WorldWideScience

Sample records for hexagonal bilayer hemoglobin

  1. Structural characterization of hemoglobins from Monilifera and Frenulata tubeworms (Siboglinids): first discovery of giant hexagonal-bilayer hemoglobin in the former "Pogonophora" group.

    Science.gov (United States)

    Meunier, Cédric; Andersen, Ann C; Bruneaux, Matthieu; Le Guen, Dominique; Terrier, Peran; Leize-Wagner, Emmanuelle; Zal, Franck

    2010-01-01

    Siboglinids are symbiotic polychete annelids having hemoglobins as essential oxygen- and sulfide-carriers for their endosymbiotic bacteria. We analyzed the structure of the hemoglobins from two species of siboglinids: the monilifera Sclerolinum contortum and the frenulata Oligobrachia webbi (i.e. haakonmosbiensis) from Norwegian cold seeps. Measured by Multi-Angle Laser Light Scattering (MALLS), Sclerolinum shows a 3190+/-50 kDa hexagonal bilayer hemoglobin (HBL-Hb) and a 461+/-46 kDa ring-Hb, just as vestimentifera, whereas Oligobrachia has a 409+/-3.7 kDa ring-Hb only. Electrospray Ionization-Mass Spectrometry (ESI-MS) showed Sclerolinum HBL-Hb composed of seven monomeric globins (15-16 kDa), three disulfide-bonded globin heterodimers and three linkers. The heterodimers always contain globin-b (15814.4+/-1.5 Da). Sclerolinum ring-Hb is composed of globins and dimers with identical masses as its HBL-Hb, but lacks linkers. Oligobrachia ring-Hb has three globin monomers (14-15 kDa) only, with no disulfide-bonded dimers. Comparison of Sclerolinum hemoglobins between Storegga and Haakon Mosby Mud Volcano, using the normalized height of deconvoluted ESI-MS peaks, shows differences in globin monomers abundances that could reflect genetic differences or differential gene expression between distinct seep populations. The discovery of HBL-Hb in Sclerolinum is a new element supporting the hypothesis of monilifera being phylogenetically more closely related to vestimentifera, than to frenulata.

  2. Strain, stabilities and electronic properties of hexagonal BN bilayers

    Science.gov (United States)

    Fujimoto, Yoshitaka; Saito, Susumu

    Hexagonal boron nitride (h-BN) atomic layers have been regarded as fascinating materials both scientifically and technologically due to the sizable band gap. This sizable band-gap nature of the h-BN atomic layers would provide not only new physical properties but also novel nano- and/or opto-electronics applications. Here, we study the first-principles density-functional study that clarifies the biaxial strain effects on the energetics and the electronic properties of h-BN bilayers. We show that the band gaps of the h-BN bilayers are tunable by applying strains. Furthermore, we show that the biaxial strains can produce a transition from indirect to direct band gaps of the h-BN bilayer. We also discuss that both AA and AB stacking patterns of h-BN bilayer become feasible structures because h-BN bilayers possess two different directions in the stacking patterns. Supported by MEXT Elements Strategy Initiative to Form Core Research Center through Tokodai Institute for Element Strategy, JSPS KAKENHI Grant Numbers JP26390062 and JP25107005.

  3. Topological Quantum Phase Transitions in Two-Dimensional Hexagonal Lattice Bilayers

    Science.gov (United States)

    Zhai, Xuechao; Jin, Guojun

    2013-09-01

    Since the successful fabrication of graphene, two-dimensional hexagonal lattice structures have become a research hotspot in condensed matter physics. In this short review, we theoretically focus on discussing the possible realization of a topological insulator (TI) phase in systems of graphene bilayer (GBL) and boron nitride bilayer (BNBL), whose band structures can be experimentally modulated by an interlayer bias voltage. Under the bias, a band gap can be opened in AB-stacked GBL but is still closed in AA-stacked GBL and significantly reduced in AA- or AB-stacked BNBL. In the presence of spin-orbit couplings (SOCs), further demonstrations indicate whether the topological quantum phase transition can be realized strongly depends on the stacking orders and symmetries of structures. It is observed that a bulk band gap can be first closed and then reopened when the Rashba SOC increases for gated AB-stacked GBL or when the intrinsic SOC increases for gated AA-stacked BNBL. This gives a distinct signal for a topological quantum phase transition, which is further characterized by a jump of the ℤ2 topological invariant. At fixed SOCs, the TI phase can be well switched by the interlayer bias and the phase boundaries are precisely determined. For AA-stacked GBL and AB-stacked BNBL, no strong TI phase exists, regardless of the strength of the intrinsic or Rashba SOCs. At last, a brief overview is given on other two-dimensional hexagonal materials including silicene and molybdenum disulfide bilayers.

  4. Superior thermal conductivity in suspended bilayer hexagonal boron nitride

    Science.gov (United States)

    Wang, Chengru; Guo, Jie; Dong, Lan; Aiyiti, Adili; Xu, Xiangfan; Li, Baowen

    2016-01-01

    We reported the basal-plane thermal conductivity in exfoliated bilayer hexagonal boron nitride h-BN that was measured using suspended prepatterned microstructures. The h-BN sample suitable for thermal measurements was fabricated by dry-transfer method, whose sample quality, due to less polymer residues on surfaces, is believed to be superior to that of PMMA-mediated samples. The measured room temperature thermal conductivity is around 484 Wm−1K−1(+141 Wm−1K−1/ −24 Wm−1K−1) which exceeds that in bulk h-BN, providing experimental observation of the thickness-dependent thermal conductivity in suspended few-layer h-BN. PMID:27142571

  5. Decoupled electron and phonon transports in hexagonal boron nitride-silicene bilayer heterostructure

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Yongqing; Pei, Qing-Xiang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Gang, E-mail: peiqx@ihpc.a-star.edu.sg, E-mail: zhangg@ihpc.a-star.edu.sg; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore)

    2016-02-14

    Calculations based on the density functional theory and empirical molecular dynamics are performed to investigate interlayer interaction, electronic structure and thermal transport of a bilayer heterostructure consisting of silicene and hexagonal boron nitride (h-BN). In this heterostructure, the two layers are found to interact weakly via a non-covalent binding. As a result, the Dirac cone of silicene is preserved with the Dirac cone point being located exactly at the Fermi level, and only a small amount of electrons are transferred from h-BN to silicene, suggesting that silicene dominates the electronic transport. Molecular dynamics calculation results demonstrate that the heat current along h-BN is six times of that along silicene, suggesting that h-BN dominates the thermal transport. This decoupled role of h-BN and silicene in thermal and electronic transport suggests that the BN-silicene bilayer heterostructure is promising for thermoelectric applications.

  6. Lipid bilayer-coated mesoporous silica nanoparticles carrying bovine hemoglobin towards an erythrocyte mimic.

    Science.gov (United States)

    Tu, Jing; Bussmann, Jeroen; Du, Guangsheng; Gao, Yue; Bouwstra, Joke A; Kros, Alexander

    2018-05-30

    Hemoglobin (Hb)-loaded mesoporous silica nanoparticles (MSNs) coated with a lipid bilayer (LB-MSNs) were investigated as an erythrocyte mimic. MSNs with a large average pore size (10 nm) act as a rigid core and provide a protective environment for Hb encapsulated inside the pores. The colloidal stability of Hb-loaded MSNs was enhanced upon the application of a lipid bilayer, through fusion of PEGylated liposomes onto the exterior surface of Hb-loaded MSNs. The morphology and mesostructure of the MSNs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and surface area analysis. The Hb loading capacity (mg/g) in MSNs was studied by thermogravimetric analysis (TGA). UV-Vis absorption spectroscopy revealed that Hb inside MSNs had an identical, but slightly broadened peak in the Soret region compared to free Hb. Furthermore the encapsulated Hb exhibits similar peroxidase-like activity in catalyzing the oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) with hydrogen peroxide. The introduction of a supported lipid bilayer (LB) demonstrated the potential to prevent premature Hb release (the burst release decreased from 25.50 ± 0.33% to 6.73 ± 0.83%) and increased the colloidal stability of the Hb-loaded MSNs (hydrodynamic diameter remained ∼250 nm for at least one week). The in vivo systemic circulation and biodistribution of LB-MSNs were studied in optically transparent zebrafish embryos, revealing that LB-MSNs have the potential to act as an erythrocyte mimic in transfusion therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Molecular dynamics modelling of EGCG clusters on ceramide bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Yeo, Jingjie; Cheng, Yuan; Li, Weifeng; Zhang, Yong-Wei [Institute of High Performance Computing, A*STAR, 138632 (Singapore)

    2015-12-31

    A novel method of atomistic modelling and characterization of both pure ceramide and mixed lipid bilayers is being developed, using only the General Amber ForceField. Lipid bilayers modelled as pure ceramides adopt hexagonal packing after equilibration, and the area per lipid and bilayer thickness are consistent with previously reported theoretical results. Mixed lipid bilayers are modelled as a combination of ceramides, cholesterol, and free fatty acids. This model is shown to be stable after equilibration. Green tea extract, also known as epigallocatechin-3-gallate, is introduced as a spherical cluster on the surface of the mixed lipid bilayer. It is demonstrated that the cluster is able to bind to the bilayers as a cluster without diffusing into the surrounding water.

  8. Structural and electronic transformation in low-angle twisted bilayer graphene

    Science.gov (United States)

    Gargiulo, Fernando; Yazyev, Oleg V.

    2018-01-01

    Experiments on bilayer graphene unveiled a fascinating realization of stacking disorder where triangular domains with well-defined Bernal stacking are delimited by a hexagonal network of strain solitons. Here we show by means of numerical simulations that this is a consequence of a structural transformation of the moiré pattern inherent to twisted bilayer graphene taking place at twist angles θ below a crossover angle θ\\star=1.2\\circ . The transformation is governed by the interplay between the interlayer van der Waals interaction and the in-plane strain field, and is revealed by a change in the functional form of the twist energy density. This transformation unveils an electronic regime characteristic of vanishing twist angles in which the charge density converges, though not uniformly, to that of ideal bilayer graphene with Bernal stacking. On the other hand, the stacking domain boundaries form a distinct charge density pattern that provides the STM signature of the hexagonal solitonic network.

  9. Quantum transport in bilayer graphene. Fabry-Perot interferences and proximity-induced superconductivity

    International Nuclear Information System (INIS)

    Du, Renjun

    2015-01-01

    Bilayer graphene (BLG) p-n junctions made of hBN-BLG-hBN (hexagonal boron nitride) heterostructures enable ballistic transport over long distances. We investigate Fabry-Perot interferences, and detect that the bilayer-like anti-Klein tunneling transits into single-layer-like Klein tunneling when tuning the Fermi level towards the band edges. Furthermore, the proximity-induced superconductivity has been studied in these devices with Al leads.

  10. Reliable Piezoelectricity in Bilayer WSe2 for Piezoelectric Nanogenerators.

    Science.gov (United States)

    Lee, Ju-Hyuck; Park, Jae Young; Cho, Eun Bi; Kim, Tae Yun; Han, Sang A; Kim, Tae-Ho; Liu, Yanan; Kim, Sung Kyun; Roh, Chang Jae; Yoon, Hong-Joon; Ryu, Hanjun; Seung, Wanchul; Lee, Jong Seok; Lee, Jaichan; Kim, Sang-Woo

    2017-08-01

    Recently, piezoelectricity has been observed in 2D atomically thin materials, such as hexagonal-boron nitride, graphene, and transition metal dichalcogenides (TMDs). Specifically, exfoliated monolayer MoS 2 exhibits a high piezoelectricity that is comparable to that of traditional piezoelectric materials. However, monolayer TMD materials are not regarded as suitable for actual piezoelectric devices due to their insufficient mechanical durability for sustained operation while Bernal-stacked bilayer TMD materials lose noncentrosymmetry and consequently piezoelectricity. Here, it is shown that WSe 2 bilayers fabricated via turbostratic stacking have reliable piezoelectric properties that cannot be obtained from a mechanically exfoliated WSe 2 bilayer with Bernal stacking. Turbostratic stacking refers to the transfer of each chemical vapor deposition (CVD)-grown WSe 2 monolayer to allow for an increase in degrees of freedom in the bilayer symmetry, leading to noncentrosymmetry in the bilayers. In contrast, CVD-grown WSe 2 bilayers exhibit very weak piezoelectricity because of the energetics and crystallographic orientation. The flexible piezoelectric WSe 2 bilayers exhibit a prominent mechanical durability of up to 0.95% of strain as well as reliable energy harvesting performance, which is adequate to drive a small liquid crystal display without external energy sources, in contrast to monolayer WSe 2 for which the device performance becomes degraded above a strain of 0.63%. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride

    NARCIS (Netherlands)

    Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J.

    2011-01-01

    We present electronic transport measurements of single and bilayer graphene on commercially available hexagonal boron nitride. We extract mobilities as high as 125 000 cm(2) V-1 s(-1) at room temperature and 275 000 cm(2) V-1 s(-1) at 4.2 K. The excellent quality is supported by the early

  12. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2011-11-14

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  13. Electronic structure of superlattices of graphene and hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Cheng, Yingchun; Schwingenschlö gl, Udo

    2011-01-01

    We study the electronic structure of superlattices consisting of graphene and hexagonal boron nitride slabs, using ab initio density functional theory. We find that the system favors a short C–B bond length at the interface between the two component materials. A sizeable band gap at the Dirac point is opened for superlattices with single graphene layers but not for superlattices with graphene bilayers. The system is promising for applications in electronic devices such as field effect transistors and metal-oxide semiconductors.

  14. Lepromatous leprosy patients produce antibodies that recognise non-bilayer lipid arrangements containing mycolic acids

    Directory of Open Access Journals (Sweden)

    Isabel Baeza

    2012-12-01

    Full Text Available Non-bilayer phospholipid arrangements are three-dimensional structures that form when anionic phospholipids with an intermediate structure of the tubular hexagonal phase II are present in a bilayer of lipids. Antibodies that recognise these arrangements have been described in patients with antiphospholipid syndrome and/or systemic lupus erythematosus and in those with preeclampsia; these antibodies have also been documented in an experimental murine model of lupus, in which they are associated with immunopathology. Here, we demonstrate the presence of antibodies against non-bilayer phospholipid arrangements containing mycolic acids in the sera of lepromatous leprosy (LL patients, but not those of healthy volunteers. The presence of antibodies that recognise these non-bilayer lipid arrangements may contribute to the hypergammaglobulinaemia observed in LL patients. We also found IgM and IgG anti-cardiolipin antibodies in 77% of the patients. This positive correlation between the anti-mycolic-non-bilayer arrangements and anti-cardiolipin antibodies suggests that both types of antibodies are produced by a common mechanism, as was demonstrated in the experimental murine model of lupus, in which there was a correlation between the anti-non-bilayer phospholipid arrangements and anti-cardiolipin antibodies. Antibodies to non-bilayer lipid arrangements may represent a previously unrecognised pathogenic mechanism in LL and the detection of these antibodies may be a tool for the early diagnosis of LL patients.

  15. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Science.gov (United States)

    Li, Yong-Jun; Sun, Qing-Qing; Chen, Lin; Zhou, Peng; Wang, Peng-Fei; Ding, Shi-Jin; Zhang, David Wei

    2012-03-01

    We proposed intercalation of hexagonal boron nitride (hBN) in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  16. Hexagonal boron nitride intercalated multi-layer graphene: a possible ultimate solution to ultra-scaled interconnect technology

    Directory of Open Access Journals (Sweden)

    Yong-Jun Li

    2012-03-01

    Full Text Available We proposed intercalation of hexagonal boron nitride (hBN in multilayer graphene to improve its performance in ultra-scaled interconnects for integrated circuit. The effect of intercalated hBN layer in bilayer graphene is investigated using non-equilibrium Green's functions. We find the hBN intercalated bilayer graphene exhibit enhanced transport properties compared with pristine bilayer ones, and the improvement is attributed to suppression of interlayer scattering and good planar bonding condition of inbetween hBN layer. Based on these results, we proposed a via structure that not only benefits from suppressed interlayer scattering between multilayer graphene, but also sustains the unique electrical properties of graphene when many graphene layers are stacking together. The ideal current density across the structure can be as high as 4.6×109 A/cm2 at 1V, which is very promising for the future high-performance interconnect.

  17. Microstructures and Recording Mechanism of Mo/Si Bilayer Applied for Write-Once Blue Laser Optical Recording

    Directory of Open Access Journals (Sweden)

    Sin-Liang Ou

    2014-01-01

    Full Text Available Mo/Si bilayer thin films were grown by magnetron sputtering and applied to write-once blu-ray disc (BD-R. The microstructures and optical storage properties of Mo/Si bilayer were investigated. From the temperature dependence of reflectivity measurement, it was revealed that a phase change occurred in the range of 255–425°C. Transmission electron microscopy analysis showed that the as-deposited film possessed Mo polycrystalline phase. The hexagonal MoSi2 and cubic Mo3Si phases appeared after annealing at 300 and 450°C, respectively. By measuring the optical reflectivity at a wavelength of 405 nm, the optical contrast of Mo/Si bilayer between as-deposited and 450°C-annealed states was evaluated to 25.8%. The optimum jitter value of 6.8% was obtained at 10.65 mW for 4× recording speed. The dynamic tests show that the Mo/Si bilayer has high potential in BD-R applications.

  18. Bilayers of phosphatidyldiacylglycerol and phosphatidylcholesterol give 31P-NMR spectra characteristic for hexagonal and isotropic phases

    NARCIS (Netherlands)

    Noggle, J.H.; Marecek, J.F.; Mandal, S.B.; Venetie, R. van; Rogers, J.; Jain, M.K.; Ramirez, F.

    1982-01-01

    Aqueous dispersions of phosphatidyldiacylglycerol and phosphatidylcholesterol are shown to form bilayers by differential scanning calorimetry, diphenylhexatriene fluorescence polarization, and electron microscopy; however, 31P-nuclear magnetic resonance spectra of these dispersions are

  19. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  20. Study on the enhanced and stable field emission behavior of a novel electrosprayed Al-doped ZnO bilayer film

    KAUST Repository

    Mahmood, Khalid; Munir, Rahim; Swain, Bhabani Sankar; Han, Gill Sang; Kim, Byeong Jo; Jung, Hyun Suk

    2014-01-01

    A novel electrosprayed bilayer film composed of an over-layer (L 2) of aluminium-doped ZnO (AZO) nanoflakes (NF-AZO) and a under-layer (L1) of AZO nanocrystallites structure (NC-AZO) named BL:NF/NC-AZO is studied as an excellent field-emitter. The XRD pattern demonstrated that the doped bilayer film has preferential growth along the c-axis with hexagonal wurtzite structure and the (0 0 2) peak shifted toward the larger angle side after doping. The lowest turn-on field of ∼2.8 V μm-1, highest emission current density of 1.95 mA cm-2 is obtained for BL:NF/NC-AZO under the field of 6.8 V μm-1 and as well as the highest field enhancement factor (β) is estimated to be 4370 ± 3, compared to pure ZnO bilayer film (BL:NF/NC-ZnO) and also better than NC-AZO film and possesses the excellent long term stability of emission current. The PL intensity of doped ZnO bilayer film is very much stronger than pure ZnO bilayer structure. The superior field emission properties are attributed to the better morphologies, Al-doping and better crystallinity of bilayer AZO films. © 2014 The Royal Society of Chemistry.

  1. Anisotropic carrier mobility in single- and bi-layer C3N sheets

    Science.gov (United States)

    Wang, Xueyan; Li, Qingfang; Wang, Haifeng; Gao, Yan; Hou, Juan; Shao, Jianxin

    2018-05-01

    Based on the density functional theory combined with the Boltzmann transport equation with relaxation time approximation, we investigate the electronic structure and predict the carrier mobility of single- and bi-layer newly fabricated 2D carbon nitrides C3N. Although C3N sheets possess graphene-like planar hexagonal structure, the calculated carrier mobility is remarkably anisotropic, which is found mainly induced by the anisotropic effective masses and deformation potential constants. Importantly, we find that both the electron and hole mobilities are considerable high, for example, the hole mobility along the armchair direction of single-layer C3N sheets can arrive as high as 1.08 ×104 cm2 V-1 s-1, greatly larger than that of C2N-h2D and many other typical 2D materials. Owing to the high and anisotropic carrier mobility and appropriate band gap, single- and bi-layer semiconducting C3N sheets may have great potential applications in high performance electronic and optoelectronic devices.

  2. Realization of free-standing silicene using bilayer graphene

    Energy Technology Data Exchange (ETDEWEB)

    Neek-Amal, M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Department of Physics, Shahid Rajaee Teacher Training University, Lavizan, Tehran 16785-136 (Iran, Islamic Republic of); Sadeghi, A. [Department of Physics, Basel University, Klingelbergestrasse 82, CH-4056 Basel (Switzerland); Berdiyorov, G. R.; Peeters, F. M. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium)

    2013-12-23

    The available synthesized silicene-like structures have been only realized on metallic substrates which are very different from the standalone buckled silicene, e.g., the Dirac cone of silicene is destroyed due to lattice distortion and the interaction with the substrate. Using graphene bilayer as a scaffold, a route is proposed to synthesize silicene with electronic properties decoupled from the substrate. The buckled hexagonal arrangement of silicene between the graphene layers is found to be very similar to the theoretically predicted standalone buckled silicene which is only very weakly van der Waals coupled to the graphene layers with a graphite-like interlayer distance of 3.42 Å and without any lattice distortion. We found that these stacked layers are stable well above room temperature.

  3. Fabrication and characterization of nanostructured metallic arrays with multi-shapes in monolayer and bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Zhu Shaoli, E-mail: slzhu@ntu.edu.s [Nanyang Technological University, School of Electronic and Electrical Engineering (Singapore); Fu Yongqi [University of Electronic Science and Technology of China, School of Physical Electronics (China)

    2010-06-15

    Fabrication and characterization of nanostructured metallic arrays with different shapes in monolayer and bilayer were presented in this article. Nano-rhombic, nano-hexagon, and nano-column metallic arrays with the tunable shapes and in-plane dimensions were fabricated by means of vertical reactive ion etching and nanosphere lithography. The nanosize range of nanoparticles is from 50 to 300 nm. Optical characterization of these arrays was performed experimentally by spectroscopy. Specifically, we compared spectra width at site of full width at half maximum (FWHM) of the measured extinction spectra in the visible range to that of the traditional hexagonal-arranged triangular nanoparticles. The results show that the combination of vertical reactive ion etching and nanosphere lithography approach yields as tunable masks and provides an easy way for a flexible nanofabrication. These metallic arrays have narrower FWHM of the spectra which makes them potential applications in biosensors, data storage, and bioreactors.

  4. Valley Topological Phases in Bilayer Sonic Crystals

    Science.gov (United States)

    Lu, Jiuyang; Qiu, Chunyin; Deng, Weiyin; Huang, Xueqin; Li, Feng; Zhang, Fan; Chen, Shuqi; Liu, Zhengyou

    2018-03-01

    Recently, the topological physics in artificial crystals for classical waves has become an emerging research area. In this Letter, we propose a unique bilayer design of sonic crystals that are constructed by two layers of coupled hexagonal array of triangular scatterers. Assisted by the additional layer degree of freedom, a rich topological phase diagram is achieved by simply rotating scatterers in both layers. Under a unified theoretical framework, two kinds of valley-projected topological acoustic insulators are distinguished analytically, i.e., the layer-mixed and layer-polarized topological valley Hall phases, respectively. The theory is evidently confirmed by our numerical and experimental observations of the nontrivial edge states that propagate along the interfaces separating different topological phases. Various applications such as sound communications in integrated devices can be anticipated by the intriguing acoustic edge states enriched by the layer information.

  5. Topological chiral phonons in center-stacked bilayer triangle lattices

    Science.gov (United States)

    Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa

    2018-06-01

    Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.

  6. On the conductive properties of MgO films grown on ultrathin hexagonal close-packed Co(0001) layer

    International Nuclear Information System (INIS)

    Gladczuk, L.; Aleszkiewicz, M.

    2013-01-01

    Here we present a scanning tunneling microscopy study of electrical conductivity of (110)-oriented MgO ultrathin films grown on hexagonal close-packed Co(0001) surface by molecular beam epitaxy, being a good candidate for tunneling barrier for future-generation spintronic devices. Three-dimensional growth of the tunneling barrier, expected for compressive strains emerging at the Co/MgO interface, is demonstrated by reflection high-energy electron diffraction and atomic force microscopy. The 5 eV height of the full barrier of MgO is reached at a layer thickness of 4 nm. Thinner MgO layers exhibit randomly distributed spots of the high conductance on the tunneling current map. The current–voltage curves indicate the existence of vacancies in MgO crystal lattice, lowering the resistivity of the tunneling barrier. - Highlights: • Conductivity of MgO barrier in MgO/hexagonal close-packed-Co bilayer • Conductivity strongly varies with MgO thickness • MgO barrier exhibits randomly distributed spots of particularly high conductance • Tunneling current–voltage curves indicate the existence of vacancies in MgO lattice

  7. Hemoglobin C disease

    Science.gov (United States)

    Clinical hemoglobin C ... Hemoglobin C is an abnormal type of hemoglobin, the protein in red blood cells that carries oxygen. It is ... Americans. You are more likely to have hemoglobin C disease if someone in your family has had ...

  8. Hydrophobic silver nanoparticles trapped in lipid bilayers: Size distribution, bilayer phase behavior, and optical properties

    Directory of Open Access Journals (Sweden)

    Bothun Geoffrey D

    2008-11-01

    Full Text Available Abstract Background Lipid-based dispersion of nanoparticles provides a biologically inspired route to designing therapeutic agents and a means of reducing nanoparticle toxicity. Little is currently known on how the presence of nanoparticles influences lipid vesicle stability and bilayer phase behavior. In this work, the formation of aqueous lipid/nanoparticle assemblies (LNAs consisting of hydrophobic silver-decanethiol particles (5.7 ± 1.8 nm embedded within 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC bilayers is demonstrated as a function of the DPPC/Ag nanoparticle (AgNP ratio. The effect of nanoparticle loading on the size distribution, bilayer phase behavior, and bilayer fluidity is determined. Concomitantly, the effect of bilayer incorporation on the optical properties of the AgNPs is also examined. Results The dispersions were stable at 50°C where the bilayers existed in a liquid crystalline state, but phase separated at 25°C where the bilayers were in a gel state, consistent with vesicle aggregation below the lipid melting temperature. Formation of bilayer-embedded nanoparticles was confirmed by differential scanning calorimetry and fluorescence anisotropy, where increasing nanoparticle concentration suppressed the lipid pretransition temperature, reduced the melting temperature, and disrupted gel phase bilayers. The characteristic surface plasmon resonance (SPR wavelength of the embedded nanoparticles was independent of the bilayer phase; however, the SPR absorbance was dependent on vesicle aggregation. Conclusion These results suggest that lipid bilayers can distort to accommodate large hydrophobic nanoparticles, relative to the thickness of the bilayer, and may provide insight into nanoparticle/biomembrane interactions and the design of multifunctional liposomal carriers.

  9. Lipid bilayers and interfaces

    NARCIS (Netherlands)

    Kik, R.A.

    2007-01-01

    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  10. Thermal conductivity of hexagonal Si and hexagonal Si nanowires from first-principles

    Science.gov (United States)

    Raya-Moreno, Martí; Aramberri, Hugo; Seijas-Bellido, Juan Antonio; Cartoixà, Xavier; Rurali, Riccardo

    2017-07-01

    We calculate the thermal conductivity, κ, of the recently synthesized hexagonal diamond (lonsdaleite) Si using first-principles calculations and solving the Boltzmann Transport Equation. We find values of κ which are around 40% lower than in the common cubic diamond polytype of Si. The trend is similar for [111] Si nanowires, with reductions of the thermal conductivity that are even larger than in the bulk in some diameter range. The Raman active modes are identified, and the role of mid-frequency optical phonons that arise as a consequence of the reduced symmetry of the hexagonal lattice is discussed. We also show briefly that popular classic potentials used in molecular dynamics might not be suited to describe hexagonal polytypes, discussing the case of the Tersoff potential.

  11. Hexagonal boron nitride neutron detectors with high detection efficiencies

    Science.gov (United States)

    Maity, A.; Grenadier, S. J.; Li, J.; Lin, J. Y.; Jiang, H. X.

    2018-01-01

    Neutron detectors fabricated from 10B enriched hexagonal boron nitride (h-10BN or h-BN) epilayers have demonstrated the highest thermal neutron detection efficiency among solid-state neutron detectors to date at about 53%. In this work, photoconductive-like vertical detectors with a detection area of 1 × 1 mm2 were fabricated from 50 μm thick free-standing h-BN epilayers using Ni/Au and Ti/Al bilayers as ohmic contacts. Leakage currents, mobility-lifetime (μτ) products under UV photoexcitation, and neutron detection efficiencies have been measured for a total of 16 different device configurations. The results have unambiguously identified that detectors incorporating the Ni/Au bilayer on both surfaces as ohmic contacts and using the negatively biased top surface for neutron irradiation are the most desired device configurations. It was noted that high growth temperatures of h-10BN epilayers on sapphire substrates tend to yield a higher concentration of oxygen impurities near the bottom surface, leading to a better device performance by the chosen top surface for irradiation than by the bottom. Preferential scattering of oxygen donors tends to reduce the mobility of holes more than that of electrons, making the biasing scheme with the ability of rapidly extracting holes at the irradiated surface while leaving the electrons to travel a large average distance inside the detector at a preferred choice. When measured against a calibrated 6LiF filled micro-structured semiconductor neutron detector, it was shown that the optimized configuration has pushed the detection efficiency of h-BN neutron detectors to 58%. These detailed studies also provided a better understanding of growth-mediated impurities in h-BN epilayers and their effects on the charge collection and neutron detection efficiencies.

  12. Linking lipid architecture to bilayer structure and mechanics using self-consistent field modelling

    Energy Technology Data Exchange (ETDEWEB)

    Pera, H.; Kleijn, J. M.; Leermakers, F. A. M., E-mail: Frans.leermakers@wur.nl [Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Dreijenplein 6, 6307 HB Wageningen (Netherlands)

    2014-02-14

    To understand how lipid architecture determines the lipid bilayer structure and its mechanics, we implement a molecularly detailed model that uses the self-consistent field theory. This numerical model accurately predicts parameters such as Helfrichs mean and Gaussian bending modulus k{sub c} and k{sup ¯} and the preferred monolayer curvature J{sub 0}{sup m}, and also delivers structural membrane properties like the core thickness, and head group position and orientation. We studied how these mechanical parameters vary with system variations, such as lipid tail length, membrane composition, and those parameters that control the lipid tail and head group solvent quality. For the membrane composition, negatively charged phosphatidylglycerol (PG) or zwitterionic, phosphatidylcholine (PC), and -ethanolamine (PE) lipids were used. In line with experimental findings, we find that the values of k{sub c} and the area compression modulus k{sub A} are always positive. They respond similarly to parameters that affect the core thickness, but differently to parameters that affect the head group properties. We found that the trends for k{sup ¯} and J{sub 0}{sup m} can be rationalised by the concept of Israelachivili's surfactant packing parameter, and that both k{sup ¯} and J{sub 0}{sup m} change sign with relevant parameter changes. Although typically k{sup ¯}<0, membranes can form stable cubic phases when the Gaussian bending modulus becomes positive, which occurs with membranes composed of PC lipids with long tails. Similarly, negative monolayer curvatures appear when a small head group such as PE is combined with long lipid tails, which hints towards the stability of inverse hexagonal phases at the cost of the bilayer topology. To prevent the destabilisation of bilayers, PG lipids can be mixed into these PC or PE lipid membranes. Progressive loading of bilayers with PG lipids lead to highly charged membranes, resulting in J{sub 0}{sup m}≫0, especially at low ionic

  13. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  14. Hemoglobin (image)

    Science.gov (United States)

    Hemoglobin is the most important component of red blood cells. It is composed of a protein called ... exchanged for carbon dioxide. Abnormalities of an individual's hemoglobin value can indicate defects in the normal balance ...

  15. Hemoglobin

    Science.gov (United States)

    1993-03-08

    affinity, which is less at low levels of hemoglobin saturation, increases markedly as fractional saturation increases. Thus, high affinity for 02 at... diphosphoglycerate (2,3-DPG), and carbon dioxide (Co 2). Since they are linked to 02 binding, they are called oxygen-linked effectors. The oxygen...hemoglobin molecule because of the negative charge of the ions. 2,3- Diphosphoglycerate is a molecule formed during the breakdown of sugar in normal human

  16. Annealing-Induced Bi Bilayer on Bi2Te3 Investigated via Quasi-Particle-Interference Mapping.

    Science.gov (United States)

    Schouteden, Koen; Govaerts, Kirsten; Debehets, Jolien; Thupakula, Umamahesh; Chen, Taishi; Li, Zhe; Netsou, Asteriona; Song, Fengqi; Lamoen, Dirk; Van Haesendonck, Chris; Partoens, Bart; Park, Kyungwha

    2016-09-27

    Topological insulators (TIs) are renowned for their exotic topological surface states (TSSs) that reside in the top atomic layers, and hence, detailed knowledge of the surface top atomic layers is of utmost importance. Here we present the remarkable morphology changes of Bi2Te3 surfaces, which have been freshly cleaved in air, upon subsequent systematic annealing in ultrahigh vacuum and the resulting effects on the local and area-averaging electronic properties of the surface states, which are investigated by combining scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), and Auger electron spectroscopy (AES) experiments with density functional theory (DFT) calculations. Our findings demonstrate that the annealing induces the formation of a Bi bilayer atop the Bi2Te3 surface. The adlayer results in n-type doping, and the atomic defects act as scattering centers of the TSS electrons. We also investigated the annealing-induced Bi bilayer surface on Bi2Te3 via voltage-dependent quasi-particle-interference (QPI) mapping of the surface local density of states and via comparison with the calculated constant-energy contours and QPI patterns. We observed closed hexagonal patterns in the Fourier transform of real-space QPI maps with secondary outer spikes. DFT calculations attribute these complex QPI patterns to the appearance of a "second" cone due to the surface charge transfer between the Bi bilayer and the Bi2Te3. Annealing in ultrahigh vacuum offers a facile route for tuning of the topological properties and may yield similar results for other topological materials.

  17. Hexagon solar power panel

    Science.gov (United States)

    Rubin, I. (Inventor)

    1978-01-01

    A solar energy panel support is described upon which silicon cells are arrayed. The cells are wafer thin and of two geometrical types, both of the same area and electrical rating, namely hexagon cells and hourglass cells. The hourglass cells are composites of half hexagons. A near perfect nesting relationship of the cells achieves a high density packing whereby optimum energy production per panel area is achieved.

  18. Alcohol's Effects on Lipid Bilayer Properties

    Science.gov (United States)

    Ingólfsson, Helgi I.; Andersen, Olaf S.

    2011-01-01

    Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane properties? The efficacy of alcohols of various chain lengths tends to exhibit a so-called cutoff effect (i.e., increasing potency with increased chain length, which that eventually levels off). The cutoff varies depending on the assay, and numerous mechanisms have been proposed such as: limited size of the alcohol-protein interaction site, limited alcohol solubility, and a chain-length-dependent lipid bilayer-alcohol interaction. To address these issues, we determined the bilayer-modifying potency of 27 aliphatic alcohols using a gramicidin-based fluorescence assay. All of the alcohols tested (with chain lengths of 1–16 carbons) alter the bilayer properties, as sensed by a bilayer-spanning channel. The bilayer-modifying potency of the short-chain alcohols scales linearly with their bilayer partitioning; the potency tapers off at higher chain lengths, and eventually changes sign for the longest-chain alcohols, demonstrating an alcohol cutoff effect in a system that has no alcohol-binding pocket. PMID:21843475

  19. Electron transport in a bilayer graphene/layered superconductor NbSe2 junction: effect of work function difference

    Science.gov (United States)

    Yarimizu, Katsuhide; Tomori, Hikari; Watanabe, Kenji; Taniguchi, Takashi; Kanda, Akinobu

    2018-03-01

    We have experimentally studied electron transport in a bilayer graphene (BLG)/layered superconductor NbSe2 junction encapsulated with hexagonal boron nitride. The junction exhibits nonlinear current-voltage characteristics which strongly depend on the gate voltage around the charge neutrality point (CNP) of the BLG. Besides, we observe that the gate voltage dependence of electron transport in the BLG portion close to the junction interface is different from that of the BLG portion apart from the interface, indicating that the spatial variation of the Dirac point in the charge transfer region due to the difference in work function between superconductor and graphene needs to be considered in the analysis of the superconducting proximity effect.

  20. Tunneling Plasmonics in Bilayer Graphene.

    Science.gov (United States)

    Fei, Z; Iwinski, E G; Ni, G X; Zhang, L M; Bao, W; Rodin, A S; Lee, Y; Wagner, M; Liu, M K; Dai, S; Goldflam, M D; Thiemens, M; Keilmann, F; Lau, C N; Castro-Neto, A H; Fogler, M M; Basov, D N

    2015-08-12

    We report experimental signatures of plasmonic effects due to electron tunneling between adjacent graphene layers. At subnanometer separation, such layers can form either a strongly coupled bilayer graphene with a Bernal stacking or a weakly coupled double-layer graphene with a random stacking order. Effects due to interlayer tunneling dominate in the former case but are negligible in the latter. We found through infrared nanoimaging that bilayer graphene supports plasmons with a higher degree of confinement compared to single- and double-layer graphene, a direct consequence of interlayer tunneling. Moreover, we were able to shut off plasmons in bilayer graphene through gating within a wide voltage range. Theoretical modeling indicates that such a plasmon-off region is directly linked to a gapped insulating state of bilayer graphene, yet another implication of interlayer tunneling. Our work uncovers essential plasmonic properties in bilayer graphene and suggests a possibility to achieve novel plasmonic functionalities in graphene few-layers.

  1. Potassium-doped n-type bilayer graphene

    Science.gov (United States)

    Yamada, Takatoshi; Okigawa, Yuki; Hasegawa, Masataka

    2018-01-01

    Potassium-doped n-type bilayer graphene was obtained. Chemical vapor deposited bilayer and single layer graphene on copper (Cu) foils were used. After etching of Cu foils, graphene was dipped in potassium hydroxide aqueous solutions to dope potassium. Graphene on silicon oxide was characterized by X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), and Raman spectroscopy. Both XPS and EDX spectra indicated potassium incorporation into the bilayer graphene via intercalation between the graphene sheets. The downward shift of the 2D peak position of bilayer graphene after the potassium hydroxide (KOH) treatment was confirmed in Raman spectra, indicating that the KOH-treated bilayer graphene was doped with electrons. Electrical properties were measured using Hall bar structures. The Dirac points of bilayer graphene were shifted from positive to negative by the KOH treatment, indicating that the KOH-treated bilayer graphene was n-type conduction. For single layer graphene after the KOH treatment, although electron doping was confirmed from Raman spectra, the peak of potassium in the X-ray photoelectron spectroscopy (XPS) spectrum was not detected. The Dirac points of single layer graphene with and without the KOH treatment showed positive.

  2. Radioimmunochemical characterization of hemoglobins Lepore and Kenya: unique antigenic determinants located on hybrid hemoglobins

    International Nuclear Information System (INIS)

    Garver, F.A.; Altay, G.; Baker, M.M.; Gravely, M.; Huisman, T.H.J.

    1978-01-01

    Antisera were produced in rabbits to the three known types of Lepore hemoglobins, which contain hybrid delta-β non-α-chains, and to hemoglobin Kenya, which has a hybrid γ-β non-α-chain. By using a sensitive radioimmunoassay technique, the absorbed antisera were shown to contain an antibody population that was specific for the hybrid hemoglobin and did not cross-react with normal hemoglobins. However, with the absorbed Lepore-specific antisera, the three known types of Lepore hemoglobins were antigenically indistinguishable from each other, suggesting that antibodies are not produced to the primary structural differences which define the three non-α-chains of the Lepore hemoglobins. These studies demonstrate that the non-α-subunits of hemoglobins Lepore and Kenya possess unique antigenic determinant sites, evidently resulting from an altered polypeptide conformation

  3. Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS

    International Nuclear Information System (INIS)

    Ersen, O.; Tuilier, M.-H.; Thobor-Keck, A.; Rousselot, C.; Cortes, R.

    2005-01-01

    The relation between the mechanical properties and the structure of AlN/TiN bilayers prepared by reactive magnetron sputtering in the 600 nm range is investigated. Al and Ti K-edge extended X-ray absorption fine structure is used in order to determine the local order around Al and Ti by comparison with 300 nm thick AlN and TiN single layers. The use of this powerful local probe allows the evidence of intermixing between AlN and TiN deposited layers, which is suggested by glow discharge optical emission spectroscopy experiments. The effect of ionic bombardment applied at various steps of the deposition process is studied. The ionic bombardment applied during the deposit induces substantial changes in the absorption spectra that are assigned to a decrease of intermixing and an improvement of local order. Simulations of (Al, Ti)N ternary alloys Al and Ti K-edge absorption spectra for increasing mean occupation factors C Ti (C Al ) of Ti(Al) substituting Al(Ti) in hexagonal AlN (cubic TiN) lattice are performed in order to determine the initial parameters for the fit of the experimental data. The refinements performed by using FEFFIT software demonstrate that an ionic bombardment applied during the deposition phase results in a significant reduction of the number of Al-Ti pairs within the bilayer and an improvement of the local order around Ti and Al, which is quantified by a decrease of the Debye-Waller parameters. This structural evolution is tentatively correlated with the improvement of mechanical properties of the bilayers

  4. Relation between interfacial structure and mechanical properties in AlN/TiN bilayers investigated by EXAFS

    Energy Technology Data Exchange (ETDEWEB)

    Ersen, O. [Equipe de Recherche Mecanique, Materiaux et Procedes de Fabrication, 61, rue Albert Camus, F-68093 Mulhouse (France)]. E-mail: ovidiu.ersen@ipcms.u-strasbg.fr; Tuilier, M.-H. [Equipe de Recherche Mecanique, Materiaux et Procedes de Fabrication, 61, rue Albert Camus, F-68093 Mulhouse (France); Thobor-Keck, A. [Centre de Recherche sur les Ecoulements les Surfaces et les Transferts (UMR CNRS 6000), ITSFC, 4, place Tharradin, BP 71427, F-25211 Montbeliard (France); Rousselot, C. [Centre de Recherche sur les Ecoulements les Surfaces et les Transferts (UMR CNRS 6000), ITSFC, 4, place Tharradin, BP 71427, F-25211 Montbeliard (France); Cortes, R. [Laboratoire de Physique de la Matiere Condensee (UMR CNRS 7643), Ecole Polytechnique, F-91128 Palaiseau cedex (France)

    2005-06-01

    The relation between the mechanical properties and the structure of AlN/TiN bilayers prepared by reactive magnetron sputtering in the 600 nm range is investigated. Al and Ti K-edge extended X-ray absorption fine structure is used in order to determine the local order around Al and Ti by comparison with 300 nm thick AlN and TiN single layers. The use of this powerful local probe allows the evidence of intermixing between AlN and TiN deposited layers, which is suggested by glow discharge optical emission spectroscopy experiments. The effect of ionic bombardment applied at various steps of the deposition process is studied. The ionic bombardment applied during the deposit induces substantial changes in the absorption spectra that are assigned to a decrease of intermixing and an improvement of local order. Simulations of (Al, Ti)N ternary alloys Al and Ti K-edge absorption spectra for increasing mean occupation factors C {sub Ti} (C {sub Al}) of Ti(Al) substituting Al(Ti) in hexagonal AlN (cubic TiN) lattice are performed in order to determine the initial parameters for the fit of the experimental data. The refinements performed by using FEFFIT software demonstrate that an ionic bombardment applied during the deposition phase results in a significant reduction of the number of Al-Ti pairs within the bilayer and an improvement of the local order around Ti and Al, which is quantified by a decrease of the Debye-Waller parameters. This structural evolution is tentatively correlated with the improvement of mechanical properties of the bilayers.

  5. Direct transfer and Raman characterization of twisted graphene bilayer

    International Nuclear Information System (INIS)

    Othmen, R.; Arezki, H.; Boutchich, M.; Ajlani, H.; Oueslati, M.; Cavanna, A.; Madouri, A.

    2015-01-01

    Twisted bilayer graphene (tBLG) is constituted of a two-graphene layer with a mismatch angle θ between the two hexagonal structures. It has recently attracted much attention—thanks to its diverse electronic and optical properties. Here, we study the tBLG fabricated by the direct transfer of graphene monolayer prepared by chemical vapor deposition (CVD) onto another CVD graphene layer remaining attached to the copper foil. We show that high quality and homogeneous tBLG can be obtained by the direct transfer which prevents interface contamination. In this situation, the top graphene layer plays a supporting mechanical role to the bottom graphene layer as confirmed by optical microscopy, scanning electron microscopy, and Raman spectroscopy measurements. The effect of annealing tBLG was also investigated using micro-Raman spectroscopy. The Raman spectra exhibit a splitting of the G peak as well as a change in the 2D band shape indicating a possible decoupling of the two monolayers. We attribute these changes to the different interactions of the top and bottom layers with the substrate

  6. Electronic properties of graphene-based bilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Rozhkov, A.V., E-mail: arozhkov@gmail.com [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); Sboychakov, A.O. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Rakhmanov, A.L. [CEMS, RIKEN, Saitama 351-0198 (Japan); Institute for Theoretical and Applied Electrodynamics, Russian Academy of Sciences, 125412 Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700 (Russian Federation); All-Russia Research Institute of Automatics, Moscow, 127055 (Russian Federation); Nori, Franco, E-mail: fnori@riken.jp [CEMS, RIKEN, Saitama 351-0198 (Japan); Physics Department, The University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2016-08-23

    This article reviews the theoretical and experimental work related to the electronic properties of bilayer graphene systems. Three types of bilayer stackings are discussed: the AA, AB, and twisted bilayer graphene. This review covers single-electron properties, effects of static electric and magnetic fields, bilayer-based mesoscopic systems, spin–orbit coupling, dc transport and optical response, as well as spontaneous symmetry violation and other interaction effects. The selection of the material aims to introduce the reader to the most commonly studied topics of theoretical and experimental research in bilayer graphene.

  7. Dispersion of fullerenes in phospholipid bilayers and the subsequent phase changes in the host bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Jeng, U-S. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China)]. E-mail: usjeng@nsrrc.org.tw; Hsu, C.-H. [National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan (China); Lin, T.-L. [Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Wu, C.-M. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, H.-L. [Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tai, L.-A. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hwang, K.-C. [Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan (China)

    2005-02-28

    We have studied the structure and phase transition characteristics of the fullerenes (C{sub 60})-embedded lipid bilayers. With small-angle neutron scattering (SANS), we have observed a degradation of bilayer ordering and a suppression effect on the phase transitions of the host vesicle bilayers of dipalmitoylphosphatidylcholine (DPPC), due to the embedment of fullerenes. The fullerene-embedded lipid system with substrate-oriented bilayers is also investigated using X-ray reflectivity and grazing incident small-angle X-ray scattering (GISAXS). In the depth direction, the multilamellar peaks observed in the X-ray reflectivity profile for the oriented DPPC/C{sub 60} bilayers reveal a larger head-to-head distance D{sub HH} of 50.6 A and a bilayer spacing D of 59.8 A, compared to the D{sub HH}=47.7 A and D=59.5 A for a pure DPPC membrane measured at the same conditions. Furthermore, the lipid head layers and water layers in the extracted electron density profile for the complex system are highly smeared, implying a fluctuating or corrugated structure in this zone. Correspondingly, GISAXS for the oriented DPPC/C{sub 60} membrane reveals stronger diffuse scatterings along the membrane plane than that for the pure DPPC system, indicating a higher in-plane correlation associated with the embedded fullerenes.

  8. Fish hemoglobins

    Directory of Open Access Journals (Sweden)

    P.C. de Souza

    2007-06-01

    Full Text Available Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemical strategies to adapt to the changing environmental gas availability. Structurally, most fish hemoglobins are tetrameric; however, those from some species such as lamprey and hagfish dissociate, being monomeric when oxygenated and oligomeric when deoxygenated. Fish blood frequently possesses several hemoglobins; the primary origin of this finding lies in the polymorphism that occurs in the globin loci, an aspect that may occasionally confer advantages to its carriers or even be a harmless evolutionary remnant. On the other hand, the functional properties exhibit different behaviors, ranging from a total absence of responses to allosteric regulation to drastic ones, such as the Root effect.

  9. Thermal response of domains in cardiolipin content bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Domenech, Oscar [Departament de Quimica-Fisica, Facultat de Quimica, U.B. 08028 (Spain); Morros, Antoni [Unitat de Biofisica, Departament de Bioquimica i Biologia Molecular, Facultat de Medicina (Spain); Servei de Ressonancia Magnetica Nuclear (SeRMN), U.A.B., 08193 Bellaterra, Barcelona (Spain); Cabanas, Miquel E. [Servei de Ressonancia Magnetica Nuclear (SeRMN), U.A.B., 08193 Bellaterra, Barcelona (Spain); Montero, M. Teresa [Departament de Fisicoquimica, Facultat de Farmacia, U.B. 08028 (Spain); Hernandez-Borrell, Jordi [Departament de Fisicoquimica, Facultat de Farmacia, U.B. 08028 (Spain)], E-mail: jordihernandezborrell@ub.edu

    2007-10-15

    In the study described here, supported planar bilayers (SPBs) of 1-palmitoy-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE):cardiolipin (CL) (0.8:0.2, mol/mol) were examined using atomic force microscopy (AFM). SPBs were formed from suspensions of POPE:CL (0.8:0.2, mol/mol) in inverted hexagonal (H{sub II}) phases (buffer containing Ca{sup 2+}). Three laterally segregated domains which differ in height were observed at 24 degC. Based on the area accounted for each domain and the nominal composition of the mixture, we interpret that the higher domain is formed by CL, while the intermediate and lower domains (LDs) are formed by POPE. The three domains respond to temperature increase with relative changes in their area. At 37 degC, we observed that the increase in the area of the intermediate domain occurs at the expense of the LD. {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) and Differential scanning calorimetry (DSC) were used in combination with AFM to characterize the phase behavior of the suspensions and to elucidate the nature of the structures observed.

  10. Electrodeposited Silver Nanoparticles Patterned Hexagonally for SERS

    International Nuclear Information System (INIS)

    Gu, Geun Hoi; Lee, Sue Yeone; Suh, Jung Sang

    2010-01-01

    We have fabricated hexagonally patterned silver nanoparticles for surface-enhanced Raman scattering (SERS) by electrodepositing silver on the surface of an aluminum plate prepared by completely removing the oxide from anodic aluminum oxide (AAO) templates. Even after completely removing the oxide, well-ordered hexagonal patterns, similar to the shape of graphene, remained on the surface of the aluminum plate. The borders of the hexagonal pattern protruded up to form sorts of nano-mountains at both the sides and apexes of the hexagon, with the apexes protruding even more significantly than the sides. The aluminum plate prepared by completely removing the oxide has been used in the preparation of SERS substrates by sputter-coating of gold or silver on it. Instead of sputter-coating, here we have electro-deposited silver on the aluminum plate. When silver was electro-deposited on the plate, silver nanoparticles were made along the hexagonal margins.

  11. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program.

    Science.gov (United States)

    Silva, Marcilene Rezende; Sendin, Shimene Mascarenhas; Araujo, Isabela Couto de Oliveira; Pimentel, Fernanda Silva; Viana, Marcos Borato

    2013-01-01

    To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. β(S) allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI) were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. THE FOLLOWING ALPHA CHAIN VARIANTS WERE FOUND: seven children with hemoglobin Hasharon [alpha2 47(CE5) Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13) Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2) Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5) Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  12. Detection of Sickle Cell Hemoglobin in Haiti by Genotyping and Hemoglobin Solubility Tests

    Science.gov (United States)

    Carter, Tamar E.; von Fricken, Michael; Romain, Jean R.; Memnon, Gladys; St. Victor, Yves; Schick, Laura; Okech, Bernard A.; Mulligan, Connie J.

    2014-01-01

    Sickle cell disease is a growing global health concern because infants born with the disorder in developing countries are now surviving longer with little access to diagnostic and management options. In Haiti, the current state of sickle cell disease/trait in the population is unclear. To inform future screening efforts in Haiti, we assayed sickle hemoglobin mutations using traditional hemoglobin solubility tests (HST) and add-on techniques, which incorporated spectrophotometry and insoluble hemoglobin separation. We also generated genotype data as a metric for HST performance. We found 19 of 202 individuals screened with HST were positive for sickle hemoglobin, five of whom did not carry the HbS allele. We show that spectrophotometry and insoluble hemoglobin separation add-on techniques could resolve false positives associated with the traditional HST approach, with some limitations. We also discuss the incorporation of insoluble hemoglobin separation observation with HST in suboptimal screening settings like Haiti. PMID:24957539

  13. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    International Nuclear Information System (INIS)

    Padilla, J. L.; Alper, C.; Ionescu, A. M.; Medina-Bailón, C.; Gámiz, F.

    2015-01-01

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I ON levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures

  14. Assessment of pseudo-bilayer structures in the heterogate germanium electron-hole bilayer tunnel field-effect transistor

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, J. L., E-mail: jose.padilladelatorre@epfl.ch; Alper, C.; Ionescu, A. M. [Nanoelectronic Devices Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne CH-1015 (Switzerland); Medina-Bailón, C.; Gámiz, F. [Departamento de Electrónica y Tecnología de los Computadores, Universidad de Granada, Avda. Fuentenueva s/n, 18071 Granada (Spain)

    2015-06-29

    We investigate the effect of pseudo-bilayer configurations at low operating voltages (≤0.5 V) in the heterogate germanium electron-hole bilayer tunnel field-effect transistor (HG-EHBTFET) compared to the traditional bilayer structures of EHBTFETs arising from semiclassical simulations where the inversion layers for electrons and holes featured very symmetric profiles with similar concentration levels at the ON-state. Pseudo-bilayer layouts are attained by inducing a certain asymmetry between the top and the bottom gates so that even though the hole inversion layer is formed at the bottom of the channel, the top gate voltage remains below the required value to trigger the formation of the inversion layer for electrons. Resulting benefits from this setup are improved electrostatic control on the channel, enhanced gate-to-gate efficiency, and higher I{sub ON} levels. Furthermore, pseudo-bilayer configurations alleviate the difficulties derived from confining very high opposite carrier concentrations in very thin structures.

  15. Alpha chain hemoglobins with electrophoretic mobility similar to that of hemoglobin S in a newborn screening program

    Directory of Open Access Journals (Sweden)

    Marcilene Rezende Silva

    2013-01-01

    Full Text Available OBJECTIVE: To characterize alpha-chain variant hemoglobins with electric mobility similar to that of hemoglobin S in a newborn screening program. METHODS: βS allele and alpha-thalassemia deletions were investigated in 14 children who had undefined hemoglobin at birth and an electrophoretic profile similar to that of hemoglobin S when they were six months old. Gene sequencing and restriction enzymes (DdeI, BsaJI, NlaIV, Bsu36I and TaqI were used to identify hemoglobins. Clinical and hematological data were obtained from children who attended scheduled medical visits. RESULTS: The following alpha chain variants were found: seven children with hemoglobin Hasharon [alpha2 47(CE5 Asp>His, HbA2:c.142G>C], all associated with alpha-thalassemia, five with hemoglobin Ottawa [alpha1 15(A13 Gly>Arg, HBA1:c.46G>C], one with hemoglobin St Luke's [alpha1 95(G2 Pro>Arg, HBA1:c.287C>G] and another one with hemoglobin Etobicoke [alpha212 84(F5 Ser>Arg, HBA212:c.255C>G]. Two associations with hemoglobin S were found: one with hemoglobin Ottawa and one with hemoglobin St Luke's. The mutation underlying hemoglobin Etobicoke was located in a hybrid α212 allele in one child. There was no evidence of clinically relevant hemoglobins detected in this study. CONCLUSION: Apparently these are the first cases of hemoglobin Ottawa, St Luke's, Etobicoke and the α212 gene described in Brazil. The hemoglobins detected in this study may lead to false diagnosis of sickle cell trait or sickle cell disease when only isoelectric focusing is used in neonatal screening. Additional tests are necessary for the correct identification of hemoglobin variants.

  16. Hemoglobin Wayne Trait with Incidental Polycythemia.

    Science.gov (United States)

    Ambelil, Manju; Nguyen, Nghia; Dasgupta, Amitava; Risin, Semyon; Wahed, Amer

    2017-01-01

    Hemoglobinopathies, caused by mutations in the globin genes, are one of the most common inherited disorders. Many of the hemoglobin variants can be identified by hemoglobin analysis using conventional electrophoresis and high performance liquid chromatography; however hemoglobin DNA analysis may be necessary in other cases for confirmation. Here, we report a case of a rare alpha chain hemoglobin variant, hemoglobin Wayne, in a 47-year-old man who presented with secondary polycythemia. Capillary zone electrophoresis and high performance liquid chromatography revealed a significant amount of a hemoglobin variant, which was further confirmed by hemoglobin DNA sequencing as hemoglobin Wayne. Since the patient was not homozygous for hemoglobin Wayne, which is associated with secondary polycythemia, the laboratory diagnosis in this case was critical in ruling out hemoglobinopathy as the etiology of his polycythemia. © 2017 by the Association of Clinical Scientists, Inc.

  17. The Hemoglobin E Thalassemias

    Science.gov (United States)

    Fucharoen, Suthat; Weatherall, David J.

    2012-01-01

    Hemoglobin E (HbE) is an extremely common structural hemoglobin variant that occurs at high frequencies throughout many Asian countries. It is a β-hemoglobin variant, which is produced at a slightly reduced rate and hence has the phenotype of a mild form of β thalassemia. Its interactions with different forms of α thalassemia result in a wide variety of clinical disorders, whereas its coinheritance with β thalassemia, a condition called hemoglobin E β thalassemia, is by far the most common severe form of β thalassemia in Asia and, globally, comprises approximately 50% of the clinically severe β-thalassemia disorders. PMID:22908199

  18. Molecular packing and area compressibility of lipid bilayers

    International Nuclear Information System (INIS)

    White, S.H.; King, G.I.

    1985-01-01

    Knowledge of the molecular packing of lipids and water in lipid bilayers is important for understanding bilayer mechanics and thermodynamics. Information on packing is most often obtained from x-ray or neutron diffraction measurements. Given the d spacing, composition, and partial specific volumes of the lipid and water, it is a simple matter to calculate the area per lipid molecule, bilayer thickness, and bilayer mass density. The partial specific volumes are commonly assumed to be those of bulk water and of lipid in excess water regardless of the degree of bilayer hydration. The authors present evidence here that these assumptions should be seriously questioned. At low hydrations, they find the head groups of egg and dioleoyl lecithin to be much less tightly packed than previously thought and the partial specific volume of water to be considerably smaller than 1 ml/g. Because the molecular packing affects the mechanical properties of bilayers, they use the results to reevaluate published experiments concerning the elastic area compressibility modulus of egg lecithin bilayers and the repulsive hydration force between bilayers

  19. Crystallization of -type hexagonal ferrites from mechanically

    Indian Academy of Sciences (India)

    Crystallization of -type hexagonal ferrites from mechanically activated mixtures of barium carbonate and goethite ... Abstract. -type hexagonal ferrite precursor was prepared by a soft mechanochemical ... Bulletin of Materials Science | News.

