WorldWideScience

Sample records for heterotrimer selectively targeted

  1. Kinase activity determination of specific AMPK complexes/heterotrimers in the skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2018-01-01

    Measuring the kinase activity of the 5'-AMP-activated protein kinase (AMPK) is an essential part of understanding the regulation of this metabolic master switch. The AMPK heterotrimer can exist in 12 different constellations with potentially diverse activation patterns. It is therefore important ...

  2. The structural basis of the dominant negative phenotype of the Gαi1β1γ2 G203A/A326S heterotrimer

    Science.gov (United States)

    Liu, Ping; Jia, Ming-zhu; Zhou, X Edward; De Waal, Parker W; Dickson, Bradley M; Liu, Bo; Hou, Li; Yin, Yan-ting; Kang, Yan-yong; Shi, Yi; Melcher, Karsten; Xu, H Eric; Jiang, Yi

    2016-01-01

    Aim: Dominant negative mutant G proteins have provided critical insight into the mechanisms of G protein-coupled receptor (GPCR) signaling, but the mechanisms underlying the dominant negative characteristics are not completely understood. The aim of this study was to determine the structure of the dominant negative Gαi1β1γ2 G203A/A326S complex (Gi-DN) and to reveal the structural basis of the mutation-induced phenotype of Gαi1β1γ2. Methods: The three subunits of the Gi-DN complex were co-expressed with a baculovirus expression system. The Gi-DN heterotrimer was purified, and the structure of its complex with GDP was determined through X-ray crystallography. Results: The Gi-DN heterotrimer structure revealed a dual mechanism underlying the dominant negative characteristics. The mutations weakened the hydrogen bonding network between GDP/GTP and the binding pocket residues, and increased the interactions in the Gα-Gβγ interface. Concomitantly, the Gi-DN heterotrimer adopted a conformation, in which the C-terminus of Gαi and the N-termini of both the Gβ and Gγ subunits were more similar to the GPCR-bound state compared with the wild type complex. From these structural observations, two additional mutations (T48F and D272F) were designed that completely abolish the GDP binding of the Gi-DN heterotrimer. Conclusion: Overall, the results suggest that the mutations impede guanine nucleotide binding and Gα-Gβγ protein dissociation and favor the formation of the G protein/GPCR complex, thus blocking signal propagation. In addition, the structure provides a rationale for the design of other mutations that cause dominant negative effects in the G protein, as exemplified by the T48F and D272F mutations. PMID:27498775

  3. Burglar Target Selection

    Science.gov (United States)

    Townsley, Michael; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both environment- and offender-level factors on residential burglary placement in the Netherlands, the United Kingdom, and Australia. Combining cleared burglary data from all study regions in a single statistical model, we make statistical comparisons between environments. Results: In all three study regions, the likelihood an offender selects an area for burglary is positively influenced by proximity to their home, the proportion of easily accessible targets, and the total number of targets available. Furthermore, in two of the three study regions, juvenile offenders under the legal driving age are significantly more influenced by target proximity than adult offenders. Post hoc tests indicate the magnitudes of these impacts vary significantly between study regions. Conclusions: While burglary target selection strategies are consistent with opportunity-based explanations of offending, the impact of environmental context is significant. As such, the approach undertaken in combining observations from multiple study regions may aid criminology scholars in assessing the generalizability of observed findings across multiple environments. PMID:25866418

  4. Fuzzy target selection using RFM variables

    NARCIS (Netherlands)

    Kaymak, U.

    2001-01-01

    An important data mining problem from the world of direct marketing is target selection. The main task in target selection is the determination of potential customers for a product from a client database. Target selection algorithms identify the profiles of customer groups for a particular product,

  5. Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing

    Science.gov (United States)

    Lee, Ciaran M; Cradick, Thomas J; Fine, Eli J; Bao, Gang

    2016-01-01

    The rapid advancement in targeted genome editing using engineered nucleases such as ZFNs, TALENs, and CRISPR/Cas9 systems has resulted in a suite of powerful methods that allows researchers to target any genomic locus of interest. A complementary set of design tools has been developed to aid researchers with nuclease design, target site selection, and experimental validation. Here, we review the various tools available for target selection in designing engineered nucleases, and for quantifying nuclease activity and specificity, including web-based search tools and experimental methods. We also elucidate challenges in target selection, especially in predicting off-target effects, and discuss future directions in precision genome editing and its applications. PMID:26750397

  6. Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE)

    DEFF Research Database (Denmark)

    Peyrin-Biroulet, L; Sandborn, W; Sands, B E

    2015-01-01

    OBJECTIVES: The Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) program was initiated by the International Organization for the Study of Inflammatory Bowel Diseases (IOIBD). It examined potential treatment targets for inflammatory bowel disease (IBD) to be used for a "treat-t...... target. CONCLUSIONS: Evidence- and consensus-based recommendations for selecting the goals for treat-to-target strategies in patients with IBD are made available. Prospective studies are needed to determine how these targets will change disease course and patients' quality of life....

  7. Target and Tissue Selectivity Prediction by Integrated Mechanistic Pharmacokinetic-Target Binding and Quantitative Structure Activity Modeling.

    Science.gov (United States)

    Vlot, Anna H C; de Witte, Wilhelmus E A; Danhof, Meindert; van der Graaf, Piet H; van Westen, Gerard J P; de Lange, Elizabeth C M

    2017-12-04

    Selectivity is an important attribute of effective and safe drugs, and prediction of in vivo target and tissue selectivity would likely improve drug development success rates. However, a lack of understanding of the underlying (pharmacological) mechanisms and availability of directly applicable predictive methods complicates the prediction of selectivity. We explore the value of combining physiologically based pharmacokinetic (PBPK) modeling with quantitative structure-activity relationship (QSAR) modeling to predict the influence of the target dissociation constant (K D ) and the target dissociation rate constant on target and tissue selectivity. The K D values of CB1 ligands in the ChEMBL database are predicted by QSAR random forest (RF) modeling for the CB1 receptor and known off-targets (TRPV1, mGlu5, 5-HT1a). Of these CB1 ligands, rimonabant, CP-55940, and Δ 8 -tetrahydrocanabinol, one of the active ingredients of cannabis, were selected for simulations of target occupancy for CB1, TRPV1, mGlu5, and 5-HT1a in three brain regions, to illustrate the principles of the combined PBPK-QSAR modeling. Our combined PBPK and target binding modeling demonstrated that the optimal values of the K D and k off for target and tissue selectivity were dependent on target concentration and tissue distribution kinetics. Interestingly, if the target concentration is high and the perfusion of the target site is low, the optimal K D value is often not the lowest K D value, suggesting that optimization towards high drug-target affinity can decrease the benefit-risk ratio. The presented integrative structure-pharmacokinetic-pharmacodynamic modeling provides an improved understanding of tissue and target selectivity.

  8. In-silico Leishmania Target Selectivity of Antiparasitic Terpenoids

    Directory of Open Access Journals (Sweden)

    Ifedayo Victor Ogungbe

    2013-07-01

    Full Text Available Neglected Tropical Diseases (NTDs, like leishmaniasis, are major causes of mortality in resource-limited countries. The mortality associated with these diseases is largely due to fragile healthcare systems, lack of access to medicines, and resistance by the parasites to the few available drugs. Many antiparasitic plant-derived isoprenoids have been reported, and many of them have good in vitro activity against various forms of Leishmania spp. In this work, potential Leishmania biochemical targets of antiparasitic isoprenoids were studied in silico. Antiparasitic monoterpenoids selectively docked to L. infantum nicotinamidase, L. major uridine diphosphate-glucose pyrophosphorylase and methionyl t-RNA synthetase. The two protein targets selectively targeted by germacranolide sesquiterpenoids were L. major methionyl t-RNA synthetase and dihydroorotate dehydrogenase. Diterpenoids generally favored docking to L. mexicana glycerol-3-phosphate dehydrogenase. Limonoids also showed some selectivity for L. mexicana glycerol-3-phosphate dehydrogenase and L. major dihydroorotate dehydrogenase while withanolides docked more selectively with L. major uridine diphosphate-glucose pyrophosphorylase. The selectivity of the different classes of antiparasitic compounds for the protein targets considered in this work can be explored in fragment- and/or structure-based drug design towards the development of leads for new antileishmanial drugs.

  9. Subunits of the Snf1 kinase heterotrimer show interdependence for association and activity.

    Science.gov (United States)

    Elbing, Karin; Rubenstein, Eric M; McCartney, Rhonda R; Schmidt, Martin C

    2006-09-08

    The Snf1 kinase and its mammalian orthologue, the AMP-activated protein kinase (AMPK), function as heterotrimers composed of a catalytic alpha-subunit and two non-catalytic subunits, beta and gamma. The beta-subunit is thought to hold the complex together and control subcellular localization whereas the gamma-subunit plays a regulatory role by binding to and blocking the function of an auto-inhibitory domain (AID) present in the alpha-subunit. In addition, catalytic activity requires phosphorylation by a distinct upstream kinase. In yeast, any one of three Snf1-activating kinases, Sak1, Tos3, or Elm1, can fulfill this role. We have previously shown that Sak1 is the only Snf1-activating kinase that forms a stable complex with Snf1. Here we show that the formation of the Sak1.Snf1 complex requires the beta- and gamma-subunits in vivo. However, formation of the Sak1.Snf1 complex is not necessary for glucose-regulated phosphorylation of the Snf1 activation loop. Snf1 kinase purified from cells lacking the beta-subunits do not contain any gamma-subunit, indicating that the Snf1 kinase does not form a stable alphagamma dimer in vivo. In vitro kinase assays using purified full-length and truncated Snf1 proteins demonstrate that the kinase domain, which lacks the AID, is significantly more active than the full-length Snf1 protein. Addition of purified beta- and gamma-subunits could stimulate the kinase activity of the full-length alpha-subunit but only when all three subunits were present, suggesting an interdependence of all three subunits for assembly of a functional complex.

  10. Target selection for the HRIBF Project

    International Nuclear Information System (INIS)

    Dellwo, J.; Alton, G.D.; Batchelder, J.C.

    1994-01-01

    Experiments are in progress at the Oak Ridge National Laboratory (ORNL) which are designed to select the most appropriate target materials for generating particular radioactive ion beams for the Holifield Radioactive Ion Beam Facility (HRIBF). The 25-MV tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is on-line at the UNISOR facility. These experiments permit selection of the target material most appropriate for the rapid release of the element of interest, as well as realistic estimates of the efficiency of the FEBIAD source. From diffusion release data information on the release times and diffusion coefficients can be derived. Diffusion coefficients for CI implanted into and diffused from CeS and Zr 5 Si 3 and As, Br, and Se implanted into and diffused from Zr 5 Ge 3 have been derived from the resulting intensity versus time profiles

  11. Target selection biases from recent experience transfer across effectors.

    Science.gov (United States)

    Moher, Jeff; Song, Joo-Hyun

    2016-02-01

    Target selection is often biased by an observer's recent experiences. However, not much is known about whether these selection biases influence behavior across different effectors. For example, does looking at a red object make it easier to subsequently reach towards another red object? In the current study, we asked observers to find the uniquely colored target object on each trial. Randomly intermixed pre-trial cues indicated the mode of action: either an eye movement or a visually guided reach movement to the target. In Experiment 1, we found that priming of popout, reflected in faster responses following repetition of the target color on consecutive trials, occurred regardless of whether the effector was repeated from the previous trial or not. In Experiment 2, we examined whether an inhibitory selection bias away from a feature could transfer across effectors. While priming of popout reflects both enhancement of the repeated target features and suppression of the repeated distractor features, the distractor previewing effect isolates a purely inhibitory component of target selection in which a previewed color is presented in a homogenous display and subsequently inhibited. Much like priming of popout, intertrial suppression biases in the distractor previewing effect transferred across effectors. Together, these results suggest that biases for target selection driven by recent trial history transfer across effectors. This indicates that representations in memory that bias attention towards or away from specific features are largely independent from their associated actions.

  12. THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSO QUASAR TARGETING CATALOG

    International Nuclear Information System (INIS)

    Bovy, Jo; Hogg, David W.; Weaver, Benjamin A.; Hennawi, Joseph F.; Myers, Adam D.; Kirkpatrick, Jessica A.; Schlegel, David J.; Ross, Nicholas P.; Sheldon, Erin S.; McGreer, Ian D.; Schneider, Donald P.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 ∼ 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg 2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

  13. Think Outside The Color Box: Probabilistic Target Selection And The SDSS-XDQSO Quasar Targeting Catalog

    International Nuclear Information System (INIS)

    Bovy, J.; Sheldon, E.; Hennawi, J.F.; Hogg, D.W.; Myers, A.D.

    2011-01-01

    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 ∼ 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg 2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available.

  14. Targeting of phage particles towards endothelial cells by antibodies selected through a multi-parameter selection strategy.

    Science.gov (United States)

    Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter

    2017-02-10

    One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.

  15. An algorithm for preferential selection of spectroscopic targets in LEGUE

    International Nuclear Information System (INIS)

    Carlin, Jeffrey L.; Newberg, Heidi Jo; Lépine, Sébastien; Deng Licai; Chen Yuqin; Fu Xiaoting; Gao Shuang; Li Jing; Liu Chao; Beers, Timothy C.; Christlieb, Norbert; Grillmair, Carl J.; Guhathakurta, Puragra; Han Zhanwen; Hou Jinliang; Lee, Hsu-Tai; Liu Xiaowei; Pan Kaike; Sellwood, J. A.; Wang Hongchi

    2012-01-01

    We describe a general target selection algorithm that is applicable to any survey in which the number of available candidates is much larger than the number of objects to be observed. This routine aims to achieve a balance between a smoothly-varying, well-understood selection function and the desire to preferentially select certain types of targets. Some target-selection examples are shown that illustrate different possibilities of emphasis functions. Although it is generally applicable, the algorithm was developed specifically for the LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) survey that will be carried out using the Chinese Guo Shou Jing Telescope. In particular, this algorithm was designed for the portion of LEGUE targeting the Galactic halo, in which we attempt to balance a variety of science goals that require stars at fainter magnitudes than can be completely sampled by LAMOST. This algorithm has been implemented for the halo portion of the LAMOST pilot survey, which began in October 2011.

  16. Target Selection for the SDSS-III MARVELS Survey

    Science.gov (United States)

    Paegert, Martin; Stassun, Keivan G.; De Lee, Nathan; Pepper, Joshua; Fleming, Scott W.; Sivarani, Thirupathi; Mahadevan, Suvrath; Mack, Claude E., III; Dhital, Saurav; Hebb, Leslie; Ge, Jian

    2015-06-01

    We present the target selection process for the Multi-object APO Radial Velocity Exoplanets Large-area Survey (MARVELS), which is part of the Sloan Digital Sky Survey (SDSS) III. MARVELS is a medium-resolution (R ∼ 11,000) multi-fiber spectrograph capable of obtaining radial velocities for 60 objects at a time in order to find brown dwarfs and giant planets. The survey was configured to target dwarf stars with effective temperatures approximately between 4500 and 6250 K. For the first 2 years MARVELS relied on low-resolution spectroscopic pre-observations to estimate the effective temperature and log (g) for candidate stars and then selected suitable dwarf stars from this pool. Ultimately, the pre-observation spectra proved ineffective at filtering out giant stars; many giants were incorrectly classified as dwarfs, resulting in a giant contamination rate of ∼30% for the first phase of the MARVELS survey. Thereafter, the survey instead applied a reduced proper motion cut to eliminate giants and used the Infrared Flux Method to estimate effective temperatures, using only extant photmetric and proper-motion catalog information. The target selection method introduced here may be useful for other surveys that need to rely on extant catalog data for selection of specific stellar populations.

  17. Structural Implications for Selective Targeting of PARPs.

    Science.gov (United States)

    Steffen, Jamin D; Brody, Jonathan R; Armen, Roger S; Pascal, John M

    2013-12-20

    Poly(ADP-ribose) polymerases (PARPs) are a family of enzymes that use NAD(+) as a substrate to synthesize polymers of ADP-ribose (PAR) as post-translational modifications of proteins. PARPs have important cellular roles that include preserving genomic integrity, telomere maintenance, transcriptional regulation, and cell fate determination. The diverse biological roles of PARPs have made them attractive therapeutic targets, which have fueled the pursuit of small molecule PARP inhibitors. The design of PARP inhibitors has matured over the past several years resulting in several lead candidates in clinical trials. PARP inhibitors are mainly used in clinical trials to treat cancer, particularly as sensitizing agents in combination with traditional chemotherapy to reduce side effects. An exciting aspect of PARP inhibitors is that they are also used to selectivity kill tumors with deficiencies in DNA repair proteins (e.g., BRCA1/2) through an approach termed "synthetic lethality." In the midst of the tremendous efforts that have brought PARP inhibitors to the forefront of modern chemotherapy, most clinically used PARP inhibitors bind to conserved regions that permits cross-selectivity with other PARPs containing homologous catalytic domains. Thus, the differences between therapeutic effects and adverse effects stemming from pan-PARP inhibition compared to selective inhibition are not well understood. In this review, we discuss current literature that has found ways to gain selectivity for one PARP over another. We furthermore provide insights into targeting other domains that make up PARPs, and how new classes of drugs that target these domains could provide a high degree of selectivity by affecting specific cellular functions. A clear understanding of the inhibition profiles of PARP inhibitors will not only enhance our understanding of the biology of individual PARPs, but may provide improved therapeutic options for patients.

  18. Target-selected mutagenesis of the rat

    NARCIS (Netherlands)

    Smits, B.M.; Mudde, J.B.; Plasterk, R.; Cuppen, E.

    2004-01-01

    The rat is one of the most extensively studied model organisms, and with its genome being sequenced, tools to manipulate gene function in vivo have become increasingly important. We here report proof of principle for target-selected mutagenesis as a reverse genetic or knockout approach for the rat.

  19. Purification-Free, Target-Selective Immobilization of a Protein from Cell Lysates.

    Science.gov (United States)

    Cha, Jaehyun; Kwon, Inchan

    2018-02-27

    Protein immobilization has been widely used for laboratory experiments and industrial processes. Preparation of a recombinant protein for immobilization usually requires laborious and expensive purification steps. Here, a novel purification-free, target-selective immobilization technique of a protein from cell lysates is reported. Purification steps are skipped by immobilizing a target protein containing a clickable non-natural amino acid (p-azidophenylalanine) in cell lysates onto alkyne-functionalized solid supports via bioorthogonal azide-alkyne cycloaddition. In order to achieve a target protein-selective immobilization, p-azidophenylalanine was introduced into an exogenous target protein, but not into endogenous non-target proteins using host cells with amber codon-free genomic DNAs. Immobilization of superfolder fluorescent protein (sfGFP) from cell lysates is as efficient as that of the purified sfGFP. Using two fluorescent proteins (sfGFP and mCherry), the authors also demonstrated that the target proteins are immobilized with a minimal immobilization of non-target proteins (target-selective immobilization). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Novel target configurations for selective ionization state studies in molybdenum

    International Nuclear Information System (INIS)

    Ilcisin, K.J.; Feldman, U.; Schwob, J.L.; Wouters, A.; Suckewer, S.; Princeton Univ., NJ

    1990-03-01

    Details of experiments aimed at achieving low ionization state selectivity in molybdenum are presented. Targets are excited with a 10 J CO 2 laser and the resultant VUV spectrum (300--700 Angstrom) has been studied. Combinations of focal spot size, target depth, and target geometries are compared. Simple attenuation of energy is shown not to vary ionization stage composition significantly. Experiments conducted with grazing incidence targets result only in a hot plasma. Modular targets with cooling cylinders of various radii demonstrated good selectivity of the ionization states, but with low absolute signals. Finally, results from combinations of focal spot adjustment and radiative cooling illustrate increased control over desired plasma temperature and density for spectroscopic studies of molybdenum. 7 refs., 14 figs

  1. Selection of phage-displayed accessible recombinant targeted antibodies (SPARTA): methodology and applications.

    Science.gov (United States)

    D'Angelo, Sara; Staquicini, Fernanda I; Ferrara, Fortunato; Staquicini, Daniela I; Sharma, Geetanjali; Tarleton, Christy A; Nguyen, Huynh; Naranjo, Leslie A; Sidman, Richard L; Arap, Wadih; Bradbury, Andrew Rm; Pasqualini, Renata

    2018-05-03

    We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.

  2. A comparative study of fuzzy target selection methods in direct marketing

    NARCIS (Netherlands)

    Costa Sousa, da J.M.; Kaymak, U.; Madeira, S.

    2002-01-01

    Target selection in direct marketing is an important data mining problem for which fuzzy modeling can be used. The paper compares several fuzzy modeling techniques applied to target selection based on recency, frequency and monetary value measures. The comparison uses cross validation applied to

  3. Improved targeted immunization strategies based on two rounds of selection

    Science.gov (United States)

    Xia, Ling-Ling; Song, Yu-Rong; Li, Chan-Chan; Jiang, Guo-Ping

    2018-04-01

    In the case of high degree targeted immunization where the number of vaccine is limited, when more than one node associated with the same degree meets the requirement of high degree centrality, how can we choose a certain number of nodes from those nodes, so that the number of immunized nodes will not exceed the limit? In this paper, we introduce a new idea derived from the selection process of second-round exam to solve this problem and then propose three improved targeted immunization strategies. In these proposed strategies, the immunized nodes are selected through two rounds of selection, where we increase the quotas of first-round selection according the evaluation criterion of degree centrality and then consider another characteristic parameter of node, such as node's clustering coefficient, betweenness and closeness, to help choose targeted nodes in the second-round selection. To validate the effectiveness of the proposed strategies, we compare them with the degree immunizations including the high degree targeted and the high degree adaptive immunizations using two metrics: the size of the largest connected component of immunized network and the number of infected nodes. Simulation results demonstrate that the proposed strategies based on two rounds of sorting are effective for heterogeneous networks and their immunization effects are better than that of the degree immunizations.

  4. Burglar Target Selection: A Cross-National Comparison

    NARCIS (Netherlands)

    Townsley, M.; Birks, D.; Bernasco, W.; Johnson, S.D.; Ruiter, S.; White, G.

    2015-01-01

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both

  5. Burglar Target Selection : A Cross-national Comparison

    NARCIS (Netherlands)

    Townsley, Michael; Birks, Daniel; Bernasco, Wim; Ruiter, Stijn; Johnson, Shane D.; White, Gentry; Baum, Scott

    Objectives: This study builds on research undertaken by Bernasco and Nieuwbeerta and explores the generalizability of a theoretically derived offender target selection model in three cross-national study regions. Methods: Taking a discrete spatial choice approach, we estimate the impact of both

  6. Feature Extraction and Selection Strategies for Automated Target Recognition

    Science.gov (United States)

    Greene, W. Nicholas; Zhang, Yuhan; Lu, Thomas T.; Chao, Tien-Hsin

    2010-01-01

    Several feature extraction and selection methods for an existing automatic target recognition (ATR) system using JPLs Grayscale Optical Correlator (GOC) and Optimal Trade-Off Maximum Average Correlation Height (OT-MACH) filter were tested using MATLAB. The ATR system is composed of three stages: a cursory region of-interest (ROI) search using the GOC and OT-MACH filter, a feature extraction and selection stage, and a final classification stage. Feature extraction and selection concerns transforming potential target data into more useful forms as well as selecting important subsets of that data which may aide in detection and classification. The strategies tested were built around two popular extraction methods: Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Performance was measured based on the classification accuracy and free-response receiver operating characteristic (FROC) output of a support vector machine(SVM) and a neural net (NN) classifier.

  7. Effects of Mode of Target Task Selection on Learning about Plants in a Mobile Learning Environment: Effortful Manual Selection versus Effortless QR-Code Selection

    Science.gov (United States)

    Gao, Yuan; Liu, Tzu-Chien; Paas, Fred

    2016-01-01

    This study compared the effects of effortless selection of target plants using quick respond (QR) code technology to effortful manual search and selection of target plants on learning about plants in a mobile device supported learning environment. In addition, it was investigated whether the effectiveness of the 2 selection methods was…

  8. Dissecting patterns of preparatory activity in the frontal eye fields during pursuit target selection.

    Science.gov (United States)

    Raghavan, Ramanujan T; Joshua, Mati

    2017-10-01

    We investigated the composition of preparatory activity of frontal eye field (FEF) neurons in monkeys performing a pursuit target selection task. In response to the orthogonal motion of a large and a small reward target, monkeys initiated pursuit biased toward the direction of large reward target motion. FEF neurons exhibited robust preparatory activity preceding movement initiation in this task. Preparatory activity consisted of two components, ramping activity that was constant across target selection conditions, and a flat offset in firing rates that signaled the target selection condition. Ramping activity accounted for 50% of the variance in the preparatory activity and was linked most strongly, on a trial-by-trial basis, to pursuit eye movement latency rather than to its direction or gain. The offset in firing rates that discriminated target selection conditions accounted for 25% of the variance in the preparatory activity and was commensurate with a winner-take-all representation, signaling the direction of large reward target motion rather than a representation that matched the parameters of the upcoming movement. These offer new insights into the role that the frontal eye fields play in target selection and pursuit control. They show that preparatory activity in the FEF signals more strongly when to move rather than where or how to move and suggest that structures outside the FEF augment its contributions to the target selection process. NEW & NOTEWORTHY We used the smooth eye movement pursuit system to link between patterns of preparatory activity in the frontal eye fields and movement during a target selection task. The dominant pattern was a ramping signal that did not discriminate between selection conditions and was linked, on trial-by-trial basis, to movement latency. A weaker pattern was composed of a constant signal that discriminated between selection conditions but was only weakly linked to the movement parameters. Copyright © 2017 the American

  9. An engineered genetic selection for ternary protein complexes inspired by a natural three-component hitchhiker mechanism.

    Science.gov (United States)

    Lee, Hyeon-Cheol; Portnoff, Alyse D; Rocco, Mark A; DeLisa, Matthew P

    2014-12-22

    The bacterial twin-arginine translocation (Tat) pathway is well known to translocate correctly folded monomeric and dimeric proteins across the tightly sealed cytoplasmic membrane. We identified a naturally occurring heterotrimer, the Escherichia coli aldehyde oxidoreductase PaoABC, that is co-translocated by the Tat translocase according to a ternary "hitchhiker" mechanism. Specifically, the PaoB and PaoC subunits, each devoid of export signals, are escorted to the periplasm in a piggyback fashion by the Tat signal peptide-containing subunit PaoA. Moreover, export of PaoA was blocked when either PaoB or PaoC was absent, revealing a surprising interdependence for export that is not seen for classical secretory proteins. Inspired by this observation, we created a bacterial three-hybrid selection system that links the formation of ternary protein complexes with antibiotic resistance. As proof-of-concept, a bispecific antibody was employed as an adaptor that physically crosslinked one antigen fused to a Tat export signal with a second antigen fused to TEM-1 β-lactamase (Bla). The resulting non-covalent heterotrimer was exported in a Tat-dependent manner, delivering Bla to the periplasm where it hydrolyzed β-lactam antibiotics. Collectively, these results highlight the remarkable flexibility of the Tat system and its potential for studying and engineering ternary protein interactions in living bacteria.

  10. Integrative analysis to select cancer candidate biomarkers to targeted validation

    Science.gov (United States)

    Heberle, Henry; Domingues, Romênia R.; Granato, Daniela C.; Yokoo, Sami; Canevarolo, Rafael R.; Winck, Flavia V.; Ribeiro, Ana Carolina P.; Brandão, Thaís Bianca; Filgueiras, Paulo R.; Cruz, Karen S. P.; Barbuto, José Alexandre; Poppi, Ronei J.; Minghim, Rosane; Telles, Guilherme P.; Fonseca, Felipe Paiva; Fox, Jay W.; Santos-Silva, Alan R.; Coletta, Ricardo D.; Sherman, Nicholas E.; Paes Leme, Adriana F.

