of instability is that only a band of wavenumbers is destabilized in the presence of moderate to large inertial effects. Both the longwave and shortwave are stabilized at small Reynolds numbers. Slip exhibits a dual role of stabilizing or destabilizing the flow. The preliminary direct numerical simulations confirm the predictions of the linear stability analysis. The present study reveals that it may be possible to control the instabilities in core-annular pressure driven pipe flows by imposing a velocity slip at the walls.

  4. Preliminary safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2001-06-01

    KAERI is currently developing the conceptual design of a Liquid Metal Reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term Nuclear R and D Program. KALIMER addresses key issues regarding future nuclear power plants such as plant safety, economics, proliferation, and waste. In this report, descriptions of safety design features and safety analyses results for selected ATWS accidents for the breakeven core KALIMER are presented. First, the basic approach to achieve the safety goal is introduced in Chapter 1, and the safety evaluation procedure for the KALIMER design is described in Chapter 2. It includes event selection, event categorization, description of design basis events, and beyond design basis events.In Chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. The KALIMER core and plant system are designed to assure benign performance during a selected set of events without either reactor control or protection system intervention. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed to investigate the KALIMER system response to the events. In Chapter 4, the design of the KALIMER containment dome and the results of its performance analyses are presented. The design of the existing containment and the KALIMER containment dome are compared in this chapter. Procedure of the containment performance analysis and the analysis results are described along with the accident scenario and source terms. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in Chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using mathematical formulations developed in the framework of the Modified Bethe-Tait method. Work energy potential was then calculated based on the isentropic fuel expansion model.

  5. Method for exfoliation of hexagonal boron nitride

    Science.gov (United States)

    Lin, Yi (Inventor); Connell, John W. (Inventor)

    2012-01-01

    A new method is disclosed for the exfoliation of hexagonal boron nitride into mono- and few-layered nanosheets (or nanoplatelets, nanomesh, nanoribbons). The method does not necessarily require high temperature or vacuum, but uses commercially available h-BN powders (or those derived from these materials, bulk crystals) and only requires wet chemical processing. The method is facile, cost efficient, and scalable. The resultant exfoliated h-BN is dispersible in an organic solvent or water thus amenable for solution processing for unique microelectronic or composite applications.

  6. Diagonal form factors and hexagon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Yunfeng [Institute for Theoretical Physics, ETH Zürich,Honggerberg, Zürich, 8093 (Switzerland); Petrovskii, Andrei [Institut de Physique Théorique, CEA, URA 2306 CNRS Saclay,Gif-sur-Yvette, F91191 (France)

    2016-07-25

    We study the heavy-heavy-light (HHL) three-point functions in the planar N=4 super-Yang-Mills theory using the recently proposed hexagon bootstrap program http://arxiv.org/abs/1505.06745. We prove the conjecture of Bajnok, Janik and Wereszczynski http://dx.doi.org/10.1007/JHEP09(2014)050 on the polynomial L-dependence of HHL structure constant up to the leading finite-size corrections, where L is the length of the heavy operators. The proof is presented for a specific set-up but the method can be applied to more general situations.

  7. Ferroelectricity of multiferroic hexagonal TmMnO3 ceramics synthesized under high pressure

    Science.gov (United States)

    Wang, L. J.; Feng, S. M.; Zhu, J. L.; Yu, R. C.; Jin, C. Q.; Yu, W.; Wang, X. H.; Li, L. T.

    2007-10-01

    Dense hexagonal TmMnO3 ceramics were synthesized by solid-state reaction technique combined with high-pressure treatment which significantly increased the density of ceramic samples. The crystal structure of the hexagonal TmMnO3 oxide was refined by using Rietveld analysis based on powder x-ray diffraction experiment. We observed obvious dielectric peaks through dielectric measurement on the specimen subjected to postannealing in oxygen atmosphere. A ferroelectric-paraelectric transition around 348°C is identified. Polarization-electric field hysteresis (P-E ) loop measurement proved the ferroelectricity of the sample at room temperature.

  8. Elaboration of nickel-impregnated over hexagonal mesoporous materials and their catalytic application

    Directory of Open Access Journals (Sweden)

    M. Laribi

    2016-11-01

    Full Text Available Hexagonal mesoporous silicas with different nickel contents have been synthesized and characterized by several techniques such as N2 physical adsorption, elemental analysis, XRD, TEM and temperature programmed reduction (TPR. In fact, the nickel-impregnated over hexagonal mesoporous silicas showed both high activity and high selectivity for Friedel–Crafts alkylations of benzene with benzyl chloride. The kinetics of the reaction over these catalysts have been investigated and the reaction has been extended to other substrates like toluene, p-xylene, anisole, naphthalene and methylnaphthalene.

  9. Improving performance portability for GPU-specific OpenCL kernels on multi-core/many-core CPUs by analysis-based transformations*#

    Institute of Scientific and Technical Information of China (English)

    Mei WEN; Da-fei HUANG; Chang-qing XUN; Dong CHEN

    2015-01-01

    OpenCL is an open heterogeneous programming framework. Although OpenCL programs are func-tionally portable, they do not provide performance portability, so code transformation often plays an irreplaceable role. When adapting GPU-specifi c OpenCL kernels to run on multi-core/many-core CPUs, coarsening the thread granularity is necessary and thus has been extensively used. However, locality concerns exposed in GPU-specifi c OpenCL code are usually inherited without analysis, which may give side-effects on the CPU performance. Typi-cally, the use of OpenCL’s local memory on multi-core/many-core CPUs may lead to an opposite performance effect, because local-memory arrays no longer match well with the hardware and the associated synchronizations are costly. To solve this dilemma, we actively analyze the memory access patterns using array-access descriptors derived from GPU-specifi c kernels, which can thus be adapted for CPUs by (1) removing all the unwanted local-memory arrays together with the obsolete barrier statements and (2) optimizing the coalesced kernel code with vectorization and locality re-exploitation. Moreover, we have developed an automated tool chain that makes this transformation of GPU-specifi c OpenCL kernels into a CPU-friendly form, which is accompanied with a scheduler that forms a new OpenCL runtime. Experiments show that the automated transformation can improve OpenCL kernel performance on a multi-core CPU by an average factor of 3.24. Satisfactory performance improvements are also achieved on Intel’s many-integrated-core coprocessor. The resultant performance on both architectures is better than or comparable with the corresponding OpenMP performance.

  10. A finite element thermal analysis of various dowel and core materials

    Directory of Open Access Journals (Sweden)

    Shanti Varghese

    2012-01-01

    Conclusion: Non-metallic dowel and core materials such as fibre reinforced composite dowels (FRC generate greater stress than metallic dowel and core materials. This emphasized the preferable use of the metallic dowel and core materials in the oral environment.

  11. Synthesis of hexagonal close-packed gold nanostructures.

    Science.gov (United States)

    Huang, Xiao; Li, Shaozhou; Huang, Yizhong; Wu, Shixin; Zhou, Xiaozhu; Li, Shuzhou; Gan, Chee Lip; Boey, Freddy; Mirkin, Chad A; Zhang, Hua

    2011-01-01

    Solid gold is usually most stable as a face-centred cubic (fcc) structure. To date, no one has synthesized a colloidal form of Au that is exclusively hexagonal close-packed (hcp) and stable under ambient conditions. Here we report the first in situ synthesis of dispersible hcp Au square sheets on graphene oxide sheets, which exhibit an edge length of 200-500 nm and a thickness of ~ 2.4 nm (~ 16 Au atomic layers). Interestingly, the Au square sheet transforms from hcp to a fcc structure on exposure to an electron beam during transmission electron microscopy analysis. In addition, as the square sheet grows thicker (from ~ 2.4 to 6 nm), fcc segments begin to appear. A detailed experimental analysis of these structures shows that for structures with ultrasmall dimensions (for example, <~ 6 nm thickness for the square sheets), the previously unobserved pure hcp structure becomes stable and isolable.

  12. Nylon flocked swab severely reduces Hexagon Obti sensibility.

    Science.gov (United States)

    Frippiat, Christophe; De Roy, Gilbert; Fontaine, Louis-Marie; Dognaux, Sophie; Noel, Fabrice; Heudt, Laeticia; Lepot, Laurent

    2015-02-01

    Hexagon Obti immunological blood test and flocked swab are widely used in forensic laboratories. Nevertheless, up to now, no compatibility tests have been published between sampling with the ethylene oxide treated flocked swab and the Hexagon Obti blood detection strip. In this study, we investigated this compatibility. Our work shows that sampling with ethylene oxide treated flocked swab reduces by a factor of at least 100 the detection threshold of blood using the Hexagon Obti immunological test.

  13. Synthesis of 2D Hexagonal Mesoporous Silica Using Amino Acid-based Surfactant Templating

    Directory of Open Access Journals (Sweden)

    Xu Hailan

    2016-01-01

    Full Text Available Ordered 2D hexagonal and parallel arranged pore channel mesoporous silica materials with homogeneous size and spherical shape have been synthesized by using amino acid-based surfactant templating, their ordered mesostructures were characterized by infrared spectroscopy, X-ray diffraction patterns (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM and nitrogen sorption analysis.

  14. Holland's Hexagonal Personality Model for a Sample of Greek University Students

    Science.gov (United States)

    Sidiropoulou-Dimakakou, Despina; Mylonas, Kostas; Argyropoulou, Katerina

    2008-01-01

    The aim of this study was to describe the hexagonal person-environment fit for the Holland personality types for a Greek sample of 156 university students. The statistical analysis followed both exploratory--such as multidimensional scaling--and confirmatory methods--such as covariance structure models. These methods were employed in an…

  15. Two-dimensional hexagonal semiconductors beyond graphene

    Science.gov (United States)

    Nguyen, Bich Ha; Hieu Nguyen, Van

    2016-12-01

    The rapid and successful development of the research on graphene and graphene-based nanostructures has been substantially enlarged to include many other two-dimensional hexagonal semiconductors (THS): phosphorene, silicene, germanene, hexagonal boron nitride (h-BN) and transition metal dichalcogenides (TMDCs) such as MoS2, MoSe2, WS2, WSe2 as well as the van der Waals heterostructures of various THSs (including graphene). The present article is a review of recent works on THSs beyond graphene and van der Waals heterostructures composed of different pairs of all THSs. One among the priorities of new THSs compared to graphene is the presence of a non-vanishing energy bandgap which opened up the ability to fabricate a large number of electronic, optoelectronic and photonic devices on the basis of these new materials and their van der Waals heterostructures. Moreover, a significant progress in the research on TMDCs was the discovery of valley degree of freedom. The results of research on valley degree of freedom and the development of a new technology based on valley degree of freedom-valleytronics are also presented. Thus the scientific contents of the basic research and practical applications os THSs are very rich and extremely promising.

  16. Phylogenetic analysis of anaerobic psychrophilic enrichment cultures obtained from a greenland glacier ice core

    Science.gov (United States)

    Sheridan, Peter P.; Miteva, Vanya I.; Brenchley, Jean E.

    2003-01-01

    The examination of microorganisms in glacial ice cores allows the phylogenetic relationships of organisms frozen for thousands of years to be compared with those of current isolates. We developed a method for aseptically sampling a sediment-containing portion of a Greenland ice core that had remained at -9 degrees C for over 100,000 years. Epifluorescence microscopy and flow cytometry results showed that the ice sample contained over 6 x 10(7) cells/ml. Anaerobic enrichment cultures inoculated with melted ice were grown and maintained at -2 degrees C. Genomic DNA extracted from these enrichments was used for the PCR amplification of 16S rRNA genes with bacterial and archaeal primers and the preparation of clone libraries. Approximately 60 bacterial inserts were screened by restriction endonuclease analysis and grouped into 27 unique restriction fragment length polymorphism types, and 24 representative sequences were compared phylogenetically. Diverse sequences representing major phylogenetic groups including alpha, beta, and gamma Proteobacteria as well as relatives of the Thermus, Bacteroides, Eubacterium, and Clostridium groups were found. Sixteen clone sequences were closely related to those from known organisms, with four possibly representing new species. Seven sequences may reflect new genera and were most closely related to sequences obtained only by PCR amplification. One sequence was over 12% distant from its closest relative and may represent a novel order or family. These results show that phylogenetically diverse microorganisms have remained viable within the Greenland ice core for at least 100,000 years.

  17. Continuous flow analysis of total organic carbon in polar ice cores.

    Science.gov (United States)

    Federer, Urs; Kaufmann, Patrik R; Hutterli, Manuel A; Schüpbach, Simon; Stocker, Thomas F

    2008-11-01

    Ice cores are a widely used archive to reconstruct past changes of the climate system. This is done by measuring the concentration of substances in the ice and in the air of bubbles enclosed in ice. Some species pertaining to the carbon cycle (e.g., CO2, CH4) are routinely measured. However, information about the organic fraction of the impurities in polar ice is still very limited. Therefore, we developed a new method to determine the content of total organic carbon (TOC) in ice cores using a continuous flow analysis (CFA) system. The method is based on photochemical oxidation of TOC and the electrolytic quantification of the CO2 produced during oxidation. The TOC instrument features a limit of detection of 2 ppbC and a response time of 60 s at a sample flow rate of 0.7 mL/min and a linear measurement range of 2-4000 ppbC. First measurements on the ice core from Talos Dome, Antarctica, reveal TOC concentrations varying between 80 and 360 ppbC in the 20 m section presented.

  18. TRAC analysis of upper plenum thermal-hydraulic phenomena in the slab core test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shire, P.; Boyack, B.

    1986-01-01

    The Transient Reactor Analysis Code, TRAC-PF1/MOD1, was used to analyze an upper-plenum model of the Slab Core Test Facility (SCTF). The SCTF is a two-dimensional thermal-hydraulic model of a pressurized water reactor used for core-reflood simulations by the Japan Atomic Energy Research Institute. The purpose of this study was to evaluate the effects of code input-model refinements on the comparison between TRAC calculations and test data. Of particular interest were the comparisons of upper-plenum liquid levels and of the distributions of liquid radially across the upper-plenum. The upper-plenum region was selected for study. The test data indicated that the liquid level responded to the onset of emergency core cooling (ECC) by rising in the upper-plenum immediately when injection occurred. However, the early TRAC results indicated no significant liquid level increase until approx.300 s after the injection. Test data also indicated a liquid gradient rising toward the hot-leg entrance, but none was observed with TRAC.

  19. Analysis of Fracture in Cores from the Tuff Confining Unit beneath Yucca Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Lance Prothro

    2008-03-01

    The role fractures play in the movement of groundwater through zeolitic tuffs that form the tuff confining unit (TCU) beneath Yucca Flat, Nevada Test Site, is poorly known. This is an important uncertainty, because beneath most of Yucca Flat the TCU lies between the sources of radionuclide contaminants produced by historic underground nuclear testing and the regional carbonate aquifer. To gain a better understanding of the role fractures play in the movement of groundwater and radionuclides through the TCU beneath Yucca Flat, a fracture analysis focusing on hydraulic properties was performed on conventional cores from four vertical exploratory holes in Area 7 of Yucca Flat that fully penetrate the TCU. The results of this study indicate that the TCU is poorly fractured. Fracture density for all fractures is 0.27 fractures per vertical meter of core. For open fractures, or those observed to have some aperture, the density is only 0.06 fractures per vertical meter of core. Open fractures are characterized by apertures ranging from 0.1 to 10 millimeter, and averaging 1.1 millimeter. Aperture typically occurs as small isolated openings along the fracture, accounting for only 10 percent of the fracture volume, the rest being completely healed by secondary minerals. Zeolite is the most common secondary mineral occurring in 48 percent of the fractures observed.

  20. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (HE = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (HE = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher genetic

  1. Development of core design/analysis technology for integral reactor; verification of SMART nuclear design by Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Hyo; Hong, In Seob; Han, Beom Seok; Jeong, Jong Seong [Seoul National University, Seoul (Korea)

    2002-03-01

    The objective of this project is to verify neutronics characteristics of the SMART core design as to compare computational results of the MCNAP code with those of the MASTER code. To achieve this goal, we will analyze neutronics characteristics of the SMART core using the MCNAP code and compare these results with results of the MASTER code. We improved parallel computing module and developed error analysis module of the MCNAP code. We analyzed mechanism of the error propagation through depletion computation and developed a calculation module for quantifying these errors. We performed depletion analysis for fuel pins and assemblies of the SMART core. We modeled a 3-D structure of the SMART core and considered a variation of material compositions by control rods operation and performed depletion analysis for the SMART core. We computed control-rod worths of assemblies and a reactor core for operation of individual control-rod groups. We computed core reactivity coefficients-MTC, FTC and compared these results with computational results of the MASTER code. To verify error analysis module of the MCNAP code, we analyzed error propagation through depletion of the SMART B-type assembly. 18 refs., 102 figs., 36 tabs. (Author)

  2. BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis, Version III

    Energy Technology Data Exchange (ETDEWEB)

    Vondy, D.R.; Fowler, T.B.; Cunningham, G.W. III.

    1981-06-01

    This report is a condensed documentation for VERSION III of the BOLD VENTURE COMPUTATION SYSTEM for nuclear reactor core analysis. An experienced analyst should be able to use this system routinely for solving problems by referring to this document. Individual reports must be referenced for details. This report covers basic input instructions and describes recent extensions to the modules as well as to the interface data file specifications. Some application considerations are discussed and an elaborate sample problem is used as an instruction aid. Instructions for creating the system on IBM computers are also given.

  3. Investigating the Use of 3-D Deterministic Transport for Core Safety Analysis

    Energy Technology Data Exchange (ETDEWEB)

    H. D. Gougar; D. Scott

    2004-04-01

    An LDRD (Laboratory Directed Research and Development) project is underway at the Idaho National Laboratory (INL) to demonstrate the feasibility of using a three-dimensional multi-group deterministic neutron transport code (Attila®) to perform global (core-wide) criticality, flux and depletion calculations for safety analysis of the Advanced Test Reactor (ATR). This paper discusses the ATR, model development, capabilities of Attila, generation of the cross-section libraries, comparisons to experimental results for Advanced Fuel Cycle (AFC) concepts, and future work planned with Attila.

  4. Genome-wide detection and analysis of hippocampus core promoters using DeepCAGE

    DEFF Research Database (Denmark)

    Valen, Eivind; Pascarella, Giovanni; Chalk, Alistair;

    2009-01-01

    in a given tissue. Here, we present a new method for high-throughput sequencing of 5' cDNA tags-DeepCAGE: merging the Cap Analysis of Gene Expression method with ultra-high-throughput sequence technology. We apply DeepCAGE to characterize 1.4 million sequenced TSS from mouse hippocampus and reveal a wealth...... of novel core promoters that are preferentially used in hippocampus: This is the most comprehensive promoter data set for any tissue to date. Using these data, we present evidence indicating a key role for the Arnt2 transcription factor in hippocampus gene regulation. DeepCAGE can also detect promoters...

  5. Simultaneous stable isotope analysis of methane and nitrous oxide on ice core samples

    Directory of Open Access Journals (Sweden)

    C. J. Sapart

    2011-12-01

    Full Text Available Methane and nitrous oxide are important greenhouse gases which show a strong increase in atmospheric mixing ratios since pre-industrial time as well as large variations during past climate changes. The understanding of their biogeochemical cycles can be improved using stable isotope analysis. However, high-precision isotope measurements on air trapped in ice cores are challenging because of the high susceptibility to contamination and fractionation.

    Here, we present a dry extraction system for combined CH4 and N2O stable isotope analysis from ice core air, using an ice grating device. The system allows simultaneous analysis of δD(CH4 or δ13C(CH4, together with δ15N(N2O, δ18O(N2O and δ15N(NO+ fragment on a single ice core sample, using two isotope mass spectrometry systems. The optimum quantity of ice for analysis is about 600 g with typical "Holocene" mixing ratios for CH4 and N2O. In this case, the reproducibility (1σ is 2.1‰ for δD(CH4, 0.18‰ for δ13C(CH4, 0.51‰ for δ15N(N2O, 0.69‰ for δ18O(N2O and 1.12‰ for δ15N(NO+ fragment. For smaller amounts of ice the standard deviation increases, particularly for N2O isotopologues. For both gases, small-scale intercalibrations using air and/or ice samples have been carried out in collaboration with other institutes that are currently involved in isotope measurements of ice core air. Significant differences are shown between the calibration scales, but those offsets are consistent and can therefore be corrected for.

  6. Compression After Impact Experiments and Analysis on Honeycomb Core Sandwich Panels with Thin Facesheets

    Science.gov (United States)

    McQuigg, Thomas D.

    2011-01-01

    A better understanding of the effect of impact damage on composite structures is necessary to give the engineer an ability to design safe, efficient structures. Current composite structures suffer severe strength reduction under compressive loading conditions, due to even light damage, such as from low velocity impact. A review is undertaken to access the current state-of-development in the areas of experimental testing, and analysis methods. A set of experiments on honeycomb core sandwich panels, with thin woven fiberglass cloth facesheets, is described, which includes detailed instrumentation and unique observation techniques.

  7. Analysis of core damage frequency: Peach Bottom, Unit 2 internal events appendices

    Energy Technology Data Exchange (ETDEWEB)

    Kolaczkowski, A.M.; Cramond, W.R.; Sype, T.T.; Maloney, K.J.; Wheeler, T.A.; Daniel, S.L. (Science Applications International Corp., Albuquerque, NM (USA); Sandia National Labs., Albuquerque, NM (USA))

    1989-08-01

    This document contains the appendices for the accident sequence analysis of internally initiated events for the Peach Bottom, Unit 2 Nuclear Power Plant. This is one of the five plant analyses conducted as part of the NUREG-1150 effort for the Nuclear Regulatory Commission. The work performed and described here is an extensive reanalysis of that published in October 1986 as NUREG/CR-4550, Volume 4. It addresses comments from numerous reviewers and significant changes to the plant systems and procedures made since the first report. The uncertainty analysis and presentation of results are also much improved, and considerable effort was expended on an improved analysis of loss of offsite power. The content and detail of this report is directed toward PRA practitioners who need to know how the work was done and the details for use in further studies. The mean core damage frequency is 4.5E-6 with 5% and 95% uncertainty bounds of 3.5E-7 and 1.3E-5, respectively. Station blackout type accidents (loss of all ac power) contributed about 46% of the core damage frequency with Anticipated Transient Without Scram (ATWS) accidents contributing another 42%. The numerical results are driven by loss of offsite power, transients with the power conversion system initially available operator errors, and mechanical failure to scram. 13 refs., 345 figs., 171 tabs.

  8. Fluid-structure interaction analysis of a hypothetical core disruptive accident in LMFBRs

    Energy Technology Data Exchange (ETDEWEB)

    Liu Chuang [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)]. E-mail: lch98@mails.tsinghua.edu.cn; Zhang Xiong [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Lu Mingwan [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2005-03-01

    To ensure safety, it is necessary to assess the integrity of a reactor vessel of liquid-metal fast breeder reactor (LMFBR) under HCDA. Several important problems for a fluid-structural interaction analysis of HCDA are discussed in the present paper. Various loading models of hypothetical core disruptive accident (HCDA) are compared and the polytropic processes of idea gas (PPIG) law is recommended. In order to define a limited total energy release, a '5% truncation criterion' is suggested. The relationship of initial pressure of gas bubble and the total energy release is given. To track the moving interfaces and to avoid the severe mesh distortion an arbitrary Lagrangrian-Eulerian (ALE) approach is adopted in the finite element modeling (FEM) analysis. Liquid separation and splash from a free surface are discussed. By using an elasticity solution under locally uniform pressure, two simplified analytical solutions for 3D and axi-symmetric case of the liquid impact pressure on roof slab are derived. An axi-symmetric finite elements code FRHCDA for fluid-structure interaction analysis of hypothetical core disruptive accident in LMFBR is developed. The CONT benchmark problem is calculated. The numerical results agree well with those from published papers.

  9. Analysis of Postulated Core Meltdown of an SRP Reactor - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Durant, W.S.; Brown, R.J.

    1970-10-01

    An analysis was made to determine the consequences of a postulated accident in which the core of a Savannah River Plant reactor melts down following the loss of coolant. The study was made to determine (1) the potential damage to the reactor building that could impair its integrity for confining activity and (2) the need for additional facilities to prevent the activity confinement system from being overheated by the decay heat in the debris. A preliminary report on this analysis was issued previously. The sequence of events during and following the loss of coolant has now been studied in more detail, and a computer program has been written and used to investigate transient heating effects. This is the final report of the analysis and presents the conclusions.

  10. Reliable Quantitative SERS Analysis Facilitated by Core-Shell Nanoparticles with Embedded Internal Standards.

    Science.gov (United States)

    Shen, Wei; Lin, Xuan; Jiang, Chaoyang; Li, Chaoyu; Lin, Haixin; Huang, Jingtao; Wang, Shuo; Liu, Guokun; Yan, Xiaomei; Zhong, Qiling; Ren, Bin

    2015-06-15

    Quantitative analysis is a great challenge in surface-enhanced Raman scattering (SERS). Core-molecule-shell nanoparticles with two components in the molecular layer, a framework molecule to form the shell, and a probe molecule as a Raman internal standard, were rationally designed for quantitative SERS analysis. The signal of the embedded Raman probe provides effective feedback to correct the fluctuation of samples and measuring conditions. Meanwhile, target molecules with different affinities can be adsorbed onto the shell. The quantitative analysis of target molecules over a large concentration range has been demonstrated with a linear response of the relative SERS intensity versus the surface coverage, which has not been achieved by conventional SERS methods.

  11. Feasibility analysis of real-time physical modeling using WaveCore processor technology on FPGA

    NARCIS (Netherlands)

    Verstraelen, Math; Pfeifle, Florian; Bader, Rolf

    2015-01-01

    WaveCore is a scalable many-core processor technology. This technology is specifically developed and optimized for real-time acoustical modeling applications. The programmable WaveCore soft-core processor is silicon-technology independent and hence can be targeted to ASIC or FPGA technologies. The W

  12. Quantifying the Impact of Nanoparticle Coatings and Non-uniformities on XPS Analysis: Gold/silver Core-shell Nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yung-Chen Andrew; Engelhard, Mark H.; Baer, Donald R.; Castner, David G.

    2016-03-07

    Abstract or short description: Spectral modeling of photoelectrons can serve as a valuable tool when combined with X-ray photoelectron spectroscopy (XPS) analysis. Herein, a new version of the NIST Simulation of Electron Spectra for Surface Analysis (SESSA 2.0) software, capable of directly simulating spherical multilayer NPs, was applied to model citrate stabilized Au/Ag-core/shell nanoparticles (NPs). The NPs were characterized using XPS and scanning transmission electron microscopy (STEM) to determine the composition and morphology of the NPs. The Au/Ag-core/shell NPs were observed to be polydispersed in size, non-circular, and contain off-centered Au-cores. Using the average NP dimensions determined from STEM analysis, SESSA spectral modeling indicated that washed Au/Ag-core shell NPs were stabilized with a 0.8 nm l

  13. Safety analysis for key design features of KALIMER with breakeven core

    Energy Technology Data Exchange (ETDEWEB)

    Hahn, Do Hee; Kwon, Y. M.; Chang, W. P.; Suk, S. D.; Lee, Y. B.; Jeong, K. S

    2002-04-01

    KAERI is currently developing the conceptual design of a liquid metal reactor, KALIMER (Korea Advanced Liquid MEtal Reactor) under the Long-term nuclear R and D Program. In this report, key safety design features are described and safety analyses results for typical ATWS accidents in the KALIMER design with breakeven core are presented. First, the basic approach to achieve the safety goal is introduced in chapter 1, and the event categorization and acceptance criteria for the KALIMER safety analysis are described in chapter 2. In chapter 3, results of inherent safety evaluations for the KALIMER conceptual design are presented. Safety analyses for the postulated anticipated transient without scram (ATWS) have been performed using the SSC-K code to investigate the KALIMER system response to the events. They are categorized as Bounding Events (BEs) because of their low probability of occurrence. In chapter 4, the performance analysis results of the KALIMER containment dome are described along with the HCDA accident scenario and source terms. The major containment parameters of peak pressure and peak temperature have been calculated using the CONTAIN-LMR code. Radiological consequence has been evaluated by the MACCS code. Finally, a simple methodology is introduced to investigate the core energetics behavior during HCDA in chapter 5. Sensitivity analyses have been performed for the KALIMER core behavior during super-prompt critical excursions, using SCHAMBETA code developed in the framework of the modified bethe-tait method. Work energy potentials based arising from the sodium expansion as well as the isentropic fuel expansion are then calculated to evaluate the structural integrity of the reactor vessel, reactor internals and primary coolant system of KALIMER.

  14. Power Production Analysis of the OE Buoy WEC for the CORES Project

    DEFF Research Database (Denmark)

    Lavelle, John; Kofoed, Jens Peter

    This report describes the analysis performed on the OE Buoy for the CORES project by the wave energy group at Aalborg University, Denmark. OE Buoy is a type of Oscillating Water Column (OWC) wave energy converter as part of the CORES project. This type of device is one of the most developed to ex...... meant that it was not possible to fully implement the method, as the efficiency data was too sparsely distributed as a function of Tz and Hs, but the method used here is based on the Equimar protocol to give an approximate estimate of the yearly power production....... which a total of 39 hours of power production data was collected. A data acquisition system was used to sample the sensors on board and the generator shaft power time-series data was used in the analysis here. A wave-rider buoy, located at the site of OE Buoy and operated by the Marine Institute Ireland....... This may then be used to estimate the yearly power production of the device at the test site location or another location, by using the long-term wave statistics for the given site. Additionally, the power production for a given scale of device may be estimated by applying the appropriate scaling...

  15. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  16. CORE ANALYSIS, DESIGN AND OPTIMIZATION OF A DEEP-BURN PEBBLE BED REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    B. Boer; A. M. Ougouag

    2010-05-01

    Achieving a high burnup in the Deep-Burn pebble bed reactor design, while remaining within the limits for fuel temperature, power peaking and temperature reactivity feedback, is challenging. The high content of Pu and Minor Actinides in the Deep-Burn fuel significantly impacts the thermal neutron energy spectrum. This can result in power and temperature peaking in the pebble bed core in locally thermalized regions near the graphite reflectors. Furthermore, the interplay of the Pu resonances of the neutron absorption cross sections at low-lying energies can lead to a positive temperature reactivity coefficient for the graphite moderator at certain operating conditions. To investigate the aforementioned effects a code system using existing codes has been developed for neutronic, thermal-hydraulic and fuel depletion analysis of Deep-Burn pebble bed reactors. A core analysis of a Deep-Burn Pebble Bed Modular Reactor (400 MWth) design has been performed for two Deep-Burn fuel types and possible improvements of the design with regard to power peaking and temperature reactivity feedback are identified.