  20. Phylogeny of Echinoderm Hemoglobins.

    Directory of Open Access Journals (Sweden)

    Ana B Christensen

    Full Text Available Recent genomic information has revealed that neuroglobin and cytoglobin are the two principal lineages of vertebrate hemoglobins, with the latter encompassing the familiar myoglobin and α-globin/β-globin tetramer hemoglobin, and several minor groups. In contrast, very little is known about hemoglobins in echinoderms, a phylum of exclusively marine organisms closely related to vertebrates, beyond the presence of coelomic hemoglobins in sea cucumbers and brittle stars. We identified about 50 hemoglobins in sea urchin, starfish and sea cucumber genomes and transcriptomes, and used Bayesian inference to carry out a molecular phylogenetic analysis of their relationship to vertebrate sequences, specifically, to assess the hypothesis that the neuroglobin and cytoglobin lineages are also present in echinoderms.The genome of the sea urchin Strongylocentrotus purpuratus encodes several hemoglobins, including a unique chimeric 14-domain globin, 2 androglobin isoforms and a unique single androglobin domain protein. Other strongylocentrotid genomes appear to have similar repertoires of globin genes. We carried out molecular phylogenetic analyses of 52 hemoglobins identified in sea urchin, brittle star and sea cucumber genomes and transcriptomes, using different multiple sequence alignment methods coupled with Bayesian and maximum likelihood approaches. The results demonstrate that there are two major globin lineages in echinoderms, which are related to the vertebrate neuroglobin and cytoglobin lineages. Furthermore, the brittle star and sea cucumber coelomic hemoglobins appear to have evolved independently from the cytoglobin lineage, similar to the evolution of erythroid oxygen binding globins in cyclostomes and vertebrates.The presence of echinoderm globins related to the vertebrate neuroglobin and cytoglobin lineages suggests that the split between neuroglobins and cytoglobins occurred in the deuterostome ancestor shared by echinoderms and vertebrates.

  1. Fish hemoglobins

    OpenAIRE

    Souza,P.C. de; Bonilla-Rodriguez,G.O.

    2007-01-01

    Vertebrate hemoglobin, contained in erythrocytes, is a globular protein with a quaternary structure composed of 4 globin chains (2 alpha and 2 beta) and a prosthetic group named heme bound to each one. Having myoglobin as an ancestor, hemoglobin acquired the capacity to respond to chemical stimuli that modulate its function according to tissue requirements for oxygen. Fish are generally submitted to spatial and temporal O2 variations and have developed anatomical, physiological and biochemica...

  2. Hydrothermal synthesis of hexagonal magnesium hydroxide nanoflakes

    International Nuclear Information System (INIS)

    Wang, Qiang; Li, Chunhong; Guo, Ming; Sun, Lingna; Hu, Changwen

    2014-01-01

    Graphical abstract: Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method in the presence of PEG-20,000. Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake yielded different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. - Highlights: • Hexagonal Mg(OH) 2 nanoflakes were synthesized via hydrothermal method. • PEG-20,000 plays an important role in the formation of hexagonal nanostructure. • Mg(OH) 2 nanoflakes show different crystalline structures at different positions. • The probable formation mechanism of hexagonal Mg(OH) 2 nanoflakes was reported. - Abstract: Hexagonal magnesium hydroxide (Mg(OH) 2 ) nanoflakes were successfully synthesized via hydrothermal method in the presence of the surfactant polyethylene glycol 20,000 (PEG-20,000). Results show that PEG-20,000 plays an important role in the formation of this kind of nanostructure. The composition, morphologies and structure of the Mg(OH) 2 nanoflakes were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED). The SAED patterns taken from the different positions on a single hexagonal Mg(OH) 2 nanoflake show different crystalline structures. The structure of the nanoflakes are polycrystalline and the probable formation mechanism of Mg(OH) 2 nanoflakes is discussed. Brunauer–Emmett–Teller (BET) analysis were performed to investigate the porous structure and surface area of the as-obtained nanoflakes

  3. Hemoglobin C, S-C, and E Diseases

    Science.gov (United States)

    ... quickly than others, resulting in chronic anemia. Hemoglobin C disease Hemoglobin C disease occurs mostly in blacks. ... a common complication of hemoglobin C disease. Hemoglobin S-C disease Hemoglobin S-C disease occurs in people who ...

  4. Edge states in gated bilayer-monolayer graphene ribbons and bilayer domain walls

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Peeters, F. M.

    2018-05-01

    Using the effective continuum model, the electron energy spectrum of gated bilayer graphene with a step-like region of decoupled graphene layers at the edge of the sample is studied. Different types of coupled-decoupled interfaces are considered, i.e., zigzag (ZZ) and armchair junctions, which result in significant different propagating states. Two non-valley-polarized conducting edge states are observed for ZZ type, which are mainly located around the ZZ-ended graphene layers. Additionally, we investigated both BA-BA and BA-AB domain walls in the gated bilayer graphene within the continuum approximation. Unlike the BA-BA domain wall, which exhibits gapped insulating behaviour, the domain walls surrounded by different stackings of bilayer regions feature valley-polarized edge states. Our findings are consistent with other theoretical calculations, such as from the tight-binding model and first-principles calculations, and agree with experimental observations.

  5. Reactions of radicals with lecithin bilayers

    International Nuclear Information System (INIS)

    Barber, D.J.W.; Thomas, J.K.

    1978-01-01

    The kinetics of reaction of .OH and e/sub aq/ - with lecithin bilayers have been measured. The rate for .OH + lecithin is 5.1 +- 0.9 x 10 8 M -1 sec -1 while the e/sub aq/ - + lecithin rate is very slow. When a solute such as pyrene is solubilized in the bilayer, .OH and e/sub aq/ - may react with the solute; rates of 1.65 +- 0.12 x 10 9 M -1 sec -1 and 7 x 10 7 M -1 sec -1 have been measured for reaction of .OH and e/sub aq/ - , respectively, with pyrene in lecithin. These rates are lower than those observed for similar reactions in homogeneous systems. This is explained in terms of (a) the protective effect of the bilayer, this being especially true for e/sub aq/ - which does not readily leave the aqueous phase, and (b) in terms of the restricted diffusion imposed on the reactive species by the bilayer. The kinetics in these model systems are relevant to reactions of radicals with membranes. Long-term alteration in the model membrane following .OH attack is manifested in terms of damage to the head group, increasing water penetration of the bilayer, and of cross-linking with the membrane, thereby restricting motion in the interior of the bilayer. Increased rigidity and leakiness of membranes is an expected consequence of radiation damage

  6. Hexagonalization of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Thiago [Instituto de Física Teórica, UNESP - University Estadual Paulista,ICTP South American Institute for Fundamental Research,Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, SP (Brazil); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline St N Waterloo, Ontario N2L 2Y5 (Canada)

    2017-01-30

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.

  7. Hexagonal response matrix using symmetries

    International Nuclear Information System (INIS)

    Gotoh, Y.

    1991-01-01

    A response matrix for use in core calculations for nuclear reactors with hexagonal fuel assemblies is presented. It is based on the incoming currents averaged over the half-surface of a hexagonal node by applying symmetry theory. The boundary conditions of the incoming currents on the half-surface of the node are expressed by a complete set of orthogonal vectors which are constructed from symmetrized functions. The expansion coefficients of the functions are determined by the boundary conditions of incoming currents. (author)

  8. Structural Characterization of Hexagonal Braiding Architecture Aided by 3D Printing

    Directory of Open Access Journals (Sweden)

    Li Zhengning

    2018-01-01

    Full Text Available Hexagonal braiding method has the advantages of high shape compatibility, interlacing density and high volume fraction. Based on hexagonal braiding method, a hexagonal preform was braided. Then, by following the characteristics of repeatability and concentricity of hexagonal braided preform, the printed geometry structure was got in order to understand and optimize geometric structure to make it more compact like the braided geometric structure. Finally, the unit cells were defined with hexagonal prism to analyze the micro-geometric structure of hexagonal braided preform.

  9. Interaction of thyroid hormone and hemoglobin: nature of the interaction and effect of hemoglobin on thyroid hormone radioimmunoassay

    International Nuclear Information System (INIS)

    Davis, P.J.; Yoshida, K.; Schoenl, M.

    1980-01-01

    Gel filtration of human erythrocyte (RBC) lysate incubated with labeled thyroxine (Tu) or triiodothyronine (Tt) revealed co-elution of a major iodothyronine-binding fraction (R-2) and hemoglobin. Solutions of purified human hemoglobin and Tt also showed co-elution of hormone and hemoglobin. Because hematin and protoporphyrin were shown to bind labeled Tt, the oxygen-binding site on hemoglobin was excluded as the site of iodothyronine-hemoglobin interaction. Analysis of hormone binding by heme and globin moieties showed Tt binding to be limited to the heme fraction. Addition of excess unlabeled Tt to hemoglobin or heme incubated with labeled Tt indicated 75% to 90% of hormone binding was poorly dissociable. These observations suggested that the presence of hemoglobin in RBC lysate or in serum could influence the measurement of Tu and Tt by specific radioimmunoassay (RIA). Subsequent studies of the addition to serum of human hemoglobin revealed a significant reduction in Tt and Tu detectable by RIA in the presence of this protein. The effect was influenced by the concentration of hemoglobin and by duration and temperature of incubations of hemoglobin and serum prior to RIA

  10. Mixed Mechanism of Lubrication by Lipid Bilayer Stacks.

    Science.gov (United States)

    Boţan, Alexandru; Joly, Laurent; Fillot, Nicolas; Loison, Claire

    2015-11-10

    Although the key role of lipid bilayer stacks in biological lubrication is generally accepted, the mechanisms underlying their extreme efficiency remain elusive. In this article, we report molecular dynamics simulations of lipid bilayer stacks undergoing load and shear. When the hydration level is reduced, the velocity accommodation mechanism changes from viscous shear in hydration water to interlayer sliding in the bilayers. This enables stacks of hydrated lipid bilayers to act as efficient boundary lubricants for various hydration conditions, structures, and mechanical loads. We also propose an estimation for the friction coefficient; thanks to the strong hydration forces between lipid bilayers, the high local viscosity is not in contradiction with low friction coefficients.

  11. Peierls instability and optical properties of bilayer polyacene

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Longlong, E-mail: zhanglonglong@tyut.edu.cn [The College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024 (China); Xie, Shijie [School of Physics, Shandong University, Jinan 250100 (China)

    2017-05-03

    Highlights: • The Peierls instability of bilayer polyacene is discussed. • The external electric field effect on bilayer polyacene is discussed. • The pressure effect on bilayer polyacene is discussed. • The optical properties of bilayer polyacene are discussed. - Abstract: We reveal that bilayer polyacene can be the gapped state due to the intralayer Peierls instability. There are six topologically inequivalent Peierls-distorted structures and they are degenerate in energy. The external electric field can tune the Peierls gap and induce the semiconductor-to-metallic phase transitions. The optical conductivity spectra are calculated in an attempt to categorize the Peierls-distorted structures. The strength of the interlayer coupling essentially affects the electronic properties and the optical selection rules.

  12. Infrared spectroscopy of fluid lipid bilayers.

    Science.gov (United States)

    Hull, Marshall C; Cambrea, Lee R; Hovis, Jennifer S

    2005-09-15

    Infrared spectroscopy is a powerful technique for examining lipid bilayers; however, it says little about the fluidity of the bilayer-a key physical aspect. It is shown here that it is possible to both acquire spectroscopic data of supported lipid bilayer samples and make measurements of the membrane fluidity. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) is used to obtain the spectroscopic information and fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of the samples. In the infrared spectra of lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, the following major peaks were observed; nu(as)(CH3) 2954 cm(-1), nu(s)(CH3) 2870 cm(-1), nu(as)(CH2) 2924 cm(-1), nu(s)(CH2) 2852 cm(-1), nu(C=O) 1734 cm(-1), delta(CH2) 1463-1473 cm(-1), nu(as)(PO2-) 1226 cm(-1), nu(s)(PO2-) 1084 cm(-1), and nu(as)(N+(CH3)3) 973 cm(-1). The diffusion coefficient of the same lipid bilayer was measured to be 3.5 +/- 0.5 micom(2)/s with visual recovery also noted through use of epifluorescence microscopy. FRAP and visual data confirm the formation of a uniform, mobile supported lipid bilayer. The combination of ATR-FT-IR and FRAP provides complementary data giving a more complete picture of fully hydrated model membrane systems.

  13. Viscoelastic deformation of lipid bilayer vesicles.

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L; Malmstadt, Noah

    2015-10-07

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic.

  14. Novel high pressure hexagonal OsB2 by mechanochemistry

    International Nuclear Information System (INIS)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-01-01

    Hexagonal OsB 2 , a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB 2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB 2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB 2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB 2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB 2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB 2 nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB 2 has been synthesized for the first time by mechanochemical method. • Hexagonal OsB 2 crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB 2 was transformed to o-OsB 2 after being sintered at 1500 °C for 5 min

  15. Hemoglobin Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... page: https://medlineplus.gov/labtests/hemoglobintest.html Hemoglobin Test To use the sharing features on this page, please enable JavaScript. What is a Hemoglobin Test? A hemoglobin test measures the levels of hemoglobin ...

  16. Engineering plant membranes using droplet interface bilayers.

    Science.gov (United States)

    Barlow, N E; Smpokou, E; Friddin, M S; Macey, R; Gould, I R; Turnbull, C; Flemming, A J; Brooks, N J; Ces, O; Barter, L M C

    2017-03-01

    Droplet interface bilayers (DIBs) have become widely recognised as a robust platform for constructing model membranes and are emerging as a key technology for the bottom-up assembly of synthetic cell-like and tissue-like structures. DIBs are formed when lipid-monolayer coated water droplets are brought together inside a well of oil, which is excluded from the interface as the DIB forms. The unique features of the system, compared to traditional approaches (e.g., supported lipid bilayers, black lipid membranes, and liposomes), is the ability to engineer multi-layered bilayer networks by connecting multiple droplets together in 3D, and the capability to impart bilayer asymmetry freely within these droplet architectures by supplying droplets with different lipids. Yet despite these achievements, one potential limitation of the technology is that DIBs formed from biologically relevant components have not been well studied. This could limit the reach of the platform to biological systems where bilayer composition and asymmetry are understood to play a key role. Herein, we address this issue by reporting the assembly of asymmetric DIBs designed to replicate the plasma membrane compositions of three different plant species; Arabidopsis thaliana , tobacco, and oats, by engineering vesicles with different amounts of plant phospholipids, sterols and cerebrosides for the first time. We show that vesicles made from our plant lipid formulations are stable and can be used to assemble asymmetric plant DIBs. We verify this using a bilayer permeation assay, from which we extract values for absolute effective bilayer permeation and bilayer stability. Our results confirm that stable DIBs can be assembled from our plant membrane mimics and could lead to new approaches for assembling model systems to study membrane translocation and to screen new agrochemicals in plants.

  17. Intrinsic ferromagnetism in hexagonal boron nitride nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Si, M. S.; Gao, Daqiang, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn; Yang, Dezheng; Peng, Yong; Zhang, Z. Y.; Xue, Desheng, E-mail: gaodq@lzu.edu.cn, E-mail: xueds@lzu.edu.cn [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Liu, Yushen [Jiangsu Laboratory of Advanced Functional Materials and College of Physics and Engineering, Changshu Institute of Technology, Changshu 215500 (China); Deng, Xiaohui [Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421008 (China); Zhang, G. P. [Department of Physics, Indiana State University, Terre Haute, Indiana 47809 (United States)

    2014-05-28

    Understanding the mechanism of ferromagnetism in hexagonal boron nitride nanosheets, which possess only s and p electrons in comparison with normal ferromagnets based on localized d or f electrons, is a current challenge. In this work, we report an experimental finding that the ferromagnetic coupling is an intrinsic property of hexagonal boron nitride nanosheets, which has never been reported before. Moreover, we further confirm it from ab initio calculations. We show that the measured ferromagnetism should be attributed to the localized π states at edges, where the electron-electron interaction plays the role in this ferromagnetic ordering. More importantly, we demonstrate such edge-induced ferromagnetism causes a high Curie temperature well above room temperature. Our systematical work, including experimental measurements and theoretical confirmation, proves that such unusual room temperature ferromagnetism in hexagonal boron nitride nanosheets is edge-dependent, similar to widely reported graphene-based materials. It is believed that this work will open new perspectives for hexagonal boron nitride spintronic devices.

  18. Interaction of elaiophylin with model bilayer membrane

    Science.gov (United States)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  19. Pair interaction of bilayer-coated nanoscopic particles

    International Nuclear Information System (INIS)

    Qi-Yi, Zhang

    2009-01-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery. (condensed matter: structure, thermal and mechanical properties)

  20. Possible mechanism of adhesion in a mica supported phospholipid bilayer

    International Nuclear Information System (INIS)

    Pertsin, Alexander; Grunze, Michael

    2014-01-01

    Phospholipid bilayers supported on hydrophilic solids like silica and mica play a substantial role in fundamental studies and technological applications of phospholipid membranes. In both cases the molecular mechanism of adhesion between the bilayer and the support is of primary interest. Since the possibilities of experimental methods in this specific area are rather limited, the methods of computer simulation acquire great importance. In this paper we use the grand canonical Monte Carlo technique and an atomistic force field to simulate the behavior of a mica supported phospholipid bilayer in pure water as a function of the distance between the bilayer and the support. The simulation reveals a possible adhesion mechanism, where the adhesion is due to individual lipid molecules that protrude from the bilayer and form widely spaced links with the support. Simultaneously, the bilayer remains separated from the bilayer by a thin water interlayer which maintains the bilayer fluidity

  1. A new hemoglobin gene from soybean: a role for hemoglobin in all plants

    DEFF Research Database (Denmark)

    Anderson, C R; Jensen, E O; LLewellyn, D J

    1996-01-01

    We have isolated a new hemoglobin gene from soybean. It is expressed in cotyledons, stems of seedlings, roots, young leaves, and in some cells in the nodules that are associated with the nitrogen-fixing Bradyrhizobium symbiont. This contrasts with the expression of the leghemoglobins, which...... are active only in the infected cells of the nodules. The deduced protein sequence of the new gene shows only 58% similarity to one of the soybean leghemoglobins, but 85-87% similarity to hemoglobins from the nonlegumes Parasponia, Casuarina, and barley. The pattern of expression and the gene sequence...... indicate that this new gene is a nonsymbiotic legume hemoglobin. The finding of this gene in legumes and similar genes in other species strengthens our previous suggestion that genomes of all plants contain hemoglobin genes. The specialized leghemoglobin gene family may have arisen from a preexisting...

  2. Viscoelastic deformation of lipid bilayer vesicles†

    Science.gov (United States)

    Wu, Shao-Hua; Sankhagowit, Shalene; Biswas, Roshni; Wu, Shuyang; Povinelli, Michelle L.

    2015-01-01

    Lipid bilayers form the boundaries of the cell and its organelles. Many physiological processes, such as cell movement and division, involve bending and folding of the bilayer at high curvatures. Currently, bending of the bilayer is treated as an elastic deformation, such that its stress-strain response is independent of the rate at which bending strain is applied. We present here the first direct measurement of viscoelastic response in a lipid bilayer vesicle. We used a dual-beam optical trap (DBOT) to stretch 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) giant unilamellar vesicles (GUVs). Upon application of a step optical force, the vesicle membrane deforms in two regimes: a fast, instantaneous area increase, followed by a much slower stretching to an eventual plateau deformation. From measurements of dozens of GUVs, the average time constant of the slower stretching response was 0.225 ± 0.033 s (standard deviation, SD). Increasing the fluid viscosity did not affect the observed time constant. We performed a set of experiments to rule out heating by laser absorption as a cause of the transient behavior. Thus, we demonstrate here that the bending deformation of lipid bilayer membranes should be treated as viscoelastic. PMID:26268612

  3. Bandgap engineered graphene and hexagonal boron nitride

    Indian Academy of Sciences (India)

    In this article a double-barrier resonant tunnelling diode (DBRTD) has been modelled by taking advantage of single-layer hexagonal lattice of graphene and hexagonal boron nitride (h-BN). The DBRTD performance and operation are explored by means of a self-consistent solution inside the non-equilibrium Green's ...

  4. Chain hexagonal cacti with the extremal eccentric distance sum.

    Science.gov (United States)

    Qu, Hui; Yu, Guihai

    2014-01-01

    Eccentric distance sum (EDS), which can predict biological and physical properties, is a topological index based on the eccentricity of a graph. In this paper we characterize the chain hexagonal cactus with the minimal and the maximal eccentric distance sum among all chain hexagonal cacti of length n, respectively. Moreover, we present exact formulas for EDS of two types of hexagonal cacti.

  5. Non-invasive hemoglobin monitoring.

    Science.gov (United States)

    Joseph, Bellal; Haider, Ansab; Rhee, Peter

    2016-09-01

    Technology has transformed the practice of medicine and surgery in particular over the last several decades. This change in practice has allowed diagnostic and therapeutic tests to be performed less invasively. Hemoglobin monitoring remains one of the most commonly performed diagnostic tests in the United States. Recently, non-invasive hemoglobin monitoring technology has gained popularity. The aim of this article is to review the principles of how this technology works, pros and cons, and the implications of non-invasive hemoglobin technology particularly in trauma surgery. Copyright © 2015 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  6. Cholesterol Protects the Oxidized Lipid Bilayer from Water Injury

    DEFF Research Database (Denmark)

    Owen, Michael C; Kulig, Waldemar; Rog, Tomasz

    2018-01-01

    In an effort to delineate how cholesterol protects membrane structure under oxidative stress conditions, we monitored the changes to the structure of lipid bilayers comprising 30 mol% cholesterol and an increasing concentration of Class B oxidized 1-palmitoyl-2-oleoylphosphatidylcholine (POPC...... in a characteristic reduction in bilayer thickness and increase in area per lipid, thereby increasing the exposure of the membrane hydrophobic region to water. However, cholesterol was observed to help reduce water injury by moving into the bilayer core and forming more hydrogen bonds with the oxPLs. Cholesterol also...... resists altering its tilt angle, helping to maintain membrane integrity. Water that enters the 1-nm-thick core region remains part of the bulk water on either side of the bilayer, with relatively few water molecules able to traverse through the bilayer. In cholesterol-rich membranes, the bilayer does...

  7. Blood Test: Hemoglobin A1C

    Science.gov (United States)

    ... Why Are Hemoglobin A1c Tests Done? When a child has diabetes, hemoglobin A1c levels are followed to see how well medicines are working. If a child with diabetes has a high hemoglobin A1c level, it may ...

  8. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting

    Directory of Open Access Journals (Sweden)

    Idriss Ali

    2011-04-01

    Full Text Available Abstract Background In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. Method EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin. Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC was used to determine the within subject variability of measured hemoglobin. Results Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p Conclusion Hemoglobin determined by the HemoCue method is comparable to that determined by the other methods. The HemoCue photometer is therefore recommended for use as on-the-spot device for determining hemoglobin in resource poor setting.

  9. Thermotropic and Barotropic Phase Behavior of Phosphatidylcholine Bilayers

    Directory of Open Access Journals (Sweden)

    Nobutake Tamai

    2013-01-01

    Full Text Available Bilayers formed by phospholipids are frequently used as model biological membranes in various life science studies. A characteristic feature of phospholipid bilayers is to undergo a structural change called a phase transition in response to environmental changes of their surroundings. In this review, we focus our attention on phase transitions of some major phospholipids contained in biological membranes, phosphatidylcholines (PCs, depending on temperature and pressure. Bilayers of dipalmitoylphosphatidylcholine (DPPC, which is the most representative lipid in model membrane studies, will first be explained. Then, the bilayer phase behavior of various kinds of PCs with different molecular structures is revealed from the temperature–pressure phase diagrams, and the difference in phase stability among these PC bilayers is discussed in connection with the molecular structure of the PC molecules. Furthermore, the solvent effect on the phase behavior is also described briefly.

  10. Coincidence orientations of grains in hexagonal materials

    International Nuclear Information System (INIS)

    Grimmer, H.; Warrington, D.H.

    1986-06-01

    The connection between the rotation matrix in hexagonal lattice coordinates and an angle-axis quadruple is given. The multiplication law of quadruples is derived. It corresponds to multiplying two matrices and gives the effect of two successive rotations. The relation is given between two quadruples that describe the same relative orientation of two lattices due to their hexagonal symmetry; a unique standard description of the relative orientation is proposed. The restrictions satisfied by rotations generating coincidence site lattices (CSLs) are derived for any value of the axial ratio rho = c/a. It is shown that the law for cubic lattices, where the multiplicity SIGMA of the CSL was equal to the least common denominator of the elements of the rotation matrix, does not always hold for hexagonal lattices. A generalisation of this law to lattices of arbitrary symmetry is given and another, quicker method to determine SIGMA for hexagonal lattices is derived. Finally, convenient algorithms are described for determining bases of the CSL and the DSC lattice. (author)

  11. Epitaxial hexagonal materials on IBAD-textured substrates

    Science.gov (United States)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  12. Metal-free spin and spin-gapless semiconducting heterobilayers: monolayer boron carbonitrides on hexagonal boron nitride.

    Science.gov (United States)

    Pan, Hongzhe; Zhang, Hongyu; Sun, Yuanyuan; Ding, Yingchun; Chen, Jie; Du, Youwei; Tang, Nujiang

    2017-06-07

    The interfaces between monolayer boron carbonitrides and hexagonal boron nitride (h-BN) play an important role in their practical applications. Herein, we respectively investigate the structural and electronic properties of two metal-free heterobilayers constructed by vertically stacking two-dimensional (2D) spintronic materials (B 4 CN 3 and B 3 CN 4 ) on a h-BN monolayer from the viewpoints of lattice match and lattice mismatch models using density functional calculations. It is found that both B 4 CN 3 and B 3 CN 4 monolayers can be stably adsorbed on the h-BN monolayer due to the van der Waals interactions. Intriguingly, we demonstrate that the bipolar magnetic semiconductor (BMS) behavior of the B 4 CN 3 layer and the spin gapless semiconductor (SGS) property of the B 3 CN 4 layer can be well preserved in the B 4 CN 3 /BN and B 3 CN 4 /BN heterobilayers, respectively. The magnetic moments and spintronic properties of the two systems originate mainly from the 2p z electrons of the carbon atoms in the B 4 CN 3 and B 3 CN 4 layers. Furthermore, the BMS behavior of the B 4 CN 3 /BN bilayer is very robust while the electronic property of the B 3 CN 4 /BN bilayer is sensitive to interlayer couplings. These theoretical results are helpful both in understanding the interlayer coupling between B 4 CN 3 or B 3 CN 4 and h-BN monolayers and in providing a possibility of fabricating 2D composite B 4 CN 3 /BN and B 3 CN 4 /BN metal-free spintronic materials theoretically.

  13. Determination Of Ph Including Hemoglobin Correction

    Science.gov (United States)

    Maynard, John D.; Hendee, Shonn P.; Rohrscheib, Mark R.; Nunez, David; Alam, M. Kathleen; Franke, James E.; Kemeny, Gabor J.

    2005-09-13

    Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.

  14. Interface-mediation of lipid bilayer organization and dynamics.

    Science.gov (United States)

    Mize, Hannah E; Blanchard, G J

    2016-06-22

    We report on the morphology and dynamics of planar supported lipid bilayer structures as a function of pH and ionic strength of the aqueous overlayer. Supported lipid bilayers composed of three components (phosphocholine, sphingomyelin and cholesterol) are known to exhibit phase segregation, with the characteristic domain sizes dependent on the amount and identity of each constituent, and the composition of the aqueous overlayer in contact with the bilayer. We report on fluorescence anisotropy decay imaging measurements of a rhodamine chromophore tethered to the headgroup of a phosphoethanolamine, where anisotropy decay images were acquired as a function of solution overlayer pH and ionic strength. The data reveal a two-component anisotropy decay under all conditions, with the faster time constant being largely independent of pH and ionic strength and the slower component depending on pH and ionic strength in different manners. For liposomes of the same composition, a single exponential anisotropy decay was seen. We interpret this difference in terms of bilayer curvature and support surface-bilayer interactions, and the pH and ionic strength dependencies in terms of ionic screening and protonation in the bilayer headgroup region.

  15. Hemoglobin estimation by the HemoCue® portable hemoglobin photometer in a resource poor setting.

    Science.gov (United States)

    Nkrumah, Bernard; Nguah, Samuel Blay; Sarpong, Nimako; Dekker, Denise; Idriss, Ali; May, Juergen; Adu-Sarkodie, Yaw

    2011-04-21

    In resource poor settings where automated hematology analyzers are not available, the Cyanmethemoglobin method is often used. This method though cheaper, takes more time. In blood donations, the semi-quantitative gravimetric copper sulfate method which is very easy and inexpensive may be used but does not provide an acceptable degree of accuracy. The HemoCue® hemoglobin photometer has been used for these purposes. This study was conducted to generate data to support or refute its use as a point-of-care device for hemoglobin estimation in mobile blood donations and critical care areas in health facilities. EDTA blood was collected from study participants drawn from five groups: pre-school children, school children, pregnant women, non-pregnant women and men. Blood collected was immediately processed to estimate the hemoglobin concentration using three different methods (HemoCue®, Sysmex KX21N and Cyanmethemoglobin). Agreement between the test methods was assessed by the method of Bland and Altman. The Intraclass correlation coefficient (ICC) was used to determine the within subject variability of measured hemoglobin. Of 398 subjects, 42% were males with the overall mean age being 19.4 years. The overall mean hemoglobin as estimated by each method was 10.4 g/dl for HemoCue, 10.3 g/dl for Sysmex KX21N and 10.3 g/dl for Cyanmethemoglobin. Pairwise analysis revealed that the hemoglobin determined by the HemoCue method was higher than that measured by the KX21N and Cyanmethemoglobin. Comparing the hemoglobin determined by the HemoCue to Cyanmethemoglobin, the concordance correlation coefficient was 0.995 (95% CI: 0.994-0.996, p < 0.001). The Bland and Altman's limit of agreement was -0.389 - 0.644 g/dl with the mean difference being 0.127 (95% CI: 0.102-0.153) and a non-significant difference in variability between the two measurements (p = 0.843). After adjusting to assess the effect of other possible confounders such as sex, age and category of person, there was no

  16. Nonlinear photoacoustic spectroscopy of hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V., E-mail: LHWANG@WUSTL.EDU [Optical Imaging Laboratory, Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, Missouri 63130 (United States)

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  17. Nonlinear photoacoustic spectroscopy of hemoglobin.

    Science.gov (United States)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V

    2015-05-18

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.

  18. Nonlinear photoacoustic spectroscopy of hemoglobin

    International Nuclear Information System (INIS)

    Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.

    2015-01-01

    As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography

  19. Novel high pressure hexagonal OsB2 by mechanochemistry

    Science.gov (United States)

    Xie, Zhilin; Graule, Moritz; Orlovskaya, Nina; Andrew Payzant, E.; Cullen, David A.; Blair, Richard G.

    2014-07-01

    Hexagonal OsB2, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB2 begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB2 crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB2 phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from -225 °C to 1050 °C. The hexagonal OsB2 powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB2 at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods.

  20. Bifurcation theory for hexagonal agglomeration in economic geography

    CERN Document Server

    Ikeda, Kiyohiro

    2014-01-01

    This book contributes to an understanding of how bifurcation theory adapts to the analysis of economic geography. It is easily accessible not only to mathematicians and economists, but also to upper-level undergraduate and graduate students who are interested in nonlinear mathematics. The self-organization of hexagonal agglomeration patterns of industrial regions was first predicted by the central place theory in economic geography based on investigations of southern Germany. The emergence of hexagonal agglomeration in economic geography models was envisaged by Krugman. In this book, after a brief introduction of central place theory and new economic geography, the missing link between them is discovered by elucidating the mechanism of the evolution of bifurcating hexagonal patterns. Pattern formation by such bifurcation is a well-studied topic in nonlinear mathematics, and group-theoretic bifurcation analysis is a well-developed theoretical tool. A finite hexagonal lattice is used to express uniformly distri...

  1. Probing Lipid Bilayers under Ionic Imbalance.

    Science.gov (United States)

    Lin, Jiaqi; Alexander-Katz, Alfredo

    2016-12-06

    Biological membranes are normally under a resting transmembrane potential (TMP), which originates from the ionic imbalance between extracellular fluids and cytosols, and serves as electric power storage for cells. In cell electroporation, the ionic imbalance builds up a high TMP, resulting in the poration of cell membranes. However, the relationship between ionic imbalance and TMP is not clearly understood, and little is known about the effect of ionic imbalance on the structure and dynamics of biological membranes. In this study, we used coarse-grained molecular dynamics to characterize a dipalmitoylphosphatidylcholine bilayer system under ionic imbalances ranging from 0 to ∼0.06 e charges per lipid (e/Lip). We found that the TMP displayed three distinct regimes: 1) a linear regime between 0 and 0.045 e/Lip, where the TMP increased linearly with ionic imbalance; 2) a yielding regime between ∼0.045 and 0.060 e/Lip, where the TMP displayed a plateau; and 3) a poration regime above ∼0.060 e/Lip, where we observed pore formation within the sampling time (80 ns). We found no structural changes in the linear regime, apart from a nonlinear increase in the area per lipid, whereas in the yielding regime the bilayer exhibited substantial thinning, leading to an excess of water and Na + within the bilayer, as well as significant misalignment of the lipid tails. In the poration regime, lipid molecules diffused slightly faster. We also found that the fluid-to-gel phase transition temperature of the bilayer dropped below the normal value with increased ionic imbalances. Our results show that a high ionic imbalance can substantially alter the essential properties of the bilayer, making the bilayer more fluid like, or conversely, depolarization of a cell could in principle lead to membrane stiffening. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  2. Novel high pressure hexagonal OsB{sub 2} by mechanochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin; Graule, Moritz [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Andrew Payzant, E. [Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831 (United States); Cullen, David A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Blair, Richard G. [Department of Chemistry, University of Central Florida, Orlando, FL 32816 (United States)

    2014-07-01

    Hexagonal OsB{sub 2}, a theoretically predicted high-pressure phase, has been synthesized for the first time by a mechanochemical method, i.e., high energy ball milling. X-ray diffraction indicated that formation of hexagonal OsB{sub 2} begins after 2.5 h of milling, and the reaction reaches equilibrium after 18 h of milling. Rietveld refinement of the powder data indicated that hexagonal OsB{sub 2} crystallizes in the P63/mmc space group (No. 194) with lattice parameters of a=2.916 Å and c=7.376 Å. Transmission electron microscopy confirmed the appearance of the hexagonal OsB{sub 2} phase after high energy ball milling. in situ X-ray diffraction experiments showed that the phase is stable from −225 °C to 1050 °C. The hexagonal OsB{sub 2} powder was annealed at 1050 °C for 6 days in vacuo to improve crystallinity and remove strain induced during the mechanochemical synthesis. The structure partially converted to the orthorhombic phase (20 wt%) after fast current assisted sintering of hexagonal OsB{sub 2} at 1500 °C for 5 min. Mechanochemical approaches to the synthesis of hard boride materials allow new phases to be produced that cannot be prepared using conventional methods. - Graphical abstract: High resolution transmission electron micrograph of hexagonal OsB{sub 2} nanocrystallite with corresponding fast Fourier transform and simulated diffraction pattern. - Highlights: • Hexagonal OsB{sub 2} has been synthesized for the first time by mechanochemical method. • Hexagonal OsB{sub 2} crystallizes in P63/mmc space group (No. 194), a=2.916 Å and c=7.376 Å. • The hexagonal structure was confirmed by a transmission electron microscope. • No phase transformation was observed after being annealed at 1050 °C for 6 days. • 20 wt% of h-OsB{sub 2} was transformed to o-OsB{sub 2} after being sintered at 1500 °C for 5 min.

  3. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe.

    Science.gov (United States)

    Parker, David S

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large T c value is unlikely.

  4. Bilayer graphene: gap tunability and edge properties

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Santos, J M B Lopes dos; Peres, N M R; Guinea, F; Castro Neto, A H

    2008-01-01

    Bilayer graphene - two coupled single graphene layers stacked as in graphite - provides the only known semiconductor with a gap that can be tuned externally through electric field effect. Here we use a tight binding approach to study how the gap changes with the applied electric field. Within a parallel plate capacitor model and taking into account screening of the external field, we describe real back gated and/or chemically doped bilayer devices. We show that a gap between zero and midinfrared energies can be induced and externally tuned in these devices, making bilayer graphene very appealing from the point of view of applications. However, applications to nanotechnology require careful treatment of the effect of sample boundaries. This being particularly true in graphene, where the presence of edge states at zero energy - the Fermi level of the undoped system - has been extensively reported. Here we show that also bilayer graphene supports surface states localized at zigzag edges. The presence of two layers, however, allows for a new type of edge state which shows an enhanced penetration into the bulk and gives rise to band crossing phenomenon inside the gap of the biased bilayer system.

  5. Effects of carotenoids on lipid bilayers.

    Science.gov (United States)

    Johnson, Quentin R; Mostofian, Barmak; Fuente Gomez, Gabriel; Smith, Jeremy C; Cheng, Xiaolin

    2018-01-31

    Carotenoids have been found to be important in improving the integrity of biomembranes in eukaryotes. However, the molecular details of how carotenoids modulate the physical properties of biomembranes are unknown. To this end, we have conducted a series of molecular dynamics simulations of different biologically-relevant membranes in the presence of carotenoids. The carotenoid effect on the membrane was found to be specific to the identity of the carotenoid and the composition of the membrane itself. Therefore, different classes of carotenoids produce a different effect on the membrane, and different membrane phases are affected differently by carotenoids. It is apparent from our data that carotenoids do trigger the bilayer to become thinner. The mechanism by which this occurs depends on two competing factors, the ability of the lipid tails of opposing monolayers to either (1) compress or (2) interdigitate as the bilayer condenses. Indeed, carotenoids directly influence the physical properties via these two mechanisms, thus compacting the bilayer. However, the degree to which these competing mechanisms are utilized depends on the bilayer phase and the carotenoid identity.

  6. Computer Simulations of Lipid Bilayers and Proteins

    DEFF Research Database (Denmark)

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  7. Inserting Stress Analysis of Combined Hexagonal Aluminum Honeycombs

    Directory of Open Access Journals (Sweden)

    Xiangcheng Li

    2016-01-01

    Full Text Available Two kinds of hexagonal aluminum honeycombs are tested to study their out-of-plane crushing behavior. In the tests, honeycomb samples, including single hexagonal aluminum honeycomb (SHAH samples and two stack-up combined hexagonal aluminum honeycombs (CHAH samples, are compressed at a fixed quasistatic loading rate. The results show that the inserting process of CHAH can erase the initial peak stress that occurred in SHAH. Meanwhile, energy-absorbing property of combined honeycomb samples is more beneficial than the one of single honeycomb sample with the same thickness if the two types of honeycomb samples are completely crushed. Then, the applicability of the existing theoretical model for single hexagonal honeycomb is discussed, and an area equivalent method is proposed to calculate the crushing stress for nearly regular hexagonal honeycombs. Furthermore, a semiempirical formula is proposed to calculate the inserting plateau stress of two stack-up CHAH, in which structural parameters and mechanics properties of base material are concerned. The results show that the predicted stresses of three kinds of two stack-up combined honeycombs are in good agreement with the experimental data. Based on this study, stress-displacement curve of aluminum honeycombs can be designed in detail, which is very beneficial to optimize the energy-absorbing structures in engineering fields.

  8. Hemoglobin Variants: Biochemical Properties and Clinical Correlates

    Science.gov (United States)

    Thom, Christopher S.; Dickson, Claire F.; Gell, David A.; Weiss, Mitchell J.

    2013-01-01

    Diseases affecting hemoglobin synthesis and function are extremely common worldwide. More than 1000 naturally occurring human hemoglobin variants with single amino acid substitutions throughout the molecule have been discovered, mainly through their clinical and/or laboratory manifestations. These variants alter hemoglobin structure and biochemical properties with physiological effects ranging from insignificant to severe. Studies of these mutations in patients and in the laboratory have produced a wealth of information on hemoglobin biochemistry and biology with significant implications for hematology practice. More generally, landmark studies of hemoglobin performed over the past 60 years have established important paradigms for the disciplines of structural biology, genetics, biochemistry, and medicine. Here we review the major classes of hemoglobin variants, emphasizing general concepts and illustrative examples. PMID:23388674

  9. Epitaxial hexagonal materials on IBAD-textured substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matias, Vladimir; Yung, Christopher

    2017-08-15

    A multilayer structure including a hexagonal epitaxial layer, such as GaN or other group III-nitride (III-N) semiconductors, a <111> oriented textured layer, and a non-single crystal substrate, and methods for making the same. The textured layer has a crystalline alignment preferably formed by the ion-beam assisted deposition (IBAD) texturing process and can be biaxially aligned. The in-plane crystalline texture of the textured layer is sufficiently low to allow growth of high quality hexagonal material, but can still be significantly greater than the required in-plane crystalline texture of the hexagonal material. The IBAD process enables low-cost, large-area, flexible metal foil substrates to be used as potential alternatives to single-crystal sapphire and silicon for manufacture of electronic devices, enabling scaled-up roll-to-roll, sheet-to-sheet, or similar fabrication processes to be used. The user is able to choose a substrate for its mechanical and thermal properties, such as how well its coefficient of thermal expansion matches that of the hexagonal epitaxial layer, while choosing a textured layer that more closely lattice matches that layer.

  10. High affinity hemoglobin and Parkinson's disease.

    Science.gov (United States)

    Graham, Jeffrey; Hobson, Douglas; Ponnampalam, Arjuna

    2014-12-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra (SN) region of the midbrain. Oxidative damage in this region has been shown to play an important role in the pathogenesis of this disease. Human neurons have been discovered to contain hemoglobin, with an increased concentration seen in the neurons of the SN. High affinity hemoglobin is a clinical entity resulting from mutations that create a functional increase in the binding of hemoglobin to oxygen and an inability to efficiently unload it to tissues. This can result in a number of metabolic compensatory changes, including an elevation in circulating hemoglobin and an increase in the molecule 2,3-diphosphoglycerate (2,3-DPG). Population based studies have revealed that patients with PD have elevated hemoglobin as well as 2,3-DPG levels. Based on these observations, we hypothesize that the oxidative damage seen in PD is related to an underlying high affinity hemoglobin subtype. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Observation of undulation motion of lipid bilayers by neutron spin echo

    International Nuclear Information System (INIS)

    Yamada, Norifumi L.; Seto, Hideki; Hishida, Mafumi

    2010-01-01

    Aqueous solutions of synthesized phospholipids have been well investigated as model biomembranes. These lipids usually self-assemble into regular stacks of bilayers with a characteristic repeat distance on the order of nm, whereas real biomembrane exist as single bilayers. The key phenomenon in understanding the formation of single isolated bilayers in 'unbinding' of lipid bilayers, in which the inter-bilayer distance of lipid bilayers diverges by the steric interaction due to the membrane undulation. In this paper, we show some results of neutron spin-echo (NSE) experiments to investigate the effect of the steric interaction on unbinding and related phenomena. (author)

  12. Controllable synthesis of hexagonal ZnO–carbon core–shell microrods and the removal of ZnO to form hexagonal carbon microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yong, E-mail: xy91007@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); He, Wenqi; Gao, Chuang [Department of Chemistry and Institute of Nanochemistry, Jinan University, Guangzhou 510632 (China); Zheng, Mingtao; Lie, Bingfu; Liu, Xiaotang [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China); Liu, Yingliang, E-mail: tliuyl@163.com [Department of Applied Chemistry, South China Agricultural University, Guangzhou 510642 (China)

    2013-06-15

    A simple and efficient approach was developed to produce regular and uniform shaped hexagonal ZnO–C core–shell micro-rods and carbon micro-tubes. A single-source raw material, zinc acetate dihydrate, has been used for the in situ generation of the hexagonal ZnO–C micro-rods in a sealed autoclave system at 500 °C for 12 h without a catalyst. The resulting products were characterized by X-ray powder diffraction, scanning and transmission electron microscopy, energy-dispersive X-ray analysis and room-temperature photoluminescence spectroscopy (PL). The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. Impacting factors including thermolysis temperature, time and dose of the reactant on the evolution of the hexagonal shape were investigated. A possible formation diagram for the materials has been proposed and discussed based on the features of the reaction system. - Highlights: • Hexagonal ZnO–C core–shell microrods were synthesized by the lower temperature decomposition of zinc acetate. • The novel hexagonal carbon microtubes can gain by simply handling with dilute acid. • The partial or complete carbon coating on the ZnO surfaces plays an important role in modifying the PL properties. • A possible formation diagram for the materials has been proposed.

  13. Simulation studies of protein-induced bilayer deformations, and lipid-induced protein tilting, on a mesoscopic model for lipid bilayers with embedded proteins

    DEFF Research Database (Denmark)

    Venturoli, M.; Smit, B.; Sperotto, Maria Maddalena

    2005-01-01

    membranes. Here we present a mesoscopic model for lipid bilayers with embedded proteins, which we have studied with the help of the dissipative particle dynamics simulation technique. Because hydrophobic matching is believed to be one of the main physical mechanisms regulating lipid-protein interactions......-induced protein tilt, with the hydrophobic mismatch ( positive and negative) between the protein hydrophobic length and the pure lipid bilayer hydrophobic thickness. The protein-induced bilayer perturbation was quantified in terms of a coherence length, xi(P), of the lipid bilayer hydrophobic thickness pro. le...... for positive values of mismatch; a dependence on the protein size appears as well. In the case of large model proteins experiencing extreme mismatch conditions, in the region next to the so-called lipid annulus, there appears an undershooting ( or overshooting) region where the bilayer hydrophobic thickness...

  14. Characteristic emission in glutaraldehyde polymerized hemoglobin

    International Nuclear Information System (INIS)

    Ma Li; Wang Xiaojun

    2011-01-01

    Hemoglobin with different modifications has been investigated using spectroscopic techniques. A new emission at around 371 nm has been observed under excitation of 305 nm from glutaraldehyde polymerized human hemoglobin. Intensity and peak position of the emission are dependent on both oxidation state and ligand environment and the emission has been identified from the hemoglobin oligomer.

  15. Characterization of the secondary flow in hexagonal ducts

    Science.gov (United States)

    Marin, O.; Vinuesa, R.; Obabko, A. V.; Schlatter, P.

    2016-12-01

    In this work we report the results of DNSs and LESs of the turbulent flow through hexagonal ducts at friction Reynolds numbers based on centerplane wall shear and duct half-height Reτ,c ≃ 180, 360, and 550. The evolution of the Fanning friction factor f with Re is in very good agreement with experimental measurements. A significant disagreement between the DNS and previous RANS simulations was found in the prediction of the in-plane velocity, and is explained through the inability of the RANS model to properly reproduce the secondary flow present in the hexagon. The kinetic energy of the secondary flow integrated over the cross-sectional area yz decreases with Re in the hexagon, whereas it remains constant with Re in square ducts at comparable Reynolds numbers. Close connection between the values of Reynolds stress u w ¯ on the horizontal wall close to the corner and the interaction of bursting events between the horizontal and inclined walls is found. This interaction leads to the formation of the secondary flow, and is less frequent in the hexagon as Re increases due to the 120∘ aperture of its vertex, whereas in the square duct the 90∘ corner leads to the same level of interaction with increasing Re. Analysis of turbulence statistics at the centerplane and the azimuthal variance of the mean flow and the fluctuations shows a close connection between hexagonal ducts and pipe flows, since the hexagon exhibits near-axisymmetric conditions up to a distance of around 0.15DH measured from its center. Spanwise distributions of wall-shear stress show that in square ducts the 90∘ corner sets the location of a high-speed streak at a distance zv+≃50 from it, whereas in hexagons the 120∘ aperture leads to a shorter distance of zv+≃38 . At these locations the root mean square of the wall-shear stresses exhibits an inflection point, which further shows the connections between the near-wall structures and the large-scale motions in the outer flow.

  16. Strong 3D and 1D magnetism in hexagonal Fe-chalcogenides FeS and FeSe vs. weak magnetism in hexagonal FeTe

    Energy Technology Data Exchange (ETDEWEB)

    Parker, David S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-06-13

    We present a comparative theoretical study of the hexagonal forms of the Fe-chalcogenides FeS, FeSe and FeTe with their better known tetragonal forms. While the tetragonal forms exhibit only an incipient antiferromagnetism and experimentally show superconductivity when doped, the hexagonal forms of FeS and FeSe display a robust magnetism. We show that this strong magnetism arises from a van Hove singularity associated with the direct Fe-Fe c-axis chains in the generally more three-dimensional NiAs structure. We also find that hexagonal FeTe is much less magnetic than the other two hexagonal materials, so that unconventional magnetically-mediated superconductivity is possible, although a large Tc value is unlikely.

  17. Radio-ligand immunoassay for human hemoglobin variants

    International Nuclear Information System (INIS)

    Javid, J.; Pettis, P.K.; Miller, J.E.

    1981-01-01

    A quantitative method is described for the individual assay of human hemoglobin variants occurring singly or in mixture. The hemoglobin to be assayed is bound to specific antibody; the immune complex is attached to protein A-containing S. aureus and removed from the mixture. The hemoglobin thus isolated is quantified by its ability to bind radiolabeled haptoglobin. The technique is accurate and distinguishes among the 4 hemoglobins tested, namely Hb A, S, C and F. It has the advantage over conventional radioimmunoassay that a single probe, radiolabeled haptoglobin, is needed for the specific assay of any hemoglobin. (Auth.)

  18. Crystallization and preliminary x-ray crystallography data of the dimer of tetramer s (abcd)2 of extracellular hemoglobin from Glossoscolex paulistus in cyano met form

    International Nuclear Information System (INIS)

    Ferreira, Frederico M.; Oliveira, Paulo S.L. de; Oliva, Glaucius

    1996-01-01

    Full text. The extracellular hemoglobin from Glossoscolex paulistus has a molecular weight near to 3.1 x 10 6 Da and a structure organized in a double-layered hexagonal oligomer. The tertiary complex of dimer of tetramers (abcd) 2 was obtained by chromography in Sephadex G-200, in pH 9.0, as a result of alkaline dissociation. Aiming to obtain a better understanding of the oligomeric structure and specially for the inter subunit interactions the extracellular hemoglobins, we have obtained crystals of dimer of tetramers (abcd) 2 of hemoglobin from Glossoscolex and we are studying the in behavior in different conditions of precipitants and pH's. Our goal is to solve the crystal structure in order to characterize, at atomic level, the subunits contacts, heme environment and differences in residues involved in oxygenation in order to understand in this hemoglobin. The crystallization experiments the protein concentration in the cyanomet form was about 10 mg/ml and the experiments were carried out at 18 0 C. The optimal crystallization condition achieved from factorial assays was 10% (w/v). Polyethylene glycol (PEG) 8,000 and 8%(v/v) ethylene glycol in 100 mM HEPES pH 7.5. The optimization of this condition was carried out with the variation of PEG concentrations from 6% up to 10% (by 1% step) and pH between 7.0 and 8.0. A quite critical p-H-dependence has been observed on crystal nucleation, decreasing from pH 7.0, in which the number of microcrystals in higher, up to pH 8.0, in which crystals did not appear even at higher PEG 8,000 (10% w/v). As several structures of hemoglobin from different sources (vertebrate and invertebrates) are available, we hope to solve their structure of hemoglobin from Glossoscolex paulistus by Molecular Replacement, even though the tetramer organization may be different in the earthworm as compared related to other known tetrameric hemoglobin structures. (author)

  19. Oxygen Measurements in Liposome Encapsulated Hemoglobin

    Science.gov (United States)

    Phiri, Joshua Benjamin

    Liposome encapsulated hemoglobins (LEH's) are of current interest as blood substitutes. An analytical methodology for rapid non-invasive measurements of oxygen in artificial oxygen carriers is examined. High resolution optical absorption spectra are calculated by means of a one dimensional diffusion approximation. The encapsulated hemoglobin is prepared from fresh defibrinated bovine blood. Liposomes are prepared from hydrogenated soy phosphatidylcholine (HSPC), cholesterol and dicetylphosphate using a bath sonication method. An integrating sphere spectrophotometer is employed for diffuse optics measurements. Data is collected using an automated data acquisition system employing lock-in -amplifiers. The concentrations of hemoglobin derivatives are evaluated from the corresponding extinction coefficients using a numerical technique of singular value decomposition, and verification of the results is done using Monte Carlo simulations. In situ measurements are required for the determination of hemoglobin derivatives because most encapsulation methods invariably lead to the formation of methemoglobin, a nonfunctional form of hemoglobin. The methods employed in this work lead to high resolution absorption spectra of oxyhemoglobin and other derivatives in red blood cells and liposome encapsulated hemoglobin (LEH). The analysis using singular value decomposition method offers a quantitative means of calculating the fractions of oxyhemoglobin and other hemoglobin derivatives in LEH samples. The analytical methods developed in this work will become even more useful when production of LEH as a blood substitute is scaled up to large volumes.

  20. Fragmented state of lipid bilayers in water

    DEFF Research Database (Denmark)

    Helfrich, W.; Thimmel, J.; Klösgen, Beate Maria

    1999-01-01

    The bilayers of some typical biological membrane lipids such as PC and DGDG disintegrate in a large excess of water to form an optically invisible dispersive bilayer phase. `Dark bodies' can be reversibly precipitated from it by raising the temperature. The dispersive phase probably consists...

  1. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes

    Directory of Open Access Journals (Sweden)

    Seyed Ali Mousavi

    2015-01-01

    Full Text Available Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (<150 g/L baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L baseline hemoglobin were compared with those with lower (<138 g/L baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations.

  2. Relationship of Baseline Hemoglobin Level with Serum Ferritin, Postphlebotomy Hemoglobin Changes, and Phlebotomy Requirements among HFE C282Y Homozygotes

    Science.gov (United States)

    Mousavi, Seyed Ali; Mahmood, Faiza; Aandahl, Astrid; Knutsen, Teresa Risopatron; Llohn, Abid Hussain

    2015-01-01

    Objectives. We aimed to examine whether baseline hemoglobin levels in C282Y-homozygous patients are related to the degree of serum ferritin (SF) elevation and whether patients with different baseline hemoglobin have different phlebotomy requirements. Methods. A total of 196 patients (124 males and 72 females) who had undergone therapeutic phlebotomy and had SF and both pre- and posttreatment hemoglobin values were included in the study. Results. Bivariate correlation analysis suggested that baseline SF explains approximately 6 to 7% of the variation in baseline hemoglobin. The results also showed that males who had higher (≥150 g/L) baseline hemoglobin levels had a significantly greater reduction in their posttreatment hemoglobin despite requiring fewer phlebotomies to achieve iron depletion than those who had lower (baseline hemoglobin, regardless of whether baseline SF was below or above 1000 µg/L. There were no significant differences between hemoglobin subgroups regarding baseline and treatment characteristics, except for transferrin saturation between male subgroups with SF above 1000 µg/L. Similar differences were observed when females with higher (≥138 g/L) baseline hemoglobin were compared with those with lower (baseline hemoglobin. Conclusion. Dividing C282Y-homozygous patients into just two subgroups according to the degree of baseline SF elevation may obscure important subgroup variations. PMID:26380265

  3. Cluster Formation of Polyphilic Molecules Solvated in a DPPC Bilayer

    Directory of Open Access Journals (Sweden)

    Xiang-Yang Guo

    2017-10-01

    Full Text Available We analyse the initial stages of cluster formation of polyphilic additive molecules which are solvated in a dipalmitoylphosphatidylcholine (DPPC lipid bilayer. Our polyphilic molecules comprise an aromatic (trans-bilayer core domain with (out-of-bilayer glycerol terminations, complemented with a fluorophilic and an alkyl side chain, both of which are confined within the aliphatic segment of the bilayer. Large-scale molecular dynamics simulations (1 μ s total duration of a set of six of such polyphilic additives reveal the initial steps towards supramolecular aggregation induced by the specific philicity properties of the molecules. For our intermediate system size of six polyphiles, the transient but recurrent formation of a trimer is observed on a characteristic timescale of about 100 ns. The alkane/perfluoroalkane side chains show a very distinct conformational distribution inside the bilayer thanks to their different philicity, despite their identical anchoring in the trans-bilayer segment of the polyphile. The diffusive mobility of the polyphilic additives is about the same as that of the surrounding lipids, although it crosses both bilayer leaflets and tends to self-associate.

  4. Self-folding graphene-polymer bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Tao [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Yoon, ChangKyu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Jin, Qianru [Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Li, Mingen [Department of Physics, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Liu, Zewen [Institute of Microelectronics, Tsinghua University, Beijing 100084 (China); Gracias, David H., E-mail: dgracias@jhu.edu [Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-05-18

    In order to incorporate the extraordinary intrinsic thermal, electrical, mechanical, and optical properties of graphene with three dimensional (3D) flexible substrates, we introduce a solvent-driven self-folding approach using graphene-polymer bilayers. A polymer (SU-8) film was spin coated atop chemically vapor deposited graphene films on wafer substrates and graphene-polymer bilayers were patterned with or without metal electrodes using photolithography, thin film deposition, and etching. After patterning, the bilayers were released from the substrates and they self-folded to form fully integrated, curved, and folded structures. In contrast to planar graphene sensors on rigid substrates, we assembled curved and folded sensors that are flexible and they feature smaller form factors due to their 3D geometry and large surface areas due to their multiple rolled architectures. We believe that this approach could be used to assemble a range of high performance 3D electronic and optical devices of relevance to sensing, diagnostics, wearables, and energy harvesting.

  5. A review of variant hemoglobins interfering with hemoglobin A1c measurement.

    Science.gov (United States)

    Little, Randie R; Roberts, William L

    2009-05-01

    Hemoglobin A1c (HbA1c) is used routinely to monitor long-term glycemic control in people with diabetes mellitus, as HbA1c is related directly to risks for diabetic complications. The accuracy of HbA1c methods can be affected adversely by the presence of hemoglobin (Hb) variants or elevated levels of fetal hemoglobin (HbF). The effect of each variant or elevated HbF must be examined with each specific method. The most common Hb variants worldwide are HbS, HbE, HbC, and HbD. All of these Hb variants have single amino acid substitutions in the Hb beta chain. HbF is the major hemoglobin during intrauterine life; by the end of the first year, HbF falls to values close to adult levels of approximately 1%. However, elevated HbF levels can occur in certain pathologic conditions or with hereditary persistence of fetal hemoglobin. In a series of publications over the past several years, the effects of these four most common Hb variants and elevated HbF have been described. There are clinically significant interferences with some methods for each of these variants. A summary is given showing which methods are affected by the presence of the heterozygous variants S, E, C, and D and elevated HbF. Methods are divided by type (immunoassay, ion-exchange high-performance liquid chromatography, boronate affinity, other) with an indication of whether the result is artificially increased or decreased by the presence of a Hb variant. Laboratorians should be aware of the limitations of their method with respect to these interferences. 2009 Diabetes Technology Society.

  6. Characterization of the transverse relaxation rates in lipid bilayers

    International Nuclear Information System (INIS)

    Watnick, P.I.; Dea, P.; Chan, S.I.

    1990-01-01

    The 2H NMR transverse relaxation rates of a deuterated phospholipid bilayer reflect slow motions in the bilayer membrane. A study of dimyristoyl lecithin specifically deuterated at several positions of the hydrocarbon chains indicates that these motions are cooperative and are confined to the hydrocarbon chains of the lipid bilayer. However, lipid head group interactions do play an important role in modulating the properties of the cooperative fluctuations of the hydrocarbon chains (director fluctuations), as evidenced by the effects of various lipid additives on the 2H NMR transverse relaxation rates of the dimyristoyl lecithin bilayer

  7. DNA nanotechnology: Bringing lipid bilayers into shape

    Science.gov (United States)

    Howorka, Stefan

    2017-07-01

    Lipid bilayers form the thin and floppy membranes that define the boundary of compartments such as cells. Now, a method to control the shape and size of bilayers using DNA nanoscaffolds has been developed. Such designer materials advance synthetic biology and could find use in membrane research.