    2015-01-01

    Targeted proteomics has flourished as the method of choice for prospecting for and validating potential candidate biomarkers in many diseases. However, challenges still remain due to the lack of standardized routines that can prioritize a limited number of proteins to be further validated in human samples. To help researchers identify candidate biomarkers that best characterize their samples under study, a well-designed integrative analysis pipeline, comprising MS-based discovery, feature selection methods, clustering techniques, bioinformatic analyses and targeted approaches was performed using discovery-based proteomic data from the secretomes of three classes of human cell lines (carcinoma, melanoma and non-cancerous). Three feature selection algorithms, namely, Beta-binomial, Nearest Shrunken Centroids (NSC), and Support Vector Machine-Recursive Features Elimination (SVM-RFE), indicated a panel of 137 candidate biomarkers for carcinoma and 271 for melanoma, which were differentially abundant between the tumor classes. We further tested the strength of the pipeline in selecting candidate biomarkers by immunoblotting, human tissue microarrays, label-free targeted MS and functional experiments. In conclusion, the proposed integrative analysis was able to pre-qualify and prioritize candidate biomarkers from discovery-based proteomics to targeted MS. PMID:26540631

  11. The control of attentional target selection in a colour/colour conjunction task.

    Science.gov (United States)

    Berggren, Nick; Eimer, Martin

    2016-11-01

    To investigate the time course of attentional object selection processes in visual search tasks where targets are defined by a combination of features from the same dimension, we measured the N2pc component as an electrophysiological marker of attentional object selection during colour/colour conjunction search. In Experiment 1, participants searched for targets defined by a combination of two colours, while ignoring distractor objects that matched only one of these colours. Reliable N2pc components were triggered by targets and also by partially matching distractors, even when these distractors were accompanied by a target in the same display. The target N2pc was initially equal in size to the sum of the two N2pc components to the two different types of partially matching distractors and became superadditive from approximately 250 ms after search display onset. Experiment 2 demonstrated that the superadditivity of the target N2pc was not due to a selective disengagement of attention from task-irrelevant partially matching distractors. These results indicate that attention was initially deployed separately and in parallel to all target-matching colours, before attentional allocation processes became sensitive to the presence of both matching colours within the same object. They suggest that attention can be controlled simultaneously and independently by multiple features from the same dimension and that feature-guided attentional selection processes operate in parallel for different target-matching objects in the visual field.

  12. Target Selection Models with Preference Variation Between Offenders

    NARCIS (Netherlands)

    Townsley, Michael; Birks, Daniel; Ruiter, Stijn; Bernasco, Wim; White, Gentry

    2016-01-01

    Objectives: This study explores preference variation in location choice strategies of residential burglars. Applying a model of offender target selection that is grounded in assertions of the routine activity approach, rational choice perspective, crime pattern and social disorganization theories,

  13. NADP+ binding to the regulatory subunit of methionine adenosyltransferase II increases intersubunit binding affinity in the hetero-trimer.

    Directory of Open Access Journals (Sweden)

    Beatriz González

    Full Text Available Mammalian methionine adenosyltransferase II (MAT II is the only hetero-oligomer in this family of enzymes that synthesize S-adenosylmethionine using methionine and ATP as substrates. Binding of regulatory β subunits and catalytic α2 dimers is known to increase the affinity for methionine, although scarce additional information about this interaction is available. This work reports the use of recombinant α2 and β subunits to produce oligomers showing kinetic parameters comparable to MAT II purified from several tissues. According to isothermal titration calorimetry data and densitometric scanning of the stained hetero-oligomer bands on denatured gels, the composition of these oligomers is that of a hetero-trimer with α2 dimers associated to single β subunits. Additionally, the regulatory subunit is able to bind NADP(+ with a 1:1 stoichiometry, the cofactor enhancing β to α2-dimer binding affinity. Mutants lacking residues involved in NADP(+ binding and N-terminal truncations of the β subunit were able to oligomerize with α2-dimers, although the kinetic properties appeared altered. These data together suggest a role for both parts of the sequence in the regulatory role exerted by the β subunit on catalysis. Moreover, preparation of a structural model for the hetero-oligomer, using the available crystal data, allowed prediction of the regions involved in β to α2-dimer interaction. Finally, the implications that the presence of different N-terminals in the β subunit could have on MAT II behavior are discussed in light of the recent identification of several splicing forms of this subunit in hepatoma cells.

  14. Sequence-selective targeting of duplex DNA by peptide nucleic acids

    DEFF Research Database (Denmark)

    Nielsen, Peter E

    2010-01-01

    Sequence-selective gene targeting constitutes an attractive drug-discovery approach for genetic therapy, with the aim of reducing or enhancing the activity of specific genes at the transcriptional level, or as part of a methodology for targeted gene repair. The pseudopeptide DNA mimic peptide...

  15. Neural Networks for Target Selection in Direct Marketing

    NARCIS (Netherlands)

    R. Potharst (Rob); U. Kaymak (Uzay); W.H.L.M. Pijls (Wim)

    2001-01-01

    textabstractPartly due to a growing interest in direct marketing, it has become an important application field for data mining. Many techniques have been applied to select the targets in commercial applications, such as statistical regression, regression trees, neural computing, fuzzy clustering

  16. Selective tumor cell targeting by the disaccharide moiety of bleomycin.

    Science.gov (United States)

    Yu, Zhiqiang; Schmaltz, Ryan M; Bozeman, Trevor C; Paul, Rakesh; Rishel, Michael J; Tsosie, Krystal S; Hecht, Sidney M

    2013-02-27

    In a recent study, the well-documented tumor targeting properties of the antitumor agent bleomycin (BLM) were studied in cell culture using microbubbles that had been derivatized with multiple copies of BLM. It was shown that BLM selectively targeted MCF-7 human breast carcinoma cells but not the "normal" breast cell line MCF-10A. Furthermore, it was found that the BLM analogue deglycobleomycin, which lacks the disaccharide moiety of BLM, did not target either cell line, indicating that the BLM disaccharide moiety is necessary for tumor selectivity. Not resolved in the earlier study were the issues of whether the BLM disaccharide moiety alone is sufficient for tumor cell targeting and the possible cellular uptake of the disaccharide. In the present study, we conjugated BLM, deglycoBLM, and BLM disaccharide to the cyanine dye Cy5**. It was found that the BLM and BLM disaccharide conjugates, but not the deglycoBLM conjugate, bound selectively to MCF-7 cells and were internalized. The same was also true for the prostate cancer cell line DU-145 (but not for normal PZ-HPV-7 prostate cells) and for the pancreatic cancer cell line BxPC-3 (but not for normal SVR A221a pancreas cells). The targeting efficiency of the disaccharide was only slightly less than that of BLM in MCF-7 and DU-145 cells and comparable to that of BLM in BxPC-3 cells. These results establish that the BLM disaccharide is both necessary and sufficient for tumor cell targeting, a finding with obvious implications for the design of novel tumor imaging and therapeutic agents.

  17. Contextual control over selective attention: evidence from a two-target method.

    Science.gov (United States)

    MacLellan, Ellen; Shore, David I; Milliken, Bruce

    2015-07-01

    Selective attention is generally studied with conflict tasks, using response time as the dependent measure. Here, we study the impact of selective attention to a first target, T1, presented simultaneously with a distractor, on the accuracy of subsequent encoding of a second target item, T2. This procedure produces an "attentional blink" (AB) effect much like that reported in other studies, and allowed us to study the influence of context on cognitive control with a novel method. In particular, we examined whether preparation to attend selectively to T1 had an impact on the selective encoding of T1 that would translate to report of T2. Preparation to attend selectively was manipulated by varying whether difficult selective attention T1 trials were presented in the context of other difficult selective attention T1 trials. The results revealed strong context effects of this nature, with smaller AB effects when difficult selective attention T1 trials were embedded in a context with many, rather than few, other difficult selective attention T1 trials. Further, the results suggest that both the trial-to-trial local context and the block-wide global context modulate performance in this task.

  18. Targeted Diazotransfer Reagents Enable Selective Modification of Proteins with Azides.

    Science.gov (United States)

    Lohse, Jonas; Swier, Lotteke J Y M; Oudshoorn, Ruben C; Médard, Guillaume; Kuster, Bernhard; Slotboom, Dirk-Jan; Witte, Martin D

    2017-04-19

    In chemical biology, azides are used to chemically manipulate target structures in a bioorthogonal manner for a plethora of applications ranging from target identification to the synthesis of homogeneously modified protein conjugates. While a variety of methods have been established to introduce the azido group into recombinant proteins, a method that directly converts specific amino groups in endogenous proteins is lacking. Here, we report the first biotin-tethered diazotransfer reagent DtBio and demonstrate that it selectively modifies the model proteins streptavidin and avidin and the membrane protein BioY on cell surface. The reagent converts amines in the proximity of the binding pocket to azides and leaves the remaining amino groups in streptavidin untouched. Reagents of this novel class will find use in target identification as well as the selective functionalization and bioorthogonal protection of proteins.

  19. Selection of IFE target materials from a safety and environmental perspective

    Science.gov (United States)

    Latkowski, J. F.; Sanz, J.; Reyes, S.; Gomez del Rio, J.

    2001-05-01

    Target materials for inertial fusion energy (IFE) power plant designs might be selected for a wide variety of reasons including wall absorption of driver energy, material opacity, cost and ease of fabrication. While each of these issues are of great importance, target materials should also be selected based upon their safety and environmental (S&E) characteristics. The present work focuses on the recycling, waste management and accident dose characteristics of potential target materials. If target materials are recycled so that the quantity is small, isotopic separation may be economically viable. Therefore, calculations have been completed for all stable isotopes for all elements from lithium to polonium. The results of these calculations are used to identify specific isotopes and elements that are most likely to be offensive as well as those most likely to be acceptable in terms of their S&E characteristics.

  20. Nanostructured materials for selective recognition and targeted drug delivery

    International Nuclear Information System (INIS)

    Kotrotsiou, O; Kotti, K; Dini, E; Kammona, O; Kiparissides, C

    2005-01-01

    Selective recognition requires the introduction of a molecular memory into a polymer matrix in order to make it capable of rebinding an analyte with a very high specificity. In addition, targeted drug delivery requires drug-loaded vesicles which preferentially localize to the sites of injury and avoid uptake into uninvolved tissues. The rapid evolution of nanotechnology is aiming to fulfill the goal of selective recognition and optimal drug delivery through the development of molecularly imprinted polymeric (MIP) nanoparticles, tailor-made for a diverse range of analytes (e.g., pharmaceuticals, pesticides, amino acids, etc.) and of nanostructured targeted drug carriers (e.g., liposomes and micelles) with increased circulation lifetimes. In the present study, PLGA microparticles containing multilamellar vesicles (MLVs), and MIP nanoparticles were synthesized to be employed as drug carriers and synthetic receptors respectively

  1. Social exclusion impairs distractor suppression but not target enhancement in selective attention.

    Science.gov (United States)

    Xu, Mengsi; Li, Zhiai; Diao, Liuting; Fan, Lingxia; Zhang, Lijie; Yuan, Shuge; Yang, Dong

    2017-11-01

    Social exclusion has been thought to weaken one's ability to exert inhibitory control. Existing studies have primarily focused on the relationship between exclusion and behavioral inhibition, and have reported that exclusion impairs behavioral inhibition. However, whether exclusion also affects selective attention, another important aspect of inhibitory control, remains unknown. Therefore, the current study aimed to explore whether social exclusion impairs selective attention, and to specifically examine its effect on two hypothesized mechanisms of selective attention: target enhancement and distractor suppression. The Cyberball game was used to manipulate social exclusion. Participants then performed a visual search task while event-related potentials were recorded. In the visual search task, target and salient distractor were either both presented laterally or one was presented on the vertical midline and the other laterally. Results showed that social exclusion differentially affected target and distractor processing. While exclusion impaired distractor suppression, reflected as smaller distractor-positivity (Pd) amplitudes for the exclusion group compared to the inclusion group, it did not affect target enhancement, reflected as similar target-negativity (Nt) amplitudes for both the exclusion and inclusion groups. Together, these results extend our understanding of the relationship between exclusion and inhibitory control, and suggest that social exclusion affects selective attention in a more complex manner than previously thought. Copyright © 2017. Published by Elsevier B.V.

  2. In Vitro Selection and Characterization of DNA Aptamers to a Small Molecule Target.

    Science.gov (United States)

    Ruscito, Annamaria; McConnell, Erin M; Koudrina, Anna; Velu, Ranganathan; Mattice, Christopher; Hunt, Vernon; McKeague, Maureen; DeRosa, Maria C

    2017-12-14

    Aptamers, synthetic oligonucleotide-based molecular recognition probes, have found use in a wide array of biosensing technologies based on their tight and highly selective binding to a variety of molecular targets. However, the inherent challenges associated with the selection and characterization of aptamers for small molecule targets have resulted in their underrepresentation, despite the need for small molecule detection in fields such as medicine, the environment, and agriculture. This protocol describes the steps in the selection, sequencing, affinity characterization, and truncation of DNA aptamers that are specific for small molecule targets. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  3. Selection of IFE target materials from a safety and environmental perspective

    Energy Technology Data Exchange (ETDEWEB)

    Latkowski, J.F. E-mail: latkowski1@llnl.gov; Sanz, J.; Reyes, S.; Gomez del Rio, J

    2001-05-21

    Target materials for inertial fusion energy (IFE) power plant designs might be selected for a wide variety of reasons including wall absorption of driver energy, material opacity, cost and ease of fabrication. While each of these issues are of great importance, target materials should also be selected based upon their safety and environmental (S and E) characteristics. The present work focuses on the recycling, waste management and accident dose characteristics of potential target materials. If target materials are recycled so that the quantity is small, isotopic separation may be economically viable. Therefore, calculations have been completed for all stable isotopes for all elements from lithium to polonium. The results of these calculations are used to identify specific isotopes and elements that are most likely to be offensive as well as those most likely to be acceptable in terms of their S and E characteristics.

  4. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A

    OpenAIRE

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for moni...

  5. ProSelection: A Novel Algorithm to Select Proper Protein Structure Subsets for in Silico Target Identification and Drug Discovery Research.

    Science.gov (United States)

    Wang, Nanyi; Wang, Lirong; Xie, Xiang-Qun

    2017-11-27

    Molecular docking is widely applied to computer-aided drug design and has become relatively mature in the recent decades. Application of docking in modeling varies from single lead compound optimization to large-scale virtual screening. The performance of molecular docking is highly dependent on the protein structures selected. It is especially challenging for large-scale target prediction research when multiple structures are available for a single target. Therefore, we have established ProSelection, a docking preferred-protein selection algorithm, in order to generate the proper structure subset(s). By the ProSelection algorithm, protein structures of "weak selectors" are filtered out whereas structures of "strong selectors" are kept. Specifically, the structure which has a good statistical performance of distinguishing active ligands from inactive ligands is defined as a strong selector. In this study, 249 protein structures of 14 autophagy-related targets are investigated. Surflex-dock was used as the docking engine to distinguish active and inactive compounds against these protein structures. Both t test and Mann-Whitney U test were used to distinguish the strong from the weak selectors based on the normality of the docking score distribution. The suggested docking score threshold for active ligands (SDA) was generated for each strong selector structure according to the receiver operating characteristic (ROC) curve. The performance of ProSelection was further validated by predicting the potential off-targets of 43 U.S. Federal Drug Administration approved small molecule antineoplastic drugs. Overall, ProSelection will accelerate the computational work in protein structure selection and could be a useful tool for molecular docking, target prediction, and protein-chemical database establishment research.

  6. Altering spatial priority maps via statistical learning of target selection and distractor filtering.

    Science.gov (United States)

    Ferrante, Oscar; Patacca, Alessia; Di Caro, Valeria; Della Libera, Chiara; Santandrea, Elisa; Chelazzi, Leonardo

    2018-05-01

    The cognitive system has the capacity to learn and make use of environmental regularities - known as statistical learning (SL), including for the implicit guidance of attention. For instance, it is known that attentional selection is biased according to the spatial probability of targets; similarly, changes in distractor filtering can be triggered by the unequal spatial distribution of distractors. Open questions remain regarding the cognitive/neuronal mechanisms underlying SL of target selection and distractor filtering. Crucially, it is unclear whether the two processes rely on shared neuronal machinery, with unavoidable cross-talk, or they are fully independent, an issue that we directly addressed here. In a series of visual search experiments, participants had to discriminate a target stimulus, while ignoring a task-irrelevant salient distractor (when present). We systematically manipulated spatial probabilities of either one or the other stimulus, or both. We then measured performance to evaluate the direct effects of the applied contingent probability distribution (e.g., effects on target selection of the spatial imbalance in target occurrence across locations) as well as its indirect or "transfer" effects (e.g., effects of the same spatial imbalance on distractor filtering across locations). By this approach, we confirmed that SL of both target and distractor location implicitly bias attention. Most importantly, we described substantial indirect effects, with the unequal spatial probability of the target affecting filtering efficiency and, vice versa, the unequal spatial probability of the distractor affecting target selection efficiency across locations. The observed cross-talk demonstrates that SL of target selection and distractor filtering are instantiated via (at least partly) shared neuronal machinery, as further corroborated by strong correlations between direct and indirect effects at the level of individual participants. Our findings are compatible

  7. A color hierarchy for automatic target selection.

    Directory of Open Access Journals (Sweden)

    Illia Tchernikov

    Full Text Available Visual processing of color starts at the cones in the retina and continues through ventral stream visual areas, called the parvocellular pathway. Motion processing also starts in the retina but continues through dorsal stream visual areas, called the magnocellular system. Color and motion processing are functionally and anatomically discrete. Previously, motion processing areas MT and MST have been shown to have no color selectivity to a moving stimulus; the neurons were colorblind whenever color was presented along with motion. This occurs when the stimuli are luminance-defined versus the background and is considered achromatic motion processing. Is motion processing independent of color processing? We find that motion processing is intrinsically modulated by color. Color modulated smooth pursuit eye movements produced upon saccading to an aperture containing a surface of coherently moving dots upon a black background. Furthermore, when two surfaces that differed in color were present, one surface was automatically selected based upon a color hierarchy. The strength of that selection depended upon the distance between the two colors in color space. A quantifiable color hierarchy for automatic target selection has wide-ranging implications from sports to advertising to human-computer interfaces.

  8. The folate receptor as a molecular target for tumor-selective radionuclide delivery

    International Nuclear Information System (INIS)

    Ke, C.-Y.; Mathias, Carla J.; Green, Mark A.

    2003-01-01

    The cell-membrane folate receptor is a potential molecular target for tumor-selective drug delivery, including radiolabeled folate-chelate conjugates for diagnostic imaging. We review here some background on the folate receptor as tumor-associated molecular target for drug delivery, and briefly survey the literature on tumor-targeting with radiolabeled folate-chelate conjugates

  9. ASIC and ENaC type sodium channels: conformational states and the structures of the ion selectivity filters.

    Science.gov (United States)

    Hanukoglu, Israel

    2017-02-01

    The acid-sensing ion channels (ASICs) and epithelial sodium channels (ENaC) are members of a superfamily of channels that play critical roles in mechanosensation, chemosensation, nociception, and regulation of blood volume and pressure. These channels look and function like a tripartite funnel that directs the flow of Na + ions into the cytoplasm via the channel pore in the membrane. The subunits that form these channels share a common structure with two transmembrane segments (TM1 and TM2) and a large extracellular part. In most vertebrates, there are five paralogous genes that code for ASICs (ASIC1-ASIC5), and four for ENaC subunits alpha, beta, gamma, and delta (α, β, γ, and δ). While ASICs can form functional channels as a homo- or heterotrimer, ENaC functions as an obligate heterotrimer composed of α-β-γ or β-γ-δ subunits. The structure of ASIC has been determined in several conformations, including desensitized and open states. This review presents a comparison of the structures of these states using easy-to-understand molecular models of the full complex, the central tunnel that includes an outer vestibule, the channel pore, and ion selectivity filter. The differences in the secondary, tertiary, and quaternary structures of the states are summarized to pinpoint the conformational changes responsible for channel opening. Results of site-directed mutagenesis studies of ENaC subunits are examined in light of ASIC1 models. Based on these comparisons, a molecular model for the selectivity filter of ENaC is built by in silico mutagenesis of an ASIC1 structure. These models suggest that Na + ions pass through the filter in a hydrated state. © 2016 Federation of European Biochemical Societies.

  10. Target Selection for the SDSS-IV APOGEE-2 Survey

    International Nuclear Information System (INIS)

    Zasowski, G.; Cohen, R. E.; Carlberg, J. K.; Fleming, Scott W.; Chojnowski, S. D.; Holtzman, J.; Santana, F.; Oelkers, R. J.; Bird, J. C.; Andrews, B.; Beaton, R. L.; Bender, C.; Cunha, K.; Bovy, J.; Covey, K.; Dell’Agli, F.; García-Hernández, D. A.; Frinchaboy, P. M.; Harding, P.; Johnson, J. A.

    2017-01-01

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10 5 stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.

  11. The control of attentional target selection in a colour/colour conjunction task

    OpenAIRE

    Berggren, Nick; Eimer, Martin

    2016-01-01

    To investigate the time course of attentional object selection processes in visual search tasks where targets are defined by a combination of features from the same dimension, we measured the N2pc component as an electrophysiological marker of attentional object selection during colour/colour conjunction search. In Experiment 1, participants searched for targets defined by a combination of two colours, while ignoring distractor objects that matched only one of these colours. Reliable N2pc com...

  12. Evaluating gaze-based interface tools to facilitate point-and-select tasks with small targets

    DEFF Research Database (Denmark)

    Skovsgaard, Henrik; Mateo, Julio C.; Hansen, John Paulin

    2011-01-01

    -and-select tasks. We conducted two experiments comparing the performance of dwell, magnification and zoom methods in point-and-select tasks with small targets in single- and multiple-target layouts. Both magnification and zoom showed higher hit rates than dwell. Hit rates were higher when using magnification than...

  13. Target Selection for the SDSS-IV APOGEE-2 Survey

    Energy Technology Data Exchange (ETDEWEB)

    Zasowski, G. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Cohen, R. E.; Carlberg, J. K.; Fleming, Scott W. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Chojnowski, S. D.; Holtzman, J. [Department of Astronomy, New Mexico State University, Las Cruces, NM 88001 (United States); Santana, F. [Departamento de Astronomía, Universidad de Chile, Santiago (Chile); Oelkers, R. J.; Bird, J. C. [Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235 (United States); Andrews, B. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Beaton, R. L. [The Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Bender, C.; Cunha, K. [Steward Observatory, The University of Arizona, Tucson, AZ 85719 (United States); Bovy, J. [Department of Astronomy and Astrophysics and Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Covey, K. [Department of Physics and Astronomy, Western Washington University, Bellingham, WA 98225 (United States); Dell’Agli, F.; García-Hernández, D. A. [Departamento de Astrofísica, Universidad de La Laguna, and Instituto de Astrofísica de Canarias, La Laguna, Tenerife (Spain); Frinchaboy, P. M. [Department of Physics and Astronomy, Texas Christian University, Fort Worth, TX 76129 (United States); Harding, P. [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Johnson, J. A., E-mail: gail.zasowski@gmail.com [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); and others

    2017-11-01

    APOGEE-2 is a high-resolution, near-infrared spectroscopic survey observing ∼3 × 10{sup 5} stars across the entire sky. It is the successor to APOGEE and is part of the Sloan Digital Sky Survey IV (SDSS-IV). APOGEE-2 is expanding on APOGEE’s goals of addressing critical questions of stellar astrophysics, stellar populations, and Galactic chemodynamical evolution using (1) an enhanced set of target types and (2) a second spectrograph at Las Campanas Observatory in Chile. APOGEE-2 is targeting red giant branch and red clump stars, RR Lyrae, low-mass dwarf stars, young stellar objects, and numerous other Milky Way and Local Group sources across the entire sky from both hemispheres. In this paper, we describe the APOGEE-2 observational design, target selection catalogs and algorithms, and the targeting-related documentation included in the SDSS data releases.

  14. Classification and Target Group Selection Based Upon Frequent Patterns

    NARCIS (Netherlands)

    W.H.L.M. Pijls (Wim); R. Potharst (Rob)

    2000-01-01

    textabstractIn this technical report , two new algorithms based upon frequent patterns are proposed. One algorithm is a classification method. The other one is an algorithm for target group selection. In both algorithms, first of all, the collection of frequent patterns in the training set is

  15. Efficient and Adaptive Node Selection for Target Tracking in Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Juan Feng

    2016-01-01

    Full Text Available In target tracking wireless sensor network, choosing the proper working nodes can not only minimize the number of active nodes, but also satisfy the tracking reliability requirement. However, most existing works focus on selecting sensor nodes which are the nearest to the target for tracking missions and they did not consider the correlation of the location of the sensor nodes so that these approaches can not meet all the goals of the network. This work proposes an efficient and adaptive node selection approach for tracking a target in a distributed wireless sensor network. The proposed approach combines the distance-based node selection strategy and particle filter prediction considering the spatial correlation of the different sensing nodes. Moreover, a joint distance weighted measurement is proposed to estimate the information utility of sensing nodes. Experimental results show that EANS outperformed the state-of-the-art approaches by reducing the energy cost and computational complexity as well as guaranteeing the tracking accuracy.

  16. Positive-negative-selection-mediated gene targeting in rice

    Directory of Open Access Journals (Sweden)

    Zenpei eShimatani

    2015-01-01

    Full Text Available Gene targeting (GT refers to the designed modification of genomic sequence(s through homologous recombination (HR. GT is a powerful tool both for the study of gene function and for molecular breeding. However, in transformation of higher plants, non-homologous end joining (NHEJ occurs overwhelmingly in somatic cells, masking HR-mediated GT. Positive-negative selection (PNS is an approach for finding HR-mediated GT events because it can eliminate NHEJ effectively by expression of a negative-selection marker gene. In rice—a major crop worldwide—reproducible PNS-mediated GT of endogenous genes has now been successfully achieved. The procedure is based on strong PNS using diphtheria toxin A-fragment as a negative marker, and has succeeded in the directed modification of several endogenous rice genes in various ways. In addition to gene knock-outs and knock-ins, a nucleotide substitution in a target gene was also achieved recently. This review presents a summary of the development of the rice PNS system, highlighting its advantages. Different types of gene modification and gene editing aimed at developing new plant breeding technology (NPBT based on PNS are discussed.

  17. Target Selection and Deselection at the Berkeley StructuralGenomics Center

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Kim, Sung-Hou; Brenner, Steven E.

    2005-03-22

    At the Berkeley Structural Genomics Center (BSGC), our goalis to obtain a near-complete structural complement of proteins in theminimal organisms Mycoplasma genitalium and M. pneumoniae, two closelyrelated pathogens. Current targets for structure determination have beenselected in six major stages, starting with those predicted to be mosttractable to high throughput study and likely to yield new structuralinformation. We report on the process used to select these proteins, aswell as our target deselection procedure. Target deselection reducesexperimental effort by eliminating targets similar to those recentlysolved by the structural biology community or other centers. We measurethe impact of the 69 structures solved at the BSGC as of July 2004 onstructure prediction coverage of the M. pneumoniae and M. genitaliumproteomes. The number of Mycoplasma proteins for which thefold couldfirst be reliably assigned based on structures solved at the BSGC (24 M.pneumoniae and 21 M. genitalium) is approximately 25 percent of the totalresulting from work at all structural genomics centers and the worldwidestructural biology community (94 M. pneumoniae and 86M. genitalium)during the same period. As the number of structures contributed by theBSGC during that period is less than 1 percent of the total worldwideoutput, the benefits of a focused target selection strategy are apparent.If the structures of all current targets were solved, the percentage ofM. pneumoniae proteins for which folds could be reliably assigned wouldincrease from approximately 57 percent (391 of 687) at present to around80 percent (550 of 687), and the percentage of the proteome that could beaccurately modeled would increase from around 37 percent (254 of 687) toabout 64 percent (438 of 687). In M. genitalium, the percentage of theproteome that could be structurally annotated based on structures of ourremaining targets would rise from 72 percent (348 of 486) to around 76percent (371 of 486), with the

  18. Selectivity on-target of bromodomain chemical probes by structure-guided medicinal chemistry and chemical biology.

    Science.gov (United States)

    Galdeano, Carles; Ciulli, Alessio

    2016-09-01

    Targeting epigenetic proteins is a rapidly growing area for medicinal chemistry and drug discovery. Recent years have seen an explosion of interest in developing small molecules binding to bromodomains, the readers of acetyl-lysine modifications. A plethora of co-crystal structures has motivated focused fragment-based design and optimization programs within both industry and academia. These efforts have yielded several compounds entering the clinic, and many more are increasingly being used as chemical probes to interrogate bromodomain biology. High selectivity of chemical probes is necessary to ensure biological activity is due to an on-target effect. Here, we review the state-of-the-art of bromodomain-targeting compounds, focusing on the structural basis for their on-target selectivity or lack thereof. We also highlight chemical biology approaches to enhance on-target selectivity.