  17. Role of stirring assist during solvothermal synthesis for preparing single-crystal bismuth telluride hexagonal nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Takashiri, Masayuki, E-mail: takashiri@tokai-u.jp [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Kai, Shintaro; Wada, Kodai [Department of Materials Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Takasugi, Soichi [Graduate School of Science and Technology, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Tomita, Koji [Department of Chemistry, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2016-04-15

    We investigated the role of stirring assist during solvothermal synthesis for preparing high quality bismuth telluride (Bi{sub 2}Te{sub 3}) hexagonal nanoplates. We performed a series of experiments that comprised solvothermal synthesis with stirring assist at 500 rpm and without stirring assist. As a result, high purity Bi{sub 2}Te{sub 3} hexagonal nanoplates with uniform morphology and edge length of 400–800 nm were obtained by solvothermal synthesis using stirring assist, whereas intermediate products such as tellurium and tellurium oxide compounds were also produced besides the Bi{sub 2}Te{sub 3} hexagonal nanoplates by solvothermal synthesis without stirring assist. To further study the nanostructure of the nanoplates with stirring assist, we performed high-resolution transmission electron microscopy and selected-area electron diffraction analysis. It was found that the Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of rhombohedral phases and highly single-crystalline structures. Based on the experimental and analytical results, we propose a possible reaction process and growth mechanism of the Bi{sub 2}Te{sub 3} hexagonal nanoplates. The reaction rate is the key factor to control the shapes of nanostructures. When the reaction rate was sufficient, it proceeded to the final stage, and then Bi{sub 2}Te{sub 3} nanoplates were produced. However, when the reaction rate was insufficient, the entire morphology evolution process was terminated at the intermediate stage, and intermediate products besides Bi{sub 2}Te{sub 3} nanoplates were also produced. - Highlights: • High quality Bi{sub 2}Te{sub 3} hexagonal nanoplates were prepared by solvothermal synthesis. • Role of stirring assist during the solvothermal synthesis were investigated. • Bi{sub 2}Te{sub 3} hexagonal nanoplates with edge length of 400–800 nm were obtained. • Bi{sub 2}Te{sub 3} hexagonal nanoplates were composed of single-crystalline structures. • The reaction rate is the key

  18. Elliptically distributed lozenge tilings of a hexagon

    CERN Document Server

    Betea, Dan

    2011-01-01

    We present a detailed study of a 4 parameter family of elliptic weights on tilings of a hexagon introduced by Borodin, Gorin and Rains, and generalize some of their results. In the process, we connect the combinatorics of the model with the theory of elliptic special functions. We first analyze some properties of the measure and introduce canonical coordinates that are useful for combinatorially interpreting results. We then show how the computed $n$-point function (called the elliptic Selberg density) and transitional probabilities connect to the theory of $BC_n$-symmetric multivariate elliptic special functions and difference operators discovered by Rains. In particular, the difference operators intrinsically capture the combinatorial model under study, while the elliptic Selberg density is a generalization (deformation) of probability distributions pervasive in the theory of random matrices and interacting particle systems. Based on quasi-commutation relations between elliptic difference operators, we cons...

  19. Quantum emission from hexagonal boron nitride monolayers

    Science.gov (United States)

    Tran, Toan Trong; Bray, Kerem; Ford, Michael J.; Toth, Milos; Aharonovich, Igor

    2016-01-01

    Artificial atomic systems in solids are widely considered the leading physical system for a variety of quantum technologies, including quantum communications, computing and metrology. To date, however, room-temperature quantum emitters have only been observed in wide-bandgap semiconductors such as diamond and silicon carbide, nanocrystal quantum dots, and most recently in carbon nanotubes. Single-photon emission from two-dimensional materials has been reported, but only at cryogenic temperatures. Here, we demonstrate room-temperature, polarized and ultrabright single-photon emission from a colour centre in two-dimensional hexagonal boron nitride. Density functional theory calculations indicate that vacancy-related defects are a probable source of the emission. Our results demonstrate the unprecedented potential of van der Waals crystals for large-scale nanophotonics and quantum information processing.

  20. The hexagon hypothesis: Six disruptive scenarios.

    Science.gov (United States)

    Burtles, Jim

    2015-01-01

    This paper aims to bring a simple but effective and comprehensive approach to the development, delivery and monitoring of business continuity solutions. To ensure that the arguments and principles apply across the board, the paper sticks to basic underlying concepts rather than sophisticated interpretations. First, the paper explores what exactly people are defending themselves against. Secondly, the paper looks at how defences should be set up. Disruptive events tend to unfold in phases, each of which invites a particular style of protection, ranging from risk management through to business continuity to insurance cover. Their impact upon any business operation will fall into one of six basic scenarios. The hexagon hypothesis suggests that everyone should be prepared to deal with each of these six disruptive scenarios and it provides them with a useful benchmark for business continuity.

  1. Mechanical Hysteresis of Hexagonal Boron Nitride

    Institute of Scientific and Technical Information of China (English)

    ZHOU Aiguo; LI Haoran

    2011-01-01

    Hexagonal boron nitride (h-BN) is an important structural material with layered microstructure.Because of the plastic anisotropy,this material shows obvious mechanical hysteresis (nonlinear elastic deformation).There are hysteretic loops at the cyclical load-unload stress-strain curves of h-BN.Consequently,two hot-pressed h-BN cylinders with different textures were studied.The mechanical hysteresis is heavily texture-dependent.The area of hysteretic loop is linearly related with the square of loading stresslevel.Two minor loops attached on the hysteretic loops with the same extreme stresses have congruent shapes.It can be concluded that the mechanical hysteresis of h-BN can he explained by a Kink Nonlinear Elastic model developed from the study of a ternary carbide Ti3SiC2.

  2. Permeation of Light Gases through Hexagonal Ice

    Directory of Open Access Journals (Sweden)

    Luis Gales

    2012-09-01

    Full Text Available Gas separation using porous solids have attracted great attention due to their energetic applications. There is an enormous economic and environmental interest in the development of improved technologies for relevant processes, such as H2 production, CO2 separation or O2 and N2 purification from air. New materials are needed for achieving major improvements. Crystalline materials, displaying unidirectional and single-sized pores, preferentially with low pore tortuosity and high pore density, are promising candidates for membrane synthesis. Herein, we study hexagonal ice crystals as an example of this class of materials. By slowly growing ice crystals inside capillary tubes we were able to measure the permeation of several gas species through ice crystals and investigate its relation with both the size of the guest molecules and temperature of the crystal.

  3. Dancoff Correction in Square and Hexagonal Lattices

    Energy Technology Data Exchange (ETDEWEB)

    Carlvik, I.

    1966-11-15

    This report presents the results of a series of calculations of Dancoff corrections for square and hexagonal rod lattices. The tables cover a wide range of volume ratios and moderator cross sections. The results were utilized for checking the approximative formula of Sauer and also the modification of Bonalumi to Sauer's formula. The modified formula calculates the Dancoff correction with an accuracy of 0.01 - 0.02 in cases of practical interest. Calculations have also been performed on square lattices with an empty gap surrounding the rods. The results demonstrate the error involved in treating this kind of geometry by means of homogenizing the gap and the moderator. The calculations were made on the Ferranti Mercury computer of AB Atomenergi before it was closed down. Since then FORTRAN routines for Dancoff corrections have been written, and a subroutine DASQHE is included in the report.

  4. Combinatorics of giant hexagonal bilayer hemoglobins.

    Science.gov (United States)

    Hanin, L G; Vinogradov, S N

    2000-01-01

    The paper discusses combinatorial and probabilistic models allowing to characterize various aspects of spacial symmetry and structural heterogeneity of the giant hexagonal bilayer hemoglobins (HBL Hb). Linker-dodecamer configurations of HBL are described for two and four linker types (occurring in the two most studied HBL Hb of Arenicola and Lumbricus, respectively), and the most probable configurations are found. It is shown that, for HBL with marked dodecamers, the number of 'normal-marked' pairs of dodecamers in homological position follows a binomial distribution. The group of symmetries of the dodecamer substructure of HBL is identified with the dihedral group D6. Under natural symmetry assumptions, the total dipole moment of the dodecamer substructure of HBL is shown to be zero. Biological implications of the mathematical findings are discussed.

  5. NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE

    Directory of Open Access Journals (Sweden)

    Tukiran Surbakti

    2016-03-01

    Full Text Available Abstract NEUTRONICS ANALYSIS ON MINI TEST FUEL IN THE RSG-GAS CORE. Research of UMo fuel for research reactor has been developing  right now. The fuel of  research reactor used is uranium low enrichment with high density. For supporting the development of fuel, an assessment of mini fuel in the RSG-GAS core was performed. The mini fuel are U7Mo-Al and U6Zr-Al with densitis of 7.0gU/cc and 5.2 gU/cc, respectively. The size of both fuel are the same namely 630x70.75x1.30 mm were inserted to the 3 plates of dummy fuel. Before being irradiated in the core, a calculation for safety analysis  from neutronics and thermohydrolics aspects were required. However, in this paper will discuss safety analysis of the U7Mo-Al and U6Zr-Al mini fuels from neutronic point of view.  The calculation was done using WIMSD-5B and Batan-3DIFF code. The result showed that both of the mini fuels could be irradiated in the RSG-GAS core with burn up less than 70 % within 12 cycles of operation without over limiting the safety margin. Power density of U7Mo-Al mini fuel bigger than U6Zr-Al fuel.   Key words: mini fuel, neutronics analysis, reactor core, safety analysis   Abstrak ANALISIS NEUTRONIK ELEMEN BAKAR UJI MINI DI TERAS RSG-GAS. Penelitian tentang bahan bakar UMo untuk reaktor riset terus berkembang saat ini. Bahan bakar reaktor riset yang digunakan adalah uranium pengkayaan rendah namun densitas tinggi.  Untuk mendukung pengembangan bahan bakar dilakukan uji elemen bakar mini di teras reakror RSG-GAS dengan tujuan menentukan jumlah siklus di dalam teras sehingga tercapai fraksi bakar maksimum. Bahan bakar yang diuji adalah U7Mo-Al dengan densitas 7,0 gU/cc dan U6Zr-Al densitas 5,2 gU/cc. Ukuran kedua bahan bakar uji tersebut adalah sama 630x70,75x1,30 mm dimasukkan masing masing kedalam 3 pelat dummy bahan bakar. Sebelum diiradiasi ke dalam teras reaktor maka perlu dilakukan perhitungan keselamatan baik secara neutronik maupun termohidrolik. Dalam makalah ini

  6. Pangenome and immuno-proteomics analysis of Acinetobacter baumannii strains revealed the core peptide vaccine targets.

    Science.gov (United States)

    Hassan, Afreenish; Naz, Anam; Obaid, Ayesha; Paracha, Rehan Zafar; Naz, Kanwal; Awan, Faryal Mehwish; Muhmmad, Syed Aun; Janjua, Hussnain Ahmed; Ahmad, Jamil; Ali, Amjad

    2016-09-15

    Acinetobacter baumannii has emerged as a significant nosocomial pathogen during the last few years, exhibiting resistance to almost all major classes of antibiotics. Alternative treatment options such as vaccines tend to be most promising and cost effective approaches against this resistant pathogen. In the current study, we have explored the pan-genome of A. baumannii followed by immune-proteomics and reverse vaccinology approaches to identify potential core vaccine targets. The pan-genome of all available A. baumannii strains (30 complete genomes) is estimated to contain 7,606 gene families and the core genome consists of 2,445 gene families (~32 % of the pan-genome). Phylogenetic tree, comparative genomic and proteomic analysis revealed both intra- and inter genomic similarities and evolutionary relationships. Among the conserved core genome, thirteen proteins, including P pilus assembly protein, pili assembly chaperone, AdeK, PonA, OmpA, general secretion pathway protein D, FhuE receptor, Type VI secretion system OmpA/MotB, TonB dependent siderophore receptor, general secretion pathway protein D, outer membrane protein, peptidoglycan associated lipoprotein and peptidyl-prolyl cis-trans isomerase are identified as highly antigenic. Epitope mapping of the target proteins revealed the presence of antigenic surface exposed 9-mer T-cell epitopes. Protein-protein interaction and functional annotation have shown their involvement in significant biological and molecular processes. The pipeline is validated by predicting already known immunogenic targets against Gram negative pathogen Helicobacter pylori as a positive control. The study, based upon combinatorial approach of pan-genomics, core genomics, proteomics and reverse vaccinology led us to find out potential vaccine candidates against A. baumannii. The comprehensive analysis of all the completely sequenced genomes revealed thirteen putative antigens which could elicit substantial immune response. The integration

  7. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  8. Core BPEL

    DEFF Research Database (Denmark)

    Hallwyl, Tim; Højsgaard, Espen

    extensions. Combined with the fact that the language definition does not provide a formal semantics, it is an arduous task to work formally with the language (e.g. to give an implementation). In this paper we identify a core subset of the language, called Core BPEL, which has fewer and simpler constructs......, does not allow omissions, and does not contain ignorable elements. We do so by identifying syntactic sugar, including default values, and ignorable elements in WS-BPEL. The analysis results in a translation from the full language to the core subset. Thus, we reduce the effort needed for working...... formally with WS-BPEL, as one, without loss of generality, need only consider the much simpler Core BPEL. This report may also be viewed as an addendum to the WS-BPEL standard specification, which clarifies the WS-BPEL syntax and presents the essential elements of the language in a more concise way...

  9. Measurement and analysis of fractures in vertical, slant, and horizontal core, with examples from the Mesaverde formation

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, J.C. (Sandia National Labs., Albuquerque, NM (United States)); Hill, R.E. (CER Corp., Las Vegas, NV (United States))

    1991-01-01

    Optimum analysis of natural fracture characteristics and distributions in reservoirs requires conscientious supervision of coring operations, on-site core processing, careful layout and marketing of the core, and detailed measurement of fracture characteristics. Natural fractures provide information on the in situ permeability system, and coring-induced fractures provide data on the in situ stresses. Fracture data derived from vertical core should include fracture height, type and location of fracture terminations with respect to lithologic heterogeneity, fracture planatary and roughness, and distribution with depth. Fractures in core from either a vertical or a deviated well will yield information on dip, dip azimuth, strike, mineralization, and the orientation of fractures relative to the in situ stresses. Only measurements of fractures in core from a deviated/horizontal well will provide estimates of fracture spacing and porosity. These data can be graphed and cross-plotted to yield semi-quantitative fracture characteristics for reservoir models. Data on the orientations of fractures relative to each other in unoriented core can be nearly as useful as the absolute orientations of fractures. A deviated pilot hole is recommended for fracture assessment prior to a drilling horizontal production well because it significantly enhances the chances of fracture intersection, and therefore of fracture characterization. 35 refs., 20 figs., 2 tabs.

  10. Two Step Procedure Using a 1-D Slab Spectral Geometry in a Pebble Bed Reactor Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyun Chul; Kim, Kang Seog; Noh, Jae Man; Joo, Hyung Kook [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    2005-07-01

    A strong spectral interaction between the core and the reflector has been one of the main concerns in the analysis of pebble bed reactor cores. To resolve this problem, VSOP adopted iteration between the spectrum calculation in a spectral zone and the global core calculation. In VSOP, the whole problem domain is divided into many spectral zones in which the fine group spectrum is calculated using bucklings for fast groups and albedos for thermal groups from the global core calculation. The resulting spectrum in each spectral zone is used to generate broad group cross sections of the spectral zone for the global core calculation. In this paper, we demonstrate a two step procedure in a pebble bed reactor core analysis. In the first step, we generate equivalent cross sections from a 1-D slab spectral geometry model with the help of the equivalence theory. The equivalent cross sections generated in this way include the effect of the spectral interaction between the core and the reflector. In the second step, we perform a diffusion calculation using the equivalent cross sections generated in the first step. A simple benchmark problem derived from the PMBR-400 Reactor was introduced to verify this approach. We compared the two step solutions with the Monte Carlo (MC) solutions for the problem.

  11. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Boyd D. Christensen

    2009-05-01

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  12. Core Fueling and Edge Particle Flux Analysis in Ohmically and Auxiliary Heated NSTX Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    V.A. Soukhanovskii; R. Maingi; R. Raman; H.W. Kugel; B.P. LeBlanc; L. Roquemore; C.H. Skinner; NSTX Research Team

    2002-06-12

    The Boundary Physics program of the National Spherical Torus Experiment (NSTX) is focusing on optimization of the edge power and particle flows in b * 25% L- and H-mode plasmas of t {approx} 0.8 s duration heated by up to 6 MW of high harmonic fast wave and up to 5 MW of neutral beam injection. Particle balance and core fueling efficiencies of low and high field side gas fueling of L-mode homic and NBI heated plasmas have been compared using an analytical zero dimensional particle balance model and measured ion and neutral fluxes. Gas fueling efficiencies are in the range of 0.05-0.20 and do not depend on discharge magnetic configuration, density or poloidal location of the injector. The particle balance modeling indicates that the addition of HFS fueling results in a reversal of the wall loading rate and higher wall inventories. Initial particle source estimates obtained from neutral pressure and spectroscopic measurements indicate that ion flux into the divertor greatly exceeds midplane ion flux from the main plasma, suggesting that the scrape-off cross-field transport plays a minor role in diverted plasmas. Present analysis provides the basis for detailed fluid modeling of core and edge particle flows and particle confinement properties of NSTX plasmas. This research was supported by the U.S. Department of Energy under contracts No. DE-AC02-76CH03073, DE-AC05-00OR22725, and W-7405-ENG-36.

  13. Numerical analysis for the matching of the core driven compression system in a double bypass engine

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin; LIU Bao-jie

    2011-01-01

    The numerical analysis for the matching of the core driven compression system in a double bypass variable cycle engine was presented in this paper. The system consists of a one-stage-core driven fan stage (CDFS), an inner bypass duet and a five-stage high pressure compressor (HPC), providing two basic operating modes: the single bypass mode and the double bypass mode. Variable vanes are necessary to realize the mode switch of the system. The correct matching in the double bypass mode requires a proper combination of the mass flow, total pressure ratio and blade speed. The work capacity of the system decreases in the double bypass mode and the pressure ratio tends to decrease more for the CDFS and the front stages of the HPC. The overall system efficiency is higher in the double bypass mode. The radial distributions of aerodynamic parameters are similar in different modes. The notable redistribution of mass flow downstream the CDFS in the single bypass mode leads to strong radial flows and additional mixing losses. The absolute flow angles into the inner bypass increase for the inner span and decrease for the outer span when the system is switched from the single bypass mode to the double bypass mode.

  14. Rare earth elements in core marine sediments of coastal East Malaysia by instrumental neutron activation analysis.

    Science.gov (United States)

    Ashraf, Ahmadreza; Saion, Elias; Gharibshahi, Elham; Mohamed Kamari, Halimah; Chee Kong, Yap; Suhaimi Hamzah, Mohd; Suhaimi Elias, Md

    2016-01-01

    A study was carried out on the concentration of REEs (Dy, Sm, Eu,Yb, Lu, La and Ce) that are present in the core marine sediments of East Malaysia from three locations at South China Sea and one location each at Sulu Sea and Sulawesi Sea. The sediment samples were collected at a depth of between 49 and 109 m, dried, and crushed to powdery form. The entire core sediments prepared for Instrumental Neutron Activation Analysis (INAA) were weighted approximately 0.0500 g to 0.1000 g for short irradiation and 0.1500 g to 0.2000 g for long irradiation. The samples were irradiated with a thermal neutron flux of 4.0×10(12) cm(-2) s(-1) in a TRIGA Mark II research reactor operated at 750 kW. Blank samples and standard reference materials SL-1 were also irradiated for calibration and quality control purposes. It was found that the concentration of REEs varies in the range from 0.11 to 36.84 mg/kg. The chondrite-normalized REEs for different stations suggest that all the REEs are from similar origins. There was no significant REEs contamination as the enrichment factors normalized for Fe fall in the range of 0.42-2.82. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Comparative Genomic Analysis of Meningitis- and Bacteremia-Causing Pneumococci Identifies a Common Core Genome.

    Science.gov (United States)

    Kulohoma, Benard W; Cornick, Jennifer E; Chaguza, Chrispin; Yalcin, Feyruz; Harris, Simon R; Gray, Katherine J; Kiran, Anmol M; Molyneux, Elizabeth; French, Neil; Parkhill, Julian; Faragher, Brian E; Everett, Dean B; Bentley, Stephen D; Heyderman, Robert S

    2015-10-01

    Streptococcus pneumoniae is a nasopharyngeal commensal that occasionally invades normally sterile sites to cause bloodstream infection and meningitis. Although the pneumococcal population structure and evolutionary genetics are well defined, it is not clear whether pneumococci that cause meningitis are genetically distinct from those that do not. Here, we used whole-genome sequencing of 140 isolates of S. pneumoniae recovered from bloodstream infection (n = 70) and meningitis (n = 70) to compare their genetic contents. By fitting a double-exponential decaying-function model, we show that these isolates share a core of 1,427 genes (95% confidence interval [CI], 1,425 to 1,435 genes) and that there is no difference in the core genome or accessory gene content from these disease manifestations. Gene presence/absence alone therefore does not explain the virulence behavior of pneumococci that reach the meninges. Our analysis, however, supports the requirement of a range of previously described virulence factors and vaccine candidates for both meningitis- and bacteremia-causing pneumococci. This high-resolution view suggests that, despite considerable competency for genetic exchange, all pneumococci are under considerable pressure to retain key components advantageous for colonization and transmission and that these components are essential for access to and survival in sterile sites.

  16. Efficient Design and Analysis of Lightweight Reinforced Core Sandwich and PRSEUS Structures

    Science.gov (United States)

    Bednarcyk, Brett A.; Yarrington, Phillip W.; Lucking, Ryan C.; Collier, Craig S.; Ainsworth, James J.; Toubia, Elias A.

    2012-01-01

    Design, analysis, and sizing methods for two novel structural panel concepts have been developed and incorporated into the HyperSizer Structural Sizing Software. Reinforced Core Sandwich (RCS) panels consist of a foam core with reinforcing composite webs connecting composite facesheets. Boeing s Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) panels use a pultruded unidirectional composite rod to provide axial stiffness along with integrated transverse frames and stitching. Both of these structural concepts are ovencured and have shown great promise applications in lightweight structures, but have suffered from the lack of efficient sizing capabilities similar to those that exist for honeycomb sandwich, foam sandwich, hat stiffened, and other, more traditional concepts. Now, with accurate design methods for RCS and PRSEUS panels available in HyperSizer, these concepts can be traded and used in designs as is done with the more traditional structural concepts. The methods developed to enable sizing of RCS and PRSEUS are outlined, as are results showing the validity and utility of the methods. Applications include several large NASA heavy lift launch vehicle structures.

  17. Torque Characteristic Analysis of a Transverse Flux Motor Using a Combined-Type Stator Core

    Directory of Open Access Journals (Sweden)

    Xiaobao Yang

    2016-11-01

    Full Text Available An external rotor transverse flux motor using a combined-type stator core is proposed for a direct drive application in this paper. The stator core is combined by two kinds of components that can both be manufactured conveniently by generic laminated silicon steel used in traditional motors. The motor benefits from the predominance of low manufacturing cost and low iron loss by using a silicon-steel sheet. Firstly, the basic structure and operation principles of the proposed motor are introduced. Secondly, the expressions of the electromagnetic torque and the cogging torque are deduced by theoretical analysis. Thirdly, the basic characteristics such as permanent magnet flux linkage, no-load back electromotive force, cogging torque and electromagnetic torque are analyzed by a three-dimensional finite element method (3D FEM. Then, the influence of structure parameters on the torque density is investigated, which provides a useful foundation for optimum design of the novel motor. Finally, the torque density of the proposed motor is calculated and discussed, and the result shows that the proposed motor in this paper can provide considerable torque density by using few permanent magnets.

  18. Mutagenicity in a Molecule: Identification of Core Structural Features of Mutagenicity Using a Scaffold Analysis.

    Directory of Open Access Journals (Sweden)

    Kuo-Hsiang Hsu

    Full Text Available With advances in the development and application of Ames mutagenicity in silico prediction tools, the International Conference on Harmonisation (ICH has amended its M7 guideline to reflect the use of such prediction models for the detection of mutagenic activity in early drug safety evaluation processes. Since current Ames mutagenicity prediction tools only focus on functional group alerts or side chain modifications of an analog series, these tools are unable to identify mutagenicity derived from core structures or specific scaffolds of a compound. In this study, a large collection of 6512 compounds are used to perform scaffold tree analysis. By relating different scaffolds on constructed scaffold trees with Ames mutagenicity, four major and one minor novel mutagenic groups of scaffold are identified. The recognized mutagenic groups of scaffold can serve as a guide for medicinal chemists to prevent the development of potentially mutagenic therapeutic agents in early drug design or development phases, by modifying the core structures of mutagenic compounds to form non-mutagenic compounds. In addition, five series of substructures are provided as recommendations, for direct modification of potentially mutagenic scaffolds to decrease associated mutagenic activities.

  19. Non-destructive X-ray Computed Tomography (XCT) Analysis of Sediment Variance in Marine Cores

    Science.gov (United States)

    Oti, E.; Polyak, L. V.; Dipre, G.; Sawyer, D.; Cook, A.

    2015-12-01

    Benthic activity within marine sediments can alter the physical properties of the sediment as well as indicate nutrient flux and ocean temperatures. We examine burrowing features in sediment cores from the western Arctic Ocean collected during the 2005 Healy-Oden TransArctic Expedition (HOTRAX) and from the Gulf of Mexico Integrated Ocean Drilling Program (IODP) Expedition 308. While traditional methods for studying bioturbation require physical dissection of the cores, we assess burrowing using an X-ray computed tomography (XCT) scanner. XCT noninvasively images the sediment cores in three dimensions and produces density sensitive images suitable for quantitative analysis. XCT units are recorded as Hounsfield Units (HU), where -999 is air, 0 is water, and 4000-5000 would be a higher density mineral, such as pyrite. We rely on the fundamental assumption that sediments are deposited horizontally, and we analyze the variance over each flat-lying slice. The variance describes the spread of pixel values over a slice. When sediments are reworked, drawing higher and lower density matrix into a layer, the variance increases. Examples of this can be seen in two slices in core 19H-3A from Site U1324 of IODP Expedition 308. The first slice, located 165.6 meters below sea floor consists of relatively undisturbed sediment. Because of this, the majority of the sediment values fall between 1406 and 1497 HU, thus giving the slice a comparatively small variance of 819.7. The second slice, located 166.1 meters below sea floor, features a lower density sediment matrix disturbed by burrow tubes and the inclusion of a high density mineral. As a result, the Hounsfield Units have a larger variance of 1,197.5, which is a result of sediment matrix values that range from 1220 to 1260 HU, the high-density mineral value of 1920 HU and the burrow tubes that range from 1300 to 1410 HU. Analyzing this variance allows us to observe changes in the sediment matrix and more specifically capture

  20. Numerical analysis and experiment to identify origin of buckling in rapid cycling synchrotron core

    Energy Technology Data Exchange (ETDEWEB)

    Morita, Y., E-mail: yuichi.morita@kek.jp [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki (Japan); Kageyama, T. [High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki (Japan); Akoshima, M. [The National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki (Japan); Torizuka, S.; Tsukamoto, M. [National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki (Japan); Yamashita, S. [International Center for Elementary Particle Physics (ICEPP), University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo (Japan); Yoshikawa, N. [Institute of Industrial Science (IIS), University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo (Japan)

    2013-11-11

    The accelerating cavities used in the rapid cycling synchrotron (RCS) of the Japan Proton Accelerator Research Complex (J-PARC) are loaded with magnetic alloy (MA) cores. Over lengthly periods of RCS operation, significant reductions in the impedance of the cavities resulting from the buckling of the cores were observed. A series of thermal structural simulations and compressive strength tests showed that the buckling can be attributed to the low-viscosity epoxy resin impregnation of the MA core that causes the stiffening of the originally flexible MA–ribbon–wound core. Our results showed that thermal stress can be effectively reduced upon using a core that is not epoxy-impregnated. -- Highlights: • Study to identify the origin of buckling in the MA cores is presented. • Thermal stress simulations and compressive strength tests were carried out. • Results show that thermal stress is the origin of core buckling. • Thermal stress can be reduced by using cores without epoxy impregnation.

  1. Crosstalk analysis in homogeneous multi-core two-mode fiber under bent condition.

    Science.gov (United States)

    Chang, J H; Choi, H G; Bae, S H; Sim, D H; Kim, Hoon; Chung, Y C

    2015-04-20

    We analyze the inter-core crosstalk in homogeneous multi-core two-mode fibers (MC-TMFs) under bent condition by using the coupled-mode equations. In particular, we investigate the effects of the intra-core mode coupling on the inter-core crosstalk for two different types of MC-TMFs at various bending radii. The results show that the inter-core homo-mode crosstalk of LP(11) mode is dominant under the gentle fiber bending condition due to its large effective area. However, as the fiber bending becomes tight, the intra-core mode coupling is significantly enhanced and consequently makes all the inter-core crosstalk levels comparable to each other regardless of the mode. A similar tendency is observed at a reduced bending radius when the difference in the propagation constants between modes is large and core pitch is small.

  2. Reactor Core Coolability Analysis during Hypothesized Severe Accidents of OPR1000

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yongjae; Seo, Seungwon; Kim, Sung Joong [Hanyang University, Seoul (Korea, Republic of); Ha, Kwang Soon; Kim, Hwan-Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Assessment of the safety features over the hypothesized severe accidents may be performed experimentally or numerically. Due to the considerable time and expenditures, experimental assessment is implemented only to the limited cases. Therefore numerical assessment has played a major role in revisiting severe accident analysis of the existing or newly designed power plants. Computer codes for the numerical analysis of severe accidents are categorized as the fast running integral code and detailed code. Fast running integral codes are characterized by a well-balanced combination of detailed and simplified models for the simulation of the relevant phenomena within an NPP in the case of a severe accident. MAAP, MELCOR and ASTEC belong to the examples of fast running integral codes. Detailed code is to model as far as possible all relevant phenomena in detail by mechanistic models. The examples of detailed code is SCDAP/RELAP5. Using the MELCOR, Carbajo. investigated sensitivity studies of Station Black Out (SBO) using the MELCOR for Peach Bottom BWR. Park et al. conduct regulatory research of the PWR severe accident. Ahn et al. research sensitivity analysis of the severe accident for APR1400 with MELCOR 1.8.4. Lee et al. investigated RCS depressurization strategy and developed a core coolability map for independent scenarios of Small Break Loss-of-Coolant Accident (SBLOCA), SBO, and Total Loss of Feed Water (TLOFW). In this study, three initiating cases were selected, which are SBLOCA without SI, SBO, and TLOFW. The initiating cases exhibit the highest probability of transitioning into core damage according to PSA 1 of OPR 1000. The objective of this study is to investigate the reactor core coolability during hypothesized severe accidents of OPR1000. As a representative indicator, we have employed Jakob number and developed JaCET and JaMCT using the MELCOR simulation. Although the RCS pressures for the respective accident scenarios were different, the JaMCT and Ja

  3. Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling

    Science.gov (United States)

    Paul, Dipayan; Chen, Huilin; Been, Henk A.; Kivi, Rigel; Meijer, Harro A. J.