  8. Glider-based computing in reaction-diffusion hexagonal cellular automata

    International Nuclear Information System (INIS)

    Adamatzky, Andrew; Wuensche, Andrew; De Lacy Costello, Benjamin

    2006-01-01

    A three-state hexagonal cellular automaton, discovered in [Wuensche A. Glider dynamics in 3-value hexagonal cellular automata: the beehive rule. Int J Unconvention Comput, in press], presents a conceptual discrete model of a reaction-diffusion system with inhibitor and activator reagents. The automaton model of reaction-diffusion exhibits mobile localized patterns (gliders) in its space-time dynamics. We show how to implement the basic computational operations with these mobile localizations, and thus demonstrate collision-based logical universality of the hexagonal reaction-diffusion cellular automaton

  9. Intra- and inter-layer charge redistribution in biased bilayer graphene

    Directory of Open Access Journals (Sweden)

    Rui-Ning Wang

    2016-03-01

    Full Text Available We investigate the spatial redistribution of the electron density in bilayer graphene in the presence of an interlayer bias within density functional theory. It is found that the interlayer charge redistribution is inhomogeneous between the upper and bottom layers and the transferred charge from the upper layer to the bottom layer linearly increases with the external voltage which further makes the gap at K point linearly increase. However, the band gap will saturate to 0.29 eV in the strong-field regime, but it displays a linear field dependence at the weak-field limit. Due to the AB-stacked way, two carbon atoms per unit cell in the same layer are different and there is also a charge transfer between them, making the widths of π valence bands reduced. In the bottom layer, the charge transfers from the direct atoms which directly face another carbon atom to the indirect atoms facing the center of the hexagon on the opposite layer, while the charge transfers from the indirect atoms to the direct atoms in the upper layer. Furthermore, there is a diploe between the upper and bottom layers which results in the reduction of the interlayer hopping interaction.

  10. Regulation of membrane protein function by lipid bilayer elasticity-a single molecule technology to measure the bilayer properties experienced by an embedded protein

    International Nuclear Information System (INIS)

    Lundbaek, Jens August

    2006-01-01

    Membrane protein function is generally regulated by the molecular composition of the host lipid bilayer. The underlying mechanisms have long remained enigmatic. Some cases involve specific molecular interactions, but very often lipids and other amphiphiles, which are adsorbed to lipid bilayers, regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes, in the general regulation of membrane protein function, is unclear. This is to a large extent due to lack of a generally accepted framework in which to understand the many observations. The present review summarizes studies which have demonstrated that the hydrophobic interactions between a membrane protein and the host lipid bilayer provide an energetic coupling, whereby protein function can be regulated by the bilayer elasticity. The feasibility of this 'hydrophobic coupling mechanism' has been demonstrated using the gramicidin channel, a model membrane protein, in planar lipid bilayers. Using voltage-dependent sodium channels, N-type calcium channels and GABA A receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established

  11. Characterization of hemoglobin-benzo[a]pyrene adducts

    International Nuclear Information System (INIS)

    Haugen, D.A.; Myers, S.R.

    1987-01-01

    Cultures of Syrian hamster embryo (SHE) cells were supplemented with human Hb (0.2 mM heme) and [ 3 H]BP (1 μM). After a 24-h incubation, the medium was removed and subjected to cation-exchange liquid chromatography (CM-Sepharose) to resolve hemoglobins from serum proteins in the medium. The BP-treated Hb was subjected to analysis in each of three column chromatographic systems established for isolation and characterization of human hemoglobin and its genetic and post-translationally modified variants. Results demonstrate that hemoglobin-carcinogen adducts can be resolved from native hemoglobin by established conventional and high-performance liquid chromatographic procedures, suggesting the basis for development of general approaches for isolating and characterizing hemoglobin-carcinogen adducts. The results also suggest the basis for a model system in which adducts between carcinogens and human hemoglobin are formed in cultures of mammalian cells or tissues

  12. Fabrication of Li-intercalated bilayer graphene

    Directory of Open Access Journals (Sweden)

    K. Sugawara

    2011-06-01

    Full Text Available We have succeeded in fabricating Li-intercalated bilayer graphene on silicon carbide. The low-energy electron diffraction from Li-deposited bilayer graphene shows a sharp 3×3R30° pattern in contrast to Li-deposited monolayer graphene. This indicates that Li atoms are intercalated between two adjacent graphene layers and take the same well-ordered superstructure as in bulk C6Li. The angle-resolved photoemission spectroscopy has revealed that Li atoms are fully ionized and the π bands of graphene are systematically folded by the superstructure of intercalated Li atoms, producing a snowflake-like Fermi surface centered at the Γ point. The present result suggests a high potential of Li-intercalated bilayer graphene for application to a nano-scale Li-ion battery.

  13. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping

    2015-12-22

    Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires (NWs) is demonstrated on InN NWs. In-polarity InN NWs form typical hexagonal structure with pyramidal growth front, whereas N-polarity InN NWs slowly turn to the shape of hexagonal pyramid and then convert to an inverted pyramid growth, forming diagonal pyramids with flat surfaces and finally coalescence with each other. This contrary growth behavior driven by lattice-polarity is most likely due to the relatively lower growth rate of the (0001 ̅) plane, which results from the fact that the diffusion barriers of In and N adatoms on the (0001) plane (0.18 and 1.0 eV, respectively) are about two-fold larger in magnitude than those on the (0001 ̅) plane (0.07 and 0.52 eV), as calculated by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  14. Electronic transport of bilayer graphene with asymmetry line defects

    International Nuclear Information System (INIS)

    Zhao Xiao-Ming; Chen Chan; Liang Ying; Kou Su-Peng; Wu Ya-Jie

    2016-01-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer–Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. (paper)

  15. Lipid Bilayer Formation on Organic Electronic Materials

    KAUST Repository

    Zhang, Yi

    2018-04-23

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular recognition. Monitoring the quality and function of lipid bilayers is thus essential and can be performed using electrically active substrates that allow for transduction of signals. Such a promising electronic transducer material is the conducting polymer poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) (PEDOT:PSS) which has provided a plethora of novel bio transducing architectures. The challenge is however in assembling a bilayer on the conducting polymer surface, which is defect-free and has high mobility. Herein, we investigate the fusion of zwitterionic vesicles on a variety of PEDOT:PSS films, but also on an electron transporting, negatively charged organic semiconductor, in order to understand the surface properties that trigger vesicle fusion. The PEDOT:PSS films are prepared from dispersions containing different concentrations of ethylene glycol included as a formulation additive, which gives a handle to modulate surface physicochemical properties without a compromise on the chemical composition. The strong correlation between the polarity of the surface, the fusion of vesicles and the mobility of the resulting bilayer aides extracting design principles for the development of future conducting polymers that will enable the formation of lipid bilayers.

  16. MR Imaging-derived Oxygen-Hemoglobin Dissociation Curves and Fetal-Placental Oxygen-Hemoglobin Affinities.

    Science.gov (United States)

    Avni, Reut; Golani, Ofra; Akselrod-Ballin, Ayelet; Cohen, Yonni; Biton, Inbal; Garbow, Joel R; Neeman, Michal

    2016-07-01

    Purpose To generate magnetic resonance (MR) imaging-derived, oxygen-hemoglobin dissociation curves and to map fetal-placental oxygen-hemoglobin affinity in pregnant mice noninvasively by combining blood oxygen level-dependent (BOLD) T2* and oxygen-weighted T1 contrast mechanisms under different respiration challenges. Materials and Methods All procedures were approved by the Weizmann Institutional Animal Care and Use Committee. Pregnant mice were analyzed with MR imaging at 9.4 T on embryonic days 14.5 (eight dams and 58 fetuses; imprinting control region ICR strain) and 17.5 (21 dams and 158 fetuses) under respiration challenges ranging from hyperoxia to hypoxia (10 levels of oxygenation, 100%-10%; total imaging time, 100 minutes). A shorter protocol with normoxia to hyperoxia was also performed (five levels of oxygenation, 20%-100%; total imaging time, 60 minutes). Fast spin-echo anatomic images were obtained, followed by sequential acquisition of three-dimensional gradient-echo T2*- and T1-weighted images. Automated registration was applied to align regions of interest of the entire placenta, fetal liver, and maternal liver. Results were compared by using a two-tailed unpaired Student t test. R1 and R2* values were derived for each tissue. MR imaging-based oxygen-hemoglobin dissociation curves were constructed by nonlinear least square fitting of 1 minus the change in R2*divided by R2*at baseline as a function of R1 to a sigmoid-shaped curve. The apparent P50 (oxygen tension at which hemoglobin is 50% saturated) value was derived from the curves, calculated as the R1 scaled value (x) at which the change in R2* divided by R2*at baseline scaled (y) equals 0.5. Results The apparent P50 values were significantly lower in fetal liver than in maternal liver for both gestation stages (day 14.5: 21% ± 5 [P = .04] and day 17.5: 41% ± 7 [P hemoglobin dissociation curves with a shorter protocol that excluded the hypoxic periods was demonstrated. Conclusion MR imaging

  17. In situ atomic force microscope imaging of supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Ipsen, John Hjorth

    2001-01-01

    In situ AFM images of phospholipase A/sub 2/ (PLA/sub 2/) hydrolysis of mica-supported one- and two-component lipid bilayers are presented. For one-component DPPC bilayers an enhanced enzymatic activity is observed towards preexisting defects in the bilayer. Phase separation is observed in two-co...

  18. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    Energy Technology Data Exchange (ETDEWEB)

    Popp, R A; Stratton, L P; Hawley, D K; Effron, K [Oak Ridge National Lab., TN (USA)

    1979-01-15

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F/sub 1/ offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of ..cap alpha..-chains normally found in all SEC mice. The deficient ..cap alpha..-chain synthesis caused these mice to exhibit an ..cap alpha..-thalassemia similar to human ..cap alpha..-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with ..cap alpha..-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining ..beta..-chain structure) produced twice as much SEC as 101 ..beta..-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC ..beta..-chain gene.

  19. Hemoglobin of mice with radiation-induced mutations at the hemoglobin loci

    International Nuclear Information System (INIS)

    Popp, R.A.; Stratton, L.P.; Hawley, D.K.; Effron, K.

    1979-01-01

    Chemical analyses were done on the abnormal hemoglobins of the five (101 x SEC)F 1 offspring of X- irradiated adult SEC mice to determine which hemoglobin genes were expressed in each hemoglobin variant. Three offspring of irradiated SEC males did not express either of the two kinds of α-chains normally found in all SEC mice. The deficient α-chain synthesis caused these mice to exhibit an α-thalassemia similar to human α-thalassemia. Scanning electron microscopy was used to show that many erythrocytes of mice with α-thalassemia have bizarre shapes; e.g. many erythrocytes appeared flattened or had thorny projections (acanthocytes). One mutant with a tandem duplication of a segment of chromosome 7 (site of locus determining β-chain structure) produced twice as much SEC as 101 β-chain polypeptides. One mutant that probably arose by non-disjunction of chromosome 7's in its unirradiated 101 mother and loss of chromosome 7 from the gamete of its irradiated SEC father did not express the SEC β-chain gene. (author)

  20. Anomalous conductivity noise in gapped bilayer graphene heterostructure

    Science.gov (United States)

    Aamir, Mohammed Ali; Karnatak, Paritosh; Sai, T. Phanindra; Ghosh, Arindam

    Bilayer graphene has unique electronic properties - it has a tunable band gap and also, valley symmetry and pseudospin degree of freedom like its single layer counterpart. In this work, we present a study of conductance fluctuations in dual gated bilayer graphene heterostructures by varying the Fermi energy and the band gap independently. At a fixed band gap, we find that the conductance fluctuations obtained by Fermi energy ensemble sampling increase rapidly as the Fermi energy is tuned to charge neutrality point (CNP) whereas the time-dependent conductance fluctuations diminish rapidly. This discrepancy is completely absent at higher number densities, where the transport is expected to be through the 2D bulk of the bilayer system. This observation indicates that near the CNP, electrical transport is highly sensitive to Fermi energy, but becomes progressively immune to time-varying disorder. A possible explanation may involve transport via edge states which becomes the dominant conduction mechanism when the bilayer graphene is gapped and Fermi energy is situated close to the CNP, thereby causing a dimensional crossover from 2D to 1D transport. Our experiment outlines a possible experimental protocol to probe intrinsic topological states in gapped bilayer graphene.

  1. Bifurcation of self-folded polygonal bilayers

    Science.gov (United States)

    Abdullah, Arif M.; Braun, Paul V.; Hsia, K. Jimmy

    2017-09-01

    Motivated by the self-assembly of natural systems, researchers have investigated the stimulus-responsive curving of thin-shell structures, which is also known as self-folding. Self-folding strategies not only offer possibilities to realize complicated shapes but also promise actuation at small length scales. Biaxial mismatch strain driven self-folding bilayers demonstrate bifurcation of equilibrium shapes (from quasi-axisymmetric doubly curved to approximately singly curved) during their stimulus-responsive morphing behavior. Being a structurally instable, bifurcation could be used to tune the self-folding behavior, and hence, a detailed understanding of this phenomenon is appealing from both fundamental and practical perspectives. In this work, we investigated the bifurcation behavior of self-folding bilayer polygons. For the mechanistic understanding, we developed finite element models of planar bilayers (consisting of a stimulus-responsive and a passive layer of material) that transform into 3D curved configurations. Our experiments with cross-linked Polydimethylsiloxane samples that change shapes in organic solvents confirmed our model predictions. Finally, we explored a design scheme to generate gripper-like architectures by avoiding the bifurcation of stimulus-responsive bilayers. Our research contributes to the broad field of self-assembly as the findings could motivate functional devices across multiple disciplines such as robotics, artificial muscles, therapeutic cargos, and reconfigurable biomedical devices.

  2. Effect of Multiple Mutations in the Hemoglobin- and Hemoglobin-Haptoglobin-Binding Proteins, HgpA, HgpB, and HgpC, of Haemophilus influenzae Type b

    OpenAIRE

    Morton, Daniel J.; Whitby, Paul W.; Jin, Hongfan; Ren, Zhen; Stull, Terrence L.

    1999-01-01

    Haemophilus influenzae requires heme for growth and can utilize hemoglobin and hemoglobin-haptoglobin as heme sources. We previously identified two hemoglobin- and hemoglobin-haptoglobin-binding proteins, HgpA and HgpB, in H. influenzae HI689. Insertional mutation of hgpA and hgpB, either singly or together, did not abrogate the ability to utilize or bind either hemoglobin or the hemoglobin-haptoglobin complex. A hemoglobin affinity purification method was used to isolate a protein of approxi...

  3. Magnetic flux distributions in chiral helimagnet/superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Masaru, E-mail: kato@ms.osakafu-u.ac.jp [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Fukui, Saoto [Department of Mathematical Sciences, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan); Sato, Osamu [Osaka Prefecture University College of Technology, 26-12, Saiwaicho, Neyagawa, Osaka 572-8572 (Japan); Togawa, Yoshihiko [Department of Physics and Electronics, Osaka Prefecture University, 1-1, Gakuencho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2017-02-15

    Highlights: • Vortex states in a chiral helimagnet/superconductor bilayer are investigated. • Vortex and anti-vortex appears depending on strength of helimagnet. • Vortex is elongated under a gradient field. • Vortices form a undulated triangular lattice. - Abstarct: Vortex states in a chiral helimagnet/superconductor bilayer are investigated numerically, using the Ginzburg–Landau equations with the finite element method. In this bilayer, effect of the chiral helimagnet on the superconductor is taken as an external field. Magnetic field distribution can be controlled by an applied field to the bilayer. It is shown that a single vortex in a gradient field is elongated along the field gradient. In zero applied field, there are up- and down vortices which are parallel or antiparallel to the z-axis, respectively. But increasing the applied field, down-vortices disappear and up-vortices form undulated triangular lattices.

  4. Interfacial exciplex formation in bilayers of conjugated polymers

    Science.gov (United States)

    Nobuyasu, R. S.; Araujo, K. A. S.; Cury, L. A.; Jarrosson, T.; Serein-Spirau, F.; Lère-Porte, J.-P.; Dias, F. B.; Monkman, A. P.

    2013-10-01

    The donor-acceptor interactions in sequential bilayer and blend films are investigated. Steady-state and time-resolved photoluminescence (PL) were measured to characterize the samples at different geometries of photoluminescence collection. At standard excitation, with the laser incidence at 45° of the normal direction of the sample surface, a band related to the aggregate states of donor molecules appears for both blend and bilayer at around 540 nm. For the PL spectra acquired from the edge of the bilayer, with the laser incidence made at normal direction of the sample surface (90° geometry), a new featureless band emission, red-shifted from donor and acceptor emission regions was observed and assigned as the emission from interfacial exciplex states. The conformational complexity coming from donor/acceptor interactions at the heterojunction interface of the bilayer is at the origin of this interfacial exciplex emission.

  5. Transport properties in monolayer-bilayer-monolayer graphene planar junctions

    Institute of Scientific and Technical Information of China (English)

    Kai-Long Chu; Zi-Bo Wang; Jiao-Jiao Zhou; Hua Jiang

    2017-01-01

    The transport study of graphene based junctions has become one of the focuses in graphene research.There are two stacking configurations for monolayer-bilayer-monolayer graphene planar junctions.One is the two monolayer graphene contacting the same side of the bilayer graphene,and the other is the two-monolayer graphene contacting the different layers of the bilayer graphene.In this paper,according to the Landauer-Büttiker formula,we study the transport properties of these two configurations.The influences of the local gate potential in each part,the bias potential in bilayer graphene,the disorder and external magnetic field on conductance are obtained.We find the conductances of the two configurations can be manipulated by all of these effects.Especially,one can distinguish the two stacking configurations by introducing the bias potential into the bilayer graphene.The strong disorder and the external magnetic field will make the two stacking configurations indistinguishable in the transport experiment.

  6. Led Astray by Hemoglobin A1c

    Directory of Open Access Journals (Sweden)

    Jean Chen MD

    2016-01-01

    Full Text Available Hemoglobin A1c (A1c is used frequently to diagnose and treat diabetes mellitus. Therefore, it is important be aware of factors that may interfere with the accuracy of A1c measurements. This is a case of a rare hemoglobin variant that falsely elevated a nondiabetic patient’s A1c level and led to a misdiagnosis of diabetes. A 67-year-old male presented to endocrine clinic for further management after he was diagnosed with diabetes based on an elevated A1c of 10.7%, which is approximately equivalent to an average blood glucose of 260 mg/dL. Multiple repeat A1c levels remained >10%, but his home fasting and random glucose monitoring ranged from 92 to 130 mg/dL. Hemoglobin electrophoresis and subsequent genetic analysis diagnosed the patient with hemoglobin Wayne, a rare hemoglobin variant. This variant falsely elevates A1c levels when A1c is measured using cation-exchange high-performance liquid chromatography. When the boronate affinity method was applied instead, the patient’s A1c level was actually 4.7%. Though hemoglobin Wayne is clinically silent, this patient was erroneously diagnosed with diabetes and started on an antiglycemic medication. Due to this misdiagnosis, the patient was at risk of escalation in his “diabetes management” and hypoglycemia. Therefore, it is important that providers are aware of factors that may result in hemoglobin A1c inaccuracy including hemoglobin variants.

  7. DUMA - a program to display distributions in hexagonal geometry

    International Nuclear Information System (INIS)

    Tran Quoc Dung; Makai, M.

    1987-09-01

    DUMA program displays hexagonal structures applied in WWER-440 reactors or one or two distributions in them. It helps users to display either integer, literal or real arrays in an arbitrary hexagonal structure. Possible applications: displaying reactor core layout, power distribution or activity measurements. (author)

  8. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  9. Electrostatic double-layer interaction between stacked charged bilayers

    Science.gov (United States)

    Hishida, Mafumi; Nomura, Yoko; Akiyama, Ryo; Yamamura, Yasuhisa; Saito, Kazuya

    2017-10-01

    The inapplicability of the DLVO theory to multilayered anionic bilayers is found in terms of the co-ion-valence dependence of the lamellar repeat distance. Most of the added salt is expelled from the interlamellar space to the bulk due to the Gibbs-Donnan effect on multiple bilayers with the bulk. The electrostatic double-layer interaction is well expressed by the formula recently proposed by Trefalt. The osmotic pressure due to the expelled ions, rather than the van der Waals interaction, is the main origin of the attractive force between the bilayers.

  10. Loading pattern optimization in hexagonal geometry using PANTHER

    International Nuclear Information System (INIS)

    Parks, G.T.; Knight, M.P.

    1996-01-01

    The extension of the loading pattern optimization capability of Nuclear Electric's reactor physics code PANTHER to hexagonal geometry cores is described. The variety of search methods available and the code's performance are illustrated by an example in which three search different methods are used in turn in order to find an optimal reload design for a sample hexagonal geometry problem. (author)

  11. Moessbauer study of hemoglobin of diabetes

    International Nuclear Information System (INIS)

    Li Aiguo; Ni Xinbo; Cai Yingwen; Zhang Guilin; Zhang Hongde; Ge Yongxin

    2000-01-01

    The hemoglobins from normal adults (Gly-Hb 5%), people infected with diabetes (Gly-Hb 10%) and serious diabetics (Gly-Hb 15%) were investigated by Moessbauer spectroscopy at liquid nitrogen temperature. All the experimental spectra of hemoglobin are composed of three doublets corresponding to oxy-hemoglobin (Oxy-Hb), deoxy-hemoglobin (Deoxy-Hb) and low-spin hemo-chrome (Ls-Hemo) respectively. It is found that Oxy-Hb is decreasing but Deoxy-hb increasing for diabetes. Experimental results also indicate that the line-width of Moessbauer spectra of Oxy-Hb for diabetics is narrower than that for normal adults, showing that while Fe on Oxy-Hb exists in pile-up of some similar states for normal adults, but it becomes in single state for serious diabetes

  12. Two-photon excited fluorescence emission from hemoglobin

    Science.gov (United States)

    Sun, Qiqi; Zeng, Yan; Zhang, Wei; Zheng, Wei; Luo, Yi; Qu, Jianan Y.

    2015-03-01

    Hemoglobin, one of the most important proteins in blood, is responsible for oxygen transportation in almost all vertebrates. Recently, we discovered two-photon excited hemoglobin fluorescence and achieved label-free microvascular imaging based on the hemoglobin fluorescence. However, the mechanism of its fluorescence emission still remains unknown. In this work, we studied the two-photon excited fluorescence properties of the hemoglobin subunits, heme/hemin (iron (II)/(III) protoporphyrin IX) and globin. We first studied the properties of heme and the similar spectral and temporal characteristics of heme and hemoglobin fluorescence provide strong evidence that heme is the fluorophore in hemoglobin. Then we studied the fluorescence properties of hemin, globin and methemoglobin, and found that the hemin may have the main effect on the methemoglobin fluorescence and that globin has tryptophan fluorescence like other proteins. Finally, since heme is a centrosymmetric molecule, that the Soret band fluorescence of heme and hemoglobin was not observed in the single photon process in the previous study may be due to the parity selection rule. The discovery of heme two-photon excited fluorescence may open a new window for heme biology research, since heme as a cofactor of hemoprotein has many functions, including chemical catalysis, electron transfer and diatomic gases transportation.

  13. Magnetically assisted bilayer composites for soft bending actuators

    NARCIS (Netherlands)

    Jang, S.H.; Na, Seon Hong; Park, Yong Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically

  14. Large Variations of the Raman Signal in the Spectra of Twisted Bilayer Graphene on a BN Substrate.

    Science.gov (United States)

    Kalbac, Martin; Frank, Otakar; Kong, Jing; Sanchez-Yamagishi, Javier; Watanabe, Kenji; Taniguchi, Takashi; Jarillo-Herrero, Pablo; Dresselhaus, Mildred S

    2012-03-15

    We report an unusual enhancement of the Raman signal of the G mode in a twisted graphene bilayer (2-LG) on a hexagonal single-crystalline boron nitride substrate. We used an isotopically engineered 2-LG, where the top layer was composed of (13)C atoms and the bottom layer of (12)C atoms. Consequently, it was possible by Raman spectroscopy to distinguish between the enhancement coming from the top and bottom layers. The enhancement of the G mode was, however, found to be similar for the top and bottom layers, and this enhancement effect was observed only at certain locations on the substrate. The experiment with two different laser excitation energies showed that the location of the enhanced spots is dependent on the laser excitation energy. Therefore our results suggest that the enhancement comes from new states in the electronic structure, which are a consequence of a local specific rotation of the grains in graphene layers.

  15. Convergent evolution of hemoglobin switching in jawed and jawless vertebrates.

    Science.gov (United States)

    Rohlfing, Kim; Stuhlmann, Friederike; Docker, Margaret F; Burmester, Thorsten

    2016-02-01

    During development, humans and other jawed vertebrates (Gnathostomata) express distinct hemoglobin genes, resulting in different hemoglobin tetramers. Embryonic and fetal hemoglobin have higher oxygen affinities than the adult hemoglobin, sustaining the oxygen demand of the developing organism. Little is known about the expression of hemoglobins during development of jawless vertebrates (Agnatha). We identified three hemoglobin switches in the life cycle of the sea lamprey. Three hemoglobin genes are specifically expressed in the embryo, four genes in the filter feeding larva (ammocoete), and nine genes correspond to the adult hemoglobin chains. During the development from the parasitic to the reproductive adult, the composition of hemoglobin changes again, with a massive increase of chain aHb1. A single hemoglobin chain is expressed constitutively in all stages. We further showed the differential expression of other globin genes: Myoglobin 1 is most highly expressed in the reproductive adult, myoglobin 2 expression peaks in the larva. Globin X1 is restricted to the embryo; globin X2 was only found in the reproductive adult. Cytoglobin is expressed at low levels throughout the life cycle. Because the hemoglobins of jawed and jawless vertebrates evolved independently from a common globin ancestor, hemoglobin switching must also have evolved convergently in these taxa. Notably, the ontogeny of sea lamprey hemoglobins essentially recapitulates their phylogeny, with the embryonic hemoglobins emerging first, followed by the evolution of larval and adult hemoglobins.

  16. Predicting proton titration in cationic micelle and bilayer environments

    Science.gov (United States)

    Morrow, Brian H.; Eike, David M.; Murch, Bruce P.; Koenig, Peter H.; Shen, Jana K.

    2014-08-01

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pKa's in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pKa of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pKa of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  17. Predicting proton titration in cationic micelle and bilayer environments

    Energy Technology Data Exchange (ETDEWEB)

    Morrow, Brian H.; Shen, Jana K. [Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201 (United States); Eike, David M.; Murch, Bruce P.; Koenig, Peter H. [Computational Chemistry, Modeling and Simulation GCO, Procter and Gamble, Cincinnati, Ohio 45201 (United States)

    2014-08-28

    Knowledge of the protonation behavior of pH-sensitive molecules in micelles and bilayers has significant implications in consumer product development and biomedical applications. However, the calculation of pK{sub a}’s in such environments proves challenging using traditional structure-based calculations. Here we apply all-atom constant pH molecular dynamics with explicit ions and titratable water to calculate the pK{sub a} of a fatty acid molecule in a micelle of dodecyl trimethylammonium chloride and liquid as well as gel-phase bilayers of diethyl ester dimethylammonium chloride. Interestingly, the pK{sub a} of the fatty acid in the gel bilayer is 5.4, 0.4 units lower than that in the analogous liquid bilayer or micelle, despite the fact that the protonated carboxylic group is significantly more desolvated in the gel bilayer. This work illustrates the capability of all-atom constant pH molecular dynamics in capturing the delicate balance in the free energies of desolvation and Coulombic interactions. It also shows the importance of the explicit treatment of ions in sampling the protonation states. The ability to model dynamics of pH-responsive substrates in a bilayer environment is useful for improving fabric care products as well as our understanding of the side effects of anti-inflammatory drugs.

  18. Poly(amidoamine) dendrimers on lipid bilayers II: Effects of bilayer phase and dendrimer termination.

    Science.gov (United States)

    Kelly, Christopher V; Leroueil, Pascale R; Orr, Bradford G; Banaszak Holl, Mark M; Andricioaei, Ioan

    2008-08-07

    The molecular structures and enthalpy release of poly(amidoamine) (PAMAM) dendrimers binding to 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) bilayers were explored through atomistic molecular dynamics. Three PAMAM dendrimer terminations were examined: protonated primary amine, neutral acetamide, and deprotonated carboxylic acid. Fluid and gel lipid phases were examined to extract the effects of lipid tail mobility on the binding of generation-3 dendrimers, which are directly relevant to the nanoparticle interactions involving lipid rafts, endocytosis, lipid removal, and/or membrane pores. Upon binding to gel phase lipids, dendrimers remained spherical, had a constant radius of gyration, and approximately one-quarter of the terminal groups were in close proximity to the lipids. In contrast, upon binding to fluid phase bilayers, dendrimers flattened out with a large increase in their asphericity and radii of gyration. Although over twice as many dendrimer-lipid contacts were formed on fluid versus gel phase lipids, the dendrimer-lipid interaction energy was only 20% stronger. The greatest enthalpy release upon binding was between the charged dendrimers and the lipid bilayer. However, the stronger binding to fluid versus gel phase lipids was driven by the hydrophobic interactions between the inner dendrimer and lipid tails.

  19. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers.

    Science.gov (United States)

    Chen, Xiaoyun; Chen, Zhan

    2006-09-01

    The mode of action of antimicrobial peptides (AMPs) in disrupting cell membrane bilayers is of fundamental importance in understanding the efficiency of different AMPs, which is crucial to design antibiotics with improved properties. Recent developments in the field of sum frequency generation (SFG) vibrational spectroscopy have made it a powerful and unique biophysical technique in investigating the interactions between AMPs and a single substrate supported planar lipid bilayer. We will review some of the recent progress in applying SFG to study membrane lipid bilayers and discuss how SFG can provide novel information such as real-time bilayer structure change and AMP orientation during AMP-lipid bilayer interactions in a very biologically relevant manner. Several examples of applying SFG to monitor such interactions between AMPs and a dipalmitoyl phosphatidylglycerol (DPPG) bilayer are presented. Different modes of actions are observed for melittin, tachyplesin I, d-magainin 2, MSI-843, and a synthetic antibacterial oligomer, demonstrating that SFG is very effective in the study of AMPs and AMP-lipid bilayer interactions.

  20. Purification, crystallization and x-ray diffraction data analysis of oxy hemoglobin-I from the catfish-Liposarcus anisitsi (Pisces)

    International Nuclear Information System (INIS)

    Smarra, A.L.S.; Arni, R.K.; Azevedo Junior, W.F. de; Colombo, M.F.; Bonilla-Rodriguez, G.O.

    1997-01-01

    Full text. Hemoglobin remains, despite the enormous amount of research involving this molecule, as a prototype of allosteric models and new conformations. The present work describes the purification crystallization and X-ray diffraction data analysis of the first hemoglobin (LHb-I) from the four components which constitutes Lopisarcus anisitsi's hemolysate. The functional behaviour of this hemoglobin has shown that proton and chloride effects are dependent on the presence of phosphates. Under these conditions emerges an alkaline Bohr effect, whereas chloride increases Hb oxygen-affinity. The usual interpretation for those findings involves pKa changes induced by phosphate binding and Cl competition for the phosphate binding site respectively. Alternatively we hypothesize that conformational changes can account for those observations. Accordingly, we have chose to perform Hb crystallization under different conditions to check for alternative conformations induced by these anions. The LHb-I has an isoelectric point of 8.1 being purified by ion-exchange chromatography on DEAE-Sephadex using a pH gradient, subsequent de ionization on amberlite M B 1 resin, concentrated and stored in liquid nitrogen until use. The protein solution was crystallized using the Sparce - matrix method, being obtained two monocrystal forms. First form: space group C 2, and cell parameters: a=185.42 A b=63.04 A c=57.59 A, α=γ= 90 deg β=92.79 deg. Crystallographic data was collected to 2.8 A. Second form: hexagonal system, a=b=63.9 A, c=327.96 A, α=β90 deg, γ=120 deg. Crystallographic data was collected to 2.7 A. The structure determination of first form has been initiated by molecular replacement methods. (author)

  1. Alpha-tocopherol inhibits pore formation in oxidized bilayers

    NARCIS (Netherlands)

    Boonnoy, P.; Karttunen, M.; Wong-Ekkabut, J.

    2017-01-01

    In biological membranes, alpha-tocopherols (α-toc; vitamin E) protect polyunsaturated lipids from free radicals. Although the interactions of α-toc with non-oxidized lipid bilayers have been studied, their effects on oxidized bilayers remain unknown. In this study, atomistic molecular dynamics (MD)

  2. Slaved diffusion in phospholipid bilayers

    Science.gov (United States)

    Zhang, Liangfang; Granick, Steve

    2005-01-01

    The translational diffusion of phospholipids in supported fluid bilayers splits into two populations when polyelectrolytes adsorb at incomplete surface coverage. Spatially resolved measurements using fluorescence correlation spectroscopy show that a slow mode, whose magnitude scales inversely with the degree of polymerization of the adsorbate, coexists with a fast mode characteristic of naked lipid diffusion. Inner and outer leaflets of the bilayer are affected nearly equally. Mobility may vary from spot to spot on the membrane surface, despite the lipid composition being the same. This work offers a mechanism to explain how nanosized domains with reduced mobility arise in lipid membranes. PMID:15967988

  3. Chiral Tunnelling in Twisted Graphene Bilayer

    OpenAIRE

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-01-01

    The perfect transmission in graphene monolayer and the perfect reflection in Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in twisted graphene bilayer shows adjustable probability of chiral tunnelling for normal incidence: they can be changed fr...

  4. A co-ordinate system for reactor physics calculations in hexagonal geometry

    International Nuclear Information System (INIS)

    Burte, D.P.

    1990-01-01

    A method for generating all the geometric information concerning typical reactor physics calculations for a basically hexagonal reactor core or its sector involving any of the possible symmetries is presented. The geometrically allowed symmetries for regular hexagons are discussed. The approach is based on the choice of a suitable co-ordinate system, viz. one using three coplanar (including one redundant) axes, each at 120 0 with its cyclically preceding one. A code named KEKULE' is developed for a 2-D, finite difference, one-group diffusion analysis of a hexagonal core using the approach. It can cater to a full hexagonal core as well as to any symmetric sectorial part of it. The main feature of the code is that the input concerning geometry is a bare minimum. It is hoped that the approach presented will be useful even for the calculations for hexagonal fuel assemblies. (author)

  5. GABA_A receptor function is regulated by lipid bilayer elasticity

    DEFF Research Database (Denmark)

    Søgaard, Rikke; Werge, Thomas; Berthelsen, Camilla

    2006-01-01

    ( s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABAA receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown...... reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABAA receptor function is regulated by lipid bilayer elasticity....... PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer....

  6. Lipid peroxidation and water penetration in lipid bilayers

    DEFF Research Database (Denmark)

    Conte, Elena; Megli, Francesco Maria; Khandelia, Himanshu

    2012-01-01

    to the hydroperoxide groups to interact with the nitroxide at the methyl-terminal, confirming that the H-bonds experimentally observed are due to increased water penetration in the bilayer. The EPR and MD data on model membranes demonstrate that cell membrane damage by oxidative stress cause alteration of water......(zz) parameters revealed that OHPLPC, but mostly HpPLPC, induced a measurable increase in polarity and H-bonding propensity in the central region of the bilayer. Molecular dynamics simulation performed on 16-DSA in the PLPC-HpPLPC bilayer revealed that water molecules are statistically favored with respect...

  7. Electronic properties of a biased graphene bilayer

    International Nuclear Information System (INIS)

    Castro, Eduardo V; Lopes dos Santos, J M B; Novoselov, K S; Morozov, S V; Geim, A K; Peres, N M R; Nilsson, Johan; Castro Neto, A H; Guinea, F

    2010-01-01

    We study, within the tight-binding approximation, the electronic properties of a graphene bilayer in the presence of an external electric field applied perpendicular to the system-a biased bilayer. The effect of the perpendicular electric field is included through a parallel plate capacitor model, with screening correction at the Hartree level. The full tight-binding description is compared with its four-band and two-band continuum approximations, and the four-band model is shown to always be a suitable approximation for the conditions realized in experiments. The model is applied to real biased bilayer devices, made out of either SiC or exfoliated graphene, and good agreement with experimental results is found, indicating that the model is capturing the key ingredients, and that a finite gap is effectively being controlled externally. Analysis of experimental results regarding the electrical noise and cyclotron resonance further suggests that the model can be seen as a good starting point for understanding the electronic properties of graphene bilayer. Also, we study the effect of electron-hole asymmetry terms, such as the second-nearest-neighbour hopping energies t' (in-plane) and γ 4 (inter-layer), and the on-site energy Δ.

  8. Small angle X-ray scattering on concentrated hemoglobin solutions

    International Nuclear Information System (INIS)

    Zinke, M.; Damaschun, G.; Mueller, J.J.; Ruckpaul, K.

    1978-01-01

    The small-angle X-ray scattering technique was used to determine the intermolecular structure and interaction potentials in oxi-and deoxi-hemoglobin solutions. The pair correlation function obtained by the ZERNICKE-PRINS equation characterizes the intermolecular structure of the hemoglobin molecules. The intermolecular structure is concentration dependent. The hemoglobin molecules have a 'short range order structure' with a range of about 4 molecule diameters at 324 g/l. The potential functions of the hemoglobin-hemoglobin interaction have been determined on the basis of fluid theories. Except for the deoxi-hemoglobin solution having the concentration 370 g/l, the pair interaction consists in a short repulsion and a weak short-range attraction against kT. The potential minimum is between 1.2 - 1.5 nm above the greatest hemoglobin diameter. (author)

  9. Spectroscopic study of gamma irradiated bovine hemoglobin

    International Nuclear Information System (INIS)

    Maghraby, Ahmed Mohamed; Ali, Maha Anwar

    2007-01-01

    In the present study, the effects of ionizing radiation of Cs-137 and Co-60 from 4.95 to 743.14 Gy and from 40 Gy to 300 kGy, respectively, on some bovine hemoglobin characteristics were studied. Such an effect was evaluated using electron paramagnetic resonance (EPR) spectroscopy, and infra-red (IR) spectroscopy. Bovine hemoglobin EPR spectra were recorded and analyzed before and after irradiation and changes were explained in detail. IR spectra of unirradiated and irradiated Bovine hemoglobin were recorded and analyzed also. It was found that ionizing radiation may lead to the increase of free radicals production, the decrease in α-helices contents, which reflects the degradation of hemoglobin molecular structure, or at least its incomplete performance. Results also show that the combined application of EPR and FTIR spectroscopy is a powerful tool for determining structural modification of bovine hemoglobin samples exposed to gamma irradiation

  10. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C.J. [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M.J. [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1993-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  11. Ion beam mixing isotopic metal bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Fell, C J [Newcastle Univ., NSW (Australia). Dept. of Physics; Kenny, M J [CSIRO, Lindfield, NSW (Australia). Div. of Applied Physics

    1994-12-31

    In order to obtain an insight into the mechanisms of ion-solid interactions, bilayer targets can be prepared from two different isotopes. A mixing study SIMS is to be carried out using specially grown monocrystalline bilayers of {sup 58}Ni / {sup 60}Ni. An important aspect of the work is the preparation of high quality single-crystal thin films. The Ni layers will be grown on the (110) surface of pure Ni and verified for crystallinity using Reflection High-Energy Electron Diffraction and Rutherford Backscattering channelling analysis. The Pd bilayers will be grown on a Pd (100) surface. RHEED will be used to confirm the two-dimensional crystallinity of the surface before and after deposition of each layer, and channelling used to confirm bulk film crystallinity. Single crystal substrates are currently being prepared. Analysis of the Ni (110) surface using RHEED at 9 kV shows a streak spacing which corresponds to a lattice spacing of 2.47 {+-} 0.09 Angstroms. 9 refs., 1 fig.

  12. Genetic hemoglobin disorders rather than iron deficiency are a major predictor of hemoglobin concentration in women of reproductive age in rural prey Veng, Cambodia.

    Science.gov (United States)

    Karakochuk, Crystal D; Whitfield, Kyly C; Barr, Susan I; Lamers, Yvonne; Devlin, Angela M; Vercauteren, Suzanne M; Kroeun, Hou; Talukder, Aminuzzaman; McLean, Judy; Green, Timothy J

    2015-01-01

    Anemia is common in Cambodian women. Potential causes include micronutrient deficiencies, genetic hemoglobin disorders, inflammation, and disease. We aimed to investigate factors associated with anemia (low hemoglobin concentration) in rural Cambodian women (18-45 y) and to investigate the relations between hemoglobin disorders and other iron biomarkers. Blood samples were obtained from 450 women. A complete blood count was conducted, and serum and plasma were analyzed for ferritin, soluble transferrin receptor (sTfR), folate, vitamin B-12, retinol binding protein (RBP), C-reactive protein (CRP), and α1 acid glycoprotein (AGP). Hemoglobin electrophoresis and multiplex polymerase chain reaction were used to determine the prevalence and type of genetic hemoglobin disorders. Overall, 54% of women had a genetic hemoglobin disorder, which included 25 different genotypes (most commonly, hemoglobin E variants and α(3.7)-thalassemia). Of the 420 nonpregnant women, 29.5% had anemia (hemoglobin 8.3 mg/L), hemoglobin disorders, respectively. There was no biochemical evidence of vitamin A deficiency (RBP 5 mg/L) and 26% (AGP >1 g/L) of nonpregnant women, respectively. By using an adjusted linear regression model, the strongest predictors of hemoglobin concentration were hemoglobin E homozygous disorder and pregnancy status. Other predictors were 2 other heterozygous traits (hemoglobin E and Constant Spring), parity, RBP, log ferritin, and vitamin B-12. Multiple biomarkers for anemia and iron deficiency were significantly influenced by the presence of hemoglobin disorders, hence reducing their diagnostic sensitivity. Further investigation of the unexpectedly low prevalence of IDA in Cambodian women is warranted. © 2015 American Society for Nutrition.

  13. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    Energy Technology Data Exchange (ETDEWEB)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J. [Univ. of Missouri, Columbia, MO (United States)

    1994-12-31

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer.

  14. Intercalation of small hydrophobic molecules in lipid bilayers containing cholesterol

    International Nuclear Information System (INIS)

    Worcester, D.L.; Hamacher, K.; Kaiser, H.; Kulasekere, R.; Torbet, J.

    1994-01-01

    Partitioning of small hydrophobic molecules into lipid bilayers containing cholesterol has been studied using the 2XC diffractometer at the University of Missouri Research Reactor. Locations of the compounds were determined by Fourier difference methods with data from both deuterated and undeuterated compounds introduced into the bilayers from the vapor phase. Data fitting procedures were developed for determining how well the compounds were localized. The compounds were found to be localized in a narrow region at the center of the hydrophobic layer, between the two halves of the bilayer. The structures are therefore intercalated structures with the long axis of the molecules in the plane of the bilayer

  15. Ionic motion in PEDOT and PPy conducting polymer bilayers

    DEFF Research Database (Denmark)

    Zainudeen, Umer L.; Careem, M.A.; Skaarup, Steen

    2006-01-01

    Conducting polymer bilayers with poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy), each containing dodecyl benzenesulfonate (DBS) as immobile dopant species, were synthesized galvanostatically. The electrochemical behaviour of the bilayers was investigated using cyclic voltammetry...

  16. Synthesis of hexagonal boron nitride graphene-like few layers

    Science.gov (United States)

    Yuan, S.; Toury, B.; Journet, C.; Brioude, A.

    2014-06-01

    Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction.Self-standing highly crystallized hexagonal boron nitride (h-BN) mono-, bi- and few-layers have been obtained for the first time via the Polymer Derived Ceramics (PDCs) route by adding lithium nitride (Li3N) micropowders to liquid-state polyborazylene (PBN). Incorporation of Li3N as a crystallization promoter allows the onset of crystallization of h-BN at a lower temperature (1200 °C) than under classical conditions (1800 °C). The hexagonal structure was confirmed by both electron and X-ray diffraction. Electronic supplementary information (ESI) available: See DOI: 10.1039/c4nr01017e

  17. Anomalous lattice compressibility of hexagonal Eu{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Irshad, K.A.; Chandra Shekar, N.V., E-mail: chandru@igcar.gov.in

    2017-07-01

    Monoclinic Eu{sub 2}O{sub 3} was investigated in a Mao-Bell type diamond anvil cell using angle dispersive x-ray diffraction up to a pressure of 26 GPa. Pressure induced structural phase transition from monoclinic to hexagonal phase was observed at 4.3 GPa with 2% volume collapse. Birch –Murnaghan equation of state fit to the pressure volume data yielded a bulk modulus of 159(9) GPa and 165(6) GPa for the monoclinic and hexagonal phases respectively. Equation of state fitting to the structural parameters yielded an axial compressibility of β{sub a} > β{sub c} > β{sub b} for the parent monoclinic phase, showing the least compressibility along b axis. Contrary to the available reports, an anomalous lattice compressibility behavior is observed for the high pressure hexagonal phase, characterized by pronounced hardening of a axis above 15 GPa. The observed incompressible nature of the hexagonal a axis in the pressure range 15–25 GPa is found to be compensated by doubling the compressibility along the c axis. - Highlights: • Structural phase transition in Eu{sub 2}O{sub 3} from monoclinic to hexagonal phase. • Anomalous lattice compressibility in the hexagonal phase has reported first time. • Quantitative analysis of lattice compressibility.

  18. Lyophilized bovine hemoglobin as a possible reference material for the determination of hemoglobin derivatives in human blood

    NARCIS (Netherlands)

    Maas, BHA; Buursma, A; Ernst, RAJ; Maas, AHJ; Zijlstra, WG

    We investigated the suitability of a lyophilized bovine hemoglobin (LBH) preparation containing various fractions of oxyhemoglobin (O(2)Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) for quality assessment in multicomponent analysis (MCA) of hemoglobin derivatives. It was demonstrated that

  19. Lyophilized bovine hemoglobin as a possible reference material for the determination of hemoglobin derivatives in human blood

    NARCIS (Netherlands)

    Maas, BHA; Buursma, A; Ernst, RAJ; Maas, AHJ; Zijlstra, WG

    1998-01-01

    We investigated the suitability of a lyophilized bovine hemoglobin (LBH) preparation containing various fractions of oxyhemoglobin (O(2)Hb), carboxyhemoglobin (COHb), and methemoglobin (MetHb) for quality assessment in multicomponent analysis (MCA) of hemoglobin derivatives. It was demonstrated that

  20. Biomimetic Cationic Nanoparticles Based on Silica: Optimizing Bilayer Deposition from Lipid Films

    Directory of Open Access Journals (Sweden)

    Rodrigo T. Ribeiro

    2017-10-01

    Full Text Available The optimization of bilayer coverage on particles is important for a variety of biomedical applications, such as drug, vaccine, and genetic material delivery. This work aims at optimizing the deposition of cationic bilayers on silica over a range of experimental conditions for the intervening medium and two different assemblies for the cationic lipid, namely, lipid films or pre-formed lipid bilayer fragments. The lipid adsorption on silica in situ over a range of added lipid concentrations was determined from elemental analysis of carbon, hydrogen, and nitrogen and related to the colloidal stability, sizing, zeta potential, and polydispersity of the silica/lipid nanoparticles. Superior bilayer deposition took place from lipid films, whereas adsorption from pre-formed bilayer fragments yielded limiting adsorption below the levels expected for bilayer adsorption.

  1. Hexagonal OsB2: Sintering, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Xie, Zhilin; Lugovy, Mykola; Orlovskaya, Nina; Graule, Thomas; Kuebler, Jakob; Mueller, Martin; Gao, Huili; Radovic, Miladin; Cullen, David A.

    2015-01-01

    Highlights: • ReB 2 -type hexagonal OsB 2 powder has been densified by spark plasma sintering. • The sintered OsB 2 contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB 2 sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB 2 -type hexagonal OsB 2 bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB 2 were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB 2 bulk ceramics

  2. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    2015-08-01

    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  3. Study the Postbuckling of Hexagonal Piezoelectric Nanowires with Surface Effect

    Directory of Open Access Journals (Sweden)

    O. Rahmani

    2014-04-01

    Full Text Available Piezoelectric nanobeams having circular, rectangular and hexagonal cross-sections are synthesized and used in various Nano structures; however, piezoelectric nanobeams with hexagonal cross-sections have not been studied in detail. In particular, the physical mechanisms of the surface effect and the role of surface stress, surface elasticity and surface piezoelectricity have not been discussed thoroughly. The present study investigated post-buckling behavior of piezoelectric nanobeams by examining surface effects. The energy method was applied to post-buckling of hexagonal nanobeams and the critical buckling voltage and amplitude are derived analytically from bulk and surface material properties and geometric factors.

  4. A nodal expansion method using conformal mapping for hexagonal geometry

    International Nuclear Information System (INIS)

    Chao, Y.A.; Shatilla, Y.A.

    1993-01-01

    Hexagonal nodal methods adopting the same transverse integration process used for square nodal methods face the subtle theoretical problem that this process leads to highly singular nonphysical terms in the diffusion equation. Lawrence, in developing the DIF3D-N code, tried to approximate the singular terms with relatively simple polynomials. In the HEX-NOD code, Wagner ignored the singularities to simplify the diffusion equation and introduced compensating terms in the nodal equations to restore the nodal balance relation. More recently developed hexagonal nodal codes, such as HEXPE-DITE and the hexagonal version of PANTHER, used methods similar to Wagner's. It will be shown that for light water reactor applications, these two different approximations significantly degraded the accuracy of the respective method as compared to the established square nodal methods. Alternatively, the method of conformal mapping was suggested to map a hexagon to a rectangle, with the unique feature of leaving the diffusion operator invariant, thereby fundamentally resolving the problems associated with transverse integration. This method is now implemented in the Westinghouse hexagonal nodal code ANC-H. In this paper we report on the results of comparing the three methods for a variety of problems via benchmarking against the fine-mesh finite difference code

  5. Steady squares and hexagons on a subcritical ramp

    International Nuclear Information System (INIS)

    Hoyle, R.B.

    1995-01-01

    Steady squares and hexagons on a subcritical ramp are studied, both analytically and numerically, within the framework of the lowest-order amplitude equations. On the subcritical ramp, the external stress or control parameter varies continuously in space from subcritical to supercritical values. At the subcritical end of the ramp, pattern formation is suppressed, and patterns fade away into the conduction solution. It is shown that three-dimensional patterns may change shape on a subcritical ramp. A square pattern becomes a pattern of rolls as it fades, with the roll axes aligned in the direction orthogonal to that in which the control parameter varies. Hexagons in systems with horizontal midplane symmetry become a pattern of rectangles before reaching the conduction solution. There is a suggestion that hexagons in systems which lack this symmetry might fade away through a roll pattern. Numerical simulations are used to illustrate these phenomena

  6. Additive Manufacturing of Dense Hexagonal Boron Nitride Objects

    Energy Technology Data Exchange (ETDEWEB)

    Marquez Rossy, Andres E [ORNL; Armstrong, Beth L [ORNL; Elliott, Amy M [ORNL; Lara-Curzio, Edgar [ORNL

    2017-05-12

    The feasibility of manufacturing hexagonal boron nitride objects via additive manufacturing techniques was investigated. It was demonstrated that it is possible to hot-extrude thermoplastic filaments containing uniformly distributed boron nitride particles with a volume concentration as high as 60% and that these thermoplastic filaments can be used as feedstock for 3D-printing objects using a fused deposition system. Objects 3D-printed by fused deposition were subsequently sintered at high temperature to obtain dense ceramic products. In a parallel study the behavior of hexagonal boron nitride in aqueous solutions was investigated. It was shown that the addition of a cationic dispersant to an azeotrope enabled the formulation of slurries with a volume concentration of boron nitride as high as 33%. Although these slurries exhibited complex rheological behavior, the results from this study are encouraging and provide a pathway for manufacturing hexagonal boron nitride objects via robocasting.

  7. Robustly Engineering Thermal Conductivity of Bilayer Graphene by Interlayer Bonding

    Science.gov (United States)

    Zhang, Xiaoliang; Gao, Yufei; Chen, Yuli; Hu, Ming

    2016-01-01

    Graphene and its bilayer structure are the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. Their realistic applications in emerging nanoelectronics usually call for thermal transport manipulation in a controllable and precise manner. In this paper we systematically studied the effect of interlayer covalent bonding, in particular different interlay bonding arrangement, on the thermal conductivity of bilayer graphene using equilibrium molecular dynamics simulations. It is revealed that, the thermal conductivity of randomly bonded bilayer graphene decreases monotonically with the increase of interlayer bonding density, however, for the regularly bonded bilayer graphene structure the thermal conductivity possesses unexpectedly non-monotonic dependence on the interlayer bonding density. The results suggest that the thermal conductivity of bilayer graphene depends not only on the interlayer bonding density, but also on the detailed topological configuration of the interlayer bonding. The underlying mechanism for this abnormal phenomenon is identified by means of phonon spectral energy density, participation ratio and mode weight factor analysis. The large tunability of thermal conductivity of bilayer graphene through rational interlayer bonding arrangement paves the way to achieve other desired properties for potential nanoelectronics applications involving graphene layers. PMID:26911859

  8. An electrochemical investigation on the dissolution of bilayered porous anodic alumina

    International Nuclear Information System (INIS)

    Liao, Jinfu; Ling, Zhiyuan; Li, Yi; Hu, Xing

    2015-01-01

    Highlights: • Pulse polarization was introduced to investigate the dissolution of PAA. • Electric field within the bilayers was estimated. • The formation of the barrier layer involves mainly solid-state processes. • The structure should be the determining factor in the dissolution of the bilayers. - Abstract: Anodic alumina attracts much research interest in many disciplines for its versatility. Meanwhile, some aspects regarding its growth are still not well-understood, such as the formation and properties of its bilayer structure. In this paper, along with capacitance measurement, pulse polarization is introduced to study the dissolution of bilayered porous anodic alumina (PAA). Combined with electron microscope observation, the electric field in the outer layer is estimated to be slightly higher than that in the inner layer. By comparing with (oxy-)hydroxide layers, the electric field distribution within barrier layer of PAA confirms that the bilayers are compact and are formed mainly by solid-state ionic migration. The changes of dissolution rates after annealing and application of electric pulses suggest that structure may be a determining factor for the dissolution behaviors of the bilayers.

  9. Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices

    DEFF Research Database (Denmark)

    Ke, Yonggang; Voigt, Niels Vinther; Shih, William M.

    2012-01-01

    “Scaffolded DNA origami” has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry....... Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer...... DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology....

  10. Multilayer DNA origami packed on hexagonal and hybrid lattices.

    Science.gov (United States)

    Ke, Yonggang; Voigt, Niels V; Gothelf, Kurt V; Shih, William M

    2012-01-25

    "Scaffolded DNA origami" has been proven to be a powerful and efficient approach to construct two-dimensional or three-dimensional objects with great complexity. Multilayer DNA origami has been demonstrated with helices packing along either honeycomb-lattice geometry or square-lattice geometry. Here we report successful folding of multilayer DNA origami with helices arranged on a close-packed hexagonal lattice. This arrangement yields a higher density of helical packing and therefore higher resolution of spatial addressing than has been shown previously. We also demonstrate hybrid multilayer DNA origami with honeycomb-lattice, square-lattice, and hexagonal-lattice packing of helices all in one design. The availability of hexagonal close-packing of helices extends our ability to build complex structures using DNA nanotechnology. © 2011 American Chemical Society

  11. Proton permeation of lipid bilayers.

    Science.gov (United States)

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  12. Postoperative hemoglobin level in patients with femoral neck fracture.

    Science.gov (United States)

    Nagra, Navraj S; Van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward M

    2016-01-01

    The aim of this study was to analyze the changes of hemoglobin levels in patients undergoing fixation for femoral neck fracture. Peroperative hemoglobin levels of patients who underwent either dynamic hip screw (DHS) fixation (n=74; mean age: 80 years) or hip hemiarthroplasty (n=104; mean age: 84 years) for femoral neck fracture was monitored. There was a statistically and clinically significant mean drop of 31.1 g/L between the preoperative (D0) and postoperative Day 5 Hb levels (pmeasurement, DHS patients had lower hemoglobin values over hemiarthroplasty patients (p=0.046). The decrease in hemoglobin in the first 24-hour postoperative period (D0 to Day 1) is an underestimation of the ultimate lowest value in hemoglobin found at Day 2. Relying on the Day 1 hemoglobin level could be detrimental to patient care. We propose a method of predicting patients likely to be transfused and recommend a protocol for patients undergoing femoral neck fracture surgery to standardize postoperative hemoglobin monitoring.

  13. The Integrin Receptor in Biologically Relevant Bilayers

    DEFF Research Database (Denmark)

    Kalli, Antreas C.; Róg, Tomasz; Vattulainen, Ilpo

    2017-01-01

    /talin complex was inserted in biologically relevant bilayers that resemble the cell plasma membrane containing zwitterionic and charged phospholipids, cholesterol and sphingolipids to study the dynamics of the integrin receptor and its effect on bilayer structure and dynamics. The results of this study...... demonstrate the dynamic nature of the integrin receptor and suggest that the presence of the integrin receptor alters the lipid organization between the two leaflets of the bilayer. In particular, our results suggest elevated density of cholesterol and of phosphatidylserine lipids around the integrin....../talin complex and a slowing down of lipids in an annulus of ~30 Å around the protein due to interactions between the lipids and the integrin/talin F2–F3 complex. This may in part regulate the interactions of integrins with other related proteins or integrin clustering thus facilitating signal transduction...

  14. Chiral tunneling in a twisted graphene bilayer.

    Science.gov (United States)

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-08-09

    The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.

  15. Cyclotron resonance in bilayer graphene.

    Science.gov (United States)

    Henriksen, E A; Jiang, Z; Tung, L-C; Schwartz, M E; Takita, M; Wang, Y-J; Kim, P; Stormer, H L

    2008-02-29

    We present the first measurements of cyclotron resonance of electrons and holes in bilayer graphene. In magnetic fields up to B=18 T, we observe four distinct intraband transitions in both the conduction and valence bands. The transition energies are roughly linear in B between the lowest Landau levels, whereas they follow square root[B] for the higher transitions. This highly unusual behavior represents a change from a parabolic to a linear energy dispersion. The density of states derived from our data generally agrees with the existing lowest order tight binding calculation for bilayer graphene. However, in comparing data to theory, a single set of fitting parameters fails to describe the experimental results.

