WorldWideScience

Sample records for heulandite

  1. Study on adsorption mechanism of ammonia nitrogen in wastewater by natural heulandite

    Xuekai JIN

    2018-02-01

    Full Text Available In order to explore the adsorption mechanism and optimal regeneration method of natural heulandite to high ammonia nitrogen wastewater, the natural heulandite from Hebei Province is selected as the research object. The adsorption kinetics, adsorption isotherms and adsorption thermodynamics are studied by single factor test. The results show that the adsorption process of ammonia nitrogen on heulandite with particle size range of 50~600 μm complies with the quasi-second order kinetic equation with ammonia nitrogen concentration of 500 mg/L at temperature of 25 ℃. Particle diffusion and liquid film diffusion are the dominated process of the adsorption. The adsorption capacity of heulandite is 7.81 mg/g at temperature of 45 ℃. The adsorption isotherm of ammonia nitrogen on the experimental heulandite is fitted well with Freundlich model. Gibbs free energy ΔG is calculated to be less than zero, indicating that the adsorption of ammonia nitrogen on the experimental heulandite is a spontaneous endothermic reaction. Additionally, the adsorption capacity of heulandite increases with appropriate increaseing in temperature. The optimal regeneration solvent of the saturated heulandite is 0.1 mol/L of NaCl, with which the desorption rate increases to 79%, and the times of elution and regeneration are more than 5. The results of this study can improve the economic benefits and environmental value of heulandite in the treatment of ammonia nitrogen wastewater. It can be seen that heulandite in the industrial wastewater treatment has broad prospects for application.

  2. Dissolution kinetics of heulandite at pH 2--12 and 25 degrees C

    Ragnarsdottir, K.V.

    1993-01-01

    Because of their favourable cation exchange reactions, heulandite and clinoptilolite have been suggested as being capable of immobilizing radionuclides and therefore could possibly act as an important barrier for nuclear waste. Recent studies of laboratory-reacted minerals indicate, however, that hydrated surface layers tend to accumulate highly hydrolyzable heavy elements. These hydrated layers may therefore be the most important retardants for radionuclides. The dissolution rate of heulandite depends strongly on pH. Based on silica release, the logarithm of the steady-state dissolution rate at pH 2 is -13.1 mol cm -2 s -1 . The logarithm of the rate decreases to -15.8 mol cm -2 s -1 at pH 7.2 and increases again to -14.6 mol cm -2 s -1 at pH 12.2. At low pH, Al is released preferentially to silica; but at intermediate and high pH, the release of silica appears to be congruent relative to Al. The change in dissolution rate with pH indicates that at low pH, the dissolution mechanism is controlled by the detachment of a positively charged Al species, >Al-OH 2 + . Below pH 5, however, a silica-rich surface layer is formed requiring diffusion through the layer. At intermediate and high pH, it is likely that the dissolution rate is controlled by the detachment of a negatively charged silica species, >Si - O - . The reaction order of the hydrogen ion under low pH conditions is 0.7, and the reaction order of the OH - ion is 0.3 at high pH. The measured dissolution rates indicate that a 1 mm heulandite crystal would dissolve in 300,000 yrs if the solution composition is maintained undersaturated. 75 refs., 11 figs., 3 tabs

  3. Proton Resonance Lines of Water in Heulandite, Mordenite and Clinoptilolite

    Cruz Inclan, C.; Diaz Quintanilla, D.; Diaz Ruano, A.

    1986-01-01

    It is reported for the first time the proton magnetic resonance spectra of the clinoptilolite and mordenite between 220 K and 440 K. In mordenite it was observed that all water molecules have so an intensive diffusive movement, that they are completely delocalized. In clinoptilolite below 390 K, only a part of the water molecules are completely delocalized. Over 390 K all water molecules become delocalized. This particular behavior of the water molecules in clinoptilolite and mordenite is confronted with those structural models proposed by D.W. Breck. The concept of non-localized quantum state is introduced in order to explain the difference observed with the structural models. (author)

  4. Petrography and Diagenesis of Palaeocene -Eocene Sandstones in the Siri Canyon, Danish North Sea

    Kazerouni, Afsoon Moatari

    cemented in two major phases - an early opal/microquartz phase and a late stage massive cementation by macroquartz.  This study explores the potential sources of SiO2 in the shale, and the timing of their active phases.   The main diagenetic phases recorded are smectite, heulandite, opal...... components results in successive stages of silica-release.  In shallow samples the alteration of volcanic ash has already been completed.  Released silica was partly consumed for the precipitation of smectite and heulandite.   In addition, a major part of the biogenic silica has been transformed into opal......-CT and partly to microcrystalline quartz.  The microcrystalline quartz is an internal sink for dissolved silica, but the shale may have been an active silica exporter during this transition.   With deeper depth of burial, opal-CT is fully transformed to microcrystalline quartz.  During this phase, silica has...

  5. Characterization of Mongolian Natural Minerals and Their Application for Heavy Metal Adsorbent

    Dolgormaa, Munkhbat; Shiomori, Koichiro; Bayanjargal, Ochirkhuyag

    2016-01-01

    In this study, the structural characteristic and the adsorption properties of heavy metals on Mongolian natural minerals were investigated. The natural samples were confirmed as Heulandite group of Clinoptilolite type zeolite and clay sample that contains albite and quartz by X-ray diffraction analysis. According to BET surface analysis, natural zeolites have mesoporous type of pore. The results of adsorption study showed that adsorption ability of natural zeolite is high effective for lead i...

  6. Zeolite facies and regional rank of bituminous coals

    Kisch, H J

    1966-01-01

    The author has correlated diagnostic analcime-, heulandite-, and laumontite-bearing mineral assemblages from four areas in the Upper Carboniferous and the Permian of New South Wales with the rank of the associated coals, represented by the carbon content of vitrinite. The results show that lowest-grade regional metamorphism of the zeolite facies reflects at least in part the same physical conditions of metamorphism as the increase in degree of coalification (rank) in the bituminous coal range. Degree of coalification is probably independent of partial pressures of H/sub 2/O and CO/sub 2/: it is controlled mainly by maximum depth of burial, its duration, and the geothermal gradient.