  19. Directional enhancement of selected high-order-harmonics from intense laser irradiated blazed grating targets.

    Science.gov (United States)

    Zhang, Guobo; Chen, Min; Liu, Feng; Yuan, Xiaohui; Weng, Suming; Zheng, Jun; Ma, Yanyun; Shao, Fuqiu; Sheng, Zhengming; Zhang, Jie

    2017-10-02

    Relativistically intense laser solid target interaction has been proved to be a promising way to generate high-order harmonics, which can be used to diagnose ultrafast phenomena. However, their emission direction and spectra still lack tunability. Based upon two-dimensional particle-in-cell simulations, we show that directional enhancement of selected high-order-harmonics can be realized using blazed grating targets. Such targets can select harmonics with frequencies being integer times of the grating frequency. Meanwhile, the radiation intensity and emission area of the harmonics are increased. The emission direction is controlled by tailoring the local blazed structure. Theoretical and electron dynamics analysis for harmonics generation, selection and directional enhancement from the interaction between multi-cycle laser and grating target are carried out. These studies will benefit the generation and application of laser plasma-based high order harmonics.

  20. Signatures of DNA target selectivity by ETS transcription factors.

    Science.gov (United States)

    Poon, Gregory M K; Kim, Hye Mi

    2017-05-27

    The ETS family of transcription factors is a functionally heterogeneous group of gene regulators that share a structurally conserved, eponymous DNA-binding domain. DNA target specificity derives from combinatorial interactions with other proteins as well as intrinsic heterogeneity among ETS domains. Emerging evidence suggests molecular hydration as a fundamental feature that defines the intrinsic heterogeneity in DNA target selection and susceptibility to epigenetic DNA modification. This perspective invokes novel hypotheses in the regulation of ETS proteins in physiologic osmotic stress, their pioneering potential in heterochromatin, and the effects of passive and pharmacologic DNA demethylation on ETS regulation.

  1. Dynamic interactions between visual working memory and saccade target selection

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P.; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-01-01

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. PMID:25228628

  2. Dynamic interactions between visual working memory and saccade target selection.

    Science.gov (United States)

    Schneegans, Sebastian; Spencer, John P; Schöner, Gregor; Hwang, Seongmin; Hollingworth, Andrew

    2014-09-16

    Recent psychophysical experiments have shown that working memory for visual surface features interacts with saccadic motor planning, even in tasks where the saccade target is unambiguously specified by spatial cues. Specifically, a match between a memorized color and the color of either the designated target or a distractor stimulus influences saccade target selection, saccade amplitudes, and latencies in a systematic fashion. To elucidate these effects, we present a dynamic neural field model in combination with new experimental data. The model captures the neural processes underlying visual perception, working memory, and saccade planning relevant to the psychophysical experiment. It consists of a low-level visual sensory representation that interacts with two separate pathways: a spatial pathway implementing spatial attention and saccade generation, and a surface feature pathway implementing color working memory and feature attention. Due to bidirectional coupling between visual working memory and feature attention in the model, the working memory content can indirectly exert an effect on perceptual processing in the low-level sensory representation. This in turn biases saccadic movement planning in the spatial pathway, allowing the model to quantitatively reproduce the observed interaction effects. The continuous coupling between representations in the model also implies that modulation should be bidirectional, and model simulations provide specific predictions for complementary effects of saccade target selection on visual working memory. These predictions were empirically confirmed in a new experiment: Memory for a sample color was biased toward the color of a task-irrelevant saccade target object, demonstrating the bidirectional coupling between visual working memory and perceptual processing. © 2014 ARVO.

  3. Molecular Connectivity Predefines Polypharmacology: Aliphatic Rings, Chirality, and sp3 Centers Enhance Target Selectivity

    Directory of Open Access Journals (Sweden)

    Stefania Monteleone

    2017-08-01

    Full Text Available Dark chemical matter compounds are small molecules that have been recently identified as highly potent and selective hits. For this reason, they constitute a promising class of possible candidates in the process of drug discovery and raise the interest of the scientific community. To this purpose, Wassermann et al. (2015 have described the application of 2D descriptors to characterize dark chemical matter. However, their definition was based on the number of reported positive assays rather than the number of known targets. As there might be multiple assays for one single target, the number of assays does not fully describe target selectivity. Here, we propose an alternative classification of active molecules that is based on the number of known targets. We cluster molecules in four classes: black, gray, and white compounds are active on one, two to four, and more than four targets respectively, whilst inactive compounds are found to be inactive in the considered assays. In this study, black and inactive compounds are found to have not only higher solubility, but also a higher number of chiral centers, sp3 carbon atoms and aliphatic rings. On the contrary, white compounds contain a higher number of double bonds and fused aromatic rings. Therefore, the design of a screening compound library should consider these molecular properties in order to achieve target selectivity or polypharmacology. Furthermore, analysis of four main target classes (GPCRs, kinases, proteases, and ion channels shows that GPCR ligands are more selective than the other classes, as the number of black compounds is higher in this target superfamily. On the other side, ligands that hit kinases, proteases, and ion channels bind to GPCRs more likely than to other target classes. Consequently, depending on the target protein family, appropriate screening libraries can be designed in order to minimize the likelihood of unwanted side effects early in the drug discovery process

  4. THE SDSS-IV EXTENDED BARYON OSCILLATION SPECTROSCOPIC SURVEY: LUMINOUS RED GALAXY TARGET SELECTION

    Energy Technology Data Exchange (ETDEWEB)

    Prakash, Abhishek; Licquia, Timothy C.; Newman, Jeffrey A.; Rao, Sandhya M. [PITT PACC, Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, PA 15260 (United States); Ross, Ashley J. [Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Dawson, Kyle S.; Bautista, Julian E.; Brownstein, Joel R. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Kneib, Jean-Paul [Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne Observatoire de Sauverny, 1290 Versoix (Switzerland); Percival, Will J. [Institute of Cosmology and Gravitation, Dennis Sciama Building, University of Portsmouth, Portsmouth, PO1 3FX (United Kingdom); Comparat, Johan [Instituto de Física Teórica, (UAM/CSIC), Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid (Spain); Tinker, Jeremy L. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Schlegel, David J. [Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720 (United States); Tojeiro, Rita [School of Physics and Astronomy, St Andrews, KY16 9SS (United Kingdom); Ho, Shirley; Lang, Dustin [Bruce and Astrid McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); McBride, Cameron K. [Harvard-Smithsonian Center for Astrophysics, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Zhu, Guangtun Ben, E-mail: abp15@pitt.edu [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); and others

    2016-06-01

    We describe the algorithm used to select the luminous red galaxy (LRG) sample for the extended Baryon Oscillation Spectroscopic Survey (eBOSS) of the Sloan Digital Sky Survey IV (SDSS-IV) using photometric data from both the SDSS and the Wide-field Infrared Survey Explorer . LRG targets are required to meet a set of color selection criteria and have z -band and i -band MODEL magnitudes z < 19.95 and 19.9 < i < 21.8, respectively. Our algorithm selects roughly 50 LRG targets per square degree, the great majority of which lie in the redshift range 0.6 < z < 1.0 (median redshift 0.71). We demonstrate that our methods are highly effective at eliminating stellar contamination and lower-redshift galaxies. We perform a number of tests using spectroscopic data from SDSS-III/BOSS ancillary programs to determine the redshift reliability of our target selection and its ability to meet the science requirements of eBOSS. The SDSS spectra are of high enough signal-to-noise ratio that at least ∼89% of the target sample yields secure redshift measurements. We also present tests of the uniformity and homogeneity of the sample, demonstrating that it should be clean enough for studies of the large-scale structure of the universe at higher redshifts than SDSS-III/BOSS LRGs reached.

  5. Design, construction, and characterization of high-performance membrane fusion devices with target-selectivity.

    Science.gov (United States)

    Kashiwada, Ayumi; Yamane, Iori; Tsuboi, Mana; Ando, Shun; Matsuda, Kiyomi

    2012-01-31

    Membrane fusion proteins such as the hemagglutinin glycoprotein have target recognition and fusion accelerative domains, where some synergistically working elements are essential for target-selective and highly effective native membrane fusion systems. In this work, novel membrane fusion devices bearing such domains were designed and constructed. We selected a phenylboronic acid derivative as a recognition domain for a sugar-like target and a transmembrane-peptide (Leu-Ala sequence) domain interacting with the target membrane, forming a stable hydrophobic α-helix and accelerating the fusion process. Artificial membrane fusion behavior between the synthetic devices in which pilot and target liposomes were incorporated was characterized by lipid-mixing and inner-leaflet lipid-mixing assays. Consequently, the devices bearing both the recognition and transmembrane domains brought about a remarkable increase in the initial rate for the membrane fusion compared with the devices containing the recognition domain alone. In addition, a weakly acidic pH-responsive device was also constructed by replacing three Leu residues in the transmembrane-peptide domain by Glu residues. The presence of Glu residues made the acidic pH-dependent hydrophobic α-helix formation possible as expected. The target-selective liposome-liposome fusion was accelerated in a weakly acidic pH range when the Glu-substituted device was incorporated in pilot liposomes. The use of this pH-responsive device seems to be a potential strategy for novel applications in a liposome-based delivery system. © 2011 American Chemical Society

  6. THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Nicholas P.; Kirkpatrick, Jessica A.; Carithers, William C.; Ho, Shirley [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Myers, Adam D. [Department of Astronomy, MC-221, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Sheldon, Erin S. [Brookhaven National Laboratory, Blgd 510, Upton, NY 11375 (United States); Yeche, Christophe; Aubourg, Eric [CEA, Centre de Saclay, IRFU, 91191 Gif-sur-Yvette (France); Strauss, Michael A.; Lee, Khee-Gan [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Bovy, Jo; Blanton, Michael R.; Hogg, David W. [Center for Cosmology and Particle Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Richards, Gordon T. [Department of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104 (United States); Brandt, W. N. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Croft, Rupert A. C. [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Da Silva, Robert [Department of Astronomy and Astrophysics, University of California, Santa Cruz, Santa Cruz, CA 95064 (United States); Dawson, Kyle [Department of Physics and Astronomy, University of Utah, UT (United States); Eisenstein, Daniel J. [Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Hennawi, Joseph F., E-mail: npross@lbl.gov [Max-Planck-Institut fuer Astronomie, Konigstuhl 17, 69117 Heidelberg (Germany); and others

    2012-03-01

    The SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), a five-year spectroscopic survey of 10,000 deg{sup 2}, achieved first light in late 2009. One of the key goals of BOSS is to measure the signature of baryon acoustic oscillations (BAOs) in the distribution of Ly{alpha} absorption from the spectra of a sample of {approx}150,000 z > 2.2 quasars. Along with measuring the angular diameter distance at z Almost-Equal-To 2.5, BOSS will provide the first direct measurement of the expansion rate of the universe at z > 2. One of the biggest challenges in achieving this goal is an efficient target selection algorithm for quasars in the redshift range 2.2 < z < 3.5, where their colors tend to overlap those of the far more numerous stars. During the first year of the BOSS survey, quasar target selection (QTS) methods were developed and tested to meet the requirement of delivering at least 15 quasars deg{sup -2} in this redshift range, with a goal of 20 out of 40 targets deg{sup -2} allocated to the quasar survey. To achieve these surface densities, the magnitude limit of the quasar targets was set at g {<=} 22.0 or r {<=} 21.85. While detection of the BAO signature in the distribution of Ly{alpha} absorption in quasar spectra does not require a uniform target selection algorithm, many other astrophysical studies do. We have therefore defined a uniformly selected subsample of 20 targets deg{sup -2}, for which the selection efficiency is just over 50% ({approx}10 z > 2.20 quasars deg{sup -2}). This 'CORE' subsample will be fixed for Years Two through Five of the survey. For the remaining 20 targets deg{sup -2}, we will continue to develop improved selection techniques, including the use of additional data sets beyond the Sloan Digital Sky Survey (SDSS) imaging data. In this paper, we describe the evolution and implementation of the BOSS QTS algorithms during the first two years of BOSS operations (through 2011 July), in support of the science investigations

  7. Predictive distractor context facilitates attentional selection of high, but not intermediate and low, salience targets.

    Science.gov (United States)

    Töllner, Thomas; Conci, Markus; Müller, Hermann J

    2015-03-01

    It is well established that we can focally attend to a specific region in visual space without shifting our eyes, so as to extract action-relevant sensory information from covertly attended locations. The underlying mechanisms that determine how fast we engage our attentional spotlight in visual-search scenarios, however, remain controversial. One dominant view advocated by perceptual decision-making models holds that the times taken for focal-attentional selection are mediated by an internal template that biases perceptual coding and selection decisions exclusively through target-defining feature coding. This notion directly predicts that search times remain unaffected whether or not participants can anticipate the upcoming distractor context. Here we tested this hypothesis by employing an illusory-figure localization task that required participants to search for an invariant target amongst a variable distractor context, which gradually changed--either randomly or predictably--as a function of distractor-target similarity. We observed a graded decrease in internal focal-attentional selection times--correlated with external behavioral latencies--for distractor contexts of higher relative to lower similarity to the target. Critically, for low but not intermediate and high distractor-target similarity, these context-driven effects were cortically and behaviorally amplified when participants could reliably predict the type of distractors. This interactive pattern demonstrates that search guidance signals can integrate information about distractor, in addition to target, identities to optimize distractor-target competition for focal-attentional selection. © 2014 Wiley Periodicals, Inc.

  8. Targets of balancing selection in the human genome

    DEFF Research Database (Denmark)

    Andrés, Aida M; Hubisz, Melissa J; Indap, Amit

    2009-01-01

    Balancing selection is potentially an important biological force for maintaining advantageous genetic diversity in populations, including variation that is responsible for long-term adaptation to the environment. By serving as a means to maintain genetic variation, it may be particularly relevant...... to maintaining phenotypic variation in natural populations. Nevertheless, its prevalence and specific targets in the human genome remain largely unknown. We have analyzed the patterns of diversity and divergence of 13,400 genes in two human populations using an unbiased single-nucleotide polymorphism data set......, a genome-wide approach, and a method that incorporates demography in neutrality tests. We identified an unbiased catalog of genes with signatures of long-term balancing selection, which includes immunity genes as well as genes encoding keratins and membrane channels; the catalog also shows enrichment...

  9. Auditory Stream Segregation Improves Infants' Selective Attention to Target Tones Amid Distracters

    Science.gov (United States)

    Smith, Nicholas A.; Trainor, Laurel J.

    2011-01-01

    This study examined the role of auditory stream segregation in the selective attention to target tones in infancy. Using a task adapted from Bregman and Rudnicky's 1975 study and implemented in a conditioned head-turn procedure, infant and adult listeners had to discriminate the temporal order of 2,200 and 2,400 Hz target tones presented alone,…

  10. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    Science.gov (United States)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  11. The spatially global control of attentional target selection in visual search

    OpenAIRE

    Berggren, Nick; Jenkins, M.; McCants, C.W.; Eimer, Martin

    2017-01-01

    Glyn Humphreys and his co-workers have made numerous important theoretical and empirical contributions to research on visual search. They have introduced the concept of attentional target templates and investigated the nature of these templates and how they are involved in the control of search performance. In the experiments reported here, we investigated whether feature-specific search template for particular colours can guide target selection independently for different regions of visual s...

  12. Competition between color and luminance for target selection in smooth pursuit and saccadic eye movements.

    Science.gov (United States)

    Spering, Miriam; Montagnini, Anna; Gegenfurtner, Karl R

    2008-11-24

    Visual processing of color and luminance for smooth pursuit and saccadic eye movements was investigated using a target selection paradigm. In two experiments, stimuli were varied along the dimensions color and luminance, and selection of the more salient target was compared in pursuit and saccades. Initial pursuit was biased in the direction of the luminance component whereas saccades showed a relative preference for color. An early pursuit response toward luminance was often reversed to color by a later saccade. Observers' perceptual judgments of stimulus salience, obtained in two control experiments, were clearly biased toward luminance. This choice bias in perceptual data implies that the initial short-latency pursuit response agrees with perceptual judgments. In contrast, saccades, which have a longer latency than pursuit, do not seem to follow the perceptual judgment of salience but instead show a stronger relative preference for color. These substantial differences in target selection imply that target selection processes for pursuit and saccadic eye movements use distinctly different weights for color and luminance stimuli.

  13. Impact of high-risk conjunctions on Active Debris Removal target selection

    OpenAIRE

    Lidtke, Aleksander A.; Lewis, Hugh G.; Armellin, Roberto

    2015-01-01

    All rights reserved.Space debris simulations show that if current space launches continue unchanged, spacecraft operations might become difficult in the congested space environment. It has been suggested that Active Debris Removal (ADR) might be necessary in order to prevent such a situation. Selection of objects to be targeted by ADR is considered important because removal of non-relevant objects will unnecessarily increase the cost of ADR. One of the factors to be used in this ADR target se...

  14. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Directory of Open Access Journals (Sweden)

    Regina Stoltenburg

    Full Text Available A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  15. In vitro Selection and Interaction Studies of a DNA Aptamer Targeting Protein A.

    Science.gov (United States)

    Stoltenburg, Regina; Schubert, Thomas; Strehlitz, Beate

    2015-01-01

    A new DNA aptamer targeting Protein A is presented. The aptamer was selected by use of the FluMag-SELEX procedure. The SELEX technology (Systematic Evolution of Ligands by EXponential enrichment) is widely applied as an in vitro selection and amplification method to generate target-specific aptamers and exists in various modified variants. FluMag-SELEX is one of them and is characterized by the use of magnetic beads for target immobilization and fluorescently labeled oligonucleotides for monitoring the aptamer selection progress. Structural investigations and sequence truncation experiments of the selected aptamer for Protein A led to the conclusion, that a stem-loop structure at its 5'-end including the 5'-primer binding site is essential for aptamer-target binding. Extensive interaction analyses between aptamer and Protein A were performed by methods like surface plasmon resonance, MicroScale Thermophoresis and bead-based binding assays using fluorescence measurements. The binding of the aptamer to its target was thus investigated in assays with immobilization of one of the binding partners each, and with both binding partners in solution. Affinity constants were determined in the low micromolar to submicromolar range, increasing to the nanomolar range under the assumption of avidity. Protein A provides more than one binding site for the aptamer, which may overlap with the known binding sites for immunoglobulins. The aptamer binds specifically to both native and recombinant Protein A, but not to other immunoglobulin-binding proteins like Protein G and L. Cross specificity to other proteins was not found. The application of the aptamer is directed to Protein A detection or affinity purification. Moreover, whole cells of Staphylococcus aureus, presenting Protein A on the cell surface, could also be bound by the aptamer.

  16. Retroviral DNA integration: viral and cellular determinants of target-site selection.

    Directory of Open Access Journals (Sweden)

    Mary K Lewinski

    2006-06-01

    Full Text Available Retroviruses differ in their preferences for sites for viral DNA integration in the chromosomes of infected cells. Human immunodeficiency virus (HIV integrates preferentially within active transcription units, whereas murine leukemia virus (MLV integrates preferentially near transcription start sites and CpG islands. We investigated the viral determinants of integration-site selection using HIV chimeras with MLV genes substituted for their HIV counterparts. We found that transferring the MLV integrase (IN coding region into HIV (to make HIVmIN caused the hybrid to integrate with a specificity close to that of MLV. Addition of MLV gag (to make HIVmGagmIN further increased the similarity of target-site selection to that of MLV. A chimeric virus with MLV Gag only (HIVmGag displayed targeting preferences different from that of both HIV and MLV, further implicating Gag proteins in targeting as well as IN. We also report a genome-wide analysis indicating that MLV, but not HIV, favors integration near DNase I-hypersensitive sites (i.e., +/- 1 kb, and that HIVmIN and HIVmGagmIN also favored integration near these features. These findings reveal that IN is the principal viral determinant of integration specificity; they also reveal a new role for Gag-derived proteins, and strengthen models for integration targeting based on tethering of viral IN proteins to host proteins.

  17. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Science.gov (United States)

    Kim, Sungho; Song, Woo-Jin; Kim, So-Hyun

    2016-01-01

    Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR) images or infrared (IR) images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT) and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter) and an asymmetric morphological closing filter (AMCF, post-filter) into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC)-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic database generated

  18. Robust Ground Target Detection by SAR and IR Sensor Fusion Using Adaboost-Based Feature Selection

    Directory of Open Access Journals (Sweden)

    Sungho Kim

    2016-07-01

    Full Text Available Long-range ground targets are difficult to detect in a noisy cluttered environment using either synthetic aperture radar (SAR images or infrared (IR images. SAR-based detectors can provide a high detection rate with a high false alarm rate to background scatter noise. IR-based approaches can detect hot targets but are affected strongly by the weather conditions. This paper proposes a novel target detection method by decision-level SAR and IR fusion using an Adaboost-based machine learning scheme to achieve a high detection rate and low false alarm rate. The proposed method consists of individual detection, registration, and fusion architecture. This paper presents a single framework of a SAR and IR target detection method using modified Boolean map visual theory (modBMVT and feature-selection based fusion. Previous methods applied different algorithms to detect SAR and IR targets because of the different physical image characteristics. One method that is optimized for IR target detection produces unsuccessful results in SAR target detection. This study examined the image characteristics and proposed a unified SAR and IR target detection method by inserting a median local average filter (MLAF, pre-filter and an asymmetric morphological closing filter (AMCF, post-filter into the BMVT. The original BMVT was optimized to detect small infrared targets. The proposed modBMVT can remove the thermal and scatter noise by the MLAF and detect extended targets by attaching the AMCF after the BMVT. Heterogeneous SAR and IR images were registered automatically using the proposed RANdom SAmple Region Consensus (RANSARC-based homography optimization after a brute-force correspondence search using the detected target centers and regions. The final targets were detected by feature-selection based sensor fusion using Adaboost. The proposed method showed good SAR and IR target detection performance through feature selection-based decision fusion on a synthetic

  19. In silico tools used for compound selection during target-based drug discovery and development.

    Science.gov (United States)

    Caldwell, Gary W

    2015-01-01

    The target-based drug discovery process, including target selection, screening, hit-to-lead (H2L) and lead optimization stage gates, is the most common approach used in drug development. The full integration of in vitro and/or in vivo data with in silico tools across the entire process would be beneficial to R&D productivity by developing effective selection criteria and drug-design optimization strategies. This review focuses on understanding the impact and extent in the past 5 years of in silico tools on the various stage gates of the target-based drug discovery approach. There are a large number of in silico tools available for establishing selection criteria and drug-design optimization strategies in the target-based approach. However, the inconsistent use of in vitro and/or in vivo data integrated with predictive in silico multiparameter models throughout the process is contributing to R&D productivity issues. In particular, the lack of reliable in silico tools at the H2L stage gate is contributing to the suboptimal selection of viable lead compounds. It is suggested that further development of in silico multiparameter models and organizing biologists, medicinal and computational chemists into one team with a single accountable objective to expand the utilization of in silico tools in all phases of drug discovery would improve R&D productivity.

  20. Construction and applications of exon-trapping gene-targeting vectors with a novel strategy for negative selection.

    Science.gov (United States)

    Saito, Shinta; Ura, Kiyoe; Kodama, Miho; Adachi, Noritaka

    2015-06-30

    Targeted gene modification by homologous recombination provides a powerful tool for studying gene function in cells and animals. In higher eukaryotes, non-homologous integration of targeting vectors occurs several orders of magnitude more frequently than does targeted integration, making the gene-targeting technology highly inefficient. For this reason, negative-selection strategies have been employed to reduce the number of drug-resistant clones associated with non-homologous vector integration, particularly when artificial nucleases to introduce a DNA break at the target site are unavailable or undesirable. As such, an exon-trap strategy using a promoterless drug-resistance marker gene provides an effective way to counterselect non-homologous integrants. However, constructing exon-trapping targeting vectors has been a time-consuming and complicated process. By virtue of highly efficient att-mediated recombination, we successfully developed a simple and rapid method to construct plasmid-based vectors that allow for exon-trapping gene targeting. These exon-trap vectors were useful in obtaining correctly targeted clones in mouse embryonic stem cells and human HT1080 cells. Most importantly, with the use of a conditionally cytotoxic gene, we further developed a novel strategy for negative selection, thereby enhancing the efficiency of counterselection for non-homologous integration of exon-trap vectors. Our methods will greatly facilitate exon-trapping gene-targeting technologies in mammalian cells, particularly when combined with the novel negative selection strategy.

  1. Stimulus selection and tracking during urination: autoshaping directed behavior with toilet targets.

    Science.gov (United States)

    Siegel, R K

    1977-01-01

    A simple procedure is described for investigating stimuli selected as targets during urination in the commode. Ten normal males preferred a floating target that could be tracked to a series of stationary targets. This technique was used to bring misdirected urinations in a severely retarded male under rapid stimulus control of a floating target in the commode. The float stimulus was also evaluated with nine institionalized, moderately retarded males and results indicated rapid autoshaping of directed urination without the use of verbal instructions or conventional toilet training. The technique can be applied in training children to control misdirected urinations in institution for the retarded, in psychiatric wards with regressed populations, and in certain male school dormitories. PMID:885828

  2. Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Tujin; Su, Dian; Liu, Tao; Tang, Keqi; Camp, David G.; Qian, Weijun; Smith, Richard D.

    2012-04-01

    Selected reaction monitoring (SRM)—also known as multiple reaction monitoring (MRM)—has emerged as a promising high-throughput targeted protein quantification technology for candidate biomarker verification and systems biology applications. A major bottleneck for current SRM technology, however, is insufficient sensitivity for e.g., detecting low-abundance biomarkers likely present at the pg/mL to low ng/mL range in human blood plasma or serum, or extremely low-abundance signaling proteins in the cells or tissues. Herein we review recent advances in methods and technologies, including front-end immunoaffinity depletion, fractionation, selective enrichment of target proteins/peptides or their posttranslational modifications (PTMs), as well as advances in MS instrumentation, which have significantly enhanced the overall sensitivity of SRM assays and enabled the detection of low-abundance proteins at low to sub- ng/mL level in human blood plasma or serum. General perspectives on the potential of achieving sufficient sensitivity for detection of pg/mL level proteins in plasma are also discussed.

  3. Out with the old? The role of selective attention in retaining targets in partial report.

    Science.gov (United States)

    Lindsey, Dakota R B; Bundesen, Claus; Kyllingsbæk, Søren; Petersen, Anders; Logan, Gordon D

    2017-01-01

    In the partial-report task, subjects are asked to report only a portion of the items presented. Selective attention chooses which objects to represent in short-term memory (STM) on the basis of their relevance. Because STM is limited in capacity, one must sometimes choose which objects are removed from memory in light of new relevant information. We tested the hypothesis that the choices among newly presented information and old information in STM involve the same process-that both are acts of selective attention. We tested this hypothesis using a two-display partial-report procedure. In this procedure, subjects had to select and retain relevant letters (targets) from two sequentially presented displays. If selection in perception and retention in STM are the same process, then irrelevant letters (distractors) in the second display, which demanded attention because of their similarity to the targets, should have decreased target report from the first display. This effect was not obtained in any of four experiments. Thus, choosing objects to keep in STM is not the same process as choosing new objects to bring into STM.