  16. Electronic and Optical Properties of Twisted Bilayer Graphene

    Science.gov (United States)

    Huang, Shengqiang

    The ability to isolate single atomic layers of van der Waals materials has led to renewed interest in the electronic and optical properties of these materials as they can be fundamentally different at the monolayer limit. Moreover, these 2D crystals can be assembled together layer by layer, with controllable sequence and orientation, to form artificial materials that exhibit new features that are not found in monolayers nor bulk. Twisted bilayer graphene is one such prototype system formed by two monolayer graphene layers placed on top of each other with a twist angle between their lattices, whose electronic band structure depends on the twist angle. This thesis presents the efforts to explore the electronic and optical properties of twisted bilayer graphene by Raman spectroscopy and scanning tunneling microscopy measurements. We first synthesize twisted bilayer graphene with various twist angles via chemical vapor deposition. Using a combination of scanning tunneling microscopy and Raman spectroscopy, the twist angles are determined. The strength of the Raman G peak is sensitive to the electronic band structure of twisted bilayer graphene and therefore we use this peak to monitor changes upon doping. Our results demonstrate the ability to modify the electronic and optical properties of twisted bilayer graphene with doping. We also fabricate twisted bilayer graphene by controllable stacking of two graphene monolayers with a dry transfer technique. For twist angles smaller than one degree, many body interactions play an important role. It requires eight electrons per moire unit cell to fill up each band instead of four electrons in the case of a larger twist angle. For twist angles smaller than 0.4 degree, a network of domain walls separating AB and BA stacking regions forms, which are predicted to host topologically protected helical states. Using scanning tunneling microscopy and spectroscopy, these states are confirmed to appear on the domain walls when inversion

  17. Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer

    International Nuclear Information System (INIS)

    Wei, Huige; Ding, Daowei; Yan, Xingru; Guo, Jiang; Shao, Lu; Chen, Haoran; Sun, Luyi; Colorado, Henry A.; Wei, Suying; Guo, Zhanhu

    2014-01-01

    Highlights: • Tungsten oxide and zinc tungstate bilayers have been prepared via a facile sol-gel method for integrated applications of electrochromic behaviors and energy storage;. • Electron transfer behaviors between the semiconductor bilayer films have been found dependent on the bilayer assembly sequence;. • Methylene blue (MB) has been employed for the first time as an indicator to study the electron transfer phenomenon in the bilayer films. - Abstract: Pair-sequentially spin-coated tungsten trioxide (WO 3 ) and zinc tungstate (ZnWO 4 ) bilayer films onto indium tin oxide (ITO) coated glass slides have been prepared via sol-gel methods followed by annealing. The bilayers (ZnWO 4 /WO 3 denoting the bilayer film with the inner layer of ZnWO 4 and the outer layer of WO 3 on the ITO while WO 3 /ZnWO 4 standing for the bilayer film with the inner layer of WO 3 and the outer layer of ZnWO 4 on the ITO) exhibit integrated functions of electrochromic and energy storage behaviors as indicated by the in situ spectroelectrochemistry and cyclic voltammetry (CV) results. Accordingly, blue color was observed for the bilayer films at -1 V in 0.5 M H 2 SO 4 solution. An areal capacitance of 140 and 230 μF/cm 2 was obtained for the ZnWO 4 /WO 3 , and WO 3 /ZnWO 4 film, respectively, at a scan rate of 0.05 V/s in the CV measurements. The CV results also unveiled the electron transfer behavior between the semiconductor films in the oxidation process, suggesting a sequence-dependent electrochemical response in the bilayer films. Meanwhile, methylene blue (MB) was used as an indicator to study the electron transfer phenomenon during the reduction process at negative potentials of -0.4 and -0.8 V, in 0.5 M Na 2 SO 4 . The results indicated that the electrons transfer across the bilayers was enhanced at more negative potentials

  18. A metastable HCP intermetallic phase in Cu-Al bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Limei

    2006-07-01

    For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to

  19. A simple method to tune graphene growth between monolayer and bilayer

    Directory of Open Access Journals (Sweden)

    Xiaozhi Xu

    2016-02-01

    Full Text Available Selective growth of either monolayer or bilayer graphene is of great importance. We developed a method to readily tune large area graphene growth from complete monolayer to complete bilayer. In an ambient pressure chemical vapor deposition process, we used the sample temperature at which to start the H2 flow as the control parameter and realized the change from monolayer to bilayer growth of graphene on Cu foil. When the H2 starting temperature was above 700°C, continuous monolayer graphene films were obtained. When the H2 starting temperature was below 350°C, continuous bilayer films were obtained. Detailed characterization of the samples treated under various conditions revealed that heating without the H2 flow caused Cu oxidation. The more the Cu substrate oxidized, the less graphene bilayer could form.

  20. Influence of ester-modified lipids on bilayer structure.

    Science.gov (United States)

    Villanueva, Diana Y; Lim, Joseph B; Klauda, Jeffery B

    2013-11-19

    Lipid membranes function as barriers for cells to prevent unwanted chemicals from entering the cell and wanted chemicals from leaving. Because of their hydrophobic interior, membranes do not allow water to penetrate beyond the headgroup region. We performed molecular simulations to examine the effects of ester-modified lipids, which contain ester groups along their hydrocarbon chains, on bilayer structure. We chose two lipids from those presented in Menger et al. [J. Am. Chem. Soc. 2006, 128, 14034] with ester groups in (1) the upper half of the lipid chain (MEPC) and (2) the middle and end of the lipid chain (MGPC). MGPC (30%)/POPC bilayers formed stable water pores of diameter 5-7 Å, but MGPC (22%)/POPC and MEPC (30%)/POPC bilayers did not form these defects. These pores were similar to those formed during electroporation; i.e., the head groups lined the pore and allowed water and ions to transport across the bilayer. However, we found that lateral organization of the MGPC lipids into clusters, instead of an electric field or charge disparity as in electroporation, was essential for pore formation. On the basis of this, we propose an overall mechanism for pore formation. The similarities between the ester-modified lipids and byproducts of lipid peroxidation with multiple hydrophilic groups in the middle of the chain suggest that free radical reactions with unsaturated lipids and sterols result in fundamental changes that may be similar to what is seen in bilayers with ester-modified lipids.

  1. Tethered and Polymer Supported Bilayer Lipid Membranes: Structure and Function

    Directory of Open Access Journals (Sweden)

    Jakob Andersson

    2016-05-01

    Full Text Available Solid supported bilayer lipid membranes are model systems to mimic natural cell membranes in order to understand structural and functional properties of such systems. The use of a model system allows for the use of a wide variety of analytical tools including atomic force microscopy, impedance spectroscopy, neutron reflectometry, and surface plasmon resonance spectroscopy. Among the large number of different types of model membranes polymer-supported and tethered lipid bilayers have been shown to be versatile and useful systems. Both systems consist of a lipid bilayer, which is de-coupled from an underlying support by a spacer cushion. Both systems will be reviewed, with an emphasis on the effect that the spacer moiety has on the bilayer properties.

  2. Ultrafast lithium diffusion in bilayer graphene

    Science.gov (United States)

    Kühne, Matthias; Paolucci, Federico; Popovic, Jelena; Ostrovsky, Pavel M.; Maier, Joachim; Smet, Jurgen H.

    2017-09-01

    Solids that simultaneously conduct electrons and ions are key elements for the mass transfer and storage required in battery electrodes. Single-phase materials with a high electronic and high ionic conductivity at room temperature are hard to come by, and therefore multiphase systems with separate ion and electron channels have been put forward instead. Here we report on bilayer graphene as a single-phase mixed conductor that demonstrates Li diffusion faster than in graphite and even surpassing the diffusion of sodium chloride in liquid water. To measure Li diffusion, we have developed an on-chip electrochemical cell architecture in which the redox reaction that forces Li intercalation is localized only at a protrusion of the device so that the graphene bilayer remains unperturbed from the electrolyte during operation. We performed time-dependent Hall measurements across spatially displaced Hall probes to monitor the in-plane Li diffusion kinetics within the graphene bilayer and measured a diffusion coefficient as high as 7 × 10-5 cm2 s-1.

  3. Hemoglobin levels in normal Filipino pregnant women.

    Science.gov (United States)

    Kuizon, M D; Natera, M G; Ancheta, L P; Platon, T P; Reyes, G D; Macapinlac, M P

    1981-09-01

    The hemoglobin concentrations during pregnancy in Filipinos belonging to the upper income group, who were prescribed 105 mg elemental iron daily, and who had acceptable levels of transferrin saturation, were examined in an attempt to define normal levels. The hemoglobin concentrations for each trimester followed a Gaussian distribution. The hemoglobin values equal to the mean minus one standard deviation were 11.4 gm/dl for the first trimester and 10.4 gm/dl for the second and third trimesters. Using these values as the lower limits of normal, in one group of pregnant women the prevalence of anemia during the last two trimesters was found lower than that obtained when WHO levels for normal were used. Groups of women with hemoglobin of 10.4 to 10.9 gm/dl (classified anemic by WHO criteria but normal in the present study) and those with 11.0 gm/dl and above could not be distinguished on the basis of their serum ferritin levels nor on the degree of decrease in their hemoglobin concentration during pregnancy. Many subjects in both groups, however, had serum ferritin levels less than 12 ng/ml which indicate poor iron stores. It might be desirable in future studies to determine the hemoglobin cut-off point that will delineate subjects who are both non-anemic and adequate in iron stores using serum ferritin levels as criterion for the latter.

  4. Evaluation of the performance characteristics of bilayer tablets: Part II. Impact of environmental conditions on the strength of bilayer tablets.

    Science.gov (United States)

    Kottala, Niranjan; Abebe, Admassu; Sprockel, Omar; Bergum, James; Nikfar, Faranak; Cuitiño, Alberto M

    2012-12-01

    Ambient air humidity and temperature are known to influence the mechanical strength of tablets. The objective of this work is to understand the influence of processing parameters and environmental conditions (humidity and temperature) on the strength of bilayer tablets. As part of this study, bilayer tablets were compressed with different layer ratios, dwell times, layer sequences, material properties (plastic and brittle), first and second layer forces, and lubricant concentrations. Compressed tablets were stored in stability chambers controlled at predetermined conditions (40C/45%RH, 40C/75%RH) for 1, 3, and 5 days. The axial strength of the stored tablets was measured and a statistical model was developed to determine the effects of the aforementioned factors on the strength of bilayer tablets. As part of this endeavor, a full 3 × 2(4) factorial design was executed. Responses of the experiments were analyzed using PROC GLM of SAS (SAS Institute Inc, Cary, North Carolina, USA). A model was fit using all the responses to determine the significant interactions (p < 0.05). Results of this study indicated that storage conditions and storage time have significant impact on the strength of bilayer tablets. For Avicel-lactose and lactose-Avicel tablets, tablet strength decreased with the increasing humidity and storage time. But for lactose-lactose tablets, due to the formation of solid bridges upon storage, an increase in tablet strength was observed. Significant interactions were observed between processing parameters and storage conditions on the strength of bilayer tablets.

  5. Lipids, lipid bilayers and vesicles as seen by neutrons

    International Nuclear Information System (INIS)

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  6. Bi-layer plate-type acoustic metamaterials with Willis coupling

    Science.gov (United States)

    Ma, Fuyin; Huang, Meng; Xu, Yicai; Wu, Jiu Hui

    2018-01-01

    Dynamic effective negative parameters are principal to the representation of the physical properties of metamaterials. In this paper, a bi-layer plate-type unit was proposed with both a negative mass density and a negative bulk modulus; moreover, through analysis of these bi-layer structures, some important problems about acoustic metamaterials were studied. First, dynamic effective mass densities and the bulk modulus of the bi-layer plate-type acoustic structure were clarified through both the direct and the retrieval methods, and, in addition, the intrinsic relationship between the sound transmission (absorption) characteristics and the effective parameters was analyzed. Furthermore, the properties of dynamic effective parameters for an asymmetric bi-layer acoustic structure were further considered through an analysis of experimental data, and the modified effective parameters were then obtained through consideration of the Willis coupling in the asymmetric passive system. In addition, by taking both the clamped and the periodic boundary conditions into consideration in the bi-layer plate-type acoustic system, new perspectives were presented for study on the effective parameters and sound insulation properties in the range below the cut-off frequency. The special acoustic properties established by these effective parameters could enrich our knowledge and provide guidance for the design and installation of acoustic metamaterial structures in future sound engineering practice.

  7. Thermal stability of hexagonal OsB2

    Science.gov (United States)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  8. Comparison of PANTHER nodal solutions in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Knight, M.; Hutt, P.; Lewis, I.

    1995-01-01

    The reactor physics code PANTHER has been extended to hexagonal geometries. Steady-state, depletion, and transient calculations with feedback can all be performed. Two hexagonal nodal flux solutions have been developed. In the first method, transverse integration is performed exactly as in the rectangular case. The resulting transverse integrated equation has singular terms, which are simply ignored. The second approach applies a conformal mapping that transforms the hexagon onto a rectangle. Pin power reconstruction has also been developed with both methods. For a benchmark VVER-1000 reactor depletion problem, both methods give accurate results for standard depletion calculations. In the more extreme situation with all rods inserted, the simpler method breaks down. However, the accuracy of the conformal solution was found to be excellent in all cases studied

  9. Ni foam assisted synthesis of high quality hexagonal boron nitride with large domain size and controllable thickness

    Science.gov (United States)

    Ying, Hao; Li, Xiuting; Li, Deshuai; Huang, Mingqiang; Wan, Wen; Yao, Qian; Chen, Xiangping; Wang, Zhiwei; Wu, Yanqing; Wang, Le; Chen, Shanshan

    2018-04-01

    The scalable synthesis of two-dimensional (2D) hexagonal boron nitride (h-BN) is of great interest for its numerous applications in novel electronic devices. Highly-crystalline h-BN films, with single-crystal sizes up to hundreds of microns, are demonstrated via a novel Ni foam assisted technique reported here for the first time. The nucleation density of h-BN domains can be significantly reduced due to the high boron solubility, as well as the large specific surface area of the Ni foam. The crystalline structure of the h-BN domains is found to be well aligned with, and therefore strongly dependent upon, the underlying Pt lattice orientation. Growth-time dependent experiments confirm the presence of a surface mediated self-limiting growth mechanism for monolayer h-BN on the Pt substrate. However, utilizing remote catalysis from the Ni foam, bilayer h-BN films can be synthesized breaking the self-limiting effect. This work provides further understanding of the mechanisms involved in the growth of h-BN and proposes a facile synthesis technique that may be applied to further applications in which control over the crystal alignment, and the numbers of layers is crucial.

  10. Quantitative Raman microspectroscopy for water permeability parameters at a droplet interface bilayer.

    Science.gov (United States)

    Braziel, S; Sullivan, K; Lee, S

    2018-01-29

    Using confocal Raman microspectroscopy, we derive parameters for bilayer water transport across an isolated nanoliter aqueous droplet pair. For a bilayer formed with two osmotically imbalanced and adherent nanoliter aqueous droplets in a surrounding oil solvent, a droplet interface bilayer (DIB), the water permeability coefficient across the lipid bilayer was determined from monitoring the Raman scattering from the C[triple bond, length as m-dash]N stretching mode of K 3 Fe(CN) 6 as a measure of water uptake into the swelling droplet of a DIB pair. We also derive passive diffusional permeability coefficient for D 2 O transport across a droplet bilayer using O-D Raman signal. This method provides a significant methodological advance in determining water permeability coefficients in a convenient and reliable way.

  11. Pairing of cholesterol with oxidized phospholipid species in lipid bilayers

    DEFF Research Database (Denmark)

    Khandelia, Himanshu; Loubet, Bastien; Olzynska, Agnieszka

    2014-01-01

    We claim that (1) cholesterol protects bilayers from disruption caused by lipid oxidation by sequestering conical shaped oxidized lipid species such as 1-palmitoyl-2-azelaoyl-sn-glycero-3-phosphocholine (PZPC) away from phospholipid, because cholesterol and the oxidized lipid have complementary...... shapes and (2) mixtures of cholesterol and oxidized lipids can self-assemble into bilayers much like lysolipid–cholesterol mixtures. The evidence for bilayer protection comes from molecular dynamics (MD) simulations and dynamic light scattering (DLS) measurements. Unimodal size distributions of extruded...... vesicles (LUVETs) made up of a mixture of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and PZPC containing high amounts of PZPC are only obtained when cholesterol is present in high concentrations. In simulations, bilayers containing high amounts of PZPC become porous, unless cholesterol is also present...

  12. Heterozygote Hemoglobin G-Coushatta as the Cause of a Falsely Decreased Hemoglobin A1C in an Ion-Exchange HPLC Method

    Directory of Open Access Journals (Sweden)

    Kurtoğlu Ayşegül Uğur

    2017-09-01

    Full Text Available Glycated hemoglobin (HbA1c is used for the assessment of glycemic control in patients with diabetes. The presence of genetic variants of hemoglobin can profoundly affect the accuracy of HbA1c measurement. Here, we report two cases of Hemoglobin G-Coushatta (HBB:c.68A>C variant that interferes in the measurement of HbA1c by a cation-exchange HPLC (CE-HPLC method. HbA1c was measured by a CE-HPLC method in a Tosoh HLC-723 G7 instrument. The HbA1c levels were 2.9% and 4%. These results alerted us to a possible presence of hemoglobinopathy. In the hemoglobin variant analysis, HbA2 levels were detected as 78.3% and 40.7% by HPLC using the short program for the Biorad Variant II. HbA1c levels were measured by an immunoturbidimetric assay in a Siemens Dimension instrument. HbA1c levels were reported as 5.5% and 5.3%. DNA mutation analysis was performed to detect the abnormal hemoglobin variant. Presence of Hemoglobin G-Coushatta variant was detected in the patients. The Hb G-Coushatta variants have an impact on the determination of glycated hemoglobin levels using CEHPLC resulting in a false low value. Therefore, it is necessary to use another measurement method.

  13. Layer configurations comparison of bilayer-films for EGFET pH sensor application

    Science.gov (United States)

    Rahman, R. A.; Zulkefle, M. A.; Yusof, K. A.; Abdullah, W. F. H.; Rusop, M.; Herman, S. H.

    2018-05-01

    The comparison between bilayer configurations were presented in this paper. TiO2 and ZnO layer configurations were manipulated in order to investigate which configuration produce highest sensing performance to be applied as EGFET pH sensor. Both of the materials were deposited together as the bilayer film. The configurations were manipulated between TiO2/ZnO and ZnO/TiO2. ITO was used as the substrate in this study and both of the materials were deposited by using sol-gel spin coating technique. After deposition process, these bilayer film then undergone for EGFET pH sensor measurement and physical characterization. The EGFET pH sensor measurement was done by dipping the fabricated bilayer film into three different pH values, which is pH4, pH7 and pH10. Bilayer film act as the pH-sensitive membrane, which connected to the commercial metal-oxide semiconductor FET (MOSFET). This MOSFET was connected to the interfacing circuit. Voltage output obtained were recorded and the graph was plotted by using the data recorded. Based on the EGFET pH sensor measurement, TiO2/ZnO bilayer film exhibit higher sensing performance, compared with ZnO/TiO2. TiO2/ZnO bilayer film produced 53.10 mV/pH with the linearity value of 0.9913. Afterwards, fabricated bilayer films then were characterized with AFM to explore their surface roughness and surface topography behavior.

  14. Bias induced modulation of electrical and thermal conductivity and heat capacity of BN and BN/graphene bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Chegel, Raad, E-mail: Raad.chegel@gmail.com

    2017-04-15

    By using the tight binding approximation and Green function method, the electronic structure, density of state, electrical conductivity, heat capacity of BN and BN/graphene bilayers are investigated. The AA-, AB{sub 1}- and AB{sub 2}- BN/graphene bilayers have small gap unlike to BN bilayers which are wide band gap semiconductors. Unlike to BN bilayer, the energy gap of graphene/BN bilayers increases with external field. The magnitude of the change in the band gap of BN bilayers is much higher than the graphene/BN bilayers. Near absolute zero, the σ(T) is zero for BN bilayers and it increases with temperature until reaches maximum value then decreases. The BN/graphene bilayers have larger electrical conductivity larger than BN bilayers. For both bilayers, the specific heat capacity has a Schottky anomaly.

  15. Bilayer graphene quantum dot defined by topgates

    Energy Technology Data Exchange (ETDEWEB)

    Müller, André; Kaestner, Bernd; Hohls, Frank; Weimann, Thomas; Pierz, Klaus; Schumacher, Hans W., E-mail: hans.w.schumacher@ptb.de [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany)

    2014-06-21

    We investigate the application of nanoscale topgates on exfoliated bilayer graphene to define quantum dot devices. At temperatures below 500 mK, the conductance underneath the grounded gates is suppressed, which we attribute to nearest neighbour hopping and strain-induced piezoelectric fields. The gate-layout can thus be used to define resistive regions by tuning into the corresponding temperature range. We use this method to define a quantum dot structure in bilayer graphene showing Coulomb blockade oscillations consistent with the gate layout.

  16. Individualized anemia management reduces hemoglobin variability in hemodialysis patients.

    Science.gov (United States)

    Gaweda, Adam E; Aronoff, George R; Jacobs, Alfred A; Rai, Shesh N; Brier, Michael E

    2014-01-01

    One-size-fits-all protocol-based approaches to anemia management with erythropoiesis-stimulating agents (ESAs) may result in undesired patterns of hemoglobin variability. In this single-center, double-blind, randomized controlled trial, we tested the hypothesis that individualized dosing of ESA improves hemoglobin variability over a standard population-based approach. We enrolled 62 hemodialysis patients and followed them over a 12-month period. Patients were randomly assigned to receive ESA doses guided by the Smart Anemia Manager algorithm (treatment) or by a standard protocol (control). Dose recommendations, performed on a monthly basis, were validated by an expert physician anemia manager. The primary outcome was the percentage of hemoglobin concentrations between 10 and 12 g/dl over the follow-up period. A total of 258 of 356 (72.5%) hemoglobin concentrations were between 10 and 12 g/dl in the treatment group, compared with 208 of 336 (61.9%) in the control group; 42 (11.8%) hemoglobin concentrations were hemoglobin concentrations were >12 g/dl in the treatment group compared with 46 (13.4%) in the control group. The median ESA dosage per patient was 2000 IU/wk in both groups. Five participants received 6 transfusions (21 U) in the treatment group, compared with 8 participants and 13 transfusions (31 U) in the control group. These results suggest that individualized ESA dosing decreases total hemoglobin variability compared with a population protocol-based approach. As hemoglobin levels are declining in hemodialysis patients, decreasing hemoglobin variability may help reduce the risk of transfusions in this population.

  17. Scattering phase functions of horizontally oriented hexagonal ice crystals

    International Nuclear Information System (INIS)

    Chen Guang; Yang Ping; Kattawar, George W.; Mishchenko, Michael I.

    2006-01-01

    Finite-difference time domain (FDTD) solutions are first compared with the corresponding T-matrix results for light scattering by circular cylinders with specific orientations. The FDTD method is then utilized to study the scattering properties of horizontally oriented hexagonal ice plates at two wavelengths, 0.55 and 12 μm. The phase functions of horizontally oriented ice plates deviate substantially from their counterparts obtained for randomly oriented particles. Furthermore, we compute the phase functions of horizontally oriented ice crystal columns by using the FDTD method along with two schemes for averaging over the particle orientations. It is shown that the phase functions of hexagonal ice columns with horizontal orientations are not sensitive to the rotation about the principal axes of the particles. Moreover, hexagonal ice crystals and circular cylindrical ice particles have similar optical properties, particularly, at a strongly absorbing wavelength, if the two particle geometries have the same length and aspect ratio defined as the ratio of the radius or semi-width of the cross section of a particle to its length. The phase functions for the two particle geometries are slightly different in the case of weakly absorbing plates with large aspect ratios. However, the solutions for circular cylinders agree well with their counterparts for hexagonal columns

  18. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  19. Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors

    Directory of Open Access Journals (Sweden)

    Thai Phung

    2011-01-01

    Full Text Available To identify materials suitable as membrane supports for ion channel biosensors, six filter materials of varying hydrophobicity, tortuosity, and thickness were examined for their ability to support bilayer lipid membranes as determined by electrical impedance spectroscopy. Bilayers supported by hydrophobic materials (PTFE, polycarbonate, nylon, and silanised silver had optimal resistance (14–19 GΩ and capacitance (0.8–1.6 μF values whereas those with low hydrophobicity did not form BLMs (PVDF or were short-lived (unsilanised silver. The ability of ion channels to function in BLMs was assessed using a method recently reported to improve the efficiency of proteoliposome incorporation into PTFE-supported bilayers. Voltage-gated sodium channel activation by veratridine and inhibition by saxitoxin showed activity for PTFE, nylon, and silanised silver, but not polycarbonate. Bilayers on thicker, more tortuous, and hydrophobic materials produced higher current levels. Bilayers that self-assembled on PTFE filters were the longest lived and produced the most channel activity using this method.

  20. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    International Nuclear Information System (INIS)

    Auth, Thorsten; Safran, S A; Gov, Nir S

    2007-01-01

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton

  1. The interaction of 2,3-diphosphoglycerate with various human hemoglobins

    Science.gov (United States)

    Bunn, H. Franklin; Briehl, Robin W.

    1970-01-01

    Oxygen equilibria were measured on a number of human hemoglobins, which had been “stripped” of organic phosphates and isolated by column chromatography. In the presence of 2 × 10-4 M 2,3-diphosphoglycerate (2,3-DPG), the P50 of hemoglobins A, A2, S, and C increased about twofold, signifying a substantial and equal decrease in oxygen affinity. Furthermore, hemoglobins Chesapeake and MMilwaukee-1 which have intrinsically high and low oxygen affinities, respectively, also showed a twofold increase in P50 in the presence of 2 × 10-4 M 2,3-DPG. In comparison to these, hemoglobins AIC and F were less reactive with 2,3-DPG while hemoglobin FI showed virtually no reactivity. The N-terminal amino of each β-chain of hemoglobin AIC is linked to a hexose. In hemoglobin FI the N-terminal amino of each γ-chain is acetylated. These results suggest that the N-terminal amino groups of the non-α-chains are involved in the binding of 2,3-DPG to hemoglobin. PMID:5422014

  2. Assessment of bilayer silicene to probe as quantum spin and valley Hall effect

    Science.gov (United States)

    Rehman, Majeed Ur; Qiao, Zhenhua

    2018-02-01

    Silicene takes precedence over graphene due to its buckling type structure and strong spin orbit coupling. Motivated by these properties, we study the silicene bilayer in the presence of applied perpendicular electric field and intrinsic spin orbit coupling to probe as quantum spin/valley Hall effect. Using analytical approach, we calculate the spin Chern-number of bilayer silicene and then compare it with monolayer silicene. We reveal that bilayer silicene hosts double spin Chern-number as compared to single layer silicene and therefore accordingly has twice as many edge states in contrast to single layer silicene. In addition, we investigate the combined effect of intrinsic spin orbit coupling and the external electric field, we find that bilayer silicene, likewise single layer silicene, goes through a phase transitions from a quantum spin Hall state to a quantum valley Hall state when the strength of the applied electric field exceeds the intrinsic spin orbit coupling strength. We believe that the results and outcomes obtained for bilayer silicene are experimentally more accessible as compared to bilayer graphene, because of strong SO coupling in bilayer silicene.

  3. Step-wise potential development across the lipid bilayer under external electric fields

    Science.gov (United States)

    Majhi, Amit Kumar

    2018-04-01

    Pore formation across the bilayers under external electric field is an important phenomenon, which has numerous applications in biology and bio-engineering fields. However, it is not a ubiquitous event under all field applications. To initiate a pore in the bilayer a particular threshold electric field is required. The electric field alters the intrinsic potential distribution across the bilayer as we as it enhances total potential drop across the bilayer, which causes the pore formation. The intrinsic potential profile has a maximum peak value, which is 0.8 V and it gets enhanced under application of external field, 0.43 V/nm. The peak value becomes 1.4 V when a pore appears in the bilayer and it continues to evolve as along as the external electric field remains switched on.

  4. Non-bilayer structures in mitochondrial membranes regulate ATP synthase activity.

    Science.gov (United States)

    Gasanov, Sardar E; Kim, Aleksandr A; Yaguzhinsky, Lev S; Dagda, Ruben K

    2018-02-01

    Cardiolipin (CL) is an anionic phospholipid at the inner mitochondrial membrane (IMM) that facilitates the formation of transient non-bilayer (non-lamellar) structures to maintain mitochondrial integrity. CL modulates mitochondrial functions including ATP synthesis. However, the biophysical mechanisms by which CL generates non-lamellar structures and the extent to which these structures contribute to ATP synthesis remain unknown. We hypothesized that CL and ATP synthase facilitate the formation of non-bilayer structures at the IMM to stimulate ATP synthesis. By using 1 H NMR and 31 P NMR techniques, we observed that increasing the temperature (8°C to 37°C), lowering the pH (3.0), or incubating intact mitochondria with CTII - an IMM-targeted toxin that increases the formation of immobilized non-bilayer structures - elevated the formation of non-bilayer structures to stimulate ATP synthesis. The F 0 sector of the ATP synthase complex can facilitate the formation of non-bilayer structures as incubating model membranes enriched with IMM-specific phospholipids with exogenous DCCD-binding protein of the F 0 sector (DCCD-BPF) elevated the formation of immobilized non-bilayer structures to a similar manner as CTII. Native PAGE assays revealed that CL, but not other anionic phospholipids, specifically binds to DCCD-BPF to promote the formation of stable lipid-protein complexes. Mechanistically, molecular docking studies identified two lipid binding sites for CL in DCCD-BPF. We propose a new model of ATP synthase regulation in which CL mediates the formation of non-bilayer structures that serve to cluster protons and ATP synthase complexes as a mechanism to enhance proton translocation to the F 0 sector, and thereby increase ATP synthesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Computational Design of Multi-component Bio-Inspired Bilayer Membranes

    Directory of Open Access Journals (Sweden)

    Evan Koufos

    2014-04-01

    Full Text Available Our investigation is motivated by the need to design bilayer membranes with tunable interfacial and mechanical properties for use in a range of applications, such as targeted drug delivery, sensing and imaging. We draw inspiration from biological cell membranes and focus on their principal constituents. In this paper, we present our results on the role of molecular architecture on the interfacial, structural and dynamical properties of bio-inspired membranes. We focus on four lipid architectures with variations in the head group shape and the hydrocarbon tail length. Each lipid species is composed of a hydrophilic head group and two hydrophobic tails. In addition, we study a model of the Cholesterol molecule to understand the interfacial properties of a bilayer membrane composed of rigid, single-tail molecular species. We demonstrate the properties of the bilayer membranes to be determined by the molecular architecture and rigidity of the constituent species. Finally, we demonstrate the formation of a stable mixed bilayer membrane composed of Cholesterol and one of the phospholipid species. Our approach can be adopted to design multi-component bilayer membranes with tunable interfacial and mechanical properties. We use a Molecular Dynamics-based mesoscopic simulation technique called Dissipative Particle Dynamics that resolves the molecular details of the components through soft-sphere coarse-grained models and reproduces the hydrodynamic behavior of the system over extended time scales.

  6. Prevention of intra-abdominal adhesion by bi-layer electrospun membrane.

    Science.gov (United States)

    Jiang, Shichao; Wang, Wei; Yan, Hede; Fan, Cunyi

    2013-06-04

    The aim of this study was to compare the anti-adhesion efficacy of a bi-layer electrospun fibrous membrane consisting of hyaluronic acid-loaded poly(ε-caprolactone) (PCL) fibrous membrane as the inner layer and PCL fibrous membrane as the outer layer with a single-layer PCL electrospun fibrous membrane in a rat cecum abrasion model. The rat model utilized a cecal abrasion and abdominal wall insult surgical protocol. The bi-layer and PCL membranes were applied between the cecum and the abdominal wall, respectively. Control animals did not receive any treatment. After postoperative day 14, a visual semiquantitative grading scale was used to grade the extent of adhesion. Histological analysis was performed to reveal the features of adhesion tissues. Bi-layer membrane treated animals showed significantly lower adhesion scores than control animals (p compared with the PCL membrane. Histological analysis of the bi-layer membrane treated rat rarely demonstrated tissue adhesion while that of the PCL membrane treated rat and control rat showed loose and dense adhesion tissues, respectively. Bi-layer membrane can efficiently prevent adhesion formation in abdominal cavity and showed a significantly decreased adhesion tissue formation compared with the control.

  7. Tensile and shear methods for measuring strength of bilayer tablets.

    Science.gov (United States)

    Chang, Shao-Yu; Li, Jian-Xin; Sun, Changquan Calvin

    2017-05-15

    Both shear and tensile measurement methods have been used to quantify interfacial bonding strength of bilayer tablets. The shear method is more convenient to perform, but reproducible strength data requires careful control of the placement of tablet and contact point for shear force application. Moreover, data obtained from the shear method depend on the orientation of the bilayer tablet. Although more time-consuming to perform, the tensile method yields data that are straightforward to interpret. Thus, the tensile method is preferred in fundamental bilayer tableting research to minimize ambiguity in data interpretation. Using both shear and tensile methods, we measured the mechanical strength of bilayer tablets made of several different layer combinations of lactose and microcrystalline cellulose. We observed a good correlation between strength obtained by the tensile method and carefully conducted shear method. This suggests that the shear method may be used for routine quality test of bilayer tablets during manufacturing because of its speed and convenience, provided a protocol for careful control of the placement of the tablet interface, tablet orientation, and blade is implemented. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    International Nuclear Information System (INIS)

    Han, Yu; Jiang, Xiaofeng; Wang, Dezhong

    2014-01-01

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times

  9. CMFD and GPU acceleration on method of characteristics for hexagonal cores

    Energy Technology Data Exchange (ETDEWEB)

    Han, Yu, E-mail: hanyu1203@gmail.com [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Xiaofeng [Shanghai NuStar Nuclear Power Technology Co., Ltd., No. 81 South Qinzhou Road, XuJiaHui District, Shanghai 200000 (China); Wang, Dezhong [School of Nuclear Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

    2014-12-15

    Highlights: • A merged hex-mesh CMFD method solved via tri-diagonal matrix inversion. • Alternative hardware acceleration of using inexpensive GPU. • A hex-core benchmark with solution to confirm two acceleration methods. - Abstract: Coarse Mesh Finite Difference (CMFD) has been widely adopted as an effective way to accelerate the source iteration of transport calculation. However in a core with hexagonal assemblies there are non-hexagonal meshes around the edges of assemblies, causing a problem for CMFD if the CMFD equations are still to be solved via tri-diagonal matrix inversion by simply scanning the whole core meshes in different directions. To solve this problem, we propose an unequal mesh CMFD formulation that combines the non-hexagonal cells on the boundary of neighboring assemblies into non-regular hexagonal cells. We also investigated the alternative hardware acceleration of using graphics processing units (GPU) with graphics card in a personal computer. The tool CUDA is employed, which is a parallel computing platform and programming model invented by the company NVIDIA for harnessing the power of GPU. To investigate and implement these two acceleration methods, a 2-D hexagonal core transport code using the method of characteristics (MOC) is developed. A hexagonal mini-core benchmark problem is established to confirm the accuracy of the MOC code and to assess the effectiveness of CMFD and GPU parallel acceleration. For this benchmark problem, the CMFD acceleration increases the speed 16 times while the GPU acceleration speeds it up 25 times. When used simultaneously, they provide a speed gain of 292 times.

  10. Porphyromonas endodontalis binds, reduces and grows on human hemoglobin.

    Science.gov (United States)

    Zerr, M; Drake, D; Johnson, W; Cox, C D

    2001-08-01

    Porphyromonas endodontalis is a black-pigmented, obligate anaerobic rod-shaped bacterium implicated as playing a major role in endodontic infections. We have previously shown that P. endodontalis requires the porphyrin nucleus, preferably supplied as hemoglobin, as a growth supplement. The bacteria also actively transport free iron, although this activity does not support growth in the absence of a porphyrin source. The purpose of this study was to further investigate the binding and subsequent utilization of human hemoglobin by P. endodontalis. P. endodontalis binds hemoglobin and reduces the Fe(III) porphyrin, resulting in a steady accumulation of ferrous hemoglobin. Reduction of methemoglobin was similar to the extracellular reduction of nitrobluetetrazolium in the presence of oxidizable substrate. Turbidimetric and viable cell determinations showed that P. endodontalis grew when supplied only hemoglobin. Therefore, we conclude that hemoglobin appears to serve as a sole carbon and nitrogen source, and that these bacteria reduce extracellular compounds at the expense of oxidized substrates.

  11. Hexagonal OsB{sub 2}: Sintering, microstructure and mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Zhilin [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Lugovy, Mykola [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Institute for Problems of Materials Science, 3 Krzhizhanivskii Str., Kyiv 03142 (Ukraine); Orlovskaya, Nina, E-mail: Nina.Orlovskaya@ucf.edu [Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816 (United States); Graule, Thomas; Kuebler, Jakob [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for High Performance Ceramics, CH-8600 Dubendorf (Switzerland); Mueller, Martin [Laboratory of Mechanical Metallurgy, EPFL, CH-1015 Lausanne (Switzerland); Gao, Huili [Department of Mechanical Engineering, Texas A& M University, College Station, TX 77843 (United States); Radovic, Miladin [Department of Materials Science and Engineering, Texas A& M University, College Station, TX 77843 (United States); Cullen, David A. [Materials Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2015-06-15

    Highlights: • ReB{sub 2}-type hexagonal OsB{sub 2} powder has been densified by spark plasma sintering. • The sintered OsB{sub 2} contains ∼80 wt.% hexagonal and ∼20 wt.% orthorhombic phases. • The average grain size of the sintered OsB{sub 2} sample was 0.56 ± 0.26 μm. • H = 31 ± 9 GPa and E = 574 ± 112 GPa measured by nanoindentation. - Abstract: The metastable high pressure ReB{sub 2}-type hexagonal OsB{sub 2} bulk ceramics was produced by spark plasma sintering. The phase composition, microstructure, and mechanical behavior of the sintered OsB{sub 2} were studied by X-ray diffraction, optical microscopy, TEM, SEM, EDS, and nanoindentation. The produced ceramics was rather porous and contained a mixture of hexagonal (∼80 wt.%) and orthorhombic (∼20 wt.%) phases as identified by X-ray diffraction and EBSD analysis. Two boron-rich phases, which do not contain Os, were also identified by TEM and SEM/EDS analysis. Nanoindentation measurements yielded a hardness of 31 ± 9 GPa and Young’s modulus of 574 ± 112 GPa, indicating that the material is rather hard and very stiff; however, it is very prone to crack formation and propagation, which is indicative of a very brittle nature of this material. Improvements in the sintering regime are required in order to produce dense, homogeneous and single phase hexagonal OsB{sub 2} bulk ceramics.

  12. Buckling-dependent switching behaviours in shifted bilayer germanene nanoribbons: A computational study

    Science.gov (United States)

    Arjmand, T.; Tagani, M. Bagheri; Soleimani, H. Rahimpour

    2018-01-01

    Bilayer germanene nanoribbons are investigated in different stacks like buckled and flat armchair and buckled zigzag germanene nanoribbons by performing theoretical calculations using the nonequilibrium Greens function method combined with density functional theory. In these bilayer types, the current oscillates with change of interlayer distances or intra-layer overlaps and is dependent on the type of the bilayer. Band gap of AA-stacked of shifted flat bilayer armchair germanene nanoribbon oscillates by change of interlayer distance which is in contrast to buckled bilayer armchair germanene nanoribbon. So, results show the buckling makes system tend to be a semiconductor with wide band gap. Therefore, AA-stacked of shifted flat bilayer armchair germanene nanoribbon has properties between zigzag and armchair edges, the higher current under bias voltages similar to zigzag edge and also oscillations in current like buckled armchair edges. Also, it is found that HOMO-LUMO band gap strongly affects oscillation in currents and their I-V characteristic. This kind of junction improves the switching properties at low voltages around the band gap.

  13. Post-transfusion hemoglobin values and patient blood management

    DEFF Research Database (Denmark)

    Moerman, Jan; Vermeulen, Edith; Van Mullem, Mia

    2018-01-01

    Objectives: The objective of this retrospective study was to evaluate the added value of communicating post-transfusion hemoglobin values to clinicians as a strategy to improve RBC utilization in a 500-bed hospital. Methods: The total number of RBC transfusions, the mean number of RBC units...... transfused per patient, the mean pre- and post-transfusion hemoglobin values, the ratio of patients transfused and the ratio of patients with a post-transfusion hemoglobin > 10.5 g/dL were calculated per service and per department for six months. The data were reported to each service and compared...... with the data of the department as peer group. The impact of this communication strategy was evaluated in the following six months. Results: In the six months pre-intervention, the mean post-transfusion hemoglobin value was 9.2 g/dL. Post-transfusion hemoglobin was > 10.5 g/dL in 13.4% of patients (112...

  14. Effect of free cholesterol on incorporation of triolein in phospholipid bilayers

    International Nuclear Information System (INIS)

    Spooner, P.J.R.; Small, D.M.

    1987-01-01

    Triacylglycerols are the major substrates for lipolytic enzymes that act at the surface of emulsion-like particles such as triglyceride-rich lipoproteins, chylomicrons, and intracellular lipid droplets. This study examines the effect of cholesterol on the solubility of a triacylglycerol, triolein, in phospholipid surfaces. Solubilities of [carbonyl- 13 C] triolein in phospholipid bilayer vesicles containing between 0 and 50 mol % free cholesterol, prepared by cosonication, were measured by 13 C NMR. The carbonyl resonances from bilayer-incorporated triglyceride were shifted downfield in the 13 C NMR spectra from those corresponding to excess, nonincorporated material. This enabled solubilities to be determined directly from carbonyl peak intensities at most cholesterol concentration. The bilayer solubility of triolein was inversely proportional to the cholesterol/phospholipid mole ratio. In pure phospholipid vesicles the triolein solubility was 2.2 mol %. The triglyceride incorporation decreased to 1.1 mol % at a cholesterol/phospholipid mole ratio of 0.5, and at a mole ratio of 1.0 for the bilayer lipids, the triolein solubility was reduced to just 0.15 mol %. The effects of free cholesterol were more pronounced and progressive than observed previously on the bilayer solubility of cholestery oleate. As with cholesteryl oleate, they suggest that cholesterol also displaces solubilized triglyceride to deeper regions of the bilayer

  15. Composition Dependence of Water Permeation Across Multicomponent Gel-Phase Bilayers

    NARCIS (Netherlands)

    Hartkamp, R.M.; Moore, Timothy C.; Iacovella, Christopher R.; Thompson, Michael A.; Bulsara, Pallav A.; Moore, David J.; McCabe, Clare

    2018-01-01

    The permeability of multicomponent phospholipid bilayers in the gel phase is investigated via molecular dynamics simulation. The physical role of the different molecules is probed by comparing multiple mixed-component bilayers containing distearylphosphatidylcholine (DSPC) with varying amounts of

  16. Hemoglobin affinity in Andean rodents

    Directory of Open Access Journals (Sweden)

    HRVOJ OSTOJIC

    2002-01-01

    Full Text Available Blood hemoglobin oxygen affinity (P50 was measured in three Andean species and in the laboratory rat (control, all raised near sea level. Chinchilla lanigera (Molina, 1792 has an altitudinal habitat range from low Andean slopes up to 3000 m., while Chinchilla brevicaudata (Waterhouse, 1848 has an altitudinal range from 3000 to 5000 m. The laboratory type guinea pig, wild type guinea pig (Cavia porcellus, (Waterhouse, 1748, and laboratory rat (Rattus norvegicus were also raised at sea level. The Andean species had high hemoglobin oxygen affinities (low P50 compared with the rat. Chinchilla brevicaudata had a higher affinity than Chinchilla lanigera. The wild type guinea pig had a higher affinity than the laboratory type. As has been shown in other species, this is another example of an inverse correlation between the altitude level and the P50 values. This is the first hemoglobin oxygen affinity study in Chinchilla brevicaudata.

  17. Hexagonal undersampling for faster MRI near metallic implants.

    Science.gov (United States)

    Sveinsson, Bragi; Worters, Pauline W; Gold, Garry E; Hargreaves, Brian A

    2015-02-01

    Slice encoding for metal artifact correction acquires a three-dimensional image of each excited slice with view-angle tilting to reduce slice and readout direction artifacts respectively, but requires additional imaging time. The purpose of this study was to provide a technique for faster imaging around metallic implants by undersampling k-space. Assuming that areas of slice distortion are localized, hexagonal sampling can reduce imaging time by 50% compared with conventional scans. This work demonstrates this technique by comparisons of fully sampled images with undersampled images, either from simulations from fully acquired data or from data actually undersampled during acquisition, in patients and phantoms. Hexagonal sampling is also shown to be compatible with parallel imaging and partial Fourier acquisitions. Image quality was evaluated using a structural similarity (SSIM) index. Images acquired with hexagonal undersampling had no visible difference in artifact suppression from fully sampled images. The SSIM index indicated high similarity to fully sampled images in all cases. The study demonstrates the ability to reduce scan time by undersampling without compromising image quality. © 2014 Wiley Periodicals, Inc.

  18. Modeling constrained sintering of bi-layered tubular structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Kothanda Ramachandran, Dhavanesan; Ni, De Wei

    2015-01-01

    Constrained sintering of tubular bi-layered structures is being used in the development of various technologies. Densification mismatch between the layers making the tubular bi-layer can generate stresses, which may create processing defects. An analytical model is presented to describe the densi...... and thermo-mechanical analysis. Results from the analytical model are found to agree well with finite element simulations as well as measurements from sintering experiment....

  19. Controlled release from bilayer-decorated magnetoliposomes via electromagnetic heating.

    Science.gov (United States)

    Chen, Yanjing; Bose, Arijit; Bothun, Geoffrey D

    2010-06-22

    Nanoscale assemblies that can be activated and controlled through external stimuli represent a next stage in multifunctional therapeutics. We report the formation, characterization, and release properties of bilayer-decorated magnetoliposomes (dMLs) that were prepared by embedding small hydrophobic SPIO nanoparticles at different lipid molecule to nanoparticle ratios within dipalmitoylphosphatidylcholine (DPPC) bilayers. The dML structure was examined by cryogenic transmission electron microscopy and differential scanning calorimetry, and release was examined by carboxyfluorescein leakage. Nanoparticle heating using alternating current electromagnetic fields (EMFs) operating at radio frequencies provided selective release of the encapsulated molecule at low nanoparticle concentrations and under physiologically acceptable EMF conditions. Without radio frequency heating, spontaneous leakage from the dMLs decreased with increasing nanoparticle loading, consistent with greater bilayer stability and a decrease in the effective dML surface area due to aggregation. With radio frequency heating, the initial rate and extent of leakage increased significantly as a function of nanoparticle loading and electromagnetic field strength. The mechanism of release is attributed to a combination of bilayer permeabilization and partial dML rupture.

  20. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    DEFF Research Database (Denmark)

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya

    2017-01-01

    , and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surfacespecific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice...

  1. Fabrication of oriented wrinkles on polydopamine/polystyrene bilayer films.

    Science.gov (United States)

    Wang, Rong; Long, Yuhua; Zhu, Tang; Guo, Jing; Cai, Chao; Zhao, Ning; Xu, Jian

    2017-07-15

    Wrinkles exist widely in nature and our life. In this paper, wrinkles on polydopamine (PDA)/polystyrene (PS) bilayer films were formed by thermal annealing due to the different thermal coefficients of expansion of each layer. The factors that influenced the dimensions of wrinkles were studied. We found that oriented wrinkles could be formed if the bilayer films were patterned with micro-grooves, and the degree of the orientation depended on the thickness of the PDA and the dimensions of the grooves. Combined with the strong adhesion, biocompatibility and reactivity of PDA, the oriented wrinkles on PDA/PS patterned bilayers may find potential application in diffraction gratings, optical sensors and microfluidic devices. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Modulated phases of phospholipid bilayers induced by tocopherols.

    Science.gov (United States)

    Kamal, Md Arif; Raghunathan, V A

    2012-11-01

    The influence of α-, γ- and δ-tocopherols on the structure and phase behavior of dipalmitoyl phosphatidylcholine (DPPC) bilayers has been determined from X-ray diffraction studies on oriented multilayers. In all the three cases the main-transition temperature (T(m)) of DPPC was found to decrease with increasing tocopherol concentration up to around 25 mol%. Beyond this the main transition is suppressed in the case of γ-tocopherol, whereas T(m) becomes insensitive to composition in the other two cases. The pre-transition is found to be suppressed over a narrow tocopherol concentration range between 7.5 and 10 mol% in DPPC-γ-tocopherol and DPPC-δ-tocopherol bilayers, and the ripple phase occurs down to the lowest temperature studied. In all the three cases a modulated phase is observed above a tocopherol concentration of about 10 mol%, which is similar to the P(β) phase reported in DPPC-cholesterol bilayers. This phase is found to occur even in excess water conditions at lower tocopherol concentrations, and consists of bilayers with periodic height modulation. These results indicate the ability of tocopherols to induce local curvature in membranes, which could be important for some of their biological functions. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Twisted Bilayer Graphene. Interlayer configuration and magnetotransport signatures

    Energy Technology Data Exchange (ETDEWEB)

    Rode, Johannes C.; Smirnov, Dmitri; Belke, Christopher; Schmidt, Hennrik; Haug, Rolf J. [Institut fuer Festkoerperphysik, Hannover (Germany)

    2017-11-15

    Twisted Bilayer Graphene may be viewed as very first representative of the now booming class of artificially layered 2D materials. Consisting of two sheets from the same structure and atomic composition, its decisive degree of freedom lies in the rotation between crystallographic axes in the individual graphene monolayers. Geometrical consideration finds angle-dependent Moire patterns as well as commensurate superlattices of opposite sublattice exchange symmetry. Beyond the approach of rigidly interposed lattices, this review takes focus on the evolving topic of lattice corrugation and distortion in response to spatially varying lattice registry. The experimental approach to twisted bilayers requires a basic control over preparation techniques; important methods are summarized and extended on in the case of bilayers folded from monolayer graphene via AFM nanomachining. Central morphological parameters to the twisted bilayer, rotational mismatch and interlayer separation are studied in a broader base of samples. Finally, experimental evidence for a number of theoretically predicted, controversial electronic scenarios are reviewed; magnetotransport signatures are discussed in terms of Fermi velocity, van Hove singularities and Berry phase and assessed with respect to the underlying experimental conditions, thereby referring back to the initially considered variations in relaxed lattice structure. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Examining the origins of the hydration force between lipid bilayers using all-atom simulations.

    Science.gov (United States)

    Gentilcore, Anastasia N; Michaud-Agrawal, Naveen; Crozier, Paul S; Stevens, Mark J; Woolf, Thomas B

    2010-05-01

    Using 237 all-atom double bilayer simulations, we examined the thermodynamic and structural changes that occur as a phosphatidylcholine lipid bilayer stack is dehydrated. The simulated system represents a micropatch of lipid multilayer systems that are studied experimentally using surface force apparatus, atomic force microscopy and osmotic pressure studies. In these experiments, the hydration level of the system is varied, changing the separation between the bilayers, in order to understand the forces that the bilayers feel as they are brought together. These studies have found a curious, strongly repulsive force when the bilayers are very close to each other, which has been termed the "hydration force," though the origins of this force are not clearly understood. We computationally reproduce this repulsive, relatively free energy change as bilayers come together and make qualitative conclusions as to the enthalpic and entropic origins of the free energy change. This analysis is supported by data showing structural changes in the waters, lipids and salts that have also been seen in experimental work. Increases in solvent ordering as the bilayers are dehydrated are found to be essential in causing the repulsion as the bilayers come together.

  5. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    Science.gov (United States)

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  6. Biphasic oxidation of oxy-hemoglobin in bloodstains

    NARCIS (Netherlands)

    Bremmer, Rolf H.; de Bruin, Daniel M.; de Joode, Maarten; Buma, Wybren Jan; van Leeuwen, Ton G.; Aalders, Maurice C. G.

    2011-01-01

    In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO(2)) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions of

  7. Biphasic Oxidation of Oxy-Hemoglobin in Bloodstains

    NARCIS (Netherlands)

    Bremmer, R.H.; de Bruin, D.M.; de Joode, M.; Buma, W.J.; van Leeuwen, T.G.; Aalders, M.C.G.

    2011-01-01

    Background In forensic science, age determination of bloodstains can be crucial in reconstructing crimes. Upon exiting the body, bloodstains transit from bright red to dark brown, which is attributed to oxidation of oxy-hemoglobin (HbO2) to met-hemoglobin (met-Hb) and hemichrome (HC). The fractions

  8. New approach for direct chemical synthesis of hexagonal Co nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Frank M., E-mail: fabel@udel.edu [Physics and Astronomy, University of Delaware (United States); Tzitzios, Vasilis [Institute of Nanoscience and Nanotechnology, NCSR, Demokritos (Greece); Hadjipanayis, George C. [Physics and Astronomy, University of Delaware (United States)

    2016-02-15

    In this paper, we explore the possibility of producing hexagonal Cobalt nanoparticles, with high saturation magnetization by direct chemical synthesis. The nanoparticles were synthesized by reduction of anhydrous cobalt (II) chloride by NaBH{sub 4} in tetraglyme at temperatures in the range of 200–270 °C under a nitrogen–hydrogen atmosphere. The reactions were done at high temperatures to allow for the formation of as-made hexagonal cobalt. The size of the particles was controlled by the addition of different surfactants. The best magnetic properties so far were obtained on spherical hexagonal Co nanoparticles with an average size of 45 nm, a saturation magnetization of 143 emu/g and coercivity of 500 Oe. the saturation magnetization and coercivity were further improved by annealing the Co nanoparticles leading to saturation magnetization of 160 emu/g and coercivity of 540 Oe. - Highlights: • We synthesized hexagonal cobalt nanoparticles by a new wet chemical method. • We considered the effects of different surfactants on particles magnetic properties. • The as-made Co nanoparticles had magnetic properties of 143 emu/g and 500 Oe. • After annealing magnetic properties of 160 emu/g and 540 Oe were obtained.

  9. Kadar Hemoglobin dan Kecerdasan Intelektual Anak

    Directory of Open Access Journals (Sweden)

    Yuni Kusmiyati

    2013-10-01

    Full Text Available Kualitas sumber daya manusia dipengaruhi oleh inteligensi anak. Skor kecerdasan intelektual yang tidak menetap pada usia tertentu dapat berubah karena faktor genetik, gizi, dan lingkungan. Tujuan penelitian ini adalah mengetahui hubungan kadar hemoglobin dengan kecerdasan intelektual anak. Penelitian observasional dengan desain potong lintang ini dilakukan pada populasi siswa kelas VI Sekolah Dasar Negeri Giwangan Yogyakarta, tahun 2013. Penarikan sampel dilakukan dengan metode simple random sampling terhadap 37 sampel siswa. Instrumen untuk mengukur kecerdasan intelektual dengan Cultural Fair Intelligence Quotient Test yang dirancang untuk meminimalkan pengaruh kultural dengan memperhatikan prosedur evaluasi, instruksi, konten isi, dan respons peserta. Tes dilakukan oleh Biro Psikologi Universitas Ahmad Dahlan Yogyakarta, kadar hemoglobin diukur menggunakan Portable Hemoglobin Digital Analyzer Easy Touch secara digital.Variabel luar indeks massa tubuh diukur langsung menggunakan parameter tinggi badan dan berat badan. Analisis menggunakan uji regresi linier. Hasil penelitian menunjukkan indeks massa tubuh tidak berhubungan dengan kecerdasan intelektual (nilai p = 0,052. Anemia berhubungan cukup dengan kecerdasan anak (r = 0,491 dan berpola positif, semakin tinggi kadar hemoglobin semakin tinggi kecerdasan intelektual anak. Nilai koefisien determinasi 0,241 menerangkan bahwa 24,1% variasi anemia cukup baik untuk menjelaskan variabel kecerdasan intelektual. Ada hubungan antara kadar hemoglobin dengan kecerdasan intelektual (nilai p = 0,002. Quality of human resources is influenced by the child’s intelligent. Intelligence Quotient (IQ score will not settle at a certain age and can change due to genetic factors, nutrition, and the environment. The objective is known relationship of anemia with IQ to child. Method of observational study with cross sectional design. Population are students of class VI elementary school of Giwangan Yogyakarta in

  10. Wavepacket revivals in monolayer and bilayer graphene rings.

    Science.gov (United States)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-06-12

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking.

  11. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    OpenAIRE

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-01-01

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward o...

  12. Receptor targeting of hemoglobin mediated by the haptoglobins

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Moestrup, Søren Kragh

    2009-01-01

    Haptoglobin, the haptoglobin-hemoglobin receptor CD163, and the heme oxygenase-1 are proteins with a well-established function in the clearance and metabolism of "free" hemoglobin released during intravascular hemolysis. This scavenging system counteracts the potentially harmful oxidative and NO......-scavenging effects associated with "free" hemoglobin, and, furthermore, elicits an anti-inflammatory response. In the late primate evolution, haptoglobin variants with distinct functions have arisen, including haptoglobin polymers and the haptoglobin-related protein. The latter associates with a subspecies of high......-density lipoprotein (HDL) particles playing a crucial role in the innate immunity against certain trypanosome parasites. Recent studies have elucidated this fairly sophisticated immune defense mechanism that takes advantage of a trypanosomal haptoglobin-hemoglobin receptor evolved to supply the parasite with heme...

  13. Cell volume regulation in hemoglobin CC and AA erythrocytes

    International Nuclear Information System (INIS)

    Berkowitz, L.R.; Orringer, E.P.

    1987-01-01

    Swelling hemoglobin CC erythrocytes stimulates a ouabain-insensitive K flux that restores original cell volume. Studies were performed with the K analog, 86 Rb. This volume regulatory pathway was characterized for its anion dependence, sensitivity to loop diuretics, and requirement for Na. The swelling-induced K flux was eliminated if intracellular chloride was replaced by nitrate and both swelling-activated K influx and efflux were partially inhibited by 1 mM furosemide or bumetanide. K influx in swollen hemoglobin CC cells was not diminished when Na in the incubation medium was replaced with choline, indicating Na independence of the swelling-induced flux. Identical experiments with hemoglobin AA cells also demonstrated a swelling-induced increase in K flux, but the magnitude and duration of this increase were considerably less than that seen with hemoglobin CC cells. The increased K flux in hemoglobin AA cells was likewise sensitive to anion replacement and to loop diuretics and did not require the presence of Na. These data indicate that a volume-activated K pathway with similar transport characteristics exists in both hemoglobin CC and AA red cells

  14. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...... and rhabdomyolysis), specific high capacity scavenging systems have evolved in the mammalian organism. Two major systems, which essentially function in a similar way by means of a circulating latent plasma carrier protein that upon ligand binding is recognized by a receptor, are represented by a) the hemoglobin...

  15. Gas Separation through Bilayer Silica, the Thinnest Possible Silica Membrane.

    Science.gov (United States)

    Yao, Bowen; Mandrà, Salvatore; Curry, John O; Shaikhutdinov, Shamil; Freund, Hans-Joachim; Schrier, Joshua

    2017-12-13

    Membrane-based gas separation processes can address key challenges in energy and environment, but for many applications the permeance and selectivity of bulk membranes is insufficient for economical use. Theory and experiment indicate that permeance and selectivity can be increased by using two-dimensional materials with subnanometer pores as membranes. Motivated by experiments showing selective permeation of H 2 /CO mixtures through amorphous silica bilayers, here we perform a theoretical study of gas separation through silica bilayers. Using density functional theory calculations, we obtain geometries of crystalline free-standing silica bilayers (comprised of six-membered rings), as well as the seven-, eight-, and nine-membered rings that are observed in glassy silica bilayers, which arise due to Stone-Wales defects and vacancies. We then compute the potential energy barriers for gas passage through these various pore types for He, Ne, Ar, Kr, H 2 , N 2 , CO, and CO 2 gases, and use the data to assess their capability for selective gas separation. Our calculations indicate that crystalline bilayer silica, which is less than a nanometer thick, can be a high-selectivity and high-permeance membrane material for 3 He/ 4 He, He/natural gas, and H 2 /CO separations.