    2016-10-01

    Radiocarbon (14C) is an important atmospheric tracer and one of the many used in the understanding of the global carbon budget, which includes the greenhouse gases CO2 and CH4. Measurement of radiocarbon in atmospheric CO2 generally requires the collection of large air samples (a few liters) from which CO2 is extracted and then the concentration of radiocarbon is determined using accelerator mass spectrometry (AMS). However, the regular collection of air samples from the stratosphere, for example using aircraft and balloons, is prohibitively expensive. Here we describe radiocarbon measurements in stratospheric CO2 collected by the AirCore sampling method. AirCore is an innovative atmospheric sampling system, which comprises a long tube descending from a high altitude with one end open and the other closed, and it has been demonstrated to be a reliable, cost-effective sampling system for high-altitude profile (up to ≈ 30 km) measurements of CH4 and CO2. In Europe, AirCore measurements have been being performed on a regular basis near Sodankylä (northern Finland) since September 2013. Here we describe the analysis of samples from two such AirCore flights made there in July 2014, for determining the radiocarbon concentration in stratospheric CO2. The two AirCore profiles were collected on consecutive days. The stratospheric part of the AirCore was divided into six sections, each containing ≈ 35 µg CO2 ( ≈ 9.6 µgC), and stored in a stratospheric air subsampler constructed from 1/4 in. coiled stainless steel tubing ( ≈ 3 m). A small-volume extraction system was constructed that enabled > 99.5 % CO2 extraction from the stratospheric air samples. Additionally, a new small-volume high-efficiency graphitization system was constructed for graphitization of these extracted CO2 samples, which were measured at the Groningen AMS facility. Since the stratospheric samples were very similar in mass, reference samples were also prepared in the same mass range for

  4. Analysis of the effect of core structure upon dineutron correlation using antisymmetrized molecular dynamics

    CERN Document Server

    Kobayashi, Fumiharu

    2015-01-01

    We extend the method of antisymmetrized molecular dynamics to investigate dineutron correlation. We apply this method to $^{10}$Be as an example and investigate the motion of two neutrons around a largely deformed $^8$Be core by analyzing the two-neutron overlap function around the core. We show that the core structure plays an important role in dineutron formation and expansion from the core and that the present framework is effective for the studies of dineutron correlation.

  5. Bi2Te3 thin hexagonal nanoplatelets: Synthesis and its characterization studies

    Science.gov (United States)

    Vinoth, S.; Balaganapathi, T.; KaniAmuthan, B.; Arun, T.; Muthuselvam, I. Panneer; Chou, Fang-Cheng; Thilakan, P.

    2017-08-01

    Solvothermal synthesis and optimization of pure Bismuth telluride (Bi2Te3) hexagonal nanoplatelets was carried out from Bismuth Oxide (Bi2O3) and Tellurium dioxide (TeO2). XRD measurements revealed a sensitive change in crystallization behaviour in correlation with variation in Te/Bi stoichiometry identified through the exchange in intensities between (10 10 ̅) and (110) peaks. Further, Energy Dispersive X-ray (EDAX) analysis revealed the variation in Te/Bi ratio with respect to autoclave temperature. Field emission scanning electron Microscope (FESEM) and the high resolution transmission electron Microscope (HRTEM) studies show the complete growth of hexagonal nanoplatelets at 200 °C. Confocal Micro-Raman measurements revealed the occurrence of symmetry breaking in the synthesized hexagonal nanoplatelets. The electrical conductivity and the activation energy were recorded as 6.01×10-3 S/m and 0.042 eV respectively. Highest maximum absolute value of Seebeck coefficient of -355 μV/K was obtained for the hexagonal nanoplatelets.

  6. Phase transition and magnetization of a hexagonal prismatic nanoisland with a ferrimagnetic spin configuration

    Science.gov (United States)

    Jiang, Wei; Wang, Ya-Ning

    2017-03-01

    Magnetic properties of a nanoisland with a ferrimagnetic spin configuration, described by the transverse Ising model, are studied by the effective-field theory with correlations. The hexagonal prismatic nanoisland consists of the bilayer with core-shell structure. The phase transition, the magnetization, the susceptibility and the internal energy of the system have been calculated for different values. A lot of novel features, such as the reentrant phenomenon, have been found in the phase transition diagrams of the nanoisland. They are heavily dependent on the exchange coupling, the single-ion anisotropy and the transverse field. These theoretical results may have guiding significance for preparing nanoisland experimentally.

  7. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  8. Effective thermal/mechanical properties of honeycomb core panels for hot structure applications

    NARCIS (Netherlands)

    Fatemi, J.; Lemmen, M.H.J.

    2009-01-01

    The present work addresses the computation of the effective thermal and mechanical properties of a honeycombcore sandwich panel. The panel considered has a hexagon-cell honeycomb core. An alternative method, based on the Gebhart factors within a hexagonal cell, is presented in addition to the

  9. Effective thermal/mechanical properties of honeycomb core panels for hot structure applications

    NARCIS (Netherlands)

    Fatemi, J.; Lemmen, M.H.J.

    2009-01-01

    The present work addresses the computation of the effective thermal and mechanical properties of a honeycombcore sandwich panel. The panel considered has a hexagon-cell honeycomb core. An alternative method, based on the Gebhart factors within a hexagonal cell, is presented in addition to the famili

  10. Off-line and on-line noise analysis for core surveillance in French LMFBR 'Anabel'

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, J.; Casejuane, R.

    1982-01-01

    Some results concerning noise analysis studies performed in French LMFBR are presented in support to the design of an on-line noise analysis system to be included in the core surveillance and protection system of SUPER-PHENIX. This computerized system is presented: signal processing, block diagram, operating modes.

  11. Mechanism and numerical analysis of heat transfer enhancement in the core flow along a tube

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The present study introduces the principles of enhanced heat transfer in the core flow to form an equivalent thermal boundary layer in the fully developed laminar tube flow, which consequently enlarges the temperature gradient of the fluid near the tube wall, and thereby enhances the heat transfer between the fluid and the tube wall. At the same time, the increase of flow resistance in the tube is not so obvious. Mechanism analysis and numerical calculation based on air and water have been carried out to verify the principle and method presented in this paper, which may bring positive effects to the design of heat exchanger with high heat transfer efficiency and low flow resistance.

  12. Analysis of cracked core spray piping from the Quad Cities Unit 2 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.; Gaitonde, S.M.

    1982-09-01

    The results of a metallurgical analysis of leaking cracks detected in the core spray injection piping of Commonwealth Edison Company's Quad Cities Unit 2 Boiling Water Reactor are described. The cracks were present in a welded 105/sup 0/ elbow assembly in the line, and were found to be caused by intergranular stress corrosion cracking associated with the probable presence of dissolved oxygen in the reactor cooling water and the presence of grain boundary sensitization and local residual stresses induced by welding. The failure is unusual in several respects, including the very large number of cracks (approximately 40) present in the failed component, the axial orientation of the cracks, and the fact that at least one crack completely penetrated a circumferential weld. Virtually all of the cracking occurred in forged material, and the microstructural evidence presented suggests that the orientation of the cracks was influenced by the presence of axially banded delta ferrite in the microstructure of the forged components.

  13. Analysis of the Flexure Behavior and Compressive Strength of Fly Ash Core Sandwiched Composite Material

    Directory of Open Access Journals (Sweden)

    Vijaykumar H.K

    2014-07-01

    Full Text Available In this paper, commercially available Fly Ash and Epoxy is used for the core material, woven glass fabric as reinforcing skin material, epoxy as matrix/adhesive materials used in this study for the construction of sandwich composite. Analysis is carried out on different proportions of epoxy and fly ash sandwiched composite material for determining the flexural strength and compressive strength, three different proportions of epoxy and fly ash used for the study. Those are 65%-35% (65% by weight fly ash and 35% by weight epoxy resin composite material, 60%-40% and 55%-45% composite material. 60%-40% composite material specimen shows better results in the entire test carried out i.e. Flexure and Compression. The complete experimental results are discussed and presented in this paper.

  14. Near Real-time Data Analysis of Core-Collapse Supernova Simulations With Bellerophon

    Energy Technology Data Exchange (ETDEWEB)

    Lingerfelt, Eric J [ORNL; Messer, Bronson [ORNL; Desai, Sharvari S [University of Tennessee, Knoxville (UTK); Holt, Chastity A [Appalachian State University; Lentz, Eric J [University of Tennessee, Knoxville (UTK)

    2014-01-01

    We present an overview of a software system, Bellerophon, built to support a production-level HPC application called CHIMERA, which simulates core-collapse supernova events at the petascale. Developed over the last four years, Bellerophon enables CHIMERA s geographically dispersed team of collaborators to perform data analysis in near real-time. Its n-tier architecture provides an encapsulated, end-to-end software solution that enables the CHIMERA team to quickly and easily access highly customizable animated and static views of results from anywhere in the world via a web-deliverable, cross-platform desktop application. In addition, Bellerophon addresses software engineering tasks for the CHIMERA team by providing an automated mechanism for performing regression testing on a variety of supercomputing platforms. Elements of the team s workflow management needs are met with software tools that dynamically generate code repository statistics, access important online resources, and monitor the current status of several supercomputing resources.

  15. Tank 241-SY-101 push mode core sampling and analysis plan

    Energy Technology Data Exchange (ETDEWEB)

    CONNER, J.M.

    1998-10-09

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for push mode core samples from tank 241-SY-101 (SY-101). It is written in accordance with Data Quality Objective to Support Resolution of the Flammable Gas Safety Issue (Bauer 1998), Low Activity Waste Feed Data Quality Objectives (Wiemers and Miller 1997 and DOE 1998), Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Certa 1998), and the Tank Safety Screening Data Quality Objective (Dukelow et al. 1995). The Tank Characterization Technical Sampling Basis document (Brown et al. 1998) indicates that these issues apply to tank SY-101 for this sampling event. Brown et al. also identifies high-level waste, regulatory, pretreatment and disposal issues as applicable issues for this tank. However, these issues will not be addressed via this sampling event.

  16. Microcrystalline hexagonal tungsten bronze. 2. Dehydration dynamics.

    Science.gov (United States)

    Luca, Vittorio; Griffith, Christopher S; Hanna, John V

    2009-07-06

    Low-temperature (25-600 degrees C) thermal transformations have been studied for hydrothermally prepared, microcrystalline hexagonal tungsten bronze (HTB) phases A(x)WO(3+x/2).zH(2)O as a function of temperature, where A is an exchangeable cation (in this case Na(+) or Cs(+)) located in hexagonal structural tunnels. Thermal treatment of the as-prepared sodium- and cesium-exchanged phases in air were monitored using a conventional laboratory-based X-ray diffractometer, while thermal transformations in vacuum were studied using synchrotron X-ray and neutron diffraction. Concurrent thermogravimetric, diffuse reflectance infrared (DRIFT), and (23)Na and (133)Cs magic angle spinning (MAS) NMR spectroscopic studies have also been undertaken. For the cesium variant, cell volume contraction occurred from room temperature to about 350 degrees C, the regime in which water was "squeezed" out of tunnel sites. This was followed by a lattice expansion in the 350-600 degrees C temperature range. Over the entire temperature range, a net thermal contraction was observed, and this was the result of an anisotropic change in the cell dimensions which included a shortening of the A-O2 bond length. These changes explain why Cs(+) ions are locked into tunnel positions at temperatures as low as 400 degrees C, subsequently inducing a significant reduction in Cs(+) extractability under low pH (nitric acid) conditions. The changing Cs(+) speciation as detected by (133)Cs MAS NMR showed a condensation from multiple Cs sites, presumably associated with differing modes of Cs(+) hydration in the tunnels, to a single Cs(+) environment upon thermal transformation and water removal. While similar lattice contraction was observed for the as-prepared sodium variant, the smaller radius of Na(+) caused it to be relatively easily removed with acid in comparison to the Cs(+) variant. From (23)Na MAS NMR studies of the parent material, complex Na(+) speciation was observed with dehydrated and various

  17. Elastic anisotropy of Earth's inner core.

    Science.gov (United States)

    Belonoshko, Anatoly B; Skorodumova, Natalia V; Rosengren, Anders; Johansson, Börje

    2008-02-08

    Earth's solid-iron inner core is elastically anisotropic. Sound waves propagate faster along Earth's spin axis than in the equatorial plane. This anisotropy has previously been explained by a preferred orientation of the iron alloy hexagonal crystals. However, hexagonal iron becomes increasingly isotropic on increasing temperature at pressures of the inner core and is therefore unlikely to cause the anisotropy. An alternative explanation, supported by diamond anvil cell experiments, is that iron adopts a body-centered cubic form in the inner core. We show, by molecular dynamics simulations, that the body-centered cubic iron phase is extremely anisotropic to sound waves despite its high symmetry. Direct simulations of seismic wave propagation reveal an anisotropy of 12%, a value adequate to explain the anisotropy of the inner core.

  18. Development of Optimized Core Design and Analysis Methods for High Power Density BWRs

    Science.gov (United States)

    Shirvan, Koroush

    temperature was kept the same for the BWR-HD and ABWR which resulted in 4 °K cooler core inlet temperature for the BWR-HD given that its feedwater makes up a larger fraction of total core flow. The stability analysis using the STAB and S3K codes showed satisfactory results for the hot channel, coupled regional out-of-phase and coupled core-wide in-phase modes. A RELAPS model of the ABWR system was constructed and applied to six transients for the BWR-HD and ABWR. The 6MCPRs during all the transients were found to be equal or less for the new design and the core remained covered for both. The lower void coefficient along with smaller core volume proved to be advantages for the simulated transients. Helical Cruciform Fuel (HCF) rods were proposed in prior MIT studies to enhance the fuel surface to volume ratio. In this work, higher fidelity models (e.g. CFD instead of subchannel methods for the hydraulic behaviour) are used to investigate the resolution needed for accurate assessment of the HCF design. For neutronics, conserving the fuel area of cylindrical rods results in a different reactivity level with a lower void coefficient for the HCF design. In single-phase flow, for which experimental results existed, the friction factor is found to be sensitive to HCF geometry and cannot be calculated using current empirical models. A new approach for analysis of flow crisis conditions for HCF rods in the context of Departure from Nucleate Boiling (DNB) and dryout using the two phase interface tracking method was proposed and initial results are presented. It is shown that the twist of the HCF rods promotes detachment of a vapour bubble along the elbows which indicates no possibility for an early DNB for the HCF rods and in fact a potential for a higher DNB heat flux. Under annular flow conditions, it was found that the twist suppressed the liquid film thickness on the HCF rods, at the locations of the highest heat flux, which increases the possibility of reaching early dryout. It

  19. A Raman cell based on hollow core photonic crystal fiber for human breath analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chow, Kam Kong; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3, Canada and Medical Physics Program – Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia V6T 1Z1 (Canada); Short, Michael; Lam, Stephen; McWilliams, Annette [Imaging Unit – Integrative Oncology Department, British Columbia Cancer Agency Research Centre, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada)

    2014-09-15

    Purpose: Breath analysis has a potential prospect to benefit the medical field based on its perceived advantages to become a point-of-care, easy to use, and cost-effective technology. Early studies done by mass spectrometry show that volatile organic compounds from human breath can represent certain disease states of our bodies, such as lung cancer, and revealed the potential of breath analysis. But mass spectrometry is costly and has slow-turnaround time. The authors’ goal is to develop a more portable and cost effective device based on Raman spectroscopy and hollow core-photonic crystal fiber (HC-PCF) for breath analysis. Methods: Raman scattering is a photon-molecular interaction based on the kinetic modes of an analyte which offers unique fingerprint type signals that allow molecular identification. HC-PCF is a novel light guide which allows light to be confined in a hollow core and it can be filled with a gaseous sample. Raman signals generated by the gaseous sample (i.e., human breath) can be guided and collected effectively for spectral analysis. Results: A Raman-cell based on HC-PCF in the near infrared wavelength range was developed and tested in a single pass forward-scattering mode for different gaseous samples. Raman spectra were obtained successfully from reference gases (hydrogen, oxygen, carbon dioxide gases), ambient air, and a human breath sample. The calculated minimum detectable concentration of this system was ∼15 parts per million by volume, determined by measuring the carbon dioxide concentration in ambient air via the characteristic Raman peaks at 1286 and 1388 cm{sup −1}. Conclusions: The results of this study were compared to a previous study using HC-PCF to trap industrial gases and backward-scatter 514.5 nm light from them. The authors found that the method presented in this paper has an advantage to enhance the signal-to-noise ratio (SNR). This SNR advantage, coupled with the better transmission of HC-PCF in the near-IR than in the

  20. Core Oligosaccharide of Plesiomonas shigelloides PCM 2231 (Serotype O17 Lipopolysaccharide — Structural and Serological Analysis

    Directory of Open Access Journals (Sweden)

    Anna Maciejewska

    2013-02-01

    Full Text Available The herein presented complete structure of the core oligosaccharide of lipopolysaccharide (LPS P. shigelloides Polish Collection of Microorganisms (PCM 2231 (serotype O17 was investigated by 1H, 13C NMR spectroscopy, mass spectrometry, chemical analyses and serological methods. The core oligosaccharide is composed of an undecasaccharide, which represents the second core type identified for P. shigelloides serotype O17 LPS. This structure is similar to that of the core oligosaccharide of P. shigelloides strains 302-73 (serotype O1 and 7-63 (serotype O17 and differs from these only by one sugar residue. Serological screening of 55 strains of P. shigelloides with the use of serum against identified core oligosaccharide conjugated with bovine serum albumin (BSA indicated the presence of similar structures in the LPS core region of 28 O-serotypes. This observation suggests that the core oligosaccharide structure present in strain PCM 2231 could be the most common type among P. shigelloides lipopolysaccharides.

  1. High speed, high resolution, and continuous chemical analysis of ice cores using a melter and ion chromatography.

    Science.gov (United States)

    Cole-Dai, Jihong; Budner, Drew M; Ferris, Dave G

    2006-11-01

    Measurement of trace chemical impurities in ice cores contributes to the reconstruction of records of the atmospheric environment and of the climate system. Ion chromatography (IC) is an effective analytical technique for ionic species in ice cores but has been used on discretely prepared ice samples, resulting in extensive and slow sample preparation and potential for contamination. A new technique has been developed that utilizes IC as the online detection technique in a melter-based continuous flow system for quantitative determination of major ionic chemical impurities. The system, called CFA-IC for continuous flow analysis with ion chromatography detection, consists of an ice core melter, several ion chromatographs, and an interface that distributes meltwater to the IC instruments. The CFA-IC technique combines the accuracy, precision, and ease of use of IC measurement with the enhanced speed and depth resolution of continuous melting systems and is capable of virtually continuous, high-speed and high-resolution chemical analysis of long ice cores. The new technique and operating procedures have been tested and validated with the analysis of over 100 m of ice cores from Antarctica. The current CFA-IC system provides an all-major-ion analysis speed of up to 8 m a day at a depth resolution of approximately 2 cm.

  2. Clinical features and ryanodine receptor type 1 gene mutation analysis in a Chinese family with central core disease.

    Science.gov (United States)

    Chang, Xingzhi; Jin, Yiwen; Zhao, Haijuan; Huang, Qionghui; Wang, Jingmin; Yuan, Yun; Han, Ying; Qin, Jiong

    2013-03-01

    Central core disease is a rare inherited neuromuscular disorder caused by mutations in ryanodine receptor type 1 gene. The clinical phenotype of the disease is highly variable. We report a Chinese pedigree with central core disease confirmed by the gene sequencing. All 3 patients in the family presented with mild proximal limb weakness. The serum level of creatine kinase was normal, and electromyography suggested myogenic changes. The histologic analysis of muscle biopsy showed identical central core lesions in almost all of the muscle fibers in the index case. Exon 90-106 in the C-terminal domain of the ryanodine receptor type 1 gene was amplified using polymerase chain reaction. One heterozygous missense mutation G14678A (Arg4893Gln) in exon 102 was identified in all 3 patients. This is the first report of a familial case of central core disease confirmed by molecular study in mainland China.

  3. ANALYSIS OF TANK 28F SALTCAKE CORE SAMPLES FTF-456 - 467

    Energy Technology Data Exchange (ETDEWEB)

    Martino, C; Daniel McCabe, D; Tommy Edwards, T; Ralph Nichols, R

    2007-02-28

    Twelve LM-75 core samplers from Tank 28F sampling were received by SRNL for saltcake characterization. Of these, nine samplers contained mixtures of free liquid and saltcake, two contained only liquid, and one was empty. The saltcake contents generally appeared wet. A summary of the major tasks performed in this work are as follows: (1) Individual saltcake segments were extruded from the samplers and separated into saltcake and free liquid portions. (2) Free liquids were analyzed to estimate the amount of traced drill-string fluid contained in the samples. (3) The saltcake from each individual segment was homogenized, followed by analysis in duplicate. The analysis used more cost-effective and bounding radiochemical analyses rather than using the full Saltstone WAC suite. (4) A composite was created using an approximately equal percentage of each segment's saltcake contents. Supernatant liquid formed upon creation of the composite was decanted prior to use of the composite, but the composite was not drained. (5) A dissolution test was performed on the sample by contacting the composite with water at a 4:1 mass ratio of water to salt. The resulting soluble and insoluble fractions were analyzed. Analysis focused on a large subset of the Saltstone WAC constituents.

  4. Bootstrapping the Three-Loop Hexagon

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Lance J.; /CERN /SLAC; Drummond, James M.; /CERN /Annecy, LAPTH; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  5. Hexagonal boron-nitride nanomesh magnets

    Science.gov (United States)

    Ohata, C.; Tagami, R.; Nakanishi, Y.; Iwaki, R.; Nomura, K.; Haruyama, J.

    2016-09-01

    The formation of magnetic and spintronic devices using two-dimensional (2D) atom-thin layers has attracted attention. Ferromagnetisms (FMs) arising from zigzag-type atomic structure of edges of 2D atom-thin materials have been experimentally observed in graphene nanoribbons, hydrogen (H)-terminated graphene nanomeshes (NMs), and few-layer oxygen (O)-terminated black phosphorus NMs. Herein, we report room-temperature edge FM in few-layer hexagonal boron-nitride (hBN) NMs. O-terminated hBNNMs annealed at 500 °C show the largest FM, while it completely disappears in H-terminated hBNNMs. When hBNNMs are annealed at other temperatures, amplitude of the FM significantly decreases. These are highly in contrast to the case of graphene NMs but similar to the cases of black phosphorus NM and suggest that the hybridization of the O atoms with B(N) dangling bonds of zigzag pore edges, formed at the 500 °C annealing, strongly contribute to this edge FM. Room-temperature FM realizable only by exposing hBNNMs into air opens the way for high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.

  6. Hyperbolic phonon polaritons in hexagonal boron nitride

    Science.gov (United States)

    Dai, Siyuan

    2015-03-01

    Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [Science, 343, 1125-1129 (2014)]. Additionally, we carried out the modification of hyperbolic response in heterostructures comprised of a mononlayer graphene deposited on hBN. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the ``hyperlens'' for subdiffractional imaging and focusing using a slab of hBN.

  7. Instability of vibrational modes in hexagonal lattice

    Science.gov (United States)

    Korznikova, Elena A.; Bachurin, Dmitry V.; Fomin, Sergey Yu.; Chetverikov, Alexander P.; Dmitriev, Sergey V.

    2017-02-01

    The phenomenon of modulational instability is investigated for all four delocalized short-wave vibrational modes recently found for the two-dimensional hexagonal lattice with the help of a group-theoretic approach. The polynomial pair potential with hard-type quartic nonlinearity ( β-FPU potential with β > 0) is used to describe interactions between atoms. As expected for the hard-type anharmonic interactions, for all four modes the frequency is found to increase with the amplitude. Frequency of the modes I and III bifurcates from the upper edge of the phonon spectrum, while that of the modes II and IV increases from inside the spectrum. It is also shown that the considered model supports spatially localized vibrational mode called discrete breather (DB) or intrinsic localized mode. DB frequency increases with the amplitude above the phonon spectrum. Two different scenarios of the mode decay were revealed. In the first scenario (for modes I and III), development of the modulational instability leads to a formation of long-lived DBs that radiate their energy slowly until thermal equilibrium is reached. In the second scenario (for modes II and IV) a transition to thermal oscillations of atoms is observed with no formation of DBs.

  8. Performance of the ARIANNA Hexagonal Radio Array

    CERN Document Server

    Barwick, S W; Besson, D Z; Binder, G; Binns, W R; Boersma, D; Bose, R G; Braun, D L; Buckley, J H; Bugaev, V; Buitink, S; Dookayka, K; Dowkontt, P F; Duffin, T; Euler, S; Gerhardt, L; Gustafsson, L; Hallgren, A; Hanson, J C; Israel, M H; Kiryluk, J; Klein, S; Kleinfelder, S; Nelles, A; Niederhausen, H; Olevitch, M A; Persichelli, C; Ratzlaff, K; Rauch, B F; Reed, C; Roumi, M; Samanta, A; Simburger, G E; Stezelberger, T; Tatar, J; Uggerhoj, U; Walker, J; Young, R

    2015-01-01

    Installation of the ARIANNA Hexagonal Radio Array (HRA) on the Ross Ice Shelf of Antarctica has been completed. This detector serves as a pilot program to the ARIANNA neutrino telescope, which aims to measure the diffuse flux of very high energy neutrinos by observing the radio pulse generated by neutrino-induced charged particle showers in the ice. All HRA stations ran reliably and took data during the entire 2014-2015 austral summer season. A new radio signal direction reconstruction procedure is described, and is observed to have a resolution better than a degree. The reconstruction is used in a preliminary search for potential neutrino candidate events in the data from one of the newly installed detector stations. Three cuts are used to separate radio backgrounds from neutrino signals. The cuts are found to filter out all data recorded by the station during the season while preserving 85.4% of simulated neutrino events that trigger the station. This efficiency is similar to that found in analyses of previ...

  9. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  10. Analysis of High Temperature Reactor Control Rod Worth for the Initial and Full Core

    Science.gov (United States)

    Oktajianto, Hammam; Setiawati, Evi; Anam, Khoirul; Sugito, Heri

    2017-01-01

    Control rod is one important component in a nuclear reactor. In nuclear reactor operations the control rod functions to shut down the reactor. This research analyses ten control rods worth of HTR (High Temperature Reactor) at initial and full core. The HTR in this research adopts HTR-10 China and HTR- of pebble bed. Core calculations are performed by using MCNPX code after modelling the entire parts of core in condition of ten control rods fully withdrawn, all control rods in with 20 cm ranges of depth and the use of one control rod. Pebble bed and moderator balls are distributed in the core zone using a Body Centred Cubic (BCC) lattice by ratio of 57:43. The research results are obtained that the use of one control rod will decrease the reactor criticality of 2.04±0.12 %Δk/k at initial core and 1.57±0.10 %Δk/k at full core. The deeper control rods are in, the lesser criticality of reactor is with reactivity of ten control rods of 16.41±0.11 %Δk/k at initial core and 15.43±0.11 %Δk/k at full core. The results show that the use of ten control rods at full core will keep achieving subcritical condition even though the reactivity is smaller than reactivity at initial core.

  11. [Photoelastic stress analysis of root dentin with different composite resin post and core systems and crowns].

    Science.gov (United States)

    Takei, Hidenori

    2010-03-01

    Much research has been reported about post and core systems with composite resin, but the influence of the different types of prefabricated posts on the distribution of stress in the root has not yet been elucidated. It is necessary to clarify the influence of the relationship between core and crown materials to obtain combined restorations. The aim of this study is to analyze the influence of the combination of various post and core systems and different kinds of crown material on the stress distribution in the root. Six 2-dimensional photoelastic premolar models were designed. Three types of post and core systems (composite resin post and core, composite resin core with the fiber post, and composite resin core with a prefabricated stainless steel post) and two kinds of crown materials (metal and hybrid-type hard composite resin) were fabricated and cemented to each model. In these models, we applied a load of 200 N at an angle of 45 degrees to the tooth axis and analyzed the fringe order using a transmission polariscope. As a result, it has been clarified that the combination of the post and core and the crown plays an important role in preventing stress concentration within root Stress concentration can be prevented using a crown fabricated with a high-elastic modulus for the post and core with a high-elastic modulus, and a crown fabricated with a low-elastic modulus for the post and core with a low-elastic modulus.

  12. Synthesis, spectral characterization, electron microscopic study and thermogravimetric analysis of a phosphorus containing dendrimer with diphenylsilanediol as core unit

    Directory of Open Access Journals (Sweden)

    E. Dadapeer

    2010-08-01

    Full Text Available A phosphorus containing dendrimer with a diphenylsilanediol core was synthesized using a divergent method. Several types of reactions were performed on dendrons of several sizes, either at the level of the core or the surface. The giant Schiff’s base macro molecule possesses 12 imine bonds and 8 hydroxy groups on the terminal phenyl groups. The structures of the intermediate compounds were confirmed by IR, GCMS and 31P NMR. The final compound was characterized by 1H, 13C, 31P NMR, MALDI-TOF MS and CHN analysis. Scanning electron microscopic and thermogravimetric analysis/differential scanning calorimetric studies were also performed on the final dendritic molecule.

  13. Analysis of hydrologic structures within Mauna Kea volcano using diamond wireline core drilling

    Science.gov (United States)

    Thomas, D. M.; Haskins, E.