  4. Selection of targets and ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    In this report, the authors describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the Holifield Radioactive Ion Beam Facility (HRIBF) as well as prototype ion sources that show promise for future use for RIB applications. A brief review of present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect fast and efficient diffusion release of the short-lived species is also given

  5. Engineering Multi-Walled Carbon Nanotube Therapeutic Bionanofluids to Selectively Target Papillary Thyroid Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Idit Dotan

    Full Text Available The incidence of papillary thyroid carcinoma (PTC has risen steadily over the past few decades as well as the recurrence rates. It has been proposed that targeted ablative physical therapy could be a therapeutic modality in thyroid cancer. Targeted bio-affinity functionalized multi-walled carbon nanotubes (BioNanofluid act locally, to efficiently convert external light energy to heat thereby specifically killing cancer cells. This may represent a promising new cancer therapeutic modality, advancing beyond conventional laser ablation and other nanoparticle approaches.Thyroid Stimulating Hormone Receptor (TSHR was selected as a target for PTC cells, due to its wide expression. Either TSHR antibodies or Thyrogen or purified TSH (Thyrotropin were chemically conjugated to our functionalized Bionanofluid. A diode laser system (532 nm was used to illuminate a PTC cell line for set exposure times. Cell death was assessed using Trypan Blue staining.TSHR-targeted BioNanofluids were capable of selectively ablating BCPAP, a TSHR-positive PTC cell line, while not TSHR-null NSC-34 cells. We determined that a 2:1 BCPAP cell:α-TSHR-BioNanofluid conjugate ratio and a 30 second laser exposure killed approximately 60% of the BCPAP cells, while 65% and >70% of cells were ablated using Thyrotropin- and Thyrogen-BioNanofluid conjugates, respectively. Furthermore, minimal non-targeted killing was observed using selective controls.A BioNanofluid platform offering a potential therapeutic path for papillary thyroid cancer has been investigated, with our in vitro results suggesting the development of a potent and rapid method of selective cancer cell killing. Therefore, BioNanofluid treatment emphasizes the need for new technology to treat patients with local recurrence and metastatic disease who are currently undergoing either re-operative neck explorations, repeated administration of radioactive iodine and as a last resort external beam radiation or chemotherapy, with

  6. Selective whole genome amplification for resequencing target microbial species from complex natural samples.

    Science.gov (United States)

    Leichty, Aaron R; Brisson, Dustin

    2014-10-01

    Population genomic analyses have demonstrated power to address major questions in evolutionary and molecular microbiology. Collecting populations of genomes is hindered in many microbial species by the absence of a cost effective and practical method to collect ample quantities of sufficiently pure genomic DNA for next-generation sequencing. Here we present a simple method to amplify genomes of a target microbial species present in a complex, natural sample. The selective whole genome amplification (SWGA) technique amplifies target genomes using nucleotide sequence motifs that are common in the target microbe genome, but rare in the background genomes, to prime the highly processive phi29 polymerase. SWGA thus selectively amplifies the target genome from samples in which it originally represented a minor fraction of the total DNA. The post-SWGA samples are enriched in target genomic DNA, which are ideal for population resequencing. We demonstrate the efficacy of SWGA using both laboratory-prepared mixtures of cultured microbes as well as a natural host-microbe association. Targeted amplification of Borrelia burgdorferi mixed with Escherichia coli at genome ratios of 1:2000 resulted in >10(5)-fold amplification of the target genomes with genomic extracts from Wolbachia pipientis-infected Drosophila melanogaster resulted in up to 70% of high-throughput resequencing reads mapping to the W. pipientis genome. By contrast, 2-9% of sequencing reads were derived from W. pipientis without prior amplification. The SWGA technique results in high sequencing coverage at a fraction of the sequencing effort, thus allowing population genomic studies at affordable costs. Copyright © 2014 by the Genetics Society of America.

  7. CD133, Selectively Targeting the Root of Cancer

    Directory of Open Access Journals (Sweden)

    Jörg U. Schmohl

    2016-05-01

    Full Text Available Cancer stem cells (CSC are capable of promoting tumor initiation and self-renewal, two important hallmarks of carcinoma formation. This population comprises a small percentage of the tumor mass and is highly resistant to chemotherapy, causing the most difficult problem in the field of cancer research, drug refractory relapse. Many CSC markers have been reported. One of the most promising and perhaps least ubiquitous is CD133, a membrane-bound pentaspan glycoprotein that is frequently expressed on CSC. There is evidence that directly targeting CD133 with biological drugs might be the most effective way to eliminate CSC. We have investigated two entirely unrelated, but highly effective approaches for selectively targeting CD133. The first involves using a special anti-CD133 single chain variable fragment (scFv to deliver a catalytic toxin. The second utilizes this same scFv to deliver components of the immune system. In this review, we discuss the development and current status of these CD133 associated biological agents. Together, they show exceptional promise by specific and efficient CSC elimination.

  8. TARGET MARKET SELECTION IN FRESH FRUIT-VEGETABLE SECTOR USING FUZZY VIKOR METHOD

    OpenAIRE

    Tosun, Nedret

    2017-01-01

    Purpose- Companieshave to open up to new markets in order to develop and increase theircompetitiveness in the face of globalization and technological revolution.Target market selection is an important issue that needs to be addressed withpriority in terms of efficient use of resources. Methodology- The problemof market selection is a multi-criteria decision-making problem due to itsnature which requires the evaluation of different and sometimes conflictingcriteria in the decision-making proce...

  9. Target objects defined by a conjunction of colour and shape can be selected independently and in parallel.

    Science.gov (United States)

    Jenkins, Michael; Grubert, Anna; Eimer, Martin

    2017-11-01

    It is generally assumed that during search for targets defined by a feature conjunction, attention is allocated sequentially to individual objects. We tested this hypothesis by tracking the time course of attentional processing biases with the N2pc component in tasks where observers searched for two targets defined by a colour/shape conjunction. In Experiment 1, two displays presented in rapid succession (100 ms or 10 ms SOA) each contained a target and a colour-matching or shape-matching distractor on opposite sides. Target objects in both displays elicited N2pc components of similar size that overlapped in time when the SOA was 10 ms, suggesting that attention was allocated in parallel to both targets. Analogous results were found in Experiment 2, where targets and partially matching distractors were both accompanied by an object without target-matching features. Colour-matching and shape-matching distractors also elicited N2pc components, and the target N2pc was initially identical to the sum of the two distractor N2pcs, suggesting that the initial phase of attentional object selection was guided independently by feature templates for target colour and shape. Beyond 230 ms after display onset, the target N2pc became superadditive, indicating that attentional selection processes now started to be sensitive to the presence of feature conjunctions. Results show that independent attentional selection processes can be activated in parallel by two target objects in situations where these objects are defined by a feature conjunction.

  10. A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

    Directory of Open Access Journals (Sweden)

    Ji She

    2016-12-01

    Full Text Available Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is proposed. It is found that this algorithm can minimize the total transmitted power of a radar network on the basis of a predetermined mutual information (MI threshold between the target impulse response and the reflected signal. The MI is required by the radar network system to estimate target parameters, and it can be calculated predictively with the estimation of target state. The optimization problem of sensor selection and power allocation, which contains two variables, is non-convex and it can be solved by separating power allocation problem from sensor selection problem. To be specific, the optimization problem of power allocation can be solved by using the bisection method for each sensor selection scheme. Also, the optimization problem of sensor selection can be solved by a lower complexity algorithm based on the allocated powers. According to the simulation results, it can be found that the proposed algorithm can effectively reduce the total transmitted power of a radar network, which can be conducive to improving LPI performance.

  11. [Targeted pharmacist-led medication order review in hospital: Assessment of a selection method for drug prescriptions].

    Science.gov (United States)

    Jarre, C; Bouchet, J; Hellot-Guersing, M; Leromain, A-S; Derharoutunian, C; Gadot, A; Roubille, R

    2017-11-01

    The aim of this study was to assess a selection method for drug prescriptions developed at the hospital level that allows to target pharmacist-led medication order review for at-risk patients and drugs. A one-month study has been conducted on all targeted medication orders in 19 care units. Selection criteria have been identified: biological criteria, alert medications and drug interactions. Pharmacists' interventions proposed during medication order review were listed and the possible links to the selection criteria were determined. A total of 1612 prescriptions were analysed and 236 pharmacists' interventions were performed (14.6 interventions per 100 prescriptions). Physicians' acceptance rate was 60.6%. The percentage of pharmacists' interventions linked to the selection criteria was 35.6%. The relevance of the biological criteria was identified, particularly the one identifying patients with creatinine clearance below 30ml/min. Six alert medications were also relevant selection criteria: dabigatran, morphine, gentamicin, methotrexate, potassium chloride and trimethoprim sulfamethoxazole. Drug interactions criteria was irrelevant. This study allowed a first assessment of the selection criteria used. A largest study seems necessary to continue the analysis of this selection method for prescriptions, especially the assessment of the alert medications list, in order to refine the prescriptions targeting. Copyright © 2017 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  12. Implications of structural genomics target selection strategies: Pfam5000, whole genome, and random approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chandonia, John-Marc; Brenner, Steven E.

    2004-07-14

    The structural genomics project is an international effort to determine the three-dimensional shapes of all important biological macromolecules, with a primary focus on proteins. Target proteins should be selected according to a strategy which is medically and biologically relevant, of good value, and tractable. As an option to consider, we present the Pfam5000 strategy, which involves selecting the 5000 most important families from the Pfam database as sources for targets. We compare the Pfam5000 strategy to several other proposed strategies that would require similar numbers of targets. These include including complete solution of several small to moderately sized bacterial proteomes, partial coverage of the human proteome, and random selection of approximately 5000 targets from sequenced genomes. We measure the impact that successful implementation of these strategies would have upon structural interpretation of the proteins in Swiss-Prot, TrEMBL, and 131 complete proteomes (including 10 of eukaryotes) from the Proteome Analysis database at EBI. Solving the structures of proteins from the 5000 largest Pfam families would allow accurate fold assignment for approximately 68 percent of all prokaryotic proteins (covering 59 percent of residues) and 61 percent of eukaryotic proteins (40 percent of residues). More fine-grained coverage which would allow accurate modeling of these proteins would require an order of magnitude more targets. The Pfam5000 strategy may be modified in several ways, for example to focus on larger families, bacterial sequences, or eukaryotic sequences; as long as secondary consideration is given to large families within Pfam, coverage results vary only slightly. In contrast, focusing structural genomics on a single tractable genome would have only a limited impact in structural knowledge of other proteomes: a significant fraction (about 30-40 percent of the proteins, and 40-60 percent of the residues) of each proteome is classified in small

  13. Interval MULTIMOORA method with target values of attributes based on interval distance and preference degree: biomaterials selection

    Science.gov (United States)

    Hafezalkotob, Arian; Hafezalkotob, Ashkan

    2017-06-01

    A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.

  14. Priming of pop-out modulates attentional target selection in visual search: Behavioural and electrophysiological evidence

    OpenAIRE

    Eimer, Martin; Kiss, Monika; Cheung, Theodore

    2009-01-01

    Previous behavioural studies have shown that the repetition of target or distractor features across trials speeds pop-out visual search. We obtained behavioural and event-related brain potential (ERP) measures in two experiments where participants searched for a colour singleton target among homogeneously coloured distractors. An ERP marker of spatially selective attention (N2pc component) was delayed when either target or distractor colours were swapped across successive trials, demonstratin...

  15. Chlorin e6 Conjugated Interleukin-6 Receptor Aptamers Selectively Kill Target Cells Upon Irradiation

    Directory of Open Access Journals (Sweden)

    Sven Kruspe

    2014-01-01

    Full Text Available Photodynamic therapy (PDT uses the therapeutic properties of light in combination with certain chemicals, called photosensitizers, to successfully treat brain, breast, prostate, and skin cancers. To improve PDT, current research focuses on the development of photosensitizers to specifically target cancer cells. In the past few years, aptamers have been developed to directly deliver cargo molecules into target cells. We conjugated the photosensitizer chlorin e6 (ce6 with a human interleukin-6 receptor (IL-6R binding RNA aptamer, AIR-3A yielding AIR-3A-ce6 for application in high efficient PDT. AIR-3A-ce6 was rapidly and specifically internalized by IL-6R presenting (IL-6R+ cells. Upon light irradiation, targeted cells were selectively killed, while free ce6 did not show any toxic effect. Cells lacking the IL-6R were also not affected by AIR-3A-ce6. With this approach, we improved the target specificity of ce6-mediated PDT. In the future, other tumor-specific aptamers might be used to selectively localize photosensitizers into cells of interest and improve the efficacy and specificity of PDT in cancer and other diseases.

  16. Combinatorial support vector machines approach for virtual screening of selective multi-target serotonin reuptake inhibitors from large compound libraries.

    Science.gov (United States)

    Shi, Z; Ma, X H; Qin, C; Jia, J; Jiang, Y Y; Tan, C Y; Chen, Y Z

    2012-02-01

    Selective multi-target serotonin reuptake inhibitors enhance antidepressant efficacy. Their discovery can be facilitated by multiple methods, including in silico ones. In this study, we developed and tested an in silico method, combinatorial support vector machines (COMBI-SVMs), for virtual screening (VS) multi-target serotonin reuptake inhibitors of seven target pairs (serotonin transporter paired with noradrenaline transporter, H(3) receptor, 5-HT(1A) receptor, 5-HT(1B) receptor, 5-HT(2C) receptor, melanocortin 4 receptor and neurokinin 1 receptor respectively) from large compound libraries. COMBI-SVMs trained with 917-1951 individual target inhibitors correctly identified 22-83.3% (majority >31.1%) of the 6-216 dual inhibitors collected from literature as independent testing sets. COMBI-SVMs showed moderate to good target selectivity in misclassifying as dual inhibitors 2.2-29.8% (majority virtual hits correlate with the reported effects of their predicted targets. COMBI-SVM is potentially useful for searching selective multi-target agents without explicit knowledge of these agents. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Trial-to-trial dynamics of selective long-term-memory retrieval with continuously changing retrieval targets.

    Science.gov (United States)

    Kizilirmak, Jasmin M; Rösler, Frank; Khader, Patrick H

    2014-10-01

    How do we control the successive retrieval of behaviorally relevant information from long-term memory (LTM) without being distracted by other potential retrieval targets associated to the same retrieval cues? Here, we approach this question by investigating the nature of trial-by-trial dynamics of selective LTM retrieval, i.e., in how far retrieval in one trial has detrimental or facilitatory effects on selective retrieval in the following trial. Participants first learned associations between retrieval cues and targets, with one cue always being linked to three targets, forming small associative networks. In successive trials, participants had to access either the same or a different target belonging to either the same or a different cue. We found that retrieval times were faster for targets that had already been relevant in the previous trial, with this facilitatory effect being substantially weaker when the associative network changed in which the targets were embedded. Moreover, staying within the same network still had a facilitatory effect even if the target changed, which became evident in a relatively higher memory performance in comparison to a network change. Furthermore, event-related brain potentials (ERPs) showed topographically and temporally dissociable correlates of these effects, suggesting that they result from combined influences of distinct processes that aid memory retrieval when relevant and irrelevant targets change their status from trial to trial. Taken together, the present study provides insight into the different processing stages of memory retrieval when fast switches between retrieval targets are required. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Selective autophagy of non-ubiquitylated targets in plants: looking for cognate receptor/adaptor proteins

    Directory of Open Access Journals (Sweden)

    Vasko eVeljanovski

    2014-06-01

    Full Text Available Cellular homeostasis is essential for the physiology of eukaryotic cells. Eukaryotic cells, including plant cells, utilize two main pathways to adjust the level of cytoplasmic components, namely the proteasomal and the lysosomal/vacuolar pathways. Macroautophagy is a lysosomal/vacuolar pathway which, until recently, was thought to be non-specific and a bulk degradation process. However, selective autophagy which can be activated in the cell under various physiological conditions, involves the specific degradation of defined macromolecules or organelles by a conserved molecular mechanism. For this process to be efficient, the mechanisms underlying the recognition and selection of the cargo to be engulfed by the double-membrane autophagosome are critical, and not yet well understood. Ubiquitin (poly-ubiquitin conjugation to the target appears to be a conserved ligand mechanism in many types of selective autophagy, and defined receptors/adaptors recognizing and regulating the autophagosomal capture of the ubiquitylated target have been characterized. However, non-proteinaceous and non-ubiquitylated cargoes are also selectively degraded by this pathway. This ubiquitin-independent selective autophagic pathway also involves receptor and/or adaptor proteins linking the cargo to the autophagic machinery. Some of these receptor/adaptor proteins including accessory autophagy-related (Atg and non-Atg proteins have been described in yeast and animal cells but not yet in plants. In this review we discuss the ubiquitin-independent cargo selection mechanisms in selective autophagy degradation of organelles and macromolecules and speculate on potential plant receptor/adaptor proteins.

  19. Band selection method based on spectrum difference in targets of interest in hyperspectral imagery

    Science.gov (United States)

    Zhang, Xiaohan; Yang, Guang; Yang, Yongbo; Huang, Junhua

    2016-10-01

    While hyperspectral data shares rich spectrum information, it has numbers of bands with high correlation coefficients, causing great data redundancy. A reasonable band selection is important for subsequent processing. Bands with large amount of information and low correlation should be selected. On this basis, according to the needs of target detection applications, the spectral characteristics of the objects of interest are taken into consideration in this paper, and a new method based on spectrum difference is proposed. Firstly, according to the spectrum differences of targets of interest, a difference matrix which represents the different spectral reflectance of different targets in different bands is structured. By setting a threshold, the bands satisfying the conditions would be left, constituting a subset of bands. Then, the correlation coefficients between bands are calculated and correlation matrix is given. According to the size of the correlation coefficient, the bands can be set into several groups. At last, the conception of normalized variance is used on behalf of the information content of each band. The bands are sorted by the value of its normalized variance. Set needing number of bands, and the optimum band combination solution can be get by these three steps. This method retains the greatest degree of difference between the target of interest and is easy to achieve by computer automatically. Besides, false color image synthesis experiment is carried out using the bands selected by this method as well as other 3 methods to show the performance of method in this paper.

  20. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment ...

  1. State-selective electron capture into He-like U90+ ions in collisions with gaseous targets

    International Nuclear Information System (INIS)

    Ma, X.; Stoehlker, T.; Brinzanescu, O.; Fritzsche, S.; Ludziejewski, T.; Stachura, Z.; Warczak, A.

    2000-11-01

    For He-like uranium, a state-selective electron capture study was carried out for relativistic collisions with gaseous targets. In the experiment, the projectile X-ray emission produced by electron capture in collisions of 223 MeV/u U 90+ ions on N 2 , Ar, Kr, and Xe targets was measured in coincidence with down-charged U 89+ projectiles. Due to the large fine structure splitting in heavy ions, the well resolved Balmer transitions observed were used to deduce subshell sensitive cross-sections for electron capture. For this purpose a theoretical spectrum analysis and simulation was performed by taking into account electron cascades from states up to n = 40. The state-selective data are compared with theoretical calculations as a function of target atomic number. An overall agreement is found between the experimental data and the theoretical approaches applied except for the j-sensitive part. (orig.)

  2. SPIDERS: selection of spectroscopic targets using AGN candidates detected in all-sky X-ray surveys

    Science.gov (United States)

    Dwelly, T.; Salvato, M.; Merloni, A.; Brusa, M.; Buchner, J.; Anderson, S. F.; Boller, Th.; Brandt, W. N.; Budavári, T.; Clerc, N.; Coffey, D.; Del Moro, A.; Georgakakis, A.; Green, P. J.; Jin, C.; Menzel, M.-L.; Myers, A. D.; Nandra, K.; Nichol, R. C.; Ridl, J.; Schwope, A. D.; Simm, T.

    2017-07-01

    SPIDERS (SPectroscopic IDentification of eROSITA Sources) is a Sloan Digital Sky Survey IV (SDSS-IV) survey running in parallel to the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) cosmology project. SPIDERS will obtain optical spectroscopy for large numbers of X-ray-selected active galactic nuclei (AGN) and galaxy cluster members detected in wide-area eROSITA, XMM-Newton and ROSAT surveys. We describe the methods used to choose spectroscopic targets for two sub-programmes of SPIDERS X-ray selected AGN candidates detected in the ROSAT All Sky and the XMM-Newton Slew surveys. We have exploited a Bayesian cross-matching algorithm, guided by priors based on mid-IR colour-magnitude information from the Wide-field Infrared Survey Explorer survey, to select the most probable optical counterpart to each X-ray detection. We empirically demonstrate the high fidelity of our counterpart selection method using a reference sample of bright well-localized X-ray sources collated from XMM-Newton, Chandra and Swift-XRT serendipitous catalogues, and also by examining blank-sky locations. We describe the down-selection steps which resulted in the final set of SPIDERS-AGN targets put forward for spectroscopy within the eBOSS/TDSS/SPIDERS survey, and present catalogues of these targets. We also present catalogues of ˜12 000 ROSAT and ˜1500 XMM-Newton Slew survey sources that have existing optical spectroscopy from SDSS-DR12, including the results of our visual inspections. On completion of the SPIDERS programme, we expect to have collected homogeneous spectroscopic redshift information over a footprint of ˜7500 deg2 for >85 per cent of the ROSAT and XMM-Newton Slew survey sources having optical counterparts in the magnitude range 17 < r < 22.5, producing a large and highly complete sample of bright X-ray-selected AGN suitable for statistical studies of AGN evolution and clustering.

  3. Candidate Targets for New Anti-Virulence Drugs: Selected Cases of Bacterial Adhesion and Biofilm Formation

    DEFF Research Database (Denmark)

    Klemm, Per; Hancock, Viktoria; Kvist, Malin

    2007-01-01

    is particularly problematic in medical contexts because biofilm-associated bacteria are particularly hard to eradicate. Several promising candidate drugs that target bacterial adhesion and biofilm formation are being developed. Some of these might be valuable weapons for fighting infectious diseases in the future...... formation are highly attractive targets for new drugs. Specific adhesion provides bacteria with target selection and prevents removal by hydrodynamic flow forces. Bacterial adhesion is of paramount importance for bacterial pathogenesis. Adhesion is also the first step in biofilm formation. Biofilm formation...

  4. The TESS Input Catalog and Selection of Targets for the TESS Transit Search

    Science.gov (United States)

    Pepper, Joshua; Stassun, Keivan G.; Paegert, Martin; Oelkers, Ryan; De Lee, Nathan Michael; Torres, Guillermo; TESS Target Selection Working Group

    2018-01-01

    The TESS mission will photometrically survey millions of the brightest stars over almost the entire the sky to detect transiting exoplanets. A key step to enable that search is the creation of the TESS Input Catalog (TIC), a compiled catalog of 700 million stars and galaxies with observed and calculated parameters. From the TIC we derive the Candidate Target List (CTL) to identify target stars for the 2-minute TESS postage stamps. The CTL is designed to identify the best stars for the detection of small planets, which includes all bright cool dwarf stars in the sky. I will describe the target selection strategy, the distribution of stars in the current CTL, and how both the TIC and CTL will expand and improve going forward.

  5. Promysalin Elicits Species-Selective Inhibition of Pseudomonas aeruginosa by Targeting Succinate Dehydrogenase.

    Science.gov (United States)

    Keohane, Colleen E; Steele, Andrew D; Fetzer, Christian; Khowsathit, Jittasak; Van Tyne, Daria; Moynié, Lucile; Gilmore, Michael S; Karanicolas, John; Sieber, Stephan A; Wuest, William M

    2018-02-07

    Natural products have served as an inspiration to scientists both for their complex three-dimensional architecture and exquisite biological activity. Promysalin is one such Pseudomonad secondary metabolite that exhibits narrow-spectrum antibacterial activity, originally isolated from the rhizosphere. We herein utilize affinity-based protein profiling (AfBPP) to identify succinate dehydrogenase (Sdh) as the biological target of the natural product. The target was further validated in silico, in vitro, in vivo, and through the selection, and sequencing, of a resistant mutant. Succinate dehydrogenase plays an essential role in primary metabolism of Pseudomonas aeruginosa as the only enzyme that is involved both in the tricarboxylic acid cycle (TCA) and in respiration via the electron transport chain. These findings add credence to other studies that suggest that the TCA cycle is an understudied target in the development of novel therapeutics to combat P. aeruginosa, a significant pathogen in clinical settings.

  6. The diffusion properties of ion implanted species in selected target materials

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.; Carter, H.K.; Kormicki, J.; Bartolo, G. di; Batchelder, J.C.; Breitenbach, J.; Chediak, J.A.; Jentoff-Nilsen, K.; Ichikawa, S.

    1995-01-01

    Experiments important to the future success of the Holifield Radioactive Ion Beam Facility (HRIBF) are in progress at the Oak Ridge National Laboratory which are designed to select the most appropriate target material for generating a particular radioactive ion beam (RIB). The 25-MV HHIRF tandem accelerator is used to implant stable complements of interesting radioactive elements into refractory targets mounted in a high-temperature FEBIAD ion source which is open-quotes on-lineclose quotes at the UNISOR facility. The intensity versus time of implanted species, which diffuse from the high-temperature target material (∼1700 degrees C) and are ionized in the FEBIAD ion source, is used to determine release times for a particular projectile/target material combination. From such release data, diffusion coefficients can be derived by fitting the theoretical results obtained by computational solution of Fick's second equation to experimental data. The diffusion coefficient can be used subsequently to predict the release properties of the particular element from the same material in other target geometries and at other temperatures, provided that the activation energy is also known. Diffusion coefficients for Cl implanted into and diffused from CeS and Zr 5 Si 3 and As, Br, and Se implanted into and diffused from Zr 5 Ge 3 have been derived from the resulting intensity versus time profiles. Brief descriptions of the experimental apparatus and procedures utilized in the present experiments and plans for future related experiments are presented

  7. Merger and Acquisition Target Selection Based on Interval Neutrosophic Multigranulation Rough Sets over Two Universes

    Directory of Open Access Journals (Sweden)

    Chao Zhang

    2017-07-01

    Full Text Available As a significant business activity, merger and acquisition (M&A generally means transactions in which the ownership of companies, other business organizations or their operating units are transferred or combined. In a typical M&A procedure, M&A target selection is an important issue that tends to exert an increasingly significant impact on different business areas. Although some research works based on fuzzy methods have been explored on this issue, they can only deal with incomplete and uncertain information, but not inconsistent and indeterminate information that exists universally in the decision making process. Additionally, it is advantageous to solve M&A problems under the group decision making context. In order to handle these difficulties in M&A target selection background, we introduce a novel rough set model by combining interval neutrosophic sets (INSs with multigranulation rough sets over two universes, called an interval neutrosophic (IN multigranulation rough set over two universes. Then, we discuss the definition and some fundamental properties of the proposed model. Finally, we establish decision making rules and computing approaches for the proposed model in M&A target selection background, and the effectiveness of the decision making approach is demonstrated by an illustrative case analysis.

  8. Perceptions of similarity and response to selected comparison targets in type 2 diabetes.

    Science.gov (United States)

    Arigo, Danielle; Smyth, Joshua M; Suls, Jerry M

    2015-01-01

    Social comparisons (i.e. self-evaluations relative to others) may affect motivation for diabetes self-care behaviours. Comparisons can have either positive or negative effects, but it is not clear what differentiates these responses. This study tested the effect of a patient's perceived similarity to a comparison target on motivation for self-care. Individuals with type 2 diabetes (n = 180, MA1c = 7.59%) selected to read one of four brief descriptions of a patient with diabetes. Participants rated their motivation for self-care behaviours prior and subsequent to reading and reported the extent to which they focused on similarities between the self and the selected patient while reading. Perceived similarity moderated the effect of selection on motivation for self-care (p = .01, η2 = .06). Increased motivation was observed if participants focused on similarities with patients 'doing better' (i.e. high coping effectiveness/low symptom severity) and decreased motivation if they focused on similarities with patients 'doing worse' (low coping effectiveness/high symptom severity). Providing social comparison information in diabetes management (and perhaps other chronic diseases) may improve motivation for self-care among some patients. A subset of patients, however, may benefit from guidance to focus on similarities with certain targets.

  9. Selection of RIB targets using ion implantation at the Holifield radioactive ion beam facility

    International Nuclear Information System (INIS)

    Alton, G.D.; Dellwo, J.