  7. Equilibrium modeling of the formation of zeolites in fractures at Yucca Mountain, Nevada

    Chipera, S.J.; Bish, D.L.; Carlos, B.A.

    1993-01-01

    Yucca Mountain, in southern Nevada, is currently being investigated to determine its suitability to host the first US high-level nuclear waste repository. One of the reasons that Yucca Mountain was chosen for study is the presence of thick sequences of zeolite-rich horizons. In as much as fractures may serve as potential pathways for aqueous transport, the minerals that line fractures are of particular interest. Zeolites are common in fractures at Yucca Mountain and consist mainly of clinoptilolite/heulandite and mordenite although sporadic occurrences of chabazite, erionite, phillipsite, and stellrite have been identified using X-ray powder diffraction. To understand better the conditions under which the observed zeolite species were formed, thermodynamic data were estimated and calculations of log a((K + ) 2 /Ca ++ ) versus log a((Na + ) 2 /Ca ++ ) were conducted at various temperatures and silica activities. Using present-day Yucca Mountain water chemistries as a lower constraint on silica activity, clinoptilolite/heulandite and mordenite are still the zeolite species that would form under present conditions

  8. Fissure zeolite mineralization of the intermediate rocks of Central Slovakian neovolcanites; Puklinova zeolitova mineralizacia intermediarnych hornin stredoslovenskych neovulkanitov

    Smal, P [Univerzita Komenskeho v Bratislave, Prirodovedecka fakulta, Katedra mineralogie a petrologie, 84215 Bratislava (Slovakia)

    2012-04-25

    This contribution summarizes the results of the study of fissure zeolite mineralization at several locations in the intermediate rocks of the Central Slovakian neovolcanites. These locations were monitored: Kremnica, Pila by Zarnovica, Sklene Teplice, Takyl, Banska Stiavnica, Hodrusa-Hamre, Prencov and Brehy by Nova Bana, Biely Vrch and Slatinske Lazy. Zeolites have been identified as follows: laumontite, chabazite, heulandite, stilbite, natrolite and thomsonite. They occurred in simple associations - mainly laumontite with calcite and stilbite from Pila, or natrolite with thomsonit from Kremnica. From the morphological point of view laumontite formed prismatic needle crystals and adhesions according to (100) or it was massive. Chabazite was formed as pseudo-cubic and in a form of interpenetration adhesions. Heulandite featured druses with crystal size up to 4 mm. Analyses focused on crystallo-chemical study to find out the contents of exchangeable cations or of water and try to interpret their influence on the crystal structure. Ca was a dominant cation in all the zeolites except natrolite. Influence of K and of a ratio of Si / Al on structure of laumontite was proved. (author)

  9. Characterization of Mexican zeolite minerals; Caracterizacion de minerales zeoliticos mexicanos

    Jimenez C, M.J

    2005-07-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  10. Characterization of Mexican zeolite minerals

    Jimenez C, M.J.

    2005-01-01

    50% of the Mexican territory is formed by volcanic sequences of the Pliocene type, which appear extensively in the northwest states (Sonora, Sinaloa, Chihuahua, Durango) and west of Mexico (Jalisco and Nayarit), in central Mexico (Zacatecas, Guanajuato, San Luis Potosi, Queretaro, Hidalgo) and south of Mexico (Guerrero, Oaxaca); therefore, it is to be expected that in our country big locations of natural zeolites exist in its majority of the clinoptilolite type. The present study was focused toward the characterization of two Mexican natural zeolite rocks presumably of the clinoptilolite and filipsite types, one of them comes from the state of Chihuahua and the other of a trader company of non metallic minerals, due that these materials are not characterized, its are not known their properties completely and therefore, the uses that can be given to these materials. In this investigation work it was carried out the characterization of two Mexican zeolite rocks, one coming from the Arroyo zone, municipality of La Haciendita, in the state of Chihuahua; and the other one was bought to a trader company of non metallic minerals. The two zeolites so much in their natural form as conditioned with sodium; they were characterized by means of X-ray diffraction, scanning electron microscopy of high vacuum and elementary microanalysis (EDS), surface area analysis (BET), thermal gravimetric analysis. To differentiate the heulandite crystalline phase of the other clinoptilolite rock, its were carried out thermal treatments. The quantification of Al, Na, Ca, K, Mg, Fe was carried out in solution, by means of atomic absorption spectroscopy and the quantity of Si was determined by gravimetry. The zeolite rocks presented for the major part the crystalline heulandite and clinoptilolite phases for the most part, and it was found that the zeolite coming from the state of Chihuahua possesses a bigger content of heulandite and the denominated filipsite it is really a zeolite

  11. Natural sorptive barriers in Yucca Mountain, Nevada, for long-term isolation of high-level waste

    Bish, D.L.; Vaniman, D.T.; Rundberg, R.S.; Wolfsberg, K.; Daniels, W.R.; Broxton, D.E.

    1984-01-01

    There are several sorptive phases occurring naturally in the silicic tuffs at Yucca Mountain, Nevada, that can aid in the long-term isolation of high-level wastes. These phases include hydrated volcanic glasses, smectites and zeolites. Los Alamos has a continuing programme to investigate the mineralogy and stratigraphy of the tuffs at Yucca Mountain. In addition, extensive data have been obtained on the sorptive behaviour of technetium, strontium, caesium, barium, cerium, europium, uranium, neptunium, plutonium and americium on the minerals in tuffs. Sorption of elements by ion-exchange processes is high in tuffs containing smectite and the zeolites clinoptilolite-heulandite and mordenite. Moreover, sorption correlates with abundances of these minerals. Sorption is not as high for the zeolite analcime and for volcanic glass. Elements that may not sorb by ion exchange, e.g. plutonium, also tend to be sorbed when the zeolite abundance is high, but the correlations are less clearly defined. Because of the correlation between sorptive capacity and mineralogy, an accurate knowledge of mineral distribution and stratigraphy is essential. The distribution of hydrated glasses is stratigraphically controlled, and the glasses occur in narrow unaltered horizons as vitrophyres and as vitric tuff. Although glasses are of minor importance as sorptive phases, they are very reactive and can alter to other minerals if heated in the presence of water. Smectite clays are reversibly expandable and are widespread in tuffs, but their beneficial properties can be modified by prolonged exposure to elevated temperatures. The zeolites clinoptilolite-heulandite and mordenite occur in high concentrations in silicic tuffs, mostly as secondary alterations of non-welded and poorly welded tuffs; their distribution is therefore stratigraphically controlled