    2013-12-01

    The Humu'ula Groundwater Research Project was undertaken on the Island of Hawaii in an effort to characterize the hydrologic structures controlling groundwater movement and storage within the dry (~430 mm/year annual rainfall) saddle region between Mauna Loa and Mauna Kea volcanoes. The project drilled a 1764 m, continuously-cored, borehole from an elevation of 1946 m amsl. The shallow stratigraphy consisted of alluvial outwash of clastic debris, of both volcanic and glacial origin, from the upper slopes of Mauna Kea, and was underlain by highly permeable post-shield lavas to depths of a few hundred meters. Below this depth, shield stage lavas were dominated by highly-fractured and permeable pahoehoe lavas and (less common) a'a flows and occasional soil and ash accumulations at flow boundaries. As depths increased below 1000 m, progressive compaction of fragmental material was found at the flow boundaries and, by depths of ~1500 m, much of the void space in the flow boundaries had been collapsed and compacted. Increasing secondary mineralization was observed below about 1000 m depth that was exacerbated by rising temperatures and temperature gradients toward the bottom of the hole. Hydrologic conditions were strikingly different from those predicted by conventional models for ocean islands: the formation was dry down to only ~150 m where the first, thin, perched aquifer was encountered; a second, more substantial, perched aquifer was reached at only ~220 m depth that extended to ~360 m where a sequence of (remarkably thin) perching formations were recovered in the core down to about 420 m where unsaturated rocks were again encountered. Saturated conditions resumed at 550 m depth that continued to the total depth drilled; this latter zone is inferred to be the basal aquifer for Mauna Kea within this region of the island. Our initial analysis of the core suggests that thin, clay-rich, perching formations in the shallow stratigraphic column play a much larger role in

  14. Analysis of nuclear characteristics and fuel economics for PWR core with homogeneous thorium fuels

    Energy Technology Data Exchange (ETDEWEB)

    Joo, H. K.; Noh, J. M.; Yoo, J. W.; Song, J. S.; Kim, J. C.; Noh, T. W

    2000-12-01

    The nuclear core characteristics and economics of an once-through homogenized thorium cycle for PWR were analyzed. The lattice code, HELIOS has been qualified against BNL and B and W critical experiments and the IAEA numerical benchmark problem in advance of the core analysis. The infinite multiplication factor and the evolution of main isotopes with fuel burnup were investigated for the assessment of depletion charateristics of thorium fuel. The reactivity of thorium fuel at the beginning of irradiation is smaller than that of uranium fuel having the same inventory of {sup 235}U, but it decrease with burnup more slowly than in UO{sub 2} fuel. The gadolinia worth in thorium fuel assembly is also slightly smaller than in UO{sub 2} fuel. The inventory of {sup 233}U which is converted from {sup 232}Th is proportional to the initial mass of {sup 232}Th and is about 13kg per one tones of initial heavy metal mass. The followings are observed for thorium fuel cycle compared with UO{sub 2} cycle ; shorter cycle length, more positive MTC at EOC, more negative FTC, similar boron worth and control rod. Fuel economics of thorium cycle was analyzed by investigating the natural uranium requirements, the separative work requirements, and the cost for burnable poison rods. Even though less number of burnable poison rods are required in thorium fuel cycle, the costs for the natural uranium requirements and the separative work requirements are increased in thorium fuel cycle. So within the scope of this study, once through cycle concept, homogenized fuel concept, the same fuel management scheme as uranium cycle, the thorium fuel cycle for PWR does not have any economic incentives in preference to uranium.

  15. Outcrop and core integrative ichnofabric analysis of Miocene sediments from Lepe, Huelva (SW Spain): Improving depositional and paleoenvironmental interpretations

    Science.gov (United States)

    Rodríguez-Tovar, Francisco J.; Dorador, Javier; Mayoral, Eduardo; Santos, Ana

    2017-03-01

    Ichnofabric analysis was conducted in Miocene sediments from Lepe (Huelva, SW Spain) based on integrative outcrop and core research, to improve interpretations of depositional and paleoenvironmental conditions, with special attention to sequence stratigraphy. Seven intervals were differentiated in outcrops based on stratigraphic and ichnological features, consisting of two ichnofabrics: Ophiomorpha-Thalassinoides-Spongeliomorpha ichnofabric characterizes intervals 1, 2, 6, 7 and 8, while Palaeophycus-Planolites-Phycosiphon ichnofabric characterizes intervals 3, 4 and 5. Fourteen ichnofabrics were differentiated in the core, mainly in view of lithological features, including ferruginous material, grain size, mottled background, ichnotaxa, and Bioturbation Index. A comparison between outcrop and core ichnofabrics through the upper 13.5 m, corresponding to the uppermost Tortonian-lowermost Messinian interval, revealed certain similarities as well as some differences. A continuous and relatively slow siliciclastic deposition with punctual variations in the sedimentation rate can be interpreted that, associated with favorable paleoenvironmental parameters such as aerobic conditions and nutrient availability, evidence that a well-developed and diverse macroinvertebrate trace maker community existed at that time. Softgrounds are dominant, but occasionally loosegrounds and even firmgrounds could develop. The ichnofabric distribution shows long-range patterns in outcrop and core, and short-range patterns exclusively in core. Long-range patterns reflect the last phases of a transgressive system tract, with a "maximum flooding zone" at the end, and then a highstand normal regression. High-frequency, short-range, repetitive patterns in ichnofabrics from core, mainly between ichnofabrics 6/8 to 9 from lower to upper part of the pattern, can be linked to "local flooding surfaces", subdividing the "maximum flooding zone" into parasequences. Our results reveals the usefulness of

  16. Laser ablation inductively coupled plasma mass spectrometry: a new tool for trace element analysis in ice cores.

    Science.gov (United States)

    Reinhardt, H; Kriews, M; Miller, H; Schrems, O; Lüdke, C; Hoffmann, E; Skole, J

    2001-07-01

    A new method for the detection of trace elements in polar ice cores using laser ablation with subsequent inductively coupled plasma mass spectrometry analysis is described. To enable direct analysis of frozen ice samples a special laser ablation chamber was constructed. Direct analysis reduces the risk of contamination. The defined removal of material from the ice surface by means of a laser beam leads to higher spatial resolution (300-1000 microm) in comparison to investigations with molten ice samples. This is helpful for the detection of element signatures in annual layers of ice cores. The method was applied to the successful determination of traces for the elements Mg, Al, Fe, Zn, Cd, Pb, some rare-earth elements (REE) and minor constituents such as Ca and Na in ice cores. These selected elements serve as tracer elements for certain sources and their element signatures detected in polar ice cores can give hints to climate changes in the past. We report results from measurements of frozen ice samples, the achievable signal intensities, standard deviations and calibration graphs as well as the first signal progression of 205Pb in an 8,000-year-old ice core sample from Greenland. In addition, the first picture of a crater on an ice surface burnt by an IR laser made by cryogenic scanning electron microscopy is presented.

  17. Optimal Design and Analysis of the Stepped Core for Wireless Power Transfer Systems

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2016-01-01

    Full Text Available The key of wireless power transfer technology rests on finding the most suitable means to improve the efficiency of the system. The wireless power transfer system applied in implantable medical devices can reduce the patients’ physical and economic burden because it will achieve charging in vitro. For a deep brain stimulator, in this paper, the transmitter coil is designed and optimized. According to the previous research results, the coils with ferrite core can improve the performance of the wireless power transfer system. Compared with the normal ferrite core, the stepped core can produce more uniform magnetic flux density. In this paper, the finite element method (FEM is used to analyze the system. The simulation results indicate that the core loss generated in the optimal stepped ferrite core can reduce about 10% compared with the normal ferrite core, and the efficiency of the wireless power transfer system can be increased significantly.

  18. [Analysis of core virion polypeptides from the pathogen causing chicken egg-drop syndrome].

    Science.gov (United States)

    Iurov, G K; Dadykov, V A; Neugodova, G L; Naroditskiĭ, B S

    1998-01-01

    The cores of egg-drop syndrome virus (EDS-76) were isolated by the pyridine technique. EDS-76 proved to be much more resistant to pyridine disruption than other adenoviruses and treatment with 10% pyridine did not lead to complete dissociation of capsid and cores; only increase of pyridine concentration to 20% produced satisfactory results. At least three polypeptides (24, 10.5, and 6.5 kDa) were found in the core by SDS-PAGE, whereas the 40 kDa reacting with the core is most probably not a core component. Much more intensive reactions of the core with EDS-76 virion capsid suggest that its virion structure differs from that of other adenoviruses.

  19. Analysis of the Core Genome and Pan-Genome of Autotrophic Acetogenic Bacteria

    Science.gov (United States)

    Shin, Jongoh; Song, Yoseb; Jeong, Yujin; Cho, Byung-Kwan

    2016-01-01

    Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2) to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2) or carbon monoxide (CO), via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications. PMID:27733845

  20. Analysis of the core genome and pan-genome of autotrophic acetogenic bacteria

    Directory of Open Access Journals (Sweden)

    JongOh Shin

    2016-09-01

    Full Text Available Acetogens are obligate anaerobic bacteria capable of reducing carbon dioxide (CO2 to multicarbon compounds coupled to the oxidation of inorganic substrates, such as hydrogen (H2 or carbon monoxide (CO, via the Wood-Ljungdahl pathway. Owing to the metabolic capability of CO2 fixation, much attention has been focused on understanding the unique pathways associated with acetogens, particularly their metabolic coupling of CO2 fixation to energy conservation. Most known acetogens are phylogenetically and metabolically diverse bacteria present in 23 different bacterial genera. With the increased volume of available genome information, acetogenic bacterial genomes can be analyzed by comparative genome analysis. Even with the genetic diversity that exists among acetogens, the Wood-Ljungdahl pathway, a central metabolic pathway, and cofactor biosynthetic pathways are highly conserved for autotrophic growth. Additionally, comparative genome analysis revealed that most genes in the acetogen-specific core genome were associated with the Wood-Ljungdahl pathway. The conserved enzymes and those predicted as missing can provide insight into biological differences between acetogens and allow for the discovery of promising candidates for industrial applications.

  1. Continuous flow analysis method for determination of soluble iron and aluminium in ice cores.

    Science.gov (United States)

    Spolaor, A; Vallelonga, P; Gabrieli, J; Roman, M; Barbante, C

    2013-01-01

    Iron and aluminium are the two most abundant metals on the Earth's crust, but they display quite different biogeochemical properties. While iron is essential to many biological processes, aluminium has not been found to have any biological function at all. In environmental studies, iron has been studied in detail for its limiting role in the bioproductivity of high nutrient, low carbon oceanic zones, while aluminium is routinely used as a reference of crustal contributions to atmospheric deposition archives including peat bogs, lacustrine and marine sediments and ice sheets and glaciers. We report here the development of a flow injection analysis technique, which has been optimised for the simultaneous determination of soluble iron and aluminium in polar ice cores. Iron was determined by its catalytic role in the reduction of N,N-dimethyl-p-phenylenediamene (DPD) to a semiquinonic form (DPDQ) and subsequent absorption spectroscopy at 514 nm. Aluminium was determined by spectroscopic analysis of an aluminium-lumogallion complex that exhibits fluorescence at 560 nm. These techniques have been applied to a section of Greenland ice dated to 1729-1733 AD and indicate that volcanism is a source of highly soluble aluminium and iron.

  2. Feeling of 'lacking' as the core of envy: a conceptual analysis of envy.

    Science.gov (United States)

    Maijala, H; Munnukka, T; Nikkonen, M

    2000-06-01

    The aim of this paper is to explore the subjective experience of envy through concept analysis. Further, the study on which it is based aimed to answer questions about the composition and manifestations of envy. From the viewpoint of nursing science, the analysis of envy is based on a desire to understand human beings from the perspective of subjective health and illness and thus from a health promotion perspective. Envy is conceived of as a dimension of a person's health and illness. The concept is therefore meaningful from the viewpoint of nursing; it describes a phenomenon which enables us to deepen our understanding in a way relevant to nursing science. In the study the hybrid model developed by Schwartz-Barcott et al. was used for conceptual elaboration. In the theoretical phase of the study the subjective experience of envy was explored from the viewpoints of philosophy, religion, Finnish folklore and psychoanalysis, as well as nursing science. As a synthesis of these, a conceptual analysis of envy adapted from Wilson was conducted and a working definition of envy was proposed. In the fieldwork phase, envy was examined by means of an empirical analysis using a phenomenological approach. As a result, a classification describing the experience of envy was presented. The core experience of envy has been defined as a 'lacking', and the object of envy as something good possessed by someone else. Envy manifests itself in both destructiveness and creativity. The trends of development of envy are inflexibility and emancipation, and the essence of envy is multidimensional. Finally, the working definition of the concept was elaborated on the basis of the empirical phase and a new definition reflecting the composition and manifestations of envy was proposed.

  3. Flow Dynamic Analysis of Core Shooting Process through Experiment and Multiphase Modeling

    Directory of Open Access Journals (Sweden)

    Changjiang Ni

    2016-01-01

    Full Text Available Core shooting process is the most widely used technique to make sand cores and it plays an important role in the quality of sand cores as well as the manufacture of complicated castings in metal casting industry. In this paper, the flow behavior of sand particles in the core box was investigated synchronously with transparent core box, high-speed camera, and pressure measuring system. The flow pattern of sand particles in the shooting head of the core shooting machine was reproduced with various colored core sand layers. Taking both kinetic and frictional stress into account, a kinetic-frictional constitutive correlation was established to describe the internal momentum transfer in the solid phase. Two-fluid model (TFM simulations with turbulence model were then performed and good agreement was achieved between the experimental and simulation results on the flow behavior of sand particles in both the shooting head and the core box. Based on the experimental and simulation results, the flow behavior of sand particles in the core box, the formation of “dead zone” in the shooting head, and the effect of drag force were analyzed in terms of sand volume fraction (αs, sand velocity (Vs, and pressure variation (P.

  4. Design and analysis of a toroidal tester for the measurement of core losses under axial compressive stress

    Science.gov (United States)

    Alatawneh, Natheer; Rahman, Tanvir; Lowther, David A.; Chromik, Richard

    2017-06-01

    Electric machine cores are subjected to mechanical stresses due to manufacturing processes. These stresses include radial, circumferential and axial components that may have significant influences on the magnetic properties of the electrical steel and hence, on the output and efficiencies of electrical machines. Previously, most studies of iron losses due to mechanical stress have considered only radial and circumferential components. In this work, an improved toroidal tester has been designed and developed to measure the core losses and the magnetic properties of electrical steel under a compressive axial stress. The shape of the toroidal ring has been verified using 3D stress analysis. Also, 3D electromagnetic simulations show a uniform flux density distribution in the specimen with a variation of 0.03 T and a maximum average induction level of 1.5 T. The developed design has been prototyped, and measurements were carried out using a steel sample of grade 35WW300. Measurements show that applying small mechanical stresses normal to the sample thickness rises the delivered core losses, then the losses decrease continuously as the stress increases. However, the drop in core losses at high stresses does not go lower than the free-stress condition. Physical explanations for the observed trend of core losses as a function of stress are provided based on core loss separation to the hysteresis and eddy current loss components. The experimental results show that the effect of axial compressive stress on magnetic properties of electrical steel at high level of inductions becomes less pronounced.

  5. Analysis of core damage frequency due to external events at the DOE (Department of Energy) N-Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lambright, J.A.; Bohn, M.P.; Daniel, S.L. (Sandia National Labs., Albuquerque, NM (USA)); Baxter, J.T. (Westinghouse Hanford Co., Richland, WA (USA)); Johnson, J.J.; Ravindra, M.K.; Hashimoto, P.O.; Mraz, M.J.; Tong, W.H.; Conoscente, J.P. (EQE, Inc., San Francisco, CA (USA)); Brosseau, D.A. (ERCE, Inc., Albuquerque, NM (USA))

    1990-11-01

    A complete external events probabilistic risk assessment has been performed for the N-Reactor power plant, making full use of all insights gained during the past ten years' developments in risk assessment methodologies. A detailed screening analysis was performed which showed that all external events had negligible contribution to core damage frequency except fires, seismic events, and external flooding. A limited scope analysis of the external flooding risk indicated that it is not a major risk contributor. Detailed analyses of the fire and seismic risks resulted in total (mean) core damage frequencies of 1.96E-5 and 4.60E-05 per reactor year, respectively. Detailed uncertainty analyses were performed for both fire and seismic risks. These results show that the core damage frequency profile for these events is comparable to that found for existing commercial power plants if proposed fixes are completed as part of the restart program. 108 refs., 85 figs., 80 tabs.

  6. Response of Honeycomb Core Sandwich Panel with Minimum Gage GFRP Face-Sheets to Compression Loading After Impact

    Science.gov (United States)

    McQuigg, Thomas D.; Kapania, Rakesh K.; Scotti, Stephen J.; Walker, Sandra P.

    2011-01-01

    A compression after impact study has been conducted to determine the residual strength of three sandwich panel constructions with two types of thin glass fiber reinforced polymer face-sheets and two hexagonal honeycomb Nomex core densities. Impact testing is conducted to first determine the characteristics of damage resulting from various impact energy levels. Two modes of failure are found during compression after impact tests with the density of the core precipitating the failure mode present for a given specimen. A finite element analysis is presented for prediction of the residual compressive strength of the impacted specimens. The analysis includes progressive damage modeling in the face-sheets. Preliminary analysis results were similar to the experimental results; however, a higher fidelity core material model is expected to improve the correlation.

  7. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films

    Science.gov (United States)

    2014-01-09

    Synthesis 1. Diborane- ammonia (B2H6-NH3- gases): Early results with these precursors were published in 2012. 5 Briefly, LPCVD growth of h-BN in a hot-wall...Approved for public release; distribution is unlimited. Synthesis and Characterization of Hexagonal Boron Nitride (h- BN) Films. The views, opinions and...1 ABSTRACT Number of Papers published in peer-reviewed journals: Synthesis and Characterization of Hexagonal Boron Nitride (h-BN) Films. Report Title

  8. Bounds for the connective constant of the hexagonal lattice

    Energy Technology Data Exchange (ETDEWEB)

    Alm, S E; Parviainen, R [Department of Mathematics, Uppsala University, Box 480, 75106 Uppsala (Sweden)

    2004-01-23

    We give improved bounds for the connective constant of the hexagonal lattice. The lower bound is found by using Kesten's method of irreducible bridges and by determining generating functions for bridges on one-dimensional lattices. The upper bound is obtained as the largest eigenvalue of a certain transfer matrix. Using a relation between the hexagonal and the (3.12{sup 2}) lattices, we also give bounds for the connective constant of the latter lattice.

  9. Microscopic insight into the bilateral formation of carbon spirals from a symmetric iron core.

    Science.gov (United States)

    Shiozawa, Hidetsugu; Bachmatiuk, Alicja; Stangl, Andreas; Cox, David C; Silva, S Ravi P; Rümmeli, Mark H; Pichler, Thomas

    2013-01-01

    Mirrored carbon-spirals have been produced from pressured ferrocene via the bilateral extrusion of the spiral pairs from an iron core. A parametric plot of the surface geometry displays the fractal growth of the conical helix made with the logarithmic spiral. Electron microscopy studies show the core is a crystalline cementite which grows and transforms its shape from spherical to biconical as it extrudes two spiralling carbon arms. In a cross section along the arms we observe graphitic flakes arranged in a herringbone structure, normal to which defects propagate. Local-wave-pattern analysis reveals nanoscale defect patterns of two-fold symmetry around the core. The data suggest that the bilateral growth originates from a globular cementite crystal with molten surfaces and the nano-defects shape emerging hexagonal carbon into a fractal structure. Understanding and knowledge obtained provide a basis for the controlled production of advanced carbon materials with designed geometries.

  10. Core gene set as the basis of multilocus sequence analysis of the subclass Actinobacteridae.

    Directory of Open Access Journals (Sweden)

    Toïdi Adékambi

    Full Text Available Comparative genomic sequencing is shedding new light on bacterial identification, taxonomy and phylogeny. An in silico assessment of a core gene set necessary for cellular functioning was made to determine a consensus set of genes that would be useful for the identification, taxonomy and phylogeny of the species belonging to the subclass Actinobacteridae which contained two orders Actinomycetales and Bifidobacteriales. The subclass Actinobacteridae comprised about 85% of the actinobacteria families. The following recommended criteria were used to establish a comprehensive gene set; the gene should (i be long enough to contain phylogenetically useful information, (ii not be subject to horizontal gene transfer, (iii be a single copy (iv have at least two regions sufficiently conserved that allow the design of amplification and sequencing primers and (v predict whole-genome relationships. We applied these constraints to 50 different Actinobacteridae genomes and made 1,224 pairwise comparisons of the genome conserved regions and gene fragments obtained by using Sequence VARiability Analysis Program (SVARAP, which allow designing the primers. Following a comparative statistical modeling phase, 3 gene fragments were selected, ychF, rpoB, and secY with R2>0.85. Selected sets of broad range primers were tested from the 3 gene fragments and were demonstrated to be useful for amplification and sequencing of 25 species belonging to 9 genera of Actinobacteridae. The intraspecies similarities were 96.3-100% for ychF, 97.8-100% for rpoB and 96.9-100% for secY among 73 strains belonging to 15 species of the subclass Actinobacteridae compare to 99.4-100% for 16S rRNA. The phylogenetic topology obtained from the combined datasets ychF+rpoB+secY was globally similar to that inferred from the 16S rRNA but with higher confidence. It was concluded that multi-locus sequence analysis using core gene set might represent the first consensus and valid approach for

  11. Optical Signatures of Quantum Emitters in Suspended Hexagonal Boron Nitride.

    Science.gov (United States)

    Exarhos, Annemarie L; Hopper, David A; Grote, Richard R; Alkauskas, Audrius; Bassett, Lee C

    2017-03-28

    Hexagonal boron nitride (h-BN) is rapidly emerging as an attractive material for solid-state quantum engineering. Analogously to three-dimensional wide-band-gap semiconductors such as diamond, h-BN hosts isolated defects exhibiting visible fluorescence at room temperature, and the ability to position such quantum emitters within a two-dimensional material promises breakthrough advances in quantum sensing, photonics, and other quantum technologies. Critical to such applications is an understanding of the physics underlying h-BN's quantum emission. We report the creation and characterization of visible single-photon sources in suspended, single-crystal, h-BN films. With substrate interactions eliminated, we study the spectral, temporal, and spatial characteristics of the defects' optical emission. Theoretical analysis of the defects' spectra reveals similarities in vibronic coupling to h-BN phonon modes despite widely varying fluorescence wavelengths, and a statistical analysis of the polarized emission from many emitters throughout the same single-crystal flake uncovers a weak correlation between the optical dipole orientations of some defects and h-BN's primitive crystallographic axes, despite a clear misalignment for other dipoles. These measurements constrain possible defect models and, moreover, suggest that several classes of emitters can exist simultaneously throughout free-standing h-BN, whether they be different defects, different charge states of the same defect, or the result of strong local perturbations.

  12. Sensitivity Analysis of Core Damage from Reactor Coolant Pump Seal Leakage during Extended Loss of All AC Power

    Energy Technology Data Exchange (ETDEWEB)

    Park, Da Hee; Kim, Min Gi; Lee, Kyung Jin; Hwang, Su hyun; Lee, Byung Chul [FNC Technology Co. Ltd., Yongin (Korea, Republic of); Yoon, Duk Joo; Lee, Seung Chan [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of)

    2015-10-15

    In this study, in order to comprehend the Fukushima accident, the sensitivity analysis was performed to analyze the behavior of Reactor Coolant System (RCS) during ELAP using the RELAP5/MOD3.3 code. The Fukushima accident was caused by tsunami resulted in Station Black Out (SBO) followed by the reactor core melt-down and release of radioactive materials. After the accident, the equipment and strategies for the Extended Loss of All AC Power (ELAP) were recommended strongly. In this analysis, sensitivity studies for the RCP seal failure of the OPR1000 type NPP were performed by using RELAP5/MOD3.3 code. Six cases with different leakage rate of RCP seal were studied for ELAP with operator action or not. The main findings are summarized as follows: (1) Without the operator action, the core uncovery time is determined by the leakage rate of RCP seal. When the leakage rate per RCP seal are 5 gpm, 50 gpm, and 300 gpm respectively, the core uncovery time are 1.62 hr, 1.58 hr, and 1.29 hr respectively. Namely, If the leakage rate of RCP seal was much bigger, the uncover time of core would be shorter. (2) In case that the cooling by SG secondary side was performed using the TDAFP and SG ADV, the core uncovery time was significantly extended.

  13. Processing and geologic analysis of conventional cores from well ER-20-6 No. 1, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Prothro, L.B., Townsend, M.J.; Drellack, S.L. Jr. [and others

    1997-09-01

    In 1996, Well Cluster ER-20-6 was drilled on Pahute Mesa in Area 20, in the northwestern corner of the Nevada Test Site (NTS). The three wells of the cluster are located from 166 to 296 meters (m) (544 to 971 feet [ft]) southwest of the site of the underground nuclear test code-named BULLION, conducted in 1990 in Emplacement Hole U-20bd. The well cluster was planned to be the site of a forced-gradient experiment designed to investigate radionuclide transport in groundwater. To obtain additional information on the occurrence of radionuclides, nature of fractures, and lithology, a portion of Well ER-20-6 No. 1, the hole closest to the explosion cavity, was cored for later analysis. Bechtel Nevada (BN) geologists originally prepared the geologic interpretation of the Well Cluster ER-20-6 site and documented the geology of each well in the cluster. However, the cores from Well ER-20-6 No. 1 were not accessible at the time of that work. As the forced-gradient experiment and other radio nuclide migration studies associated with the well cluster progressed, it was deemed appropriate to open the cores, describe the geology, and re-package the core for long-term air-tight storage. This report documents and describes the processing, geologic analysis, and preservation of the conventional cores from Well ER20-6 No. 1.

  14. Metatranscriptomic analysis of diverse microbial communities reveals core metabolic pathways and microbiome-specific functionality.

    Science.gov (United States)

    Jiang, Yue; Xiong, Xuejian; Danska, Jayne; Parkinson, John

    2016-01-12

    Metatranscriptomics is emerging as a powerful technology for the functional characterization of complex microbial communities (microbiomes). Use of unbiased RNA-sequencing can reveal both the taxonomic composition and active biochemical functions of a complex microbial community. However, the lack of established reference genomes, computational tools and pipelines make analysis and interpretation of these datasets challenging. Systematic studies that compare data across microbiomes are needed to demonstrate the ability of such pipelines to deliver biologically meaningful insights on microbiome function. Here, we apply a standardized analytical pipeline to perform a comparative analysis of metatranscriptomic data from diverse microbial communities derived from mouse large intestine, cow rumen, kimchi culture, deep-sea thermal vent and permafrost. Sequence similarity searches allowed annotation of 19 to 76% of putative messenger RNA (mRNA) reads, with the highest frequency in the kimchi dataset due to its relatively low complexity and availability of closely related reference genomes. Metatranscriptomic datasets exhibited distinct taxonomic and functional signatures. From a metabolic perspective, we identified a common core of enzymes involved in amino acid, energy and nucleotide metabolism and also identified microbiome-specific pathways such as phosphonate metabolism (deep sea) and glycan degradation pathways (cow rumen). Integrating taxonomic and functional annotations within a novel visualization framework revealed the contribution of different taxa to metabolic pathways, allowing the identification of taxa that contribute unique functions. The application of a single, standard pipeline confirms that the rich taxonomic and functional diversity observed across microbiomes is not simply an artefact of different analysis pipelines but instead reflects distinct environmental influences. At the same time, our findings show how microbiome complexity and availability of

  15. Residual dent in locally loaded foam core sandwich structures – Analysis and use for NDI

    NARCIS (Netherlands)

    Koysin, V.; Shipsha, Andrey

    2008-01-01

    This paper addresses the residual denting in the face sheet and corresponding core damage in a locally loaded flat sandwich structure with foam core. The problem is analytically considered in the context of elastic bending of the face sheet accompanied by non-linear deformation of the crushed foam

  16. The study on the core personality trait words of Chinese medical university students based on social network analysis.

    Science.gov (United States)

    Wu, Ying; Xue, Yunzhen; Xue, Zhanling

    2017-09-01

    The medical university students in China whose school work is relatively heavy and educational system is long are a special professional group. Many students have psychological problems more or less. So, to understand their personality characteristics will provide a scientific basis for the intervention of psychological health.We selected top 30 personality trait words according to the order of frequency. Additionally, some methods such as social network analysis (SNA) and visualization technology of mapping knowledge domain were used in this study.Among these core personality trait words Family conscious had the 3 highest centralities and possessed the largest core status and influence. From the analysis of core-peripheral structure, we can see polarized core-perpheral structure was quite obvious. From the analysis of K-plex, there were in total 588 "K-2"K-plexs. From the analysis of Principal Components, we selected the 11 principal components.This study of personality not only can prevent disease, but also provide a scientific basis for students' psychological healthy education. In addition, we have adopted SNA to pay more attention to the relationship between personality trait words and the connection among personality dimensions. This study may provide the new ideas and methods for the research of personality structure.

  17. Exploitation of chemical profiles by conjugate variable analysis: application to the dating of a tropical ice core (Nevado Illimani, Bolivia)

    Science.gov (United States)

    Gay, M.; De Angelis, M.; Lacoume, J.-L.

    2013-06-01

    Ice core dating is a key parameter for the interpretation of the ice archives. However, the relationship between ice depth and age can generally not be easily established and requires to combine a large number of investigations and/or modeling effort. This paper presents a new approach of ice core dating based on conjugate variable (depth and spatial frequency) analysis of chemical profiles. The relationship between the depth of a given ice layer and the date it was deposited is determined using ion concentration depth profiles obtained along a one hundred-meters deep ice core recovered in the summit area of the Nevado Illimani (6350 m a.s.l.), located in the Eastern Bolivian Andes (16°37' S, 67°46' W). The results of Fourier conjugate analysis and wavelet tranforms are first compared. Both methods are applied to nitrate concentration depth profile. The resulting chronologies are checked by comparison with the multi-proxy year-by-year dating published by de Angelis et al. (2003) and with volcanic tie points, demonstrating the efficiency of Fourier conjugate analysis when tracking the natural variability of chemical proxies. The Fourier conjugate analysis is then applied to concentration depth profiles of seven other ions thus providing information on the suitability of each of them for dating studies of tropical Andean ice cores.