    1995-01-01

    Among several major challenges posed by generating and accelerating adequate intensities of RIBs, selection of the most appropriate target material is perhaps the most difficult because of the requisite fast and selective thermal release of minute amounts of the short-lived product atoms from the ISOL target in the presence of bulk amounts of target material. Experimental studies are under way at the Oak Ridge National Laboratory (ORNL) which are designed to measure the time evolution of implanted elements diffused from refractory target materials which are candidates for forming radioactive ion beams (RIBs) at the Holifield Radioactive Ion Beam Facility (HRIBF). The diffusion coefficients are derived by comparing experimental data with numerical solutions to a one-dimensional form of Fick's second law for ion implanted distributions. In this report, we describe the experimental arrangement, experimental procedures, and provide time release data and diffusion coefficients for releasing ion implanted 37 Cl from Zr 5 Si 3 and 75 As, 79 Br, and 78 Se from Zr 5 Ge 3 and estimates of the diffusion coefficients for 35 Cl, 63 Cu, 65 Cu, 69 Ga and 71 Ga diffused from BN; 35 Cl, 63 Cu, 65 Cu, 69 Ga, 75 As, and 78 Se diffused from C; 35 Cl, 68 Cu, 69 Ga, 75 As, and 78 Se diffused from Ta

  10. Does Angling Technique Selectively Target Fishes Based on Their Behavioural Type?

    Directory of Open Access Journals (Sweden)

    Alexander D M Wilson

    Full Text Available Recently, there has been growing recognition that fish harvesting practices can have important impacts on the phenotypic distributions and diversity of natural populations through a phenomenon known as fisheries-induced evolution. Here we experimentally show that two common recreational angling techniques (active crank baits versus passive soft plastics differentially target wild largemouth bass (Micropterus salmoides and rock bass (Ambloplites rupestris based on variation in their behavioural tendencies. Fish were first angled in the wild using both techniques and then brought back to the laboratory and tested for individual-level differences in common estimates of personality (refuge emergence, flight-initiation-distance, latency-to-recapture and with a net, and general activity in an in-lake experimental arena. We found that different angling techniques appear to selectively target these species based on their boldness (as characterized by refuge emergence, a standard measure of boldness in fishes but not other assays of personality. We also observed that body size was independently a significant predictor of personality in both species, though this varied between traits and species. Our results suggest a context-dependency for vulnerability to capture relative to behaviour in these fish species. Ascertaining the selective pressures angling practices exert on natural populations is an important area of fisheries research with significant implications for ecology, evolution, and resource management.

  11. Sejong Open Cluster Survey (SOS). 0. Target Selection and Data Analysis

    Science.gov (United States)

    Sung, Hwankyung; Lim, Beomdu; Bessell, Michael S.; Kim, Jinyoung S.; Hur, Hyeonoh; Chun, Moo-Young; Park, Byeong-Gon

    2013-06-01

    Star clusters are superb astrophysical laboratories containing cospatial and coeval samples of stars with similar chemical composition. We initiate the Sejong Open cluster Survey (SOS) - a project dedicated to providing homogeneous photometry of a large number of open clusters in the SAAO Johnson-Cousins' UBVI system. To achieve our main goal, we pay much attention to the observation of standard stars in order to reproduce the SAAO standard system. Many of our targets are relatively small sparse clusters that escaped previous observations. As clusters are considered building blocks of the Galactic disk, their physical properties such as the initial mass function, the pattern of mass segregation, etc. give valuable information on the formation and evolution of the Galactic disk. The spatial distribution of young open clusters will be used to revise the local spiral arm structure of the Galaxy. In addition, the homogeneous data can also be used to test stellar evolutionary theory, especially concerning rare massive stars. In this paper we present the target selection criteria, the observational strategy for accurate photometry, and the adopted calibrations for data analysis such as color-color relations, zero-age main sequence relations, Sp - M_V relations, Sp - T_{eff} relations, Sp - color relations, and T_{eff} - BC relations. Finally we provide some data analysis such as the determination of the reddening law, the membership selection criteria, and distance determination.

  12. Social comparisons in adults with type 2 diabetes: Patients' reasons for target selection.

    Science.gov (United States)

    Arigo, Danielle; Cornell, Max; Smyth, Joshua M

    2018-07-01

    To examine reasons for selecting a social comparison target (i.e. a specific other for relative self-evaluation), and their influence on affect and motivation for self-care, in type 2 diabetes (T2DM). Adults with T2DM (n = 180, M A1c  = 7.6%) chose to read about one of four targets. Participants rated five reasons for their choice (strongly disagree - strongly agree), and rated affect and self-care motivation before and after reading. To boost confidence in my ability to manage diabetes was rated highest overall (ps motivation (p motivation only among those who chose better-off targets (p = 0.01). Patients' reasons for a particular comparison are associated with short-term changes in affect and self-care motivation, and warrant greater empirical and clinical attention.

  13. Activation of Skeletal Muscle AMPK Promotes Glucose Disposal and Glucose Lowering in Non-human Primates and Mice.

    Science.gov (United States)

    Cokorinos, Emily C; Delmore, Jake; Reyes, Allan R; Albuquerque, Bina; Kjøbsted, Rasmus; Jørgensen, Nicolas O; Tran, Jean-Luc; Jatkar, Aditi; Cialdea, Katherine; Esquejo, Ryan M; Meissen, John; Calabrese, Matthew F; Cordes, Jason; Moccia, Robert; Tess, David; Salatto, Christopher T; Coskran, Timothy M; Opsahl, Alan C; Flynn, Declan; Blatnik, Matthew; Li, Wenlin; Kindt, Erick; Foretz, Marc; Viollet, Benoit; Ward, Jessica; Kurumbail, Ravi G; Kalgutkar, Amit S; Wojtaszewski, Jørgen F P; Cameron, Kimberly O; Miller, Russell A

    2017-05-02

    The AMP-activated protein kinase (AMPK) is a potential therapeutic target for metabolic diseases based on its reported actions in the liver and skeletal muscle. We evaluated two distinct direct activators of AMPK: a non-selective activator of all AMPK complexes, PF-739, and an activator selective for AMPK β1-containing complexes, PF-249. In cells and animals, both compounds were effective at activating AMPK in hepatocytes, but only PF-739 was capable of activating AMPK in skeletal muscle. In diabetic mice, PF-739, but not PF-249, caused a rapid lowering of plasma glucose levels that was diminished in the absence of skeletal muscle, but not liver, AMPK heterotrimers and was the result of an increase in systemic glucose disposal with no impact on hepatic glucose production. Studies of PF-739 in cynomolgus monkeys confirmed translation of the glucose lowering and established activation of AMPK in skeletal muscle as a potential therapeutic approach to treat diabetic patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Science.gov (United States)

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  15. Coping with Atmospheric Turbulence in the Selection of Laser Hardening Technology for FCS Targeting Systems

    National Research Council Canada - National Science Library

    Pritchett, Timothy M

    2004-01-01

    ... by frequency-agile battlefield lasers at both long and short range. Evidently, the selection of sensor protection technologies for incorporation into the final targeting system will be based on their optical limiting performance under field conditions...

  16. "Killer" Microcapsules That Can Selectively Destroy Target Microparticles in Their Vicinity.

    Science.gov (United States)

    Arya, Chandamany; Oh, Hyuntaek; Raghavan, Srinivasa R

    2016-11-02

    We have developed microscale polymer capsules that are able to chemically degrade a certain type of polymeric microbead in their immediate vicinity. The inspiration here is from the body's immune system, where killer T cells selectively destroy cancerous cells or cells infected by pathogens while leaving healthy cells alone. The "killer" capsules are made from the cationic biopolymer chitosan by a combination of ionic cross-linking (using multivalent tripolyposphate anions) and subsequent covalent cross-linking (using glutaraldehyde). During capsule formation, the enzyme glucose oxidase (GOx) is encapsulated in these capsules. The target beads are made by ionic cross-linking of the biopolymer alginate using copper (Cu 2+ ) cations. The killer capsules harvest glucose from their surroundings, which is then enzymatically converted by GOx into gluconate ions. These ions are known for their ability to chelate Cu 2+ cations. Thus, when a killer capsule is next to a target alginate bead, the gluconate ions diffuse into the bead and extract the Cu 2+ cross-links, causing the disintegration of the target bead. Such destruction is visualized in real-time using optical microscopy. The destruction is specific, i.e., other microparticles that do not contain Cu 2+ are left undisturbed. Moreover, the destruction is localized, i.e., the targets destroyed in the short term are the ones right next to the killer beads. The time scale for destruction depends on the concentration of encapsulated enzyme in the capsules.

  17. HisB as novel selection marker for gene targeting approaches in Aspergillus niger.

    Science.gov (United States)

    Fiedler, Markus R M; Gensheimer, Tarek; Kubisch, Christin; Meyer, Vera

    2017-03-08

    For Aspergillus niger, a broad set of auxotrophic and dominant resistance markers is available. However, only few offer targeted modification of a gene of interest into or at a genomic locus of choice, which hampers functional genomics studies. We thus aimed to extend the available set by generating a histidine auxotrophic strain with a characterized hisB locus for targeted gene integration and deletion in A. niger. A histidine-auxotrophic strain was established via disruption of the A. niger hisB gene by using the counterselectable pyrG marker. After curing, a hisB - , pyrG - strain was obtained, which served as recipient strain for further studies. We show here that both hisB orthologs from A. nidulans and A. niger can be used to reestablish histidine prototrophy in this recipient strain. Whereas the hisB gene from A. nidulans was suitable for efficient gene targeting at different loci in A. niger, the hisB gene from A. niger allowed efficient integration of a Tet-on driven luciferase reporter construct at the endogenous non-functional hisB locus. Subsequent analysis of the luciferase activity revealed that the hisB locus is tight under non-inducing conditions and allows even higher luciferase expression levels compared to the pyrG integration locus. Taken together, we provide here an alternative selection marker for A. niger, hisB, which allows efficient homologous integration rates as well as high expression levels which compare favorably to the well-established pyrG selection marker.

  18. Specific and selective target detection of supra-genome 21 Mers Salmonella via silicon nanowires biosensor

    Science.gov (United States)

    Mustafa, Mohammad Razif Bin; Dhahi, Th S.; Ehfaed, Nuri. A. K. H.; Adam, Tijjani; Hashim, U.; Azizah, N.; Mohammed, Mohammed; Noriman, N. Z.

    2017-09-01

    The nano structure based on silicon can be surface modified to be used as label-free biosensors that allow real-time measurements. The silicon nanowire surface was functionalized using 3-aminopropyltrimethoxysilane (APTES), which functions as a facilitator to immobilize biomolecules on the silicon nanowire surface. The process is simple, economical; this will pave the way for point-of-care applications. However, the surface modification and subsequent detection mechanism still not clear. Thus, study proposed step by step process of silicon nano surface modification and its possible in specific and selective target detection of Supra-genome 21 Mers Salmonella. The device captured the molecule with precisely; the approach took the advantages of strong binding chemistry created between APTES and biomolecule. The results indicated how modifications of the nanowires provide sensing capability with strong surface chemistries that can lead to specific and selective target detection.

  19. Designing the nanobiointerface of fluorescent nanodiamonds: highly selective targeting of glioma cancer cells.

    Science.gov (United States)

    Slegerova, Jitka; Hajek, Miroslav; Rehor, Ivan; Sedlak, Frantisek; Stursa, Jan; Hruby, Martin; Cigler, Petr

    2015-01-14

    Core-shell nanoparticles based on fluorescent nanodiamonds coated with a biocompatible N-(2-hydroxypropyl)methacrylamide copolymer shell were developed for background-free near-infrared imaging of cancer cells. The particles showed excellent colloidal stability in buffers and culture media. After conjugation with a cyclic RGD peptide they selectively targeted integrin αvβ3 receptors on glioblastoma cells with high internalization efficacy.

  20. Selective Vitamin D Receptor Activation as Anti-Inflammatory Target in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    J. Donate-Correa

    2014-01-01

    Full Text Available Paricalcitol, a selective vitamin D receptor (VDR activator used for treatment of secondary hyperparathyroidism in chronic kidney disease (CKD, has been associated with survival advantages, suggesting that this drug, beyond its ability to suppress parathyroid hormone, may have additional beneficial actions. In this prospective, nonrandomised, open-label, proof-of-concept study, we evaluated the hypothesis that selective vitamin D receptor activation with paricalcitol is an effective target to modulate inflammation in CKD patients. Eight patients with an estimated glomerular filtration rate between 15 and 44 mL/min/1.73 m2 and an intact parathyroid hormone (PTH level higher than 110 pg/mL received oral paricalcitol (1 μg/48 hours as therapy for secondary hyperparathyroidism. Nine patients matched by age, sex, and stage of CKD, but a PTH level <110 pg/mL, were enrolled as a control group. Our results show that five months of paricalcitol administration were associated with a reduction in serum concentrations of hs-CRP (13.9%, P<0.01, TNF-α (11.9%, P=0.01, and IL-6 (7%, P<0.05, with a nonsignificant increase of IL-10 by 16%. In addition, mRNA expression levels of the TNFα and IL-6 genes in peripheral blood mononuclear cells decreased significantly by 30.8% (P=0.01 and 35.4% (P=0.01, respectively. In conclusion, selective VDR activation is an effective target to modulate inflammation in CKD.

  1. A Peptidomimetic Antibiotic Targets Outer Membrane Proteins and Disrupts Selectively the Outer Membrane in Escherichia coli.

    Science.gov (United States)

    Urfer, Matthias; Bogdanovic, Jasmina; Lo Monte, Fabio; Moehle, Kerstin; Zerbe, Katja; Omasits, Ulrich; Ahrens, Christian H; Pessi, Gabriella; Eberl, Leo; Robinson, John A

    2016-01-22

    Increasing antibacterial resistance presents a major challenge in antibiotic discovery. One attractive target in Gram-negative bacteria is the unique asymmetric outer membrane (OM), which acts as a permeability barrier that protects the cell from external stresses, such as the presence of antibiotics. We describe a novel β-hairpin macrocyclic peptide JB-95 with potent antimicrobial activity against Escherichia coli. This peptide exhibits no cellular lytic activity, but electron microscopy and fluorescence studies reveal an ability to selectively disrupt the OM but not the inner membrane of E. coli. The selective targeting of the OM probably occurs through interactions of JB-95 with selected β-barrel OM proteins, including BamA and LptD as shown by photolabeling experiments. Membrane proteomic studies reveal rapid depletion of many β-barrel OM proteins from JB-95-treated E. coli, consistent with induction of a membrane stress response and/or direct inhibition of the Bam folding machine. The results suggest that lethal disruption of the OM by JB-95 occurs through a novel mechanism of action at key interaction sites within clusters of β-barrel proteins in the OM. These findings open new avenues for developing antibiotics that specifically target β-barrel proteins and the integrity of the Gram-negative OM. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. A dual selection based, targeted gene replacement tool for Magnaporthe grisea and Fusarium oxysporum.

    Science.gov (United States)

    Khang, Chang Hyun; Park, Sook-Young; Lee, Yong-Hwan; Kang, Seogchan

    2005-06-01

    Rapid progress in fungal genome sequencing presents many new opportunities for functional genomic analysis of fungal biology through the systematic mutagenesis of the genes identified through sequencing. However, the lack of efficient tools for targeted gene replacement is a limiting factor for fungal functional genomics, as it often necessitates the screening of a large number of transformants to identify the desired mutant. We developed an efficient method of gene replacement and evaluated factors affecting the efficiency of this method using two plant pathogenic fungi, Magnaporthe grisea and Fusarium oxysporum. This method is based on Agrobacterium tumefaciens-mediated transformation with a mutant allele of the target gene flanked by the herpes simplex virus thymidine kinase (HSVtk) gene as a conditional negative selection marker against ectopic transformants. The HSVtk gene product converts 5-fluoro-2'-deoxyuridine to a compound toxic to diverse fungi. Because ectopic transformants express HSVtk, while gene replacement mutants lack HSVtk, growing transformants on a medium amended with 5-fluoro-2'-deoxyuridine facilitates the identification of targeted mutants by counter-selecting against ectopic transformants. In addition to M. grisea and F. oxysporum, the method and associated vectors are likely to be applicable to manipulating genes in a broad spectrum of fungi, thus potentially serving as an efficient, universal functional genomic tool for harnessing the growing body of fungal genome sequence data to study fungal biology.

  3. Highly stable aptamers selected from a 2'-fully modified fGmH RNA library for targeting biomaterials.

    Science.gov (United States)

    Friedman, Adam D; Kim, Dongwook; Liu, Rihe

    2015-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2' modification. This study aims to develop a novel class of highly stable, 2'-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2'-F-dG, 2'-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2'-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and specifically deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials.

  4. Chemical biology based on target-selective degradation of proteins and carbohydrates using light-activatable organic molecules.

    Science.gov (United States)

    Toshima, Kazunobu

    2013-05-01

    Proteins and carbohydrates play crucial roles in a wide range of biological processes, including serious diseases. The development of novel and innovative methods for selective control of specific proteins and carbohydrates functions has attracted much attention in the field of chemical biology. In this account article, the development of novel chemical tools, which can degrade target proteins and carbohydrates by irradiation with a specific wavelength of light under mild conditions without any additives, is introduced. This novel class of photochemical agents promise bright prospects for finding not only molecular-targeted bioprobes for understanding of the structure-activity relationships of proteins and carbohydrates but also novel therapeutic drugs targeting proteins and carbohydrates.

  5. Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

    DEFF Research Database (Denmark)

    Spiess, Katja; Jeppesen, Mads G.; Malmgaard-Clausen, Mikkel

    2017-01-01

    of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin...... A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher...... selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate...

  6. Selection of flowing liquid lead target structural materials for accelerator driven transmutation applications

    International Nuclear Information System (INIS)

    Park, J.J.; Buksa, J.J.

    1994-01-01

    The beam entry window and container for a liquid lead spallation target will be exposed to high fluxes of protons and neutrons that are both higher in magnitude and energy than have been experienced in proton accelerators and fission reactors, as well as in a corrosive environment. The structural material of the target should have a good compatibility with liquid lead, a sufficient mechanical strength at elevated temperatures, a good performance under an intense irradiation environment, and a low neutron absorption cross section; these factors have been used to rank the applicability of a wide range of materials for structural containment Nb-1Zr has been selected for use as the structural container for the LANL ABC/ATW molten lead target. Corrosion and mass transfer behavior for various candidate structural materials in liquid lead are reviewed, together with the beneficial effects of inhibitors and various coatings to protect substrate against liquid lead corrosion. Mechanical properties of some candidate materials at elevated temperatures and the property changes resulting from 800 MeV proton irradiation are also reviewed

  7. Selection of Novel Peptides Homing the 4T1 CELL Line: Exploring Alternative Targets for Triple Negative Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Vera L Silva

    Full Text Available The use of bacteriophages to select novel ligands has been widely explored for cancer therapy. Their application is most warranted in cancer subtypes lacking knowledge on how to target the cancer cells in question, such as the triple negative breast cancer, eventually leading to the development of alternative nanomedicines for cancer therapeutics. Therefore, the following study aimed to select and characterize novel peptides for a triple negative breast cancer murine mammary carcinoma cell line- 4T1. Using phage display, 7 and 12 amino acid random peptide libraries were screened against the 4T1 cell line. A total of four rounds, plus a counter-selection round using the 3T3 murine fibroblast cell line, was performed. The enriched selective peptides were characterized and their binding capacity towards 4T1 tissue samples was confirmed by immunofluorescence and flow cytometry analysis. The selected peptides (4T1pep1 -CPTASNTSC and 4T1pep2-EVQSSKFPAHVS were enriched over few rounds of selection and exhibited specific binding to the 4T1 cell line. Interestingly, affinity to the human MDA-MB-231 cell line was also observed for both peptides, promoting the translational application of these novel ligands between species. Additionally, bioinformatics analysis suggested that both peptides target human Mucin-16. This protein has been implicated in different types of cancer, as it is involved in many important cellular functions. This study strongly supports the need of finding alternative targeting systems for TNBC and the peptides herein selected exhibit promising future application as novel homing peptides for breast cancer therapy.

  8. Mature Epitope Density - A strategy for target selection based on immunoinformatics and exported prokaryotic proteins

    DEFF Research Database (Denmark)

    Santos, Anderson R; Pereira, Vanessa Bastos; Barbosa, Eudes

    2013-01-01

    . However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. RESULTS: We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called...... Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising vaccine targets. Our online software implementation provides a computationally light and reliable analysis of bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic...... proteins were confirmed as related. There was no experimental evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly available online...

  9. Target selection for direct marketing.

    NARCIS (Netherlands)

    Bult, Jan Roelf

    1993-01-01

    In this thesis we concentrated on the use ol direct mail for targeting potential buyers. The major characteristics that influences the success of a plomotional direct mail campaign are the of-fbr,the communication elements, the timing or sequence of these communication elements, and the list of

  10. Target-matched insertion gain derived from three different hearing aid selection procedures.

    Science.gov (United States)

    Punch, J L; Shovels, A H; Dickinson, W W; Calder, J H; Snead, C

    1995-11-01

    Three hearing aid selection procedures were compared to determine if any one was superior in producing prescribed real-ear insertion gain. For each of three subject groups, 12 in-the-ear style hearing aids with Class D circuitry and similar dispenser controls were ordered from one of three manufacturers. Subject groups were classified based on the type of information included on the hearing aid order form: (1) the subject's audiogram, (2) a three-part matrix specifying the desired maximum output, full-on gain, and frequency response slope of the hearing aid, or (3) the desired 2-cc coupler full-in grain of the hearing aid, based on real-ear coupler difference (RECD) measurements. Following electroacoustic adjustments aimed at approximating a commonly used target insertion gain formula, results revealed no significant differences among any of the three selection procedures with respect to obtaining acceptable insertion gain values.

  11. Selective Inhibition of Histone Deacetylation in Melanoma Increases Targeted Gene Delivery by a Bacteriophage Viral Vector

    Directory of Open Access Journals (Sweden)

    Samuel Campbell

    2018-04-01

    Full Text Available The previously developed adeno-associated virus/phage (AAVP vector, a hybrid between M13 bacteriophage (phage viruses that infect bacteria only and human Adeno-Associated Virus (AAV, is a promising tool in targeted gene therapy against cancer. AAVP can be administered systemically and made tissue specific through the use of ligand-directed targeting. Cancer cells and tumor-associated blood vessels overexpress the αν integrin receptors, which are involved in tumor angiogenesis and tumor invasion. AAVP is targeted to these integrins via a double cyclic RGD4C ligand displayed on the phage capsid. Nevertheless, there remain significant host-defense hurdles to the use of AAVP in targeted gene delivery and subsequently in gene therapy. We previously reported that histone deacetylation in cancer constitutes a barrier to AAVP. Herein, to improve AAVP-mediated gene delivery to cancer cells, we combined the vector with selective adjuvant chemicals that inhibit specific histone deacetylases (HDAC. We examined the effects of the HDAC inhibitor C1A that mainly targets HDAC6 and compared this to sodium butyrate, a pan-HDAC inhibitor with broad spectrum HDAC inhibition. We tested the effects on melanoma, known for HDAC6 up-regulation, and compared this side by side with a normal human kidney HEK293 cell line. Varying concentrations were tested to determine cytotoxic levels as well as effects on AAVP gene delivery. We report that the HDAC inhibitor C1A increased AAVP-mediated transgene expression by up to ~9-fold. These findings indicate that selective HDAC inhibition is a promising adjuvant treatment for increasing the therapeutic value of AAVP.

  12. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection.

    Directory of Open Access Journals (Sweden)

    Harpinder S Randhawa

    Full Text Available A marker-assisted background selection (MABS-based gene introgression approach in wheat (Triticum aestivum L. was optimized, where 97% or more of a recurrent parent genome (RPG can be recovered in just two backcross (BC generations. A four-step MABS method was developed based on 'Plabsim' computer simulations and wheat genome structure information. During empirical optimization of this method, double recombinants around the target gene were selected in a step-wise fashion during the two BC cycles followed by selection for recurrent parent genotype on non-carrier chromosomes. The average spacing between carrier chromosome markers was <4 cM. For non-carrier chromosome markers that flanked each of the 48 wheat gene-rich regions, this distance was approximately 12 cM. Employed to introgress seedling stripe rust (Puccinia striiformis f. sp. tritici resistance gene Yr15 into the spring wheat cultivar 'Zak', marker analysis of 2,187 backcross-derived progeny resulted in the recovery of a BC(2F(2ratio3 plant with 97% of the recurrent parent genome. In contrast, only 82% of the recurrent parent genome was recovered in phenotypically selected BC(4F(7 plants developed without MABS. Field evaluation results from 17 locations indicated that the MABS-derived line was either equal or superior to the recurrent parent for the tested agronomic characteristics. Based on these results, MABS is recommended as a strategy for rapidly introgressing a targeted gene into a wheat genotype in just two backcross generations while recovering 97% or more of the recurrent parent genotype.

  13. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    International Nuclear Information System (INIS)

    Han, Seula; Woo, Jong Kyu; Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani; Oh, Seung Hyun; Ryu, Jae-Ha; Kim, Woo-Young

    2016-01-01

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  14. Evodiamine selectively targets cancer stem-like cells through the p53-p21-Rb pathway

    Energy Technology Data Exchange (ETDEWEB)

    Han, Seula [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Woo, Jong Kyu [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Jung, Yuchae; Jeong, Dawoon; Kang, Minsook; Yoo, Young-Ji; Lee, Hani [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Oh, Seung Hyun [College of Pharmacy, Gachon University, Incheon (Korea, Republic of); Ryu, Jae-Ha [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of); Kim, Woo-Young, E-mail: wykim@sookmyung.ac.kr [The Research Center for Cell Fate Control, College of Pharmacy, Sookmyung Women' s University, Seoul (Korea, Republic of)

    2016-01-22

    In spite of the recent improvements, the resistance to chemotherapy/radiotherapy followed by relapse is the main hurdle for the successful treatment of breast cancer, a leading cause of death in women. A small population of breast cancer cells that have stem-like characteristics (cancer stem-like cells; CSLC) may contribute to this resistance and relapse. Here, we report on a component of a traditional Chinese medicine, evodiamine, which selectively targets CSLC of breast cancer cell lines MCF7 and MDAMB 231 at a concentration that does show a little or no cytotoxic effect on bulk cancer cells. While evodiamine caused the accumulation of bulk cancer cells at the G2/M phase, it did not hold CSLC in a specific cell cycle phase but instead, selectively killed CSLC. This was not due to the culture of CSLC in suspension or without FBS. A proteomic analysis and western blotting revealed that evodiamine changed the expression of cell cycle regulating molecules more efficiently in CSLC cells than in bulk cancer cells. Surprisingly, evodiamine selectively activated p53 and p21 and decreased inactive Rb, the master molecules in G1/S checkpoint. These data collectively suggest a novel mechanism involving CSLC-specific targeting by evodiamine and its possible use to the therapy of breast cancer. - Highlights: • Evodiamine selectively kills breast cancer stem like cells at G1 phase. • Evodiamine utilizes different mechanism of cell cycle modulation in CSLC and in bulk cancer cells. • Evodiamine activate the p53, p21 and Rb pathway.

  15. The selective processing of emotional visual stimuli while detecting auditory targets: an ERP analysis.

    Science.gov (United States)

    Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O

    2008-09-16

    Event-related potential studies revealed an early posterior negativity (EPN) for emotional compared to neutral pictures. Exploring the emotion-attention relationship, a previous study observed that a primary visual discrimination task interfered with the emotional modulation of the EPN component. To specify the locus of interference, the present study assessed the fate of selective visual emotion processing while attention is directed towards the auditory modality. While simply viewing a rapid and continuous stream of pleasant, neutral, and unpleasant pictures in one experimental condition, processing demands of a concurrent auditory target discrimination task were systematically varied in three further experimental conditions. Participants successfully performed the auditory task as revealed by behavioral performance and selected event-related potential components. Replicating previous results, emotional pictures were associated with a larger posterior negativity compared to neutral pictures. Of main interest, increasing demands of the auditory task did not modulate the selective processing of emotional visual stimuli. With regard to the locus of interference, selective emotion processing as indexed by the EPN does not seem to reflect shared processing resources of visual and auditory modality.

  16. Multi-data integration of exploration criteria and selection of prospecting targets

    International Nuclear Information System (INIS)

    Dechang, L.; Jingke, Z.; Maorong, S.; Guojuan, W.

    1991-01-01

    In this paper based on the analysis of the exploration criteria for Shengyuan Basin-a uranium ore field, the multi-data integration and information extraction of exploration criteria are carried out on computer and image processing system so that the areas with best combinations of exploration criteria are directly displayed on the screen. Six prospecting targets are selected through the field examination. Shengyuan basin in Jiangxi province is a uranium-producing, Jurassic Cretaceous volcanic-sedimentary basin with an area of about 400 sq km. Its basement consists of Sinian-Cambrian rocks with Caledonian granites intruded. Several uranium deposits, occurrences and anomalies were discovered over the basin region which, therefore, becomes a very important uranium ore field in China

  17. The effect of spatial organization of targets and distractors on the capacity to selectively memorize objects in visual short-term memory.