  16. Calculations of the electrostatic potential adjacent to model phospholipid bilayers.

    Science.gov (United States)

    Peitzsch, R M; Eisenberg, M; Sharp, K A; McLaughlin, S

    1995-03-01

    We used the nonlinear Poisson-Boltzmann equation to calculate electrostatic potentials in the aqueous phase adjacent to model phospholipid bilayers containing mixtures of zwitterionic lipids (phosphatidylcholine) and acidic lipids (phosphatidylserine or phosphatidylglycerol). The aqueous phase (relative permittivity, epsilon r = 80) contains 0.1 M monovalent salt. When the bilayers contain equipotential surfaces are discrete domes centered over the negatively charged lipids and are approximately twice the value calculated using Debye-Hückel theory. When the bilayers contain > 25% acidic lipid, the -25 mV equipotential profiles are essentially flat and agree well with the values calculated using Gouy-Chapman theory. When the bilayers contain 100% acidic lipid, all of the equipotential surfaces are flat and agree with Gouy-Chapman predictions (including the -100 mV surface, which is located only 1 A from the outermost atoms). Even our model bilayers are not simple systems: the charge on each lipid is distributed over several atoms, these partial charges are non-coplanar, there is a 2 A ion-exclusion region (epsilon r = 80) adjacent to the polar headgroups, and the molecular surface is rough. We investigated the effect of these four factors using smooth (or bumpy) epsilon r = 2 slabs with embedded point charges: these factors had only minor effects on the potential in the aqueous phase.

  17. Landau levels in biased graphene structures with monolayer-bilayer interfaces

    Science.gov (United States)

    Mirzakhani, M.; Zarenia, M.; Vasilopoulos, P.; Ketabi, S. A.; Peeters, F. M.

    2017-09-01

    The electron energy spectrum in monolayer-bilayer-monolayer and in bilayer-monolayer-bilayer graphene structures is investigated and the effects of a perpendicular magnetic field and electric bias are studied. Different types of monolayer-bilayer interfaces are considered as zigzag (ZZ) or armchair (AC) junctions which modify considerably the bulk Landau levels (LLs) when the spectra are plotted as a function of the center coordinate of the cyclotron orbit. Far away from the two interfaces, one obtains the well-known LLs for extended monolayer or bilayer graphene. The LL structure changes significantly at the two interfaces or junctions where the valley degeneracy is lifted for both types of junctions, especially when the distance between them is approximately equal to the magnetic length. Varying the nonuniform bias and the width of this junction-to-junction region in either structure strongly influence the resulting spectra. Significant differences exist between ZZ and AC junctions in both structures. The densities of states (DOSs) for unbiased structures are symmetric in energy whereas those for biased structures are asymmetric. An external bias creates interface LLs in the gaps between the LLs of the unbiased system in which the DOS can be quite small. Such a pattern of LLs can be probed by scanning tunneling microscopy.

  18. 21 CFR 864.7455 - Fetal hemoglobin assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Fetal hemoglobin assay. 864.7455 Section 864.7455 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7455 Fetal hemoglobin...

  19. Hexagon OPE resummation and multi-Regge kinematics

    Energy Technology Data Exchange (ETDEWEB)

    Drummond, J.M. [School of Physics & Astronomy, University of Southampton,Highfield, Southampton, SO17 1BJ (United Kingdom); Theory Division, Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); LAPTh, CNRS, Université de Savoie,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex (France); Papathanasiou, G. [LAPTh, CNRS, Université de Savoie,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux Cedex (France)

    2016-02-29

    We analyse the OPE contribution of gluon bound states in the double scaling limit of the hexagonal Wilson loop in planar N=4 super Yang-Mills theory. We provide a systematic procedure for perturbatively resumming the contributions from single-particle bound states of gluons and expressing the result order by order in terms of two-variable polylogarithms. We also analyse certain contributions from two-particle gluon bound states and find that, after analytic continuation to the 2→4 Mandelstam region and passing to multi-Regge kinematics (MRK), only the single-particle gluon bound states contribute. From this double-scaled version of MRK we are able to reconstruct the full hexagon remainder function in MRK up to five loops by invoking single-valuedness of the results.

  20. Phase separation in lipid bilayers triggered by low pH

    International Nuclear Information System (INIS)

    Suresh, Swetha; Edwardson, J. Michael

    2010-01-01

    Research highlights: → Lipid bilayers have been imaged by atomic force microscopy (AFM). → At pH 5 phase separation occurs in lipid bilayers containing mixed acyl chains. → Phase separation does not occur when lipids have only unsaturated chains. → Phase separation might drive protein clustering during endocytosis. -- Abstract: Endocytosis involves the capture of membrane from the cell surface in the form of vesicles, which become rapidly acidified to about pH 5. Here we show using atomic force microscopy (AFM) imaging that this degree of acidification triggers phase separation in lipid bilayers containing mixed acyl chains (e.g. palmitoyl/oleoyl) or complex mixtures (e.g. total brain extract) but not in bilayers containing only lipids with unsaturated chains (e.g. dioleoyl). Since mixed-chain lipids are major constituents of the outer leaflet of the plasma membrane, the type of phase separation reported here might support protein clustering and signaling during endocytosis.

  1. Tunneling Spectroscopy of Quantum Hall States in Bilayer Graphene

    Science.gov (United States)

    Wang, Ke; Harzheim, Achim; Watanabe, Kenji; Taniguchi, Takashi; Kim, Philip

    In the quantum Hall (QH) regime, ballistic conducting paths along the physical edges of a sample appear, leading to quantized Hall conductance and vanishing longitudinal magnetoconductance. These QH edge states are often described as ballistic compressible strips separated by insulating incompressible strips, the spatial profiles of which can be crucial in understanding the stability and emergence of interaction driven QH states. In this work, we present tunneling transport between two QH edge states in bilayer graphene. Employing locally gated device structure, we guide and control the separation between the QH edge states in bilayer graphene. Using resonant Landau level tunneling as a spectroscopy tool, we measure the energy gap in bilayer graphene as a function of displacement field and probe the emergence and evolution of incompressible strips.

  2. Flexural phonon limited phonon drag thermopower in bilayer graphene

    Science.gov (United States)

    Ansari, Mohd Meenhaz; Ashraf, SSZ

    2018-05-01

    We investigate the phonon drag thermopower from flexural phonons as a function of electron temperature and carrier concentration in the Bloch-Gruneisen regime in non-strained bilayer graphene using Boltzmann transport equation approach. The flexural phonons are expected to be the major source of intrinsic scattering mechanism in unstrained bilayer graphene due to their large density. The flexural phonon modes dispersion relation is quadratic so these low energy flexural phonons abound at room temperature and as a result deform the bilayer graphene sheet in the out of plane direction and affects the transport properties. We also produce analytical result for phonon-drag thermopower from flexural phonons and find that phonon-drag thermopower depicts T2 dependence on temperature and n-1 on carrier concentration.

  3. Dynamics, Surface Electrostatics and Phase Properties of Nanoscale Curved Lipid Bilayers

    Science.gov (United States)

    Koolivand, Amir

    Surface electrostatic potential of a lipid bilayer governs many vital functions of living cells. Several classes of proteins are known of exhibiting strong binding preferences to curved lipid bilayer surfaces. In this project we employed electron paramagnetic resonance (EPR) of a recently introduced phospholipid (IMTSL-PTE) bearing a pH-sensitive nitroxide covalently attached to the lipid head group to measure the surface electrostatics of the lipid membrane and nanopore-confined lipid bilayers as a function of the bilayer curvature. The pKa of the ionizable group of this lipid-based spin probe is reporting on the bilayer surface electrostatics potential by changes in the EPR spectra. Specifically, both rotational dynamics and magnetic parameters of the nitroxide are affected by the probe protonation. Effect of curvature on the surface electrostatic potential and dynamics of lipid bilayer was studied for POPG and DMPG unilamellar vesicles (ULVs). It was found that the magnitude of the negative surface electrostatic potential increased upon decrease in the vesicle diameter for the bilayers in the fluid phase; however, no significant changes were observed for DMPG ULVs in a gel phase. We speculate that biologically relevant fluid bilayer phase allows for a larger variability in the lipid packing density in the lipid polar head group region than a more ordered gel phase and it is likely that the lipid flip-flop is responsible for pH equilibration of IMTSL-PTE. The kinetic EPR study of nitroxide reduction showed that the rate of flip-flop is in the order of 10-5 s-1. The flip-flop rate constant increases when vesicle size deceases. Oxygen permeability measured by X-ban EPR decreases in higher curved vesicles---an observation that is consistent with a tighter packing in smaller vesicles. Partitioning of a small nitroxide molecule TEMPO into ULVs was measured by X-band (9 GHz) and W-band (95 GHz) EPR spectroscopy. The partitioning coefficient of this probe in the lipid

  4. Wavepacket revivals in monolayer and bilayer graphene rings

    International Nuclear Information System (INIS)

    García, Trinidad; Rodríguez-Bolívar, Salvador; Cordero, Nicolás A; Romera, Elvira

    2013-01-01

    We have studied the existence of quantum revivals in graphene quantum rings within a simplified model. The time evolution of a Gaussian-populated wavepacket shows revivals in monolayer and bilayer graphene rings. We have also studied this behavior for quantum rings in a perpendicular magnetic field. We have found that revival time is an observable that shows different values for monolayer and bilayer graphene quantum rings. In addition, the revival time shows valley degeneracy breaking. (paper)

  5. Model for the structure of the lipid bilayer

    International Nuclear Information System (INIS)

    Pastor, R.W.; Venable, R.M.; Karplus, M.

    1991-01-01

    A detailed model for the structure and dynamics of the interior of the lipid bilayer in the liquid crystal phase is presented. The model includes two classes of motion: (i) the internal dynamics of the chains, determined from Brownian dynamics simulations with a continuous version of the Marcelja mean-field potential, and (ii) noncollective reorientation (axial rotation and wobble) of the entire molecule, introduced by a cone model. The basic unit of the model is a single lipid chain with field parameters adjusted to fit the 2H order parameters and the frequency-dependent 13C NMR T1 relaxation times of dipalmitoyl phosphatidylcholine bilayers. The chain configurations obtained from the trajectory are used to construct a representation of the bilayer. The resulting lipid assembly is consistent with NMR, neutron diffraction, surface area, and density data. It indicates that a high degree of chain disorder and entanglement exists in biological membranes

  6. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Directory of Open Access Journals (Sweden)

    Phillips Ruth B

    2010-10-01

    Full Text Available Abstract Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon

  7. Genomic organization and evolution of the Atlantic salmon hemoglobin repertoire

    Science.gov (United States)

    2010-01-01

    Background The genomes of salmonids are considered pseudo-tetraploid undergoing reversion to a stable diploid state. Given the genome duplication and extensive biological data available for salmonids, they are excellent model organisms for studying comparative genomics, evolutionary processes, fates of duplicated genes and the genetic and physiological processes associated with complex behavioral phenotypes. The evolution of the tetrapod hemoglobin genes is well studied; however, little is known about the genomic organization and evolution of teleost hemoglobin genes, particularly those of salmonids. The Atlantic salmon serves as a representative salmonid species for genomics studies. Given the well documented role of hemoglobin in adaptation to varied environmental conditions as well as its use as a model protein for evolutionary analyses, an understanding of the genomic structure and organization of the Atlantic salmon α and β hemoglobin genes is of great interest. Results We identified four bacterial artificial chromosomes (BACs) comprising two hemoglobin gene clusters spanning the entire α and β hemoglobin gene repertoire of the Atlantic salmon genome. Their chromosomal locations were established using fluorescence in situ hybridization (FISH) analysis and linkage mapping, demonstrating that the two clusters are located on separate chromosomes. The BACs were sequenced and assembled into scaffolds, which were annotated for putatively functional and pseudogenized hemoglobin-like genes. This revealed that the tail-to-tail organization and alternating pattern of the α and β hemoglobin genes are well conserved in both clusters, as well as that the Atlantic salmon genome houses substantially more hemoglobin genes, including non-Bohr β globin genes, than the genomes of other teleosts that have been sequenced. Conclusions We suggest that the most parsimonious evolutionary path leading to the present organization of the Atlantic salmon hemoglobin genes involves

  8. Extension of the Mott-Gurney Law for a Bilayer Gap

    Science.gov (United States)

    Dubinov, A. E.; Kitayev, I. N.

    2018-04-01

    Steady drift states of an electron flow in a planar gap filled with a bilayer dielectric have been considered. Exact mathematical formulas have been derived that describe the distributions of the electrostatic potential and space charge limited electron flow current (extended Mott-Gurney law for a bilayer diode).

  9. Intrinsic magnetism and spontaneous band gap opening in bilayer silicene and germanene.

    Science.gov (United States)

    Wang, Xinquan; Wu, Zhigang

    2017-01-18

    It has been long sought to create magnetism out of simple non-magnetic materials, such as silicon and germanium. Here we show that intrinsic magnetism exists in bilayer silicene and germanene with no need to cut, etch, or dope. Unlike bilayer graphene, strong covalent interlayer bonding formed in bilayer silicene and germanene breaks the original π-bonding network of each layer, leaving the unbonded electrons unpaired and localized to carry magnetic moments. These magnetic moments then couple ferromagnetically within each layer while antiferromagnetically across two layers, giving rise to an infinite magnetic sheet with structural integrity and magnetic homogeneity. Furthermore, this unique magnetic ordering results in fundamental band gaps of 0.55 eV and 0.32 eV for bilayer silicene and germanene, respectively. The integration of intrinsic magnetism and spontaneous band gap opening makes bilayer silicene and germanene attractive for future nanoelectronics as well as spin-based computation and data storage.

  10. Regulation of membrane protein function by lipid bilayer elasticity—a single molecule technology to measure the bilayer properties experienced by an embedded protein

    DEFF Research Database (Denmark)

    Lundbæk, Jens August

    2008-01-01

    , regulate a number of structurally unrelated proteins in an apparently non-specific manner. It is well known that changes in the physical properties of a lipid bilayer (e.g., thickness or monolayer spontaneous curvature) can affect the function of an embedded protein. However, the role of such changes......-dependent sodium channels, N-type calcium channels and GABAA receptors, it has been shown that membrane protein function in living cells can be regulated by amphiphile induced changes in bilayer elasticity. Using the gramicidin channel as a molecular force transducer, a nanotechnology to measure the elastic...... properties experienced by an embedded protein has been developed. A theoretical and technological framework, to study the regulation of membrane protein function by lipid bilayer elasticity, has been established....

  11. High Yield Chemical Vapor Deposition Growth of High Quality Large-Area AB Stacked Bilayer Graphene

    Science.gov (United States)

    Liu, Lixin; Zhou, Hailong; Cheng, Rui; Yu, Woo Jong; Liu, Yuan; Chen, Yu; Shaw, Jonathan; Zhong, Xing; Huang, Yu; Duan, Xiangfeng

    2012-01-01

    Bernal stacked (AB stacked) bilayer graphene is of significant interest for functional electronic and photonic devices due to the feasibility to continuously tune its band gap with a vertical electrical field. Mechanical exfoliation can be used to produce AB stacked bilayer graphene flakes but typically with the sizes limited to a few micrometers. Chemical vapor deposition (CVD) has been recently explored for the synthesis of bilayer graphene but usually with limited coverage and a mixture of AB and randomly stacked structures. Herein we report a rational approach to produce large-area high quality AB stacked bilayer graphene. We show that the self-limiting effect of graphene growth on Cu foil can be broken by using a high H2/CH4 ratio in a low pressure CVD process to enable the continued growth of bilayer graphene. A high temperature and low pressure nucleation step is found to be critical for the formation of bilayer graphene nuclei with high AB stacking ratio. A rational design of a two-step CVD process is developed for the growth of bilayer graphene with high AB stacking ratio (up to 90 %) and high coverage (up to 99 %). The electrical transport studies demonstrated that devices made of the as-grown bilayer graphene exhibit typical characteristics of AB stacked bilayer graphene with the highest carrier mobility exceeding 4,000 cm2/V·s at room temperature, comparable to that of the exfoliated bilayer graphene. PMID:22906199

  12. Electronic transport of bilayer graphene with asymmetry line defects

    Science.gov (United States)

    Zhao, Xiao-Ming; Wu, Ya-Jie; Chen, Chan; Liang, Ying; Kou, Su-Peng

    2016-11-01

    In this paper, we study the quantum properties of a bilayer graphene with (asymmetry) line defects. The localized states are found around the line defects. Thus, the line defects on one certain layer of the bilayer graphene can lead to an electric transport channel. By adding a bias potential along the direction of the line defects, we calculate the electric conductivity of bilayer graphene with line defects using the Landauer-Büttiker theory, and show that the channel affects the electric conductivity remarkably by comparing the results with those in a perfect bilayer graphene. This one-dimensional line electric channel has the potential to be applied in nanotechnology engineering. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11504285, and 11404090), the Specialized Research Fund for the Doctoral Program of Higher Education, China, the Fundamental Research Funds for the Central Universities, China, the Scientific Research Program Fund of the Shaanxi Provincial Education Department, China (Grant No. 15JK1363), and the Young Talent Fund of University Association for Science and Technology in Shaanxi Province, China.

  13. Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca

    DEFF Research Database (Denmark)

    Jacobsen-Lyon, K; Jensen, Erik Østergaard; Jørgensen, Jan-Elo

    1995-01-01

    Casuarina glauca has a gene encoding hemoglobin (cashb-nonsym). This gene is expressed in a number of plant tissues. Casuarina also has a second family of hemoglobin genes (cashb-sym) expressed at a high level in the nodules that Casuarina forms in a nitrogen-fixing symbiosis with the actinomycete...... of the Casuarina gene. The finding that the nonsymbiotic Casuarina gene is also correctly expressed in L. corniculatus suggests to us that a comparable non-symbiotic hemoglobin gene will be found in legume species. Udgivelsesdato: 1995-Feb...

  14. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.; Zhang, Bei; Liu, Z. X.; Wang, Z.; Li, W.; Wu, Z. B.; Yu, R. H.; Zhang, Xixiang

    2010-01-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  15. Anomalous Hall effect in Fe/Gd bilayers

    KAUST Repository

    Xu, W. J.

    2010-04-01

    Non-monotonic dependence of anomalous Hall resistivity on temperature and magnetization, including a sign change, was observed in Fe/Gd bilayers. To understand the intriguing observations, we fabricated the Fe/Gd bilayers and single layers of Fe and Gd simultaneously. The temperature and field dependences of longitudinal resistivity, Hall resistivity and magnetization in these films have also been carefully measured. The analysis of these data reveals that these intriguing features are due to the opposite signs of Hall resistivity/or spin polarization and different Curie temperatures of Fe and Gd single-layer films. Copyright (C) EPLA, 2010

  16. Identification of a haptoglobin-hemoglobin complex in the Alaskan Least Cisco (Coregonus sardinella).

    Science.gov (United States)

    Wahl, S M; Boger, J K; Michael, V; Duffy, L K

    1992-01-01

    The hemoglobin and a hemoglobin binding protein have been characterized in the Arctic fish (Coregonus sardinella). The evolutionary significance of the hemoglobin and plasma protein differences between fish and mammals is still unresolved. Blood samples from the Alaskan Least Cisco were separated into plasma and hemoglobin fractions and the proteins in these fractions were analyzed both by alkaline agarose gel electrophoresis, by isolelectric focusing, and by capillary electrophoresis. Staining the plasma proteins gels with o-dianisidine revealed hemoglobin containing protein complexes. A hemoglobin-containing band was observed in hemolyzed plasma which did not migrate with free hemoglobin, and is believed to be hemoglobin-haptoglobin complex. Size exclusion chromatography further characterized the hemoglobin as disassociating freely into dimers, and hemoglobin-haptoglobin complex having a molecular weight greater then 200,000 daltons.

  17. New results for loop integrals. AMBRE, CSectors, hexagon

    International Nuclear Information System (INIS)

    Gluza, Janusz; Kajda, Krzysztof

    2009-03-01

    We report on the three Mathematica packages hexagon, CSectors, AMBRE. They are useful for the evaluation of one- and two-loop Feynman integrals with a dependence on several kinematical scales. These integrals are typically needed for LHC and ILC applications, but also for higher order corrections at meson factories. hexagon is a new package for the tensor reduction of one-loop 5-point and 6-point functions with rank R=3 and R=4, respectively; AMBRE is a tool for derivations of Mellin-Barnes representations; CSectors is an interface for the package sectordecomposition and allows a convenient, direct evaluation of tensor Feynman integrals. (orig.)

  18. Unconventional fractional quantum Hall effect in monolayer and bilayer graphene

    Science.gov (United States)

    Jacak, Janusz; Jacak, Lucjan

    2016-01-01

    The commensurability condition is applied to determine the hierarchy of fractional fillings of Landau levels in monolayer and in bilayer graphene. The filling rates for fractional quantum Hall effect (FQHE) in graphene are found in the first three Landau levels in one-to-one agreement with the experimental data. The presence of even denominator filling fractions in the hierarchy for FQHE in bilayer graphene is explained. Experimentally observed hierarchy of FQHE in the first and second Landau levels in monolayer graphene and in the zeroth Landau level in bilayer graphene is beyond the conventional composite fermion interpretation but fits to the presented nonlocal topology commensurability condition. PMID:27877866

  19. Radiation - induced changes in the optical properties of hemoglobin molecule

    International Nuclear Information System (INIS)

    Selim, N.S; El-Marakby, S.M.

    2009-01-01

    Adult male albino rats were exposed to different doses of gamma radiation from Cs-137 source. Hemoglobin samples were analyzed 24 hrs after irradiation. The UV-visible spectrum of hemoglobin molecule was measured in the range 200 to 700 nm. The overall spectrum of the hemoglobin molecule showed hypochromicity that increased with dose increase. To investigate the effect of radiation on the hemoglobin molecule, different parameters of the spectrum were calculated: molar absorption coefficient, absorption cross section, transition dipole moment , dipole length, the optical energy gap and activation energy for each characteristic peak. The obtained results revealed that the radiation effect can induce rearrangement of the transition dipole moments and change molecular energy levels of the hemoglobin molecule

  20. Hemoglobin levels in persons with depressive and/or anxiety disorders

    NARCIS (Netherlands)

    Lever-van Milligen, Bianca A.; Vogelzangs, Nicole; Smit, Johannes H.; Penninx, Brenda W. J. H.

    Objective: Both low and high hemoglobin levels lead to more physical diseases, and both are linked to mortality. Low hemoglobin, often classified as anemia, has also been linked to more depressive symptoms, but whether both hemoglobin extremes are associated with depressive disorder and potentially

  1. The electronic transport properties of defected bilayer sliding armchair graphene nanoribbons

    Science.gov (United States)

    Mohammadi, Amin; Haji-Nasiri, Saeed

    2018-04-01

    By applying non-equilibrium Green's functions (NEGF) in combination with tight-binding (TB) model, we investigate and compare the electronic transport properties of perfect and defected bilayer armchair graphene nanoribbons (BAGNRs) under finite bias. Two typical defects which are placed in the middle of top layer (i.e. single vacancy (SV) and stone wale (SW) defects) are examined. The results reveal that in both perfect and defected bilayers, the maximum current refers to β-AB, AA and α-AB stacking orders, respectively, since the intermolecular interactions are stronger in them. Moreover it is observed that a SV decreases the current in all stacking orders, but the effects of a SW defect is nearly unpredictable. Besides, we introduced a sequential switching behavior and the effects of defects on the switching performance is studied as well. We found that a SW defect can significantly improve the switching behavior of a bilayer system. Transmission spectrum, band structure, molecular energy spectrum and molecular projected self-consistent Hamiltonian (MPSH) are analyzed subsequently to understand the electronic transport properties of these bilayer devices which can be used in developing nano-scale bilayer systems.

  2. Design considerations for quasi-phase-matching in doubly resonant lithium niobate hexagonal microresonators

    CSIR Research Space (South Africa)

    Sono, Tleyane J

    2017-08-01

    Full Text Available Fabrication capabilities of high optical quality hexagonal superstructures by chemical etching of inverted ferroelectric domains in lithium niobate platform suggests a route for efficient implementation of compact hexagonal microcavities...

  3. Diamagnetic response in zigzag hexagonal silicene rings

    International Nuclear Information System (INIS)

    Xu, Ning; Chen, Qiao; Tian, Hongyu; Ding, Jianwen; Liu, Junfeng

    2016-01-01

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  4. Diamagnetic response in zigzag hexagonal silicene rings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ning, E-mail: nxu@ycit.cn [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Chen, Qiao [Department of Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Tian, Hongyu [Department of Physics, Yancheng Institute of Technology, Yancheng 224051 (China); Ding, Jianwen [Department of Physics, Xiangtan University, Xiangtan 411105 (China); Liu, Junfeng, E-mail: liu.jf@sustc.edu.cn [Department of Physics, South University of Science and Technology of China, Shenzhen 518055 (China)

    2016-09-16

    Highlights: • Hexagonal silicene rings possess unusually large diamagnetic moments. • The magnetic-field-driven spin-up electrons flow anticlockwise and spin-down electrons flow clockwise along the rings. • The large diamagnetic moment is the result of competition of spin-up and spin-down electrons. - Abstract: Hexagonal silicene rings with unusually large diamagnetic moments have been found in a theoretical study of the electronic and magnetic properties. In the presence of effective spin–orbit coupling, the magnetic-field-driven spin-up electrons flow anticlockwise exhibiting colossal diamagnetic moments, while the spin-down electrons flow clockwise exhibiting colossal paramagnetic moments along the rings. The large diamagnetic moment is thus the result of competition of spin-up and spin-down electrons, which can be modulated by spin–orbit coupling strength and exchange field.

  5. Manipulation of hemoglobin expression affects Arabidopsis shoot organogenesis

    DEFF Research Database (Denmark)

    Wang, Yaping; Elhiti, Mohamed; Hebelstrup, Kim

    2011-01-01

    Over the past few years non-symbiotic plant hemoglobins have been described in a variety of plant species where they fulfill several functions ranging from detoxification processes to basic aspects of plant growth and post-embryonic development. To date no information is available on the role...... of hemoglobins during invitro morphogenesis. Shoot organogenesis was induced in Arabidopsis lines constitutively expressing class 1, 2 and 3 hemoglobins (GLB1, 2 and 3) and lines in which the respective genes were either downregulated by RNAi (GLB1) or knocked out (GLB2 and GLB3). The process was executed......, 15, and 16), feed-back repressors of the cytokinin pathway, was repressed in both hemoglobin over-expressors whereas that of several Type-B ARRs (ARR2, 12, and 13), transcription activators of cytokinin-responsive genes, was induced. Such changes enhanced the sensitivity of the root explants...

  6. Cationic Dimyristoylphosphatidylcholine and Dioleoyloxytrimethylammonium Propane Lipid Bilayers: Atomistic Insight for Structure and Dynamics

    DEFF Research Database (Denmark)

    Zhao, W.; Gurtovenko, A. A.; Vattulainen, I.

    2012-01-01

    We performed atomistic molecular dynamics simulations of lipid bilayers consisting of a mixture of cationic dioleoyloxytrimethylammonium propane (DOTAP) and zwitterionic dimyristoylphosphatidylcholine (DMPC) lipids at different DOTAP fractions. Our primary focus was the specific effects...... of unsaturated lipid chains on structural and dynamic properties of mixed cationic bilayers. The bilayer area, as well as the ordering of lipid tails, shows a pronounced nonmonotonic behavior when TAP lipid fraction increases. The minimum in area (maximum in ordering) was observed for a bilayer with TAP fraction...... lipids, which were found to form PC-PC and PC-TAP pairs, and the formation of lipid clusters....

  7. Studies on radiation induced changes in bovine hemoglobin type A

    International Nuclear Information System (INIS)

    Wdzieczak, J.; Duda, W.; Leyko, W.

    1978-01-01

    In this paper the structural and functional changes of gamma irradiated bovine hemoglobin are presented. Aqueous solutions/1%/of HbO 2 were irradiated in air with doses ranging from 1 to 4 Mrad. Isoelectric focusing indicated change of the charge of irradiated hemoglobin. The isoelectric point of hemoglobin was displaced towards more acid values with increasing doses, up from 1 Mrad. Fingerprint analysis and peptide column chromatography of irradiated hemoglobin demonstrated disturbances increasing with the dose. These changes were confirmed by amino acid analysis which showed that Cys, Met, Trp, His, Pro and Tyr residues were destroyed or modified following irradiation. At doses exceeding 1 Mrad the irradiated solutions of hemoglobin showed a decrease of heme-heme interaction and an increase of affinity for oxygen. Differences observed in oxygen-dissociation curves seem to be correlated with the radiation induced destruction of amino acid residues which are responsible for the functional properties of hemoglobin. (auth.)

  8. Hemoglobin Values During Pregnancy | Leffler | Nigerian Medical ...

    African Journals Online (AJOL)

    It is known that the iron turnover in expectant mothers is up to three times that of an average adult. This is reflected in lower hemoglobin levels. The study showed that hemoglobin levels can be maintained by taking Bio-Strath®, provided that the patients' diet contains adequate fresh fruits and vegetables, whole grains, lean ...

  9. Electronic transport in bilayer graphene

    International Nuclear Information System (INIS)

    Koshino, Mikito

    2009-01-01

    We present theoretical studies on the transport properties and localization effects of bilayer graphene. We calculate the conductivity by using the effective mass model with the self-consistent Born approximation, in the presence and absence of an energy gap opened by the interlayer asymmetry. We find that, in the absence of the gap, the minimum conductivity approaches the universal value by increasing the disorder potential, and the value is robust in the strong disorder regime where mixing with high-energy states is considerable. The gap-opening suppresses the conductivity over a wide energy range, even in the region away from the gap.We also study the localization effects in the vicinity of zero energy in bilayer graphene. We find that the states are all localized in the absence of the gap, while the gap-opening causes a phase transition analogous to the quantum Hall transition, which is accompanied by electron delocalization.

  10. A Neutron View of Proteins in Lipid Bilayers

    Science.gov (United States)

    White, Stephen

    2012-02-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.

  11. Magnetically Assisted Bilayer Composites for Soft Bending Actuators

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Jang

    2017-06-01

    Full Text Available This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  12. Magnetically Assisted Bilayer Composites for Soft Bending Actuators.

    Science.gov (United States)

    Jang, Sung-Hwan; Na, Seon-Hong; Park, Yong-Lae

    2017-06-12

    This article presents a soft pneumatic bending actuator using a magnetically assisted bilayer composite composed of silicone polymer and ferromagnetic particles. Bilayer composites were fabricated by mixing ferromagnetic particles to a prepolymer state of silicone in a mold and asymmetrically distributed them by applying a strong non-uniform magnetic field to one side of the mold during the curing process. The biased magnetic field induces sedimentation of the ferromagnetic particles toward one side of the structure. The nonhomogeneous distribution of the particles induces bending of the structure when inflated, as a result of asymmetric stiffness of the composite. The bilayer composites were then characterized with a scanning electron microscopy and thermogravimetric analysis. The bending performance and the axial expansion of the actuator were discussed for manipulation applications in soft robotics and bioengineering. The magnetically assisted manufacturing process for the soft bending actuator is a promising technique for various applications in soft robotics.

  13. Enhanced sensitivity of a microfabricated resonator using a graphene-polystyrene bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Minhyuk; Lee, Eunho; Cho, Kilwon; Jeon, Sangmin, E-mail: jeons@postech.ac.kr [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang (Korea, Republic of)

    2014-08-18

    A graphene layer was synthesized using chemical vapor deposition methods and a polystyrene solution was spin-cast onto the graphene film. The graphene-polystyrene bilayer membrane was attached between the two tines of a microfabricated quartz tuning fork (QTF). The modulus of the graphene-polystyrene bilayer was measured to be twice that of a pristine polystyrene membrane. Exposure of the membrane-coated QTF to ethanol vapor decreased the resonance frequency of the microresonator. The bilayer membrane-coated QTF produced a frequency change that was three times the change obtained using a polystyrene membrane-coated QTF, with a lower degree of degradation in the Q factor. The limit of detection of the bilayer membrane-coated QTF to ethanol vapor was determined to be 20 ppm.

  14. Thermal conductivity of hexagonal Si, Ge, and Si1-xGex alloys from first-principles

    Science.gov (United States)

    Gu, Xiaokun; Zhao, C. Y.

    2018-05-01

    Hexagonal Si and Ge with a lonsdaleite crystal structure are allotropes of silicon and germanium that have recently been synthesized. These materials as well as their alloys are promising candidates for novel applications in optoelectronics. In this paper, we systematically study the phonon transport and thermal conductivity of hexagonal Si, Ge, and their alloys by using the first-principle-based Peierls-Boltzmann transport equation approach. Both three-phonon and four-phonon scatterings are taken into account in the calculations as the phonon scattering mechanisms. The thermal conductivity anisotropy of these materials is identified. While the thermal conductivity parallel to the hexagonal plane for hexagonal Si and Ge is found to be larger than that perpendicular to the hexagonal plane, alloying effectively tunes the thermal conductivity anisotropy by suppressing the thermal conductivity contributions from the middle-frequency phonons. The importance of four-phonon scatterings is assessed by comparing the results with the calculations without including four-phonon scatterings. We find that four-phonon scatterings cannot be ignored in hexagonal Si and Ge as the thermal conductivity would be overestimated by around 10% (40%) at 300 K (900) K. In addition, the phonon mean free path distribution of hexagonal Si, Ge, and their alloys is also discussed.

  15. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte

    International Nuclear Information System (INIS)

    Cho, Sungmee; Kim, YoungNam; Kim, Jung-Hyun; Manthiram, Arumugam; Wang Haiyan

    2011-01-01

    Graphical abstract: . A: Cross-sectional TEM images show a GDC single layer and YSZ/GDC bilayer electrolyte structures. As clearly observed from TEM images, the YSZ interlayer thickness varies from ∼330 nm to ∼1 μm. B: The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. Display Omitted Highlights: → YSZ/ GDC bilayer thin film electrolytes were deposited by a pulsed laser deposition (PLD) technique. → Thin YSZ film as a blocking layer effectively suppresses the cell voltage drop without reducing the ionic conductivity of the electrolyte layer. → The YSZ/ GDC bilayer structure presents a feasible architecture for enhancing the overall power density and enabling chemical, mechanical, and structural stability in the cells. - Abstract: Bilayer electrolytes composed of a gadolinium-doped CeO 2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO 2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO-YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La 0.5 Sr 0.5 CoO 3 -Ce 0.9 Gd 0.1 O 1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm -2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 deg. C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced

  16. Clinical, hematological and genetic data of a cohort of children with hemoglobin SD

    Directory of Open Access Journals (Sweden)

    Paulo do Val Rezende

    Full Text Available ABSTRACT INTRODUCTION: The hemoglobin FSD is very uncommon in newborn screening programs for sickle cell disease. In the program of Minas Gerais, Brazil, the clinical course of children with hemoglobin SD was observed to be heterogeneous. The objective of this study was to estimate the incidence (1999-2012 and to describe the natural history of a cohort of newborns with hemoglobin SD. METHODS: Isoelectric focusing was the primary method used in newborn screening. Polymerase chain reaction-restriction fragment length polymorphism and gene sequencing were used to identify mutant alleles and for haplotyping. Gap-polymerase chain reaction was used to detect alpha-thalassemia. RESULTS: Eleven cases of hemoglobin S/D-Punjab and eight of Hb S-Korle Bu were detected. Other variants with hemoglobin D mobility were not identified. All hemoglobin D-Punjab and hemoglobin Korle Bu alleles were associated with haplotype I. Among the children with hemoglobin S/D-Punjab, there were four with the ßS CAR haplotype, six with the Benin haplotype, and one atypical. Results of laboratory tests for hemoglobin S/D-Punjab and hemoglobin S-Korle Bu were: hemoglobin 8.0 and 12.3 g/dL (p-value <0.001, leukocyte count 13.9 × 109/L and 10.5 × 109/L (p-value = 0.003, reticulocytes 7.5% and 1.0% (p-value <0.001, hemoglobin F concentration 16.1% and 6.9% (p-value = 0.001 and oxygen saturation 91.9% and 97% (p-value = 0.002, respectively. Only hemoglobin S/D-Punjab children had acute pain crises and needed blood transfusions or hydroxyurea. Those with the Benin ßS haplotype had higher total hemoglobin and hemoglobin F concentrations compared to the CAR haplotype. Transcranial Doppler was normal in all children. CONCLUSION: The clinical course and blood cell counts of children with hemoglobin S/D-Punjab were very similar to those of hemoglobin SS children. In contrast, children with hemoglobin S-Korle Bu had clinical course and blood cell counts like children with the sickle

  17. A Molecular Dynamics Study of the Structural and Dynamical Properties of Putative Arsenic Substituted Lipid Bilayers

    Directory of Open Access Journals (Sweden)

    Ratna Juwita

    2013-04-01

    Full Text Available Cell membranes are composed mainly of phospholipids which are in turn, composed of five major chemical elements: carbon, hydrogen, nitrogen, oxygen, and phosphorus. Recent studies have suggested the possibility of sustaining life if the phosphorus is substituted by arsenic. Although this issue is still controversial, it is of interest to investigate the properties of arsenated-lipid bilayers to evaluate this possibility. In this study, we simulated arsenated-lipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-arsenocholine (POAC, lipid bilayers using all-atom molecular dynamics to understand basic structural and dynamical properties, in particular, the differences from analogous 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, (POPC lipid bilayers. Our simulations showed that POAC lipid bilayers have distinct structural and dynamical properties from those of native POPC lipid bilayers. Relative to POPC lipid bilayers, POAC lipid bilayers have a more compact structure with smaller lateral areas and greater order. The compact structure of POAC lipid bilayers is due to the fact that more inter-lipid salt bridges are formed with arsenate-choline compared to the phosphate-choline of POPC lipid bilayers. These inter-lipid salt bridges bind POAC lipids together and also slow down the head group rotation and lateral diffusion of POAC lipids. Thus, it would be anticipated that POAC and POPC lipid bilayers would have different biological implications.

  18. Oxidative stress in preeclampsia and the role of free fetal hemoglobin

    Directory of Open Access Journals (Sweden)

    Stefan Rocco Hansson

    2015-01-01

    Full Text Available Preeclampsia is a leading cause of pregnancy complications and affects 3–7 % of pregnant women. This review summarizes the current knowledge of a new potential etiology of the disease, with a special focus on hemoglobin-induced oxidative stress. Furthermore, we also suggest hemoglobin as a potential target for therapy. Gene and protein profiling studies have shown increased expression and accumulation of free fetal hemoglobin in the preeclamptic placenta. Predominantly due to oxidative damage to the placental barrier, fetal hemoglobin leaks over to the maternal circulation. Free hemoglobin and its metabolites are toxic in several ways; a ferrous hemoglobin (Fe2+ binds strongly to the vasodilator nitric oxide and reduces the availability of free nitric oxide, which results in vasoconstriction, b hemoglobin (Fe2+ with bound oxygen spontaneously generates free oxygen radicals and c the heme groups create an inflammatory response by inducing activation of neutrophils and cytokine production. The endogenous protein α1-microglobulin, with radical and heme binding properties, has shown both ex vivo and in vivo to have the ability to counteract free hemoglobin-induced placental and kidney damage. Oxidative stress in general, and more specifically fetal hemoglobin-induced oxidative stress, could play a key role in the pathology of preeclampsia seen both in the placenta and ultimately in the maternal endothelium.

  19. Conformational changes in hemoglobin triggered by changing the iron charge

    International Nuclear Information System (INIS)

    Croci, S.; Achterhold, K.; Ortalli, I.; Parak, F. G.

    2008-01-01

    In this work the hemoglobin conformational changes induced by changing the iron charge have been studied and compared with Myoglobin. Moessbauer spectroscopy was used to follow the change of the iron conformation. In order to compare the conformational relaxation of hemoglobin and myoglobin, and to study a possible influence of the quaternary structure, an intermediate metastable state of hemoglobin has been created by low temperature X-ray irradiation of methemoglobin. The irradiation reduces the Fe(III) of the heme groups to Fe(II) Low Spin, where the water is still bound on the sixth coordination. Heating cycles performed at temperatures from 140 K to 200 K allow the molecules to overcome an activation energy barrier and to relax into a stable conformation such as deoxy-hemoglobin or carboxy-hemoglobin, if CO is present. Slightly different structures (conformational substates) reveal themselves as a distribution of energy barriers (ΔG). The distribution of the activation energy, for the decay of the Fe(II) Low Spin intermediate, has been fitted with a Gaussian. For comparison, published myoglobin data were re-analysed in the same way. The average energy value at characteristic temperature is very similar in case of myoglobin and hemoglobin. The larger Gaussian energy distribution for myoglobin with respect to hemoglobin shows that more conformational substates are available. This may be caused by a larger area exposed to water. In hemoglobin, part of the surface of the chains is not water accessible due to the quaternary structure.

  20. The effect of calcium on the properties of charged phospholipid bilayers

    DEFF Research Database (Denmark)

    Pedersen, U.R.; Leidy, Chad; Westh, P.

    2006-01-01

    We have performed molecular dynamics simulations to investigate the structure and dynamics of charged bilayers as well as the distribution of counterions at the bilayer interface. For this, we have considered the negatively charged di-myristoyl-phosphatidyl-glycerol (DMPG) and di-myristoyl-phosph...

  1. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  2. Energy spectrums of bilayer triangular phosphorene quantum dots and antidots

    Directory of Open Access Journals (Sweden)

    Z. T. Jiang

    2017-04-01

    Full Text Available We theoretically investigate the confined states of the bilayer triangular phosphorene dots and antidots by means of the tight-binding approach. The dependence of the energy levels on the size, the type of the boundary edges, and the orientation of the dots and antidots, and the influences of the electric and magnetic fields on the energy levels, are all completely analyzed. It is found that the energy level numbers of the bilayer dots and antidots are determined by the energy levels in two layers. The external electric field can effectively tune the energy levels of the edge states in both layers to move in opposite directions. With the increase of the magnetic field, the magnetic energy levels can approach the Landau levels of the phosphorene monolayer, the phosphorene bilayer, or both, depending on the specific geometry of the monolayer-bilayer hybrid phosphorene quantum dots. This research should be helpful for the overall understanding of the electronic properties of the multilayer hybrid phosphorene nanostructures and designing the corresponding phosphorene devices.

  3. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    International Nuclear Information System (INIS)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V.; Salyuk, O.Yu.; Golub, V.O.

    2015-01-01

    Magnetic properties of Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 (84 nm) and Bi 2.8 Y 0.2 Fe 5 O 12 (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi 1.5 Gd 1.5 Fe 4.5 Al 0.5 O 12 /Bi 2.8 Y 0.2 Fe 5 O 12 bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction

  4. A thermodynamical measure of cooperativity: application to hemoglobin

    International Nuclear Information System (INIS)

    Jacchieri, S.G.; Ferreira, R.C.

    1984-01-01

    A comparative analysis of the heat requirements for dioxygen exchange is made for hemoglobin and myoglobin, the latter taken as the prototype of the vertebrate hemoglobin's ancestor. it is shown that cooperativity manifests itself also in terms of energy utilization. (Author) [pt

  5. Bilayer lift-off process for aluminum metallization

    Science.gov (United States)

    Wilson, Thomas E.; Korolev, Konstantin A.; Crow, Nathaniel A.

    2015-01-01

    Recently published reports in the literature for bilayer lift-off processes have described recipes for the patterning of metals that have recommended metal-ion-free developers, which do etch aluminum. We report the first measurement of the dissolution rate of a commercial lift-off resist (LOR) in a sodium-based buffered commercial developer that does not etch aluminum. We describe a reliable lift-off recipe that is safe for multiple process steps in patterning thin (recipe consists of an acid cleaning of the substrate, the bilayer (positive photoresist/LOR) deposition and development, the sputtering of the aluminum film along with a palladium capping layer and finally, the lift-off of the metal film by immersion in the LOR solvent. The insertion into the recipe of postexposure and sequential develop-bake-develop process steps are necessary for an acceptable undercut. Our recipe also eliminates any need for accompanying sonication during lift-off that could lead to delamination of the metal pattern from the substrate. Fine patterns were achieved for both 100-nm-thick granular aluminum/palladium bilayer bolometers and 500-nm-thick aluminum gratings with 6-μm lines and 4-μm spaces.

  6. Lipid bilayers suspended on microfabricated supports

    Science.gov (United States)

    Ogier, Simon D.; Bushby, Richard J.; Cheng, Yaling; Cox, Tim I.; Evans, Stephen D.; Knowles, Peter F.; Miles, Robert E.; Pattison, Ian

    2001-03-01

    The plasma membrane, that exists as part of many animal and plant cells, is a regulator for the transport of ions and small molecules across cell boundaries. Two main components involved are the phospholipid bilayer and the transport proteins. This paper details the construction of a micromachined support for bilayers (MSB) as a first step towards the development of highly selective and highly sensitive ion-channel based biosensors. The device consists of a ~100 micrometer hole in a polymeric support above a cavity that can hold ~25 nL of electrolyte. Electrodes attached to the structure allow the resistance of the membranes to be measured using d.c. conductivity. The MSB is made in two halves, using SU8 ultra-thick resist, which are subsequently bonded together to make the final structure. A layer of gold, surrounding the aperture, enables self-assembled monolayers of alkanethiols to be used to make the polymeric structure biocompatible. Lipid membranes have been formed over these holes with resistances comparable with those of natural membranes >10 MOhmcm^2. The ion-channel gramicidin has successfully been incorporated into the bilayer and its activity monitored. It is proposed that this type of device could be used not only for studying membrane transport phenomena but also as part of an ion-channel based biosensor.

  7. Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes

    DEFF Research Database (Denmark)

    Lundbæk, Jens August; Collingwood, S.A.; Ingolfsson, H.I.

    2010-01-01

    with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated...... with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids...... channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli....

  8. INTRINSIC REGULATION OF HEMOGLOBIN EXPRESSION BY VARIABLE SUBUNIT INTERFACE STRENGTHS

    Science.gov (United States)

    Manning, James M.; Popowicz, Anthony M.; Padovan, Julio C.; Chait, Brian T.; Manning, Lois R.

    2012-01-01

    SUMMARY The expression of the six types of human hemoglobin subunits over time is currently considered to be regulated mainly by transcription factors that bind to upstream control regions of the gene (the “extrinsic” component of regulation). Here we describe how subunit pairing and further assembly to tetramers in the liganded state is influenced by the affinity of subunits for one another (the “intrinsic” component of regulation). The adult hemoglobin dimers have the strongest subunit interfaces and the embryonic hemoglobins are the weakest with fetal hemoglobins of intermediate strength, corresponding to the temporal order of their expression. These variable subunit binding strengths and the attenuating effects of acetylation contribute to the differences with which these hemoglobin types form functional O2-binding tetramers consistent with gene switching. PMID:22129306

  9. Diffusion coefficients of oxygen and hemoglobin as obtained simultaneously from photometric determination of the oxygenation of layers of hemoglobin solutions

    NARCIS (Netherlands)

    Spaan, J. A.; Kreuzer, F.; van Wely, F. K.

    1980-01-01

    The oxygenation of layers of deoxygenated hemoglobin solutions after a sudden exposure to a gas containing oxygen at a partial pressure P1 has been studied by a photometric method. Layer thicknesses varied between 50 and 250 micron, hemoglobin concentrations between 0.1 and 0.34kg/l, and oxygen

  10. On the buckling of hexagonal boron nitride nanoribbons via structural mechanics

    Science.gov (United States)

    Giannopoulos, Georgios I.

    2018-03-01

    Monolayer hexagonal boron nitride nanoribbons have similar crystal structure as graphene nanoribbons, have excellent mechanical, thermal insulating and dielectric properties and additionally present chemical stability. These allotropes of boron nitride can be used in novel applications, in which graphene is not compatible, to achieve remarkable performance. The purpose of the present work is to provide theoretical estimations regarding the buckling response of hexagonal boron nitride monolayer under compressive axial loadings. For this reason, a structural mechanics method is formulated which employs the exact equilibrium atomistic structure of the specific two-dimensional nanomaterial. In order to represent the interatomic interactions appearing between boron and nitrogen atoms, the Dreiding potential model is adopted which is realized by the use of three-dimensional, two-noded, spring-like finite elements of appropriate stiffness matrices. The critical compressive loads that cause the buckling of hexagonal boron nitride nanoribbons are computed with respect to their size and chirality while some indicative buckled shapes of them are illustrated. Important conclusions arise regarding the effect of the size and chirality on the structural stability of the hexagonal boron nitride monolayers. An analytical buckling formula, which provides good fitting of the numerical outcome, is proposed.

  11. Mechanisms of the adjuvant effect of hemoglobin in experimental peritonitis. VII. Hemoglobin does not inhibit clearance of Escherichia coli from the peritoneal cavity

    International Nuclear Information System (INIS)

    Dunn, D.L.; Barke, R.A.; Lee, J.T. Jr.; Condie, R.M.; Humphrey, E.W.; Simmons, R.L.

    1983-01-01

    Hemoglobin has been shown to be a potent adjuvant in experimental Escherichia coli peritonitis, although a satisfactory mechanistic rationale is still obscure. Hemoglobin has been thought to impair intraperitoneal neutrophil function, delay clearance of bacteria from the peritoneal cavity by the normal absorptive mechanisms, or directly enhance bacterial growth. Using highly purified stroma-free hemoglobin (SFHgb), we have largely discounted any direct effect of hemoglobin on peritoneal white blood cell function. In the present study, we confirmed that uncontrolled proliferation of bacteria takes place in the presence of hemoglobin in the peritoneal cavity. Nonviable 5-iododeoxyuridine 125 I-labelled bacteria were then used to directly study peritoneal clearance kinetics, eliminating the problem of bacterial growth. SFHgb had no influence on the removal of intraperitoneal bacteria. The rate of bloodstream appearance of radiolabel was similar with or without intraperitoneal SFHgb. Thus, SFHgb does not prevent clearance of bacteria from the peritoneal cavity by interfering with normal host clearance mechanisms. SFHgb may act as a bacterial growth adjuvant, either by serving as a bacterial nutrient or by suitably modifying the environment so that extensive bacterial proliferation can occur. The latter hypothesis appears to be an area in which investigation concerning the adjuvant effect of hemoglobin may prove most fruitful

  12. Scattering Studies of Hydrophobic Monomers in Liposomal Bilayers: An Expanding Shell Model of Monomer Distribution

    International Nuclear Information System (INIS)

    Richter, Andrew; Dergunov, Sergey; Ganus, Bill; Thomas, Zachary; Pingali, Sai Venkatesh; Urban, Volker S.; Liu, Yun; Porcar, Lionel; Pinkhassik, Eugene

    2011-01-01

    Hydrophobic monomers partially phase separate from saturated lipids when loaded into lipid bilayers in amounts exceeding a 1:1 monomer/lipid molar ratio. This conclusion is based on the agreement between two independent methods of examining the structure of monomer-loaded bilayers. Complete phase separation of monomers from lipids would result in an increase in bilayer thickness and a slight increase in the diameter of liposomes. A homogeneous distribution of monomers within the bilayer would not change the bilayer thickness and would lead to an increase in the liposome diameter. The increase in bilayer thickness, measured by the combination of small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS), was approximately half of what was predicted for complete phase separation. The increase in liposome diameter, measured by dynamic light scattering (DLS), was intermediate between values predicted for a homogeneous distribution and complete phase separation. Combined SANS, SAXS, and DLS data suggest that at a 1.2 monomer/lipid ratio approximately half of the monomers are located in an interstitial layer sandwiched between lipid sheets. These results expand our understanding of using self-assembled bilayers as scaffolds for the directed covalent assembly of organic nanomaterials. In particular, the partial phase separation of monomers from lipids corroborates the successful creation of nanothin polymer materials with uniform imprinted nanopores. Pore-forming templates do not need to span the lipid bilayer to create a pore in the bilayer-templated films.

  13. Hydrothermal synthesis and magneto-optical properties of Ni-doped ZnO hexagonal columns

    International Nuclear Information System (INIS)

    Xu, Xingyan; Cao, Chuanbao

    2015-01-01

    Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns have been synthesized by a simple hydrothermal route. The hexagonal columns of the products are about 3 μm in diameter and about 2 μm in thickness. X-ray diffraction (XRD), Ni K-edge XANES spectra and TEM indicate that the as-prepared samples are single-crystalline wurtzite structure and no metallic Ni or other secondary phases are found in the hexagonal columns. Optical absorption and Raman results further confirm the incorporation of Ni 2+ ions in the ZnO lattice. Magnetic measurements indicate that the Zn 1−x Ni x O hexagonal columns exhibited obvious ferromagnetic characteristic at room temperature. The coercive fields (H c ) were obtained to be 135.3, 327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. The ferromagnetism was assumed to originate from the exchange interaction between free carriers (holes or electrons) from the valence band and the localized d spins on the Ni ions. - Highlights: • Single crystal Zn 1−x Ni x O (x=0, 0.02, 0.04, 0.06) hexagonal columns were synthesized by a simple hydrothermal method. • The layer-by-layer growth manner of the Zn 1−x Ni x O hexagonal columns was proposed. • Obvious room-temperature ferromagnetic characteristic of Zn 1−x Ni x O are observed and the coercivity (H c ) are 135.3,327.79 and 127.29 Oe for x=0.02, 0.04 and 0.06, respectively. • The exchange interaction between local-spin polarized electrons and conduction electrons is responsible for the room-temperature ferromagnetism in the Zn 1−x Ni x O hexagonal columns

  14. Efficient Offline Waveform Design Using Quincunx/Hexagonal Time-Frequency Lattices

    Directory of Open Access Journals (Sweden)

    Raouia Ayadi

    2017-01-01

    Full Text Available Conventional orthogonal frequency division multiplexing (OFDM may turn to be inappropriate for future wireless cellular systems services, because of extreme natural and artificial impairments they are expected to generate. Natural impairments result from higher Doppler and delay spreads, while artificial impairments result from multisource transmissions and synchronization relaxation for closed-loop signaling overhead reduction. These severe impairments induce a dramatic loss in orthogonality between subcarriers and OFDM symbols and lead to a strong increase in intercarrier interference (ICI and intersymbol interference (ISI. To fight against these impairments, we propose here an optimization of the transmit/receive waveforms for filter-bank multicarrier (FBMC systems, with hexagonal time-frequency (TF lattices, operating over severe doubly dispersive channels. For this, we exploit the Ping-pong Optimized Pulse Shaping (POPS paradigm, recently applied to rectangular TF lattices, to design waveforms maximizing the signal-to-interference-plus-noise ratio (SINR for hexagonal TF lattices. We show that FBMC, with hexagonal lattices, offers a strong improvement in SINR with respect to conventional OFDM and an improvement of around 1 dB with respect to POPS-FBMC, with rectangular lattices. Furthermore, we show that hexagonal POPS-FBMC brings more robustness to frequency synchronization errors and offers a 10 dB reduction in out-of-band (OOB emissions, with respect to rectangular POPS-FBMC.

  15. Plant hemoglobins: Important players at the crossroads between oxygen and nitric oxide

    DEFF Research Database (Denmark)

    Gupta, Kapuganti J; Hebelstrup, Kim; Mur, Luis A J

    2011-01-01

    Plant hemoglobins constitute a diverse group of hemeproteins and evolutionarily belong to three different classes. Class 1 hemoglobins possess an extremely high affinity to oxygen and their main function consists in scavenging of nitric oxide (NO) at very low oxygen levels. Class 2 hemoglobins have...... at high O2 concentrations. Depending on their physical properties, hemoglobins belong either to hexacoordinate non-symbiotic or pentacoordinate symbiotic groups. Plant hemoglobins are plausible targets for improving resistance to multiple stresses....

  16. Adiabatic demagnetization of the antiferromagnetic spin-1/2 Heisenberg hexagonal cluster

    International Nuclear Information System (INIS)

    Deb, Moumita; Ghosh, Asim Kumar

    2016-01-01

    Exact analytic expressions of eigenvalues of the antiferromagnetic spin-1/2 Heisenberg hexagon in the presence of uniform magnetic field have been obtained. Magnetization process, nature of isentrops and properties of magneto caloric effect in terms of adiabatic demagnetization have been investigated. Theoretical results have been used to study the magneto caloric effect of the spin-1/2 Heisenberg hexagonal compound Cu_3WO_6.

  17. Preparation of triangular and hexagonal silver nanoplates on the surface of quartz substrate

    International Nuclear Information System (INIS)

    Jia Huiying; Zeng Jianbo; An Jing; Song Wei; Xu Weiqing; Zhao Bing

    2008-01-01

    In this paper, triangular and hexagonal silver nanoplates were prepared on the surface of quartz substrate using photoreduction of silver ions in the presence of silver seeds. The obtained silver nanoplates were characterized by atomic force microscopy and UV-vis spectroscopy. It was found that the silver seeds played an important role in the formation of triangular and hexagonal silver nanoplates. By varying the irradiation time, nanoplates with different sizes and shapes could be obtained. The growth mechanism for triangular and hexagonal nanoplates prepared on quartz substrate was discussed

  18. Epitaxial Garnets and Hexagonal Ferrites.

    Science.gov (United States)

    1982-04-20

    guide growth of the epitaxial YIG films. Aluminum or gallium substitu- tions for iron were used in combination with lanthanum substitutions for yttrium... gallate spinel sub- strates. There was no difficulty with nucleation in the melt and film quality appeared to be similar to that observed previously...hexagonal ferrites. We succeeded in growing the M-type lead hexaferrite (magnetoplumbite) on gallate spinel substrates. We found that the PbO-based

  19. Cholesterol enhances surface water diffusion of phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chi-Yuan; Kausik, Ravinath; Han, Songi, E-mail: songi@chem.ucsb.edu [Department of Chemistry and Biochemistry and Materials Research Laboratory, University of California, Santa Barbara, California 93106 (United States); Olijve, Luuk L. C. [Laboratory of Macromolecular and Organic Chemistry and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven (Netherlands)

    2014-12-14

    Elucidating the physical effect of cholesterol (Chol) on biological membranes is necessary towards rationalizing their structural and functional role in cell membranes. One of the debated questions is the role of hydration water in Chol-embedding lipid membranes, for which only little direct experimental data are available. Here, we study the hydration dynamics in a series of Chol-rich and depleted bilayer systems using an approach termed {sup 1}H Overhauser dynamic nuclear polarization (ODNP) NMR relaxometry that enables the sensitive and selective determination of water diffusion within 5–10 Å of a nitroxide-based spin label, positioned off the surface of the polar headgroups or within the nonpolar core of lipid membranes. The Chol-rich membrane systems were prepared from mixtures of Chol, dipalmitoyl phosphatidylcholine and/or dioctadecyl phosphatidylcholine lipid that are known to form liquid-ordered, raft-like, domains. Our data reveal that the translational diffusion of local water on the surface and within the hydrocarbon volume of the bilayer is significantly altered, but in opposite directions: accelerated on the membrane surface and dramatically slowed in the bilayer interior with increasing Chol content. Electron paramagnetic resonance (EPR) lineshape analysis shows looser packing of lipid headgroups and concurrently tighter packing in the bilayer core with increasing Chol content, with the effects peaking at lipid compositions reported to form lipid rafts. The complementary capability of ODNP and EPR to site-specifically probe the hydration dynamics and lipid ordering in lipid membrane systems extends the current understanding of how Chol may regulate biological processes. One possible role of Chol is the facilitation of interactions between biological constituents and the lipid membrane through the weakening or disruption of strong hydrogen-bond networks of the surface hydration layers that otherwise exert stronger repulsive forces, as reflected in

  20. Structural and electro-optical properties of bilayer graphyne like BN sheet

    Science.gov (United States)

    Behzad, Somayeh

    2016-12-01

    The structural, electronic and optical properties of bilayer graphyne like BN sheet (BNyne) with different stacking manners have been explored by the first-principles calculations. The stabilities of α-BNyne bilayers with different stacking manners are compared. The α-BNyne Bilayers have wide band gaps. Compared to the single α-BNyne, the numbers of energy bands are doubled due to the interlayer interactions and the band gap is reduced. The AB-I configuration has a direct band gap while the band gap becomes indirect for AA-II. The calculated ε2 (ω) of bilayer α-BNyne for (Eǁx) is similar to that of the monolayer α-BNyne, except for the small changes of peak positions and increasing of peak intensities. For (Eǁz), the first absorption peak occures at 3.86 eV, and the prominant peak of monolayer at 9.17 eV becomes broadened. These changes are related to the new transitions resulting from the band splitting.