  12. Characteristics and origin of agates from Płóczki Górne (Lower Silesia, Poland): A combined microscopic, micro-Raman, and cathodoluminescence study

    Dumańska-Słowik, Magdalena; Powolny, Tomasz; Sikorska-Jaworowska, Magdalena; Gaweł, Adam; Kogut, Lucyna; Poloński, Krzysztof

    2018-03-01

    Agates from Płóczki Górne hosted by Permian basaltic rocks are predominantly made of length-fast chalcedony, and subordinately megaquartz and quartzine. Moganite occurs in traces mainly in transparent, outer, darker regions of white-grey coloured agates. Silica matrix of agates comprises a wide variety of solid inclusions represented by celadonite, plagioclases, hematite, goethite, barite, calcite, heulandite-clinoptyloite, nontronite-saponite, and Mn-dioxides (ramsdellite). Mineral phases are locally accompanied by black aggregations of carbonaceous matter, which gives a Raman signature of disordered carbon. These organic components were probably deposited from a hydrothermal fluids at low-temperature conditions and originated from sedimentary rocks found in the surrounding area of Płóczki Górne. The abundance of various SiO2 phases, mineral inclusions as well as various micro-textures (colloform, comb, feathery, and jigsaw-puzzle) in agates resulted from physicochemical fluctuations of SiO2-bearing mineralizing solutions at various stages of these gems formation. Agates from Płóczki Górne formed during post-magmatic stage of basaltic host rocks evolution. Not only were the hydrothermal fluids enriched in silica, but also they contained other elements such as Na, Ca, Al, Mg, Mn, Fe, Ba, SO4, and CO2, which were mobilized from host rocks or surrounding area.

  13. Mineralogical study of uraniferous graphitic ore from Deogpyeong, Mogso and southern part of Daejeon area

    Lee, D J; Nam, S K [Korean Inst. of Energy and Resources, Seoul (Republic of Korea)

    1981-11-01

    Uranium minerals of torbernite, metatorbernite, metatyuyamunite and autunite have been identified from the uraniferous ores in graphitic beds of Ogcheon Group in Deogpyeong, Mogso and southern part of Daejeon area. Polarizing and ore microscopic studies, and chemical and X-ray powder diffraction analyses were carried out on the uraniferous graphite and associated materials. Main component minerals of uraniferous samples are graphite and quartz. Minor minerals are calcite, muscovite, sericite, andalusite, barite, kaolinite, hyaline opal, uranium minerals, sulfides such as pyrite, chalcopyrite, zincblende, and pyrrhotite, limonite, zeolite minerals such as laumontite and heulandite. Metatyuyamunite, torbernite, metatorbernite and autunite generally occur together with secondary minerals such as kaolinite, hyaline opal, calcite and limonite. They were found along the minor fissures or on the surface. Secondary uranium minerals described above were formed by supergenetic origin from primary uranium mineral. Uraniferous phosphatic nodule from Deogpyeong area are mainly composed of graphite and fluorapatite. And minor minerals are barite, quartz, muscovite and pyrite. Autoradiograph from uraniferous nodule shows that uranium enrichment in outer part of nodules is much higher than in inner part. This feature coincides with chemical analyses data of this uraniferous nodule.

  14. Clinoptilolite compositions in diagenetically-altered tuffs at a potential nuclear waste repository, Yucca Mountain, Nevada

    Broxton, D.E.

    1987-01-01

    The compositions of Yucca Mountain clinoptilolites and their host tuffs are highly variable. Clinoptilolites and heulandites in fractures near the repository and in a thin, altered zone at the top of the Topopah Spring basal vitrophyre have consistent calcium-rich compositions. Below this level, clinoptilolites in thick zones of diagenetic alteration on the east side of Yucca Mountain have calcic-potassic compositions and become more calcium rich with depth. Clinoptilolites in stratigraphically equivalent tuffs to the west have sodic-potassic compositions and become more sodic with depth. Clinoptilolite properties important for repository performance assessment include thermal expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties. These properties can be significantly affected by clinoptilolite compositions. The compositional variations for clinoptilolites found by this study suggest that the properties will vary vertically and laterally at Yucca Mountain. Used in conjunction with experimental data, the clinoptilolite compositions presented here can be used to model the behavior of clinoptilolites in the repository environment and along transport pathways

  15. Smectite-zeolite envelope surrounding the Tsukiyoshi uranium deposit, central Japan. A natural analogue study

    Utada, Minoru

    2003-01-01

    The Tsukiyoshi uranium deposit in Gifu Prefecture is the largest one in Japan. It is embedded in lower part of the Mizunami Group of Miocene age. Relating to the existence of this uranium deposit, the constituent minerals in sediments were studied by XRD and SEM, using many drilling cores. The most abundant authigenic mineral is smectite. The amount of smectite increases generally from upper to lower horizons, and a highly smectitized zone is situated around the uranium deposit. Smectitization predominated in mafic glassy grains of sediments, which was probably formed in early burial diagenesis. Zeolites including clinoptilolite-heulandite, mordenite, analcime, chabazite and philipsite are secondly abundant authigenic minerals. They seem to have been formed at early to late diagenetic stages. Opaline silica is rather rare. Carbonate minerals, including calcite, dolomite, siderite and rhodocrosite are common. They may be formed by diagenesis as well. Gypsum and pyrite occur in upper horizons and lower horizons, respectively. In particular, a highly smectitized zone including pyrite probably played an important role for retarding the migration of uranium and as a result keeping the uranium deposit for past one million years. This smectite-zeolite envelope surrounding the Tsukiyoshi uranium deposit is regarded as a natural analogue of the buffer materials surrounding the high-level radioactive waste repository. (author)

  16. Silicate diagenesis in deep-sea sediments from the Tonga fore-arc (SW Pacific): a strontium and rare earth elements signature

    Vitali, F.; Stille, P.; Blanc, G.; Toulkeridis, T.