    Science.gov (United States)

    Abbes, Aymen Ben; Gavault, Emmanuelle; Ripoll, Thierry

    2014-01-01

    We conducted a series of experiments to explore how the spatial configuration of objects influences the selection and the processing of these objects in a visual short-term memory task. We designed a new experiment in which participants had to memorize 4 targets presented among 4 distractors. Targets were cued during the presentation of distractor objects. Their locations varied according to 4 spatial configurations. From the first to the last configuration, the distance between targets' locations was progressively increased. The results revealed a high capacity to select and memorize targets embedded among distractors even when targets were extremely distant from each other. This capacity is discussed in relation to the unitary conception of attention, models of split attention, and the competitive interaction model. Finally, we propose that the spatial dispersion of objects has different effects on attentional allocation and processing stages. Thus, when targets are extremely distant from each other, attentional allocation becomes more difficult while processing becomes easier. This finding implicates that these 2 aspects of attention need to be more clearly distinguished in future research.

  18. Comparing the Selection and Placement of Best Management Practices in Improving Water Quality Using a Multiobjective Optimization and Targeting Method

    Directory of Open Access Journals (Sweden)

    Li-Chi Chiang

    2014-03-01

    Full Text Available Suites of Best Management Practices (BMPs are usually selected to be economically and environmentally efficient in reducing nonpoint source (NPS pollutants from agricultural areas in a watershed. The objective of this research was to compare the selection and placement of BMPs in a pasture-dominated watershed using multiobjective optimization and targeting methods. Two objective functions were used in the optimization process, which minimize pollutant losses and the BMP placement areas. The optimization tool was an integration of a multi-objective genetic algorithm (GA and a watershed model (Soil and Water Assessment Tool—SWAT. For the targeting method, an optimum BMP option was implemented in critical areas in the watershed that contribute the greatest pollutant losses. A total of 171 BMP combinations, which consist of grazing management, vegetated filter strips (VFS, and poultry litter applications were considered. The results showed that the optimization is less effective when vegetated filter strips (VFS are not considered, and it requires much longer computation times than the targeting method to search for optimum BMPs. Although the targeting method is effective in selecting and placing an optimum BMP, larger areas are needed for BMP implementation to achieve the same pollutant reductions as the optimization method.

  19. Variable selection for confounder control, flexible modeling and Collaborative Targeted Minimum Loss-based Estimation in causal inference

    Science.gov (United States)

    Schnitzer, Mireille E.; Lok, Judith J.; Gruber, Susan

    2015-01-01

    This paper investigates the appropriateness of the integration of flexible propensity score modeling (nonparametric or machine learning approaches) in semiparametric models for the estimation of a causal quantity, such as the mean outcome under treatment. We begin with an overview of some of the issues involved in knowledge-based and statistical variable selection in causal inference and the potential pitfalls of automated selection based on the fit of the propensity score. Using a simple example, we directly show the consequences of adjusting for pure causes of the exposure when using inverse probability of treatment weighting (IPTW). Such variables are likely to be selected when using a naive approach to model selection for the propensity score. We describe how the method of Collaborative Targeted minimum loss-based estimation (C-TMLE; van der Laan and Gruber, 2010) capitalizes on the collaborative double robustness property of semiparametric efficient estimators to select covariates for the propensity score based on the error in the conditional outcome model. Finally, we compare several approaches to automated variable selection in low-and high-dimensional settings through a simulation study. From this simulation study, we conclude that using IPTW with flexible prediction for the propensity score can result in inferior estimation, while Targeted minimum loss-based estimation and C-TMLE may benefit from flexible prediction and remain robust to the presence of variables that are highly correlated with treatment. However, in our study, standard influence function-based methods for the variance underestimated the standard errors, resulting in poor coverage under certain data-generating scenarios. PMID:26226129

  20. Selection and Characterization of Single Chain Antibody Fragments Specific for Hsp90 as a Potential Cancer Targeting Molecule

    Directory of Open Access Journals (Sweden)

    Edyta Petters

    2015-08-01

    Full Text Available Heat shock proteins play an essential role in facilitating malignant transformation and they have been recognized as important factors in human cancers. One of the key elements of the molecular chaperones machinery is Hsp90 and it has recently become a target for anticancer therapeutic approaches. The potential and importance of Hsp90-directed agents becomes apparent when one realizes that disruption of Hsp90 function may influence over 200 oncogenic client proteins. Here, we described the selection and characterization of Hsp90-specific antibody fragments from commercially available Tomlinson I and J phage display libraries. The affinities of Hsp90-binding scFv variants were measured using SPR method. Then, based on the best clone selected, we performed the affinity maturation procedure and obtained valuable Hsp90-specific clones. The selected binders were expressed and applied for immunostaining, ELISA and SPR analysis using model cancer cell lines. All performed experiments confirmed the ability of selected antibodies to interact with the Hsp90. Therefore, the presented Hsp90-specific scFv, might be a starting point for the development of a novel antibody-based strategy targeting cancer.

  1. High-efficiency target-ion sources for RIB generation

    International Nuclear Information System (INIS)

    Alton, G.D.

    1993-01-01

    A brief review is given of high-efficiency ion sources which have been developed or are under development at ISOL facilities which show particular promise for use at existing, future, or radioactive ion beam (RIB) facilities now under construction. Emphasis will be placed on those sources which have demonstrated high ionization efficiency, species versatility, and operational reliability and which have been carefully designed for safe handling in the high level radioactivity radiation fields incumbent at such facilities. Brief discussions will also be made of the fundamental processes which affect the realizable beam intensities in target-ion sources. Among the sources which will be reviewed will be selected examples of state-of-the-art electron-beam plasma-type ion sources, thermal-ionization, surface-ionization, ECR, and selectively chosen ion source concepts which show promise for radioactive ion beam generation. A few advanced, chemically selective target-ion sources will be described, such as sources based on the use of laser-resonance ionization, which, in principle, offer a more satisfactory solution to isobaric contamination problems than conventional electromagnetic techniques. Particular attention will be given to the sources which have been selected for initial or future use at the Holifield Radioactive Ion Beam Facility now under construction at the Oak Ridge National Laboratory

  2. The role of natural selection in shaping genetic variation in a promising Chagas disease drug target: Trypanosoma cruzi trans-sialidase.

    Science.gov (United States)

    Gallant, Joseph P; Lima-Cordón, Raquel Asunción; Justi, Silvia A; Monroy, Maria Carlota; Viola, Toni; Stevens, Lori

    2018-04-21

    Rational drug design creates innovative therapeutics based on knowledge of the biological target to provide more effective and responsible therapeutics. Chagas disease, endemic throughout Latin America, is caused by Trypanosoma cruzi, a protozoan parasite. Current therapeutics are problematic with widespread calls for new approaches. Researchers are using rational drug design for Chagas disease and one target receiving considerable attention is the T. cruzi trans-sialidase protein (TcTS). In T. cruzi, trans-sialidase catalyzes the transfer of sialic acid from a mammalian host to coat the parasite surface membrane and avoid immuno-detection. However, the role of TcTS in pathology variance among and within genetic variants of the parasite is not well understood despite numerous studies. Previous studies reported the crystalline structure of TcTS and the TS protein structure in other trypanosomes where the enzyme is often inactive. However, no study has examined the role of natural selection in genetic variation in TcTS. To understand the role of natural selection in TcTS DNA sequence and protein variation, we examined a 471 bp portion of the TcTS gene from 48 T. cruzi samples isolated from insect vectors. Because there may be multiple parasite genotypes infecting one insect and there are multiple copies of TcTS per parasite genome, all 48 sequences had multiple polymorphic bases. To resolve these polymorphisms, we examined cloned sequences from two insect vectors. The data are analyzed to understand the role of natural selection in shaping genetic variation in TcTS and interpreted in light of the possible role of TcTS as a drug target. The analysis highlights negative or purifying selection on three amino acids previously shown to be important in TcTS transfer activity. One amino acid in particular, Tyr342, is a strong candidate for a drug target because it is under negative selection and amino acid substitutions inactivate TcTS transfer activity. Chagas disease

  3. Highly Stable Aptamers Selected from a 2′-Fully Modified fGmH RNA Library for Targeting Biomaterials

    Science.gov (United States)

    Friedman, Adam D.; Kim, Dongwook; Liu, Rihe

    2014-01-01

    When developed as targeting ligands for the in vivo delivery of biomaterials to biological systems, RNA aptamers immediately face numerous obstacles, in particular nuclease degradation and post-selection 2′ modification. This study aims to develop a novel class of highly stable, 2′-fully modified RNA aptamers that are ideal for the targeted delivery of biomaterials. We demonstrated the facile transcription of a fGmH (2′-F-dG, 2′-OMe-dA/dC/dU) RNA library with unexpected hydrophobicity, the direct selection of aptamers from a fGmH RNA library that bind Staphylococcus aureus Protein A (SpA) as a model target, and the superior nuclease and serum stability of these aptamers compared to 2′-partially modified RNA variants. Characterizations of fGmH RNA aptamers binding to purified SpA and to endogenous SpA present on the surface of S. aureus cells demonstrate fGmH RNA aptamer selectivity and stability. Significantly, fGmH RNA aptamers were able to functionalize, stabilize, and further deliver aggregation-prone silver nanoparticles (AgNPs) to S. aureus with SpA-dependent antimicrobial effects. This study describes a novel aptamer class with considerable potential to improve the in vivo applicability of nucleic acid-based affinity molecules to biomaterials. PMID:25443790

  4. Molecular Targets for Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Mather, S.J.

    2009-01-01

    Molecular targeted radionuclide cancer therapy is becoming of increasing importance, especially for disseminated diseases. Systemic chemotherapies often lack selectivity while targeted radionuclide therapy has important advantages as the radioactive cytotoxic unit of the targeting vector is specifically directed to the cancer, sparing normal tissues. The principle strategy to improve cancer selectivity is to couple therapeutic agents to tumour-targeting vectors. In targeted radionuclide therapy (TRT), the cytotoxic portion of the conjugates normally contains a therapeutic radiometal immobilised by a bifunctional chelator. The aim is therefore to use as ligand-targeted therapeutics vectors coupled to Auger-, alpha- and/or beta-emitting radionuclides. An advantage of using radiation instead of chemotherapeutics as the cytotoxic agent is the so called 'crossfire effect'. This allows sterilisation of tumour cells that are not directly targeted due to heterogeneity in target molecule expression or inhomogeneous vector delivery. However, before the targeting ligands can be selected, the target molecule on the tumour has to be selected. It should be uniquely expressed, or at least highly overexpressed, on or in the target cells relative to normal tissues. The target should be easily accessible for ligand delivery and should not be shed or down- regulated after ligand binding. An important property of a receptor (or antigen) is its potential to be internalized upon binding of the ligand. This provides an active uptake mechanism and allows the therapeutic agent to be trapped within the tumour cells. Molecular targets of current interest include: Receptors: G-protein coupled receptors are overexpressed on many major human tumours. The prototype of these receptors are somatostatin receptors which show very high density in neuroendocrine tumours, but there are many other most interesting receptors to be applied for TRT. The targeting ligands for these receptors are

  5. Visual encoding and fixation target selection in free viewing: presaccadic brain potentials

    Directory of Open Access Journals (Sweden)

    Andrey R Nikolaev

    2013-06-01

    Full Text Available In scrutinizing a scene, the eyes alternate between fixations and saccades. During a fixation, two component processes can be distinguished: visual encoding and selection of the next fixation target. We aimed to distinguish the neural correlates of these processes in the electrical brain activity prior to a saccade onset. Participants viewed color photographs of natural scenes, in preparation for a change detection task. Then, for each participant and each scene we computed an image heat map, with temperature representing the duration and density of fixations. The temperature difference between the start and end points of saccades was taken as a measure of the expected task-relevance of the information concentrated in specific regions of a scene. Visual encoding was evaluated according to whether subsequent change was correctly detected. Saccades with larger temperature difference were more likely to be followed by correct detection than ones with smaller temperature differences. The amplitude of presaccadic activity over anterior brain areas was larger for correct detection than for detection failure. This difference was observed for short scrutinizing but not for long explorative saccades, suggesting that presaccadic activity reflects top-down saccade guidance. Thus, successful encoding requires local scanning of scene regions which are expected to be task-relevant. Next, we evaluated fixation target selection. Saccades moving up in temperature were preceded by presaccadic activity of higher amplitude than those moving down. This finding suggests that presaccadic activity reflects attention deployed to the following fixation location. Our findings illustrate how presaccadic activity can elucidate concurrent brain processes related to the immediate goal of planning the next saccade and the larger-scale goal of constructing a robust representation of the visual scene.

  6. Optimal management of radial artery grafts in CABG: Patient and target vessel selection and anti-spasm therapy.

    Science.gov (United States)

    Schwann, Thomas A; Gaudino, Mario; Baldawi, Mustafa; Tranbaugh, Robert; Schwann, Alexandra N; Habib, Robert H

    2018-05-01

    The current literature on radial artery grafting is reviewed focusing on the optimal deployment of radial artery grafts in coronary artery bypass surgery with specific attention to the selection of patients and target vessels for radial artery grafting. © 2018 Wiley Periodicals, Inc.

  7. Target-specific NMR detection of protein–ligand interactions with antibody-relayed {sup 15}N-group selective STD

    Energy Technology Data Exchange (ETDEWEB)

    Hetényi, Anasztázia [University of Szeged, Department of Medical Chemistry (Hungary); Hegedűs, Zsófia [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary); Fajka-Boja, Roberta; Monostori, Éva [Biological Research Center of the Hungarian Academy of Sciences, Lymphocyte Signal Transduction Laboratory, Institute of Genetics (Hungary); Kövér, Katalin E. [University of Debrecen, Department of Inorganic and Analytical Chemistry (Hungary); Martinek, Tamás A., E-mail: martinek@pharm.u-szeged.hu [University of Szeged, SZTE-MTA Lendület Foldamer Research Group, Institute of Pharmaceutical Analysis Department (Hungary)

    2016-12-15

    Fragment-based drug design has been successfully applied to challenging targets where the detection of the weak protein–ligand interactions is a key element. {sup 1}H saturation transfer difference (STD) NMR spectroscopy is a powerful technique for this work but it requires pure homogeneous proteins as targets. Monoclonal antibody (mAb)-relayed {sup 15}N-GS STD spectroscopy has been developed to resolve the problem of protein mixtures and impure proteins. A {sup 15}N-labelled target-specific mAb is selectively irradiated and the saturation is relayed through the target to the ligand. Tests on the anti-Gal-1 mAb/Gal-1/lactose system showed that the approach is experimentally feasible in a reasonable time frame. This method allows detection and identification of binding molecules directly from a protein mixture in a multicomponent system.

  8. A BAND SELECTION METHOD FOR SUB-PIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGES BASED ON LABORATORY AND FIELD REFLECTANCE SPECTRAL COMPARISON

    Directory of Open Access Journals (Sweden)

    S. Sharifi hashjin

    2016-06-01

    Full Text Available In recent years, developing target detection algorithms has received growing interest in hyperspectral images. In comparison to the classification field, few studies have been done on dimension reduction or band selection for target detection in hyperspectral images. This study presents a simple method to remove bad bands from the images in a supervised manner for sub-pixel target detection. The proposed method is based on comparing field and laboratory spectra of the target of interest for detecting bad bands. For evaluation, the target detection blind test dataset is used in this study. Experimental results show that the proposed method can improve efficiency of the two well-known target detection methods, ACE and CEM.

  9. Scientific objectives and selection of targets for the SMART-1 Infrared Spectrometer (SIR)

    Science.gov (United States)

    Basilevsky, A. T.; Keller, H. U.; Nathues, A.; Mall, U.; Hiesinger, H.; Rosiek, M.

    2004-12-01

    The European SMART-1 mission to the Moon, primarily a testbed for innovative technologies, was launched in September 2003 and will reach the Moon in 2005. On board are several scientific instruments, including the point-spectrometer SMART-1 Infrared Spectrometer (SIR). Taking into account the capabilities of the SMART-1 mission and the SIR instrument in particular, as well as the open questions in lunar science, a selection of targets for SIR observations has been compiled. SIR can address at least five topics: (1) Surface/regolith processes; (2) Lunar volcanism; (3) Lunar crust structure; (4) Search for spectral signatures of ices at the lunar poles; and (5) Ground truth and study of geometric effects on the spectral shape. For each topic we will discuss specific observation modes, necessary to achieve our scientific goals. The majority of SIR targets will be observed in the nadir-tracking mode. More than 100 targets, which require off-nadir pointing and off-nadir tracking, are planned. It is expected that results of SIR observations will significantly increase our understanding of the Moon. Since the exact arrival date and the orbital parameters of the SMART-1 spacecraft are not known yet, a more detailed planning of the scientific observations will follow in the near future.

  10. Right hemisphere dominance during spatial selective attention and target detection occurs outside the dorsal fronto-parietal network

    Science.gov (United States)

    Shulman, Gordon L.; Pope, Daniel L. W.; Astafiev, Serguei V.; McAvoy, Mark P.; Snyder, Abraham Z.; Corbetta, Maurizio

    2010-01-01

    Spatial selective attention is widely considered to be right hemisphere dominant. Previous functional magnetic resonance imaging (fMRI) studies, however, have reported bilateral blood-oxygenation-level-dependent (BOLD) responses in dorsal fronto-parietal regions during anticipatory shifts of attention to a location (Kastner et al., 1999; Corbetta et al., 2000; Hopfinger et al., 2000). Right-lateralized activity has mainly been reported in ventral fronto-parietal regions for shifts of attention to an unattended target stimulus (Arrington et al., 2000; Corbetta et al., 2000). However, clear conclusions cannot be drawn from these studies because hemispheric asymmetries were not assessed using direct voxel-wise comparisons of activity in left and right hemispheres. Here, we used this technique to measure hemispheric asymmetries during shifts of spatial attention evoked by a peripheral cue stimulus and during target detection at the cued location. Stimulus-driven shifts of spatial attention in both visual fields evoked right-hemisphere dominant activity in temporo-parietal junction (TPJ). Target detection at the attended location produced a more widespread right hemisphere dominance in frontal, parietal, and temporal cortex, including the TPJ region asymmetrically activated during shifts of spatial attention. However, hemispheric asymmetries were not observed during either shifts of attention or target detection in the dorsal fronto-parietal regions (anterior precuneus, medial intraparietal sulcus, frontal eye fields) that showed the most robust activations for shifts of attention. Therefore, right hemisphere dominance during stimulus-driven shifts of spatial attention and target detection reflects asymmetries in cortical regions that are largely distinct from the dorsal fronto-parietal network involved in the control of selective attention. PMID:20219998

  11. Selected Arterial Infusion Chemotherapy Combined with Target Drugs 
for Non-small Cell Lung Cancer with Multiple Brain Metastase

    Directory of Open Access Journals (Sweden)

    Jinduo LI

    2012-05-01

    Full Text Available Background and objective The aim of this study is to evaluate the efficacy of selected arterial infusion chemotherapy in treating non-small cell lung cancer (NSCLC with multiple brain metastases and corresponding factors to influencing prognosis. Methods From September 2008 to October 2011, a total of 31 patients of NSCLC with multiple brain metastases (≥3 received selected incranial, bronchial and corresponding target arterial infusion chemotherapy combined with EGFR-TKIs. Interventional treatment was performed every four weeks, two-six cycles with synchronized or sequential targeted drugs (erlotinib, gefitinib or icotinib. Follow-up CT and MRI were regularly finished at interval of four weeks after two cycles of interventional treatment were finished or during taking targeted drugs in order to evaluate efficacy of the therapy. The procedure was stopped for the tumor disease was worse or the patient could not tolerate the toxity of drugs any longer. Results 31 patients was performed two to six cycles of interventional therapy, 3cycles at average. Response assessment showed that 5 (16.1% patients got a complete response (CR, 7 (22.6% had a partial response (PR, 11 (35.5% had a stable disease (SD and 8 (25.8% had a progressive disease (PD. The objective response rate (ORR was 38.7%, and the disease control rate was 74.2%. The median progression free survival (PFS and overall survival (OS were 13.1 months and 15.1 months. The 6-month survival rate, one-year survival rate and two-year survival rate were 79%, 61.1%, and 31.1%, respectively. The patients’ OS and PFS were influenced by smoking state, tumor pathology, extracranial metastases, period of targeted drug taking and performance status, not by sex, age, before therapy and the total of brain metastases. Conclusion Selected arterial infusion chemotherapy with targeted drugs is one of the most effective and safe treatment to NSCLC with multiple brain metastases. Smoking status, tumor

  12. Antisense oligonucleotides targeting translation inhibitory elements in 5' UTRs can selectively increase protein levels.

    Science.gov (United States)

    Liang, Xue-Hai; Sun, Hong; Shen, Wen; Wang, Shiyu; Yao, Joyee; Migawa, Michael T; Bui, Huynh-Hoa; Damle, Sagar S; Riney, Stan; Graham, Mark J; Crooke, Rosanne M; Crooke, Stanley T

    2017-09-19

    A variety of diseases are caused by deficiencies in amounts or activity of key proteins. An approach that increases the amount of a specific protein might be of therapeutic benefit. We reasoned that translation could be specifically enhanced using trans-acting agents that counter the function of negative regulatory elements present in the 5' UTRs of some mRNAs. We recently showed that translation can be enhanced by antisense oligonucleotides (ASOs) that target upstream open reading frames. Here we report the amount of a protein can also be selectively increased using ASOs designed to hybridize to other translation inhibitory elements in 5' UTRs. Levels of human RNASEH1, LDLR, and ACP1 and of mouse ACP1 and ARF1 were increased up to 2.7-fold in different cell types and species upon treatment with chemically modified ASOs targeting 5' UTR inhibitory regions in the mRNAs encoding these proteins. The activities of ASOs in enhancing translation were sequence and position dependent and required helicase activity. The ASOs appear to improve the recruitment of translation initiation factors to the target mRNA. Importantly, ASOs targeting ACP1 mRNA significantly increased the level of ACP1 protein in mice, suggesting that this approach has therapeutic and research potentials. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Use of mathematics to guide target selection in systems pharmacology; application to receptor tyrosine kinase (RTK) pathways.

    Science.gov (United States)

    Benson, Neil; van der Graaf, Piet H; Peletier, Lambertus A

    2017-11-15

    A key element of the drug discovery process is target selection. Although the topic is subject to much discussion and experimental effort, there are no defined quantitative rules around optimal selection. Often 'rules of thumb', that have not been subject to rigorous exploration, are used. In this paper we explore the 'rule of thumb' notion that the molecule that initiates a pathway signal is the optimal target. Given the multi-factorial and complex nature of this question, we have simplified an example pathway to its logical minimum of two steps and used a mathematical model of this to explore the different options in the context of typical small and large molecule drugs. In this paper, we report the conclusions of our analysis and describe the analysis tool and methods used. These provide a platform to enable a more extensive enquiry into this important topic. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Antibody Selection for Cancer Target Validation of FSH-Receptor in Immunohistochemical Settings

    Directory of Open Access Journals (Sweden)

    Nina Moeker

    2017-10-01

    Full Text Available Background: The follicle-stimulating hormone (FSH-receptor (FSHR has been reported to be an attractive target for antibody therapy in human cancer. However, divergent immunohistochemical (IHC findings have been reported for FSHR expression in tumor tissues, which could be due to the specificity of the antibodies used. Methods: Three frequently used antibodies (sc-7798, sc-13935, and FSHR323 were validated for their suitability in an immunohistochemical study for FSHR expression in different tissues. As quality control, two potential therapeutic anti-hFSHR Ylanthia® antibodies (Y010913, Y010916 were used. The specificity criteria for selection of antibodies were binding to native hFSHR of different sources, and no binding to non-related proteins. The ability of antibodies to stain the paraffin-embedded Flp-In Chinese hamster ovary (CHO/FSHR cells was tested after application of different epitope retrieval methods. Results: From the five tested anti-hFSHR antibodies, only Y010913, Y010916, and FSHR323 showed specific binding to native, cell-presented hFSHR. Since Ylanthia® antibodies were selected to specifically recognize native FSHR, as required for a potential therapeutic antibody candidate, FSHR323 was the only antibody to detect the receptor in IHC/histochemical settings on transfected cells, and at markedly lower, physiological concentrations (ex., in Sertoli cells of human testes. The pattern of FSH323 staining noticed for ovarian, prostatic, and renal adenocarcinomas indicated that FSHR was expressed mainly in the peripheral tumor blood vessels. Conclusion: Of all published IHC antibodies tested, only antibody FSHR323 proved suitable for target validation of hFSHR in an IHC setting for cancer. Our studies could not confirm the previously reported FSHR overexpression in ovarian and prostate cancer cells. Instead, specific overexpression in peripheral tumor blood vessels could be confirmed after thorough validation of the antibodies used.

  15. Food pantry selection solutions: a randomized controlled trial in client-choice food pantries to nudge clients to targeted foods.

    Science.gov (United States)

    Wilson, Norbert L W; Just, David R; Swigert, Jeffery; Wansink, Brian

    2017-06-01

    Food pantries and food banks are interested in cost-effective methods to encourage the selection of targeted foods without restricting choices. Thus, this study evaluates the effectiveness of nudges toward targeted foods. In October/November 2014, we manipulated the display of a targeted product in a New York State food pantry. We evaluated the binary choice of the targeted good when we placed it in the front or the back of the category line (placement order) and when we presented the product in its original box or unboxed (packaging). The average uptake proportion for the back treatment was 0.231, 95% CI = 0.179, 0.29, n = 205, and for the front treatment, the proportion was 0.337, 95% CI = 0.272, 0.406, n = 238 with an odds ratio of 1.688, 95% CI = 1.088, 2.523. The average uptake for the unboxed treatment was 0.224, 95% CI = 0.174, 0.280, n = 255, and for the boxed intervention, the proportion was 0.356, 95% CI = 0.288, 0.429, n = 188 with an odds ratio of 1.923, 95% CI = 1.237, 2.991. Nudges increased uptake of the targeted food. The findings also hold when we control for a potential confounder. Low cost and unobtrusive nudges can be effective tools for food pantry organizers to encourage the selection of targeted foods. NCT02403882. © The Author 2016. Published by Oxford University Press on behalf of Faculty of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Identification of genomic variants putatively targeted by selection during dog domestication.

    Science.gov (United States)

    Cagan, Alex; Blass, Torsten

    2016-01-12

    Dogs [Canis lupus familiaris] were the first animal species to be domesticated and continue to occupy an important place in human societies. Recent studies have begun to reveal when and where dog domestication occurred. While much progress has been made in identifying the genetic basis of phenotypic differences between dog breeds we still know relatively little about the genetic changes underlying the phenotypes that differentiate all dogs from their wild progenitors, wolves [Canis lupus]. In particular, dogs generally show reduced aggression and fear towards humans compared to wolves. Therefore, selection for tameness was likely a necessary prerequisite for dog domestication. With the increasing availability of whole-genome sequence data it is possible to try and directly identify the genetic variants contributing to the phenotypic differences between dogs and wolves. We analyse the largest available database of genome-wide polymorphism data in a global sample of dogs 69 and wolves 7. We perform a scan to identify regions of the genome that are highly differentiated between dogs and wolves. We identify putatively functional genomic variants that are segregating or at high frequency [> = 0.75 Fst] for alternative alleles between dogs and wolves. A biological pathways analysis of the genes containing these variants suggests that there has been selection on the 'adrenaline and noradrenaline biosynthesis pathway', well known for its involvement in the fight-or-flight response. We identify 11 genes with putatively functional variants fixed for alternative alleles between dogs and wolves. The segregating variants in these genes are strong candidates for having been targets of selection during early dog domestication. We present the first genome-wide analysis of the different categories of putatively functional variants that are fixed or segregating at high frequency between a global sampling of dogs and wolves. We find evidence that selection has been strongest

  17. Study of target and non-target interplay in spatial attention task.

    Science.gov (United States)

    Sweeti; Joshi, Deepak; Panigrahi, B K; Anand, Sneh; Santhosh, Jayasree

    2018-02-01

    Selective visual attention is the ability to selectively pay attention to the targets while inhibiting the distractors. This paper aims to study the targets and non-targets interplay in spatial attention task while subject attends to the target object present in one visual hemifield and ignores the distractor present in another visual hemifield. This paper performs the averaged evoked response potential (ERP) analysis and time-frequency analysis. ERP analysis agrees to the left hemisphere superiority over late potentials for the targets present in right visual hemifield. Time-frequency analysis performed suggests two parameters i.e. event-related spectral perturbation (ERSP) and inter-trial coherence (ITC). These parameters show the same properties for the target present in either of the visual hemifields but show the difference while comparing the activity corresponding to the targets and non-targets. In this way, this study helps to visualise the difference between targets present in the left and right visual hemifields and, also the targets and non-targets present in the left and right visual hemifields. These results could be utilised to monitor subjects' performance in brain-computer interface (BCI) and neurorehabilitation.