  1. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.; Gangopadhyay, S.; Jones, Burton; Schwingenschlö gl, Udo; Singh, Nirpendra

    2013-01-01

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  2. Electronic properties of Mn-decorated silicene on hexagonal boron nitride

    KAUST Repository

    Kaloni, Thaneshwor P.

    2013-12-17

    We study silicene on hexagonal boron nitride, using first-principles calculations. Since hexagonal boron nitride is semiconducting, the interaction with silicene is weaker than for metallic substrates. It therefore is possible to open a 50 meV band gap in the silicene. We further address the effect of Mn decoration by determining the onsite Hubbard interaction parameter, which turns out to differ significantly for decoration at the top and hollow sites. The induced magnetism in the system is analyzed in detail.

  3. Molecular Mechanism of AHSP-Mediated Stabilization of Alpha-Hemoglobin

    Energy Technology Data Exchange (ETDEWEB)

    Feng,L.; Gell, D.; Zhou, S.; Gu, L.; Kong, Y.; Li, J.; Hu, M.; Yan, N.; Lee, C.; et al.

    2005-01-01

    Hemoglobin A (HbA), the oxygen delivery system in humans, comprises two alpha and two beta subunits. Free alpha-hemoglobin (alphaHb) is unstable, and its precipitation contributes to the pathophysiology of beta thalassemia. In erythrocytes, the alpha-hemoglobin stabilizing protein (AHSP) binds alphaHb and inhibits its precipitation. The crystal structure of AHSP bound to Fe(II)-alphaHb reveals that AHSP specifically recognizes the G and H helices of alphaHb through a hydrophobic interface that largely recapitulates the alpha1-beta1 interface of hemoglobin. The AHSP-alphaHb interactions are extensive but suboptimal, explaining why beta-hemoglobin can competitively displace AHSP to form HbA. Remarkably, the Fe(II)-heme group in AHSP bound alphaHb is coordinated by the distal but not the proximal histidine. Importantly, binding to AHSP facilitates the conversion of oxy-alphaHb to a deoxygenated, oxidized [Fe(III)], nonreactive form in which all six coordinate positions are occupied. These observations reveal the molecular mechanisms by which AHSP stabilizes free alphaHb.

  4. Biophysical Monitoring and dose response characteristics of irradiated hemoglobin

    International Nuclear Information System (INIS)

    Elshemey, W.M; Selim, N.S.; Desouky, O.

    2003-01-01

    The present work aims to move a step forward towards a deeper understanding of the scattering of x-ray, from lyophilized biological samples. Comparative study has been performed using LAXS and UV-visible spectrophotometry for monitoring the dose response characteristics of the hemoglobin molecule of irradiated blood. Blood samples were irradiated at doses ranging from 5 up to 100 Gy. Diluted hemoglobin solution was scanned in the UV- visible range (200-700 nm), and lyophilized hemoglobin was prepared for LAXS measurement. The radiation-induced changes in the hemoglobin structure have been evaluated. The LAXS profile of hemoglobin molecule is characterized by the presence of two peaks in the forward direction of scattering. These peaks were found to be sensitive to the variations in the molecular structure of a given sample. The obtained results suggest that the 1 s t peak, recorded at 4.65 o , is sensitive to the tertiary and quaternary structure of the globin part, while the major peak, recorded at 10.5 o , appeared to be related to its primary and secondary structure

  5. Temperature-controlled structure and kinetics of ripple phases in one- and two-component supported lipid bilayers

    DEFF Research Database (Denmark)

    Kaasgaard, Thomas; Leidy, Chad; Crowe, J.H.

    2003-01-01

    Temperature-controlled atomic force microscopy (AFM) has been used to visualize and study the structure and kinetics of ripple phases in one-component dipalmitoylphosphaticlylcholine (DPPC) and two-component dimyristoylphosphatidylcholine-distearoylphosphatidylcholine (DMPC-DSPC) lipid bilayers....... The lipid bilayers are mica-supported double bilayers in which ripple-phase formation occurs in the top bilayer. In one-component DPPC lipid bilayers, the stable and metastable ripple phases were observed. In addition, a third ripple structure with approximately twice the wavelength of the metastable...... ripples was seen. From height profiles of the AFM images, estimates of the amplitudes of the different ripple phases are reported. To elucidate the processes of ripple formation and disappearance, a ripple-phase DPPC lipid bilayer was taken through the pretransition in the cooling and the heating...

  6. Small-angle neutron scattering from multilamellar lipid bilayers: Theory, model, and experiment

    DEFF Research Database (Denmark)

    Lemmich, Jesper; Mortensen, Kell; Ipsen, John Hjorth

    1996-01-01

    Small-angle neutron scattering data obtained from fully hydrated, multilamellar phospholipid bilayers with deuterated acyl chains of different length are presented and analyzed within a paracrystalline theory and a geometric model that permit the bilayer structure to be determined under conditions...... of temperature for the lamellar repeat distance, the hydrophobic bilayer thickness, as well as the thickness of the aqueous and polar head group region. In addition to these geometric parameters the analysis permits determination of molecular cross-sectional area, number of interlamellar water molecules, as well...

  7. Thermal stability of hexagonal OsB2

    International Nuclear Information System (INIS)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-01-01

    The synthesis of novel hexagonal ReB 2 -type OsB 2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10 B and 11 B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11 B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB 2 phase was the main product of synthesis with a small quantity of Os 2 B 3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11 B powder was used as a raw material, only Os 2 B 3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB 2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to −225 °C. During the heating, the sacrificial reaction 2OsB 2 +3O 2 →2Os+2B 2 O 3 took place due to presence of O 2 /water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B 2 O 3 and precipitation of Os metal out of the OsB 2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB 2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276–426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB 2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O 2 , the hexagonal OsB 2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling. - Graphical abstract: The in situ high temperature XRD

  8. 21 CFR 522.1125 - Hemoglobin glutamer-200 (bovine).

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Hemoglobin glutamer-200 (bovine). 522.1125 Section... (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.1125 Hemoglobin glutamer-200 (bovine). (a) Specifications. Each 125 milliliter bag contains 13...

  9. Expression of fully functional tetrameric human hemoglobin in Escherichia coli

    International Nuclear Information System (INIS)

    Hoffman, S.J.; Looker, D.L.; Roehrich, J.M.; Cozart, P.E.; Durfee, S.L.; Tedesco, J.L.; Stetler, G.L.

    1990-01-01

    Synthesis genes encoding the human α- and β-globin polypeptides have been expressed from a single operon in Escherichia coli. The α- and β-globin polypeptides associate into soluble tetramers, incorporate heme, and accumulate to >5% of the total cellular protein. Purified recombinant hemoglobin has the correct stoichiometry of α- and β-globin chains and contains a full complement of heme. Each globin chain also contains an additional methionine as an extension to the amino terminus. The recombinant hemoglobin has a C 4 reversed-phase HPLC profile essentially identical to that of human hemoglobin A 0 and comigrates with hemoglobin A 0 on SDS/PAGE. The visible spectrum and oxygen affinity are similar to that of native human hemoglobin A 0 . The authors have also expressed the α- and β-globin genes separately and found that the expression of the α-globin gene alone results in a marked decrease in the accumulation of α-globin in the cell. Separate expression of the β-globin gene results in high levels of insoluble β-globin. These observations suggest that the presence of α- and β-globin in the same cell stabilizes α-globin and aids the correct folding of β-globin. This system provides a simple method for expressing large quantities of recombinant hemoglobin and allows facile manipulation of the genes encoding hemoglobin to produce functionally altered forms of this protein

  10. Propanil-induced methemoglobinemia and hemoglobin binding in the rat

    Energy Technology Data Exchange (ETDEWEB)

    McMillan, D.C.; McRae, T.A.; Hinson, J.A. (National Center for Toxicological Research, Jefferson, AR (USA))

    1990-09-15

    Administration of (ring-U-14C)propanil (3,4-dichloropropionanilide) to male Sprague-Dawley rats (30, 100, and 300 mg/kg, ip) increased the formation of methemoglobin at the two highest doses. Following a propanil dose of 100 mg/kg, methemoglobin formation attained a maximum level of 5% by 1.5 hr and declined to normal levels (approximately 2.5%) by 12 hr. Hemoglobin binding attained a maximum level of 50 pmol/mg protein by 12 hr, and remained constant for 24 hr. Following a propanil dose of 300 mg/kg, methemoglobin formation attained a maximum level of 24% by 4.5 hr, and declined to a level of 5% by 24 hr. Hemoglobin binding attained a maximum level of 425 pmol/mg protein by 12 hr, and remained constant for 24 hr. Hemoglobin binding was also detected at the lowest propanil dose (10 pmol/mg protein) even though methemoglobin formation was not observed. HPLC analysis of alkaline-treated hemoglobin from propanil-treated rats indicated the presence of one radiolabeled compound with the same HPLC retention time as 3,4-dichloraniline. These data are consistent with the concept that propanil is converted to N-hydroxy-3,4-dichloroaniline in the liver. Subsequently, this metabolite enters the erythrocyte and is oxidized by hemoglobin to 3,4-dichloronitrosobenzene with concomitant conversion of oxyhemoglobin to methemoglobin. The 3,4-dichloronitrosobenzene binds to cysteine residues on hemoglobin as the corresponding sulfinic acid amide adduct. These data suggest that human exposure to propanil may be monitored in the absence of observable toxicity by the analysis of propanil metabolites bound to hemoglobin.

  11. Rice (Oryza) hemoglobins

    Science.gov (United States)

    Hemoglobins (Hbs) corresponding to non-symbiotic (nsHb) and truncated (tHb) Hbs have been identified in rice (Oryza). This review discusses the major findings from the current studies on rice Hbs. At the molecular level, a family of the nshb genes, consisting of hb1, hb2, hb3, hb4 and hb5, and a sin...

  12. Morphological evolution in dewetting polystyrene/polyhedral oligomeric silsesquioxane thin film bilayers.

    Science.gov (United States)

    Paul, Rituparna; Karabiyik, Ufuk; Swift, Michael C; Hottle, John R; Esker, Alan R

    2008-05-06

    Morphological evolution in dewetting thin film bilayers of polystyrene (PS) and a polyhedral oligomeric silsesquioxane (POSS), trisilanolphenyl-POSS (TPP), was studied as a function of annealing temperature and annealing time. The results demonstrate unique dewetting morphologies in PS/TPP bilayers at elevated temperatures that are significantly different from those typically observed in dewetting polymer/polymer bilayers. During temperature ramp studies by optical microscopy (OM) in the reflection mode, PS/TPP bilayers form cracks with a weak optical contrast at approximately 130 degrees C. The crack formation is attributed to tensile stresses within the upper TPP layer. The weak optical contrast of the cracks observed in the bilayers for annealing temperatures below approximately 160 degrees C is consistent with the cracking and dewetting of only the upper TPP layer from the underlying PS layer. The optical contrast of the morphological features is significantly enhanced at annealing temperatures of >160 degrees C. This observation suggests dewetting of both the upper TPP and the lower PS layers that results in the exposure of the silicon substrate. Upon annealing the PS/TPP bilayers at 200 degrees C in a temperature jump experiment, the upper TPP layer undergoes instantaneous cracking as observed by OM. These cracks in the upper TPP layer serve as nucleation sites for rapid dewetting and aggregation of the TPP layer, as revealed by OM and atomic force microscopy (AFM). X-ray photoelectron spectroscopy (XPS) results indicated that dewetting of the lower PS layer ensued for annealing times >5 min and progressed up to 90 min. For annealing times >90 min, OM, AFM, and XPS results revealed complete dewetting of both the layers with the formation of TPP encapsulated PS droplets.

  13. Growth and characterization of the ZnO/ZnS bilayer obtained by chemical spray pyrolysis

    International Nuclear Information System (INIS)

    Lopez, M.C.; Espinos, J.P.; Leinen, D.; Martin, F.; Centeno, S.P.; Romero, R.; Ramos-Barrado, J.R.

    2008-01-01

    ZnO/ZnS bilayer antireflection coatings have been prepared by spray pyrolysis using aqueous solutions of zinc acetate and thiourea or zinc chloride and thiourea. The structure, surface morphology, chemical composition and optical transmittance of the bilayer have been examined as a function of the composition of the initial solution. X-ray photoelectron spectroscopy analysis and Ar ion-beam sputter etching was carried out to obtain a depth profile of bilayer. Neither carbon nor other by-products, which could alter the optical transmittance of the bilayer were found in either the interface or bulk. The differences between the bilayers arise from the annealing of the ZnS underlayer, as well as the precursor used to prepare it.

  14. Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane

    Science.gov (United States)

    Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas

    2011-01-01

    The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624

  15. Vibrational effects on surface energies and band gaps in hexagonal and cubic ice

    International Nuclear Information System (INIS)

    Engel, Edgar A.; Needs, Richard J.; Monserrat, Bartomeu

    2016-01-01

    Surface energies of hexagonal and cubic water ice are calculated using first-principles quantum mechanical methods, including an accurate description of anharmonic nuclear vibrations. We consider two proton-orderings of the hexagonal and cubic ice basal surfaces and three proton-orderings of hexagonal ice prism surfaces, finding that vibrations reduce the surface energies by more than 10%. We compare our vibrational densities of states to recent sum frequency generation absorption measurements and identify surface proton-orderings of experimental ice samples and the origins of characteristic absorption peaks. We also calculate zero point quantum vibrational corrections to the surface electronic band gaps, which range from −1.2 eV for the cubic ice basal surface up to −1.4 eV for the hexagonal ice prism surface. The vibrational corrections to the surface band gaps are up to 12% smaller than for bulk ice.

  16. Pressure-induced structural change from hexagonal to fcc metal lattice in scandium trihydride

    International Nuclear Information System (INIS)

    Ohmura, A.; Machida, A.; Watanuki, T.; Aoki, K.; Nakano, S.; Takemura, K.

    2007-01-01

    We synthesized scandium hydrides by hydrogenation of a scandium foil with hydrogen fluid under high pressure at ambient temperature. Scandium dihydride (ScH 2 ) and trihydride (ScH 3 ) were prepared near 4 and 5 GPa, respectively. The hydrogenation process and pressure-induced structural changes in ScH 3 were investigated by synchrotron radiation X-ray diffraction measurements up to 54.7 GPa. A structural transition from hexagonal to the fcc lattice began at 30 GPa and was completed at 46 GPa via an intermediate state similar to those reported for other hexagonal trihydrides. The intermediate state was not interpreted in terms of a coexisting state for the low-pressure hexagonal and the high-pressure fcc structures. The onset transition pressure of ScH 3 supported the previously proposed relation that the hexagonal-fcc transition pressure is inversely proportional to the ionic radius of the trihydride

  17. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bradshaw, J.P.; Gilchrist, P.J. [Univ. of Edinburgh (United Kingdom); Duff, K.C. [Univ. of Edinburgh Medical School (United Kingdom); Saxena, A.M. [Brookhaven National Laboratory, Upton, NY (United States)

    1994-12-31

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein.

  18. Neutron diffraction studies of amphipathic helices in phospholipid bilayers

    International Nuclear Information System (INIS)

    Bradshaw, J.P.; Gilchrist, P.J.; Duff, K.C.; Saxena, A.M.

    1994-01-01

    The structural feature which is thought to facilitate the interaction of many peptides with phospholipid bilayers is the ability to fold into an amphipathic helix. In most cases the exact location and orientation of this helix with respect to the membrane is not known, and may vary with factors such as pH and phospholipid content of the bilayer. The growing interest in this area is stimulated by indications that similar interactions can contribute to the binding of certain hormones to their cell-surface receptors. We have been using the techniques of neutron diffraction from stacked phospholipid bilayers in an attempt to investigate this phenomenon with a number of membrane-active peptides. Here we report some of our findings with three of these: the bee venom melittin; the hormone calcitonin; and a synthetic peptide representing the ion channel fragment of influenza A M2 protein

  19. Evans Syndrome Complicated by Intratubular Hemoglobin Cast Nephropathy

    Directory of Open Access Journals (Sweden)

    Iván González

    2017-01-01

    Full Text Available Evans syndrome (ES is a rare autoimmune disorder whose exact pathophysiology is unknown. It is characterized by the simultaneous or subsequent development of autoimmune hemolytic anemia (AIHA and immune thrombocytopenia (ITP. Intravascular hemolysis, with hemoglobinemia, is known to produce acute kidney injury; however, the development of intratubular hemoglobin casts (hemoglobin cast nephropathy in the setting of acute hemolysis is uncommon. Likewise, the association of ES and acute renal failure is equally uncommon. We present a case of a 7-year-old girl with ES who developed acute kidney injury in the setting of intravascular hemolysis and had widespread intratubular hemoglobin casts.

  20. Supramolecular protein immobilization on lipid bilayers

    NARCIS (Netherlands)

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  1. Tunable resistive switching behaviour in ferroelectric–ZnO bilayer films

    International Nuclear Information System (INIS)

    Zhou Mingxiu; Li Ziwei; Chen Bo; Wan Jianguo; Liu Junming

    2013-01-01

    Pb(Zr 0.52 Ti 0.48 )O 3 /ZnO bilayer films with various ZnO-layer thicknesses were prepared by a sol–gel process, and their phase structures, electric conduction and polarization behaviour were measured. The results showed that the preferential crystal orientation of the ZnO layer changed with a change in its thickness. The strong dependence of both asymmetric current–voltage and polarization–voltage characteristics on the ZnO-layer thickness was observed. The resistance ratio of the high-resistance state (HRS) to the low-resistance state (LRS) increased with increasing ZnO-layer thickness, and a high rectification ratio was obtained in the bilayer film with an optimized ZnO-layer thickness. The combined effects of interface polarization coupling and energy band structure on the resistive switching behaviour of the bilayer films were revealed, and the electric conduction mechanisms of the bilayer films at both HRS and LRS were analysed in detail. This work presents an effective method to modulate the resistive switching behaviour of ferroelectric–ZnO heterostructures, which is significant in designing high-performance ferroelectric–semiconductor heterostructures for actual applications. (paper)

  2. Magnetic properties of epitaxial bismuth ferrite-garnet mono- and bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Semuk, E.Yu.; Berzhansky, V.N.; Prokopov, A.R.; Shaposhnikov, A.N.; Karavainikov, A.V. [Taurida National V.I. Vernadsky University, Vernadsky Avenue, 4, 95007 Simferopol (Ukraine); Salyuk, O.Yu. [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine); Golub, V.O., E-mail: golub@imag.kiev.ua [Institute of Magnetism NASU and MESU, 36-B Vernadsky Blvd., 03142 Kiev (Ukraine)

    2015-11-15

    Magnetic properties of Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12} (84 nm) and Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} (180 nm) films epitaxially grown on gallium-gadolinium garnet (GGG) single crystal (111) substrate as well as Bi{sub 1.5}Gd{sub 1.5}Fe{sub 4.5}Al{sub 0.5}O{sub 12}/Bi{sub 2.8}Y{sub 0.2}Fe{sub 5}O{sub 12} bilayer were investigated using ferromagnetic resonance technique. The mismatch of the lattice parameters of substrate and magnetic layers leads to formation of adaptive layers which affect on the high order anisotropy constant of the films but practically do not affect on uniaxial perpendicular magnetic anisotropy The magnetic properties of the bilayer film were explained in supposition of strong exchange coupling between magnetic layers taking into account film-film and film-substrate elastic interaction. - Highlights: • Magnetic parameters of epitaxial Bi-YIG films and bilayers on GGG substrate. • Adaptive layers affect on high order magnetic anisotropy. • Magnetic properties of bilayers are result of strong exchange interaction.

  3. 21 CFR 864.7400 - Hemoglobin A2 assay.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Hemoglobin A2 assay. 864.7400 Section 864.7400 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Kits and Packages § 864.7400 Hemoglobin A2...

  4. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  5. Action of carbon monoxide on the affinity of hemoglobin for oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Vanuxem, D.; Weiller, P.J.; Guillot, C.; Grimaud, C.

    1982-01-01

    The authors have studied the action of carbon monoxide on the affinity of hemoglobin for oxygen by measuring P50 in whole blood and in stripped hemoglobin before and after exposition of blood samples from heavy smokers and polycythemic patients with high levels of HbCO to hyperbaric oxygen (2.2 ata). The concentration of 2,3-diphosphoglycerate was normal although P50 was significantly lowered, not only in whole blood but also in stripped hemoglobin. Hyperbaric oxygen normalized P50 by removing CO radicals from stripped hemoglobin. This may indicate that CO radicals exert a direct action on the hemoglobin molecule, at least at the HbCO levels studied in this work.

  6. Nitrosyl hemoglobins: EPR above 80 K

    Energy Technology Data Exchange (ETDEWEB)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs.

  7. Nitrosyl hemoglobins: EPR above 80 K

    International Nuclear Information System (INIS)

    Wajnberg, E.; Bemski, G.; El-Jaick, L.J.; Alves, O.C.

    1995-03-01

    The EPR spectra of nitrosyl hemoglobin and myoglobin in different conditions (native, denatured and lyophilized), as well as of hematin-NO were obtained in the temperature range of 80 K-280 K. There is a substantial and reversible.decrease of the areas of the EPR spectra of all the hemoglobin samples above 150 K. The interpretation of the results implies the existence of two conformational states in thermal equilibrium only one of which is EPR detectable. Thermodynamical parameters are determined for the hexa and penta-coordinated cases. (author). 25 refs, 3 figs

  8. Electrostatically confined quantum rings in bilayer graphene.

    Science.gov (United States)

    Zarenia, M; Pereira, J M; Peeters, F M; Farias, G A

    2009-12-01

    We propose a new system where electron and hole states are electrostatically confined into a quantum ring in bilayer graphene. These structures can be created by tuning the gap of the graphene bilayer using nanostructured gates or by position-dependent doping. The energy levels have a magnetic field (B(0)) dependence that is strikingly distinct from that of usual semiconductor quantum rings. In particular, the eigenvalues are not invariant under a B(0) --> -B(0) transformation and, for a fixed total angular momentum index m, their field dependence is not parabolic, but displays two minima separated by a saddle point. The spectra also display several anticrossings, which arise due to the overlap of gate-confined and magnetically confined states.

  9. Bilayer expurgated LDPC codes with uncoded relaying

    Directory of Open Access Journals (Sweden)

    Md. Noor-A-Rahim

    2017-08-01

    Full Text Available Bilayer low-density parity-check (LDPC codes are an effective coding technique for decode-and-forward relaying, where the relay forwards extra parity bits to help the destination to decode the source bits correctly. In the existing bilayer coding scheme, these parity bits are protected by an error correcting code and assumed reliably available at the receiver. We propose an uncoded relaying scheme, where the extra parity bits are forwarded to the destination without any protection. Through density evolution analysis and simulation results, we show that our proposed scheme achieves better performance in terms of bit erasure probability than the existing relaying scheme. In addition, our proposed scheme results in lower complexity at the relay.

  10. Exchange bias in diluted-antiferromagnet/antiferromagnet bilayers

    International Nuclear Information System (INIS)

    Mao, Zhongquan; Zhan, Xiaozhi; Chen, Xi

    2015-01-01

    The hysteresis-loop properties of a diluted-antiferromagnetic (DAF) layer exchange coupling to an antiferromagnetic (AF) layer are investigated by means of numerical simulations. Remarkable loop shift and coercivity enhancement are observed in such DAF/AF bilayers, while they are absent in the uncoupled DAF single layer. The influences of pinned domains, dilution, cooling field and DAF layer thickness on the loop shift are investigated systematically. The result unambiguously confirms an exchange bias (EB) effect in the DAF/AF bilayers. It also reveals that the EB effect originates from the pinned AF domains within the DAF layer. In contrast to conventional EB systems, frozen uncompensated spins are not found at the interface of the AF pinning layer. (paper)

  11. Doping efficiency of single and randomly stacked bilayer graphene by iodine adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Kim, HoKwon; Renault, Olivier; Rouchon, Denis; Mariolle, Denis; Chevalier, Nicolas [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LETI, MINATEC Campus, F-38054 Grenoble (France); Tyurnina, Anastasia; Simonato, Jean-Pierre; Dijon, Jean [Univ. Grenoble Alpes, F-38000 Grenoble, France and CEA, LITEN, Minatec Campus, F-38054 Grenoble (France)

    2014-07-07

    We report on the efficiency and thermal stability of p-doping by iodine on single and randomly stacked, weakly coupled bilayer polycrystalline graphene, as directly measured by photoelectron emission microscopy. The doping results in work function value increase of 0.4–0.5 eV, with a higher degree of iodine uptake by the bilayer (2%) as compared to the single layer (1%) suggesting iodine intercalation in the bilayer. The chemistry of iodine is identified accordingly as I{sub 3}{sup −} and I{sub 5}{sup −} poly iodide anionic complexes with slightly higher concentration of I{sub 5}{sup −} in bilayer than monolayer graphene, likely attributed to differences in doping mechanisms. Temperature dependent in-situ annealing of the doped films demonstrated that the doping remains efficient up to 200 °C.

  12. Substrate Integrated Waveguide Cross-Coupling Filter with Multilayer Hexagonal Cavity

    Directory of Open Access Journals (Sweden)

    B. Wu

    2013-01-01

    Full Text Available Hexagonal cavities and their applications to multilayer substrate integrated waveguide (SIW filters are presented. The hexagonal SIW cavity which can combine flexibility of rectangular one and performance of circular one is convenient for bandpass filter’s design. Three types of experimental configuration with the same central frequency of 10 GHz and bandwidth of 6%, including three-order and four-order cross-coupling topologies, are constructed and fabricated based on low temperature cofired ceramic (LTCC technology. Both theoretical and experimental results are presented.

  13. Coexistence of a two-states organization for a cell-penetrating peptide in lipid bilayer.

    Science.gov (United States)

    Plénat, Thomas; Boichot, Sylvie; Dosset, Patrice; Milhiet, Pierre-Emmanuel; Le Grimellec, Christian

    2005-12-01

    Primary amphipathic cell-penetrating peptides transport cargoes across cell membranes with high efficiency and low lytic activity. These primary amphipathic peptides were previously shown to form aggregates or supramolecular structures in mixed lipid-peptide monolayers, but their behavior in lipid bilayers remains to be characterized. Using atomic force microscopy, we have examined the interactions of P(alpha), a primary amphipathic cell-penetrating peptide which remains alpha-helical whatever the environment, with dipalmitoylphosphatidylcholine (DPPC) bilayers. Addition of P(alpha) at concentrations up to 5 mol % markedly modified the supported bilayers topography. Long and thin filaments lying flat at the membrane surface coexisted with deeply embedded peptides which induced a local thinning of the bilayer. On the other hand, addition of P(alpha) only exerted very limited effects on the corresponding liposome's bilayer physical state, as estimated from differential scanning calorimetry and diphenylhexatriene fluorescence anisotropy experiments. The use of a gel-fluid phase separated supported bilayers made of a dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine mixture confirmed both the existence of long filaments, which at low peptide concentration were preferentially localized in the fluid phase domains and the membrane disorganizing effects of 5 mol % P(alpha). The simultaneous two-states organization of P(alpha), at the membrane surface and deeply embedded in the bilayer, may be involved in the transmembrane carrier function of this primary amphipathic peptide.

  14. Subterahertz Longitudinal Phonon Modes Propagating in a Lipid Bilayer Immersed in an Aqueous Medium

    Science.gov (United States)

    Zakhvataev, V. E.

    2018-04-01

    The properties of subterahertz longitudinal acoustic phonon modes in the hydrophobic region of a lipid bilayer immersed in a compressible viscous aqueous medium are investigated theoretically. An approximate expression is obtained for the Mandelstam-Brillouin components of the dynamic structure factor of a bilayer. The analysis is based on a generalized hydrodynamic model of the "two-dimensional lipid bilayer + three-dimensional fluid medium" system, as well as on known sharp estimates for the frequencies and lifetimes of long-wavelength longitudinal acoustic phonons in a free hydrated lipid bilayer and in water, obtained from inelastic X-ray scattering experiments and molecular dynamics simulations. It is shown that, for characteristic values of the parameters of the membrane system, subterahertz longitudinal phonon-like excitations in the hydrophobic part of the bilayer are underdamped. In this case, the contribution of the viscous flow of the aqueous medium to the damping of a longitudinal membrane mode is small compared with the contribution of the lipid bilayer. Quantitative estimates of the damping ratio agree well with the experimental results for the vibration mode of the enzyme lysozyme in aqueous solution [1]. It is also shown that a coupling between longitudinal phonon modes of the bilayer and relaxation processes in its fluid environment gives rise to an additional peak in the scattering spectrum, which corresponds to a non-propagating mode.

  15. Micromolding in inverted polymer opals (MIPO): synthesis of hexagonal mesoporous silica opals

    Energy Technology Data Exchange (ETDEWEB)

    Yang Sanming; Coombs, N.; Ozin, G.A. [Toronto Univ., Ont. (Canada). Materials Chemistry Research Group

    2000-12-15

    Regular arrays of hexagonal mesoporous silica spheres are crucial for a number of applications, but until now control of the diameter, dispersity, and packing of the spheres has not proved possible. These authors report a new method-micromolding in inverted polymer opals-that allows the synthesis of such hexagonal mesoporous silica opals for the first time. (orig.)

  16. Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Virendra [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Gaur, Anurag, E-mail: anuragdph@gmail.com [Department of Physics, National Institute of Technology, Kurukshetra 136119 (India); Choudhary, R.J.; Gupta, Mukul [UGC-DAE Consortium for Scientific Research, Indore 452 001 (India)

    2016-05-01

    Epitaxial 150 nm thick LSMO/BFO bilayer is deposited on STO (100) substrate by pulsed laser deposition, to study magnetoelectric effect. Unexpected low value of room temperature magnetization in bilayer indicates towards the possibility of interdiffusion. Further, sharp fall in the value of T{sub C} (53 K) also added our anxiety towards possible interdiffusion in BFO/LSMO system. Low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena, and the temperature-dependent interdiffusivity is obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. It has been found that the diffusivity at different temperatures follows Arrhenius-type behavior. X-ray reflection (XRR) pattern obtained for the bilayer could not be fitted in the Parratt’s formalism, which confirms the interdiffusion in it. Depth profiles of {sup 209}Bi, {sup 56}Fe ions measured by secondary ion mass spectroscope (SIMS) further substantiate the diffusion of these ions from upper BFO layer into lower LSMO layer. - Highlights: • The LSMO/BFO bilayer is deposited by PLD method. • Structural, magnetic and interfacial properties of deposited films were studied. • In this article, we have raised the problem of interdiffusion in this bilayer, which can hinder its application in devices. Therefore, we feel that our article presents important finding in the area of ceramics research.

  17. Controlling the alloy composition of PtNi nanocrystals using solid-state dewetting of bilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Okkyun; Oh, Se An; Lee, Ji Yeon; Ha, Sung Soo; Kim, Jae Myung; Choi, Jung Won; Kim, Jin-Woo [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of); Kang, Hyon Chol [Department of Materials and Science Engineering, Chosun University, Gwangju 61542 (Korea, Republic of); Noh, Do Young, E-mail: dynoh@gist.ac.kr [Department of Physics and Photon Science & School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005 (Korea, Republic of)

    2016-05-15

    We demonstrate that solid-state dewetting of bilayer films is an effective way for obtaining bimetallic alloy nanocrystals of controlled composition. When a Pt–Ni bilayer film were annealed near 700 °C, Pt and Ni atoms inter-diffused to form a PtNi bimetallic alloy film. Upon annealing at higher temperatures, the bilayer films transformed into <111> oriented PtNi alloy nanocrystals in small-rhombicuboctahedron shape through solid-state dewetting process. The Pt content of the nanocrystals and the alloy films, estimated by applying the Vegard's law to the relaxed lattice constant, was closely related to the thickness of each layer in the as-grown bilayer films which can be readily controlled during bilayer deposition. - Highlights: • Composition control of PtNi nanoparticles using solid state dewetting is proposed. • PtNi alloy composition was controlled by thickness ratio of Pt–Ni bilayer films. • PtNi alloy nanocrystals were obtained in small-rhombicuboctahedron shape.

  18. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Walter F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  19. Device model investigation of bilayer organic light emitting diodes

    International Nuclear Information System (INIS)

    Crone, B. K.; Davids, P. S.; Campbell, I. H.; Smith, D. L.

    2000-01-01

    Organic materials that have desirable luminescence properties, such as a favorable emission spectrum and high luminescence efficiency, are not necessarily suitable for single layer organic light-emitting diodes (LEDs) because the material may have unequal carrier mobilities or contact limited injection properties. As a result, single layer LEDs made from such organic materials are inefficient. In this article, we present device model calculations of single layer and bilayer organic LED characteristics that demonstrate the improvements in device performance that can occur in bilayer devices. We first consider an organic material where the mobilities of the electrons and holes are significantly different. The role of the bilayer structure in this case is to move the recombination away from the electrode that injects the low mobility carrier. We then consider an organic material with equal electron and hole mobilities but where it is not possible to make a good contact for one carrier type, say electrons. The role of a bilayer structure in this case is to prevent the holes from traversing the device without recombining. In both cases, single layer device limitations can be overcome by employing a two organic layer structure. The results are discussed using the calculated spatial variation of the carrier densities, electric field, and recombination rate density in the structures. (c) 2000 American Institute of Physics

  20. Atomic Force Microscope Image Contrast Mechanisms on Supported Lipid Bilayers

    OpenAIRE

    Schneider, James; Dufrêne, Yves F.; Barger Jr., William R.; Lee, Gil U.

    2000-01-01

    This work presents a methodology to measure and quantitatively interpret force curves on supported lipid bilayers in water. We then use this method to correlate topographic imaging contrast in atomic force microscopy (AFM) images of phase-separated Langmuir-Blodgett bilayers with imaging load. Force curves collected on pure monolayers of both distearoylphosphatidylethanolamine (DSPE) and monogalactosylethanolamine (MGDG) and dioleoylethanolamine (DOPE) deposited at similar surface pressures o...

  1. Ion dynamics in cationic lipid bilayer systems in saline solutions

    DEFF Research Database (Denmark)

    Miettinen, Markus S; Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Positively charged lipid bilayer systems are a promising class of nonviral vectors for safe and efficient gene and drug delivery. Detailed understanding of these systems is therefore not only of fundamental but also of practical biomedical interest. Here, we study bilayers comprising a binary...... are concluded to be interesting for the physics of the whole membrane, especially considering its interaction dynamics with charged macromolecular surfaces....

  2. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    Energy Technology Data Exchange (ETDEWEB)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Mazur, Eric [School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States); Department of Physics, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138 (United States)

    2014-10-06

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  3. Femtosecond laser direct writing of monocrystalline hexagonal silver prisms

    International Nuclear Information System (INIS)

    Vora, Kevin; Kang, SeungYeon; Moebius, Michael; Mazur, Eric

    2014-01-01

    Bottom-up growth methods and top-down patterning techniques are both used to fabricate metal nanostructures, each with a distinct advantage: One creates crystalline structures and the other offers precise positioning. Here, we present a technique that localizes the growth of metal crystals to the focal volume of a laser beam, combining advantages from both approaches. We report the fabrication of silver nanoprisms—hexagonal nanoscale silver crystals—through irradiation with focused femtosecond laser pulses. The growth of these nanoprisms is due to a nonlinear optical interaction between femtosecond laser pulses and a polyvinylpyrrolidone film doped with silver nitrate. The hexagonal nanoprisms have bases hundreds of nanometers in size and the crystal growth occurs over exposure times of less than 1 ms (8 orders of magnitude faster than traditional chemical techniques). Electron backscatter diffraction analysis shows that the hexagonal nanoprisms are monocrystalline. The fabrication method combines advantages from both wet chemistry and femtosecond laser direct-writing to grow silver crystals in targeted locations. The results presented in this letter offer an approach to directly positioning and growing silver crystals on a substrate, which can be used for plasmonic devices.

  4. Nanoscale Cross-Point Resistive Switching Memory Comprising p-Type SnO Bilayers

    KAUST Repository

    Hota, Mrinal Kanti; Hedhili, Mohamed N.; Wang, Qingxiao; Melnikov, Vasily; Mohammed, Omar F.; Alshareef, Husam N.

    2015-01-01

    Reproducible low-voltage bipolar resistive switching is reported in bilayer structures of p-type SnO films. Specifically, a bilayer homojunction comprising SnOx (oxygen-rich) and SnOy (oxygen-deficient) in nanoscale cross-point (300 × 300 nm2

  5. Survival and failure modes: platform-switching for internal and external hexagon cemented fixed dental prostheses.

    Science.gov (United States)

    Anchieta, Rodolfo B; Machado, Lucas S; Hirata, Ronaldo; Coelho, Paulo G; Bonfante, Estevam A

    2016-10-01

    This study evaluated the probability of survival (reliability) of platform-switched fixed dental prostheses (FDPs) cemented on different implant-abutment connection designs. Eighty-four-three-unit FDPs (molar pontic) were cemented on abutments connected to two implants of external or internal hexagon connection. Four groups (n = 21 each) were established: external hexagon connection and regular platform (ERC); external hexagon connection and switched platform (ESC); internal hexagon and regular platform (IRC); and internal hexagon and switched platform (ISC). Prostheses were subjected to step-stress accelerated life testing in water. Weibull curves and probability of survival for a mission of 100,000 cycles at 400 N (two-sided 90% CI) were calculated. The beta values of 0.22, 0.48, 0.50, and 1.25 for groups ERC, ESC, IRC, and ISC, respectively, indicated a limited role of fatigue in damage accumulation, except for group ISC. Survival decreased for both platform-switched groups (ESC: 74%, and ISC: 59%) compared with the regular matching platform counterparts (ERC: 95%, and IRC: 98%). Characteristic strength was higher only for ERC compared with ESC, but not different between internal connections. Failures chiefly involved the abutment screw. Platform switching decreased the probability of survival of FDPs on both external and internal connections. The absence in loss of characteristic strength observed in internal hexagon connections favor their use compared with platform-switched external hexagon connections. © 2016 Eur J Oral Sci.

  6. A spectroscopic study on the interaction between gold nanoparticles and hemoglobin

    International Nuclear Information System (INIS)

    Garabagiu, Sorina

    2011-01-01

    Highlights: ► The interaction was studied using UV–vis and fluorescence spectroscopy. ► Gold nanoparticles quench the fluorescence emission of hemoglobin solution. ► The binding and thermodynamic constants were calculated. ► Major impact: electrochemical applications of the complex onto a substrate. -- Abstract: The interaction between horse hemoglobin and gold nanoparticles was studied using optical spectroscopy. UV–vis and fluorescence spectra show that a spontaneous binding process occurred between hemoglobin and gold nanoparticles. The Soret band of hemoglobin in the presence of gold nanoparticles does not show significant changes, which proves that the protein retained its biological function. A shift to longer wavelengths appears in the plasmonic band of gold nanoparticles upon the attachment of hemoglobin molecules. Gold nanoparticles quench the fluorescence emission of tryptophan residues in the structure of hemoglobin. The Stern–Volmer quenching constant, the binding constant and the number of binding sites were also calculated. Thermodynamic parameters indicate that the binding was mainly due to hydrophobic interactions.

  7. Human macrophage hemoglobin-iron metabolism in vitro

    International Nuclear Information System (INIS)

    Custer, G.; Balcerzak, S.; Rinehart, J.

    1982-01-01

    An entirely in vitro technique was employed to characterize hemoglobin-iron metabolism by human macrophages obtained by culture of blood monocytes and pulmonary alveolar macrophages. Macrophages phagocytized about three times as many erythrocytes as monocytes and six times as many erythrocytes as pulmonary alveolar macrophages. The rate of subsequent release of 59 Fe to the extracellular transferrin pool was two- to fourfold greater for macrophages as compared to the other two cell types. The kinetics of 59 Fe-transferrin release were characterized by a relatively rapid early phase (hours 1-4) followed by a slow phase (hours 4-72) for all three cell types. Intracellular movement of iron was characterized by a rapid shift from hemoglobin to ferritin that was complete with the onset of the slow phase of extracellular release. A transient increase in 59 Fe associated with an intracellular protein eluting with transferrin was also observed within 1 hour after phagocytosis. The process of hemoglobin-iron release to extracellular transferrin was inhibited at 4 degrees C but was unaffected by inhibitory of protein synthesis, glycolysis, microtubule function, and microfilament function. These data emphasize the rapidity of macrophage hemoglobin iron metabolism, provide a model for characterization of this process in vitro, and in general confirm data obtained utilizing in vivo animal models

  8. Magnetic properties of a doped graphene-like bilayer

    Energy Technology Data Exchange (ETDEWEB)

    Guo, An-Bang [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Jiang, Wei, E-mail: weijiang.sut.edu@gmail.com [School of Science, Shenyang University of Technology, Shenyang 110870 (China); Zhang, Na [Shenyang Normal University, Shenyang 110034 (China)

    2017-05-15

    A doped graphene-like bilayer is described using a four-sublattice Heisenberg model both ferromagnetic and antiferrimagnetic couplings. The magnetic properties of the bilayer system are studied using the Heisenberg model, retarded Green's function and the linear spin-wave approximation. The spin-wave spectra, energy gap, and the magnetization and quantum fluctuation of the system at the ground state are calculated with various intra- and interlayer couplings. The results indicate that the effect of antiferromagnetic exchange coupling on the magnetic properties of the system is significant. Magnetizations at low temperature show intersection points due to the quantum effects.

  9. Electronic band structure of magnetic bilayer graphene superlattices

    International Nuclear Information System (INIS)

    Pham, C. Huy; Nguyen, T. Thuong; Nguyen, V. Lien

    2014-01-01

    Electronic band structure of the bilayer graphene superlattices with δ-function magnetic barriers and zero average magnetic flux is studied within the four-band continuum model, using the transfer matrix method. The periodic magnetic potential effects on the zero-energy touching point between the lowest conduction and the highest valence minibands of pristine bilayer graphene are exactly analyzed. Magnetic potential is shown also to generate the finite-energy touching points between higher minibands at the edges of Brillouin zone. The positions of these points and the related dispersions are determined in the case of symmetric potentials.

  10. Theory of passive proton conductance in lipid bilayers.

    Science.gov (United States)

    Nagle, J F

    1987-10-01

    The large permeability of lipid bilayers to protons compared to other small ions calls for a special proton transport mechanism. At the present time, only mechanisms involving transient hydrogen-bonded chains of water can account for the experimental result that the conductance is nearly independent of pH. Three models involving transient hydrogen-bonded chains are discussed, including an outline of the kinetic calculations that lead to predictions of current versus voltage drop and current versus pH differences. These calculations can be compared to experiment to determine which, if any, of these models pertains to lipid bilayers.

  11. Lamellar-lamellar phase separation of phospholipid bilayers induced by salting-in/-out effects

    Energy Technology Data Exchange (ETDEWEB)

    Hishida, Mafumi [Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto 606-8501 (Japan); Seto, Hideki, E-mail: hideki.seto@kek.jp [KENS and CMRC, Institute of Materials Structure Science, High Energy Accelerator Research Organization, Tsukuba 305-0801 (Japan)

    2011-01-01

    The multilamellar structure of phospholipid bilayers is stabilized by the interactions between bilayers. Although the lamellar repeat distance is uniquely determined at the balance point of interactions between bilayers, a lamellar-lamellar phase separation, where the two phases with different lamellar repeat distance coexist, has been reported in a case of adding a salt to the aqueous solution of lipids. In order to understand the physical mechanism of the lamellar-lamellar phase separation, the effects of adding monovalent salt on the lamellar structure are studied by visual observation and by small-angle X-ray scattering. Further, a theoretical model based on the mean field theory is introduced and it is concluded that the salting-in and -out effects of lipid bilayers trigger the lamellar-lamellar phase separation.

  12. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1991-01-01

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  13. Effects of freezing and cold acclimation on the plasma membrane of isolated protoplasts. Summary progress report, May 16, 1987--June 1, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Steponkus, P.L.

    1991-12-31

    This project focuses on lesions in the plasma membrane of protoplasts that occur during freezing to temperatures below {minus}5{degrees} which result in changes in the semipermeablity of the plasma membrane. This injury, referred to as loss of osmotic responsiveness, is associated with the formation of large, aparticulate domains in the plasma membrane, aparticulate lamellae subtending the plasma membrane, and lamellar-to-hexagonal{sub II} phase transitions in the plasma membrane and subtending lamellar. The goals of this project are to provide a mechanistic understanding of the mechanism by which freeze-induced dehydration effects the formation of aparticulate domains and lamellar-to-hexagonal{sub II} phase transitions and to determine the mechanisms by which cold acclimation and cryoprotectants preclude or diminish these ultrastructural changes. Our working hypothesis is the formation of aparticulate domains and lamellar-to-hexagon{sub II} phase transitions in the plasma membrane and subtending lamellae are manifestations of hydration-dependent bilayer-bilayer interactions.

  14. The Greenland shark Somniosus microcephalus-Hemoglobins and ligand-binding properties.

    Directory of Open Access Journals (Sweden)

    Roberta Russo

    Full Text Available A large amount of data is currently available on the adaptive mechanisms of polar bony fish hemoglobins, but structural information on those of cartilaginous species is scarce. This study presents the first characterisation of the hemoglobin system of one of the longest-living vertebrate species (392 ± 120 years, the Arctic shark Somniosus microcephalus. Three major hemoglobins are found in its red blood cells and are made of two copies of the same α globin combined with two copies of three very similar β subunits. The three hemoglobins show very similar oxygenation and carbonylation properties, which are unaffected by urea, a very important compound in marine elasmobranch physiology. They display identical electronic absorption and resonance Raman spectra, indicating that their heme-pocket structures are identical or highly similar. The quaternary transition equilibrium between the relaxed (R and the tense (T states is more dependent on physiological allosteric effectors than in human hemoglobin, as also demonstrated in polar teleost hemoglobins. Similar to other cartilaginous fishes, we found no evidence for functional differentiation among the three isoforms. The very similar ligand-binding properties suggest that regulatory control of O2 transport may be at the cellular level and that it may involve changes in the cellular concentrations of allosteric effectors and/or variations of other systemic factors. The hemoglobins of this polar shark have evolved adaptive decreases in O2 affinity in comparison to temperate sharks.

  15. Using the MWC model to describe heterotropic interactions in hemoglobin

    Science.gov (United States)

    Rapp, Olga

    2017-01-01

    Hemoglobin is a classical model allosteric protein. Research on hemoglobin parallels the development of key cooperativity and allostery concepts, such as the ‘all-or-none’ Hill formalism, the stepwise Adair binding formulation and the concerted Monod-Wymann-Changuex (MWC) allosteric model. While it is clear that the MWC model adequately describes the cooperative binding of oxygen to hemoglobin, rationalizing the effects of H+, CO2 or organophosphate ligands on hemoglobin-oxygen saturation using the same model remains controversial. According to the MWC model, allosteric ligands exert their effect on protein function by modulating the quaternary conformational transition of the protein. However, data fitting analysis of hemoglobin oxygen saturation curves in the presence or absence of inhibitory ligands persistently revealed effects on both relative oxygen affinity (c) and conformational changes (L), elementary MWC parameters. The recent realization that data fitting analysis using the traditional MWC model equation may not provide reliable estimates for L and c thus calls for a re-examination of previous data using alternative fitting strategies. In the current manuscript, we present two simple strategies for obtaining reliable estimates for MWC mechanistic parameters of hemoglobin steady-state saturation curves in cases of both evolutionary and physiological variations. Our results suggest that the simple MWC model provides a reasonable description that can also account for heterotropic interactions in hemoglobin. The results, moreover, offer a general roadmap for successful data fitting analysis using the MWC model. PMID:28793329

  16. The impact of hemoglobin on the efficacy of phototherapy in hyperbilirubinemic infants

    DEFF Research Database (Denmark)

    Donneborg, Mette L; Vandborg, Pernille K; Hansen, Bo M

    2017-01-01

    BackgroundPhototherapy is the routine treatment for neonatal hyperbilirubinemia. Absorption of light in the skin transforms the native Z,Z-bilirubin to photobilirubins. This study investigates whether the hemoglobin concentration has an impact on efficacy of phototherapy, expressed by the decline...... decrease in TsB after 24 h was 121 (57-199) μmol/l; the median hemoglobin was 12.0 (7.0-14.7) mmol/l. There was a significant effect of hemoglobin concentration on the decrease in TsB of -3.61 μmol/mmol hemoglobin (P=0.022), after adjusting for initial TsB and postnatal age. That is, assuming the same...... initial TsB and postnatal age, for each mmol/l increase in hemoglobin, the decrease in TsB was 3.61 μmol/l smaller. In our hemoglobin range, the decrease in TsB is reduced by 28 μmol/l (23%).ConclusionIncreasing hemoglobin levels led to a decrease in the efficacy of phototherapy. Our data provide...

  17. Transfer matrix theory of monolayer graphene/bilayer graphene heterostructure superlattice

    International Nuclear Information System (INIS)

    Wang, Yu

    2014-01-01

    We have formulated a transfer matrix method to investigate electronic properties of graphene heterostructure consisting of monolayer graphene and bilayer counterpart. By evaluating transmission, conductance, and band dispersion, we show that, irrespective of the different carrier chiralities in monolayer graphene and bilayer graphene, superlattice consisting of biased bilayer graphene barrier and monolayer graphene well can mimic the electronic properties of conventional semiconductor superlattice, displaying the extended subbands in the quantum tunneling regime and producing anisotropic minigaps for the classically allowed transport. Due to the lateral confinement, the lowest mode has shifted away from the charge neutral point of monolayer graphene component, opening a sizeable gap in concerned structure. Following the gate-field and geometry modulation, all electronic states and gaps between them can be externally engineered in an electric-controllable strategy.

  18. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    International Nuclear Information System (INIS)

    Solovjov, D.V.; Gordelyij, V.Yi.; Gorshkova, Yu.Je.; Yivan'kov, O.Yi.; Koval'ov, Yu.S.; Kuklyin, A.Yi.; Solovjov, D.V.; Bulavyin, L.A.; Yivan'kov, O.Yi.; Nyikolajenko, T.Yu.; Kuklyin, A.Yi.; Gordelyij, V.Yi.; Gordelyij, V.Yi.

    2012-01-01

    Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia) are presented. Experiment has been performed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing PV-T measurements on the substance under investigation. D 2 O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) liquid system, presenting the model of natural live membrane, has been taken as the sample for investigations. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simultaneously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase) phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicating occurrence of the phase transition.

  19. Comparative study of bedside and laboratory measurements of hemoglobin.

    Science.gov (United States)

    Krenzischek, D A; Tanseco, F V

    1996-11-01

    The purpose of this study was to examine the effects of variations in technique on measurements of hemoglobin level done at the bedside and to compare these results with laboratory measurements of hemoglobin. In accordance with hospital policy, procedure, and protocol, various techniques were used to obtain samples of capillary and venous blood and of blood from arterial and central venous catheters. Levels of hemoglobin were measured at the bedside and in the laboratory, and the results were compared. The Johns Hopkins Hospital adult postanesthesia care unit. A total of 187 blood samples were obtained from 62 adults who had undergone general surgery. Group I comprised 20 subjects with capillary and venous blood samples. Group II comprised 21 subjects with arterial blood samples. Group III comprised 21 subjects with central venous blood samples. The results showed that the amount of blood to be discarded before obtaining samples of arterial and central venous blood need not be any larger than double the dead space of the catheter, and that shaking the blood sample for 10 seconds was sufficient to mix the sample before measurement of hemoglobin levels. Results of bedside and laboratory measurements of hemoglobin level were comparable. Bedside measurement of hemoglobin increases efficiency in patient care, decreases risk of blood-transmitted infection for staff, and decreases cost to the patient. However, the persons who perform the assay must be responsible in adhering to the standard of practice to minimize errors in the measurements.

  20. Prognostic value of hemoglobin concentration in radiotherapy for cancer of supraglottic larynx

    International Nuclear Information System (INIS)

    Tarnawski, Rafal; Skladowski, Krzysztof; Maciejewski, Boguslaw

    1997-01-01

    Purpose: The aim of this work is the estimation of correlations between hemoglobin concentration either before or after radiotherapy and local tumor control probability for laryngeal cancer. Methods and Materials: Retrospective analysis of 847 cases of laryngeal supraglottic squamous cell carcinoma treated with radiation alone was performed using maximum likelihood estimations, and step-wise logistic regression. All patients were in good initial performance status (Karnofsky index >70). The minimum follow-up time was 3 years. Results: Logistic regression showed that the hemoglobin concentration after radiotherapy is an important prognostic factor. There was a very strong correlation between hemoglobin concentration and tumor local control probability. Hemoglobin concentration at the beginning of radiotherapy does not correlate with treatment outcome, but any decrease of hemoglobin during therapy is a strong prognostic factor for treatment failure. Conclusions: Although regression models with many variables may be instable, the present results suggest that hemoglobin concentration after treatment is at least as important as overall treatment time. It was not possible to find out whether the low concentration of hemoglobin is an independent cause of low TCP or whether it reflects other mechanisms that may influence both hemoglobin level and the TCP

  1. A nanocluster-based fluorescent sensor for sensitive hemoglobin detection.

    Science.gov (United States)

    Yang, Dongqin; Meng, Huijie; Tu, Yifeng; Yan, Jilin

    2017-08-01

    In this report, a fluorescence sensor for sensitive detection of hemoglobin was developed. Gold nanoclusters were first synthesized with bovine serum albumin. It was found that both hydrogen peroxide and hemoglobin could weakly quench the fluorescence from the gold nanoclusters, but when these two were applied onto the nanolcusters simultaneously, a much improved quenching was resulted. This enhancing effect was proved to come from the catalytic generation of hydroxyl radical by hemoglobin. Under an optimized condition, the quenching linearly related to the concentration of hemoglobin in the range of 1-250nM, and a limit of detection as low as 0.36nM could be obtained. This provided a sensitive means for the quantification of Hb. The sensor was then successfully applied for blood analyses with simple sample pretreatment. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Temperature-dependent enthalpy of oxygenation in Antarctic fish hemoglobins

    DEFF Research Database (Denmark)

    Fago, A.; Wells, R.M.G.; Weber, Roy E.

    1997-01-01

    The effect of temperature on the oxygen-binding properties of the hemoglobins of three cold-adapted Antarctic fish species, Dissostichus mawsoni, Pagothenia borchgrevinki and Trematomus, sp., has been investigated under different pH values and buffer conditions. A clear non linear van't Hoff plot...... (logP(50) vs 1/T) of D. mawsoni hemoglobin indicates that the enthalpy of oxygenation (slope of the plot) is temperature dependent and that at high temperatures oxygen-binding becomes less exothermic. Nearly linear relationships were found in the hemoglobins of the other two species. The data were...... oxygen binding. The degree of the temperature dependence of the heat of oxygenation observed in these hemoglobins seems to reflect the differences in their allosteric effects rather than a specific molecular adaptation to low temperatures. Moreover, this study indicates that the disagreement between...

  3. Hemoglobin Concentration and Risk of Incident Stroke in Community-Living Adults.

    Science.gov (United States)

    Panwar, Bhupesh; Judd, Suzanne E; Warnock, David G; McClellan, William M; Booth, John N; Muntner, Paul; Gutiérrez, Orlando M

    2016-08-01

    In previous observational studies, hemoglobin concentrations have been associated with an increased risk of stroke. However, these studies were limited by a relatively low number of stroke events, making it difficult to determine whether the association of hemoglobin and stroke differed by demographic or clinical factors. Using Cox proportional hazards analysis and Kaplan-Meier plots, we examined the association of baseline hemoglobin concentrations with incident stroke in the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study, a cohort of black and white adults aged ≥45 years. A total of 518 participants developed stroke over a mean 7±2 years of follow-up. There was a statistically significant interaction between hemoglobin and sex (P=0.05) on the risk of incident stroke. In Cox regression models adjusted for demographic and clinical variables, there was no association of baseline hemoglobin concentration with incident stroke in men, whereas in women, the lowest (14.0 g/dL) quartiles of hemoglobin were associated with higher risk of stroke when compared with the second quartile (12.4-13.2 g/dL; quartile 1: hazard ratio, 1.59; 95% confidence interval, 1.09-2.31; quartile 2: referent; quartile 3: hazard ratio, 0.91; 95% confidence interval, 0.59-1.38; quartile 4: hazard ratio, 1.59; 95% confidence interval, 1.08-2.35). Similar results were observed in models stratified by hemoglobin and sex and when hemoglobin was modeled as a continuous variable using restricted quadratic spline regression. Lower and higher hemoglobin concentrations were associated with a higher risk of incident stroke in women. No such associations were found in men. © 2016 American Heart Association, Inc.

  4. Nonenzymatic glycosylation of human hemoglobin at multiple sites

    International Nuclear Information System (INIS)

    Shapiro, R.; McManus, M.; Garrick, L.; McDonald, M.J.; Bunn, H.F.

    1979-01-01

    The most abundant minor hemoglobin component of human hemolysate is Hb A1c, which has glucose bound to the N-terminus of the beta chain by a ketoamine linkage. Hb A1c is formed slowly and continuously throughout the 120 day lifespan of the red cell. It can be synthesized in vitro by incubating purified hemoglobin with 14C-glucose. Other minor components, Hb A1a1 and Hb A1a2 are adducts of sugar phosphates at the N-terminus of the beta chain. Hb A1b contains an unidentified nonphosphorylated sugar at the beta N-terminus. In addition, a significant portion of the major hemoglobin component (Hb Ao) is also glycosylated by a glucose ketoamine linkage at other sites on the molecule, including the N-terminus of the alpha chain and the epsilon-amino group of several lysine residues on both the alpha and the beta chains. The results indicate that the interaction of glucose and hemoglobin is rather nonspecific and suggests that other proteins are modified in a similar fashion

  5. Biophysical basis of hypoxic radioprotection by deoxygenated dextran-hemoglobin

    International Nuclear Information System (INIS)

    Wong, J.T.; Hill, R.P.

    1986-01-01

    Perfusion with deoxygenated dextran-hemoglobin provides an effective method for inducing hypoxic radioprotection of normal tissues during radiation treatment of tumors. In this study, the dependence of P50, the half-saturation pressure of oxygen binding to dextran-hemoglobin, was analyzed as a function of solution temperature and pH. The variation of attainable radioprotection with P50, and with the amount of collateral blood entering into the perfused region, was calculated. Upon perfusion of canine gracilis muscle with deoxygenated dextran-hemoglobin, a rapid onset of extensive venous hypoxia was observed

  6. Histopathologic Study Following Administration of Liposome-Encapsulated Hemoglobin in the Normovolemic Rat

    National Research Council Canada - National Science Library

    Rudolph, Alan

    1995-01-01

    ... bovine hemoglobin in the normovolemic rat. We have also examined the administration of the liposome vehicle, tetrameric bovine hemoglobin, and liposome encapsulated bovine hemoglobin that had been lyophilized with 300 mM trehalose...

  7. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Pair interaction of bilayer-coated nanoscopic particles

    Science.gov (United States)

    Zhang, Qi-Yi

    2009-02-01

    The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placed on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphiles, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.