    2000-01-01

    87 Sr/ 86 Sr isotopic ratios, strontium and Rare Earth Element concentrations obtained on volcano-sedimentary rocks and separated clay mineral and zeolite fractions reveal a formation by pore water-volcanic rock interaction for most of the hydrous silicate minerals of the Site 841 ODP collected from the Tonga fore-arc. Unusual strontium concentrations and isotopic ratios recorded in the Miocene tuffs associated with specific REE patterns indicate that the formation of these hydrous silicates does not follow a simple burial diagenesis model, but was related to the cooling of intruding basaltic sills in the Miocene volcano-sedimentary series. Migration of strontium into the pore water in response to the heat flow induced the formation of Sr-bearing zeolites such as clinoptilolite, heulandite and chabazite. No evidence of any influence of a further thermal pulse in the Eocene rhyolitic tuffs could be found. As recorded by the chemistry of their clay mineral fraction, the rhyolitic tuffs developed a polyphasic diagenetic process, which might have been influenced by a possible circulation of a fluid into structurally weak areas. (authors)

  17. Synthesis and characterization of inorganic materials to be employees as adsorbents of toxic metals; Sintesis y caracterizacion de materiales inorganicos para ser empleados como adsorbentes de metales toxicos y de interes nuclear

    Granados C, F.; Serrano G, J.; Bonifacio M, J., E-mail: francisco.granados@inin.gob.m [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2010-07-01

    In this chapter is described the development of the studies realized in the Instituto Nacional de Investigaciones Nucleares (ININ) by researchers of the Chemistry Department in the area of water decontamination. The study of the metals separation in aqueous solution through inorganic adsorbents, was initiated in the Chemistry Department, using zeolites for to adsorb metal cations like the cobalt and cadmium. In the year 1995, the separation studies of Co and Cd were realized using zeolite X. On the other hand, the adsorption capacity of the natural clinoptilolite to retain to the cobalt was also studied. With the natural evolution of these works, it began to study the effect of the organic compounds presence in the metals adsorption in zeolites. Apart from the Co and Cd the removal of Ni, Cd and Zn of the water has been investigated using clinoptilolite, heulandite and Hg, also using zeolites like adsorbent material. In the last years, they have been carried out studies on the separation of Cr in form of chromate (CrO{sub 4}{sup 2-}) as of dichromate ions (Cr{sub 2}O{sub 7}{sup 2-}), using pouzzolane modified with Fe and tricalcic phosphate. In these works were found that both materials are highly efficient to separate the chromium of aqueous solutions. (Author)

  18. New approach for determination of the influence of long-range order and selected ring oscillations on IR spectra in zeolites

    Mikuła, Andrzej; Król, Magdalena; Mozgawa, Włodzimierz; Koleżyński, Andrzej

    2018-04-01

    Vibrational spectroscopy can be considered as one of the most important methods used for structural characterization of various porous aluminosilicate materials, including zeolites. On the other hand, vibrational spectra of zeolites are still difficult to interpret, particularly in the pseudolattice region, where bands related to ring oscillations can be observed. Using combination of theoretical and computational approach, a detailed analysis of these regions of spectra is possible; such analysis should be, however, carried out employing models with different level of complexity and simultaneously the same theory level. In this work, an attempt was made to identify ring oscillations in vibrational spectra of selected zeolite structures. A series of ab initio calculations focused on S4R, S6R, and as a novelty, 5-1 isolated clusters, as well as periodic siliceous frameworks built from those building units (ferrierite (FER), mordenite (MOR) and heulandite (HEU) type) have been carried out. Due to the hierarchical structure of zeolite frameworks it can be expected that the total envelope of the zeolite spectra should be with good accuracy a sum of the spectra of structural elements that build each zeolite framework. Based on the results of HF calculations, normal vibrations have been visualized and detailed analysis of pseudolattice range of resulting theoretical spectra have been carried out. Obtained results have been applied for interpretation of experimental spectra of selected zeolites.

  19. STRUCTURAL CHARACTERIZATION OF VOLCANIC ASH OF THE NEVADO DEL RUIZ: ZEOLITE PHASE IDENTIFICATION

    Heiddy P. Quiroz

    2014-08-01

    Full Text Available This paper presents a study of the structural properties obtained from volcanic ash from Nevado del Ruiz located in the Central Range of Andes - Colombia. The volcanic ash samples were subjected to hydration processes and heat treatments in situ during characterization stage material. During the hydration process, which consisted of introducing 2.4875 ± 0.0002g of volcanic ash in 20ml of water for 48 hours, the organic fraction present was removed from the particulate suspension in the aqueous medium. From measurements of X-ray diffraction (XRD, it was observed, that the temperature variations between 323 and 673 K influence the phase formation of zeolite with structures Heulandite -Ca, Stellerita and gmelinite. XRD measurements were performed in vacuum and atmospheric pressure. X'pert Highscore Plus program and simulation Rietveld refinement were used for to obtain the structures of each of the phases. It was found, using the Scherrer equation, that crystallite sizes (Δ (2θ are influenced by changes crystal-chemical caused by hydration, heat treatment and pressure conditions during the characterization. A variation of Δ ( 2θ between 37 and 106.9 nm from XRD measurements was found. It was determined that from 423K in the sample of un-hydrated volcanic ash, the formation of zeolite Stellerita presents with a stable phase up to 673 K.

  20. A study on ammonia removal properties using clinoptilolite Part 1 : characterization of clinoptilolite and ammonia removal properties in batch reactor

    Moon, Jeong Min; Chung, Jong Shik [Dept. of Chemical Engineering/School of Environment Engineering, Pohang University of Science and Technology, Pohang (Korea); Sun, De Shi [Dept. of Applied Chemistry, Harbin Institute of Techonology (China)

    2000-04-01

    A natural zeolite, deposit located at Guryongpo, Young-il bay, was found to be clinoptilolite containing impurities of heulandite and mordenite. Cation exchange capacity(CEC) for ammonia was about 1.41 meq/g from Na{sup +}-form of the zeolite. In batch experiment, removal efficiency of ammonia was increased as particle size of zeolite and initial concentration of Na{sup +} were decreased and SR(Stoichiometric Ratio), time, and initial concentration of ammonia increased. More than 70% aluminum ion could be removed from water having 3 ppm ammonia and 0.7 ppm Al{sup 3+} by the batch adsorption(ion exchange) experiment. Regeneration of used zeolite with NaCl solution of pH=12 has shown more than 95% of regeneration efficiency when SR'(ratio of the amount of NaCl solution employed actually to the amount in a stoichiometric quantity) was equal to 2.0. 19 refs., 10 figs., 1 tab.