  18. Target selection and mass estimation for manned NEO exploration using a baseline mission design

    Science.gov (United States)

    Boden, Ralf C.; Hein, Andreas M.; Kawaguchi, Junichiro

    2015-06-01

    In recent years Near-Earth Objects (NEOs) have received an increased amount of interest as a target for human exploration. NEOs offer scientifically interesting targets, and at the same time function as a stepping stone for achieving future Mars missions. The aim of this research is to identify promising targets from the large number of known NEOs that qualify for a manned sample-return mission with a maximum duration of one year. By developing a baseline mission design and a mass estimation model, mission opportunities are evaluated based on on-orbit mass requirements, safety considerations, and the properties of the potential targets. A selection of promising NEOs is presented and the effects of mission requirements and restrictions are discussed. Regarding safety aspects, the use of free-return trajectories provides the lowest on-orbit mass, when compared to an alternative design that uses system redundancies to ensure return of the spacecraft to Earth. It is discovered that, although a number of targets are accessible within the analysed time frame, no NEO offers both easy access and high incentive for its exploration. Under the discussed aspects a first human exploration mission going beyond the vicinity of Earth will require a trade off between targets that provide easy access and those that are of scientific interest. This lack of optimal mission opportunities can be seen in the small number of only 4 NEOs that meet all requirements for a sample-return mission and remain below an on-orbit mass of 500 metric Tons (mT). All of them require a mass between 315 and 492 mT. Even less ideal, smaller asteroids that are better accessible require an on-orbit mass that exceeds the launch capability of future heavy lift vehicles (HLV) such as SLS by at least 30 mT. These mass requirements show that additional efforts are necessary to increase the number of available targets and reduce on-orbit mass requirements through advanced mission architectures. The need for on

  19. What Is the Structure of the Naphthalene-Benzene Heterodimer Radical Cation? Binding Energy, Charge Delocalization, and Unexpected Charge-Transfer Interaction in Stacked Dimer and Trimer Radical Cations.

    Science.gov (United States)

    Attah, Isaac K; Platt, Sean P; Meot-Ner Mautner, Michael; El-Shall, M Samy; Peverati, Roberto; Head-Gordon, Martin

    2015-04-02

    The binding energy of the naphthalene(+•)(benzene) heterodimer cation has been determined to be 7.9 ± 1 kcal/mol for C10H8(+•)(C6H6) and 8.1 ± 1 kcal/mol for C10H8(+•)(C6D6) by equilibrium thermochemical measurements using the mass-selected drift cell technique. A second benzene molecule binds to the C10H8(+•)(C6D6) dimer with essentially the same energy (8.4 ± 1 kcal/mol), suggesting that the two benzene molecules are stacked on opposite sides of the naphthalene cation in the (C6D6)C10H8(+•)(C6D6) heterotrimer. The lowest-energy isomers of the C10H8(+•)(C6D6) and (C6D6)C10H8(+•)(C6D6) dimer and trimer calculated using the M11/cc-pVTZ method have parallel stacked structures with enthalpies of binding (-ΔH°) of 8.4 and 9.0 kcal/mol, respectively, in excellent agreement with the experimental values. The stacked face-to-face class of isomers is calculated to have substantial charge-transfer stabilization of about 45% of the total interaction energy despite the large difference between the ionization energies of benzene and naphthalene. Similarly, significant delocalization of the positive charge is found among all three fragments of the (C6D6)C10H8(+•)(C6D6) heterotrimer, thus leaving only 46% of the total charge on the central naphthalene moiety. This unexpectedly high charge-transfer component results in activating two benzene molecules in the naphthalene(+•)(benzene)2 heterotrimer cation to associate with a third benzene molecule at 219 K to form a benzene trimer cation and a neutral naphthalene molecule. The global minimum of the C10H8(+•)(C6H6)2 heterotrimer is found to be the one where the naphthalene cation is sandwiched between two benzene molecules. It is remarkable, and rather unusual, that the binding energy of the second benzene molecule is essentially the same as that of the first. This is attributed to the enhanced charge-transfer interaction in the stacked trimer radical cation.

  20. PLS-based and regularization-based methods for the selection of relevant variables in non-targeted metabolomics data

    Directory of Open Access Journals (Sweden)

    Renata Bujak

    2016-07-01

    Full Text Available Non-targeted metabolomics constitutes a part of systems biology and aims to determine many metabolites in complex biological samples. Datasets obtained in non-targeted metabolomics studies are multivariate and high-dimensional due to the sensitivity of mass spectrometry-based detection methods as well as complexity of biological matrices. Proper selection of variables which contribute into group classification is a crucial step, especially in metabolomics studies which are focused on searching for disease biomarker candidates. In the present study, three different statistical approaches were tested using two metabolomics datasets (RH and PH study. Orthogonal projections to latent structures-discriminant analysis (OPLS-DA without and with multiple testing correction as well as least absolute shrinkage and selection operator (LASSO were tested and compared. For the RH study, OPLS-DA model built without multiple testing correction, selected 46 and 218 variables based on VIP criteria using Pareto and UV scaling, respectively. In the case of the PH study, 217 and 320 variables were selected based on VIP criteria using Pareto and UV scaling, respectively. In the RH study, OPLS-DA model built with multiple testing correction, selected 4 and 19 variables as statistically significant in terms of Pareto and UV scaling, respectively. For PH study, 14 and 18 variables were selected based on VIP criteria in terms of Pareto and UV scaling, respectively. Additionally, the concept and fundaments of the least absolute shrinkage and selection operator (LASSO with bootstrap procedure evaluating reproducibility of results, was demonstrated. In the RH and PH study, the LASSO selected 14 and 4 variables with reproducibility between 99.3% and 100%. However, apart from the popularity of PLS-DA and OPLS-DA methods in metabolomics, it should be highlighted that they do not control type I or type II error, but only arbitrarily establish a cut-off value for PLS-DA loadings

  1. Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment.

    Directory of Open Access Journals (Sweden)

    Ruben R Bender

    2016-06-01

    Full Text Available Receptor-targeted lentiviral vectors (LVs can be an effective tool for selective transfer of genes into distinct cell types of choice. Moreover, they can be used to determine the molecular properties that cell surface proteins must fulfill to act as receptors for viral glycoproteins. Here we show that LVs pseudotyped with receptor-targeted Nipah virus (NiV glycoproteins effectively enter into cells when they use cell surface proteins as receptors that bring them closely enough to the cell membrane (less than 100 Å distance. Then, they were flexible in receptor usage as demonstrated by successful targeting of EpCAM, CD20, and CD8, and as selective as LVs pseudotyped with receptor-targeted measles virus (MV glycoproteins, the current standard for cell-type specific gene delivery. Remarkably, NiV-LVs could be produced at up to two orders of magnitude higher titers compared to their MV-based counterparts and were at least 10,000-fold less effectively neutralized than MV glycoprotein pseudotyped LVs by pooled human intravenous immunoglobulin. An important finding for NiV-LVs targeted to Her2/neu was an about 100-fold higher gene transfer activity when particles were targeted to membrane-proximal regions as compared to particles binding to a more membrane-distal epitope. Likewise, the low gene transfer activity mediated by NiV-LV particles bound to the membrane distal domains of CD117 or the glutamate receptor subunit 4 (GluA4 was substantially enhanced by reducing receptor size to below 100 Å. Overall, the data suggest that the NiV glycoproteins are optimally suited for cell-type specific gene delivery with LVs and, in addition, for the first time define which parts of a cell surface protein should be targeted to achieve optimal gene transfer rates with receptor-targeted LVs.

  2. Target Choice and Unique Synergies in Global Mobile Telephony

    DEFF Research Database (Denmark)

    Claussen, Jörg; Köhler, Rebecca; Kretschmer, Tobias

    2018-01-01

    their foresight to select specific targets: First, they lower integration costs by selecting geographically close targets. This effect is stronger when buyer and target are in the same country, but only if the market is not so concentrated that it provokes regulatory interventions. Second, they select targets......The success of acquisitions rests on detecting and realizing unique synergies between buyer and target through their dyadic relationships. We study the role of unique dyad-specific synergies in the selection of takeover targets in the global mobile telecommunications industry. Firms use...... that can be acquired at a modest bid premium because they have asymmetric bargaining power. Finally, they select targets which can generate significant synergies due to technological synergies. Our work expands the existing target selection literature by studying dyad-specific factors within a single...

  3. Sexual selection targets cetacean pelvic bones

    Science.gov (United States)

    Dines, J. P.; Otárola-Castillo, E.; Ralph, P.; Alas, J.; Daley, T.; Smith, A. D.; Dean, M. D.

    2014-01-01

    Male genitalia evolve rapidly, probably as a result of sexual selection. Whether this pattern extends to the internal infrastructure that influences genital movements remains unknown. Cetaceans (whales and dolphins) offer a unique opportunity to test this hypothesis: since evolving from land-dwelling ancestors, they lost external hind limbs and evolved a highly reduced pelvis which seems to serve no other function except to anchor muscles that maneuver the penis. Here we create a novel morphometric pipeline to analyze the size and shape evolution of pelvic bones from 130 individuals (29 species) in the context of inferred mating system. We present two main findings: 1) males from species with relatively intense sexual selection (inferred by relative testes size) have evolved relatively large penises and pelvic bones compared to their body size, and 2) pelvic bone shape diverges more quickly in species pairs that have diverged in inferred mating system. Neither pattern was observed in the anterior-most pair of vertebral ribs, which served as a negative control. This study provides evidence that sexual selection can affect internal anatomy that controls male genitalia. These important functions may explain why cetacean pelvic bones have not been lost through evolutionary time. PMID:25186496

  4. Application effect of TEM sounding survey on prospecting and target area selection of sandstone-type uranium deposits

    International Nuclear Information System (INIS)

    He Jianguo; Liang Shanming; Zhao Cuiping

    2006-01-01

    Based on the results of transient electromagnetic (TEM) sounding survey during recent years regional geological reconnaissance with drilling (1:250000), the application effect of TEM sounding survey during regional reconnaissance is summarized in this paper. It is suggested that the data of TEM sounding are useful in judging hydrodynamic conditions of groundwater and determining favorable areas for uranium ore-formation; TEM sounding in large areas may be proper for prospecting in gobi-desert areas and be beneficial for regional reconnaissance and target area selection, and may reduce the target area and provide basis for further drilling program. It is of popularized significance in the prospecting for sandstone-type uranium deposits. (authors)

  5. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures

    Directory of Open Access Journals (Sweden)

    Hayes Michael L

    2012-05-01

    Full Text Available Abstract Background Pentatricopeptide repeat (PPR proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82 and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. Results All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3’ UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. Conclusion PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative

  6. Molecular evolution of pentatricopeptide repeat genes reveals truncation in species lacking an editing target and structural domains under distinct selective pressures.

    Science.gov (United States)

    Hayes, Michael L; Giang, Karolyn; Mulligan, R Michael

    2012-05-14

    Pentatricopeptide repeat (PPR) proteins are required for numerous RNA processing events in plant organelles including C-to-U editing, splicing, stabilization, and cleavage. Fifteen PPR proteins are known to be required for RNA editing at 21 sites in Arabidopsis chloroplasts, and belong to the PLS class of PPR proteins. In this study, we investigate the co-evolution of four PPR genes (CRR4, CRR21, CLB19, and OTP82) and their six editing targets in Brassicaceae species. PPR genes are composed of approximately 10 to 20 tandem repeats and each repeat has two α-helical regions, helix A and helix B, that are separated by short coil regions. Each repeat and structural feature was examined to determine the selective pressures on these regions. All of the PPR genes examined are under strong negative selection. Multiple independent losses of editing site targets are observed for both CRR21 and OTP82. In several species lacking the known editing target for CRR21, PPR genes are truncated near the 17th PPR repeat. The coding sequences of the truncated CRR21 genes are maintained under strong negative selection; however, the 3' UTR sequences beyond the truncation site have substantially diverged. Phylogenetic analyses of four PPR genes show that sequences corresponding to helix A are high compared to helix B sequences. Differential evolutionary selection of helix A versus helix B is observed in both plant and mammalian PPR genes. PPR genes and their cognate editing sites are mutually constrained in evolution. Editing sites are frequently lost by replacement of an edited C with a genomic T. After the loss of an editing site, the PPR genes are observed with three outcomes: first, few changes are detected in some cases; second, the PPR gene is present as a pseudogene; and third, the PPR gene is present but truncated in the C-terminal region. The retention of truncated forms of CRR21 that are maintained under strong negative selection even in the absence of an editing site target

  7. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells

    Science.gov (United States)

    Lagadinou, Eleni D.; Sach, Alexander; Callahan, Kevin; Rossi, Randall M.; Neering, Sarah J.; Minhajuddin, Mohammad; Ashton, John M.; Pei, Shanshan; Grose, Valerie; O’Dwyer, Kristen M.; Liesveld, Jane L.; Brookes, Paul S.; Becker, Michael W.; Jordan, Craig T.

    2013-01-01

    Summary Most forms of chemotherapy employ mechanisms involving induction of oxidative stress, a strategy that can be effective due to the elevated oxidative state commonly observed in cancer cells. However, recent studies have shown that relative redox levels in primary tumors can be heterogeneous, suggesting that regimens dependent on differential oxidative state may not be uniformly effective. To investigate this issue in hematological malignancies, we evaluated mechanisms controlling oxidative state in primary specimens derived from acute myelogenous leukemia (AML) patients. Our studies demonstrate three striking findings. First, the majority of functionally-defined leukemia stem cells (LSCs) are characterized by relatively low levels of reactive oxygen species (termed “ROS-low”). Second, ROS-low LSCs aberrantly over-express BCL-2. Third, BCL-2 inhibition reduced oxidative phosphorylation and selectively eradicated quiescent LSCs. Based on these findings, we propose a model wherein the unique physiology of ROS-low LSCs provides an opportunity for selective targeting via disruption of BCL-2-dependent oxidative phosphorylation. PMID:23333149

  8. TargetCompare: A web interface to compare simultaneous miRNAs targets.

    Science.gov (United States)

    Moreira, Fabiano Cordeiro; Dustan, Bruno; Hamoy, Igor G; Ribeiro-Dos-Santos, André M; Dos Santos, Andrea Ribeiro

    2014-01-01

    MicroRNAs (miRNAs) are small non-coding nucleotide sequences between 17 and 25 nucleotides in length that primarily function in the regulation of gene expression. A since miRNA has thousand of predict targets in a complex, regulatory cell signaling network. Therefore, it is of interest to study multiple target genes simultaneously. Hence, we describe a web tool (developed using Java programming language and MySQL database server) to analyse multiple targets of pre-selected miRNAs. We cross validated the tool in eight most highly expressed miRNAs in the antrum region of stomach. This helped to identify 43 potential genes that are target of at least six of the referred miRNAs. The developed tool aims to reduce the randomness and increase the chance of selecting strong candidate target genes and miRNAs responsible for playing important roles in the studied tissue. http://lghm.ufpa.br/targetcompare.

  9. Selection of target mutation in rat gastrointestinal tract E. coli by minute dosage of enrofloxacin.

    Science.gov (United States)

    Lin, Dachuan; Chen, Kaichao; Li, Ruichao; Liu, Lizhang; Guo, Jiubiao; Yao, Wen; Chen, Sheng

    2014-01-01

    It has been suggested that bacterial resistance is selected within a mutation selection window of antibiotics. More recent studies showed that even extremely low concentration of antibiotic could select resistant bacteria in vitro. Yet little is known about the exact antibiotic concentration range that can effectively select for resistant organisms in animal gastrointestinal (GI) tract. In this study, the effect of different dosages of enrofloxacin on resistance and mutation development in rat GI tract E. coli was investigated by determining the number of resistant E. coli recoverable from rat fecal samples. Our data showed that high dose antibiotic treatment could effectively eliminate E. coli with single gyrA mutation in the early course of treatment, yet the eradication effects diminished upon prolonged treatment. Therapeutic and sub-therapeutic dose (1/10 and 1/100 of therapeutic doses) of enrofloxacin could effectively select for mutation in GI tract E. coli at the later course of enrofloxacin treatment and during the cessation periods. Surprisingly, very low dose of enrofloxacin (1/1000 therapeutic dose) could also select for mutation in GI tract E. coli at the later course of enrofloxacin treatment, only with slightly lower efficiency. No enrofloxacin-resistant E. coli could be selected at all test levels of enrofloxacin during long term treatment and the strength of antibiotic treatment does not alter the overall level of E. coli in rat GI tract. This study demonstrated that long term antibiotic treatment seems to be the major trigger for the development of target mutations in GI tract E. coli, which provided insight into the rational use of antibiotics in animal husbandry.

  10. Replication Protein A (RPA) Phosphorylation Prevents RPA Association with Replication Centers

    OpenAIRE

    Vassin, Vitaly M.; Wold, Marc S.; Borowiec, James A.

    2004-01-01

    Mammalian replication protein A (RPA) undergoes DNA damage-dependent phosphorylation at numerous sites on the N terminus of the RPA2 subunit. To understand the functional significance of RPA phosphorylation, we expressed RPA2 variants in which the phosphorylation sites were converted to aspartate (RPA2D) or alanine (RPA2A). Although RPA2D was incorporated into RPA heterotrimers and supported simian virus 40 DNA replication in vitro, the RPA2D mutant was selectively unable to associate with re...

  11. Selective Targeting of SH2 Domain–Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies

    Energy Technology Data Exchange (ETDEWEB)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-01

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody–SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells.

  12. Systemic combinatorial peptide selection yields a non-canonical iron-mimicry mechanism for targeting tumors in a mouse model of human glioblastoma

    Science.gov (United States)

    Staquicini, Fernanda I.; Ozawa, Michael G.; Moya, Catherine A.; Driessen, Wouter H.P.; Barbu, E. Magda; Nishimori, Hiroyuki; Soghomonyan, Suren; Flores, Leo G.; Liang, Xiaowen; Paolillo, Vincenzo; Alauddin, Mian M.; Basilion, James P.; Furnari, Frank B.; Bogler, Oliver; Lang, Frederick F.; Aldape, Kenneth D.; Fuller, Gregory N.; Höök, Magnus; Gelovani, Juri G.; Sidman, Richard L.; Cavenee, Webster K.; Pasqualini, Renata; Arap, Wadih

    2010-01-01

    The management of CNS tumors is limited by the blood-brain barrier (BBB), a vascular interface that restricts the passage of most molecules from the blood into the brain. Here we show that phage particles targeted with certain ligand motifs selected in vivo from a combinatorial peptide library can cross the BBB under normal and pathological conditions. Specifically, we demonstrated that phage clones displaying an iron-mimic peptide were able to target a protein complex of transferrin and transferrin receptor (TfR) through a non-canonical allosteric binding mechanism and that this functional protein complex mediated transport of the corresponding viral particles into the normal mouse brain. We also showed that, in an orthotopic mouse model of human glioblastoma, a combination of TfR overexpression plus extended vascular permeability and ligand retention resulted in remarkable brain tumor targeting of chimeric adeno-associated virus/phage particles displaying the iron-mimic peptide and carrying a gene of interest. As a proof of concept, we delivered the HSV thymidine kinase gene for molecular-genetic imaging and targeted therapy of intracranial xenografted tumors. Finally, we established that these experimental findings might be clinically relevant by determining through human tissue microarrays that many primary astrocytic tumors strongly express TfR. Together, our combinatorial selection system and results may provide a translational avenue for the targeted detection and treatment of brain tumors. PMID:21183793

  13. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  14. Gene Therapy for Advanced Melanoma: Selective Targeting and Therapeutic Nucleic Acids

    Directory of Open Access Journals (Sweden)

    Joana R. Viola

    2013-01-01

    Full Text Available Despite recent advances, the treatment of malignant melanoma still results in the relapse of the disease, and second line treatment mostly fails due to the occurrence of resistance. A wide range of mutations are known to prevent effective treatment with chemotherapeutic drugs. Hence, approaches with biopharmaceuticals including proteins, like antibodies or cytokines, are applied. As an alternative, regimens with therapeutically active nucleic acids offer the possibility for highly selective cancer treatment whilst avoiding unwanted and toxic side effects. This paper gives a brief introduction into the mechanism of this devastating disease, discusses the shortcoming of current therapy approaches, and pinpoints anchor points which could be harnessed for therapeutic intervention with nucleic acids. We bring the delivery of nucleic acid nanopharmaceutics into perspective as a novel antimelanoma therapeutic approach and discuss the possibilities for melanoma specific targeting. The latest reports on preclinical and already clinical application of nucleic acids in melanoma are discussed.

  15. Fluorinated Nucleotide Modifications Modulate Allele Selectivity of SNP-Targeting Antisense Oligonucleotides

    Directory of Open Access Journals (Sweden)

    Michael E. Østergaard

    2017-06-01

    Full Text Available Antisense oligonucleotides (ASOs have the potential to discriminate between subtle RNA mismatches such as SNPs. Certain mismatches, however, allow ASOs to bind at physiological conditions and result in RNA cleavage mediated by RNase H. We showed that replacing DNA nucleotides in the gap region of an ASO with other chemical modification can improve allele selectivity. Herein, we systematically substitute every position in the gap region of an ASO targeting huntingtin gene (HTT with fluorinated nucleotides. Potency is determined in cell culture against mutant HTT (mtHTT and wild-type HTT (wtHTT mRNA and RNase H cleavage intensities, and patterns are investigated. This study profiled five different fluorinated nucleotides and showed them to have predictable, site-specific effects on RNase H cleavage, and the cleavage patterns were rationalized from a published X-ray structure of human RNase H1. The results herein can be used as a guide for future projects where ASO discrimination of SNPs is important.

  16. Targeting hunter distribution based on host resource selection and kill sites to manage disease risk.

    Science.gov (United States)

    Dugal, Cherie J; van Beest, Floris M; Vander Wal, Eric; Brook, Ryan K

    2013-10-01

    Endemic and emerging diseases are rarely uniform in their spatial distribution or prevalence among cohorts of wildlife. Spatial models that quantify risk-driven differences in resource selection and hunter mortality of animals at fine spatial scales can assist disease management by identifying high-risk areas and individuals. We used resource selection functions (RSFs) and selection ratios (SRs) to quantify sex- and age-specific resource selection patterns of collared (n = 67) and hunter-killed (n = 796) nonmigratory elk (Cervus canadensis manitobensis) during the hunting season between 2002 and 2012, in southwestern Manitoba, Canada. Distance to protected area was the most important covariate influencing resource selection and hunter-kill sites of elk (AICw = 1.00). Collared adult males (which are most likely to be infected with bovine tuberculosis (Mycobacterium bovis) and chronic wasting disease) rarely selected for sites outside of parks during the hunting season in contrast to adult females and juvenile males. The RSFs showed selection by adult females and juvenile males to be negatively associated with landscape-level forest cover, high road density, and water cover, whereas hunter-kill sites of these cohorts were positively associated with landscape-level forest cover and increasing distance to streams and negatively associated with high road density. Local-level forest was positively associated with collared animal locations and hunter-kill sites; however, selection was stronger for collared juvenile males and hunter-killed adult females. In instances where disease infects a metapopulation and eradication is infeasible, a principle goal of management is to limit the spread of disease among infected animals. We map high-risk areas that are regularly used by potentially infectious hosts but currently underrepresented in the distribution of kill sites. We present a novel application of widely available data to target hunter distribution based on host resource

  17. Modelling the consequences of targeted selective treatment strategies on performance and emergence of anthelmintic resistance amongst grazing calves

    Directory of Open Access Journals (Sweden)

    Zoe Berk

    2016-12-01

    Full Text Available The development of anthelmintic resistance by helminths can be slowed by maintaining refugia on pasture or in untreated hosts. Targeted selective treatments (TST may achieve this through the treatment only of individuals that would benefit most from anthelmintic, according to certain criteria. However TST consequences on cattle are uncertain, mainly due to difficulties of comparison between alternative strategies. We developed a mathematical model to compare: 1 the most ‘beneficial’ indicator for treatment selection and 2 the method of selection of calves exposed to Ostertagia ostertagi, i.e. treating a fixed percentage of the population with the lowest (or highest indicator values versus treating individuals who exceed (or are below a given indicator threshold. The indicators evaluated were average daily gain (ADG, faecal egg counts (FEC, plasma pepsinogen, combined FEC and plasma pepsinogen, versus random selection of individuals. Treatment success was assessed in terms of benefit per R (BPR, the ratio of average benefit in weight gain to change in frequency of resistance alleles R (relative to an untreated population. The optimal indicator in terms of BPR for fixed percentages of calves treated was plasma pepsinogen and the worst ADG; in the latter case treatment was applied to some individuals who were not in need of treatment. The reverse was found when calves were treated according to threshold criteria, with ADG being the best target indicator for treatment. This was also the most beneficial strategy overall, with a significantly higher BPR value than any other strategy, but its degree of success depended on the chosen threshold of the indicator. The study shows strong support for TST, with all strategies showing improvements on calves treated selectively, compared with whole-herd treatment at 3, 8, 13 weeks post-turnout. The developed model appeared capable of assessing the consequences of other TST strategies on calf populations.

  18. Validation, optimisation, and application data in support of the development of a targeted selected ion monitoring assay for degraded cardiac troponin T

    Directory of Open Access Journals (Sweden)

    Alexander S. Streng

    2016-06-01

    Full Text Available Cardiac troponin T (cTnT fragmentation in human serum was investigated using a newly developed targeted selected ion monitoring assay, as described in the accompanying article: “Development of a targeted selected ion monitoring assay for the elucidation of protease induced structural changes in cardiac troponin T” [1]. This article presents data describing aspects of the validation and optimisation of this assay. The data consists of several figures, an excel file containing the results of a sequence identity search, and a description of the raw mass spectrometry (MS data files, deposited in the ProteomeXchange repository with id PRIDE: http://www.ebi.ac.uk/pride/archive/projects/PXD003187.

  19. Selective Targeting of SH2 Domain-Phosphotyrosine Interactions of Src Family Tyrosine Kinases with Monobodies.

    Science.gov (United States)

    Kükenshöner, Tim; Schmit, Nadine Eliane; Bouda, Emilie; Sha, Fern; Pojer, Florence; Koide, Akiko; Seeliger, Markus; Koide, Shohei; Hantschel, Oliver

    2017-05-05

    The binding of Src-homology 2 (SH2) domains to phosphotyrosine (pY) sites is critical for the autoinhibition and substrate recognition of the eight Src family kinases (SFKs). The high sequence conservation of the 120 human SH2 domains poses a significant challenge to selectively perturb the interactions of even the SFK SH2 family against the rest of the SH2 domains. We have developed synthetic binding proteins, termed monobodies, for six of the SFK SH2 domains with nanomolar affinity. Most of these monobodies competed with pY ligand binding and showed strong selectivity for either the SrcA (Yes, Src, Fyn, Fgr) or SrcB subgroup (Lck, Lyn, Blk, Hck). Interactome analysis of intracellularly expressed monobodies revealed that they bind SFKs but no other SH2-containing proteins. Three crystal structures of monobody-SH2 complexes unveiled different and only partly overlapping binding modes, which rationalized the observed selectivity and enabled structure-based mutagenesis to modulate inhibition mode and selectivity. In line with the critical roles of SFK SH2 domains in kinase autoinhibition and T-cell receptor signaling, monobodies binding the Src and Hck SH2 domains selectively activated respective recombinant kinases, whereas an Lck SH2-binding monobody inhibited proximal signaling events downstream of the T-cell receptor complex. Our results show that SFK SH2 domains can be targeted with unprecedented potency and selectivity using monobodies. They are excellent tools for dissecting SFK functions in normal development and signaling and to interfere with aberrant SFK signaling networks in cancer cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  20. A New Capability for Automated Target Selection and Sampling for use with Remote Sensing Instruments on the MER Rovers

    Science.gov (United States)

    Castano, R.; Estlin, T.; Anderson, R. C.; Gaines, D.; Bornstein, B.; de Granville, C.; Tang, B.; Thompson, D.; Judd, M.