  8. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices

    International Nuclear Information System (INIS)

    He Ze-Zhao; Yang Ke-Wu; Yu Cui; Li Jia; Liu Qing-Bin; Lu Wei-Li; Feng Zhi-Hong; Cai Shu-Jun

    2015-01-01

    We report on an improved metal-graphene ohmic contact in bilayer epitaxial graphene on a SiC substrate with contact resistance below 0.1 ω·mm. Monolayer and bilayer epitaxial graphenes are prepared on a 4H-SiC substrate in this work. Their contact resistances are measured by a transfer length method. An improved photoresist-free device fabrication method is used and is compared with the conventional device fabrication method. Compared with the monolayer graphene, the contact resistance R c of bilayer graphene improves from an average of 0.24 ω·mm to 0.1 ω·mm. Ohmic contact formation mechanism analysis by Landauer's approach reveals that the obtained low ohmic contact resistance in bilayer epitaxial graphene is due to their high carrier density, high carrier transmission probability, and p-type doping introduced by contact metal Au. (paper)

  9. Structure and stability of human hemoglobin microparticles prepared with a double emulsion technique.

    Science.gov (United States)

    Cedrati, N; Bonneaux, F; Labrude, P; Maincent, P

    1997-09-01

    Hemoglobin solutions can be used as blood substitutes but they present some disadvantages often due to their rapid removal from the bloodstream after injection. A possible way of overcoming this problem is to trap hemoglobin inside particles. This study deals with the preparation, structure and stability of poly(lactic acid) and ethylcellulose microparticles containing human hemoglobin obtained with a double emulsion technique. We investigated the manufacturing process of these particles in order to increase the encapsulation ratio of hemoglobin. For this purpose, some parameters involved in the procedure were optimized, such as hemoglobin concentration and duration of stirring: hemoglobin loading increases with its concentration in the preparation and well-defined stirring time avoids a leakage of hemoglobin. Hemoglobin concentration, surfactant concentration i.e. poly(vinylic alcohol), amounts of polymer and solvent (methylene chloride), duration and speed of stirring. The microparticles were prepared with satisfactory yields (60 to 73%). They were spherical and their mean size was lower than 200 microns. The functional properties of entrapped hemoglobin were studied. The encapsulation did not alter hemoglobin and the oxygen affinity of the hemoglobin remained unmodified (P50 about 13.9 mm Hg in a Bis-Tris buffer pH 7.4 at 37 degrees C). Moreover, only low levels of methemoglobin could be detected (less than 3%). Besides, about 90% of encapsulated hemoglobin could be released from microparticles, with a speed related to the internal structure of the particles. The prepared microparticles were stored during one month at +4 degrees C. No degradation of the particle structure occurred and the functional properties of hemoglobin were preserved. These particles could provide a potential source of oxygen in the field of biotechnologies but any application for a transfusional purpose would first require a drastic reduction in particle size.

  10. Design of a broadband hexagonal-shaped zeroth-order resonance antenna with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Woo, Dong Sik; Kim, Kang Wook; Choi, Hyun Chul [Kyungpook National University, Daegu (Korea, Republic of)

    2014-11-15

    A broadband hexagonal-shaped metamaterials (MTMs)-based zeroth-order resonant (ZOR) antenna was designed and fabricated. The hexagonal shape of a top patch on a mushroom structure makes not only direct-current paths between the two ends of the patch but also round-current paths along the outside of the patch, thereby widening the resonance frequency of the mushroom MTM antenna. According to the shape of the hexagon patch, the presented antenna achieved impedance bandwidth of 58.6% corresponding to ultra-wideband technology. The proposed ZOR antenna was modeled by utilizing a composite right- and left-handed (CRLH) transmission line and provided 4 to 9.3 dBi of the antenna gain with reduced size as compared to conventional microstrip antennas at Ku- to K-band frequencies.

  11. Hematite/silver nanoparticle bilayers on mica--AFM, SEM and streaming potential studies.

    Science.gov (United States)

    Morga, Maria; Adamczyk, Zbigniew; Oćwieja, Magdalena; Bielańska, Elżbieta

    2014-06-15

    Bilayers of hematite/silver nanoparticles were obtained in the self-assembly process and thoroughly characterized using scanning electron microscopy (SEM), atomic force microscopy (AFM), and in situ streaming potential measurements. The hematite nanoparticles, forming a supporting layer, were 22 nm in diameter, exhibiting an isoelectric point at pH 8.9. The silver nanoparticles, used to obtain an external layer, were 29 nm in diameter, and remained negative within the pH range 3 to 11. In order to investigate the particle deposition, mica sheets were used as a model solid substrate. The coverage of the supporting layer was adjusted by changing the bulk concentration of the hematite suspension and the deposition time. Afterward, silver nanoparticle monolayers of controlled coverage were deposited under the diffusion-controlled transport. The coverage of bilayers was determined by a direct enumeration of deposited particles from SEM micrographs and AFM images. Additionally, the formation of the hematite/silver bilayers was investigated by streaming potential measurements carried out under in situ conditions. The effect of the mica substrate and the coverage of a supporting layer on the zeta potential of bilayers was systematically studied. It was established that for the coverage exceeding 0.20, the zeta potential of bilayers was independent on the substrate and the supporting layer coverage. This behavior was theoretically interpreted in terms of the 3D electrokinetic model. Beside significance for basic sciences, these measurements allowed to develop a robust method of preparing nanoparticle bilayers of controlled properties, having potential applications in catalytic processes. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  13. Spin-1 and -2 bilayer Bethe lattice: A Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-03-01

    The magnetic behaviors of bilayer with spin-1 and 2 Ising model on the Bethe lattice are investigated using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperature of the bilayer spin-1 and 2 on the Bethe lattice are studied for different values of crystal field and intralayer coupling constants of the two layers and interlayer coupling constant between the layers. The thermal and magnetic hysteresis cycles are given for different values of the crystal field, for different temperatures and for different exchange interactions. - Highlights: • The magnetic properties of bilayer on the Bethe lattice have been investigated. • The transition temperature has been deduced. • The magnetic coercive filed has been established.

  14. Vesicle fusion observed by content transfer across a tethered lipid bilayer.

    Science.gov (United States)

    Rawle, Robert J; van Lengerich, Bettina; Chung, Minsub; Bendix, Poul Martin; Boxer, Steven G

    2011-10-19

    Synaptic transmission is achieved by exocytosis of small, synaptic vesicles containing neurotransmitters across the plasma membrane. Here, we use a DNA-tethered freestanding bilayer as a target architecture that allows observation of content transfer of individual vesicles across the tethered planar bilayer. Tethering and fusion are mediated by hybridization of complementary DNA-lipid conjugates inserted into the two membranes, and content transfer is monitored by the dequenching of an aqueous content dye. By analyzing the diffusion profile of the aqueous dye after vesicle fusion, we are able to distinguish content transfer across the tethered bilayer patch from vesicle leakage above the patch. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Theory for electric dipole superconductivity with an application for bilayer excitons.

    Science.gov (United States)

    Jiang, Qing-Dong; Bao, Zhi-qiang; Sun, Qing-Feng; Xie, X C

    2015-07-08

    Exciton superfluid is a macroscopic quantum phenomenon in which large quantities of excitons undergo the Bose-Einstein condensation. Recently, exciton superfluid has been widely studied in various bilayer systems. However, experimental measurements only provide indirect evidence for the existence of exciton superfluid. In this article, by viewing the exciton in a bilayer system as an electric dipole, we derive the London-type and Ginzburg-Landau-type equations for the electric dipole superconductors. By using these equations, we discover the Meissner-type effect and the electric dipole current Josephson effect. These effects can provide direct evidence for the formation of the exciton superfluid state in bilayer systems and pave new ways to drive an electric dipole current.

  16. Camber Evolution and Stress Development of Porous Ceramic Bilayers During Co-Firing

    DEFF Research Database (Denmark)

    Ni, De Wei; Esposito, Vincenzo; Schmidt, Cristine Grings

    2013-01-01

    sintering mismatch stress in co-fired CGO-LSM/CGO bilayer laminates was significantly lower than general sintering stresses expected for free sintering conditions. As a result, no co-firing defects were observed in the bilayer laminates, illustrating an acceptable sintering compatibility of the ceramic...

  17. Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets.

    Science.gov (United States)

    Wang, Qisheng; Safdar, Muhammad; Xu, Kai; Mirza, Misbah; Wang, Zhenxing; He, Jun

    2014-07-22

    Van der Waals epitaxy (vdWE) is of great interest due to its extensive applications in the synthesis of ultrathin two-dimensional (2D) layered materials. However, vdWE of nonlayered functional materials is still not very well documented. Here, although tellurium has a strong tendency to grow into one-dimensional nanoarchitecture due to its chain-like structure, we successfully realize 2D hexagonal tellurium nanoplates on flexible mica sheets via vdWE. Chemically inert mica surface is found to be crucial for the lateral growth of hexagonal tellurium nanoplates since it (1) facilitates the migration of tellurium adatoms along mica surface and (2) allows a large lattice mismatch. Furthermore, 2D tellurium hexagonal nanoplates-based photodetectors are in situ fabricated on flexible mica sheets. Efficient photoresponse is obtained even after bending the device for 100 times, indicating 2D tellurium hexagonal nanoplates-based photodetectors on mica sheets have a great application potential in flexible and wearable optoelectronic devices. We believe the fundamental understanding of vdWE effect on the growth of 2D tellurium hexagonal nanoplate can pave the way toward leveraging vdWE as a useful channel to realize the 2D geometry of other nonlayered materials.

  18. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures.

    Science.gov (United States)

    Morigaki, Kenichi; Mizutani, Kazuyuki; Saito, Makoto; Okazaki, Takashi; Nakajima, Yoshihiro; Tatsu, Yoshiro; Imaishi, Hiromasa

    2013-02-26

    We describe a stable and functional model biological membrane based on a polymerized lipid bilayer with a chemically modified surface. A polymerized lipid bilayer was formed from a mixture of two diacetylene-containing phospholipids, 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (DiynePC) and 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphoethanolamine (DiynePE). DiynePC formed a stable bilayer structure, whereas the ethanolamine headgroup of DiynePE enabled functional molecules to be grafted onto the membrane surface. Copolymerization of DiynePC and DiynePE resulted in a robust bilayer. Functionalization of the polymeric bilayer provided a route to a robust and biomimetic surface that can be linked with biomolecules, cells, and three-dimensional (3D) microstructures. Biotin and peptides were grafted onto the polymeric bilayer for attaching streptavidin and cultured mammalian cells by molecular recognition, respectively. Nonspecific adsorption of proteins and cells on polymeric bilayers was minimum. DiynePE was also used to attach a microstructure made of an elastomer (polydimethylsiloxan: PDMS) onto the membrane, forming a confined aqueous solution between the two surfaces. The microcompartment enabled us to assay the activity of a membrane-bound enzyme (cyochrome P450). Natural (fluid) lipid bilayers were incorporated together with membrane-bound proteins by lithographically polymerizing DiynePC/DiynePE bilayers. The hybrid membrane of functionalized polymeric bilayers and fluid bilayers offers a novel platform for a wide range of biomedical applications including biosensor, bioassay, cell culture, and cell-based assay.

  19. "Nanocrystal bilayer for tandem catalysis"

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  20. [Hemoglobins, XXXII. Analysis of the primary structure of the monomeric hemoglobin CTT VIIA (erythrocruorin) or Chironomus thummi thummi, Diptera (author's transl)].

    Science.gov (United States)

    Kleinschmidt, T; Braunitzer, G

    1980-01-01

    The dimeric hemoglobin CTT VIIA (erythrocruorin) was isolated from the hemolymph of the larva from Chironomus thummi thummi and purified by preparative polyacrylamide gel electrophoresis. Peptides obtained by limited tryptical digestion were sequenced by automatic Edman degradation. For the elucidation of the sequence in the C-terminal region of the chain, additional cleavages with proteinase of Staphylococcus aureus and chymotrypsin were necessary. CTT VIIA is compared with human beta-chains and other hemoglobins of Chironomus. The amino acid residues in the pocket are especially discussed. Most of them are invariant in all Chironomus hemoglobins, independent of the size of the heme pocket, which is normal in some components and enlarged in others.

  1. Thermal performance analysis of optimized hexagonal finned heat sinks in impinging air jet

    Energy Technology Data Exchange (ETDEWEB)

    Yakut, Kenan, E-mail: kyakut@atauni.edu.tr [Department of Mechanical Engineering, Faculty of Engineering, Atatürk University, 25100, Erzurum (Turkey); Yeşildal, Faruk, E-mail: fayesildal@agri.edu.tr [Department of Mechanical Engineering, Faculty of Patnos Sultan Alparslan Natural Sciences and Engineering, Ağrı İbrahim Çeçen University, 04100, Ağrı (Turkey); Karabey, Altuğ, E-mail: akarabey@yyu.edu.tr [Department of Machinery and Metal Technology, Erciş Vocational High School, Yüzüncü Yıl University, 65400, Van (Turkey); Yakut, Rıdvan, E-mail: ryakut@kafkas.edu.tr [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Kafkas University, 36100, Kars (Turkey)

    2016-04-18

    In this study, thermal performance analysis of hexagonal finned heat sinks which optimized according to the experimental design and optimization method of Taguchi were investigated. Experiments of air jet impingement on heated hexagonal finned heat sinks were carried out adhering to the L{sub 18}(2{sup 1*}3{sup 6}) orthogonal array test plan. Optimum geometries were determined and named OH-1, OH-2. Enhancement efficiency with the first law of thermodynamics was analyzed for optimized heat sinks with 100, 150, 200 mm heights of hexagonal fin. Nusselt correlations were found out and variations of enhancement efficiency with Reynolds number presented in η–Re graphics.

  2. Self-assembled PCBM bilayers on graphene and HOPG examined by AFM and STM

    Science.gov (United States)

    Li, Yanlong; Chen, Chuanhui; Burton, John; Park, Kyungwha; Heflin, James R.; Tao, Chenggang

    2018-05-01

    In this work we report fabrication and characterization of phenyl-C61-butyric acid methyl ester (PCBM) bilayer structures on graphene and highly oriented pyrolytic graphite (HOPG). Through careful control of the PCBM solution concentration (from 0.1 to 2 mg ml-1) and the deposition conditions, we demonstrate that PCBM molecules self-assemble into bilayer structures on graphene and HOPG substrates. Interestingly, the PCBM bilayers are formed with two distinct heights on HOPG, but only one unique representative height on graphene. At elevated annealing temperatures, edge diffusion allows neighboring vacancies to merge into a more ordered structure. This is, to the best of our knowledge, the first experimental realization of PCBM bilayer structures on graphene. This work could provide valuable insight into fabrication of new hybrid, ordered structures for applications to organic solar cells.

  3. Cloned Hemoglobin Genes Enhance Growth Of Cells

    Science.gov (United States)

    Khosla, Chaitan; Bailey, James E.

    1991-01-01

    Experiments show that portable deoxyribonucleic acid (DNA) sequences incorporated into host cells make them produce hemoglobins - oxygen-binding proteins essential to function of red blood cells. Method useful in several biotechnological applications. One, enhancement of growth of cells at higher densities. Another, production of hemoglobin to enhance supplies of oxygen in cells, for use in chemical reactions requiring oxygen, as additive to serum to increase transport of oxygen, and for binding and separating oxygen from mixtures of gases.

  4. Magnetic ground state of the multiferroic hexagonal LuFe O3

    Science.gov (United States)

    Suresh, Pittala; Vijaya Laxmi, K.; Bera, A. K.; Yusuf, S. M.; Chittari, Bheema Lingam; Jung, Jeil; Anil Kumar, P. S.

    2018-05-01

    The structural, electric, and magnetic properties of bulk hexagonal LuFe O3 are investigated. Single phase hexagonal LuFe O3 has been successfully stabilized in the bulk form without any doping by sol-gel method. The hexagonal crystal structure with P 63c m space group has been confirmed by x-ray-diffraction, neutron-diffraction, and Raman spectroscopy study at room temperature. Neutron diffraction confirms the hexagonal phase of LuFe O3 persists down to 6 K. Further, the x-ray photoelectron spectroscopy established the 3+ oxidation state of Fe ions. The temperature-dependent magnetic dc susceptibility, specific heat, and neutron-diffraction studies confirm an antiferromagnetic ordering below the Néel temperature (TN)˜130 K . Analysis of magnetic neutron-diffraction patterns reveals an in-plane (a b -plane) 120∘ antiferromagnetic structure, characterized by a propagation vector k =(0 0 0 ) with an ordered moment of 2.84 μB/F e3 + at 6 K. The 120∘ antifferomagnetic ordering is further confirmed by spin-orbit coupling density functional theory calculations. The on-site coulomb interaction (U ) and Hund's parameter (JH) on Fe atoms reproduced the neutron-diffraction Γ1 spin pattern among the Fe atoms. P -E loop measurements at room temperature confirm an intrinsic ferroelectricity of the sample with remnant polarization Pr˜0.18 μ C /c m2 . A clear anomaly in the dielectric data is observed at ˜TN revealing the presence of magnetoelectric coupling. A change in the lattice constants at TN has also been found, indicating the presence of a strong magnetoelastic coupling. Thus a coupling between lattice, electric, and magnetic degrees of freedom is established in bulk hexagonal LuFe O3 .

  5. Facile synthesis and characterization of hexagonal NbSe2 nanoplates

    International Nuclear Information System (INIS)

    Zhang, Xianghua; Zhang, Du; Tang, Hua; Ji, Xiaorui; Zhang, Yi; Tang, Guogang; Li, Changsheng

    2014-01-01

    Graphical abstract: - Highlights: • Uniform hexagonal NbSe 2 nanoplates were prepared by a simple solid state reaction. • The possible formation mechanism of the NbSe 2 nanoplates was discussed. • The formation of NbSe 2 nanoplates undergoes a series of phase transition. - Abstract: The NbSe 2 nanoplates with hexagonal morphology have been successfully prepared by a facile, environmentally friendly reaction in closed reactor at moderate temperature. The thermal (750 °C) solid-state reaction between the ball-milled mixture of micro-sized Nb and Se yielded a high yield of NbSe 2 nanoplates. The as-prepared products were characterized by XRD, EDS, and SEM. The results showed that the as-prepared products were hexagonal phase NbSe 2 nanoplates with uniform sizes and the formation of NbSe 2 nanoplates underwent a series of phase transition. On the basis of experimental results obtained at different temperatures, a reasonable reaction process and a formation mechanism were proposed. Moreover, the ball milling time played a crucial role in acquiring the homogeneous distribution nanoplates

  6. FRET imaging of hemoglobin concentration in Plasmodium falciparum-infected red cells.

    Directory of Open Access Journals (Sweden)

    Alessandro Esposito

    Full Text Available During its intraerythrocytic asexual reproduction cycle Plasmodium falciparum consumes up to 80% of the host cell hemoglobin, in large excess over its metabolic needs. A model of the homeostasis of falciparum-infected red blood cells suggested an explanation based on the need to reduce the colloid-osmotic pressure within the host cell to prevent its premature lysis. Critical for this hypothesis was that the hemoglobin concentration within the host cell be progressively reduced from the trophozoite stage onwards.The experiments reported here were designed to test this hypothesis by direct measurements of the hemoglobin concentration in live, infected red cells. We developed a novel, non-invasive method to quantify the hemoglobin concentration in single cells, based on Förster resonance energy transfer between hemoglobin molecules and the fluorophore calcein. Fluorescence lifetime imaging allowed the quantitative mapping of the hemoglobin concentration within the cells. The average fluorescence lifetimes of uninfected cohorts was 270+/-30 ps (mean+/-SD; N = 45. In the cytoplasm of infected cells the fluorescence lifetime of calcein ranged from 290+/-20 ps for cells with ring stage parasites to 590+/-13 ps and 1050+/-60 ps for cells with young trophozoites and late stage trophozoite/early schizonts, respectively. This was equivalent to reductions in hemoglobin concentration spanning the range from 7.3 to 2.3 mM, in line with the model predictions. An unexpected ancillary finding was the existence of a microdomain under the host cell membrane with reduced calcein quenching by hemoglobin in cells with mature trophozoite stage parasites.The results support the predictions of the colloid-osmotic hypothesis and provide a better understanding of the homeostasis of malaria-infected red cells. In addition, they revealed the existence of a distinct peripheral microdomain in the host cell with limited access to hemoglobin molecules indicating the

  7. Quantifying risk of penile prosthesis infection with elevated glycosylated hemoglobin.

    Science.gov (United States)

    Wilson, S K; Carson, C C; Cleves, M A; Delk, J R

    1998-05-01

    Elevation of glycosylated hemoglobin above levels of 11.5 mg.% has been considered a contraindication to penile prosthesis implantation in diabetic patients. We determine the predictive value of glycosylated hemoglobin A1C in penile prosthesis infections in diabetic and nondiabetic patients to confirm or deny this prevalent opinion. We conducted a 2-year prospective study of 389 patients, including 114 diabetics, who underwent 3-piece penile prosthesis implantation. All patients had similar preoperative preparation without regard to diabetic status, control or glycosylated hemoglobin A1C level. Risk of infection was statistically analyzed for diabetics versus nondiabetics, glycosylated hemoglobin A1C values above and below 11.5 mg.%, insulin dependent versus oral medication diabetics, and fasting blood sugars above and below 180 mg.%. Prosthesis infections developed in 10 diabetics (8.7%) and 11 nondiabetics (4.0%). No increased infection rate was observed in diabetics with high fasting sugars or diabetics on insulin. There was no statistically significant increased infection risk with increased levels of glycosylated hemoglobin A1C among all patients or among only the diabetics. In fact, there was no meaningful difference in the median or mean level of glycosylated hemoglobin A1C in the infected and noninfected patients regardless of diabetes. Use of glycosylated hemoglobin A1C values to identify and exclude surgical candidates with increased risk of infections is not proved by this study. Elevation of fasting sugar or insulin dependence also does not increase risk of infection in diabetics undergoing prosthesis implantation.

  8. Agar/gelatin bilayer gel matrix fabricated by simple thermo-responsive sol-gel transition method.

    Science.gov (United States)

    Wang, Yifeng; Dong, Meng; Guo, Mengmeng; Wang, Xia; Zhou, Jing; Lei, Jian; Guo, Chuanhang; Qin, Chaoran

    2017-08-01

    We present a simple and environmentally-friendly method to generate an agar/gelatin bilayer gel matrix for further biomedical applications. In this method, the thermally responsive sol-gel transitions of agar and gelatin combined with the different transition temperatures are exquisitely employed to fabricate the agar/gelatin bilayer gel matrix and achieve separate loading for various materials (e.g., drugs, fluorescent materials, and nanoparticles). Importantly, the resulting bilayer gel matrix provides two different biopolymer environments (a polysaccharide environment vs a protein environment) with a well-defined border, which allows the loaded materials in different layers to retain their original properties (e.g., magnetism and fluorescence) and reduce mutual interference. In addition, the loaded materials in the bilayer gel matrix exhibit an interesting release behavior under the control of thermal stimuli. Consequently, the resulting agar/gelatin bilayer gel matrix is a promising candidate for biomedical applications in drug delivery, controlled release, fluorescence labeling, and bio-imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Neutron scattering investigations of the lipid bilayer structure pressure dependence

    Directory of Open Access Journals (Sweden)

    D. V. Soloviov

    2012-03-01

    Full Text Available Lipid bilayer structure investigation results obtained with small angle neutron scattering method at the Joint Institute for Nuclear Research IBR-2M nuclear reactor (Dubna, Russia are presented. Experiment has been per-formed with small angle neutron scattering spectrometer YuMO, upgraded with the apparatus for performing P-V-T measurements on the substance under investigation. D2O-1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC liquid system, presenting the model of natural live membrane, has been taken as the sample for investiga-tions. The lipid bilayer spatial period was measured in experiment along with isothermal compressibility simulta-neously at different pressures. It has been shown, that the bilayer structural transition from ripple (wavelike gel-phase phase to liquid-crystal phase is accompanied with anomalous rise of isothermal compressibility, indicat-ing occurrence of the phase transition.

  10. On the perfect hexagonal packing of rods

    International Nuclear Information System (INIS)

    Starostin, E L

    2006-01-01

    In most cases the hexagonal packing of fibrous structures or rods extremizes the energy of interaction between strands. If the strands are not straight, then it is still possible to form a perfect hexatic bundle. Conditions under which the perfect hexagonal packing of curved tubular structures may exist are formulated. Particular attention is given to closed or cycled arrangements of the rods like in the DNA toroids and spools. The closure or return constraints of the bundle result in an allowable group of automorphisms of the cross-sectional hexagonal lattice. The structure of this group is explored. Examples of open helical-like and closed toroidal-like bundles are presented. An expression for the elastic energy of a perfectly packed bundle of thin elastic rods is derived. The energy accounts for both the bending and torsional stiffnesses of the rods. It is shown that equilibria of the bundle correspond to solutions of a variational problem formulated for the curve representing the axis of the bundle. The functional involves a function of the squared curvature under the constraints on the total torsion and the length. The Euler-Lagrange equations are obtained in terms of curvature and torsion and due to the existence of the first integrals the problem is reduced to the quadrature. The three-dimensional shape of the bundle may be readily reconstructed by integration of the Ilyukhin-type equations in special cylindrical coordinates. The results are of universal nature and are applicable to various fibrous structures, in particular, to intramolecular liquid crystals formed by DNA condensed in toroids or packed inside the viral capsids

  11. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    International Nuclear Information System (INIS)

    Huang, G. Q.; Xing, Z. W.; Xing, D. Y.

    2015-01-01

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T c can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor

  12. Prediction of superconductivity in Li-intercalated bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Huang, G. Q. [Department of Physics, Nanjing Normal University, Nanjing 210023 (China); National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Xing, Z. W., E-mail: zwxing@nju.edu.cn [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Xing, D. Y. [National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China)

    2015-03-16

    It is shown that bilayer phosphorene can be transformed from a direct-gap semiconductor to a BCS superconductor by intercalating Li atoms. For the Li-intercalated bilayer phosphorene, we find that the electron occupation of Li-derived band is small and superconductivity is intrinsic. With increasing the intercalation of Li atoms, both increased metallicity and strong electron-phonon coupling are favorable for the enhancement of superconductivity. The obtained electron-phonon coupling λ can be larger than 1 and the superconducting temperature T{sub c} can be increased up to 16.5 K, suggesting that phosphorene may be a good candidate for a nanoscale superconductor.

  13. PERBEDAAN KADAR HEMOGLOBIN METODE SIANMETHEMOGLOBIN DENGAN DAN TANPA SENTRIFUGASI PADA SAMPEL LEUKOSITOSIS

    Directory of Open Access Journals (Sweden)

    wahdah norsiah

    2015-12-01

    Full Text Available Abstract: Examination of hemoglobin levels influenced leukocytosis sianmethemoglobin method that causes increased absorbance measurements of hemoglobin levels increased significantly and the false blood sample that has been diluted with a solution Drabkins in centrifugation at 3000 rpm for 10 minutes and then the absorbance of the supernatant was measured with a photometer at λ 546 nm. This study aimed to analyze the differences in hemoglobin level examination siamethemoglobin method with and without centrifugation at sample leukocytosis. This type of research is observational research laboratory. The study design was cross-sectional study. Samples were taken from the remaining blood samples of patients who have been examined leukositnya number more than 20,000 / uL with Hematology Analyzer (CEL-DYN Ruby February-April 2014, and were divided into 4 groups based on criteria that group 1. leukocyte count of 20,000 / uL-29 999 / mL, group II. 30,000 / uL-39 999 / uL, the group III. 40,000 / uL-49,999 / uL, the group IV. More than 50,000 / uL. The number of samples taken were 20 samples of each group, a total sample of 80 samples. The analysis showed no significant difference in hemoglobin levels siamethemoglobin method with and without centrifugation at sample leukocytosis with a value of p = 0.000 less than 0.05 α. Leukocytosis Turbidity affects the difference in hemoglobin levels with and without centrifugation, the higher the number the greater the difference in leukocyte levels of hemoglobin, hemoglobin level examination results of the study based on the criteria of the number of leukocytes obtained by the difference in hemoglobin levels with and without centrifugation in group I. 0.22 ± 0.07 g / dL, group II 0.40 ± 0.22 g / dL, a group III. 0.44 ± 0.14 g / dL, Group IV. 0.85 ± 0.41 g / dL. The level of hemoglobin in the sample sianmethemoglobin method leukocytosis with more than 20,000 / uL need a centrifuge so that appropriate

  14. Crystalline polymorphism induced by charge regulation in ionic membranes.

    Science.gov (United States)

    Leung, Cheuk-Yui; Palmer, Liam C; Kewalramani, Sumit; Qiao, Baofu; Stupp, Samuel I; Olvera de la Cruz, Monica; Bedzyk, Michael J

    2013-10-08

    The crystallization of molecules with polar and hydrophobic groups, such as ionic amphiphiles and proteins, is of paramount importance in biology and biotechnology. By coassembling dilysine (+2) and carboxylate (-1) amphiphiles of various tail lengths into bilayer membranes at different pH values, we show that the 2D crystallization process in amphiphile membranes can be controlled by modifying the competition of long-range and short-range interactions among the polar and the hydrophobic groups. The pH and the hydrophobic tail length modify the intermolecular packing and the symmetry of their crystalline phase. For hydrophobic tail lengths of 14 carbons (C14), we observe the coassembly into crystalline bilayers with hexagonal molecular ordering via in situ small- and wide-angle X-ray scattering. As the tail length increases, the hexagonal lattice spacing decreases due to an increase in van der Waals interactions, as demonstrated by atomistic molecular dynamics simulations. For C16 and C18 we observe a reentrant crystalline phase transition sequence, hexagonal-rectangular-C-rectangular-P-rectangular-C-hexagonal, as the solution pH is increased from 3 to 10.5. The stability of the rectangular phases, which maximize tail packing, increases with increasing tail length. As a result, for very long tails (C22), the possibility of observing packing symmetries other than rectangular-C phases diminishes. Our work demonstrates that it is possible to systematically exchange chemical and mechanical energy by changing the solution pH value within a range of physiological conditions at room temperature in bilayers of molecules with ionizable groups.

  15. [Hemoglobin variants in Colombian patients referred to discard hemoglobinopathies].

    Science.gov (United States)

    Romero-Sánchez, Consuelo; Gómez Gutiérrez, Alberto; Duarte, Yurani; Amazo, Constanza; Manosalva, Clara; Chila M, Lorena; Casas-Gómez, María Consuelo; Briceño Balcázar, Ignacio

    2015-10-01

    Oxygen transport is altered in hemoglobinopathies. To study the distribution of hemoglobinopathies in Andean subjects without African ancestry. We analyzed blood samples of 1,407 subjects aged 18 to 59 years (58% females), living in the central Andean region of Colombia, referred to discard hemoglobinopathies. The frequency and type of hemoglobinopathy was established by capillary and agarose gel electrophoresis. The frequency of hemoglobinopathies was 34.5% and higher among females. The structural variants found were: AS-heterozygous hemoglobin (8.1%), homozygous SS (3.7%), heterozygous SC (2.2%), AC heterozygotes (0.5%) and heterozygous AE (0.3%). Quantitative variants found were Hb A-Beta thalassemia (13.91%) and Hb H (0.06%), Beta-thalassemia heterozygotes C (0.88%), S-Beta thalassemia heterozygotes (6.07%) and compound heterozygous SC/Beta thalassemia (0.25%), with a persistence of fetal hemoglobin 0. Composite thalassemia was also found in 31%. All techniques showed good correlation and capillary electrophoresis demonstrated a greater detection of hemoglobin variants. The frequency of hemoglobin variants in the analyzed population was high, which is an important public health indicator. The most common hemoglobin variant was HbA/Increased structural Hb A2 and the mos frequent structural hemoglobinopathy was sickle cell trait. Capillary electrophoresis can discern any Hb variants present in the population.

  16. Study of LAXS Profile of Hemoglobin from Irradiated Blood

    International Nuclear Information System (INIS)

    Selim, N.S.; Desouky, O.S.; Elshemey, W.M.

    2006-01-01

    The present work aims to move a step forward towards a deeper understanding of the scattering of x-ray, from lyophilized biological samples. Comparative study has been performed using low angle x-ray scattering (LAXS) and UV-visible spectrophotometry for monitoring the dose response characteristics of the hemoglobin molecule of irradiated blood. Blood samples were exposed to gamma rays, at doses ranging from 5 up to 100 Gy. Diluted hemoglobin solution was scanned in the UV-visible range (200-700 nm), and lyophilized hemoglobin was prepared for LAXS measurement. The radiation-induced changes in the hemoglobin structure have been evaluated. The LAXS profile of hemoglobin molecule is characterized by the presence of 2 peaks in the forward direction of scattering. These peaks were found to be sensitive to the variations in the molecular structure of a given sample. The obtained results suggest that the 1st peak, recorded at 4.65O (equivalent to momentum transfer, x= 0.526 nm-1), is sensitive to the tertiary and quaternary structure of the globin part, while the major peak, recorded at 10.5O (equivalent to momentum transfer, x= 1.189 nm-1), appeared to be related to its primary and secondary structure

  17. Localized plasmons in bilayer graphene nanodisks

    DEFF Research Database (Denmark)

    Wang, Weihua; Xiao, Sanshui; Mortensen, N. Asger

    2016-01-01

    We study localized plasmonic excitations in bilayer graphene (BLG) nanodisks, comparing AA-stacked and AB-stacked BLG and contrasting the results to the case of two monolayers without electronic hybridization. The electrodynamic response of the BLG electron gas is described in terms of a spatially...

  18. Electronic structure of nanoparticles of substoichometric hexagonal tungsten oxides

    International Nuclear Information System (INIS)

    Khyzhun, O Y; Solonin, Y M

    2007-01-01

    X-ray photoelectron spectroscopy (XPS), X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS) methods were used to study the electronic structure of hexagonal h-WO 3 and h-WO 2.8 nanoparticles. For comparison, nanopowder substoichiometric monoclinic tungsten oxides with close content of oxygen atoms, namely m-WO 3 and m-WO 2.77 compounds, were also investigated. For the mentioned oxides, XPS valence-band and corelevel spectra, XES O Kα bands and XAS W L III and O 1s edges were derived. The XPS valence-band spectra and O Kα emission bands in the mentioned hexagonal and monoclinic tungsten oxides were compared on a common energy scale. Both the O Kα bands and XPS valence-band spectra broaden somewhat in the sequences h-WO 3 → h-WO 2.8 and m-WO 3 → m-WO 2.77 , with the half-widths of the spectra being somewhat higher for the hexagonal oxides as compared with those for the monoclinic compounds. The effective positive charge state of tungsten atoms in h-WO 2.8 is very close to that in m-WO 2.77 , but the negative charge states of oxygen atoms are close to each other for all the tungsten oxides under consideration

  19. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    Science.gov (United States)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  20. Is a blood sample for hemoglobins in the transfusional range reliable?

    Science.gov (United States)

    López, A; Gómez, L; Petinal, G; Adán, N; Alvarado, S; Carballo, N

    2018-02-27

    To evaluate the correlation and agreement in our unit and population of hemoglobin in gasometry versus hematology analyzer, to evaluate errors in transfusion or lack thereof. strong association between Point-of-care (POC) and hematimetry, with P<.001, with a coefficient of determination r 2 of 0.56, an intraclass correlation coefficient of 0.63 and a Lin's concordance correlation coefficient of 0.65. For hemoglobins less than 7g/dL, a success rate of 29.41% was obtained. Low-moderate agreement of POC hemoglobin with standard haemothymetry. High probability of errors in the indication of transfusion based on gasometer hemoglobins, especially in low hemoglobins. Copyright © 2018 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  1. Simulate-HEX - The multi-group diffusion equation in hexagonal-z geometry

    International Nuclear Information System (INIS)

    Lindahl, S. O.

    2013-01-01

    The multigroup diffusion equation is solved for the hexagonal-z geometry by dividing each hexagon into 6 triangles. In each triangle, the Fourier solution of the wave equation is approximated by 8 plane waves to describe the intra-nodal flux accurately. In the end an efficient Finite Difference like equation is obtained. The coefficients of this equation depend on the flux solution itself and they are updated once per power/void iteration. A numerical example demonstrates the high accuracy of the method. (authors)

  2. Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods

    Science.gov (United States)

    Zhu, J.; Zhang, K.; Zhao, H. Y.

    2018-01-01

    Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.

  3. Hemoglobin Levels Across the Pediatric Critical Care Spectrum: A Point Prevalence Study.

    Science.gov (United States)

    Hassan, Nabil E; Reischman, Diann E; Fitzgerald, Robert K; Faustino, Edward Vincent S

    2018-05-01

    To determine the prevailing hemoglobin levels in PICU patients, and any potential correlates. Post hoc analysis of prospective multicenter observational data. Fifty-nine PICUs in seven countries. PICU patients on four specific days in 2012. None. Patients' hemoglobin and other clinical and institutional data. Two thousand three hundred eighty-nine patients with median age of 1.9 years (interquartile range, 0.3-9.8 yr), weight 11.5 kg (interquartile range, 5.4-29.6 kg), and preceding PICU stay of 4.0 days (interquartile range, 1.0-13.0 d). Their median hemoglobin was 11.0 g/dL (interquartile range, 9.6-12.5 g/dL). The prevalence of transfusion in the 24 hours preceding data collection was 14.2%. Neonates had the highest hemoglobin at 13.1 g/dL (interquartile range, 11.2-15.0 g/dL) compared with other age groups (p < 0.001). The percentage of 31.3 of the patients had hemoglobin of greater than or equal to 12 g/dL, and 1.1% had hemoglobin of less than 7 g/dL. Blacks had lower median hemoglobin (10.5; interquartile range, 9.3-12.1 g/dL) compared with whites (median, 11.1; interquartile range, 9.0-12.6; p < 0.001). Patients in Spain and Portugal had the highest median hemoglobin (11.4; interquartile range, 10.0-12.6) compared with other regions outside of the United States (p < 0.001), and the highest proportion (31.3%) of transfused patients compared with all regions (p < 0.001). Patients in cardiac PICUs had higher median hemoglobin than those in mixed PICUs or noncardiac PICUs (12.3, 11.0, and 10.6 g/dL, respectively; p < 0.001). Cyanotic heart disease patients had the highest median hemoglobin (12.6 g/dL; interquartile range, 11.1-14.5). Multivariable regression analysis within diagnosis groups revealed that hemoglobin levels were significantly associated with the geographic location and history of complex cardiac disease in most of the models. In children with cancer, none of the variables tested correlated with patients' hemoglobin levels

  4. Communication: Water on hexagonal boron nitride from diffusion Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hamdani, Yasmine S.; Ma, Ming; Michaelides, Angelos, E-mail: angelos.michaelides@ucl.ac.uk [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Alfè, Dario [Thomas Young Centre and London Centre for Nanotechnology, 17–19 Gordon Street, London WC1H 0AH (United Kingdom); Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT (United Kingdom); Lilienfeld, O. Anatole von [Institute of Physical Chemistry and National Center for Computational Design and Discovery of Novel Materials, Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel (Switzerland); Argonne Leadership Computing Facility, Argonne National Laboratories, 9700 S. Cass Avenue Argonne, Lemont, Illinois 60439 (United States)

    2015-05-14

    Despite a recent flurry of experimental and simulation studies, an accurate estimate of the interaction strength of water molecules with hexagonal boron nitride is lacking. Here, we report quantum Monte Carlo results for the adsorption of a water monomer on a periodic hexagonal boron nitride sheet, which yield a water monomer interaction energy of −84 ± 5 meV. We use the results to evaluate the performance of several widely used density functional theory (DFT) exchange correlation functionals and find that they all deviate substantially. Differences in interaction energies between different adsorption sites are however better reproduced by DFT.

  5. Mechanical properties of electrospun bilayer fibrous membranes as potential scaffolds for tissue engineering.

    Science.gov (United States)

    Pu, Juan; Komvopoulos, Kyriakos

    2014-06-01

    Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  6. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    International Nuclear Information System (INIS)

    Dawson, J.A.; Freeman, C.L.; Harding, J.H.; Sinclair, D.C.

    2013-01-01

    Interatomic potentials recently developed for the modelling of BaTiO 3 have been used to explore the stabilisation of the hexagonal polymorph of BaTiO 3 by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti 2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni 2+ and Fe 3+ ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti 2 /O 1 cluster and (b) Ti 2 /O 2 cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions

  7. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    Science.gov (United States)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  8. Point-of-care hemoglobin testing for postmortem diagnosis of anemia.

    Science.gov (United States)

    Na, Joo-Young; Park, Ji Hye; Choi, Byung Ha; Kim, Hyung-Seok; Park, Jong-Tae

    2018-03-01

    An autopsy involves examination of a body using invasive methods such as dissection, and includes various tests using samples procured during dissection. During medicolegal autopsies, the blood carboxyhemoglobin concentration is commonly measured using the AVOXimeter® 4000 as a point-of-care test. When evaluating the body following hypovolemic shock, characteristics such as reduced livor mortis or an anemic appearance of the viscera can be identified, but these observations arequite subjective. Thus, a more objective test is required for the postmortem diagnosis of anemia. In the present study, the AVOXimeter® 4000 was used to investigate the utility of point-of-care hemoglobin testing. Hemoglobin tests were performed in 93 autopsy cases. The AVOXimeter® 4000 and the BC-2800 Auto Hematology Analyzer were used to test identical samples in 29 of these cases. The results of hemoglobin tests performed with these two devices were statistically similar (r = 0.969). The results of hemoglobin tests using postmortem blood were compared with antemortem test results from medical records from 31 cases, and these results were similar. In 13 of 17 cases of death from internal hemorrhage, hemoglobin levels were lower in the cardiac blood than in blood from the affected body cavity, likely due to compensatory changes induced by antemortem hemorrhage. It is concluded that blood hemoglobin testing may be useful as a point-of-care test for diagnosing postmortem anemia.

  9. Molybdenum-gold proximity bilayers as transition edge sensors for microcalorimeters and bolometers

    International Nuclear Information System (INIS)

    Chen, T.C.; Bier, A.; DiCamillo, B.; Finkbeiner, F. M.

    1999-01-01

    Mo/Au proximity bilayers as transition edge sensors (TESs) are promising candidates for low-temperature thermometry. The transition temperature of the bilayers can be easily tuned between 50 and 600 mK, yielding sensors which can be used in a variety of calorimetric and bolometric applications. With phase transition widths of less than 1 mK, Mo/Au TESs show very high temperature sensitivity (d(logR)/d(logT)∼2500). Also, Mo/Au TESs show improved thermal and chemical stability compared to most other bilayer configurations. Fabrication issues and detector performance of Mo/Au TESs on Si 3 N 4 membranes are discussed. (author)

  10. Enhancement of Salinity Tolerance during Rice Seed Germination by Presoaking with Hemoglobin

    Directory of Open Access Journals (Sweden)

    Sheng Xu

    2011-04-01

    Full Text Available Salinity stress is an important environmental constraint limiting the productivity of many crops worldwide. In this report, experiments were conducted to investigate the effects of seed presoaking by bovine hemoglobin, an inducer of heme oxygenase-1 (HO-1, on salinity tolerance in rice (Oryza sativa plants. The results showed that different concentrations of the hemoglobin (0.01, 0.05, 0.2, 1.0, and 5.0 g/L differentially alleviated the inhibition of rice seed germination and thereafter seedling shoot growth caused by 100 mM NaCl stress, and the responses of 1.0 g/L hemoglobin was the most obvious. Further analyses showed that application of hemoglobin not only increased the HO-1 gene expression, but also differentially induced catalase (CAT, ascorbate peroxidase (APX, and superoxide dismutase (SOD activities or transcripts, thus decreasing the lipid peroxidation in germinating rice seeds subjected to salt stress. Compared with non-hemoglobin treatment, hemoglobin presoaking also increased the potassium (K to sodium (Na ratio both in the root and shoot parts after salinity stress. The effect is specific for HO-1 since the potent HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX blocked the positive actions of hemoglobin on seed germination and seedling shoot growth. Overall, these results suggested that hemoglobin performs an advantageous role in enhancement of salinity tolerance during rice seed germination.

  11. Metal-Organic Chemical Vapor Epitaxy of GaN on Si(111) for Optoelectronic Applications

    National Research Council Canada - National Science Library

    Kaloyeros, A

    1998-01-01

    ...%. Films were hexagonal and polycrystalline with 3 nitride bi-layer buffers, with annealing, allowed stoichiometric gallium nitride growth of up to 6000 A, but the temperatures used were not high enough...

  12. Structural and functional properties of hemoglobins from unicellular organisms as revealed by resonance Raman spectroscopy.

    Science.gov (United States)

    Egawa, Tsuyoshi; Yeh, Syun-Ru

    2005-01-01

    Hemoglobins have been discovered in organisms from virtually all kingdoms. Their presence in unicellular organisms suggests that the gene for hemoglobin is very ancient and that the hemoglobins must have functions other than oxygen transport, in view of the fact that O2 delivery is a diffusion-controlled process in these organisms. Based on sequence alignment, three groups of hemoglobins have been characterized in unicellular organisms. The group-one hemoglobins, termed truncated hemoglobins, consist of proteins with 110-140 amino acid residues and a novel two-over-two alpha-helical sandwich motif. The group-two hemoglobins, termed flavohemoglobins, consist of a hemoglobin domain, with a classical three-over-three alpha-helical sandwich motif, and a flavin-containing reductase domain that is covalently attached to it. The group-three hemoglobins consist of myoglobin-like proteins that have high sequence homology and structural similarity to the hemoglobin domain of flavohemoglobins. In this review, recent resonance Raman studies of each group of these proteins are presented. Their implications are discussed in the context of the structural and functional properties of these novel hemoglobins.

  13. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    Science.gov (United States)

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-09-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere apparently shifts the allosteric equilibrium toward the low affinity state, it greatly diminishes the cofactor effects by anions. The oxygen affinity of the patient's erythrocytes is substantially lowered by the presence of bezafibrate, which combines with sites different from those of 2,3-diphosphoglycerate in either hemoglobin Rahere or hemoglobin A.

  14. A criterion to identify the equilibration time in lipid bilayer simulations

    Directory of Open Access Journals (Sweden)

    Rodolfo D. Porasso

    2012-11-01

    Full Text Available With the aim of establishing a criterion for identifying when a lipid bilayer has reached steady state using the molecular dynamics simulation technique, lipid bilayers of different composition in their liquid crystalline phase were simulated in aqueous solution in presence of CaCl_2 as electrolyte, at different concentration levels. In this regard, we used two different lipid bilayer systems: one composed by 288 DPPC (DiPalmitoylPhosphatidylCholine and another constituted by 288 DPPS (DiPalmitoylPhosphatidylSerine. In this sense, for both type of lipid bilayers, we have studied the temporal evolution of some lipids properties, such as the surface area per lipid, the deuterium order parameter, the lipid hydration and the lipid-calcium coordination. From their analysis, it became evident how each property has a different time to achieve equilibrium. The following order was found, from faster property to slower property: coordination of ions $approx$ deuterium order parameter > area per lipid $approx$ hydration. Consequently, when the hydration of lipids or the mean area per lipid are stable, we can ensure that the lipid membrane has reached the steady state.

  15. The impact of resveratrol in lipid bilayers

    DEFF Research Database (Denmark)

    Shen, Chen; de Ghellinck, Alexis; Fragneto, Giovanna

    The natural antioxidant resveratrol, contained in the skin of red grape and accordingly in their wines, is hold liable for health impacts such as cardiovascular protection and anti-oxidative effect. Clinical trials of resveratrol as prophylactic or even therapeutic drug are ongoing. However, basic...... knowledge on its probable working mechanism is rare. In this biophysical study, neutron reflectometry was used to investigate the direct impact of resveratrol on lipid membranes with solid supported bilayers. When interacting with di- palmitoyl-phosphatidyl-choline (DPPC) bilayers, resveratrol accumulates...... in between the headgroups but is absent in the hydrophobic core. Without a biogenic removal mechanism, the headgroup region may host up to ~25 mol% of resveratrol. The average thickness and the interfacial roughness of the headgroup layer are increased. From the structural results, the average tilting...

  16. Electrically Controllable Magnetism in Twisted Bilayer Graphene.

    Science.gov (United States)

    Gonzalez-Arraga, Luis A; Lado, J L; Guinea, Francisco; San-Jose, Pablo

    2017-09-08

    Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.

  17. Superhard behaviour, low residual stress, and unique structure in diamond-like carbon films by simple bilayer approach

    International Nuclear Information System (INIS)

    Dwivedi, Neeraj; Kumar, Sushil; Malik, Hitendra K.

    2012-01-01

    Simple bilayer approach is proposed for synthesizing hard and superhard diamond-like carbon (DLC) coatings with reduced residual stress. For this, M/DLC bilayer (M = Ti and Cu) structures are grown using hybrid system involving radio frequency (RF)-sputtering and RF-plasma enhanced chemical vapor deposition techniques. Ti/DLC bilayer deposited at negative self bias of 100 V shows superhard behaviour with hardness (H) as 49 GPa. Cu/DLC bilayer grown at self bias of 100 V exhibits hard behaviour with H as 22.8 GPa. The hardness of Ti/DLC (Cu/DLC) bilayer gets changed from superhard (hard) to hard (moderate hard) regime, when the self bias is raised to 300 V. Residual stress in Ti/DLC (Cu/DLC) bilayer is found to be significantly low that varies in the range of 1 GPa-1.65 GPa (0.8 GPa-1.6 GPa). The microstructure and morphology are studied by Raman spectroscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). SEM and AFM pictures reveal the creation of nanostructured features in the deposited bilayers. Raman, SEM, and AFM analyses are correlated with the nano-mechanical properties. Owing to excellent nano-mechanical properties, these bilayers can find their direct industrial applications as hard and protective coatings.

  18. Hemoglobin system of Sparus aurata: Changes in fishes farmed under extreme conditions

    International Nuclear Information System (INIS)

    Campo, Salvatore; Nastasi, Giancarlo; D'Ascola, Angela; Campo, Giuseppe M.; Avenoso, Angela; Traina, Paola; Calatroni, Alberto; Burrascano, Emanuele; Ferlazzo, Alida; Lupidi, Giulio; Gabbianelli, Rosita; Falcioni, Giancarlo

    2008-01-01

    In order to gain more knowledge on the stress responses of gilhead seabream (Sparus aurata) under extreme conditions, this study investigated the functional properties of the hemoglobin system and globin gene expression under hypoxia and low salinity. The oxygen affinity for the two hemoglobin components present inside the S. aurata erythrocyte was practically identical as was the influence of protons and organic phosphates (Root effect). The quantification of S. aurata hemoglobin fractions performed by HPLC and the data on gene expression of globin chains assayed by PCR indicate that under hypoxia and low salinity there is a change in the ratio between the two different hemoglobin components. The result indicating that the distinct hemoglobins present in S. aurata erythrocyte have almost identical functional properties, does not explain the adaptive response (expression change) following exposure of the animal to hypoxia or low salinity on the basis of their function as oxygen transporter. We hypothesize that other parallel biological functions that the hemoglobin molecule is known to display within the erythrocyte are involved in adaptive molecular mechanisms. The autoxidation-reduction cycle of hemoglobin could be involved in the response to particular living conditions

  19. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  20. Novel subunit structure observed for noncooperative hemoglobin from Urechis caupo.

    Science.gov (United States)

    Kolatkar, P R; Meador, W E; Stanfield, R L; Hackert, M L

    1988-03-05

    Tetrameric hemoglobin from the "fat innkeeper" worm Urechis caupo possesses a novel subunit arrangement having an "inside out" quaternary structure in that the G/H helices are located on the outer surface of the tetramer. A 5-A resolution crystal structure reveals that although the individual subunits are beta-like, having a distinct D helix and the general myoglobin fold, the subunit contacts are very different from those previously observed for hemoglobins. Furthermore, the hemoglobin from U. caupo is also quite different from the unusual hemoglobin tetramer from clam which also has its G/H helices on the outer surface but with the hemes in close proximity through E-F helical contacts (Royer, W. E., Jr., Love, W. E., and Fenderson, F. F. (1985) Nature 316, 277-280).

  1. Hemoglobin as a factor in the control of tumor oxygenation

    International Nuclear Information System (INIS)

    Hirst, D.G.

    1987-01-01

    The concentration of hemoglobin in the blood has been shown to have a market effect on the radiosensitivity of human and animal tumors. Experimental studies in mice indicate that radiosensitivity is influenced by a change in the hemoglobin level rather than by the absolute concentration. This dependence may be exploited to therapeutic advantage. Recent studies of hemoglobin/oxygen affinity have shown that the concentration of 2,3 diphosphoglycerate (2,3 DPG) affects tumor sensitivity to X-rays. Increased 2,3 DPG levels increase radiosensitivity in several mouse tumors. The time dependence of this effect remains to be established. The effective application of these effects in man may depend on the development of drugs which produce changes in hemoglobin affinity without the need for blood transfusions. Several drugs are currently being investigated

  2. Asymmetric intermixing in Co/Ti bilayer

    International Nuclear Information System (INIS)

    Suele, P.; Kotis, L.; Toth, L.; Menyhard, M.; Egelhoff, W.F.

    2008-01-01

    Recently we have studied the ion mixing of mass-anisotropic bilayer and found strong asymmetry depending on the succession of the layers [P. Suele, M. Menyhard, L. Kotis, J. Labar, W.F. Egelhoff Jr., J. Appl. Phys. 101 (2007) 043502]. The finding was explained by the mass difference of the constituents. To check the validity of explanation we studied the interface broadening of Co/Ti and Ti/Co bilayers due to low-energy ion bombardment. We have applied Auger electron spectroscopy depth profiling and molecular dynamics simulation to determine the intermixing. Since the Co/Ti system is nearly mass isotropic the ballistic intermixing mechanism can be ruled out and no asymmetry is expected. In contrary to the expectation both methods showed asymmetry of intermixing at bombardment of 2 keV ion energy. The asymmetry vanishes progressively with decreasing ion energy. We suggest that atomic size-anisotropy could play some role in the enhancement of interdiffusion of Co in Ti

  3. Spontaneous bending of pre-stretched bilayers.

    Science.gov (United States)

    DeSimone, Antonio

    2018-01-01

    We discuss spontaneously bent configurations of pre-stretched bilayer sheets that can be obtained by tuning the pre-stretches in the two layers. The two-dimensional nonlinear plate model we use for this purpose is an adaptation of the one recently obtained for thin sheets of nematic elastomers, by means of a rigorous dimensional reduction argument based on the theory of Gamma-convergence (Agostiniani and DeSimone in Meccanica. doi:10.1007/s11012-017-0630-4, 2017, Math Mech Solids. doi:10.1177/1081286517699991, arXiv:1509.07003, 2017). We argue that pre-stretched bilayer sheets provide us with an interesting model system to study shape programming and morphing of surfaces in other, more complex systems, where spontaneous deformations are induced by swelling due to the absorption of a liquid, phase transformations, thermal or electro-magnetic stimuli. These include bio-mimetic structures inspired by biological systems from both the plant and the animal kingdoms.

  4. Effects of cholesterol or gramicidin on slow and fast motions of phospholipids in oriented bilayers

    International Nuclear Information System (INIS)

    Peng, Z.Y.; Simplaceanu, V.; Dowd, S.R.; Ho, C.

    1989-01-01

    Nuclear spin-lattice relaxation both in the rotating frame and in the laboratory frame is used to investigate the slow and fast molecular motions of phospholipids in oriented bilayers in the liquid crystalline phase. The bilayers are prepared from a perdeuterated phospholipid labeled with a pair of 19 F atoms at the 7 position of the 2-sn acyl chain. Phospholipid-cholesterol or phospholipid-gramicidin interactions are characterized by measuring the relaxation rates as a function of the bilayer orientation, the locking field, and the temperature. These studies show that cholesterol or gramicidin can specifically enhance the relaxation due to slow motions in phospholipid bilayers with correlation times τ s longer than 10 -8 sec. The perturbations of the geometry of the slow motions induced by cholesterol are qualitatively different from those induced by gramicidin. In contrast, the presence of cholesterol or gramicidin slightly suppresses the fast motions with correlation times τ f = 10 -9 to 10 -10 sec without significantly affecting their geometry. Weak locking-field and temperature dependences are observed for both pure lipid bilayers and bilayers containing either cholesterol or gramicidin, suggesting that the motions of phospholipid acyl chains may have dispersed correlation times

  5. Solid oxide fuel cells with bi-layered electrolyte structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinge; Robertson, Mark; Deces-Petit, Cyrille; Xie, Yongsong; Hui, Rob; Qu, Wei; Kesler, Olivera; Maric, Radenka; Ghosh, Dave [Institute for Fuel Cell Innovation, National Research Council Canada, 4250 Wesbrook Mall, Vancouver, B.C. V6T 1W5 (Canada)

    2008-01-10

    In this work, we have developed solid oxide fuel cells with a bi-layered electrolyte of 2 {mu}m SSZ and 4 {mu}m SDC using tape casting, screen printing, and co-firing processes. The cell reached power densities of 0.54 W cm{sup -2} at 650 C and 0.85 W cm{sup -2} at 700 C, with open circuit voltage (OCV) values larger than 1.02 V. The electrical leaking between anode and cathode through an SDC electrolyte has been blocked in the bi-layered electrolyte structure. However, both the electrolyte resistance (R{sub el}) and electrode polarization resistance (R{sub p,a+c}) increased in comparison to cells with single-layered SDC electrolytes. The formation of a solid solution of (Ce, Zr)O{sub 2-x} during sintering process and the flaws in the bi-layered electrolyte structure seem to be the main causes for the increase in the R{sub el} value (0.32 {omega} cm{sup 2}) at 650 C, which is almost one order of magnitude higher than the calculated value. (author)

  6. Moving antiplane shear crack in hexagonal piezoelectric crystals

    International Nuclear Information System (INIS)

    Tupholme, G.

    1998-01-01

    Closed form solutions are obtained and discussed for the stress and electric displacement fields around a loaded Griffith-type antiplane shear strip crack moving in hexagonal piezoelectric crystals. Representative numerical results are presented for ZnO and PZT-5H. (author)

  7. Lattice-polarity-driven epitaxy of hexagonal semiconductor nanowires

    KAUST Repository

    Wang, Ping; Yuan, Ying; Zhao, Chao; Wang, Xinqiang; Zheng, Xiantong; Rong, Xin; Wang, Tao; Sheng, Bowen; Wang, Qingxiao; Zhang, Yongqiang; Bian, Lifeng; Yang, Xue-Lin; Xu, Fu-Jun; Qin, Zhixin; Li, Xin-Zheng; Zhang, Xixiang; Shen, Bo

    2015-01-01

    by first-principles density functional theory (DFT). The formation of diagonal pyramids for the N-polarity hexagonal NWs affords a novel way to locate quantum dot in the kink position, suggesting a new recipe for the fabrication of dot-based devices.

  8. Spin glass transition in a thin-film NiO/permalloy bilayer

    Science.gov (United States)

    Ma, Tianyu; Urazhdin, Sergei

    2018-02-01

    We experimentally study magnetization aging in a thin-film NiO/permalloy bilayer. Aging characteristics are nearly independent of temperature below the exchange bias blocking temperature TB, but rapidly vary above it. The dependence on the magnetic history qualitatively changes across TB. The observed behaviors are consistent with the spin glass transition at TB, with significant implications for magnetism and magnetoelectronic phenomena in antiferromagnet/ferromagnet bilayers.