  1. Chemical variability of zeolites at a potential nuclear waste repository, Yucca Mountain, Nevada

    Broxton, D.E.

    1985-01-01

    The compositions of clinoptilolites and their host tuffs have been examined by electron microprobe and x-ray fluorescence, respectively, to determine their variability at a potential nuclear waste repository, Yucca Mountain, Nevada. Because of their sorptive properties, these zeolites could provide important geologic barriers to radionuclide migration. Variations in clinoptilolite composition can strongly affect the mineral's thermal and ion-exchange properties, thus influencing its behavior in the repository environment. Clinoptilolites and heulandites closest to the proposed repository have calcium-rich compositions (60 to 90 mol. % Ca) and silica-to-aluminum ratios that concentrate between 4.0 and 4.6. In contrast, clinoptilolites and their host tuffs deeper in the volcanic sequence have highly variable compositions that vary vertically and laterally. Deeper-occurring clinoptilolites in the eastern part of Yucca Mountain are characterized by calcic-potassic compositions and tend to become more calcium-rich with depth. Clinoptilolites at equivalent stratigraphic levels on the western side of Yucca Mountain have sodic-potassic compositions and tend to become more sodium-rich with depth. Despite their differences in exchangeable cation compositions these two deeper-occurring compositional suites have similar silica-to-aluminum ratios, concentrating between 4.4 and 5.0. The chemical variability of clinoptilolites and their host tuffs at Yucca Mountain suggest that their physical and chemical properties will also vary. Compositionally-dependent clinoptilolite properties important for repository performance assessment include expansion/contraction behavior, hydration/dehydration behavior, and ion-exchange properties

  2. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    Waters, A.C.; Carroll, P.R.

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima's zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff

  3. Further description of the petrology of the Topopah Spring member of the paintbrush tuff in drill holes UE25A-1 and USW-G1 and of the lithic-rich tuff in USW-G1, Yucca Mountain, Nevada

    Carroll, P.I.; Caporuscio, F.A.; Bish, D.L.

    1981-11-01

    The Topopah Spring Member of the Paintbrush Tuff and the Lithic-rich tuff and two Tertiary volcanic units that occur in cores from drill holes UE25a-1 and USW-G1 at Yucca Mountain, Nevada. Recently they have been suggested as possibly suitable for the permanent storage of high-level radioactive waste. Earlier petrologic characterization of these units is augmented here. The Topopah Spring Member (approximately 350 m thick) has two compound cooling units. The upper, thinner unit is densely welded to vitrophyric. The lower unit ranges from nonwelded to vitrophyric, and its nonwelded base is extensively zeolitized to clinoptilolite and mordenite. Heulandite occurs as fracture fill in the overlying vitrophyric part, but zeolites are absent above that vitrophyre. Here primary devitrification plus vapor-phase crystallization dominate the mineralogy. Vapor-phase effects are especially prominent between the two vitrophyres in both cores and include numerous large lithophysal cavities throughout most of this moderately to densely welded tuff. The Lithic-rich tuff extends from 1203 to 1506 m in the USW-G1 drill core. It is nonwelded to partly welded but is well indurated due to pervasive intergrowths of authigenic minerals. These phases are analcime, albite, alkali feldspar, sericite, chlorite and quartz. The transition from analcime to secondary albite corresponds to Iijima's zeolite Zone IV boundary, and this boundary appears in USW-G1 at 1326 m. However, analcime remains as a prominent phase through most of the Lithic-rich tuff. Further work is necessary to assess the suitability of either of these horizons for a waste repository. In the Topopah Spring Member, both mechanical and hydrologic properties of thick lithophysal zone must be studied, as well as the complete sequence of fracture fill. For both units, zeolite and clay mineral stabilities need to be investigated

  4. Estimación de propiedades termodinámicas de silicatos. Construcción de diagramas de actividad de zeolitas

    La Iglesia, A.

    1995-12-01

    Full Text Available In this paper we analyze the present methods of estimation of the thermodynamic properties of silicates with special emphasis on the free energy and enthalpy of zeolites. These data are not available in the literature, as these phases are chemically complexo The obtained values allow us to build the 10 following thermodynamic equilibrium diagrams: solubility of laumontite, chabazite, analcime, volcanic glass, zeolite A and zeolite X, and stability diagrams of chabazite-analcime-phillipsite-volcanic glass, clinoptilolite-phillipsite-erionite, prehnite-laumontite-heulandite, and kaolinite-metakaolinhidrosodalite-zeolite A. These diagrams can be useful to understand the genesis of these minerals and the processes that allow their formation in the laboratory.En este artículo se pasa revista a los métodos actuales de estimación de propiedades termodinámicas de silicatos, haciendo especial énfasis a los dedicados a la estimación de la energía libre de formación y de la entalpía de zeolitas, datos poco disponibles en la bibliografía debido a la complejidad química de estas fases. Los valores obtenidos han permitido construir los 10 diagramas de equilibrio termodinámico siguientes: diagramas de solubilidad de laumontita, chabazita, analcima, vidrio volcánico, zeolita A y zeolita X y los de estabilidad de chabazita-analcima-philipsitavidrio volcánico, clinoptilolita-philipsita-erionita, prehnita-laumontita-heulandita y caolinita-metacaolinita-hidrosodalita-zeolita A. Estos diagramas pueden explicar la génesis de los minerales o los procesos que dan lugar a su síntesis en el laboratorio.

  5. Fracture coatings in Topopah Spring Tuff along drill hole wash

    Carlos, B.A.; Chipera, S.J.; Bish, D.L.