  18. An Analysis of the Alignment of the Grade 12 Physical Sciences Examination and the Core Curriculum in South Africa

    Science.gov (United States)

    Edwards, Nazeem

    2010-01-01

    I report on an analysis of the alignment between the South African Grade 12 Physical Sciences core curriculum content and the exemplar papers of 2008, and the final examination papers of 2008 and 2009. A two-dimensional table was used for both the curriculum and the examination in order to calculate the Porter alignment index, which indicates the…

  19. Analysis of HBV genotype, drug resistant mutations, and pre-core/basal core promoter mutations in Korean patients with acute hepatitis B.

    Science.gov (United States)

    Lee, Jong Ho; Hong, Sun Pyo; Jang, Eun Sun; Park, Sang Jong; Hwang, Seong Gyu; Kang, Sook-Kyoung; Jeong, Sook-Hyang

    2015-06-01

    Acute hepatitis B, caused by hepatitis B virus (HBV) strains with drug resistant mutations or pre-core/basal core promoter (PC/BCP) mutations, is a public health concern, because this infection is often associated with poor disease outcome or difficulty in therapeutic choice. The HBV genotype, the prevalence of drug resistant mutations, and PC/BCP mutations in Korean patients with acute hepatitis B were studied. From 2006 to 2008, 36 patients with acute hepatitis B were enrolled prospectively in four general hospitals. Among them, 20 showed detectable HBV DNA (median value was 4.8 log copies/mL). HBV genotyping and analysis of HBV mutations that conferred resistance against lamivudine, adefovir, or entecavir and of PC/BCP mutations were performed using highly sensitive restriction fragment mass polymorphism (RFMP) analysis. All 20 patients were infected with HBV genotype C, which causes almost all cases of chronic hepatitis B in Korea. No patient showed mutations that conferred resistance against lamivudine (L180M, M204V/I), adefovir (A181T, N236S), or entecavir (I169M, A184T/V, S202I/G, M250V/I/L). However, four patients had BCP mutations, and two had PC mutations. Platelet counts were significantly lower in the four patients with PC/BCP mutations compared to those with wild type. In this study, all acute hepatitis B patients had genotype C HBV strains with no drug resistant mutations. However, 20% showed PC/BCP mutations. This highlights the need for further study on the significance of PC/BCP mutations.

  20. Template-engaged solid-state synthesis of barium–strontium silicate hexagonal tubes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuncai; Kim, Woo-Sik, E-mail: wskim@khu.ac.kr

    2015-10-25

    Solid materials with hollow structures are of significant interest due to their beneficial features, such as a high surface to volume ratio, high void space in the structure, and low apparent density, allowing such applications as high efficiency catalysts and drug delivery agent. This study presents a new synthetic method for generating hexagonal hollow tubes of (BaSr)SiO{sub 4} via a template-engaged solid–solid reaction. First, the composition tuneable (BaSr)CO{sub 3} hexagonal rods were prepared as the template by the co-precipitation of Ba{sup 2+}, Sr{sup 2+}, and then uniformly shelled with the silica (SiO{sub 2}) using CTAB, thereby forming (BaSr)CO{sub 3}–SiO{sub 2} core–shell rods. The SiO{sub 2} shell thickness is adjustable based on the TEOS concentration in the sol–gel process. The (BaSr)CO{sub 3}–SiO{sub 2} core–shell rods were converted to the (BaSr)SiO{sub 4} hexagonal hollow tubes by an interfacial solid–solid reaction between the (BaSr)CO{sub 3} core and SiO{sub 2} shell at 750 °C. During this interfacial solid–solid reaction, the (BaSr)CO{sub 3} hexagonal rods are the template for hexagonal tubes of (BaSr)SiO{sub 4}. Kirkendall effect contributes to the formation of hollow tube structure of (BaSr)SiO{sub 4}. The proposed synthetic method demonstrated a significant advantage for the preparation of (BaSr)SiO:Eu{sup 2+} phosphor, where the synthetic temperature was reduced from 1200 °C to 500 °C when compared with the conventional method. The photoluminescence property of the hollow tubular (BaSr)SiO:Eu{sup 2+} showed a green emission between 480 nm and 600 nm with the maximum peak intensity at 517 nm under UV excitation. This synthetic method could also be applied to the preparation of hollow-structured multi-component metal silicates.

  1. Results and analysis of saltstone cores taken from saltstone disposal unit cell 2A

    Energy Technology Data Exchange (ETDEWEB)

    Reigel, M. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-01

    As part of an ongoing Performance Assessment (PA) Maintenance Plan, Savannah River Remediation (SRR) has developed a sampling and analyses strategy to facilitate the comparison of field-emplaced samples (i.e., saltstone placed and cured in a Saltstone Disposal Unit (SDU)) with samples prepared and cured in the laboratory. The primary objectives of the Sampling and Analyses Plan (SAP) are; (1) to demonstrate a correlation between the measured properties of laboratory-prepared, simulant samples (termed Sample Set 3), and the field-emplaced saltstone samples (termed Sample Set 9), and (2) to validate property values assumed for the Saltstone Disposal Facility (SDF) PA modeling. The analysis and property data for Sample Set 9 (i.e. six core samples extracted from SDU Cell 2A (SDU2A)) are documented in this report, and where applicable, the results are compared to the results for Sample Set 3. Relevant properties to demonstrate the aforementioned objectives include bulk density, porosity, saturated hydraulic conductivity (SHC), and radionuclide leaching behavior.

  2. Citation analysis did not provide a reliable assessment of core outcome set uptake.

    Science.gov (United States)

    Barnes, Karen L; Kirkham, Jamie J; Clarke, Mike; Williamson, Paula R

    2017-06-01

    The aim of the study was to evaluate citation analysis as an approach to measuring core outcome set (COS) uptake, by assessing whether the number of citations for a COS report could be used as a surrogate measure of uptake of the COS by clinical trialists. Citation data were obtained for COS reports published before 2010 in five disease areas (systemic sclerosis, rheumatoid arthritis, eczema, sepsis and critical care, and female sexual dysfunction). Those publications identified as a report of a clinical trial were examined to identify whether or not all outcomes in the COS were measured in the trial. Clinical trials measuring the relevant COS made up a small proportion of the total number of citations for COS reports. Not all trials citing a COS report measured all the recommended outcomes. Some trials cited the COS reports for other reasons, including the definition of a condition or other trial design issues addressed by the COS report. Although citation data can be readily accessed, it should not be assumed that the citing of a COS report indicates that a trial has measured the recommended COS. Alternative methods for assessing COS uptake are needed. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  3. A quantitative analysis of the reactions involved in stratospheric ozone depletion in the polar vortex core

    Directory of Open Access Journals (Sweden)

    I. Wohltmann

    2017-09-01

    Full Text Available We present a quantitative analysis of the chemical reactions involved in polar ozone depletion in the stratosphere and of the relevant reaction pathways and cycles. While the reactions involved in polar ozone depletion are well known, quantitative estimates of the importance of individual reactions or reaction cycles are rare. In particular, there is no comprehensive and quantitative study of the reaction rates and cycles averaged over the polar vortex under conditions of heterogeneous chemistry so far. We show time series of reaction rates averaged over the core of the polar vortex in winter and spring for all relevant reactions and indicate which reaction pathways and cycles are responsible for the vortex-averaged net change of the key species involved in ozone depletion, i.e., ozone, chlorine species (ClOx, HCl, ClONO2, bromine species, nitrogen species (HNO3, NOx and hydrogen species (HOx. For clarity, we focus on one Arctic winter (2004–2005 and one Antarctic winter (2006 in a layer in the lower stratosphere around 54 hPa and show results for additional pressure levels and winters in the Supplement. Mixing ratios and reaction rates are obtained from runs of the ATLAS Lagrangian chemistry and transport model (CTM driven by the European Centre for Medium-Range Weather Forecasts (ECMWF ERA-Interim reanalysis data. An emphasis is put on the partitioning of the relevant chemical families (nitrogen, hydrogen, chlorine, bromine and odd oxygen and activation and deactivation of chlorine.

  4. Shock Revival in Core-Collapse Supernovae: A Phase-Diagram Analysis

    CERN Document Server

    Gabay, Daniel; Keshet, Uri

    2015-01-01

    We examine the conditions for the revival of the stalled accretion shock in core-collapse supernovae, in the context of the neutrino heating mechanism. We combine one dimensional simulations of the shock revival process with a derivation of a quasi-stationary approximation, which is both accurate and efficient in predicting the flow. In particular, this approach is used to explore how the evolution of the system depends on the shock radius, $R_S$, and velocity, $V_S$ (in addition to other global properties of the system). We do so through a phase space analysis of the shock acceleration, $a_S$, in the $R_S-V_S$ plane, shown to provide quantitative insights into the initiation of runaway expansion and its nature. In the particular case of an initially stationary ($V_S=0,\\;a_S=0$) profile, the prospects for an explosion can be reasonably assessed by the initial signs of the partial derivatives of the shock acceleration, in analogy to a linear damped/anti-damped oscillator. If $\\partial a_S/\\partial R_S0$, runaw...

  5. An empirical analysis of the required management skills in the core employees' identification

    Directory of Open Access Journals (Sweden)

    Natalia García Carbonell

    2016-01-01

    Full Text Available The current study empirically analyses the influence of top management team human capital attributes on one of the most relevant stages in the human resource management strategy formulation: the core employees' identification. Drawing on recent calls from the strategic human resource management literature, this study proposes a "process" perspective instead of the traditional "content" analysis, with the intention of going a step further on the internal dynamic of these strategic processes. Applying the structural equation modeling via Partial Least Square (PLS on a sample of 120 Spanish firms, results reveal that critical human resources identification processes demand mixed cognitive skills, rational and creative ones, in order to complete efficiently different steps of the process. Consequently, to reach a balanced combination of previous skills, collectivistic dynamics are needed, fostering cooperative and collaborative decision making processes. In this context, HR managers will participate improving the process with his/her expert power and developing technical HR activities; subsequently, the HR information will be integrated the strategic decision making process with the rest of the team. In addition, interesting professional implications arise from the study in relation to the presence of the cognitive diversity in top management teams.

  6. Rasch analysis of the postconcussive symptom questionnaire: measuring the core construct of brain injury symptomatology.

    Science.gov (United States)

    Gardizi, Elmar; Millis, Scott R; Hanks, Robin; Axelrod, Bradley

    2012-01-01

    The Postconcussive Symptom Questionnaire (PCSQ; Lees-Haley, 1992 ) is purported to measure four constructs. These include psychological, cognitive, somatic, and infrequency (i.e., items intended to reflect negative impression management) symptoms. The utility and validity of Postconcussive Syndrome (PCS) as a diagnostic condition continues to be debated. To this end, examining the instruments used to measure postconcussive symptoms can increase our understanding with respect to this issue. The aim of this study was to derive a revised PCSQ to target the core construct of subjective symptoms reported by persons with traumatic brain injury (TBI). A total of 133 people with mild to severe TBI completed the 45-item PCSQ. Items were scored dichotomously, as symptom present or absent. Rasch analysis, based on the mathematical model formulated by Rasch ( 1960 ), was used to derive the revised PCSQ. Misfitting and redundant items were removed and a second model containing 19 items was fitted. The revised PCSQ-19 had superior psychometric qualities; reliability was 0.81. The PCSQ-19 provides a more targeted, unidimensional assessment of subjective symptoms following brain injury. The findings also revealed information related to symptom hierarchy which can further our understanding of PCS.

  7. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-07-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  8. Quantitative Proteomic Analysis of Optimal Cutting Temperature (OCT) Embedded Core-Needle Biopsy of Lung Cancer

    Science.gov (United States)

    Zhao, Xiaozheng; Huffman, Kenneth E.; Fujimoto, Junya; Canales, Jamie Rodriguez; Girard, Luc; Nie, Guangjun; Heymach, John V.; Wistuba, Igacio I.; Minna, John D.; Yu, Yonghao

    2017-10-01

    With recent advances in understanding the genomic underpinnings and oncogenic drivers of pathogenesis in different subtypes, it is increasingly clear that proper pretreatment diagnostics are essential for the choice of appropriate treatment options for non-small cell lung cancer (NSCLC). Tumor tissue preservation in optimal cutting temperature (OCT) compound is commonly used in the surgical suite. However, proteins recovered from OCT-embedded specimens pose a challenge for LC-MS/MS experiments, due to the large amounts of polymers present in OCT. Here we present a simple workflow for whole proteome analysis of OCT-embedded NSCLC tissue samples, which involves a simple trichloroacetic acid precipitation step. Comparisons of protein recovery between frozen versus OCT-embedded tissue showed excellent consistency with more than 9200 proteins identified. Using an isobaric labeling strategy, we quantified more than 5400 proteins in tumor versus normal OCT-embedded core needle biopsy samples. Gene ontology analysis indicated that a number of proliferative as well as squamous cell carcinoma (SqCC) marker proteins were overexpressed in the tumor, consistent with the patient's pathology based diagnosis of "poorly differentiated SqCC". Among the most downregulated proteins in the tumor sample, we noted a number of proteins with potential immunomodulatory functions. Finally, interrogation of the aberrantly expressed proteins using a candidate approach and cross-referencing with publicly available databases led to the identification of potential druggable targets in DNA replication and DNA damage repair pathways. We conclude that our approach allows LC-MS/MS proteomic analyses on OCT-embedded lung cancer specimens, opening the way to bring powerful proteomics into the clinic. [Figure not available: see fulltext.

  9. Analysis of Post-LOCA Core Inlet Blockage to Evaluate In-vessel Downstream Effect in APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Young Seok [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2015-10-15

    The method was developed to have a conservatism to cover the uncertainty of analysis and the acceptance is judged by the representative bounding estimation. However, the important safety parameters such as the available driving head need to be confirmed by the plant specific calculation. Also an interaction between the debris induced head loss and the core flow rate needs to be explained because the head loss induced by debris in actual condition may reduce the core inflow rate faster. To confirm the safety parameters, in this study, thermal-hydraulic response considering the core inlet blockage (CIB) by debris during LTCC process following a double-ended guillotine break of cold leg (CLB), one of hot leg (HLB) and one of intermediate leg (ILB) of the APR1400 were calculated, respectively. MARS-KS 1.3 code has been used. The CIB has been modeled by the closure of valves to the core in exponential manner with time to observe the behavior near the complete blockage. To understand the effect of core inlet blockage (CIB) during a long term core cooling (LTCC) phase following a loss-of-coolant accident (LOCA) in the light of in-vessel downstream effect (IDE) of Generic Safety Issue (GSI) 191, double-ended guillotine break of hot leg (HLB), one of cold leg (CLB) and one of intermediate leg (ILB) were calculated, respectively. And the important safety parameters such as the available driving head and the head loss due to debris were calculated using MARS-KS code and discussed in comparison with the WCAP method. As a result, a little delayed heatup behavior of the fuel cladding was found for all the cases, which due to the redistribution of flow within the core after blockage.

  10. A latency analysis for M2M and OG-like traffic patterns in different HSPA core network configurations

    Directory of Open Access Journals (Sweden)

    M. V. Popović

    2014-11-01

    Full Text Available In this paper we present an analysis intended to reveal possible impacts of core network features on latency for modelled M2M and Online Gaming traffic. Simulations were performed in a live 3G/HSPA network. Test traffic simulating multiplayer real-time games and M2M applications was generated on 10 mobile phones in parallel, sending data to a remote server. APNs with different combinations of hardware and features (proxy server, different GGSNs and firewalls, usage of Service Awareness feature were chosen. The traffic was recorded on the Gn interface in the mobile core. The goal of experiments was to evaluate any eventually significant variation of average recorded RTTs in the core part of mobile network that would clearly indicate either the impact of used APN on delay for a specific traffic pattern, or selectivity of the APN towards different traffic patterns.

  11. Performance Analysis of an EDFA Utilizing a Partially Doped Core Fiber (PDCF)

    Science.gov (United States)

    Ahad, M. A.; Paul, M. C.; Muhd-Yassin, S. Z.; Mansoor, A.; Abdul-Rashid, H. A.

    2016-09-01

    The effect of transversal design in Erbium-doped fiber amplifiers' gain and noise figure performance is illustrated in this work. In this work, we investigate experimentally a single pass 980 nm pumped EDFA with partially doped Erbium core fiber (PDCF), which has the core partially doped with Erbium ions. Later, the enumerated results for PDCF are compared with a standard fully doped EDF, having similar Erbium ion doping concentration. The PDCF Amplifier gain and noise figure performance is studied against different pump power and signal power at different operating wavelengths. The noise figure indicates improvement due to reduced spontaneous emission from un-doped region of the core.

  12. Standardization and optimization of core sampling procedure for carbon isotope analysis in eucalyptus and variation in carbon isotope ratios across species and growth conditions

    CSIR Research Space (South Africa)

    Raju, M

    2011-11-01

    Full Text Available and optimization of core sampling procedure for carbon isotope analysis in eucalyptus and variation in carbon isotope ratios across species and growth conditions Mohan Raju, B#; Nuveshen Naidoo*; Sheshshaayee, M. S; Verryn, S. D*; Kamalkannan, R^; Bindumadhava... isotope analysis in Eucalyptus. Methods Expt 1: * Cores were taken from periphery to pith in 5 year old trees of Eucalyptus * Five half sib families of Eucalyptus grandis & E. urophylla were used ? Cores were further subdivided into 5 fragments...

  13. The Hexagon-Spindle Model for educational ergonomics.

    Science.gov (United States)

    Benedyk, Rachel; Woodcock, Andrée; Harder, Andrew

    2009-01-01

    Ergonomics has traditionally considered work done, in a workplace. More recently, this scope has broadened, and the concept of 'work' may now be applied to the satisfactory completion of any task. Thus, learning, being the transformation and extension of the learner's knowledge or skills, can be viewed as work, with its workplace being the educational environment in which learning tasks take place. In accomplishing the learning, the learner interacts with the teachers, other students, equipment, materials, study plans and the educational organisation; the effectiveness of these learning interactions is influenced by many factors both inside and external to the organisation. To optimize such a multi-factorial process requires the application of an ergonomic approach. This paper proposes an adaptation of the concentric rings model of ergonomics, informed by Kao's earlier model, to produce a new model for educational ergonomics, known as the Hexagon-Spindle Model. In comparison to other published models of educational ergonomics, it is holistic, multi-dimensional, task-related and transferable across a range of educational settings. It extends to characterise a time base for serial and simultaneous tasks, and space shared by multiple learners, and highlights areas where learner/system conflicts may arise. The paper illustrates analysis tools for the application of the model in evaluation and design.

  14. Tilted hexagonal post arrays: DNA electrophoresis in anisotropic media.

    Science.gov (United States)

    Chen, Zhen; Dorfman, Kevin D

    2014-02-01

    Using Brownian dynamics simulations, we show that DNA electrophoresis in a hexagonal array of micron-sized posts changes qualitatively when the applied electric field vector is not coincident with the lattice vectors of the array. DNA electrophoresis in such "tilted" post arrays is superior to the standard "un-tilted" approach; while the time required to achieve a resolution of unity in a tilted post array is similar to an un-tilted array at a low-electric field strengths, this time (i) decreases exponentially with electric field strength in a tilted array and (ii) increases exponentially with electric field strength in an un-tilted array. Although the DNA dynamics in a post array are complicated, the electrophoretic mobility results indicate that the "free path," i.e. the average distance of ballistic trajectories of point-sized particles launched from random positions in the unit cell until they intersect the next post, is a useful proxy for the detailed DNA trajectories. The analysis of the free path reveals a fundamental connection between anisotropy of the medium and DNA transport therein that goes beyond simply improving the separation device.

  15. Analysis of ultra-deep pyrosequencing and cloning based sequencing of the basic core promoter/precore/core region of hepatitis B virus using newly developed bioinformatics tools.

    Directory of Open Access Journals (Sweden)

    Mukhlid Yousif

    Full Text Available AIMS: The aims of this study were to develop bioinformatics tools to explore ultra-deep pyrosequencing (UDPS data, to test these tools, and to use them to determine the optimum error threshold, and to compare results from UDPS and cloning based sequencing (CBS. METHODS: Four serum samples, infected with either genotype D or E, from HBeAg-positive and HBeAg-negative patients were randomly selected. UDPS and CBS were used to sequence the basic core promoter/precore region of HBV. Two online bioinformatics tools, the "Deep Threshold Tool" and the "Rosetta Tool" (http://hvdr.bioinf.wits.ac.za/tools/, were built to test and analyze the generated data. RESULTS: A total of 10952 reads were generated by UDPS on the 454 GS Junior platform. In the four samples, substitutions, detected at 0.5% threshold or above, were identified at 39 unique positions, 25 of which were non-synonymous mutations. Sample #2 (HBeAg-negative, genotype D had substitutions in 26 positions, followed by sample #1 (HBeAg-negative, genotype E in 12 positions, sample #3 (HBeAg-positive, genotype D in 7 positions and sample #4 (HBeAg-positive, genotype E in only four positions. The ratio of nucleotide substitutions between isolates from HBeAg-negative and HBeAg-positive patients was 3.5 ∶ 1. Compared to genotype E isolates, genotype D isolates showed greater variation in the X, basic core promoter/precore and core regions. Only 18 of the 39 positions identified by UDPS were detected by CBS, which detected 14 of the 25 non-synonymous mutations detected by UDPS. CONCLUSION: UDPS data should be approached with caution. Appropriate curation of read data is required prior to analysis, in order to clean the data and eliminate artefacts. CBS detected fewer than 50% of the substitutions detected by UDPS. Furthermore it is important that the appropriate consensus (reference sequence is used in order to identify variants correctly.

  16. Percutaneous computed tomography-guided core needle biopsy of soft tissue tumors: results and correlation with surgical specimen analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chojniak, Rubens; Grigio, Henrique Ramos; Bitencourt, Almir Galvao Vieira; Pinto, Paula Nicole Vieira; Tyng, Chiang J.; Cunha, Isabela Werneck da; Aguiar Junior, Samuel; Lopes, Ademar, E-mail: chojniak@uol.com.br [Hospital A.C. Camargo, Sao Paulo, SP (Brazil)

    2012-09-15

    Objective: To evaluate the efficacy of percutaneous computed tomography (CT)-guided core needle biopsy of soft tissue tumors in obtaining appropriate samples for histological analysis, and compare its diagnosis with the results of the surgical pathology as available. Materials and Methods: The authors reviewed medical records, imaging and histological reports of 262 patients with soft-tissue tumors submitted to CT-guided core needle biopsy in an oncologic reference center between 2003 and 2009. Results: Appropriate samples were obtained in 215 (82.1%) out of the 262 patients. The most prevalent tumors were sarcomas (38.6%), metastatic carcinomas (28.8%), benign mesenchymal tumors (20.5%) and lymphomas (9.3%). Histological grading was feasible in 92.8% of sarcoma patients, with the majority of them (77.9%) being classified as high grade tumors. Out of the total sample, 116 patients (44.3%) underwent surgical excision and diagnosis confirmation. Core biopsy demonstrated 94.6% accuracy in the identification of sarcomas, with 96.4% sensitivity and 89.5% specificity. A significant intermethod agreement about histological grading was observed between core biopsy and surgical resection (p < 0.001; kappa = 0.75). Conclusion: CT-guided core needle biopsy demonstrated a high diagnostic accuracy in the evaluation of soft tissue tumors as well as in the histological grading of sarcomas, allowing an appropriate therapeutic planning (author)

  17. Finite element stress analysis of short-post core and over restorations prepared with different restorative materials.

    Science.gov (United States)

    Gurbuz, Taskin; Sengul, Fatih; Altun, Ceyhan

    2008-07-01

    The present study was conducted to determine the effect on the distribution of stress with the use of short-post cores and over restorations composed of different materials. The restorative materials used were namely two different composite resin materials (Valux Plus and Tetric Flow), a polyacid-modified resin material (Dyract AP), and a woven polyethylene fiber combination (Ribbond Fiber + Bonding agent + Tetric Flow). Finite element analysis (FEA) was used to develop a model for the maxillary primary anterior teeth. A masticatory force of 100 N was applied at 148 degrees to the incisal edge of the palatal surface of the crown model. Stress distributions and stress values were compared using von Mises criteria. The tooth model was assumed to be isotropic, homogeneous, elastic, and asymmetrical. It was observed that the highest stress usually occurred in the cervical area of the tooth when Tetric Flow was used as the short-post core and over restoration material. The same maximum stress value was also obtained when Ribbond fiber + Tetric Flow material was used for the short-post core. The results of FEA showed that the mechanical properties and elastic modulus of the restorative material influenced the stresses generated in enamel, dentin, and restoration when short-post core restorations were loaded incisally. Resin-based restorative materials with higher elastic moduli were found to be unsuitable as short-post core materials in endodontically treated maxillary primary anterior teeth.

  18. In-situ Ice Core Analysis of Longyearbreen Glacier Using a Cryobot: Preparation for the Northern Polar Cap of Mars

    Science.gov (United States)

    Anderson, F.; Hecht, M. H.; Carsey, F. D.; Conrad, P. G.; Zimmerman, W. F.; French, L. C.; Engelhardt, H.

    2001-12-01

    A prototype cryobot will be used to provide an in-situ analysis of Longyearbreen glacier, in Svalbard. The cryobot is a small steerable robotic vehicle capable of melting through ice at a rate of ~20 m/day and carries a suite of instruments commonly used for ice core analysis. Terrestrial ice cores record climatological and geological history, such as changing atmospheric chemistry or volcanic eruptions. Unfortunately, coring or drilling in remote and harsh environmental conditions can be difficult and expensive. Furthermore, drilling and coring technologies are limited in penetration depth and commonly contaminate the sample with drilling fluids or surface debris. We present results from a cryobot designed to obtain geologic, climatologic, and biologic data while avoiding the problems of current methods; it can be installed in the ice with minimal effort, can be operated remotely, is relatively inexpensive, and is environmentally safe. The prototype will be used to record optical, pH, conductivity, redox, density, and temperature profiles of the Longyearbreen, glacier in Svalbard, Norway, which is 160 m deep, and located at 75N. These results will be compared with adjacent ice core measurements, for a direct comparison of the two technologies for obtaining science data. The ice core data will also be used to test the sensitivity and operating constraints a suite of instruments under development for use in the cryobot, including visible/near IR spectroscopy, UV fluorescence, and biomass identification. We have proposed the cryobot for use on a Scout class mission to Mars. The Svalbard melt test will serve as a simple Mars analog and a demonstration of the scientific return of the cryobot vehicle and instrument suite.

  19. Analysis of the characteristics of microorganisms packed in the ice core of Malan Glacier, Tibet, China

    Institute of Scientific and Technical Information of China (English)

    张晓君; 姚檀栋; 马晓军; 王宁练

    2001-01-01

    Glacier is a special medium which can conserve a long time chronological information of microorganism. As a preliminary research, from Ice Core3 of Malan glacier (91°45.3’ E, 35°48.4’ N; drilled at 5620 m a.s.l. ), we successfully isolated live microorganisms. 75 strains of bacteria in 10 genera and 6 strains of actinomycetes in 2 genera were isolated from 23 samples. 32 strains bacteria were identified to be Bacillus and 25 strains were B.circulans, B.firmus, B.subtilis and 6. alvei. The genera of bacteria in Malan ice core were similar to that in Greenland and Antarctic ice core. We cannot isolate fungi and alga from Malan ice core, although they are widely distributed in Greenland and Antarctica.

  20. Improvement of Axial Reflector Cross Section Generation Model for PWR Core Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shim, Cheon Bo; Lee, Kyung Hoon; Cho, Jin Young [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    This paper covers the study for improvement of axial reflector XS generation model. In the next section, the improved 1D core model is represented in detail. Reflector XS generated by the improved model is compared to that of the conventional model in the third section. Nuclear design parameters generated by these two XS sets are also covered in that section. Significant of this study is discussed in the last section. Two-step procedure has been regarded as the most practical approach for reactor core designs because it offers core design parameters quite rapidly within acceptable range. Thus this approach is adopted for SMART (System-integrated Modular Advanced Reac- Tor) core design in KAERI with the DeCART2D1.1/ MASTER4.0 (hereafter noted as DeCART2D/ MASTER) code system. Within the framework of the two-step procedure based SMART core design, various researches have been studied to improve the core design reliability and efficiency. One of them is improvement of reflector cross section (XS) generation models. While the conventional FA/reflector two-node model used for most core designs to generate reflector XS cannot consider the actual configuration of fuel rods that intersect at right angles to axial reflectors, the revised model reflects the axial fuel configuration by introducing the radially simplified core model. The significance of the model revision is evaluated by observing HGC generated by DeCART2D, reflector XS, and core design parameters generated by adopting the two models. And it is verified that about 30 ppm CBC error can be reduced and maximum Fq error decreases from about 6 % to 2.5 % by applying the revised model. Error of AO and axial power shapes are also reduced significantly. Therefore it can be concluded that the simplified 1D core model improves the accuracy of the axial reflector XS and leads to the two-step procedure reliability enhancement. Since it is hard for core designs to be free from the two-step approach, it is necessary to find

  1. Numerical Analysis of Magnetic Force of Dry-Type Air-Core Reactor

    Institute of Scientific and Technical Information of China (English)

    LIUZhi-gang; GENGYing-san; WANGJian-hua

    2004-01-01

    This paper presents a coupled magnetic-circuit method for computing the magnetic force of air-core reactor under short-time current. The current and the magnetic flux density are computed first and then the magnetic force is obtained. Thus, the dynamic stability performance of air-core reactor can be analyzed at the design stage to reduce experimental cost and shorten the lead-time of product development.

  2. BNL program in support of LWR degraded-core accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ginsberg, T.; Greene, G.A.

    1982-01-01

    Two major sources of loading on dry watr reactor containments are steam generatin from core debris water thermal interactions and molten core-concrete interactions. Experiments are in progress at BNL in support of analytical model development related to aspects of the above containment loading mechanisms. The work supports development and evaluation of the CORCON (Muir, 1981) and MARCH (Wooton, 1980) computer codes. Progress in the two programs is described in this paper. 8 figures.