  9. Single-component supported lipid bilayers probed using broadband nonlinear optics.

    Science.gov (United States)

    Olenick, Laura L; Chase, Hilary M; Fu, Li; Zhang, Yun; McGeachy, Alicia C; Dogangun, Merve; Walter, Stephanie R; Wang, Hong-Fei; Geiger, Franz M

    2018-01-31

    Broadband SFG spectroscopy is shown to offer considerable advantages over scanning systems in terms of signal-to-noise ratios when probing well-formed single-component supported lipid bilayers formed from zwitterionic lipids with PC headgroups. The SFG spectra obtained from bilayers formed from DOPC, POPC, DLPC, DMPC, DPPC and DSPC show a common peak at ∼2980 cm -1 , which is subject to interference between the C-H and the O-H stretches from the aqueous phase, while membranes having transition temperatures above the laboratory temperature produce SFG spectra with at least two additional peaks, one at ∼2920 cm -1 and another at ∼2880 cm -1 . The results validate spectroscopic and structural data from SFG experiments utilizing asymmetric bilayers in which one leaflet differs from the other in the extent of deuteration. Differences in H 2 O-D 2 O exchange experiments reveal that the lineshapes of the broadband SFG spectra are significantly influenced by interference from OH oscillators in the aqueous phase, even when those oscillators are not probed by the incident infrared light in our broadband setup. In the absence of spectral interference from the OH stretches of the solvent, the alkyl chain terminal methyl group of the bilayer is found to be tilted at an angle of 15° to 35° from the surface normal.

  10. Thermodynamics of the hexagonal close-packed iron-nitrogen system from first-principles

    DEFF Research Database (Denmark)

    Bakkedal, Morten Bjørn

    to hexagonal systems and a numerically tractable extended equation of state is developed to describe thermody-namic equilibrium properties at finite temperature.The model is applied to ε-Fe3N specifically. Through the versatility of the model, equi-librium lattice parameters, the bulk modulus, and the thermal......First-principles thermodynamic models are developed for the hexagonal close-packed ε-Fe-N system. The system can be considered as a hexagonal close-packed host lattice of iron atoms and with the nitrogen atoms residing on a sublattice formed by the octahedral interstices. The iron host lattice...... is assumed fixed.The models are developed entirely from first-principles calculations based on fundamen-tal quantum mechanical calculation through the density functional theory approach with the atomic numbers and crystal structures as the only input parameters. A complete thermody-namic description should...

  11. Lipid Bilayer Formation on Organic Electronic Materials

    KAUST Repository

    Zhang, Yi; Wustoni, Shofarul; Savva, Achilleas; Giovannitti, Alexander; McCulloch, Iain; Inal, Sahika

    2018-01-01

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular

  12. Photolithographic Polymerization of Diacetylene-Containing Phospholipid Bilayers Studied by Multimode Atomic Force Microscopy

    NARCIS (Netherlands)

    Morigaki, Kenichi; Schönherr, Holger; Frank, Curtis W.; Knoll, Wolfgang

    2003-01-01

    Photopolymerization of the diacetylene-containing phospholipid 1,2-bis(10,12-tricosadiynoyl)-sn-glycero-3-phosphocholine (1) in substrate-supported planar lipid bilayers (SPBs) has been studied by using multimode atomic force microscopy (AFM). Monolayers and bilayers of 1 have been transferred onto

  13. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.; Yang, Y. M.; Guo, Z. B.; Wu, Y. H.; Qiu, J. J.

    2013-01-01

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb

  14. Simultaneous estimation of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy

    Science.gov (United States)

    Nishidate, Izumi; Abdul, Wares MD.; Ohtsu, Mizuki; Nakano, Kazuya; Haneishi, Hideaki

    2018-02-01

    We propose a method to estimate transcutaneous bilirubin, hemoglobin, and melanin based on the diffuse reflectance spectroscopy. In the proposed method, the Monte Carlo simulation-based multiple regression analysis for an absorbance spectrum in the visible wavelength region (460-590 nm) is used to specify the concentrations of bilirubin (Cbil), oxygenated hemoglobin (Coh), deoxygenated hemoglobin (Cdh), and melanin (Cm). Using the absorbance spectrum calculated from the measured diffuse reflectance spectrum as a response variable and the extinction coefficients of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin, are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Total hemoglobin concentration (Cth) and tissue oxygen saturation (StO2) are simply calculated from the oxygenated hemoglobin and deoxygenated hemoglobin. In vivo animal experiments with bile duct ligation in rats demonstrated that the estimated Cbil is increased after ligation of bile duct and reaches to around 20 mg/dl at 72 h after the onset of the ligation, which corresponds to the reference value of Cbil measured by a commercially available transcutaneous bilirubin meter. We also performed in vivo experiments with rats while varying the fraction of inspired oxygen (FiO2). Coh and Cdh decreased and increased, respectively, as FiO2 decreased. Consequently, StO2 was dramatically decreased. The results in this study indicate potential of the method for simultaneous evaluation of multiple chromophores in skin tissue.

  15. Site-specific semisynthetic variant of human hemoglobin

    International Nuclear Information System (INIS)

    Hefta, S.A.; Lyle, S.B.; Busch, M.R.; Harris, D.E.; Matthew, J.B.; Gurd, F.R.N.

    1988-01-01

    A single round of Edman degradation was employed to remove the NH 2 -terminal valine from isolated α chains of human hemoglobin. Reconstitution of normal β chains with truncated or substituted α chains was used to form truncated (des-Val 1 -α1) and substituted ([[1- 13 C]Gly 1 ]α1) tetrameric hemoglobin analogs. Structural homology of the analogs with untreated native hemoglobin was established by using several spectroscopic and physical methods. Functional studies indicate that the reconstituted tetrameric protein containing des-Val 1 -α chains has a higher affinity for oxygen, is less influenced by chloride ions or 2,3-biphosphoglycerate, and shows lower cooperativity than native hemoglobin. These results confirm the key functional role of the α-chain NH 2 terminus in mediating cooperative oxygen binding across the dimer interface. The NH 2 -terminal pK/sub 1/2/ value was determined for the [ 13 C]glycine-substituted analog to be 7.46 +/- 0.09 at 15 0 C in the carbon monoxide-liganded form. This value, measured directly by 13 C NMR, agrees with the determination made by the less-direct 13 CO 2 method and confirms the role of this residue as a contributor to the alkaline Bohr effect; however, it is consistent with the presence of an NH 2 -terminal salt bridge to the carboxylate of Arg-141 of the α chain in the liganded form

  16. Self-assembled bilayers based on organothiol and organotrimethoxysilane on zinc platform

    International Nuclear Information System (INIS)

    Berger, Francois; Delhalle, Joseph; Mekhalif, Zineb

    2010-01-01

    This study describes the formation of a bilayer system developed on electrodeposited zinc. In a first step, a monolayer of 11-mercapto-1-undecanol is grafted on zinc, optimization of the conditions of elaboration have been performed. In a second step, organotrimethoxysilane have been grafted on the zinc modified with the hydroxyl terminated self-assembled monolayer (SAM) to finalize the bilayer system. X-ray photoelectron spectroscopy (XPS), polarization modulation-infrared reflection absorption spectroscopy (PM-IRRAS) and contact angle measurements are used to characterize each step of modification. An electrochemical evaluation of the different created systems is carried out by linear sweep voltammetry (LSV), cyclic voltammetry (CV) and scanning vibrating electrode technique (SVET). The impact of the modification of zinc using SAM and self-assembled bilayer (SAB) on the electrochemical activity of the surface is highlighted.

  17. Cholesterol effect on water permeability through DPPC and PSM lipid bilayers: a molecular dynamics study.

    Science.gov (United States)

    Saito, Hiroaki; Shinoda, Wataru

    2011-12-29

    Water permeability of two different lipid bilayers of dipalmitoylphosphatidylcholine (DPPC) and palmitoylsphingomyelin (PSM) in the absence and presence of cholesterol (0-50 mol %) have been studied by molecular dynamics simulations to elucidate the molecular mechanism of the reduction in water leakage across the membranes by the addition of cholesterol. An enhanced free energy barrier was observed in these membranes with increased cholesterol concentration, and this was explained by the reduced cavity density around the cholesterol in the hydrophobic membrane core. There was an increase of trans conformers in the hydrophobic lipid chains adjacent to the cholesterol, which reduced the cavity density. The enhanced free energy barrier was found to be the main reason to reduce the water permeability with increased cholesterol concentration. At low cholesterol concentrations the PSM bilayer exhibited a higher free energy barrier than the DPPC bilayer for water permeation, while at greater than 30 mol % of cholesterol the difference became minor. This tendency for the PSM and DPPC bilayers to resemble each other at higher cholesterol concentrations was similar to commonly observed trends in several structural properties, such as order parameters, cross-sectional area per molecule, and cavity density profiles in the hydrophobic regions of bilayer membranes. These results demonstrate that DPPC and PSM bilayers with high cholesterol contents possess similar physical properties, which suggests that the solubility of cholesterol in these lipid bilayers has importance for an understanding of multicomponent lipid membranes with cholesterol. © 2011 American Chemical Society

  18. Improvements in or relating to antibodies active against human hemoglobin Asub(1C)

    International Nuclear Information System (INIS)

    Javid, J.; Cerami, A.; Koenig, R.J.; Pettis, P.K.

    1980-01-01

    A method is described for preparing an antibody against human hemoglobin Asub(1c) which is substantially free of cross-reactivity against the human hemoglobins A 0 , Asub(1a) and Asub(1b). The antibodies are collected from cats, goats or sheep following injections of purified hemoglobin Asub(1c) antigen since these animals do not naturally produce hemoglobin Asub(1c). A radioimmunoassay method is also described whereby these antibodies are used to determine the quantity of hemoglobin Asub(1c) in blood samples. This is a useful technique in the diagnosis of diabetes mellitus. (U.K.)

  19. Correlating bilayer tablet delamination tendencies to micro-environmental thermodynamic conditions during pan coating.

    Science.gov (United States)

    Zacour, Brian M; Pandey, Preetanshu; Subramanian, Ganeshkumar; Gao, Julia Z; Nikfar, Faranak

    2014-06-01

    The objective of this study was to determine the impact that the micro-environment, as measured by PyroButton data loggers, experienced by tablets during the pan coating unit operation had on the layer adhesion of bilayer tablets in open storage conditions. A full factorial design of experiments (DOE) with three center points was conducted to study the impact of final tablet hardness, film coating spray rate and film coating exhaust temperature on the delamination tendencies of bilayer tablets. PyroButton data loggers were placed (fixed) at various locations in a pan coater and were also allowed to freely move with the tablet bed to measure the micro-environmental temperature and humidity conditions of the tablet bed. The variance in the measured micro-environment via PyroButton data loggers accounted for 75% of the variance in the delamination tendencies of bilayer tablets on storage (R(2 )= 0.75). A survival analysis suggested that tablet hardness and coating spray rate significantly impacted the delamination tendencies of the bilayer tablets under open storage conditions. The coating exhaust temperature did not show good correlation with the tablets' propensity to crack indicating that it was not representative of the coating micro-environment. Models created using data obtained from the PyroButton data loggers outperformed models created using primary DOE factors in the prediction of bilayer tablet strength, especially upon equipment or scale transfers. The coating micro-environment experienced by tablets during the pan coating unit operation significantly impacts the strength of the bilayer interface of tablets on storage.

  20. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    Energy Technology Data Exchange (ETDEWEB)

    White, S.H. [Univ. of California, Irvine, CA (United States); Wiener, M.C. [Univ. of California, San Francisco, CA (United States)

    1994-12-31

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining {open_quote}the structure{close_quote} of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors.

  1. Fluid bilayer structure determination: Joint refinement in composition space using X-ray and neutron diffraction data

    International Nuclear Information System (INIS)

    White, S.H.; Wiener, M.C.

    1994-01-01

    Experimentally-determined structural models of fluid lipid bilayers are essential for verifying molecular dynamics simulations of bilayers and for understanding the structural consequences of peptide interactions. The extreme thermal motion of bilayers precludes the possibility of atomic-level structural models. Defining open-quote the structure close-quote of a bilayer as the time-averaged transbilayer distribution of the water and the principal lipid structural groups such as the carbonyls and double-bonds (quasimolecular fragments), one can represent the bilayer structure as a sum of Gaussian functions referred to collectively as the quasimolecular structure. One method of determining the structure is by neutron diffraction combined with exhaustive specific deuteration. This method is impractical because of the expense of the chemical syntheses and the limited amount of neutron beam time currently available. We have therefore developed the composition space refinement method for combining X-ray and minimal neutron diffraction data to arrive at remarkably detailed and accurate structures of fluid bilayers. The composition space representation of the bilayer describes the probability of occupancy per unit length across the width of the bilayer of each quasimolecular component and permits the joint refinement of X-ray and neutron lamellar diffraction data by means of a single quasimolecular structure that is fitted simultaneously to both data sets. Scaling of each component by the appropriate neutron or X-ray scattering length maps the composition-space profile to the appropriate scattering length space for comparison to experimental data. The difficulty with the method is that fluid bilayer structures are generally only marginally determined by the experimental data. This means that the space of possible solutions must be extensively explored in conjunction with a thorough analysis of errors

  2. The narrow therapeutic window of glycated hemoglobin and assay variability.

    Science.gov (United States)

    Hosseini, S S; Bibler, I; Charles, M A

    1999-12-01

    Glycated hemoglobin is measured by a variety of assays, each of which has a unique normal level. Our purpose is to show that among the different assays available in the United States, using the same patient's blood sample, assay results may vary widely and may more or less easily achieve a glycated hemoglobin value within the normal range. The following assays were compared using the same patient's blood sample for each pair of assays: glycohemoglobin affinity assay (GHB Reader; Isolab, Akron, OH) versus gel electrophoresis assay (n = 76); Isolab versus ion capture assay (IMX; Abbott Laboratories, Irving, TX) (n = 57); monoclonal antibody assay (DCA2000; Bayer Diagnostics, Pittsburgh, PA) versus IMX (n = 100); and high-performance liquid chromatography (HPLC) assay (Bio-Rad Variant A1c; Bio-Rad Laboratories, Richmond, CA) versus IMX assay (n = 55). Our analyses indicate that a relative ranking can be established for the ease of achieving a normal glycated hemoglobin level. The ranking indicates that the most stringent or difficult assays for achieving a normal level are the Isolab and DCA2000 assays. The intermediate assays are the IMX and Bio-Rad Variant, and the easiest method for achieving a normal value is the gel electrophoresis assay. Our results indicate that various glycated hemoglobin assays vary widely and are associated with more or less difficulty for an individual patient to achieve a glycated hemoglobin level within the normal range. These results are especially significant with respect to (1) the clinically narrow therapeutic window of glycated hemoglobin values in type 1 diabetes to avoid rapidly advancing severe hypoglycemia rates and chronic microvascular complication rates, and (2) the glycated hemoglobin threshold for rapidly advancing macrovascular disease in both type 1 and type 2 patients.

  3. Fluorescent molecular probes based on excited state prototropism in lipid bilayer membrane

    Science.gov (United States)

    Mohapatra, Monalisa; Mishra, Ashok K.

    2012-03-01

    Excited state prototropism (ESPT) is observed in molecules having one or more ionizable protons, whose proton transfer efficiency is different in ground and excited states. The interaction of various ESPT molecules like naphthols and intramolecular ESPT (ESIPT) molecules like hydroxyflavones etc. with different microheterogeneous media have been studied in detail and excited state prototropism as a probe concept has been gaining ground. The fluorescence of different prototropic forms of such molecules, on partitioning to an organized medium like lipid bilayer membrane, often show sensitive response to the local environment with respect to the local structure, physical properties and dynamics. Our recent work using 1-naphthol as an ESPT fluorescent molecular probe has shown that the incorporation of monomeric bile salt molecules into lipid bilayer membranes composed from dipalmitoylphosphatidylcholine (DPPC, a lung surfactant) and dimyristoylphosphatidylcholine (DMPC), in solid gel and liquid crystalline phases, induce appreciable wetting of the bilayer up to the hydrocarbon core region, even at very low (fisetin, an ESIPT molecule having antioxidant properties, in lipid bilayer membrane has been sensitively monitored from its intrinsic fluorescence behaviour.

  4. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light

    Science.gov (United States)

    Qin, Fei; Ding, Lu; Zhang, Lei; Monticone, Francesco; Chum, Chan Choy; Deng, Jie; Mei, Shengtao; Li, Ying; Teng, Jinghua; Hong, Minghui; Zhang, Shuang; Alù, Andrea; Qiu, Cheng-Wei

    2016-01-01

    Metasurfaces operating in the cross-polarization scheme have shown an interesting degree of control over the wavefront of transmitted light. Nevertheless, their inherently low efficiency in visible light raises certain concerns for practical applications. Without sacrificing the ultrathin flat design, we propose a bilayer plasmonic metasurface operating at visible frequencies, obtained by coupling a nanoantenna-based metasurface with its complementary Babinet-inverted copy. By breaking the radiation symmetry because of the finite, yet small, thickness of the proposed structure and benefitting from properly tailored intra- and interlayer couplings, such coupled bilayer metasurface experimentally yields a conversion efficiency of 17%, significantly larger than that of earlier single-layer designs, as well as an extinction ratio larger than 0 dB, meaning that anomalous refraction dominates the transmission response. Our finding shows that metallic metasurface can counterintuitively manipulate the visible light as efficiently as dielectric metasurface (~20% in conversion efficiency in Lin et al.’s study), although the metal’s ohmic loss is much higher than dielectrics. Our hybrid bilayer design, still being ultrathin (~λ/6), is found to obey generalized Snell’s law even in the presence of strong couplings. It is capable of efficiently manipulating visible light over a broad bandwidth and can be realized with a facile one-step nanofabrication process. PMID:26767195

  5. The longitudinal optical conductivity in bilayer graphene and other two-dimensional systems

    Energy Technology Data Exchange (ETDEWEB)

    Yang, C.H., E-mail: chyang@nuist.edu.cn [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science and Technology, Nanjing 210044 (China); Ao, Z.M., E-mail: zhimin.ao@uts.edu.au [Centre for Clean Energy Technology, School of Chemistry and Forensic Science, University of Technology, Sydney ,PO Box 123, Broadway, Sydney, NSW 2007 (Australia); Wei, X.F. [West Anhui University, Luan 237012 (China); Jiang, J.J. [Department of Physics, Sanjing College, Nanjing 210012 (China)

    2015-01-15

    The longitudinal optical conductivity in bilayer graphene is calculated using the dielectric function by defining the density operator theoretically, while the effect of the broadening width determined by the scattering sources on the optical conductivity is also investigated. Some features, such as chirality, energy dispersion and density of state (DOS) in bilayer graphene, are similar to those in monolayer graphene and a traditional two-dimensional electron gas (2DEG). Therefore, in this paper, the bilayer graphene optical conductivity is compared with the results in these two systems. The analytical and numerical results show that the optical conductivity per graphene layer is almost a constant and close to e{sup 2}/(4ℏ), which agrees with the experimental results.

  6. Lower versus Higher Hemoglobin Threshold for Transfusion in Septic Shock

    DEFF Research Database (Denmark)

    Holst, Lars B; Haase, Nicolai; Wetterslev, Jørn

    2014-01-01

    BACKGROUND: Blood transfusions are frequently given to patients with septic shock. However, the benefits and harms of different hemoglobin thresholds for transfusion have not been established. METHODS: In this multicenter, parallel-group trial, we randomly assigned patients in the intensive care...... unit (ICU) who had septic shock and a hemoglobin concentration of 9 g per deciliter or less to receive 1 unit of leukoreduced red cells when the hemoglobin level was 7 g per deciliter or less (lower threshold) or when the level was 9 g per deciliter or less (higher threshold) during the ICU stay...... were similar in the two intervention groups. CONCLUSIONS: Among patients with septic shock, mortality at 90 days and rates of ischemic events and use of life support were similar among those assigned to blood transfusion at a higher hemoglobin threshold and those assigned to blood transfusion...

  7. L-tryptophan-induced electron transport across supported lipid bilayers: an alkyl-chain tilt-angle, and bilayer-symmetry dependence.

    Science.gov (United States)

    Sarangi, Nirod Kumar; Patnaik, Archita

    2012-12-21

    Molecular orientation-dependent electron transport across supported 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayers (SLBs) on semiconducting indium tin oxide (ITO) is reported with an aim towards potential nanobiotechnological applications. A bifunctional strategy is adopted to form symmetric and asymmetric bilayers of DPPC that interact with L-tryptophan, and are analyzed by surface manometry and atomic force microscopy. Polarization-dependent real-time Fourier transform infrared reflection absorption spectroscopy (FT-IRRAS) analysis of these SLBs reveals electrostatic, hydrogen-bonding, and cation-π interactions between the polar head groups of the lipid and the indole side chains. Consequently, a molecular tilt arises from the effective interface dipole, facilitating electron transport across the ITO-anchored SLBs in the presence of an internal Fe(CN)(6)(4-/3-) redox probe. The incorporation of tryptophan enhances the voltammetric features of the SLBs. The estimated electron-transfer rate constants for symmetric and asymmetric bilayers (k(s) = 2.0×10(-2) and 2.8×10(-2) s(-1)) across the two-dimensional (2D) ordered DPPC/tryptophan SLBs are higher compared to pure DPPC SLBs (k(s) = 3.2×10(-3) and 3.9×10(-3) s(-1)). In addition, they are molecular tilt-dependent, as it is the case with the standard apparent rate constants k(app)(0), estimated from electrochemical impedance spectroscopy and bipotentiostatic experiments with a Pt ultramicroelectrode. Lower magnitudes of k(s) and k(app)(0) imply that electrochemical reactions across the ITO-SLB electrodes are kinetically limited and consequently governed by electron tunneling across the SLBs. Standard theoretical rate constants (k(th)(0)) accrued upon electron tunneling comply with the potential-independent electron-tunneling coefficient β = 0.15 Å(-1). Insulator-semiconductor transitions moving from a liquid-expanded to a condensed 2D-phase state of the SLBs are noted, adding a new dimension

  8. Group of Hexagonal Search Patterns for Motion Estimation and Object Tracking

    International Nuclear Information System (INIS)

    Elazm, A.A.; Mahmoud, I.I; Hashima, S.M.

    2010-01-01

    This paper presents a group of fast block matching algorithms based on the hexagon pattern search .A new predicted one point hexagon (POPHEX) algorithm is proposed and compared with other well known algorithms. The comparison of these algorithms and our proposed one is performed for both motion estimation and object tracking. Test video sequences are used to demonstrate the behavior of studied algorithms. All algorithms are implemented in MATLAB environment .Experimental results showed that the proposed algorithm posses less number of search points however its computational overhead is little increased due to prediction procedure.

  9. Tunable electric properties of bilayer InSe with different interlayer distances and external electric field

    Science.gov (United States)

    Shang, Jimin; Pan, Longfei; Wang, Xiaoting; Li, Jingbo; Wei, Zhongming

    2018-03-01

    Using density functional theory we explore the band structure of bilayer Indium selenide (InSe), and we find that the van der Waals interaction has significant effects on the electric and optical properties. We then explore the tuning electronic properties by different interlayer distances and by an external vertical electric field. Our results demonstrate that the band gaps of bilayer InSe can be continuously tuned by different interlayer coupling. With decreasing interlayer distances, the tunable band gaps of bilayer decrease linearly, owing to the enhancement of the interlayer interaction. Additionally, the band structure of bilayer InSe under external vertical fields is discussed. The presence of a small external electric field can make a new spatial distribution of electron-hole pairs. A well separation based on the electrons and holes, localized in different layers can be obtained using this easy method. These properties of bilayer InSe indicates potential applications in designing new optoelectronic devices.

  10. Strain-induced gap transition and anisotropic Dirac-like cones in monolayer and bilayer phosphorene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Can; Xia, Qinglin, E-mail: qlxia@csu.edu.cn; Nie, Yaozhuang; Guo, Guanghua, E-mail: guogh@csu.edu.cn [School of Physics and Electronics, Central South University, Changsha 410083 (China)

    2015-03-28

    The electronic properties of two-dimensional monolayer and bilayer phosphorene subjected to uniaxial and biaxial strains have been investigated using first-principles calculations based on density functional theory. Strain engineering has obvious influence on the electronic properties of monolayer and bilayer phosphorene. By comparison, we find that biaxial strain is more effective in tuning the band gap than uniaxial strain. Interestingly, we observe the emergence of Dirac-like cones by the application of zigzag tensile strain in the monolayer and bilayer systems. For bilayer phosphorene, we induce the anisotropic Dirac-like dispersion by the application of appropriate armchair or biaxial compressive strain. Our results present very interesting possibilities for engineering the electronic properties of phosphorene and pave a way for tuning the band gap of future electronic and optoelectronic devices.

  11. Hemoglobin Rahere, a human hemoglobin variant with amino acid substitution at the 2,3-diphosphoglycerate binding site. Functional consequences of the alteration and effects of bezafibrate on the oxygen bindings.

    OpenAIRE

    Sugihara, J; Imamura, T; Nagafuchi, S; Bonaventura, J; Bonaventura, C; Cashon, R

    1985-01-01

    We encountered an abnormal hemoglobin (Rahere), with a threonine residue replacing the beta 82 (EF6) lysine residue at the binding site of 2,3-diphosphoglycerate, which was responsible for overt erythrocytosis in two individuals of a Japanese family. Hemoglobin Rahere shows a lower oxygen affinity on the binding of 2,3-diphosphoglycerate or chloride ions than hemoglobin A. Although a decrease in the positive charge density at the binding sites of 2,3-diphosphoglycerate in hemoglobin Rahere ap...

  12. Topological transformation of a surfactant bilayer

    DEFF Research Database (Denmark)

    Le, T.D.; Olsson, U.; Mortensen, K.

    2000-01-01

    Surfactant lamellar phases are often complicated by the formation of multilamellar (onions) under shear, which can originate simply by shaking the sample. A systematic study has been performed on the C10E3-D2O system in which different bilayer structures under a steady shear flow were investigated...

  13. Influence of hemoglobin on non-invasive optical bilirubin sensing

    Science.gov (United States)

    Jiang, Jingying; Gong, Qiliang; Zou, Da; Xu, Kexin

    2012-03-01

    Since the abnormal metabolism of bilirubin could lead to diseases in the human body, especially the jaundice which is harmful to neonates. Traditional invasive measurements are difficult to be accepted by people because of pain and infection. Therefore, the real-time and non-invasive measurement of bilirubin is of great significance. However, the accuracy of currently transcutaneous bilirubinometry(TcB) is generally not high enough, and affected by many factors in the human skin, mostly by hemoglobin. In this talk, absorption spectra of hemoglobin and bilirubin have been collected and analyzed, then the Partial Least Squares (PLS) models have been built. By analyzing and comparing the Correlation and Root Mean Square Error of Prediction(RMSEP), the results show that the Correlation of bilirubin solution model is larger than that of the mixture solution added with hemoglobin, and its RMSEP value is smaller than that of mixture solution. Therefore, hemoglobin has influences on the non-invasive optical bilirubin sensing. In next step, it is necessary to investigate how to eliminate the influence.

  14. Hemoglobin levels and new-onset heart failure in the community

    NARCIS (Netherlands)

    Klip, IJsbrand T.; Postmus, Douwe; Voors, Adriaan A.; Brouwers, Frank P. J.; Gansevoort, Ron T.; Bakker, Stephan J. L.; Hillege, Hans L.; de Boer, Rudolf A.; van der Harst, Pim; van Gilst, Wiek H.; van Veldhuisen, Dirk J.; van der Meer, Peter

    Background In established cardiovascular disease and heart failure (HF), low hemoglobin levels are associated with unfavorable outcome. Whether hemoglobin levels are associated with the development of new-onset HF in the population is unclear. This study sought to investigate the relationship

  15. Eu3+-doped Y2O3 hexagonal prisms: Shape-controlled synthesis and tailored luminescence properties

    International Nuclear Information System (INIS)

    Yang, Errui; Li, Guangshe; Fu, Chaochao; Zheng, Jing; Huang, Xinsong; Xu, Wen; Li, Liping

    2015-01-01

    In this work, Eu 3+ doped Y 2 O 3 hexagonal prisms were synthesized by a novel two-phase approach, which involves water at the bottom as aqueous phase and oleylamine in the above as oil phase. With this unique reaction system, precursors of hexagonal prisms Y 4 O(OH) 9 (NO 3 ) were first obtained by simply varying the volume ratio of water to oleylamine. Time-dependent experiments were systematically performed to reveal the growth mechanism of the precursor. After subsequent heat treatment, these precursors transformed to Y 2 O 3 hexagonal prisms with controlled diameters and aspect ratios varying from 4 to 19. Such a transformation is preceded via a topotactic process, as indicated by TG-DTA and mass spectra. Eventually, all Eu 3+ doped Y 2 O 3 hexagonal prisms were found to exhibit an intensive red emission at 611 nm, which corresponds to 5 D 0 → 7 F 2 transition of Eu 3+ . With varying the aspect ratio of hexagonal prisms and increasing Eu 3+ concentration in Y 2 O 3 , an optimum external quantum efficiency was achieved. - Graphical abstract: In this work, Eu 3+ doped Y 2 O 3 hexagonal prisms with controlled aspect ratio from 4.4 to 19.3 were synthesized by transformation of the precursor Y 4 O(OH) 9 (NO 3 ) hexagonal prisms from a novel two-phase reaction system. The growth mechanism of the precursor has been systematically investigated, and a topotactic phase transformation from precursors to cubic Y 2 O 3 is for the first time put forward. By the size controlling and aspect ratio adjusting, the luminescence emission intensity as well as external quantum efficiency of Eu 3+ doped Y 2 O 3 hexagonal prisms is further tailored to show an optimum. - Highlights: • Eu 3+ doped Y 2 O 3 hexagonal prisms were synthesized by a novel two-phase approach. • Inheriting mechanism of prisms morphology from Y 4 O(OH) 9 (NO 3 ) to Y 2 O 3 was discussed. • Aspect ratio of prisms was tailored by the volume ratio of water to oleylamine. • Luminescence properties were

  16. Neutrons in studies of phospholipid bilayers and bilayer–drug interaction. I. Basic principles and neutron diffraction

    Directory of Open Access Journals (Sweden)

    Belička M.

    2014-12-01

    Full Text Available In our paper, we demonstrate several possibilities of using neutrons in pharmaceutical research with the help of examples of scientific results achieved at our University. In this first part, basic properties of neutrons and elementary principles of elastic scattering of thermal neutrons are described. Results of contrast variation neutron diffraction on oriented phospholipid bilayers with intercalated local anaesthetic or cholesterol demonstrate the potential of this method at determination of their position in bilayers. Diffraction experiments with alkan-1-ols located in the bilayers revealed their influence on bilayer thickness as a function of their alkyl chain length.

  17. Effects of co-sintering in self-standing CGO/YSZ and CGO/ ScYSZ dense bi-layers

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Ni, De Wei; Brodersen, Karen

    2014-01-01

    -layers are critical due to the mismatch of thermo-mechanical and sintering properties among the materials. Despite the better sinteractivity of ScYSZ, the self-standing CGO/ScYSZ bilayer presents more challenges in terms of densification compared with the CGO/YSZ bi-layer. In particular, above 1200 C, ScYSZ and CGO......-standing bi-layered electrolyte system. The combined use of thermo-mechanical analysis, optical dilatometry, and scanning electron microscopy ensures a systematic characterization of both the individual layers and CGO/YSZ and CGO/ScYSZ bi-layered laminates. The results of the co-firing process of the bi...

  18. Modeling hemoglobin at optical frequency using the unconditionally stable fundamental ADI-FDTD method.

    Science.gov (United States)

    Heh, Ding Yu; Tan, Eng Leong

    2011-04-12

    This paper presents the modeling of hemoglobin at optical frequency (250 nm - 1000 nm) using the unconditionally stable fundamental alternating-direction-implicit finite-difference time-domain (FADI-FDTD) method. An accurate model based on complex conjugate pole-residue pairs is proposed to model the complex permittivity of hemoglobin at optical frequency. Two hemoglobin concentrations at 15 g/dL and 33 g/dL are considered. The model is then incorporated into the FADI-FDTD method for solving electromagnetic problems involving interaction of light with hemoglobin. The computation of transmission and reflection coefficients of a half space hemoglobin medium using the FADI-FDTD validates the accuracy of our model and method. The specific absorption rate (SAR) distribution of human capillary at optical frequency is also shown. While maintaining accuracy, the unconditionally stable FADI-FDTD method exhibits high efficiency in modeling hemoglobin.

  19. Suppression of superconductivity in Nb by IrMn in IrMn/Nb bilayers

    KAUST Repository

    Wu, B. L.

    2013-10-10

    Effect of antiferromagnet on superconductivity has been investigated in IrMn/Nb bilayers. Significant suppression of both transition temperature (Tc) and lower critical field (Hc1) of Nb is found in IrMn/Nb bilayers as compared to a single layer Nb of same thickness; the suppression effect is even stronger than that of a ferromagnet in NiFe/Nb bilayers. The addition of an insulating MgO layer at the IrMn-Nb interface nearly restores Tc to that of the single layer Nb, but Hc1 still remains suppressed. These results suggest that, in addition to proximity effect and magnetic impurity scattering, magnetostatic interaction also plays a role in suppressing superconductivity of Nb in IrMn/Nb bilayers. In addition to reduced Tc and Hc1, the IrMn layer also induces broadening in the transition temperature of Nb, which can be accounted for by a finite distribution of stray field from IrMn.

  20. Optical wavelength selection for portable hemoglobin determination by near-infrared spectroscopy method

    Science.gov (United States)

    Tian, Han; Li, Ming; Wang, Yue; Sheng, Dinggao; Liu, Jun; Zhang, Linna

    2017-11-01

    Hemoglobin concentration is commonly used in clinical medicine to diagnose anemia, identify bleeding, and manage red blood cell transfusions. The golden standard method for determining hemoglobin concentration in blood requires reagent. Spectral methods were advantageous at fast and non-reagent measurement. However, model calibration with full spectrum is time-consuming. Moreover, it is necessary to use a few variables considering size and cost of instrumentation, especially for a portable biomedical instrument. This study presents different wavelength selection methods for optical wavelengths for total hemoglobin concentration determination in whole blood. The results showed that modelling using only two wavelengths combination (1143 nm, 1298 nm) can keep on the fine predictability with full spectrum. It appears that the proper selection of optical wavelengths can be more effective than using the whole spectra for determination hemoglobin in whole blood. We also discussed the influence of water absorptivity on the wavelength selection. This research provides valuable references for designing portable NIR instruments determining hemoglobin concentration, and may provide some experience for noninvasive hemoglobin measurement by NIR methods.

  1. Exchange anisotropy and micromagnetic properties of PtMn/NiFe bilayers

    International Nuclear Information System (INIS)

    Pokhil, Taras; Linville, Eric; Mao, Sining

    2001-01-01

    Magnetic microstructure, exchange induced uniaxial and unidirectional anisotropy and structural transformation have been studied in PtMn/NiFe bilayer films and small elements as a function of annealing time. The relationship between the fcc-fct ordering phase transformation in PtMn and the development of exchange induced magnetic properties in PtMn/NiFe bilayers is complicated by the fact that the transformation occurs throughout the entire volume of the PtMn film, while the exchange between the layers is predominantly an interface effect. Consequently, the development of the exchange anisotropy should depend primarily on the character of the structural transformation at the interface between PtMn and NiFe. The purpose of this article is to correlate the volume phase transformation in PtMn to the development of exchange anisotropy and micromagnetic behavior in PtMn/NiFe bilayers. The interface structure can be inferred from the anisotropy and micromagnetic measurements, leading to a model that explains the relationship between the volume and interface transformation structures in PtMn, and magnetic properties of the bilayers. The structure and magnetic properties were characterized by x-ray diffraction, vibrating sample magnetometry, and magnetic force microscopy. [copyright] 2001 American Institute of Physics

  2. Collective chain dynamics in lipid bilayers by inelastic x-ray scattering

    International Nuclear Information System (INIS)

    Weiss, T.M.; Chen, P.-J.; Sinn, H.; Alp, E.E.; Chen, S.-H.; Hwang, H.W.

    2003-01-01

    We investigated the application of inelastic x-ray scattering (IXS) to lipid bilayers. This technique directly measures the dynamic structure factor S(q,ω) which is the space-time Fourier transform of the electron density correlation function of the measured system. For a multiatomic system, the analysis of S(q,ω) is usually complicated. But for multiple bilayers of lipid, S(q,ω) is dominated by chain-chain correlations within individual bilayers. Thus IXS provides a unique probe for the collective dynamics of lipid chains in a bilayer that cannot be obtained by any other method. IXS of dimyristoyl phosphatidylcholine and dimyristoyl phosphatidylcholine + cholesterol at two different concentrations were measured. S(q,ω) was analyzed by three-mode hydrodynamic equations, including a thermal diffusive mode and two propagating acoustic modes. We obtained the dispersion curves for the phonons that represent the collective in-plane excitations of lipid chains. The effect of cholesterol on chain dynamics was detected. Our analysis shows the importance of having a high instrument resolution as well as the requirement of sufficient signal-to-noise ratio to obtain meaningful results from such an IXS experiment. The requirement on signal-to-noise also applies to molecular dynamics simulations.

  3. Diffusion Behaviour in Superconducting Ti/Au bilayers for SAFARI TES Detectors

    Science.gov (United States)

    van der Heijden, N. J.; Khosropanah, P.; van der Kuur, J.; Ridder, M. L.

    2014-08-01

    Controlling the critical temperature () of Ti/Au bilayers is vital in the development of practical TES detectors. Previously empirical studies have been done on aging effects in Ti/Au and other superconducting bilayers but no link with theory has been made. Here we attempt to explain the change in with a diffusion mechanism. The change in has been measured for a set of Ti/Au bilayer samples that have been given a variety of bake-out treatments, where we found a trend that can be partly explained by an inter-diffusion mechanism. With an empirical model based on diffusion a safe zone can be defined as a region of bake-out treatments, where the is not affected beyond the requirements. This will shine light on the bake-out and the storage condition boundaries of these detectors.

  4. Research on the comparison of extension mechanism of cellular automaton based on hexagon grid and rectangular grid

    Science.gov (United States)

    Zhai, Xiaofang; Zhu, Xinyan; Xiao, Zhifeng; Weng, Jie

    2009-10-01

    Historically, cellular automata (CA) is a discrete dynamical mathematical structure defined on spatial grid. Research on cellular automata system (CAS) has focused on rule sets and initial condition and has not discussed its adjacency. Thus, the main focus of our study is the effect of adjacency on CA behavior. This paper is to compare rectangular grids with hexagonal grids on their characteristics, strengths and weaknesses. They have great influence on modeling effects and other applications including the role of nearest neighborhood in experimental design. Our researches present that rectangular and hexagonal grids have different characteristics. They are adapted to distinct aspects, and the regular rectangular or square grid is used more often than the hexagonal grid. But their relative merits have not been widely discussed. The rectangular grid is generally preferred because of its symmetry, especially in orthogonal co-ordinate system and the frequent use of raster from Geographic Information System (GIS). However, in terms of complex terrain, uncertain and multidirectional region, we have preferred hexagonal grids and methods to facilitate and simplify the problem. Hexagonal grids can overcome directional warp and have some unique characteristics. For example, hexagonal grids have a simpler and more symmetric nearest neighborhood, which avoids the ambiguities of the rectangular grids. Movement paths or connectivity, the most compact arrangement of pixels, make hexagonal appear great dominance in the process of modeling and analysis. The selection of an appropriate grid should be based on the requirements and objectives of the application. We use rectangular and hexagonal grids respectively for developing city model. At the same time we make use of remote sensing images and acquire 2002 and 2005 land state of Wuhan. On the base of city land state in 2002, we make use of CA to simulate reasonable form of city in 2005. Hereby, these results provide a proof of

  5. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    International Nuclear Information System (INIS)

    Benedetto, Antonio; Bingham, Richard J.; Ballone, Pietro

    2015-01-01

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF 6 ]) salts of the 1-buthyl-3-methylimidazolium ([bmim] + ) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim] + into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim] + and of POPC. The [bmim] + absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D POPC ) does not reveal a clearly identifiable trend, since D POPC increases upon addition of [bmim][Cl] and decreases in the [bmim][PF 6 ] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers

  6. Structure and dynamics of POPC bilayers in water solutions of room temperature ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Benedetto, Antonio [School of Physics, University College Dublin, Dublin 4 (Ireland); Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen (Switzerland); Bingham, Richard J. [York Centre for Complex Systems Analysis, University of York, York YO10 5GE (United Kingdom); Ballone, Pietro [Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia (IIT), 00185 Roma (Italy); Department of Physics, Università di Roma “La Sapienza,” 00185 Roma (Italy)

    2015-03-28

    Molecular dynamics simulations in the NPT ensemble have been carried out to investigate the effect of two room temperature ionic liquids (RTILs), on stacks of phospholipid bilayers in water. We consider RTIL compounds consisting of chloride ([bmim][Cl]) and hexafluorophosphate ([bmim][PF{sub 6}]) salts of the 1-buthyl-3-methylimidazolium ([bmim]{sup +}) cation, while the phospholipid bilayer is made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Our investigations focus on structural and dynamical properties of phospholipid and water molecules that could be probed by inelastic and quasi-elastic neutron scattering measurements. The results confirm the fast incorporation of [bmim]{sup +} into the lipid phase already observed in previous simulations, driven by the Coulomb attraction of the cation for the most electronegative oxygens in the POPC head group and by sizeable dispersion forces binding the neutral hydrocarbon tails of [bmim]{sup +} and of POPC. The [bmim]{sup +} absorption into the bilayer favours the penetration of water into POPC, causes a slight but systematic thinning of the bilayer, and further stabilises hydrogen bonds at the lipid/water interface that already in pure samples (no RTIL) display a lifetime much longer than in bulk water. On the other hand, the effect of RTILs on the diffusion constant of POPC (D{sub POPC}) does not reveal a clearly identifiable trend, since D{sub POPC} increases upon addition of [bmim][Cl] and decreases in the [bmim][PF{sub 6}] case. Moreover, because of screening, the electrostatic signature of each bilayer is only moderately affected by the addition of RTIL ions in solution. The analysis of long wavelength fluctuations of the bilayers shows that RTIL sorption causes a general decrease of the lipid/water interfacial tension and bending rigidity, pointing to the destabilizing effect of RTILs on lipid bilayers.

  7. PLASMA PROTEIN AND HEMOGLOBIN PRODUCTION

    Science.gov (United States)

    Robscheit-Robbins, F. S.; Miller, L. L.; Whipple, G. H.

    1947-01-01

    Given healthy dogs fed abundant iron and protein-free or low protein diets with sustained anemia and hypoproteinemia, we can study the capacity of these animals to produce simultaneously new hemoglobin and plasma protein. Reserve stores of blood protein-building materials are measurably depleted and levels of 6 to 8 gm. per cent for hemoglobin and 4 to 5 gm. per cent for plasma protein can be maintained for weeks or months depending upon the intake of food proteins or amino acid mixtures. These dogs are very susceptible to infection and various poisons. Dogs tire of these diets and loss of appetite terminates many experiments. Under these conditions (double depletion) standard growth mixtures of essential amino acids are tested to show the response in blood protein output and urinary nitrogen balance. As a part of each tabulated experiment one of the essential amino acids is deleted from the complete growth mixture to compare such response with that of the whole mixture. Methionine, threonine, phenylalanine, and tryptophane when singly eliminated from the complete amino acid mixture do effect a sharp rise in urinary nitrogen. This loss of urinary nitrogen is corrected when the individual amino acid is replaced in the mixture. Histidine, lysine, and valine have a moderate influence upon urinary nitrogen balance toward nitrogen conservation. Leucine, isoleucine, and arginine have minimal or no effect upon urinary nitrogen balance when these individual amino acids are deleted from the complete growth mixture of amino acids during 3 to 4 week periods. Tryptophane and to a less extent phenylalanine and threonine when returned to the amino acid mixture are associated with a conspicuous preponderance of plasma protein output over the hemoglobin output (Table 4). Arginine, lysine, and histidine when returned to the amino acid mixture are associated with a large preponderance of hemoglobin output. Various amino acid mixtures under these conditions may give a positive

  8. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit; Schwingenschlö gl, Udo

    2016-01-01

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  9. An analysis of postoperative hemoglobin levels in patients with a fractured neck of femur.

    Science.gov (United States)

    Nagra, Navraj S; van Popta, Dmitri; Whiteside, Sigrid; Holt, Edward M

    2016-10-01

    The aim of this study was to analyze the changes in hemoglobin level and to determine a suitable timeline for post-operative hemoglobin monitoring in patients undergoing fixation of femoral neck fracture. Patients who underwent either dynamic hip screw (DHS) fixation (n = 74, mean age: 80 years) or hip hemiarthroplasty (n = 104, mean age: 84 years) for femoral neck fracture were included into the study. The hemoglobin level of the patients was monitored perioperatively. Analysis found a statistically and clinically significant mean drop in hemoglobin of 31.1 g/L over time from pre-operatively (D0) to day-5 post-operatively (p hemoglobin values over hemiarthroplasty patients (p = 0.046). The decrease in hemoglobin in the first 24-h post-operative period (D0 to day-1) is an underestimation of the ultimate lowest value in hemoglobin found at day-2. Relying on the day-1 hemoglobin could be detrimental to patient care. We propose a method of predicting patients likely to be transfused, and recommend a protocol for patients undergoing femoral neck fracture surgery to standardize postoperative hemoglobin monitoring. Level IV Prognostic study. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  10. Hexagonal graphene quantum dots

    KAUST Repository

    Ghosh, Sumit

    2016-12-05

    We study hexagonal graphene quantum dots, using density functional theory, to obtain a quantitative description of the electronic properties and their size dependence, considering disk and ring geometries with both armchair and zigzag edges. We show that the electronic properties of quantum dots with armchair edges are more sensitive to structural details than those with zigzag edges. As functions of the inner and outer radii, we find in the case of armchair edges that the size of the band gap follows distinct branches, while in the case of zigzag edges it changes monotonically. This behaviour is further analyzed by studying the ground state wave function and explained in terms of its localisation.

  11. Nitric Oxide in Plants: The Roles of Ascorbate and Hemoglobin

    Science.gov (United States)

    Wang, Xiaoguang; Hargrove, Mark S.

    2013-01-01

    Ascorbic acid and hemoglobins have been linked to nitric oxide metabolism in plants. It has been hypothesized that ascorbic acid directly reduces plant hemoglobin in support of NO scavenging, producing nitrate and monodehydroascorbate. In this scenario, monodehydroascorbate reductase uses NADH to reduce monodehydroascorbate back to ascorbate to sustain the cycle. To test this hypothesis, rates of rice nonsymbiotic hemoglobin reduction by ascorbate were measured directly, in the presence and absence of purified rice monodehydroascorbate reductase and NADH. Solution NO scavenging was also measured methodically in the presence and absence of rice nonsymbiotic hemoglobin and monodehydroascorbate reductase, under hypoxic and normoxic conditions, in an effort to gauge the likelihood of these proteins affecting NO metabolism in plant tissues. Our results indicate that ascorbic acid slowly reduces rice nonsymbiotic hemoglobin at a rate identical to myoglobin reduction. The product of the reaction is monodehydroascorbate, which can be efficiently reduced back to ascorbate in the presence of monodehydroascorbate reductase and NADH. However, our NO scavenging results suggest that the direct reduction of plant hemoglobin by ascorbic acid is unlikely to serve as a significant factor in NO metabolism, even in the presence of monodehydroascorbate reductase. Finally, the possibility that the direct reaction of nitrite/nitrous acid and ascorbic acid produces NO was measured at various pH values mimicking hypoxic plant cells. Our results suggest that this reaction is a likely source of NO as the plant cell pH drops below 7, and as nitrite concentrations rise to mM levels during hypoxia. PMID:24376554

  12. Fracture Strength of Aged Monolithic and Bilayer Zirconia-Based Crowns

    Directory of Open Access Journals (Sweden)

    Deborah Pacheco Lameira

    2015-01-01

    Full Text Available The purpose of this study was to evaluate the effect of design and surface finishing on fracture strength of yttria-tetragonal zirconia polycrystal (Y-TZP crowns in monolithic (1.5 mm thickness and bilayer (0.8 mm zirconia coping and 0.7 mm porcelain veneer configuration after artificial aging. Bovine incisors received crown preparation and Y-TZP crowns were manufactured using CAD/CAM technique, according to the following groups (n=10: Polished monolithic zirconia crowns (PM; Glazed monolithic zirconia crowns (GM; Bi-layer crowns (BL. Crowns were cemented with resin cement, submitted to artificial aging in a chewing simulator (2.5 million cycles/80 N/artificial saliva/37°C, and tested for fracture strength. Two remaining crowns referring to PM and GM groups were submitted to a chemical composition analysis to measure the level of yttrium after aging. One-way ANOVA and Tukey’s test (P=.05 indicated that monolithic zirconia crowns presented similar fracture strength (PM=3476.2 N ± 791.7; GM=3561.5 N ± 991.6, which was higher than bilayer crowns (2060.4 N ± 810.6. There was no difference in the yttrium content among the three surfaces evaluated in the monolithic crowns. Thus, monolithic zirconia crowns present higher fracture strength than bilayer veneered zirconia after artificial aging and surface finishing does not affect their fracture strength.

  13. Evaluation of non cyanide methods for hemoglobin estimation

    Directory of Open Access Journals (Sweden)

    Vinaya B Shah

    2011-01-01

    Full Text Available Background: The hemoglobincyanide method (HiCN method for measuring hemoglobin is used extensively worldwide; its advantages are the ready availability of a stable and internationally accepted reference standard calibrator. However, its use may create a problem, as the waste disposal of large volumes of reagent containing cyanide constitutes a potential toxic hazard. Aims and Objective: As an alternative to drabkin`s method of Hb estimation, we attempted to estimate hemoglobin by other non-cyanide methods: alkaline hematin detergent (AHD-575 using Triton X-100 as lyser and alkaline- borax method using quarternary ammonium detergents as lyser. Materials and Methods: The hemoglobin (Hb results on 200 samples of varying Hb concentrations obtained by these two cyanide free methods were compared with a cyanmethemoglobin method on a colorimeter which is light emitting diode (LED based. Hemoglobin was also estimated in one hundred blood donors and 25 blood samples of infants and compared by these methods. Statistical analysis used was Pearson`s correlation coefficient. Results: The response of the non cyanide method is linear for serially diluted blood samples over the Hb concentration range from 3gm/dl -20 gm/dl. The non cyanide methods has a precision of + 0.25g/dl (coefficient of variation= (2.34% and is suitable for use with fixed wavelength or with colorimeters at wavelength- 530 nm and 580 nm. Correlation of these two methods was excellent (r=0.98. The evaluation has shown it to be as reliable and reproducible as HiCN for measuring hemoglobin at all concentrations. The reagents used in non cyanide methods are non-biohazardous and did not affect the reliability of data determination and also the cost was less than HiCN method. Conclusions: Thus, non cyanide methods of Hb estimation offer possibility of safe and quality Hb estimation and should prove useful for routine laboratory use. Non cyanide methods is easily incorporated in hemobloginometers

  14. The response-matrix based AFEN method for the hexagonal geometry

    International Nuclear Information System (INIS)

    Noh, Jae Man; Kim, Keung Koo; Zee, Sung Quun; Joo, Hyung Kook; Cho, Byng Oh; Jeong, Hyung Guk; Cho, Jin Young

    1998-03-01

    The analytic function expansion nodal (AFEN) method, developed to overcome the limitations caused by the transverse integration, has been successfully to predict the neutron behavior in the hexagonal core as well as rectangular core. In the hexagonal node, the transverse leakage resulted from the transverse integration has some singular terms such as delta-function and step-functions near the node center line. In most nodal methods using the transverse integration, the accuracy of nodal method is degraded because the transverse leakage is approximated as a smooth function across the node center line by ignoring singular terms. However, the AFEN method in which there is no transverse leakage term in deriving nodal coupling equations keeps good accuracy for hexagonal node. In this study, the AFEN method which shows excellent accuracy in the hexagonal core analyses is reformulated as a response matrix form. This form of the AFEN method can be implemented easily to nodal codes based on the response matrix method. Therefore, the Coarse Mesh Rebalance (CMR) acceleration technique which is one of main advantages of the response matrix method can be utilized for the AFEN method. The response matrix based AFEN method has been successfully implemented into the MASTER code and its accuracy and computational efficiency were examined by analyzing the two- and three- dimensional benchmark problem of VVER-440. Based on the results, it can be concluded that the newly formulated AFEN method predicts accurately the assembly powers (within 0.2% average error) as well as the effective multiplication factor (within 0.2% average error) as well as the effective multiplication factor (within 20 pcm error). In addition, the CMR acceleration technique is quite efficient in reducing the computation time of the AFEN method by 8 to 10 times. (author). 22 refs., 1 tab., 4 figs

  15. Interaction of saponin 1688 with phase separated lipid bilayers.

    Science.gov (United States)

    Chen, Maohui; Balhara, Vinod; Jaimes Castillo, Ana Maria; Balsevich, John; Johnston, Linda J

    2017-07-01

    Saponins are a diverse family of naturally occurring plant triterpene or steroid glycosides that have a wide range of biological activities. They have been shown to permeabilize membranes and in some cases membrane disruption has been hypothesized to involve saponin/cholesterol complexes. We have examined the interaction of steroidal saponin 1688-1 with lipid membranes that contain cholesterol and have a mixture of liquid-ordered (L o ) and liquid-disordered (L d ) phases as a model for lipid rafts in cellular membranes. A combination of atomic force microscopy (AFM) and fluorescence was used to probe the effect of saponin on the bilayer. The results demonstrate that saponin forms defects in the membrane and also leads to formation of small aggregates on the membrane surface. Although most of the membrane damage occurs in the liquid-disordered phase, fluorescence results demonstrate that saponin localizes in both ordered and disordered membrane phases, with a modest preference for the disordered regions. Similar effects are observed for both direct incorporation of saponin in the lipid mixture used to make vesicles/bilayers and for incubation of saponin with preformed bilayers. The results suggest that the initial sites of interaction are at the interface between the domains and surrounding disordered phase. The preference for saponin localization in the disordered phase may reflect the ease of penetration of saponin into a less ordered membrane, rather than the actual cholesterol concentration in the membrane. Dye leakage assays indicate that a high concentration of saponin is required for membrane permeabilization consistent with the supported lipid bilayer experiments. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Megalin and cubilin are endocytic receptors involved in renal clearance of hemoglobin

    DEFF Research Database (Denmark)

    Gburek, Jakub; Verroust, Pierre J; Willnow, Thomas E

    2002-01-01

    -Sepharose affinity chromatography of solubilized renal brush-border membranes. Apparent dissociation constants of 1.7 microM for megalin and 4.1 microM for cubilin were determined by surface plasmon resonance analysis. The binding was calcium dependent in both cases. Uptake of fluorescence-labeled hemoglobin by BN......The kidney is the main site of hemoglobin clearance and degradation in conditions of severe hemolysis. Herein it is reported that megalin and cubilin, two epithelial endocytic receptors, mediate the uptake of hemoglobin in renal proximal tubules. Both receptors were purified by use of hemoglobin...... not affect the uptake. By use of immunohistochemistry, it was demonstrated that uptake of hemoglobin in proximal tubules of rat, mouse, and dog kidneys occurs under physiologic conditions. Studies on normal and megalin knockout mouse kidney sections showed that megalin is responsible for physiologic...

  17. Influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors

    International Nuclear Information System (INIS)

    Xuan Fuzhen; Shao Shanshan; Wang Zhengdong; Tu Shantung

    2010-01-01

    The influence of residual stress on diffusion-induced bending in bilayered microcantilever sensors has been analyzed under the framework of thermodynamic theory and Fick's second law. A self-consistent diffusion equation involving the coupling effects of residual stress and diffusion-induced stress is developed. Effects of thickness ratio, modulus ratio, diffusivity ratio and residual stress gradient of film and substrate on the curvature of bilayered cantilever are then discussed with the help of finite difference method. Results reveal that the curvature of bilayered cantilever increases with decreasing the diffusivity ratio and modulus ratio of substrate to film at a given time. Case study of the polysilicon/palladium hydrogen sensor has been finally carried out using the above developed bending theory.

  18. Solution of 2D and 3D hexagonal geometry benchmark problems by using the finite element diffusion code DIFGEN

    International Nuclear Information System (INIS)

    Gado, J.

    1986-02-01

    The four group, 2D and 3D hexagonal geometry HTGR benchmark problems and a 2D hexagonal geometry PWR (WWER) benchmark problem have been solved by using the finite element diffusion code DIFGEN. The hexagons (or hexagonal prisms) were subdivided into first order or second order triangles or quadrilaterals (or triangular or quadrilateral prisms). In the 2D HTGR case of the number of the inserted absorber rods was also varied (7, 6, 0 or 37 rods). The calculational results are in a good agreement with the results of other calculations. The larger systematic series of DIFGEN calculations have given a quantitative picture on the convergence properties of various finite element modellings of hexagonal grids in DIFGEN. (orig.)

  19. Role of Reversible Histidine Coordination in Hydroxylamine Reduction by Plant Hemoglobins (Phytoglobins).

    Science.gov (United States)

    Athwal, Navjot Singh; Alagurajan, Jagannathan; Andreotti, Amy H; Hargrove, Mark S

    2016-10-18

    Reduction of hydroxylamine to ammonium by phytoglobin, a plant hexacoordinate hemoglobin, is much faster than that of other hexacoordinate hemoglobins or pentacoordinate hemoglobins such as myoglobin, leghemoglobin, and red blood cell hemoglobin. The reason for differences in reactivity is not known but could be intermolecular electron transfer between protein molecules in support of the required two-electron reduction, hydroxylamine binding, or active site architecture favoring the reaction. Experiments were conducted with phytoglobins from rice, tomato, and soybean along with human neuroglobin and soybean leghemoglobin that reveal hydroxylamine binding as the rate-limiting step. For hexacoordinate hemoglobins, binding is limited by the dissociation rate constant for the distal histidine, while leghemoglobin is limited by an intrinsically low affinity for hydroxylamine. When the distal histidine is removed from rice phytoglobin, a hydroxylamine-bound intermediate is formed and the reaction rate is diminished, indicating that the distal histidine imidazole side chain is critical for the reaction, albeit not for electron transfer but rather for direct interaction with the substrate. Together, these results demonstrate that phytoglobins are superior at hydroxylamine reduction because they have distal histidine coordination affinity constants near 1, and facile rate constants for binding and dissociation of the histidine side chain. Hexacoordinate hemoglobins such as neuroglobin are limited by tighter histidine coordination that blocks hydroxylamine binding, and pentacoordinate hemoglobins have intrinsically lower hydroxylamine affinities.

  20. Placental morphology at different maternal hemoglobin levels: a histopathological study

    International Nuclear Information System (INIS)

    Kiran, N.; Zubair, A.; Malik, T.M.

    2015-01-01

    To evaluate the histopathological parameters of the placenta like weight, infarct and syncytial knots, at different maternal hemoglobin levels, in both qualitative and quantitative manner. Study design: Descriptive study Place and Duration of Study: Army Medical College, National University of Sciences and Technology in collaboration with Department of Obstetrics and Gynecology, Military Hospital, Rawalpindi, Pakistan, from December 2011 to November 2012. Patients and Methods: A total of 75 placentas were included, that were collected from full term mothers at the time of childbirth. Placental weight was taken without umbilical cord and gross placental infarcts were noted. Samples of placental tissue were taken and stained by haematoxylin and eosin (H and E). Microscopic study was done to evaluate placental infarcts and syncytial knots. Results: Mean placental weight at normal and low maternal hemoglobin was 581.67 ± 83.97g and 482.58 ± 104.74g respectively. Gross placental infarcts were found in all cases having low maternal hemoglobin concentration (60% cases). Syncytial knots were found in all placentas but they were considerably more at decreasing levels of maternal hemoglobin (19.79 ± 5.22). Conclusion: The present study showed decrease in placental weight, increase in placental infarcts and syncytial knot hyperplasia at low maternal hemoglobin concentration, displaying adaptive alterations. (author)