    1994-01-01

    Fracture-lining minerals are being studied as part of site characterization to determine the suitability of Yucca Mountain, Nevada as a potential high level nuclear waste repository. Fracture coatings in the Paintbrush Group provide information on potential flow paths above the water table both toward and away from the potential repository and provide information on the distribution of fracture-lining minerals needed to model thermal effects of waste emplacement. Fracture coatings within the predominantly non-zeolitic Paintbrush Group vary both with depth and laterally across Yucca Mountain, whereas fracture coatings in tuffs below the Paintbrush Group are related to the mineralogy of the tuffs and follow a consistent pattern of distribution with predominantly quartz, calcite, and manganese oxides in the devitrified intervals and mordenite and clinoptilolite in the zeolitic intervals. The zeolites stellerite and heulandite are more abundant in fractures in the Topopah Spring Tuff in drill holes USW G-1 and UE-25 a number-sign l, located along Drill Hole Wash (at the northern end of Yucca Mountain) than in core from other parts of Yucca Mountain. Buesch et al. (2) present evidence for a complex fault system along Drill Hole Wash. To investigate the possibility that the abundant fracture-lining zeolites in USW G-1 and UE-25 a number-sign 1 are related to the Drill Hole Wash fault, the Topopah Spring Tuff was examined in drill cores from USW UZ-14, USW G-1, USW NRG-7/7a, and UE-25 a number-sign l

  6. Preliminary stratigraphic and petrologic characterization of core samples from USW-G1, Yucca Mountain, Nevada

    Waters, A.C.; Carroll, P.R. (eds.)

    1981-11-01

    Tuffs of the Nevada Test Site are currently under investigation to determine their potential for long-term storage of radioactive waste. As part of this program, hole USW-G1 was drilled to a depth of 6000 ft below the surface, in the central part of the Yucca Mountain area, Nevada Test Site, Nevada. Petrographic study of the USW-G1 core is presented in this report and shows the tuffs (which generally were variably welded ash flows) are partly recrystallized to a variety of secondary minerals. The important alteration products are zeolites (heulandite, clinoptilolite, mordenite and analcime), smectite clays with minor interstratified illite, albite, micas, potassium feldspar, and various forms of silica. Iijima`s zeolite zones I through IV of burial metamorphism can be recognized in the core. Zeolites are first observed at about the 1300-ft depth, and the high-temperature boundary of zeolite stability in this core occurs at about 4350 ft. Analcime persists, either metastably or as a retrograde mineral, deeper in the core. The oxidation state of Fe-Ti oxide minerals, through most of the core, increases as the degree of welding decreases, but towards the bottom of the hole, reducing conditions generally prevail. Four stratigraphic units transected by the core may be potentially favorable sites for a waste repository. These four units, in order of increasing depth in the core, are (1) the lower cooling unit of the Topopah Spring Member, (2) cooling unit II of the Bullfrog Member, (3) the upper part of the Tram tuff, and (4) the Lithic-rich tuff.

  7. Indikasi mineralisasi epitermal emas bersulfi da rendah, di Wilayah Kecamatan Bonjol, Kabupaten Pasaman, Sumatera Barat

    Hamdan Z. Abidin

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol2no1.20075Bonjol gold prospect, known as Old Dutch Gold mine, consists of several ore bodies (Malintang, Balimbing, Lubang Sempit, Lubang Belanda and Lubang Perak. The deposit hosts within the altered volcanic rocks known as Gunung Amas Formation of Early Miocene age (9.3 ± 0.4 - 11.9 ±1.0 Ma. This formation consists of various rock types such as rhyolitic tuff, volcanic breccia, dacitic tuffs and rhyolites. These rocks are moderate to strongly alter. Mineralogy of the deposit consists of gold and silver with minor pyrite, sphalerite and galena. Besides this, hematite, jarosite and manganese are also present as supergene minerals. Ore minerals are found within quartz veins ranging from few centimetres to tens of metres thick. The veins are characterized by crustiform, comb, vuggy, botroyidal, layering and bladed. Quartz is a dominant mineral as hydrothermal alteration in addition to illite, dickite, monmorillonite, kaolinite, chlorite, smectite, natrolite, nontronite, calcite, halloysite, palygorskite, muscovite, sepiolite, analcime, heulandite, clino-chlor, zircon, zoisite, laumontite, alunite, biotite and erionite. The presence of these secondary minerals could be classifi ed into prophylitic, argillic and advanced argillic types. Analytical result of gold–bearing quartz vein indicates higher content of gold (0.3% and silver (400 ppm. In contrast, the content of sulphide minerals (Cu, Pb, and Zn is very low (< 100 ppm. Combined geology, mineralogy, textures and alteration minerals, it is concluded that gold deposit in the area shows an indication of a low sulphidation epithermal type within Gunung Amas Formation.  

  8. Genesis of uranium deposits of the Tono Mine, Japan

    Katayama, N.; Kubo, K.; Hirono, S.

    1974-01-01

    The uranium deposits of the Tono mine, Gifu Prefecture, Japan, occur in the basal part of the Toki group of Miocene age, and are distributed in the tributaries or at the head of channels on the plane of unconformity under the formation. These features characterize the basal ground-water type of uranium deposit, and they are unique in that their typical ore mineral is a zeolite of the heulandite-clinoptilolite group, uranium being adsorbed in it. The paper presents the history of formation of the Tsukiyoshi deposits, the most intensely explored in the Tono mine. The matrices of conglomerates and sandstones of the Toki group usually contain tuffaceous material, which has been montmorillonitized or zeolitized diagenetically. The conduit of uranium-bearing ground waters that migrated from the basement granites into the Tertiary sediments was controlled by the impermeable barriers, which are rocks in which montmorillonite predominated, or by the Tsukiyoshi fault, as well as by channel structures. Where the waters became rather stagnant, uranium was adsorbed in zeolite from them. Enrichment of uranium further proceeded locally as follows. Pyrite was oxidized to produce sulphuric acid solution which leached the uranium that had been adsorbed in zeolite. The pH of the uranium-rich solution became higher and higher in the course of migration and, as soon as it reached about 4, the uranium in the solution was again adsorbed in zeolite, the uranium content of which may have been enriched up to 0.9%. Coffinites have been formed where uranium was accumulated over the adsorption capacity of zeolite or where strongly reducing conditions were maintained by carbonaceous matter. (author)

  9. Stratigraphy, structure, and some petrographic features of Tertiary volcanic rocks at the USW G-2 drill hole, Yucca Mountain, Nye County, Nevada

    Maldonado, F.; Koether, S.L.