  3. High Temperature Reactor (HTR) Deep Burn Core and Fuel Analysis: Design Selection for the Prismatic Block Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Francesco Venneri; Chang-Keun Jo; Jae-Man Noh; Yonghee Kim; Claudio Filippone; Jonghwa Chang; Chris Hamilton; Young-Min Kim; Ji-Su Jun; Moon-Sung Cho; Hong-Sik Lim; MIchael A. Pope; Abderrafi M. Ougouag; Vincent Descotes; Brian Boer

    2010-09-01

    The Deep Burn (DB) Project is a U.S. Department of Energy sponsored feasibility study of Transuranic Management using high burnup fuel in the high temperature helium cooled reactor (HTR). The DB Project consists of seven tasks: project management, core and fuel analysis, spent fuel management, fuel cycle integration, TRU fuel modeling, TRU fuel qualification, and HTR fuel recycle. In the Phase II of the Project, we conducted nuclear analysis of TRU destruction/utilization in the HTR prismatic block design (Task 2.1), deep burn fuel/TRISO microanalysis (Task 2.3), and synergy with fast reactors (Task 4.2). The Task 2.1 covers the core physics design, thermo-hydraulic CFD analysis, and the thermofluid and safety analysis (low pressure conduction cooling, LPCC) of the HTR prismatic block design. The Task 2.3 covers the analysis of the structural behavior of TRISO fuel containing TRU at very high burnup level, i.e. exceeding 50% of FIMA. The Task 4.2 includes the self-cleaning HTR based on recycle of HTR-generated TRU in the same HTR. Chapter IV contains the design and analysis results of the 600MWth DB-HTR core physics with the cycle length, the average discharged burnup, heavy metal and plutonium consumptions, radial and axial power distributions, temperature reactivity coefficients. Also, it contains the analysis results of the 450MWth DB-HTR core physics and the analysis of the decay heat of a TRU loaded DB-HTR core. The evaluation of the hot spot fuel temperature of the fuel block in the DB-HTR (Deep-Burn High Temperature Reactor) core under full operating power conditions are described in Chapter V. The investigated designs are the 600MWth and 460MWth DB-HTRs. In Chapter VI, the thermo-fluid and safety of the 600MWth DB-HTRs has been analyzed to investigate a thermal-fluid design performance at the steady state and a passive safety performance during an LPCC event. Chapter VII describes the analysis results of the TRISO fuel microanalysis of the 600MWth and 450

  4. Evaluation of Ceramic Honeycomb Core Compression Behavior at Room Temperature

    Science.gov (United States)

    Bird, Richard K.; Lapointe, Thomas S.

    2013-01-01

    Room temperature flatwise compression tests were conducted on two varieties of ceramic honeycomb core specimens that have potential for high-temperature structural applications. One set of specimens was fabricated using strips of a commercially-available thin-gage "ceramic paper" sheet molded into a hexagonal core configuration. The other set was fabricated by machining honeycomb core directly from a commercially available rigid insulation tile material. This paper summarizes the results from these tests.

  5. Thermal distribution analysis of multi-core photonic crystal fiber laser

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-bo; YAO Jian-quan; ZHANG Lei; WANG Yuan; WEN Wu-qi; JING Lei; DI Zhi-gang; KANG Jian-yi

    2012-01-01

    The thermal properties of photonic crystal fiber (PCF) laser with 18 circularly distributed cores are investigated by using full-vector finite element method (FEM).The results show that the 18-core PCF has a more effective thermal dispersion construction compared with the single core PCF and 19-core PCF.In addition,the temperature distribution of 18-core PCF laser with different thermal loads is simulated.The results show that the core temperature approaches the fiber drawing value of 1800 K approximately when the thermal load is above 80 W/m which corresponds to the pumping power of 600 W approximately,while the coating temperature approaches the damage value of about 550 K when the thermal load is above 15 W/m which corresponds to the pumping power of 110 W approximately.Therefore the fiber cooling is necessary to achieve power scaling.Compared with other different cooling systems,the copper cooling scheme is found to be an effective method to reduce the thermal effects.

  6. Novel magnetic core materials impact modelling and analysis for minimization of RF heating loss

    Science.gov (United States)

    Ghosh, Bablu Kumar; Mohamad, Khairul Anuar; Saad, Ismail

    2016-02-01

    The eddy current that exists in RF transformer/inductor leads to generation of noise/heat in the circuit and ultimately reduces efficiency in RF system. Eddy current is generated in the magnetic core of the inductor/transformer largely determine the power loss for power transferring process. The losses for high-frequency magnetic components are complicated due to both the eddy current variation in magnetic core and copper windings reactance variation with frequency. Core materials permeability and permittivity are also related to variation of such losses those linked to the operating frequency. This paper will discuss mainly the selection of novel magnetic core materials for minimization of eddy power loss by using the approach of empirical equation and impedance plane simulation software TEDDY V1.2. By varying the operating frequency from 100 kHz to 1GHz and magnetic flux density from 0 to 2 Tesla, the eddy power loss is evaluated in our study. The Nano crystalline core material is found to be the best core material due to its low eddy power loss at low conductivity for optimum band of frequency application.

  7. Developing Fully Coupled Dynamical Reactor Core Isolation System Models in RELAP-7 for Extended Station Black-Out Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Haihua Zhao; Ling Zou; Hongbin Zhang; David Andrs; Richard Martineau

    2014-04-01

    The reactor core isolation cooling (RCIC) system in a boiling water reactor (BWR) provides makeup water to the reactor vessel for core cooling when the main steam lines are isolated and the normal supply of water to the reactor vessel is lost. It was one of the very few safety systems still available during the Fukushima Daiichi accidents after the tsunamis hit the plants and the system successfully delayed the core meltdown for a few days for unit 2 & 3. Therefore, detailed models for RCIC system components are indispensable to understand extended station black-out accidents (SBO) for BWRs. As part of the effort to develop the new generation reactor system safety analysis code RELAP-7, major components to simulate the RCIC system have been developed. This paper describes the models for those components such as turbine, pump, and wet well. Selected individual component test simulations and a simplified SBO simulation up to but before core damage is presented. The successful implementation of the simplified RCIC and wet well models paves the way to further improve the models for safety analysis by including more detailed physical processes in the near future.

  8. Joint analysis of celestial pole offset and free core nutation series

    Science.gov (United States)

    Malkin, Zinovy

    2017-07-01

    Three combined celestial pole offset (CPO) series computed at the Paris Observatory (C04), the United States Naval Observatory (USNO), and the International VLBI Service for Geodesy and Astrometry (IVS), as well as six free core nutation (FCN) models, were compared from different perspectives, such as stochastic and systematic differences, and FCN amplitude and phase variations. The differences between the C04 and IVS CPO series were mostly stochastic, whereas a low-frequency bias at the level of several tens of μas was found between the C04 and USNO CPO series. The stochastic differences between the C04 and USNO series became considerably smaller when computed at the IVS epochs, which can indicate possible problems with the interpolation of the IVS data at the midnight epochs during the computation of the C04 and USNO series. The comparison of the FCN series showed that the series computed with similar window widths of 1.1-1.2 years were close to one another at a level of 10-20 μas, whereas the differences between these series and the series computed with a larger window width of 4 and 7 years reached 100 μas. The dependence of the FCN model on the underlying CPO series was investigated. The RMS differences between the FCN models derived from the C04, USNO, and IVS CPO series were at a level of approximately 15 μas, which was considerably smaller than the differences among the CPO series. The analysis of the differences between the IVS, C04, and USNO CPO series suggested that the IVS series would be preferable for both precession-nutation and FCN-related studies.

  9. Joint analysis of celestial pole offset and free core nutation series

    Science.gov (United States)

    Malkin, Zinovy

    2016-10-01

    Three combined celestial pole offset (CPO) series computed at the Paris Observatory (C04), the United States Naval Observatory (USNO), and the International VLBI Service for Geodesy and Astrometry (IVS), as well as six free core nutation (FCN) models, were compared from different perspectives, such as stochastic and systematic differences, and FCN amplitude and phase variations. The differences between the C04 and IVS CPO series were mostly stochastic, whereas a low-frequency bias at the level of several tens of μ as was found between the C04 and USNO CPO series. The stochastic differences between the C04 and USNO series became considerably smaller when computed at the IVS epochs, which can indicate possible problems with the interpolation of the IVS data at the midnight epochs during the computation of the C04 and USNO series. The comparison of the FCN series showed that the series computed with similar window widths of 1.1-1.2 years were close to one another at a level of 10-20 μ as, whereas the differences between these series and the series computed with a larger window width of 4 and 7 years reached 100 μ as. The dependence of the FCN model on the underlying CPO series was investigated. The RMS differences between the FCN models derived from the C04, USNO, and IVS CPO series were at a level of approximately 15 μ as, which was considerably smaller than the differences among the CPO series. The analysis of the differences between the IVS, C04, and USNO CPO series suggested that the IVS series would be preferable for both precession-nutation and FCN-related studies.

  10. GENIE: a software package for gene-gene interaction analysis in genetic association studies using multiple GPU or CPU cores.

    Science.gov (United States)

    Chikkagoudar, Satish; Wang, Kai; Li, Mingyao

    2011-05-26

    Gene-gene interaction in genetic association studies is computationally intensive when a large number of SNPs are involved. Most of the latest Central Processing Units (CPUs) have multiple cores, whereas Graphics Processing Units (GPUs) also have hundreds of cores and have been recently used to implement faster scientific software. However, currently there are no genetic analysis software packages that allow users to fully utilize the computing power of these multi-core devices for genetic interaction analysis for binary traits. Here we present a novel software package GENIE, which utilizes the power of multiple GPU or CPU processor cores to parallelize the interaction analysis. GENIE reads an entire genetic association study dataset into memory and partitions the dataset into fragments with non-overlapping sets of SNPs. For each fragment, GENIE analyzes: 1) the interaction of SNPs within it in parallel, and 2) the interaction between the SNPs of the current fragment and other fragments in parallel. We tested GENIE on a large-scale candidate gene study on high-density lipoprotein cholesterol. Using an NVIDIA Tesla C1060 graphics card, the GPU mode of GENIE achieves a speedup of 27 times over its single-core CPU mode run. GENIE is open-source, economical, user-friendly, and scalable. Since the computing power and memory capacity of graphics cards are increasing rapidly while their cost is going down, we anticipate that GENIE will achieve greater speedups with faster GPU cards. Documentation, source code, and precompiled binaries can be downloaded from http://www.cceb.upenn.edu/~mli/software/GENIE/.

  11. Gas-phase synthesis of hexagonal and cubic phases of aluminum nitride: A method and its advantages

    Science.gov (United States)

    Kudyakova, V. S.; Bannikov, V. V.; Elagin, A. A.; Shishkin, R. A.; Baranov, M. V.; Beketov, A. R.

    2016-03-01

    Experimental results obtained in AlN synthesis by the high-temperature gas-phase method and analysis of reaction products phase composition are briefly described. It is demonstrated for the first time that dispersed aluminum nitride can be synthesized by this method from AlF3 in both hexagonal and cubic modifications.

  12. Using borehole core analysis to reveal Late Quaternary paleoearthquakes along the Nankou-Sunhe Fault,Beijing

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The Nankou-Sunhe Fault is a buried active normal fault that traverses the urban area of Beijing.Its seismic risks have caused considerable concerns.This paper studies paleoearthquakes along this fault by analyzing and correlating bore-hole cores obtained from triple-tube coring,incorporating experience acquired from trenching.As a result,a model for identifying earthquake-derived colluvium by sediment-core analysis is proposed.Triple-tube coring technique is useful to collect continuous undis-turbed soil core near the Nankou-Sunhe Fault.By identifying fault-scarp colluviums,determining cumulative displacement,and analysing stratum thickening on the hanging wall,we are able to establish a preliminary paleoearthquake sequence consisting of 13 surface-rupturing events since 60 ka.The seismic history can be divided into three periods based on different recurrence intervals.Between 60 and 40 ka,three earthquakes occurred with recurrence interval of ~10 ka.From 40 to 25 ka,there were six earthquakes with the recurrence interval of about 2.5 ka.In the last 25 ka,four earthquakes have taken place with the recurrence interval varying considerably.The recurrence interval between the last three events is ~5 ka.Smaller recurrence intervals correspond to stages of faster fault slip.The coseismic displacement of a single event is 0.8 to 2.2 m,average 1.4 m,largely equivalent to moment magnitudes 6.7-7.1.This study demonstrates the feasibility of bore-hole drilling in investigating paleoearthquakes along normal faults.It also suggests that closely spaced boreholes with continuous undisturbed cores are essential for reconstructing the complete paleoearthquake sequence.

  13. A new method for high-resolution methane measurements on polar ice cores using continuous flow analysis.

    Science.gov (United States)

    Schüpbach, Simon; Federer, Urs; Kaufmann, Patrik R; Hutterli, Manuel A; Buiron, Daphné; Blunier, Thomas; Fischer, Hubertus; Stocker, Thomas F

    2009-07-15

    Methane (CH4) is the second most important anthropogenic greenhouse gas in the atmosphere. Rapid variations of the CH4 concentration, as frequently registered, for example, during the last ice age, have been used as reliable time markers for the definition of a common time scale of polar ice cores. In addition, these variations indicate changes in the sources of methane primarily associated with the presence of wetlands. In order to determine the exact time evolution of such fast concentration changes, CH4 measurements of the highest resolution in the ice core archive are required. Here, we present a new, semicontinuous and field-deployable CH4 detection method, which was incorporated in a continuous flow analysis (CFA) system. In CFA, samples cut along the axis of an ice core are melted at a melt speed of typically 3.5 cm/min. The air from bubbles in the ice core is extracted continuously from the meltwater and forwarded to a gas chromatograph (GC) for high-resolution CH4 measurements. The GC performs a measurement every 3.5 min, hence, a depth resolution of 15 cm is achieved atthe chosen melt rate. An even higher resolution is not necessary due to the low pass filtering of air in ice cores caused by the slow bubble enclosure process and the diffusion of air in firn. Reproducibility of the new method is 3%, thus, for a typical CH4 concentration of 500 ppb during an ice age, this corresponds to an absolute precision of 15 ppb, comparable to traditional analyses on discrete samples. Results of CFA-CH4 measurements on the ice core from Talos Dome (Antarctica) illustrate the much higher temporal resolution of our method compared with established melt-refreeze CH4 measurements and demonstrate the feasibility of the new method.

  14. Goober: a fully integrated and user-friendly microarray data management and analysis solution for core labs and bench biologists.

    Science.gov (United States)

    Luo, Wen; Gudipati, Murali; Jung, Kevin; Chen, Mao; Marschke, Keith B

    2009-08-23

    Despite the large number of software tools developed to address different areas of microarray data analysis, very few offer an all-in-one solution with little learning curve. For microarray core labs, there are even fewer software packages available to help with their routine but critical tasks, such as data quality control (QC) and inventory management. We have developed a simple-to-use web portal to allow bench biologists to analyze and query complicated microarray data and related biological pathways without prior training. Both experiment-based and gene-based analysis can be easily performed, even for the first-time user, through the intuitive multi-layer design and interactive graphic links. While being friendly to inexperienced users, most parameters in Goober can be easily adjusted via drop-down menus to allow advanced users to tailor their needs and perform more complicated analysis. Moreover, we have integrated graphic pathway analysis into the website to help users examine microarray data within the relevant biological content. Goober also contains features that cover most of the common tasks in microarray core labs, such as real time array QC, data loading, array usage and inventory tracking. Overall, Goober is a complete microarray solution to help biologists instantly discover valuable information from a microarray experiment and enhance the quality and productivity of microarray core labs. The whole package is freely available at http://sourceforge.net/projects/goober. A demo web server is available at http://www.goober-array.org.

  15. Ground shock from multiple earth penetrator bursts: Effects for hexagonal weapon arrays

    Energy Technology Data Exchange (ETDEWEB)

    Kmetyk, L.N.; Yarrington, P.

    1990-08-01

    Calculations have been performed with the HULL hydrocode to study ground shock effects for multiple earth penetrator weapon (EPW) bursts in hexagonal-close-packed (HCP) arrays. Several different calculational approaches were used to treat this problem. The first simulations involved two-dimensional (2D) calculations, where the hexagonal cross-section of a unit-cell in an effectively-infinite HCP array was approximated by an inscribed cylinder. Those calculations showed substantial ground shock enhancement below the center of the array. To refine the analysis, 3D unit-cell calculations were done where the actual hexagonal cross-section of the HCP array was modelled. Results of those calculations also suggested that the multiburst array would enhance ground shock effects over those for a single burst of comparable yield. Finally, 3D calculations were run in which an HCP array of seven bursts was modelled explicitly. In addition, the effects of non-simultaneity were investigated. Results of the seven-burst HCP array calculations were consistent with the unit-cell results and, in addition, provided information on the 3D lethal contour produced by such an array.

  16. Glycolthermal synthesis and characterization of hexagonal CdS round microparticles in flower-like clusters

    Energy Technology Data Exchange (ETDEWEB)

    Phuruangrat, Anukorn, E-mail: phuruangrat@hotmail.com [Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112 (Thailand); Ekthammathat, Nuengruethai [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Titipun, E-mail: ttpthongtem@yahoo.com [Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Thongtem, Somchai [Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2011-10-13

    Highlights: > CdS as one of II-VI semiconducting materials. > Lab-made Teflon-lined stainless steel autoclaves enable us to form hexagonal CdS. > By 100-200 deg. C processing, round microparticles in flower clusters were synthesized. > A promising material for multiple potential applications. - Abstract: Hexagonal CdS round microparticles in flower-like clusters were synthesized by glycolthermal reactions of CdCl{sub 2} and thiourea as cadmium and sulphur sources in 1,2-propylene glycol (PG) at 100-200 deg. C for 10-30 h. Phase and morphology were detected using X-ray diffraction (XRD), and scanning and transmission electron microscopy (SEM, TEM). The products were pure phase of hexagonal wurtzite CdS. The quantitative elemental analysis of Cd:S ratio was detected using energy dispersive X-ray (EDX) analyzer. Raman spectrometer revealed the presence of fundamental and overtone modes at 296 and 595 cm{sup -1}, corresponding to the strong 1LO and weak 2LO modes, respectively. Photonic properties were investigated using UV-visible and photoluminescence (PL) spectroscopy. They showed the same absorption at 493-498 nm, and emission at 431 nm due to the excitonic recombination process. A possible formation mechanism was also proposed, according to experimental results.

  17. Correlation between magnon and magnetic symmetries of hexagonal RMnO3 (R = Er, Ho, Lu)

    Science.gov (United States)

    Nguyen, Thi Minh Hien; Nguyen, Thi Huyen; Chen, Xiang-Bai; Park, Yeonju; Jung, Young Mee; Lee, D.; Noh, T. W.; Cheong, Sang-Wook; Yang, In-Sang

    2016-11-01

    The correlation between the magnon scattering and the magnetic symmetries of hexagonal RMnO3 (R = Er, Ho) thin films and LuMnO3 single crystal was studied through the 2D Correlation Spectroscopy (2D COS) and Perturbation-Correlation Moving Window 2D (PCMW2D) Correlation Spectroscopy which were performed on the temperature-dependent Raman spectra of RMnO3 (R = Er, Ho, Lu). From the Raman spectra, we observed much stronger intensity and more asymmetrical magnon peak in LuMnO3 single crystal than in ErMnO3 and HoMnO3 thin films. While the ratio between magnon and phonon's linewidth of LuMnO3 and HoMnO3 display an anomalous behavior, that ratio of ErMnO3 is almost stable. The result from PCMW2D also supports these results. In addition, our 2D COS analysis showed that there are more overlap peaks in broad four-spin flipping magnon peak in LuMnO3 than that in ErMnO3 and HoMnO3. The differences of hexagonal RMnO3 (R = Er, Ho, Lu) in magnon scattering are very similar to the actual differences of the magnetic symmetries of these compounds. Therefore, we suggest that the magnon scattering of hexagonal RMnO3 is strongly correlated with the magnetic symmetries of these materials.

  18. Analysis of Monolith Cores from an Engineering Scale Demonstration of a Prospective Cast Stone Process

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, C. L. [Savannah River Site (SRS), Aiken, SC (United States); Cozzi, A. D. [Savannah River Site (SRS), Aiken, SC (United States); Hill, K. A. [Savannah River Site (SRS), Aiken, SC (United States)

    2016-06-01

    The primary disposition path of Low Activity Waste (LAW) at the DOE Hanford Site is vitrification. A cementitious waste form is one of the alternatives being considered for the supplemental immobilization of the LAW that will not be treated by the primary vitrification facility. Washington River Protection Solutions (WRPS) has been directed to generate and collect data on cementitious or pozzolanic waste forms such as Cast Stone. This report documents the coring and leach testing of monolithic samples cored from an engineering-scale demonstration (ES Demo) with non-radioactive simulants. The ES Demo was performed at SRNL in October of 2013 using the Scaled Continuous Processing Facility (SCPF) to fill an 8.5 ft. diameter x 3.25 ft. high container with simulated Cast Stone grout. The Cast Stone formulation was chosen from the previous screening tests. Legacy salt solution from previous Hanford salt waste testing was adjusted to correspond to the average LAW composition generated from the Hanford Tank Waste Operation Simulator (HTWOS). The dry blend materials, ordinary portland cement (OPC), Class F fly ash, and ground granulated blast furnace slag (GGBFS or BFS), were obtained from Lafarge North America in Pasco, WA. In 2014 core samples originally obtained approximately six months after filling the ES Demo were tested along with bench scale molded samples that were collected during the original pour. A latter set of core samples were obtained in late March of 2015, eighteen months after completion of the original ES Demo. Core samples were obtained using a 2” diameter x 11” long coring bit. The ES Demo was sampled in three different regions consisting of an outer ring, a middle ring and an inner core zone. Cores from these three lateral zones were further segregated into upper, middle and lower vertical segments. Monolithic core samples were tested using the Environmental Protection Agency (EPA) Method 1315, which is designed to provide mass transfer rates

  19. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  20. Kinematic dynamo action in square and hexagonal patterns.

    Science.gov (United States)

    Favier, B; Proctor, M R E

    2013-11-01

    We consider kinematic dynamo action in rapidly rotating Boussinesq convection just above onset. The velocity is constrained to have either a square or a hexagonal pattern. For the square pattern, large-scale dynamo action is observed at onset, with most of the magnetic energy being contained in the horizontally averaged component. As the magnetic Reynolds number increases, small-scale dynamo action becomes possible, reducing the overall growth rate of the dynamo. For the hexagonal pattern, the breaking of symmetry between up and down flows results in an effective pumping velocity. For intermediate rotation rates, this additional effect can prevent the growth of any mean-field dynamo, so that only a small-scale dynamo is eventually possible at large enough magnetic Reynolds number. For very large rotation rates, this pumping term becomes negligible, and the dynamo properties of square and hexagonal patterns are qualitatively similar. These results hold for both perfectly conducting and infinite magnetic permeability boundary conditions.

  1. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V.; Gothelf, Kurt V.; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal lattice packing of helices all in one design. The availability of hexagonal close packing of helices extends our ability to build complex structures using DNA nanotechnology. PMID:22187940

  2. Digital core based transmitted ultrasonic wave simulation and velocity accuracy analysis

    Science.gov (United States)

    Zhu, Wei; Shan, Rui

    2016-06-01

    Transmitted ultrasonic wave simulation (TUWS) in a digital core is one of the important elements of digital rock physics and is used to study wave propagation in porous cores and calculate equivalent velocity. When simulating wave propagates in a 3D digital core, two additional layers are attached to its two surfaces vertical to the wave-direction and one planar wave source and two receiver-arrays are properly installed. After source excitation, the two receivers then record incident and transmitted waves of the digital rock. Wave propagating velocity, which is the velocity of the digital core, is computed by the picked peak-time difference between the two recorded waves. To evaluate the accuracy of TUWS, a digital core is fully saturated with gas, oil, and water to calculate the corresponding velocities. The velocities increase with decreasing wave frequencies in the simulation frequency band, and this is considered to be the result of scattering. When the pore fluids are varied from gas to oil and finally to water, the velocity-variation characteristics between the different frequencies are similar, thereby approximately following the variation law of velocities obtained from linear elastic statics simulation (LESS), although their absolute values are different. However, LESS has been widely used. The results of this paper show that the transmission ultrasonic simulation has high relative precision.

  3. Core competence and dominant logic: contributions to the analysis of merger and acquisition process

    Directory of Open Access Journals (Sweden)

    Marcelo Pereira Binder

    2010-01-01

    Full Text Available Mergers and acquisitions are one of the most important strategic decisions a company can take. In the 1980s and 1990s, mergers and acquisitions have occurred in large numbers of companies and several theories have been developed to explain the phenomenon. However, most of these theories are related to the financial area. But, non-quantifiable aspects, such as core competencies and dominant logic, have been relegated to the background. Identified this gap, this paper proposes the inclusion of the concept of core competence and dominant logic as an analytical tool to validate a merger process. To do so, this article has rescued the discussion of these concepts in the business strategy field and a case that did not achieve the proposed goals with the merger was examined from this perspective. The result evidence that the adoption of the concepts of core competence and dominant logic helps explain a new insights with the merger process.

  4. New results for loop integrals. AMBRE, CSectors, hexagon

    Energy Technology Data Exchange (ETDEWEB)

    Gluza, Janusz; Kajda, Krzysztof [Silesia Univ., Katowice (Poland). Dept. of Field Theory and Particle Physics, Inst. of Physics; Riemann, Tord; Yundin, Valery [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-03-15

    We report on the three Mathematica packages hexagon, CSectors, AMBRE. They are useful for the evaluation of one- and two-loop Feynman integrals with a dependence on several kinematical scales. These integrals are typically needed for LHC and ILC applications, but also for higher order corrections at meson factories. hexagon is a new package for the tensor reduction of one-loop 5-point and 6-point functions with rank R=3 and R=4, respectively; AMBRE is a tool for derivations of Mellin-Barnes representations; CSectors is an interface for the package sectordecomposition and allows a convenient, direct evaluation of tensor Feynman integrals. (orig.)

  5. Hexagonal Pixels and Indexing Scheme for Binary Images

    Science.gov (United States)

    Johnson, Gordon G.

    2004-01-01

    A scheme for resampling binaryimage data from a rectangular grid to a regular hexagonal grid and an associated tree-structured pixel-indexing scheme keyed to the level of resolution have been devised. This scheme could be utilized in conjunction with appropriate image-data-processing algorithms to enable automated retrieval and/or recognition of images. For some purposes, this scheme is superior to a prior scheme that relies on rectangular pixels: one example of such a purpose is recognition of fingerprints, which can be approximated more closely by use of line segments along hexagonal axes than by line segments along rectangular axes. This scheme could also be combined with algorithms for query-image-based retrieval of images via the Internet. A binary image on a rectangular grid is generated by raster scanning or by sampling on a stationary grid of rectangular pixels. In either case, each pixel (each cell in the rectangular grid) is denoted as either bright or dark, depending on whether the light level in the pixel is above or below a prescribed threshold. The binary data on such an image are stored in a matrix form that lends itself readily to searches of line segments aligned with either or both of the perpendicular coordinate axes. The first step in resampling onto a regular hexagonal grid is to make the resolution of the hexagonal grid fine enough to capture all the binaryimage detail from the rectangular grid. In practice, this amounts to choosing a hexagonal-cell width equal to or less than a third of the rectangular- cell width. Once the data have been resampled onto the hexagonal grid, the image can readily be checked for line segments aligned with the hexagonal coordinate axes, which typically lie at angles of 30deg, 90deg, and 150deg with respect to say, the horizontal rectangular coordinate axis. Optionally, one can then rotate the rectangular image by 90deg, then again sample onto the hexagonal grid and check for line segments at angles of 0deg, 60deg

  6. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  7. Fabrication of hexagonal gallium nitride films on silicon (111) substrates

    Institute of Scientific and Technical Information of China (English)

    YANG Li; XUE Chengshan; WANG Cuimei; LI Huaixiang; REN Yuwen

    2003-01-01

    Hexagonal gallium nitride films were successfully fabricated through ammoniating Ga2O3 films deposited on silicon (111 ) substrates by electrophoresis. The structure, composition, and surface morphology of the formed films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM),and transmission electron microscopy (TEM). The measurement results reveal that the polycrystalline GaN films with hexagonal wurtzite structure were successfully grown on the silicon (111) substrates. Preliminary results suggest that varying the ammoniating temperature has obvious effect on the quality of the GaN films formed with this method.

  8. New results for loop integrals: AMBRE, CSectors, hexagon

    CERN Document Server

    Gluza, Janusz; Riemann, Tord; Yundin, Valery

    2009-01-01

    We report on the three Mathematica packages hexagon, CSectors, AMBRE. They are useful for the evaluation of one- and two-loop Feynman integrals with a dependence on several kinematical scales. These integrals are typically needed for LHC and ILC applications, but also for higher order corrections at meson factories. hexagon is a new package for the tensor reduction of one-loop 5-point and 6-point functions with rank R=3 and R=4, respectively; AMBRE is a tool for derivations of Mellin-Barnes representations; CSectors is an interface for the package sector_decomposition and allows a convenient, direct evaluation of tensor Feynman integrals.

  9. High Temperature Stress Analysis on 61-pin Test Assembly for Reactor Core Sub-channel Flow Test

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dongwon; Kim, Hyungmo; Lee, Hyeongyeon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    In this study, a high temperature heat transfer and stress analysis of a 61-pin test fuel assembly scaled down from the full scale 217-pin sub-assembly was conducted. The reactor core subchannel flow characteristic test will be conducted to evaluate uncertainties in computer codes used for reactor core thermal hydraulic design. Stress analysis for a 61-pin fuel assembly scaled down from Prototype Generation IV Sodium-cooled Fast Reactor was conducted and structural integrity in terms of load controlled stress limits was conducted. In this study, The evaluations on load-controlled stress limits for a 61-pin test fuel assembly to be used for reactor core subchannel flow distribution tests were conducted assuming that the test assembly is installed in a Prototype Generation IV Sodium-cooled fast reactor core. The 61-pin test assembly has the geometric similarity on P/D and H/D with PGSFR and material of fuel assembly is austenitic stainless steel 316L. The stress analysis results showed that 4.05MPa under primary load occurred at mid part of the test assembly and it was shown that the value of 4.05Mpa was far smaller than the code allowable of 127MPa. , it was shown that the stress intensity due to due to primary load is very small. The stress analysis results under primary and secondary loads showed that maximum stress intensity of 84.08MPa occurred at upper flange tangent to outer casing and the value was well within the code allowable of 268.8MPa. Integrity evaluations based on strain limits and creep-fatigue damage are underway according to the elevated design codes.

  10. Nonlinear Thermo-mechanical Finite Element Analysis of Polymer Foam Cored Sandwich Structures including Geometrical and Material Nonlinearity

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Thomsen, Ole Thybo; Taher, Siavash Talebi;

    In this paper, polymer foam cored sandwich structures with fibre reinforced composite face sheets subjected to combined mechanical and thermal loads will be analysed using the commercial FE code ABAQUS® incorporating both material and geometrical nonlinearity. Large displacements and rotations ar...... are included in the analysis. The full nonlinear stress-strain curves up to failure will be considered for the polymer foams at different temperatures to study the effect of material nonlinearity in detail....