    1983-01-01

    A continuously cored drill hole penetrated 1830.6 m of Tertiary volcanic strata comprised of the following in descending order: Paintbrush Tuff, tuffaceous beds of Calico Hills, Crater Flat Tuff, lava and flow breccia (rhyodacitic), tuff of Lithic Ridge, bedded and ash-flow tuff, lava and flow breccia bedded tuff, conglomerate and ash-flow tuff, and older tuffs of USW G-2. Comparison of unit thicknesses at USW G-2 to unit thicknesses at previously drilled holes at Yucca Mountain indicate: (1) thickening of the Paintbrush Tuff members and tuffaceous beds of Calico Hills toward the northern part of Yucca Mountain; (2) thickening of the Prow Pass Member but thinning of the Bullfrog Member and Tram unit; (3) thinning of the tuff of Lithic Ridge; (4) presence of about 280 m of lava and flow breccia not previously penetrated by any drill hole; and (5) presence of an ash-flow tuff unit at the bottom of the drill hole not previously intersected, apparently the oldest unit penetrated at Yucca Mountain to date. Petrographic features of some of the units include: (1) decrease in quartz and K-feldspar and increases in biotite and plagioclase with depth in the tuffaceous beds of Calico Hills; (2) an increase in quartz phenocrysts from the top to the bottom members of the Crater Flat Tuff; (3) a low quartz content in the tuff of Lithic Ridge, suggesting tapping of the magma chamber at quartz-poor levels; (4) a change in zeolitic alteration from heulandite to clinoptilolite to mordenite with increasing depth; (5) lavas characterized by a rhyolitic top and dacitic base, suggesting reverse compositional zoning; and (6) presence of hydrothermal mineralization in the lavas that could be related to an itrusive under Yucca Mountain or to volcanism associated with the Timber Mountain-Claim Canyon caldera complex. A fracture analysis of the core resulted in tabulation of 7848 fractures, predominately open and high angle

  10. Deposition and diagenesis of the Brushy Basin Member and upper part of the Westwater Canyon member of the Morrison Formation, San Juan Basin, New Mexico

    Bell, T.E.

    1986-01-01

    The Brushy Basin Member and the upper part of the Westwater Canyon Member of the Morrison Formation in northwest New Mexico are nonmarine sedimentary rocks of Late Jurassic age. This stratigraphic interval consists of as many as four lithofacies deposited in fluvial and playa-lake environments. Lithofacies A is composed of crossbed feldspathic sandstone and was deposited by braided streams on an alluvial plain. Lithofacies B is composed of crossbedded feldspathic sandstone and tuffaceous mudstone, and was deposited by braided and anastomosing streams at the distal end of the alluvial plain. Lithofacies C is composed of calcareous, tuffaceous mudstone and was deposited on a mudflat between the alluvial plain and a playa lake. Lithofacies D is composed of zeolitic, tuffaceous mudstone and was deposited in a playa lake. The distribution of diagenetic facies in mudstones and tuffs in the Brushy Basin Member and upper part of the Westwater Canyon Member reflects the pH and salinity gradients common to fluvial/playa-lake systems. The abundant vitric ash in the sediments reacted to form montmorillonite in the fluvial facies. Calcite and montmorillonite were the reaction products where the fluvial and outermost playa facies met. Vitric ash reacted to form clinoptilolite and heulandite along the playa margins. In the center of the playa facies, analcime replaced clinoptilolite, an early zeolite. These early diagenetic minerals were replaced by albite, quartz, and mixed-layer illitemontmorillonite where the Brushy Basin Member and upper part of the Westwater Canyon Member have been deeply buried in the San Juan basin

  11. Mineralogy, geochemistry and low grade metamorphism of green tuffs of Karaj formation in Hesarbon area (south west Firoozkooh

    Shiva Bahrami

    2017-03-01

    Full Text Available Green tuffs of middle Eocene age in Hesarbon area, south west of Firoozkuh (East of Central Alborz consist of a thick sequence of lithic-, crystal-,vitric-and calcareous-tuffs. Microscopic and x-ray diffraction studies show plagioclase (albite and oligoclase, alkali feldspar (sanidine, quartz, cristobalite, biotite and hornblende are the major minerals in the rocks studied. Secondary minerals such as analcime, chlorite, prehnite and clay minerals are mainly present in the groundmass of the rocks. Extensive tectonic activities have created a variety of structural features including numerous folds and faults and therefore, have caused the green tuffs to be crushed and converted to breccia tuffs in many parts. Veins and cavities are filled by considerable amounts of zeolitic minerals including heulandite group, clinoptilolite and natrolite along with calcite and secondary quartz. Based on geochemical data, they lie on the dacite and rhyodacite field showing a calc-alkaline nature in the corresponding diagrams. According to the chondrite and primitive mantle normalized diagrams of trace elements, negative anomalies of Eu, Nb, Ti, P and depletion of HFSE together with their position in the petrogenesis discrimination diagrams, it is most likely that these rocks are formed in the active continental margin of a subduction zone. The existence of analcime and prehnite in the groundmass demonstrate that these rocks have undergone some degrees of low-grade metamorphism due to the overburden of the layers in the temperature range 200-300 °C. The present study shows that zeolite minerals filling the fractures and cavities of tuffs are precipitated by hydrothermal fluids with a neutral pH to acidic

  12. The Occurrence of Erionite at Yucca Mountain

    NA

    2004-01-01

    The naturally-occurring zeolite mineral erionite has a fibrous morphology and is a known human carcinogen (inhalation hazard). Erionite has been found typically in very small quantities and restricted occurrences in the course of mineralogic characterization of Yucca Mountain as a host for a high-level nuclear waste repository. The first identification of erionite was made in 1984 on the basis of morphology and chemical composition and later confirmed by X-ray diffraction analysis. It was found in the lower vitrophyre (Tptpv3) of the Topopah Spring Tuff in a borehole sidewall sample. Most erionite occurrences identified at Yucca Mountain are in the Topopah Spring Tuff, within an irregular zone of transition between the lower boundary of devitrified tuff and underlying glassy tuff. This zone is fractured and contains intermingled devitrified and vitric tuff. In 1997, a second host of erionite mineralization was identified in the Exploratory Studies Facility within and adjacent to a high-angle fracture/breccia zone transgressing the boundary between the lowermost devitrified tuff (Tpcplnc) and underlying moderately welded vitric tuff (Tpcpv2) of the Tiva Canyon Tuff. The devitrified-vitric transition zones where erionite is found tend to have complex secondary-mineral assemblages, some of very localized occurrence. Secondary minerals in addition to erionite may include smectite, heulandite-clinoptilolite, chabazite, opal-A, opal-CT, cristobalite, quartz, kenyaite, and moganite. Incipient devitrification within the Topopah Spring Tuff transition zone includes patches that are highly enriched in potassium feldspar relative to the precursor volcanic glass. Geochemical conditions during glass alteration may have led to local evolution of potassium-rich fluids. Thermodynamic modeling of zeolite stability shows that erionite and chabazite stability fields occur only at aqueous K concentrations much higher than in present Yucca Mountain waters. The association of erionite