  11. Numerical Analysis of Heat Storage and Heat Conductivity in the Concrete Hollow Core Deck Element

    DEFF Research Database (Denmark)

    Pomianowski, Michal Zbigniew; Heiselberg, Per; Jensen, Rasmus Lund;

    2011-01-01

    the overall heat transfer and heat storage in the hollow-core decks. The presented results allow comparison between detailed results from 2D-COMSOL simulations and simple 1D calculations from the whole building simulation tool such as BSim program and moreover, it is possible to validate the calculation...... method in BSim for the concrete deck element with air voids. Finally, this paper presents a comparison of the calculated heat conductivity of the hollow-core concrete deck and the measured heat conductivity for the same deck by using hot box apparatus....

  12. Reactivity insertion transient analysis for KUR low-enriched uranium silicide fuel core

    OpenAIRE

    Shen, Xiuzhong; Nakajima, Ken; Unesaki, Hironobu; Mishima, Kaichiro

    2013-01-01

    The purpose of this study is to realize the full core conversion from the use of High Enriched Uranium (HEU) fuels to the use of Low Enriched Uranium (LEU) fuels in Kyoto University Research Reactor (KUR). Although the conversion of nuclear energy sources is required to keep the safety margins and reactor reliability based on KUR HEU core, the uranium density (3.2 gU/cm3) and enrichment (20%) of LEU fuel (U3Si2–AL) are quite different from the uranium density (0.58 gU/cm3) and enrichment (93%...

  13. Numerical simulation and analysis of losses in air-core plastic photonic bandgap fibers

    Institute of Scientific and Technical Information of China (English)

    Tieshan Guan; Mingyang Chen; Zhilong Zhang; Rongjin Yu

    2005-01-01

    @@ The loss properties of air-core plastic photonic bandgap fibers are analyzed by multipole method. Despite the relatively large absorption loss of plastics (PMMA), the contribution of material absorption loss can be reduced significantly through appropriate selection of operating wavelength, number of cladding air-hole rings, radius of air-core, and position of photonic band gap. The transmission loss in this type of fiber can be decreased by an order of magnitude in comparison with that of conventional plastic optical fiber.

  14. Optimization of High-Resolution Continuous Flow Analysis for Transient Climate Signals in Ice Cores

    DEFF Research Database (Denmark)

    Bigler, Matthias; Svensson, Anders; Kettner, Ernesto

    2011-01-01

    meltwater conductivity detection modules. The system is optimized for high- resolution determination of transient signals in thin layers of deep polar ice cores. Based on standard measurements and by comparing sections of early Holocene and glacial ice from Greenland, we find that the new system features...... a depth resolution in the ice of a few millimeters which is considerably better than other CFA systems. Thus, the new system can resolve ice strata down to 10 mm thickness and has the potential of identifying annual layers in both Greenland and Antarctic ice cores throughout the last glacial cycle....

  15. Two-mode elliptical-core weighted fiber sensors for vibration analysis

    Science.gov (United States)

    Vengsarkar, Ashish M.; Murphy, Kent A.; Fogg, Brian R.; Miller, William V.; Greene, Jonathan A.; Claus, Richard O.

    1992-01-01

    Two-mode, elliptical-core optical fibers are demonstrated in weighted, distributed and selective vibration-mode-filtering applications. We show how appropriate placement of optical fibers on a vibrating structure can lead to vibration mode filtering. Selective vibration-mode suppression on the order of 10 dB has been obtained using tapered two-mode, circular-core fibers with tapering functions that match the second derivatives of the modes of vibration to be enhanced. We also demonstrate the use of chirped, two-mode gratings in fibers as spatial modal sensors that are equivalents of shaped piezoelectric sensors.

  16. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in a...

  17. Proteomics Core

    Data.gov (United States)

    Federal Laboratory Consortium — Proteomics Core is the central resource for mass spectrometry based proteomics within the NHLBI. The Core staff help collaborators design proteomics experiments in...

  18. A Spitzer Survey of Young Stellar Clusters within One Kiloparsec of the Sun: Cluster Core Extraction and Basic Structural Analysis

    CERN Document Server

    Gutermuth, R A; Myers, P C; Allen, L E; Pipher, J L; Fazio, G G

    2009-01-01

    We present a uniform mid-infrared imaging and photometric survey of 36 young, nearby, star-forming clusters and groups using {\\it Spitzer} IRAC and MIPS. We have confidently identified and classified 2548 young stellar objects using recently established mid-infrared color-based methods. We have devised and applied a new algorithm for the isolation of local surface density enhancements from point source distributions, enabling us to extract the overdense cores of the observed star forming regions for further analysis. We have compiled several basic structural measurements of these cluster cores from the data, such as mean surface densities of sources, cluster core radii, and aspect ratios, in order to characterize the ranges for these quantities. We find that a typical cluster core is 0.39 pc in radius, has 26 members with infrared excess in a ratio of Class II to Class I sources of 3.7, is embedded in a $A_K$=0.8 mag cloud clump, and has a surface density of 60 pc$^{-2}$. We examine the nearest neighbor dista...

  19. A Computer-Aided Bibliometrics System for Journal Citation Analysis and Departmental Core Journal Ranking List Generation

    Directory of Open Access Journals (Sweden)

    Yih-Chearng Shiue

    2004-12-01

    Full Text Available Due to the tremendous increase and variation in serial publications, faculties in department of university are finding it difficult to generate and update their departmental core journal list regularly and accurately, and libraries are finding it difficult to maintain their current serial collection for different departments. Therefore, the evaluation of a departmental core journal list is an important task for departmental faculties and librarians. A departmental core journal list not only helps departments understand research performances of faculties and students, but also helps librarians make decisions about which journals to retain and which to cancel. In this study, a Computer-Aided Bibliometrics System was implemented and two methodologies (JCDF and LibJF were proposed in order to generate a departmental core journal ranking list and make the journal citation analysis. Six departments were taken as examples, with MIS as the major one. One journal citation pattern was found and the ratio of Turning point-to-No. journal was always around 0.07 among the 10 journals and 6 departments. After comparing with four methodologies via overlapping rate and standard deviation distances, the two proposed methodologies were shown to be better than questionnaire and library subscription method.

  20. [Core research areas on addiction in Spain through the Web of Science bibliographic coupling analysis (2000-2013)].

    Science.gov (United States)

    G, González-Alcaide; A, Calafat; E, Becoña

    2014-01-01

    The present study identifies the main Spanish core research areas in the area of addictions through the bibliographic coupling analysis of the publications at the Web of Science under the substance abuse heading. The bibliographic coupling methodology is the analytical procedure that determines the thematic-intellectual proximity of the documents under consideration through the identification of the shared or simultaneously cited bibliography by those documents. A factor analysis and network analysis have been carried out to cluster documents, graphically represent the existing core research areas, and analyse the interrelations between them. We have identified 30 core research areas. Alcohol is the topic of attention of 17 areas and cocaine has a strong presence in 6. Heroin and opiates are only present as prominent substances in 4 areas and cannabis and tobacco in other two for each substance. It has been found that there is a significant degree of fragmentation in the area, with the existence of numerous research foci but with few connections with each other and few documents showing shared common knowledge. Also noteworthy is the large number of emerging research areas, reflecting an incipient stage in many of the research topics. Consideration must be placed in promoting scientific consensus and cohesion of the discipline as well as to encouraging the consolidation of main lines that respond to the social problems and research challenges.

  1. Development of the Northern European Ribes core collection based on a microsatellite (SSR) marker diversity analysis

    DEFF Research Database (Denmark)

    Antonius, Kristiina; Karhu, S.; Kaldmäe, H.;

    2012-01-01

    The purpose of the study was to support the selection process of the most valuable currant and gooseberry accessions cultivated in Northern Europe, in order to establish a decentralized core collection and, following the selection, to ensure sufficient genetic diversity in the selected collection...

  2. Three-dimensional vortex analysis and aeroacoustic source characterization of jet core breakdown

    NARCIS (Netherlands)

    Violato, D.; Scarano, F.

    2013-01-01

    The three-dimensional behavior of jet core breakdown is investigated with experiments conducted on a free water jet at Re = 5000 by time-resolved tomographic particle image velocimetry (TR-TOMO PIV). The investigated domain encompasses the range between 0 and 10 jet diameters. The characteristic pul

  3. Multiphysics Computational Analysis of a Solid-Core Nuclear Thermal Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Cheng, Gary; Chen, Yen-Sen

    2007-01-01

    The objective of this effort is to develop an efficient and accurate computational heat transfer methodology to predict thermal, fluid, and hydrogen environments for a hypothetical solid-core, nuclear thermal engine - the Small Engine. In addition, the effects of power profile and hydrogen conversion on heat transfer efficiency and thrust performance were also investigated. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics platform, while formulations of conjugate heat transfer were implemented to describe the heat transfer from solid to hydrogen inside the solid-core reactor. The computational domain covers the entire thrust chamber so that the afore-mentioned heat transfer effects impact the thrust performance directly. The result shows that the computed core-exit gas temperature, specific impulse, and core pressure drop agree well with those of design data for the Small Engine. Finite-rate chemistry is very important in predicting the proper energy balance as naturally occurring hydrogen decomposition is endothermic. Locally strong hydrogen conversion associated with centralized power profile gives poor heat transfer efficiency and lower thrust performance. On the other hand, uniform hydrogen conversion associated with a more uniform radial power profile achieves higher heat transfer efficiency, and higher thrust performance.

  4. Informational Text and the Common Core: A Content Analysis of Three Basal Reading Programs

    Science.gov (United States)

    Walters, Barbara A.

    2013-01-01

    The Common Core State Standards for English Language Arts (CCSS-ELA) will have a significant impact on what teachers teach and what primary students are supposed to be able to do (Bomer & Maloch, 2011). By the end of fourth grade, reading instruction should be evenly balanced between literary text and informational text (NGA Center and CCSSO,…

  5. The Effectiveness of UK Student Counselling Services: An Analysis Using the CORE System

    Science.gov (United States)

    Connell, Janice; Barkham, Michael; Mellor-Clark, John

    2008-01-01

    Despite concern surrounding the mental health of students, brought about by the government's policy of widening participation and increasing demands upon students, the effectiveness of student counselling has been a neglected research area. This study examines data from seven UK student counselling services using the CORE System in the routine…

  6. Summary and Analysis of a Survey of Graduate Core Courses in Comparative Politics.

    Science.gov (United States)

    McHenry, Dean E., Jr.

    1988-01-01

    The findings of a study of comparative politics core course syllabi offered by a sample of political science departments in the United States are summarized. The purposes of the study were to assess the state of the subdiscipline and to help with an exchange of ideas between teachers. (BSR)

  7. The Common Core State Standards Initiative: An Event History Analysis of State Adoption

    Science.gov (United States)

    LaVenia, Mark; Cohen-Vogel, Lora; Lang, Laura B.

    2015-01-01

    Today, with states' near-universal adoption of the Common Core State Standards, the political system has achieved that which was not possible less than 2 decades ago. Just why this is so remains unanswered. Some observers have attributed states' embrace of the standards to the substantial financial incentives that the federal government embedded…

  8. Incorporation of phenomenological uncertainties in probabilistic safety analysis - application to LMFBR core disruptive accident energetics

    Energy Technology Data Exchange (ETDEWEB)

    Najafi, B; Theofanous, T G; Rumble, E T; Atefi, B

    1984-08-01

    This report describes a method for quantifying frequency and consequence uncertainty distribution associated with core disruptive accidents (CDAs). The method was developed to estimate the frequency and magnitude of energy impacting the reactor vessel head of the Clinch River Breeder Plant (CRBRP) given the occurrence of hypothetical CDAs. The methodology is illustrated using the CRBR example.

  9. COCO: a computer program for seismic analysis of a single column of the HTGR core

    Energy Technology Data Exchange (ETDEWEB)

    Rickard, N.D.

    1978-02-01

    The document serves as a user's manual and theoretical manual for the COCO code. COCO is a nonlinear numerical integration program designed to analyze a single column of the HTGR core for seismic excitation. Output of the code includes dowel forces, collision forces, and a time history of the motion of the blocks.

  10. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots

    Science.gov (United States)

    Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs). The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the compu...

  11. Analysis of phosphorus forms in sediment cores from ephemeral ponds on Ardley Island, West Antarctica

    Institute of Scientific and Technical Information of China (English)

    YANG Lianjiao; QIN Xianyan; SUN Liguang; HUANG Tao; WANG Yuhong

    2015-01-01

    The guano of penguins, other seabirds, and pinnipeds is an important source of phosphorus in the ecosystems of Antarctica. To study the vertical distribution of phosphorus in sediments influenced by penguins, we measured phosphorus forms in two sediment cores (G1 and Q2) from ephemeral ponds on Ardley Island. We also investigated the correlations between these phosphorus forms and physicochemical characteristics. Inorganic phosphorus was the main form of phosphorus in both cores. The vertical distribution patterns of phosphorus forms in G1 and Q2 differed, indicating different sedimentary sources. The G1 sediment profile was more influenced by penguin guano than the Q2 profile, and as a result sediments in the G1 core had higher total phosphorus, non-apatite inorganic phosphorus, and apatite phosphorus content. The findings from two ephemeral ponds on Ardley Island indicate that the contribution of penguin guano to organic matter in G1 core has increased in recent times, while Q2 showed a relatively larger contribution from mosses in ancient times, evident from the lithology and the vertical trend in organic matter.

  12. Library and Information Science Research: An Analysis of the 1984 Core Journal Literature.

    Science.gov (United States)

    Feehan, Pat; And Others

    This report examines the 1984 library and information science literature in order to characterize, analyze, and evaluate the published research of the field. The subjects and methods of research, types of libraries studied, and analytical techniques used are examined; a "core" journal group of 91 sources is established; and the amount…

  13. Common Core Standards, Professional Texts, and Diverse Learners: A Qualitative Content Analysis

    Science.gov (United States)

    Yanoff, Elizabeth; LaDuke, Aja; Lindner, Mary

    2014-01-01

    This research study questioned the degree to which six professional texts guiding implementation of the Common Core Standards in reading address the needs of diverse learners. For the purposes of this research, diverse learners were specifically defined as above grade level readers, below grade level readers, and English learners. The researchers…

  14. Intestinal microbiota in healthy adults: temporal analysis reveals individual and common core and relation to intestinal symptoms.

    Directory of Open Access Journals (Sweden)

    Jonna Jalanka-Tuovinen

    Full Text Available BACKGROUND: While our knowledge of the intestinal microbiota during disease is accumulating, basic information of the microbiota in healthy subjects is still scarce. The aim of this study was to characterize the intestinal microbiota of healthy adults and specifically address its temporal stability, core microbiota and relation with intestinal symptoms. We carried out a longitudinal study by following a set of 15 healthy Finnish subjects for seven weeks and regularly assessed their intestinal bacteria and archaea with the Human Intestinal Tract (HIT Chip, a phylogenetic microarray, in conjunction with qPCR analyses. The health perception and occurrence of intestinal symptoms was recorded by questionnaire at each sampling point. PRINCIPAL FINDINGS: A high overall temporal stability of the microbiota was observed. Five subjects showed transient microbiota destabilization, which correlated not only with the intake of antibiotics but also with overseas travelling and temporary illness, expanding the hitherto known factors affecting the intestinal microbiota. We identified significant correlations between the microbiota and common intestinal symptoms, including abdominal pain and bloating. The most striking finding was the inverse correlation between Bifidobacteria and abdominal pain: subjects who experienced pain had over five-fold less Bifidobacteria compared to those without pain. Finally, a novel computational approach was used to define the common core microbiota, highlighting the role of the analysis depth in finding the phylogenetic core and estimating its size. The in-depth analysis suggested that we share a substantial number of our intestinal phylotypes but as they represent highly variable proportions of the total community, many of them often remain undetected. CONCLUSIONS/SIGNIFICANCE: A global and high-resolution microbiota analysis was carried out to determine the temporal stability, the associations with intestinal symptoms, and the

  15. Genome-wide computational prediction and analysis of core promoter elements across plant monocots and dicots.

    Directory of Open Access Journals (Sweden)

    Sunita Kumari

    Full Text Available Transcription initiation, essential to gene expression regulation, involves recruitment of basal transcription factors to the core promoter elements (CPEs. The distribution of currently known CPEs across plant genomes is largely unknown. This is the first large scale genome-wide report on the computational prediction of CPEs across eight plant genomes to help better understand the transcription initiation complex assembly. The distribution of thirteen known CPEs across four monocots (Brachypodium distachyon, Oryza sativa ssp. japonica, Sorghum bicolor, Zea mays and four dicots (Arabidopsis thaliana, Populus trichocarpa, Vitis vinifera, Glycine max reveals the structural organization of the core promoter in relation to the TATA-box as well as with respect to other CPEs. The distribution of known CPE motifs with respect to transcription start site (TSS exhibited positional conservation within monocots and dicots with slight differences across all eight genomes. Further, a more refined subset of annotated genes based on orthologs of the model monocot (O. sativa ssp. japonica and dicot (A. thaliana genomes supported the positional distribution of these thirteen known CPEs. DNA free energy profiles provided evidence that the structural properties of promoter regions are distinctly different from that of the non-regulatory genome sequence. It also showed that monocot core promoters have lower DNA free energy than dicot core promoters. The comparison of monocot and dicot promoter sequences highlights both the similarities and differences in the core promoter architecture irrespective of the species-specific nucleotide bias. This study will be useful for future work related to genome annotation projects and can inspire research efforts aimed to better understand regulatory mechanisms of transcription.

  16. Applying CFD in the Analysis of Heavy-Oil Transportation in Curved Pipes Using Core-Flow Technique

    Directory of Open Access Journals (Sweden)

    S Conceição

    2017-06-01

    Full Text Available Multiphase flow of oil, gas and water occurs in the petroleum industry from the reservoir to the processing units. The occurrence of heavy oils in the world is increasing significantly and points to the need for greater investment in the reservoirs exploitation and, consequently, to the development of new technologies for the production and transport of this oil. Therefore, it is interesting improve techniques to ensure an increase in energy efficiency in the transport of this oil. The core-flow technique is one of the most advantageous methods of lifting and transporting of oil. The core-flow technique does not alter the oil viscosity, but change the flow pattern and thus, reducing friction during heavy oil transportation. This flow pattern is characterized by a fine water pellicle that is formed close to the inner wall of the pipe, aging as lubricant of the oil flowing in the core of the pipe. In this sense, the objective of this paper is to study the isothermal flow of heavy oil in curved pipelines, employing the core-flow technique. A three-dimensional, transient and isothermal mathematical model that considers the mixture and k-e  turbulence models to address the gas-water-heavy oil three-phase flow in the pipe was applied for analysis. Simulations with different flow patterns of the involved phases (oil-gas-water have been done, in order to optimize the transport of heavy oils. Results of pressure and volumetric fraction distribution of the involved phases are presented and analyzed. It was verified that the oil core lubricated by a fine water layer flowing in the pipe considerably decreases pressure drop.

  17. Lattice-Polarity-Driven Epitaxy of Hexagonal Semiconductor Nanowires.

    Science.gov (United States)

    Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xuelin; Xu, Fujun; Qin, Zhixin; Li, Xinzheng; Zhang, Xixiang; Shen, Bo

    2016-02-10

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about 2-fold larger in magnitude than those on the (0001̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  18. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  19. Hexagonal Boron Nitride Self-Launches Hyperbolic Phonon Polaritons

    NARCIS (Netherlands)

    Gilburd, Leonid; Kim, Kris S.; Ho, Kevin; Trajanoski, Daniel; Maiti, Aniket; Halverson, Duncan; de Beer, Sissi; Walker, Gilbert C.

    2017-01-01

    Hexagonal boron nitride (hBN) is a 2D material that supports traveling waves composed of material vibrations and light, and is attractive for nanoscale optical devices that function in the infrared. However, the only current method of launching these traveling waves requires the use of a metal

  20. Solitary plane waves in an isotropic hexagonal lattice

    DEFF Research Database (Denmark)

    Zolotaryuk, Yaroslav; Savin, A.V.; Christiansen, Peter Leth

    1998-01-01

    Solitary plane-wave solutions in a two-dimensional hexagonal lattice which can propagate in different directions on the plane are found by using the pseudospectral method. The main point of our studies is that the lattice model is isotropic and we show that the sound velocity is the same for diff...

  1. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  2. Hexagons and Interfaces in a Vibrated Granular Layer

    CERN Document Server

    Aranson, I S; Vinokur, V M

    1998-01-01

    The order parameter model based on parametric Ginzburg-Landau equation is used to describe high acceleration patterns in vibrated layer of granular material. At large amplitude of driving both hexagons and interfaces emerge. Transverse instability leading to formation of ``decorated'' interfaces and labyrinthine patterns, is found. Additional sub-harmonic forcing leads to controlled interface motion.

  3. A low cost route to hexagonal mesostructured carbon molecular sieves.

    Science.gov (United States)

    Kim, S S; Pinnavaia, T J

    2001-12-07

    A mesoporous carbon molecular sieve with a hexagonal framework structure (denoted C-MSU-H) has been prepared using a MSU-H silica template that can be assembled from a low cost soluble silicate precursor at near-neutral pH conditions.

  4. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping

    2015-12-22

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001 ̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about two-fold larger in magnitude than those on the (0001 ̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  5. Crystal structure of hexagonal RE(CO{sub 3})OH

    Energy Technology Data Exchange (ETDEWEB)

    Michiba, Kiyonori; Tahara, Takeshi; Nakai, Izumi [Tokyo Univ. of Science, Shinjuku (Japan). Faculty of Science; Miyawaki, Ritsuro; Matsubara, Satoshi [National Museum of Nature and Science, Tokyo (Japan). Dept. of Geology and Paleontology

    2011-07-01

    Hexagonal rare earth carbonate hydroxides, RE(CO{sub 3})OH, where RE = La, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, and Er, were hydrothermally synthesized from formic acid and hydroxide gels of rare earth elements. The crystals exhibited bicephalous hexagonal prisms with lengths of several tens of micrometers. The crystal structures of a series of hexagonal RE(CO{sub 3})OH were solved using the single crystal CCD-XRD intensity data sets. The space groups of the synthetic hexagonal RE(CO{sub 3})OH crystals are all P- anti 6. The present study has cast doubt upon the space group P- anti 62c previously reported for the natural Ce(CO{sub 3})OH, hydroxylbastnaesite-(Ce). The cell parameters decreased linearly with decreases in the ionic radii of the rare earth elements. La(CO{sub 3})OH showed the largest unit cell (a = 12.6752(6), c = 10.0806(10) A), while Er(CO{sub 3})OH showed the smallest (a = 11.8977(4), c = 9.6978(8) A). The rare earth atoms are in ninefold coordination with oxygen atoms to form a tricapped trigonal prism. The structure consists of layers of {sup 2}{infinity}[(OH)RE{sub 3/3}]{sup 2+} ions linked by carbonate ions. Raman spectra indicate the presence of carbonate and hydroxide groups. An evolutionary shift was observed from La to Er towards higher frequency, which was associated with a decreasing RE-O bond length. (orig.)

  6. Spatial and temporal gene expression differences in core and periinfarct areas in experimental stroke: a microarray analysis.

    Directory of Open Access Journals (Sweden)

    Jaime Ramos-Cejudo

    Full Text Available BACKGROUND: A large number of genes are regulated to promote brain repair following stroke. The thorough analysis of this process can help identify new markers and develop therapeutic strategies. This study analyzes gene expression following experimental stroke. METHODOLOGY/PRINCIPAL FINDINGS: A microarray study of gene expression in the core, periinfarct and contralateral cortex was performed in adult Sprague-Dawley rats (n = 60 after 24 hours (acute phase or 3 days (delayed stage of permanent middle cerebral artery (MCA occlusion. Independent qRT-PCR validation (n = 12 was performed for 22 of the genes. Functional data were evaluated by Ingenuity Pathway Analysis. The number of genes differentially expressed was 2,612 (24 h and 5,717 (3 d in the core; and 3,505 (24 h and 1,686 (3 d in the periinfarct area (logFC>|1|; adjP<0.05. Expression of many neurovascular unit development genes was altered at 24 h and 3 d including HES2, OLIG2, LINGO1 and NOGO-A; chemokines like CXCL1 and CXCL12, stress-response genes like HIF-1A, and trophic factors like BDNF or BMP4. Nearly half of the detected genes (43% had not been associated with stroke previously. CONCLUSIONS: This comprehensive study of gene regulation in the core and periinfarct areas at different times following permanent MCA occlusion provides new data that can be helpful in translational research.

  7. Twist angle effect on anisotropic mobility of hexagonal dislocation networks in {110} of alpha-iron

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jinbo [ORNL; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL

    2012-01-01

    Atomistic studies of anisotropic mobility of hexagonal dislocation networks (HDNs) in a series of twist boundaries (1 -1 0) has been performed in alpha-iron. In contrast with previous work that neglected the twist angle effect, we find when the twist angle approaches to 0, the resistance to the HDN motion could become much lower than Peierls stress of edge dislocations <1 1 1>/2 when the HDN moves along [0 0 1], but beyond Peierls stress of screw dislocations <1 1 1>/2 when the HDN moves along other directions. Vector form of Orowan equation and differential displacement map of dislocation core are used to analyse the behaviour of these boundary dislocations. This work seems favourable for understanding the absence of anomalous slip in alpha-iron.

  8. Code assessment and modelling for Design Basis Accident analysis of the European Sodium Fast Reactor design. Part II: Optimised core and representative transients analysis

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, A., E-mail: aulach@iqn.upv.es [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Schikorr, M. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Mikityuk, K. [PSI, Paul Scherrer Institut, 5232 Villigen (Switzerland); Ammirabile, L. [JRC-IET European Commission, Westerduinweg 3, PO BOX 2, 1755 ZG Petten (Netherlands); Bandini, G. [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy); Darmet, G.; Schmitt, D. [EDF, 1 Avenue du Général de Gaulle, 92141 Clamart (France); Dufour, Ph.; Tosello, A. [CEA, St. Paul lez Durance, 13108 Cadarache (France); Gallego, E.; Jimenez, G. [UPM, José Gutiérrez Abascal, 2, 28006 Madrid (Spain); Bubelis, E.; Ponomarev, A.; Kruessmann, R.; Struwe, D. [KIT, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Stempniewicz, M. [NRG, Utrechtseweg 310, P.O. Box-9034, 6800 ES Arnhem (Netherlands)

    2014-10-01

    Highlights: • Benchmarked models have been applied for the analysis of DBA transients of the ESFR design. • Two system codes are able to simulate the behavior of the system beyond sodium boiling. • The optimization of the core design and its influence in the transients’ evolution is described. • The analysis has identified peak values and grace times for the protection system design. - Abstract: The new reactor concepts proposed in the Generation IV International Forum require the development and validation of computational tools able to assess their safety performance. In the first part of this paper the models of the ESFR design developed by several organisations in the framework of the CP-ESFR project were presented and their reliability validated via a benchmarking exercise. This second part of the paper includes the application of those tools for the analysis of design basis accident (DBC) scenarios of the reference design. Further, this paper also introduces the main features of the core optimisation process carried out within the project with the objective to enhance the core safety performance through the reduction of the positive coolant density reactivity effect. The influence of this optimised core design on the reactor safety performance during the previously analysed transients is also discussed. The conclusion provides an overview of the work performed by the partners involved in the project towards the development and enhancement of computational tools specifically tailored to the evaluation of the safety performance of the Generation IV innovative nuclear reactor designs.

  9. Application Performance Analysis and Efficient Execution on Systems with multi-core CPUs, GPUs and MICs: A Case Study with Microscopy Image Analysis.

    Science.gov (United States)

    Teodoro, George; Kurc, Tahsin; Andrade, Guilherme; Kong, Jun; Ferreira, Renato; Saltz, Joel

    2017-01-01

    We carry out a comparative performance study of multi-core CPUs, GPUs and Intel Xeon Phi (Many Integrated Core-MIC) with a microscopy image analysis application. We experimentally evaluate the performance of computing devices on core operations of the application. We correlate the observed performance with the characteristics of computing devices and data access patterns, computation complexities, and parallelization forms of the operations. The results show a significant variability in the performance of operations with respect to the device used. The performances of operations with regular data access are comparable or sometimes better on a MIC than that on a GPU. GPUs are more efficient than MICs for operations that access data irregularly, because of the lower bandwidth of the MIC for random data accesses. We propose new performance-aware scheduling strategies that consider variabilities in operation speedups. Our scheduling strategies significantly improve application performance compared to classic strategies in hybrid configurations.

  10. KUGEL: a thermal, hydraulic, fuel performance, and gaseous fission product release code for pebble bed reactor core analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shamasundar, B.I.; Fehrenbach, M.E.

    1981-05-01

    The KUGEL computer code is designed to perform thermal/hydraulic analysis and coated-fuel particle performance calculations for axisymmetric pebble bed reactor (PBR) cores. This computer code was developed as part of a Department of Energy (DOE)-funded study designed to verify the published core performance data on PBRs. The KUGEL code is designed to interface directly with the 2DB code, a two-dimensional neutron diffusion code, to obtain distributions of thermal power, fission rate, fuel burnup, and fast neutron fluence, which are needed for thermal/hydraulic and fuel performance calculations. The code is variably dimensioned so that problem size can be easily varied. An interpolation routine allows variable mesh size to be used between the 2DB output and the two-dimensional thermal/hydraulic calculations.

  11. Radiocarbon analysis of the EPICA Dome C ice core: no in situ {sup 14}C from the firn observed

    Energy Technology Data Exchange (ETDEWEB)

    Jong, A.F.M. de; Alderliesten, C.; Borg, K. van der E-mail: k.vanderborg@phys.uu.nl; Veen, C. van der; Wal, R.S.W. van de

    2004-08-01

    CO{sub 2} and CO obtained by dry-extraction from ice samples of the EPICA Dome C core were {sup 14}C analysed by AMS. For some of the ice samples there is no evidence for in situ {sup 14}C, indicating the firn did not retain {sup 14}C. The {sup 14}C ages of these samples are too old in comparison with a calibrated ice-flow model, and the concentrations of {sup 14}CO are near zero. For other ice samples, however, in situ {sup 14}C is clearly present, and is likely from post-coring exposure at the Dome C surface. These samples show too young {sup 14}C ages, and distinct concentrations of {sup 14}CO. The accuracy of ages obtained from {sup 14}C analysis of ice samples is discussed.