  13. Minerals in fractures of the saturated zone from drill core USW G-4, Yucca Mountain, Nye County, Nevada

    Carlos, B.A.

    1987-04-01

    The minerals in fractures in drill core USW G-4, from the static water level (SWL) at 1770 ft to the base of the hole at 3000 ft, were studied to determine their identity and depositional sequence and to compare them with those found above the SWL in the same drill hole. There is no change in mineralogy or mineral morphology across the SWL. The significant change in mineralogy and relationship to the host rock occurs at 1381 ft, well above the present water table. Below 1381 ft clinoptilolite appears in the fractures and rock matrix instead of heulandite, and the fracture mineralogy correlates with the host rock mineralogy. Throughout most of the saturated zone (below the SWL) in USW G-4, zeolites occur in fractures only in zeolitic tuff; however, zeolites persist in fracture below the base of the deepest zeolitic tuff interval. Nonzeolitic intervals of tuff have fewer fractures, and many of these have no coatings; a few have quartz and feldspar coatings. One interval in zeolitic tuff (2125-2140 ft) contains abundant crisobalite coatings in the fractures. Calcite occurs in fractures from 2575 to 2660 ft, usually with the manganese mineral hollandite, and from 2750 to 2765 ft, usually alone. Manganese minerals occur in several intervals. The spatial correlation of zeolites in fractures with zeolitic host rock suggests that both may have been zeolitized at the same time, possibly by water moving laterally through more permeable zones in the tuff. The continuation of zeolites in fractures below the lowest zeolitic interval in this hole suggests that vertical fracture flow may have been important in the deposition of these coatings. Core from deeper intervals in another hole will be examined to determine if that relationship continues. 17 refs., 19 figs

  14. Cavity-based secondary mineralization in volcanic tuffs of Yucca Mountain, Nevada: a new type of the polymineral vadose speleothem, or a hydrothermal deposit?

    Dublyansky Yuri V.

    2005-07-01

    Full Text Available Secondary minerals (calcite, chalcedony, quartz, opal, fluorite, heulandite, strontianite residing in open cavities in the Miocenerhyolite tuffs of Yucca Mountain, Nevada have been interpreted by some researchers as "speleothemic" formations, deposited as aresult of downward infiltration of meteoric waters (DOE, 2001, Whelan et al., 2002. The major mineral of the paragenesis, calcite,shows spectacular trend of the textural and crystal morphology change: from anhedral granular occurrences, through (optionalplatelet, bladed and scepter varieties, to euhedral blocky morphologies. The trend is consistent with the overall decrease in thesupesaturation of the mineral forming solution. Stable isotope properties of calcite evolve from 13C-enriched (δ13C = +4 to +9 ‰ PDBat early stages of growth to 13C-depleted (-5 to -10 ‰ at late stages. The non-cyclic character of the isotope record and extremevariations of isotopic values argue against the meteoric origin of mineral forming fluids. The δ13C >4 ‰ PDB require isotope partitioningbetween dissolved CO2 and CH4, which is only possible in reducing anoxic environment, but not in aerated vadose zone.Fluid inclusions studied in calcite, quartz and fluorite revealed that the minerals were deposited from thermal solutions. Thetemperatures were higher at early stages of mineral growth (60 to 85oC and declined with time. Most late-stage calcites containonly all-liquid inclusions, suggesting temperatures less than ca. 35-50oC. Minerals collected close to the major fault show the highesttemperatures. Gases trapped in fluid inclusions are dominated by CO2 and CH4; Raman spectrometry results suggest the presenceof aromatic/cyclic hydrocarbon gases. The gas chemistry, thus, also indicates reduced (anoxic character of the mineral formingfluids.Secondary minerals at Yucca Mountain have likely formed during the short-term invasion(s of the deep-seated aqueous fluidsinto the vadose zone. Following the invasion

  15. Compilation of kinetic data for geochemical calculations

    Arthur, R.C.; Savage, D.; Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu

    2000-01-01

    physical properties of the fracture must be homogeneous over a characteristic length that is greater than or equal to the equilibration length. If these conditions are met, calculations suggest local equilibrium would be a valid assumption in groundwater evolution models applied to the Kamaishi site if: it applies to reactions involving calcite, stilbite (assuming its dissolution / precipitation behavior is similar to that of heulandite), laumontite, albite and prehnite, but not quartz; Darcy flow velocities are relatively low (e.g., less than about 0.1 m yr-1), and it is based on the assumption that equilibrium corresponds to an uncertainty in the saturation index of 0.0±0.4. If, however, actual reaction rates in the field are lower than expected, possibly because reactive surface areas are overestimated, the modeling approach may be inappropriate because it is probably unrealistic to assume that fracture mineralogy is homogeneous over fracture lengths exceeding a few meters or tens of meters. An analytical model of redox-front migration behavior based on the stationary-state approximation, and JNC's conceptual model of a natural events scenario involving the migration of oxidizing surface waters in fractures, suggests that oxidizing solutions could travel from the surface to the depth of a repository in crystalline rock within 400 to 50,000 years. These estimates are relatively short compared with time periods considered in safety assessments of repository performance, which suggests that time-dependent variations in the redox environment of both the near field and geosphere may need to be accounted for in these assessments. The flow velocities and concentrations of reducing minerals assumed in JNC's conceptual model may be overly conservative, however. (author)