  12. Ray-tracing analysis of crosstalk in multi-core polymer optical fibers.

    Science.gov (United States)

    Berganza, Amaia; Aldabaldetreku, Gotzon; Zubia, Joseba; Durana, Gaizka

    2010-10-11

    The aim of this paper is to present a new ray-tracing model which describes the propagation of light in multi-core polymer optical fibers (MCPOFs), taking into account the crosstalk among their cores. The new model overcomes many of the limitations of previous approaches allowing us to simulate MCPOFs of arbitrary designs. Additionally, it provides us with the output ray distribution at the end of the fiber, making it possible to calculate useful parameters related to the fiber performance such as the Near-Field Pattern, the Far-Field Pattern or the bandwidth. We also present experimental measurements in order to validate the computational model and we analyze the importance of crosstalk in different MCPOF configurations.

  13. Monte Carlo Error Analysis Applied to Core Formation: The Single-stage Model Revived

    Science.gov (United States)

    Cottrell, E.; Walter, M. J.

    2009-12-01

    The last decade has witnessed an explosion of studies that scrutinize whether or not the siderophile element budget of the modern mantle can plausibly be explained by metal-silicate equilibration in a deep magma ocean during core formation. The single-stage equilibrium scenario is seductive because experiments that equilibrate metal and silicate can then serve as a proxy for the early earth, and the physical and chemical conditions of core formation can be identified. Recently, models have become more complex as they try to accommodate the proliferation of element partitioning data sets, each of which sets its own limits on the pressure, temperature, and chemistry of equilibration. The ability of single stage models to explain mantle chemistry has subsequently been challenged, resulting in the development of complex multi-stage core formation models. Here we show that the extent to which extant partitioning data are consistent with single-stage core formation depends heavily upon (1) the assumptions made when regressing experimental partitioning data (2) the certainty with which regression coefficients are known and (3) the certainty with which the core/mantle concentration ratios of the siderophile elements are known. We introduce a Monte Carlo algorithm coded in MATLAB that samples parameter space in pressure and oxygen fugacity for a given mantle composition (nbo/t) and liquidus, and returns the number of equilibrium single-stage liquidus “solutions” that are permissible, taking into account the uncertainty in regression parameters and range of acceptable core/mantle ratios. Here we explore the consequences of regression parameter uncertainty and the impact of regression construction on model outcomes. We find that the form of the partition coefficient (Kd with enforced valence state, or D) and the handling of the temperature effect (based on 1-atm free energy data or high P-T experimental observations) critically affects model outcomes. We consider the most

  14. Performance Analysis for EDMA Based on TIC6678Multi-core DSP

    Institute of Scientific and Technical Information of China (English)

    Yun Xu; Yimin Ouyang; Renjie Niu

    2015-01-01

    Frequent data exchange among all kinds of memories has become an inevitable phenomenon in the process of modern embeddedsoftware design. In order to improve the ability of the embedded system data's throughput and computation, most embeddeddevices introduce Enhanced Direct Memory Access (EDMA) data transfer technology. TMS320C6678 is a multi-core DSPproduced by Texas Instruments (TI). There are ten EDMA transmission controllers in the chip for configuration and datatransmissions are allowed to be performed between any two pieces of storage at the same time. This paper expounds the workingmechanism of EDMA based on multi-core DSP TMS320C6678. At the same time, multiple data sets are provided and thebottleneck of limiting data throughout is analyzed and solved.

  15. Thermal-hydraulic analysis techniques for axisymmetric pebble bed nuclear reactor cores. [PEBBLE code

    Energy Technology Data Exchange (ETDEWEB)

    Stroh, K.R.

    1979-03-01

    The pebble bed reactor's cylindrical core volume contains a random bed of small, spherical fuel-moderator elements. These graphite spheres, containing a central region of dispersed coated-particle fissile and fertile material, are cooled by high pressure helium flowing through the connected interstitial voids. A mathematical model and numerical solution technique have been developed which allow calculation of macroscopic values of thermal-hydraulic variables in an axisymmetric pebble bed nuclear reactor core. The computer program PEBBLE is based on a mathematical model which treats the bed macroscopically as a generating, conducting porous medium. The steady-state model uses a nonlinear Forchheimer-type relation between the coolant pressure gradient and mass flux, with newly derived coefficients for the linear and quadratic resistance terms. The remaining equations in the model make use of mass continuity, and thermal energy balances for the solid and fluid phases.

  16. Analysis of reactivity characteristics of the MONJU initial core using JENDL-3.2

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Kenji; Suzuki, Takayuki; Suzuki, Norimichi [Power Reactor and Nuclear Fuel Development Corp., Tsuruga, Fukui (Japan). Monju Construction Office; Itagaki, Yoshihiko

    1998-03-01

    This paper describes the evaluated results of criticality, absorber rod worth and coolant worth in the MONJU initial cores based on the JENDL-3.2 library compared with those of the JENDL-2 library. We confirm that the ratios of calculated and experimental (C/E) values using the JENDL-3.2 library are slightly better than those based on the JENDL-2 library. (author)

  17. Development of a Chemical Equilibrium Model for a Molten Core-Concrete Interaction Analysis Module

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jae Uk; Lee, Dae Young; Park, Chang Hwan [FNC Technology Co., Yongin (Korea, Republic of)

    2016-10-15

    This molten core could interact with the reactor cavity region which consists of concrete. In this process, components of molten core react with components of concrete through a lot of chemical reactions. As a result, many kinds of gas species are generated and those move up forming rising bubbles into the reactor containment atmosphere. These rising bubbles are the carrier of the many kinds of the aerosols coming from the MCCI (Molten Core Concrete Interaction) layers. To evaluate the amount of the aerosols released from the MCCI layers, the amount of the gas species generated from those layers should be calculated. The chemical equilibrium state originally implies the final state of the multiple chemical reactions; therefore, investigating the equilibrium composition of molten core can be applicable to predict the gas generation status. The most common way for finding the chemical equilibrium state is a minimization of total Gibbs free energy of the system. In this paper, the method to make good guess of initial state is suggested and chemical reaction results are compared with results of CSSI report No 164. Total mass of system and the number of atoms of each element are conserved. The tendency of calculation results is similar with results presented in CSNI Report except a few species. These differences may be caused by absence of Gibbs energy data of the species such as Fe{sub 2}SiO{sub 4}, CaFe{sub 2}O{sub 4}, U(OH){sub 3}, UO(OH), UO{sub 2}(OH), U{sub 3}O{sub 7}, La, Ce.

  18. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yi-Bo; YAO Jian-Quan; ZHANG Lei; WANG Yuan; WEN Wu-Qi; JING Lei; DI Zhi-Gang

    2012-01-01

    The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated. The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber. The results show that the temperature decreases from the pump end to the launch end exponentially. Moreover, the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method. The numerical results match well with the experimental data and the coating temperature reaches 422.7K, approaching the critical value of polymer cladding, when the pumping power is 40 W. Therefore the fiber end cooling is necessary to achieve power scaling. Compared with natural convection methods, the copper cooling scheme is found to be an effective method to reduce the fiber temperature.%The three-dimensional thermal properties of 18-core photonic crystal fiber lasers operated under natural convection are investigated.The temperature sensing technique based on a fiber Bragg grating sensor array is proposed to measure the longitudinal temperature distribution of a 1.6-m-long ytterbium-doped 18-core photonic crystal fiber.The results show that the temperature decreases from the pump end to the launch end exponentially.Moreover,the radial temperature distribution of the fiber end is investigated by using the full-vector finite-element method.The numerical results match well with the experimental data and the coating temperature reaches 422.7K,approaching the critical value of polymer cladding,when the pumping power is 40 W.Therefore the fiber end cooling is necessary to achieve power scaling.Compared with natural convection methods,the copper cooling scheme is found to be an effective method to reduce the fiber temperature.

  19. Implementation of Preconditioned Krylov Subspace Method in MATRA Code for Whole Core Analysis of SMART

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk; Kim, S. J.; Park, J. P.; Hwang, D. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Krylov subspace method was implemented to perform the efficient whole core calculation of SMART with pin by pin subchannel model without lumping channel. The SMART core consisted of 57 fuel assemblies of 17 by 17 arrays with 264 fuel rods and 25 guide tubes and there are total 15,048 fuel rods and 16,780 subchannels. Restarted GMRES and BiCGStab methods are selected among Krylov subspace methods. For the purpose of verifying the implementation of Krylov method, whole core problem is considered under the normal operating condition. In this problem, solving a linear system Aχ = b is considered when A is nearly symmetric and when the system is preconditioned with incomplete LU factorization(ILU). The preconditioner using incomplete LU factorization are among the most effective preconditioners for solving general large, sparse linear systems arising from practical engineering problem. The Krylov subspace method is expected to improve the calculation effectiveness of MATRA code rather than direct method and stationary iteration method such as Gauss elimination and SOR. The present study describes the implementation of Krylov subspace methods with ILU into MATRA code. In this paper, we explore an improved performance of MATRA code for the SMART whole core problems by of Krylov subspace method. For this purpose, two preconditioned Krylov subspace methods, GMRES and BiCGStab, are implemented into the subchannel code MATRA. A typical ILU method is used as the preconditioner. Numerical problems examined in this study indicate that the Krylov subspace method shows the outstanding improvements in the calculation speed and easy convergence.

  20. Cobinamide-Based Cyanide Analysis by Multiwavelength Spectrometry in a Liquid Core Waveguide

    OpenAIRE

    Ma, Jian; Dasgupta, Purnendu K.; Blackledge, William; Boss, Gerry R.

    2010-01-01

    A novel cyanide analyzer based on sensitive cobinamide chemistry relies on simultaneous reagent and sample injection and detection in a 50 cm liquid core waveguide (LCW) flow cell illuminated by a white light emitting diode. The transmitted light is read by a fiber-optic charge coupled device (CCD) spectrometer. Alkaline cobinamide (orange, λmax = 510 nm) changes to violet (λmax = 583 nm) upon reaction with cyanide. Multiwavelength detection permits built-in correction for artifact responses ...

  1. Continuous flow analysis method for determination of dissolved reactive phosphorus in ice cores.

    Science.gov (United States)

    Kjær, Helle Astrid; Vallelonga, Paul; Svensson, Anders; Kristensen, Magnus Elleskov L; Tibuleac, Catalin; Bigler, Matthias

    2013-01-01

    Phosphorus (P) is an essential macronutrient for all living organisms. Phosphorus is often present in nature as the soluble phosphate ion PO4(3-) and has biological, terrestrial, and marine emission sources. Thus PO4(3-) detected in ice cores has the potential to be an important tracer for biological activity in the past. In this study a continuous and highly sensitive absorption method for detection of dissolved reactive phosphorus (DRP) in ice cores has been developed using a molybdate reagent and a 2-m liquid waveguide capillary cell (LWCC). DRP is the soluble form of the nutrient phosphorus, which reacts with molybdate. The method was optimized to meet the low concentrations of DRP in Greenland ice, with a depth resolution of approximately 2 cm and an analytical uncertainty of 1.1 nM (0.1 ppb) PO4(3-). The method has been applied to segments of a shallow firn core from Northeast Greenland, indicating a mean concentration level of 2.74 nM (0.26 ppb) PO4(3-) for the period 1930-2005 with a standard deviation of 1.37 nM (0.13 ppb) PO4(3-) and values reaching as high as 10.52 nM (1 ppb) PO4(3-). Similar levels were detected for the period 1771-1823. Based on impurity abundances, dust and biogenic particles were found to be the most likely sources of DRP deposited in Northeast Greenland.

  2. Harmonic Differential Quadrature Analysis of Soft-Core Sandwich Panels under Locally Distributed Loads

    Directory of Open Access Journals (Sweden)

    Xinwei Wang

    2016-11-01

    Full Text Available Sandwich structures are widely used in practice and thus various engineering theories adopting simplifying assumptions are available. However, most engineering theories of beams, plates and shells cannot recover all stresses accurately through their constitutive equations. Therefore, the soft-core is directly modeled by two-dimensional (2D elasticity theory without any pre-assumption on the displacement field. The top and bottom faces act like the elastic supports on the top and bottom edges of the core. The differential equations of the 2D core are then solved by the harmonic differential quadrature method (HDQM. To circumvent the difficulties in dealing with the locally distributed load by point discrete methods such as the HDQM, a general and rigorous way is proposed to treat the locally distributed load. Detailed formulations are provided. The static behavior of sandwich panels under different locally distributed loads is investigated. For verification, results are compared with data obtained by ABAQUS with very fine meshes. A high degree of accuracy on both displacement and stress has been observed.

  3. Third Generation (3G) Site Characterization: Cryogenic Core Collection and High Throughput Core Analysis - An Addendum to Basic Research Addressing Contaminants in Low Permeability Zones - A State of the Science Review

    Science.gov (United States)

    2016-07-29

    samples A = microbiological analysis B = methanol extraction C = water extraction 4.3 Analytical Methods 4.3.1 Biological Analysis For... microbiological analysis, half of each sample disk was wrapped in aluminum foil and returned to the freezer (-80°C) until DNA extraction. Note low DNA...are not available for unfrozen core (e.g., chopping into 1-inch “hockey pucks” and sectioning those disks into quarters with a sterile chisel). 6.1.6

  4. Theoretical Analysis of Tunable Single-Core Comb Filter Based on MZI

    Directory of Open Access Journals (Sweden)

    J. N. Sikta

    2014-07-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE In this work, a theoretical analysis of single core tunable comb filter based on Mach-Zehnder (M-Z interferometer is proposed and demonstrated. The proposed filter consists of one QWP, one HWP, one SMF and onePMF segment consists of two PMF lengths. Depending on the dynamic settings of wavelength of the input

  5. Systematical shape evolution of hexagonal NiSe crystals caused by mixed solvents and ammonium chloride

    Science.gov (United States)

    Chen, Shuguang; Zeng, Kai; Song, Yande; Li, Haibin; Liu, Peng; Li, Fujin

    2012-11-01

    Systematic shape evolution of hexagonal NiSe crystals is realized via a simple solvothermal route in a mixture of NiCl2·6H2O, elemental selenium, hydrazine hydrate and ethylenediamine. By introducing ammonium chloride as electrolyte and varying the volume ratios of hydrazine hydrate to ethylenediamine, shape evolution of hexagonal NiSe crystals from small hexagonal microdisks to hexagonal microdisks in larger width, microspheres, hexagonal prisms and hexagonal bitowers is successfully achieved. X-ray powder diffraction, field emission scanning electron microscopy, energy dispersion spectrometer, transmission electron microscopy and selected area electron diffraction are performed for the analyses of the products. The ionization and hydrolysis of ammonium chloride decrease the nucleation rate of hexagonal NiSe and the diffusion rate of growth resources, while the adsorption of ethylenediamine at {001} facets of hexagonal NiSe crystals inhibits the crystal growth in directions, thus leading to various novel architectures.

  6. Initial Comparison of Direct and Legacy Modeling Approaches for Radial Core Expansion Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Shemon, Emily R. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-10

    Radial core expansion in sodium-cooled fast reactors provides an important reactivity feedback effect. As the reactor power increases due to normal start up conditions or accident scenarios, the core and surrounding materials heat up, causing both grid plate expansion and bowing of the assembly ducts. When the core restraint system is designed correctly, the resulting structural deformations introduce negative reactivity which decreases the reactor power. Historically, an indirect procedure has been used to estimate the reactivity feedback due to structural deformation which relies upon perturbation theory and coupling legacy physics codes with limited geometry capabilities. With advancements in modeling and simulation, radial core expansion phenomena can now be modeled directly, providing an assessment of the accuracy of the reactivity feedback coefficients generated by indirect legacy methods. Recently a new capability was added to the PROTEUS-SN unstructured geometry neutron transport solver to analyze deformed meshes quickly and directly. By supplying the deformed mesh in addition to the base configuration input files, PROTEUS-SN automatically processes material adjustments including calculation of region densities to conserve mass, calculation of isotopic densities according to material models (for example, sodium density as a function of temperature), and subsequent re-homogenization of materials. To verify the new capability of directly simulating deformed meshes, PROTEUS-SN was used to compute reactivity feedback for a series of contrived yet representative deformed configurations for the Advanced Burner Test Reactor design. The indirect legacy procedure was also performed to generate reactivity feedback coefficients for the same deformed configurations. Interestingly, the legacy procedure consistently overestimated reactivity feedbacks by 35% compared to direct simulations by PROTEUS-SN. This overestimation indicates that the legacy procedures are in fact

  7. Comparative genomic analysis of the family Iridoviridae: re-annotating and defining the core set of iridovirus genes

    Directory of Open Access Journals (Sweden)

    Upton Chris

    2007-01-01

    Full Text Available Abstract Background Members of the family Iridoviridae can cause severe diseases resulting in significant economic and environmental losses. Very little is known about how iridoviruses cause disease in their host. In the present study, we describe the re-analysis of the Iridoviridae family of complex DNA viruses using a variety of comparative genomic tools to yield a greater consensus among the annotated sequences of its members. Results A series of genomic sequence comparisons were made among, and between the Ranavirus and Megalocytivirus genera in order to identify novel conserved ORFs. Of these two genera, the Megalocytivirus genomes required the greatest number of altered annotations. Prior to our re-analysis, the Megalocytivirus species orange-spotted grouper iridovirus and rock bream iridovirus shared 99% sequence identity, but only 82 out of 118 potential ORFs were annotated; in contrast, we predict that these species share an identical complement of genes. These annotation changes allowed the redefinition of the group of core genes shared by all iridoviruses. Seven new core genes were identified, bringing the total number to 26. Conclusion Our re-analysis of genomes within the Iridoviridae family provides a unifying framework to understand the biology of these viruses. Further re-defining the core set of iridovirus genes will continue to lead us to a better understanding of the phylogenetic relationships between individual iridoviruses as well as giving us a much deeper understanding of iridovirus replication. In addition, this analysis will provide a better framework for characterizing and annotating currently unclassified iridoviruses.

  8. Evaluation of the hexagonal and spherical model of vocational interests in the young people in Serbia and Bulgaria

    Directory of Open Access Journals (Sweden)

    Hedrih Vladimir

    2016-01-01

    Full Text Available The aim of this study was to validate Holland’s hexagonal and Tracey’s spherical model of vocational interests in young adults in Serbia and Bulgaria. To this end, 1250 participants, 560 from Serbia and 690 from Bulgaria, filled in Serbian and Bulgarian versions of the Personal Globe Inventory (PGI, Tracey, 2002. Hubert and Arabie’s randomization test of hypothetical orders, multidimensional scaling with fixed coordinates, Myors test and exploratory factor analysis were used. The results showed that the hexagonal and spherical models well explained the structure of vocational interests in both samples. The level of fit of the hexagonal model to the data obtained by using the PGI was generally higher than those established in the studies that used other Holland-based instruments. Furthermore, the levels of fit of both hexagonal and spherical model were in the same range like those obtained in previous studies in other countries. The results also pointed out a remarkable similarity in the structure of vocational interests in the Bulgarian and Serbian samples. [Projekat Ministarstva nauke Republike Srbije, br. 179002

  9. Modeling astronomically observed interstellar infrared spectra by ionized carbon pentagon-hexagon molecules (c9h7) n+

    CERN Document Server

    Ota, Norio

    2015-01-01

    Modeling a promising carrier of the astronomically observed polycyclic aromatic hydrocarbon (PAH), infrared (IR) spectra of ionized molecules (C9H7) n+ were calculated based on density functional theory (DFT). In a previous study, it was found that void induced coronene C23H12++ could reproduce observed spectra from 3 to 15 micron, which has carbon two pentagons connected with five hexagons. In this paper, we tried to test the simplest model, that is, one pentagon connected with one hexagon, which is indene like molecule (C9H7) n+ (n=0 to 4). DFT based harmonic frequency analysis resulted that observed spectrum could be almost reproduced by a suitable sum of ionized C9H7n+ molecules. Typical example is C9H7++. Calculated peaks were 3.2, 7.4, 7.6, 8.4, and 12.7 micron, whereas observed one 3.3, 7.6, 7.8, 8.6 and 12.7 micron. By a combination of different degree of ionized molecules, we can expect to reproduce total spectrum. For a comparison, hexagon-hexagon molecule naphthalene (C10H8) n+ was studied. Unfortu...

  10. Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Bahmad, L. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco)

    2015-09-01

    The magnetic behaviors of a mixed spins (2-1) hexagonal Ising nanowire with core–shell structure are investigated by using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperatures of core–shell are studied for different values of crystal field and exchange interactions. The thermal and magnetic hysteresis cycles are given for different values of the crystal field. - Highlights: • Critical temperature increase when exchange interaction increasing in core-shell. • Hysteresis loop areas decrease at above transition temperature. • Magnetic coercive field decrease when crystal field increasing. • Magnetic coercive field increase when exchange interaction increasing.

  11. Hexagon remainder function in the limit of self-crossing up to three loops

    CERN Document Server

    Dorn, Harald

    2011-01-01

    We consider Wilson loops in planar N=4 SYM for null polygons in the limit of two crossing edges. The analysis is based on a renormalisation group technique. We show that the previously obtained result for the leading and next-leading divergent term of the two loop hexagon remainder is in full agreement with the appropriate continuation of the exact analytic formula for this quantity. Furthermore, we determine the coefficients of the leading and next-leading singularity for the three loop remainder function for null n-gons with n >= 6.

  12. Poly[tetraaquatriglutaratodicerium(III) decahydrate], a novel luminescent metal-organic framework possessing hydrophilic hexagonal channels

    Indian Academy of Sciences (India)

    REMYA M NAIR; M R SUDARSANAKUMAR; S SUMA; M R PRATHAPACHANDRA KURUP; P K SUDHADEVI ANTHARJANAM

    2016-09-01

    A novel 2D metal–organic framework poly[tetraaquatriglutaratodicerium(III) decahydrate] with an open framework structure has been successfully grown by single gel diffusion technique. Sodium metasilicate was used for gel preparation. The structure was determined by single crystal X-ray diffraction. The compoundcrystallizes in orthorhombic space group Pnma and possesses a structure consisting of [CeO₁₀] polyhedra and H₂O molecules with hydrophilic hexagonal channels. The crystals were further characterized by elemental analysis, FT-IR and UV-Visible spectroscopy, powder X-ray diffraction and thermogravimetry. The luminescent property and magnetic susceptibility of the complex were also investigated.

  13. Diagonal Form Factors and Hexagon Form Factors II. Non-BPS Light Operator

    CERN Document Server

    Jiang, Yunfeng

    2016-01-01

    We study the asymptotic volume dependence of the heavy-heavy-light three-point functions in the $\\mathcal{N}=4$ Super-Yang-Mills theory using the hexagon bootstrap approach, where the volume is the length of the heavy operator. We extend the analysis of our previous short letter 1511.06199 to the general case where the heavy operators can be in any rank one sector and the light operator being a generic non-BPS operator. We prove the conjecture of Bajnok, Janik and Wereszczynski 1404.4556 up to leading finite size corrections.

  14. Thermal Hydraulics Design and Analysis Methodology for a Solid-Core Nuclear Thermal Rocket Engine Thrust Chamber

    Science.gov (United States)

    Wang, Ten-See; Canabal, Francisco; Chen, Yen-Sen; Cheng, Gary; Ito, Yasushi

    2013-01-01

    Nuclear thermal propulsion is a leading candidate for in-space propulsion for human Mars missions. This chapter describes a thermal hydraulics design and analysis methodology developed at the NASA Marshall Space Flight Center, in support of the nuclear thermal propulsion development effort. The objective of this campaign is to bridge the design methods in the Rover/NERVA era, with a modern computational fluid dynamics and heat transfer methodology, to predict thermal, fluid, and hydrogen environments of a hypothetical solid-core, nuclear thermal engine the Small Engine, designed in the 1960s. The computational methodology is based on an unstructured-grid, pressure-based, all speeds, chemically reacting, computational fluid dynamics and heat transfer platform, while formulations of flow and heat transfer through porous and solid media were implemented to describe those of hydrogen flow channels inside the solid24 core. Design analyses of a single flow element and the entire solid-core thrust chamber of the Small Engine were performed and the results are presented herein

  15. Physical Analysis of the Initial Core and Running-In Phase for Pebble-Bed Reactor HTR-PM

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2017-01-01

    Full Text Available The pebble-bed reactor HTR-PM is being built in China and is planned to be critical in one or two years. At present, one emphasis of engineering design is to determine the fuel management scheme of the initial core and running-in phase. There are many possible schemes, and many factors need to be considered in the process of scheme evaluation and analysis. Based on the experience from the constructed or designed pebble-bed reactors, the fuel enrichment and the ratio of fuel spheres to graphite spheres are important. In this paper, some relevant physical considerations of the initial core and running-in phase of HTR-PM are given. Then a typical scheme of the initial core and running-in phase is proposed and simulated with VSOP code, and some key physical parameters, such as the maximum power per fuel sphere, the maximum fuel temperature, the refueling rate, and the discharge burnup, are calculated. Results of the physical parameters all satisfy the relevant design requirements, which means the proposed scheme is safe and reliable and can provide support for the fuel management of HTR-PM in the future.

  16. Identifying regions of strong scattering at the core-mantle boundary from analysis of PKKP precursor energy

    Science.gov (United States)

    Rost, S.; Earle, P.S.

    2010-01-01

    We detect seismic scattering from the core-mantle boundary related to the phase PKKP (PK. KP) in data from small aperture seismic arrays in India and Canada. The detection of these scattered waves in data from small aperture arrays is new and allows a better characterization of the fine-scale structure of the deep Earth especially in the southern hemisphere. Their slowness vector is determined from array processing allowing location of the heterogeneities at the core-mantle boundary using back-projection techniques through 1D Earth models. We identify strong scattering at the core-mantle boundary (CMB) beneath the Caribbean, Patagonia and the Antarctic Peninsula as well as beneath southern Africa. An analysis of the scattering regions relative to sources and receivers indicates that these regions represent areas of increased scattering likely due to increased heterogeneities close to the CMB. The 1. Hz array data used in this study is most sensitive to heterogeneity with scale lengths of about 10. km. Given the small size of the scatterers, a chemical origin of the heterogeneities is likely. By comparing the location of the fine-scale heterogeneity to geodynamical models and tomographic images, we identify different scattering mechanisms in regions related to subduction (Caribbean and Patagonia) and dense thermo chemical piles (Southern Africa). ?? 2010 Elsevier B.V.

  17. A novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis

    Science.gov (United States)

    Alemdar, Kubra; Likoglu, Sumeyra; Fidanboylu, Kemal; Toker, Onur

    2014-03-01

    This paper presents the design of a novel periodic macrobending hetero-core fiber optic sensor embedded in textile for respiratory movements' analysis. We report on several different designs based on textiles which have different loop periodicity and configuration of optical fiber types. In all experiments, the changes of textile elongation are measured during breathing movements. In order to demonstrate the superiority of the proposed sensor, experiments were done on a macrobending sensor constructed from 62.5-50-62.5 hetero-core fiber and a macrobending sensor constructed from 62.5/125 μm multi-mode fiber having different loops. Experimental results show that the sensitivity of the proposed macrobending sensor constructed using hetero-core optical fiber is much higher than the sensor constructed from plain multi-mode optical fiber. It is also shown that, the sensitivity of the sensor increases as the number of loops is increased. On the other hand, several experiments were performed for periodic macrobending sensors having different bending radius by changing the lengths of loops amplitude and period. We demonstrate that the sensors tested on different patients' morphology can successfully sense respiratory movements.

  18. Thermo-mechanical interaction effects in foam cored sandwich panels-correlation between High-order models and Finite element analysis results

    DEFF Research Database (Denmark)

    Palleti, Hara Naga Krishna Teja; Santiuste, Carlos; Thomsen, Ole Thybo;

    2010-01-01

    Thermo-mechanical interaction effects including thermal material degradation in polymer foam cored sandwich structures is investigated using the commercial Finite Element Analysis (FEA) package ABAQUS/Standard. Sandwich panels with different boundary conditions in the form of simply supported...

  19. High Activity of Hexagonal Ag/Pt Nanoshell Catalyst for Oxygen Electroreduction

    Directory of Open Access Journals (Sweden)

    Lee Chien-Liang

    2008-01-01

    Full Text Available Abstract Hexagonal Ag/Pt nanoshells were prepared by using a hexagonal Ag nanoplate as the displacement template and by introducing Pt ions. The prepared Ag/Pt nanoshells played the role of an electrocatalyst in an oxygen reduction process. Compared to spherical Pt and Ag/Pt nanoparticles, the hexagonal Ag/Pt nanoshells showed higher activity for oxygen electroreduction.

  20. Synthesis, characterization, shape evolution, and optical properties of copper sulfide hexagonal bifrustum nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Jia Baorui; Qin Mingli, E-mail: qinml@mater.ustb.edu.cn [University of Science and Technology Beijing, School of Materials Science and Engineering (China); Jiang Xuezhi [North Heavy Industry Group, Special Steel Works (China); Zhang Zili; Zhang Lin; Liu Ye; Qu Xuanhui [University of Science and Technology Beijing, School of Materials Science and Engineering (China)

    2013-03-15

    The hexagonal bifrustum-shaped copper sulfide (CuS) nanocrystals were selectively and facilely synthesized by a hydrothermal method for the first time at 120 Degree-Sign C. The products were characterized by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, ultraviolet-visible (UV-Vis) spectroscopy, and photoluminescence spectroscopy. The results showed that the CuS hexagonal bifrustum nanocrystal was bounded by two top hexagons with edge length of about 50-70 nm and twelve lateral trapezoids with a base of about 100 nm and that the length of each hexagonal bifrustum was about 250 nm. Tetradecylamine (TDA), as an effective capping agent, was found to be critical for this special shape. Using different amounts of TDA, two kinds of CuS hexagonal bifrustum nanocrystals were obtained: 'lender hexagonal bifrustum' and 'pancake hexagonal bifrustum.' Furthermore, we studied the formation mechanism of hexagonal bifrustum, which is related to the intrinsic crystalline structure of CuS and Ostwald ripening. And, the results revealed that the CuS nanocrystal evolved from hexagonal plate to hexagonal bifrustum and finally to hexagonal bipyramid as the heating time increased. The UV-Vis absorption spectrum showed that these CuS hexagonal bifrustum nanocrystals exhibited strong absorption in the near-infrared region and had a potential application for photothermal therapy and photocatalysis.