    2008-12-01

    The Onboard Autonomous Science Investigation System (OASIS) evaluates geologic data gathered by a planetary rover. The system is designed to operate onboard a rover identifying and reacting to serendipitous science opportunities, such as rocks with novel properties. OASIS operates by analyzing data the rover gathers, and then using machine learning techniques, prioritizing the data based on criteria set by the science team. This prioritization can be used to organize data for transmission back to Earth and it can be used to search for specific targets it has been told to find by the science team. If one of these targets is found, it is identified as a new science opportunity and a "science alert" is sent to a planning and scheduling system. After reviewing the rover's current operational status to ensure that it has enough resources to complete its traverse and act on the new science opportunity, OASIS can change the command sequence of the rover in order to obtain additional science measurements. Currently, OASIS is being applied on a new front. OASIS is providing a new rover mission technology that enables targeted remote-sensing science in an automated fashion during or after rover traverses. Currently, targets for remote sensing instruments, especially narrow field-of-view instruments (such as the MER Mini- TES spectrometer or the 2009 MSL ChemCam spectrometer) must be selected manually based on imagery already on the ground with the operations team. OASIS will enable the rover flight software to analyze imagery onboard in order to autonomously select and sequence targeted remote-sensing observations in an opportunistic fashion. We are in the process of scheduling an onboard MER experiment to demonstrate the OASIS capability in early 2009.

  1. Selectivity and Efficiency of Late Transgene Expression by Transcriptionally Targeted Oncolytic Adenoviruses Are Dependent on the Transgene Insertion Strategy

    Science.gov (United States)

    Quirin, Christina; Rohmer, Stanimira; Fernández-Ulibarri, Inés; Behr, Michael; Hesse, Andrea; Engelhardt, Sarah; Erbs, Philippe; Enk, Alexander H.

    2011-01-01

    Abstract Key challenges facing cancer therapy are the development of tumor-specific drugs and potent multimodal regimens. Oncolytic adenoviruses possess the potential to realize both aims by restricting virus replication to tumors and inserting therapeutic genes into the virus genome, respectively. A major effort in this regard is to express transgenes in a tumor-specific manner without affecting virus replication. Using both luciferase as a sensitive reporter and genetic prodrug activation, we show that promoter control of E1A facilitates highly selective expression of transgenes inserted into the late transcription unit. This, however, required multistep optimization of late transgene expression. Transgene insertion via internal ribosome entry site (IRES), splice acceptor (SA), or viral 2A sequences resulted in replication-dependent expression. Unexpectedly, analyses in appropriate substrates and with matching control viruses revealed that IRES and SA, but not 2A, facilitated indirect transgene targeting via tyrosinase promoter control of E1A. Transgene expression via SA was more selective (up to 1,500-fold) but less effective than via IRES. Notably, we also revealed transgene-dependent interference with splicing. Hence, the prodrug convertase FCU1 (a cytosine deaminase–uracil phosphoribosyltransferase fusion protein) was expressed only after optimizing the sequence surrounding the SA site and mutating a cryptic splice site within the transgene. The resulting tyrosinase promoter-regulated and FCU1-encoding adenovirus combined effective oncolysis with targeted prodrug activation therapy of melanoma. Thus, prodrug activation showed potent bystander killing and increased cytotoxicity of the virus up to 10-fold. We conclude that armed oncolytic viruses can be improved substantially by comparing and optimizing strategies for targeted transgene expression, thereby implementing selective and multimodal cancer therapies. PMID:20939692

  2. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, Loren M.; Jakob, Clarissa G.; Edalji, Rohinton P.; Qiu, Wei; Montgomery, Debra; Digiammarino, Enrico L.; Hansen, T. Matt; Risi, Roberto M.; Frey, Robin; Manaves, Vlasios; Shaw, Bailin; Algire, Mikkel; Hessler, Paul; Lam, Lloyd T.; Uziel, Tamar; Faivre, Emily; Ferguson, Debra; Buchanan, Fritz G.; Martin, Ruth L.; Torrent, Maricel; Chiang, Gary G.; Karukurichi, Kannan; Langston, J. William; Weinert, Brian T.; Choudhary, Chunaram; de Vries, Peter; Van Drie, John H.; McElligott, David; Kesicki, Ed; Marmorstein, Ronen; Sun, Chaohong; Cole, Philip A.; Rosenberg, Saul H.; Michaelides, Michael R.; Lai, Albert; Bromberg, Kenneth D. (AbbVie); (UCopenhagen); (Petra Pharma); (UPENN); (JHU); (Van Drie); (Faraday)

    2017-09-27

    The dynamic and reversible acetylation of proteins, catalysed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), is a major epigenetic regulatory mechanism of gene transcription1 and is associated with multiple diseases. Histone deacetylase inhibitors are currently approved to treat certain cancers, but progress on the development of drug-like histone actyltransferase inhibitors has lagged behind2. The histone acetyltransferase paralogues p300 and CREB-binding protein (CBP) are key transcriptional co-activators that are essential for a multitude of cellular processes, and have also been implicated in human pathological conditions (including cancer3). Current inhibitors of the p300 and CBP histone acetyltransferase domains, including natural products4, bi-substrate analogues5 and the widely used small molecule C6466,7, lack potency or selectivity. Here, we describe A-485, a potent, selective and drug-like catalytic inhibitor of p300 and CBP. We present a high resolution (1.95 Å) co-crystal structure of a small molecule bound to the catalytic active site of p300 and demonstrate that A-485 competes with acetyl coenzyme A (acetyl-CoA). A-485 selectively inhibited proliferation in lineage-specific tumour types, including several haematological malignancies and androgen receptor-positive prostate cancer. A-485 inhibited the androgen receptor transcriptional program in both androgen-sensitive and castration-resistant prostate cancer and inhibited tumour growth in a castration-resistant xenograft model. These results demonstrate the feasibility of using small molecule inhibitors to selectively target the catalytic activity of histone acetyltransferases, which may provide effective treatments for transcriptional activator-driven malignancies and diseases.

  3. Vascular targeting with peptide libraries

    Energy Technology Data Exchange (ETDEWEB)

    Pasqualini, R. [La Jolla Cancer Research Center The Burnham Inst., La Jolla CA (United States)

    1999-06-01

    The authors have developed an 'in vivo' selection system in which phage capable of selective homing to different tissues are recovered from a phage display peptide library following intravenous administration. Using this strategy, they have isolate several organ and tumor-homing peptides. They have shown that each of those peptides binds of different receptors that are selectively expressed on the vasculature of the target tissue. The tumor-homing peptides bind to receptors that are up regulated in tumor angiogenic vasculature. Targeted delivery of doxorubicin to angiogenic vasculature using these peptides in animals models decrease toxicity and increased the therapeutic efficacy of the drug. Vascular targeting may facilitate the development of other treatment strategies that rely on inhibition of angio genesis and lead to advances to extend the potential for targeting of drugs, genes and radionuclides in the context of many diseases.

  4. Selective Activation of AMPK β1-Containing Isoforms Improves Kidney Function in a Rat Model of Diabetic Nephropathy.

    Science.gov (United States)

    Salatto, Christopher T; Miller, Russell A; Cameron, Kimberly O; Cokorinos, Emily; Reyes, Allan; Ward, Jessica; Calabrese, Matthew F; Kurumbail, Ravi G; Rajamohan, Francis; Kalgutkar, Amit S; Tess, David A; Shavnya, Andre; Genung, Nathan E; Edmonds, David J; Jatkar, Aditi; Maciejewski, Benjamin S; Amaro, Marina; Gandhok, Harmeet; Monetti, Mara; Cialdea, Katherine; Bollinger, Eliza; Kreeger, John M; Coskran, Timothy M; Opsahl, Alan C; Boucher, Germaine G; Birnbaum, Morris J; DaSilva-Jardine, Paul; Rolph, Tim

    2017-05-01

    Diabetic nephropathy remains an area of high unmet medical need, with current therapies that slow down, but do not prevent, the progression of disease. A reduced phosphorylation state of adenosine monophosphate-activated protein kinase (AMPK) has been correlated with diminished kidney function in both humans and animal models of renal disease. Here, we describe the identification of novel, potent, small molecule activators of AMPK that selectively activate AMPK heterotrimers containing the β 1 subunit. After confirming that human and rodent kidney predominately express AMPK β 1, we explore the effects of pharmacological activation of AMPK in the ZSF1 rat model of diabetic nephropathy. Chronic administration of these direct activators elevates the phosphorylation of AMPK in the kidney, without impacting blood glucose levels, and reduces the progression of proteinuria to a greater degree than the current standard of care, angiotensin-converting enzyme inhibitor ramipril. Further analyses of urine biomarkers and kidney tissue gene expression reveal AMPK activation leads to the modulation of multiple pathways implicated in kidney injury, including cellular hypertrophy, fibrosis, and oxidative stress. These results support the need for further investigation into the potential beneficial effects of AMPK activation in kidney disease. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  5. Drugability of extracellular targets: discovery of small molecule drugs targeting allosteric, functional, and subunit-selective sites on GPCRs and ion channels.

    Science.gov (United States)

    Grigoriadis, Dimitri E; Hoare, Samuel R J; Lechner, Sandra M; Slee, Deborah H; Williams, John A

    2009-01-01

    Beginning with the discovery of the structure of deoxyribose nucleic acid in 1953, by James Watson and Francis Crick, the sequencing of the entire human genome some 50 years later, has begun to quantify the classes and types of proteins that may have relevance to human disease with the promise of rapidly identifying compounds that can modulate these proteins so as to have a beneficial and therapeutic outcome. This so called 'drugable space' involves a variety of membrane-bound proteins including the superfamily of G-protein-coupled receptors (GPCRs), ion channels, and transporters among others. The recent number of novel therapeutics targeting membrane-bound extracellular proteins that have reached the market in the past 20 years however pales in magnitude when compared, during the same timeframe, to the advancements made in the technologies available to aid in the discovery of these novel therapeutics. This review will consider select examples of extracellular drugable targets and focus on the GPCRs and ion channels highlighting the corticotropin releasing factor (CRF) type 1 and gamma-aminobutyric acid receptors, and the Ca(V)2.2 voltage-gated ion channel. These examples will elaborate current technological advancements in drug discovery and provide a prospective framework for future drug development.

  6. Deontic reasoning as a target of selection: reply to Astington and Dack.

    Science.gov (United States)

    Cummins, Denise Dellarosa

    2013-12-01

    In their discussion of young children's deontic reasoning performance, Astington and Dack (2013) made the following claims: (1) Children need more cues to elicit cogent social norm reasoning than adults require, namely, explicit reference to authority; (2) Deontic reasoning improves with age, and this is evidence against a nativist view; (3) All evolutionary explanations of deontic reasoning advantages require positing a ''domain-specific deontic reasoning module."; and (4) young children excel at deontic reasoning because it is easier. Here, I refute each claim. Instead, I argue that (1) Social norm reasoning is one type of deontic reasoning that has been the target of selective pressure; (2) Development does not preclude nativism; (3) Epistemic utterances make no greater processing demands than deontic utterances; and (4) both adult and child norm reasoning performance is strongly influenced by reference to or implication of authority. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Molecular basis of cannabinoid CB1 receptor coupling to the G protein heterotrimer Gαiβγ: identification of key CB1 contacts with the C-terminal helix α5 of Gαi.

    Science.gov (United States)

    Shim, Joong-Youn; Ahn, Kwang H; Kendall, Debra A

    2013-11-08

    The cannabinoid (CB1) receptor is a member of the rhodopsin-like G protein-coupled receptor superfamily. The human CB1 receptor, which is among the most expressed receptors in the brain, has been implicated in several disease states, including drug addiction, anxiety, depression, obesity, and chronic pain. Different classes of CB1 agonists evoke signaling pathways through the activation of specific subtypes of G proteins. The molecular basis of CB1 receptor coupling to its cognate G protein is unknown. As a first step toward understanding CB1 receptor-mediated G protein signaling, we have constructed a ternary complex structural model of the CB1 receptor and Gi heterotrimer (CB1-Gi), guided by the x-ray structure of β2-adrenergic receptor (β2AR) in complex with Gs (β2AR-Gs), through 824-ns duration molecular dynamics simulations in a fully hydrated 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayer environment. We identified a group of residues at the juxtamembrane regions of the intracellular loops 2 and 3 (IC2 and IC3) of the CB1 receptor, including Ile-218(3.54), Tyr-224(IC2), Asp-338(6.30), Arg-340(6.32), Leu-341(6.33), and Thr-344(6.36), as potential key contacts with the extreme C-terminal helix α5 of Gαi. Ala mutations of these residues at the receptor-Gi interface resulted in little G protein coupling activity, consistent with the present model of the CB1-Gi complex, which suggests tight interactions between CB1 and the extreme C-terminal helix α5 of Gαi. The model also suggests that unique conformational changes in the extreme C-terminal helix α5 of Gα play a crucial role in the receptor-mediated G protein activation.

  8. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

    Science.gov (United States)

    Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-15

    Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. © 2015. Published by The Company of Biologists Ltd.

  9. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies

    Science.gov (United States)

    Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.

    2011-01-01

    Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166

  10. Cancer cell-selective promoter recognition accompanies antitumor effect by glucocorticoid receptor-targeted gold nanoparticle

    Science.gov (United States)

    Sau, Samaresh; Agarwalla, Pritha; Mukherjee, Sudip; Bag, Indira; Sreedhar, Bojja; Pal-Bhadra, Manika; Patra, Chitta Ranjan; Banerjee, Rajkumar

    2014-05-01

    Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied on the delivery of `exogenous' genes invoking gene knockdown or replacement. Practically, there are no instances for the nanoparticle-mediated promoter regulation of `endogenous' genes, more so, as a cancer selective phenomenon. In this regard, we report the development of a simple, easily modifiable GNP-formulation, which promoted/up-regulated the expression of a specific category of `endogenous' genes, the glucocorticoid responsive genes. This genetic up-regulation was induced in only cancer cells by modified GNP-mediated transcriptional activation of its cytoplasmic receptor, glucocorticoid receptor (GR). Normal cells and their GR remained primarily unperturbed by this GNP-formulation. The most potent gene up-regulating GNP-formulation down-regulated a cancer-specific proliferative signal, phospho-Akt in cancer cells, which accompanied retardation of tumor growth in the murine melanoma model. We show that GR-targeted GNPs may find potential use in the targeting and modulation of genetic information in cancer towards developing novel anticancer therapeutics.Nanoparticles, such as gold nanoparticles (GNP), upon convenient modifications perform multi tasks catering to many biomedical applications. However, GNP or any other type of nanoparticles is yet to achieve the feat of intracellular regulation of endogenous genes of choice such as through manipulation of a gene-promoter in a chromosome. As for gene modulation and delivery, GNP (or other nanoparticles) showed only limited gene therapy potential, which relied

  11. Novel targeted agents for gastric cancer

    Directory of Open Access Journals (Sweden)

    Liu Lian

    2012-06-01

    Full Text Available Abstract Contemporary advancements have had little impact on the treatment of gastric cancer (GC, the world’s second highest cause of cancer death. Agents targeting human epidermal growth factor receptor mediated pathways have been a common topic of contemporary cancer research, including monoclonal antibodies (mAbs and receptor tyrosine kinase inhibitors (TKIs. Trastuzumab is the first target agent evidencing improvements in overall survival in HER2-positive (human epidermal growth factor receptor 2 gastric cancer patients. Agents targeting vascular epithelial growth factor (VEGF, mammalian target of rapamycin (mTOR, and other biological pathways are also undergoing clinical trials, with some marginally positive results. Effective targeted therapy requires patient selection based on predictive molecular biomarkers. Most phase III clinical trials are carried out without patient selection; therefore, it is hard to achieve personalized treatment and to monitor patient outcome individually. The trend for future clinical trials requires patient selection methods based on current understanding of GC biology with the application of biomarkers.

  12. Targeting radiation to tumours

    International Nuclear Information System (INIS)

    Wheldon, T.E.; Greater Glasgow Health Board, Glasgow

    1994-01-01

    Biologically targeted radiotherapy entails the preferential delivery of radiation to solid tumours or individual tumour cells by means of tumour-seeking delivery vehicles to which radionuclides can be conjugated. Monoclonal antibodies have attracted attention for some years as potentially selective targeting agents, but advances in tumour and molecular biology are now providing a much wider choice of molecular species. General radiobiological principles may be derived which are applicable to most forms of targeted radiotherapy. These principles provide guidelines for the appropriate choice of radionuclide in specific treatment situations and its optimal combination with other treatment modalities. In future, the availability of gene targeting agents will focus attention on the use of Auger electron emitters whose high potency and short range selectivity makes them attractive choices for specific killing of cancer cells whose genetic peculiarities are known. (author)

  13. Progress in ISOL target-ion source systems

    Energy Technology Data Exchange (ETDEWEB)

    Koester, U. [Institut Laue Langevin, 6 Rue Jules Horowitz, F-38042 Grenoble Cedex 9 (France); ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland)], E-mail: koester@ill.fr; Arndt, O. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Bouquerel, E.; Fedoseyev, V.N. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Franberg, H. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Laboratory for Radio- and Environmental Chemistry, Paul Scherrer Institut, CH-5232 Villigen PSI (Switzerland); Joinet, A. [ISOLDE, CERN, CH-1211 Geneve 23 (Switzerland); Centre d' Etude Spatiale des Rayonnements, 9 Av. du Colonel Roche, F-31028 Toulouse Cedex 4 (France); Jost, C. [HGF VISTARS and Institut fuer Kernchemie, Johannes-Gutenberg Universitaet Mainz, D-55128 Mainz (Germany); Kerkines, I.S.K. [Laboratory of Physical Chemistry, National and Kapodistrian University of Athens, Department of Chemistry, Zografou 157 71, GR (Greece); Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, GA 30322 (United States); Kirchner, R. [Gesellschaft fuer Schwerionenforschung, Planckstr. 1, D-64291 Darmstadt (Germany)

    2008-10-15

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  14. Progress in ISOL target-ion source systems

    International Nuclear Information System (INIS)

    Koester, U.; Arndt, O.; Bouquerel, E.; Fedoseyev, V.N.; Franberg, H.; Joinet, A.; Jost, C.; Kerkines, I.S.K.; Kirchner, R.

    2008-01-01

    The heart of every ISOL (isotope separation on-line) facility is its target and ion source system. Its efficiency, selectivity and rapidity is decisive for the production of intense and pure ion beams of short-lived isotopes. Recent progress in ISOL target and ion source technology is discussed at the examples of radioactive ion beams of exotic zinc and tin isotopes that were purified by isothermal chromatography and molecular sideband separation respectively. An outlook is given to which other elements these purification methods are applicable.

  15. How do we select multiple features? Transient costs for selecting two colors rather than one, persistent costs for color-location conjunctions.

    Science.gov (United States)

    Lo, Shih-Yu; Holcombe, Alex O

    2014-02-01

    In a previous study Lo, Howard, & Holcombe (Vision Research 63:20-33, 2012), selecting two colors did not induce a performance cost, relative to selecting one color. For example, requiring possible report of both a green and a red target did not yield a worse performance than when both targets were green. Yet a cost of selecting multiple colors was observed when selection needed be contingent on both color and location. When selecting a red target to the left and a green target to the right, superimposing a green distractor to the left and a red distractor to the right impeded performance. Possibly, participants cannot confine attention to a color at a particular location. As a result, distractors that share the target colors disrupt attentional selection of the targets. The attempt to select the targets must then be repeated, which increases the likelihood that the trial terminates when selection is not effective, even for long trials. Consistent with this, here we find a persistent cost of selecting two colors when the conjunction of color and location is needed, but the cost is confined to short exposure durations when the observer just has to monitor red and green stimuli without the need to use the location information. These results suggest that selecting two colors is time-consuming but effective, whereas selection of simultaneous conjunctions is never entirely successful.

  16. Selective elimination of senescent cells by mitochondrial targeting is regulated by ANT2

    DEFF Research Database (Denmark)

    Hubackova, Sona; Davidova, Eliska; Rohlenova, Katerina

    2018-01-01

    and development of age-related diseases. We found that the anticancer agent mitochondria-targeted tamoxifen (MitoTam), unlike conventional anticancer agents, kills cancer cells without inducing senescence in vitro and in vivo. Surprisingly, it also selectively eliminates both malignant and non-cancerous senescent...... cells. In naturally aged mice treated with MitoTam for 4 weeks, we observed a significant decrease of senescence markers in all tested organs compared to non-treated animals. Mechanistically, we found that the susceptibility of senescent cells to MitoTam is linked to a very low expression level...... of adenine nucleotide translocase-2 (ANT2), inherent to the senescent phenotype. Restoration of ANT2 in senescent cells resulted in resistance to MitoTam, while its downregulation in non-senescent cells promoted their MitoTam-triggered elimination. Our study documents a novel, translationally intriguing role...

  17. Design and evaluation of multi-indicator profiles for targeted-selective treatment against gastrointestinal nematodes at housing in adult dairy cows.

    Science.gov (United States)

    Ravinet, Nadine; Lehebel, Anne; Bareille, Nathalie; Lopez, Carlos; Chartier, Christophe; Chauvin, Alain; Madouasse, Aurélien

    2017-04-15

    Targeted-selective treatments against gastrointestinal nematode (GIN) in adult dairy cows require the identification of "cows to treat", i.e. cows whose milk production (MP) would increase after treatment. This study aimed at quantifying the ability of multi-indicator profiles to identify such cows. A randomized controlled clinical trial was conducted at housing in 25 French pasturing dairy herds. In each herd, treated cows received fenbendazole orally, control cows remained untreated. Daily MP was recorded and the MP variation between the pre- and post-visit periods was calculated (ΔMP) for each cow. ΔMP was modelled with control cows data (n=412) (piecewise linear mixed model). Estimated parameters were applied to treated cows data (n=414) to predict the expected ΔMP in treated cows if they had not been treated. Treated cows with an observed ΔMP (with treatment) higher than the expected ΔMP (without treatment) were labelled as "cows to treat". Herds where at least 50% of the young cows were "cows to treat" were qualified as "herds to target". To characterize such cows and herds, the available candidate indicators were (i) at the cow-level: parity, stage of lactation and production level, faecal egg count (FEC), serum pepsinogen level and anti-Ostertagia antibody level (expressed as ODR); (ii) at the herd-level: bulk tank milk (BTM) Ostertagia ODR, Time of Effective Contact (TEC, in months) with GIN infective larvae before the first calving, and percentage of positive FEC. These indicators were tested one-by-one or in combination to assess their ability to characterize "herds to target" and "cows to treat" (Chi-square tests). 115 out of 414 treated cows (27.8%) were considered as "cows to treat", and 9 out of 22 herds were qualified as "herds to target". The indicators retained to profile such cows and herds were the parity, the production level, the BTM Ostertagia ODR and the TEC. Multi-indicator profiles were much more specific than single indicator

  18. Cooperative tumour cell membrane targeted phototherapy

    Science.gov (United States)

    Kim, Heegon; Lee, Junsung; Oh, Chanhee; Park, Ji-Ho

    2017-06-01

    The targeted delivery of therapeutics using antibodies or nanomaterials has improved the precision and safety of cancer therapy. However, the paucity and heterogeneity of identified molecular targets within tumours have resulted in poor and uneven distribution of targeted agents, thus compromising treatment outcomes. Here, we construct a cooperative targeting system in which synthetic and biological nanocomponents participate together in the tumour cell membrane-selective localization of synthetic receptor-lipid conjugates (SR-lipids) to amplify the subsequent targeting of therapeutics. The SR-lipids are first delivered selectively to tumour cell membranes in the perivascular region using fusogenic liposomes. By hitchhiking with extracellular vesicles secreted by the cells, the SR-lipids are transferred to neighbouring cells and further spread throughout the tumour tissues where the molecular targets are limited. We show that this tumour cell membrane-targeted delivery of SR-lipids leads to uniform distribution and enhanced phototherapeutic efficacy of the targeted photosensitizer.

  19. Diversity, expression and mRNA targeting abilities of Argonaute-targeting miRNAs among selected vascular plants.

    Science.gov (United States)

    Jagtap, Soham; Shivaprasad, Padubidri V

    2014-12-02

    Micro (mi)RNAs are important regulators of plant development. Across plant lineages, Dicer-like 1 (DCL1) proteins process long ds-like structures to produce micro (mi) RNA duplexes in a stepwise manner. These miRNAs are incorporated into Argonaute (AGO) proteins and influence expression of RNAs that have sequence complementarity with miRNAs. Expression levels of AGOs are greatly regulated by plants in order to minimize unwarranted perturbations using miRNAs to target mRNAs coding for AGOs. AGOs may also have high promoter specificity-sometimes expression of AGO can be limited to just a few cells in a plant. Viral pathogens utilize various means to counter antiviral roles of AGOs including hijacking the host encoded miRNAs to target AGOs. Two host encoded miRNAs namely miR168 and miR403 that target AGOs have been described in the model plant Arabidopsis and such a mechanism is thought to be well conserved across plants because AGO sequences are well conserved. We show that the interaction between AGO mRNAs and miRNAs is species-specific due to the diversity in sequences of two miRNAs that target AGOs, sequence diversity among corresponding target regions in AGO mRNAs and variable expression levels of these miRNAs among vascular plants. We used miRNA sequences from 68 plant species representing 31 plant families for this analysis. Sequences of miR168 and miR403 are not conserved among plant lineages, but surprisingly they differ drastically in their sequence diversity and expression levels even among closely related plants. Variation in miR168 expression among plants correlates well with secondary structures/length of loop sequences of their precursors. Our data indicates a complex AGO targeting interaction among plant lineages due to miRNA sequence diversity and sequences of miRNA targeting regions among AGO mRNAs, thus leading to the assumption that the perturbations by viruses that use host miRNAs to target antiviral AGOs can only be species-specific. We also show

  20. Green tea extract selectively targets nanomechanics of live metastatic cancer cells

    International Nuclear Information System (INIS)

    Cross, Sarah E; Gimzewski, James K; Jin Yusheng; Lu Qingyi; Rao Jianyu

    2011-01-01

    Green tea extract (GTE) is known to be a potential anticancer agent (Yang et al 2009 Nat. Rev. Cancer 9 429-39) with various biological activities (Lu et al 2005 Clin. Cancer Res. 11 1675-83; Yang et al 1998 Carcinogenesis 19 611-6) yet the precise mechanism of action is still unclear. The biomechanical response of GTE treated cells taken directly from patient's body samples was measured using atomic force microscopy (AFM) (Binnig et al 1986 Phys. Rev. Lett. 56 930). We found significant increase in stiffness of GTE treated metastatic tumor cells, with a resulting value similar to untreated normal mesothelial cells, whereas mesothelial cell stiffness after GTE treatment is unchanged. Immunofluorescence analysis showed an increase in cytoskeletal-F-actin in GTE treated tumor cells, suggesting GTE treated tumor cells display mechanical, structural and morphological features similar to normal cells, which appears to be mediated by annexin-I expression, as determined by siRNA analysis of an in vitro cell line model. Our data indicates that GTE selectively targets human metastatic cancer cells but not normal mesothelial cells, a finding that is significantly advantageous compared to conventional chemotherapy agents.

  1. Criteria for selection of target materials and design of high-efficiency-release targets for radioactive ion beam generation

    CERN Document Server

    Alton, G D; Liu, Y

    1999-01-01

    In this report, we define criteria for choosing target materials and for designing, mechanically stable, short-diffusion-length, highly permeable targets for generation of high-intensity radioactive ion beams (RIBs) for use at nuclear physics and astrophysics research facilities based on the ISOL principle. In addition, lists of refractory target materials are provided and examples are given of a number of successful targets, based on these criteria, that have been fabricated and tested for use at the Holifield Radioactive Ion Beam Facility (HRIBF).

  2. Deciding Where to Attend: Priming of Pop-Out Drives Target Selection

    Science.gov (United States)

    Brascamp, Jan W.; Blake, Randolph; Kristjansson, Arni

    2011-01-01

    With attention and eye-movements humans orient to targets of interest. This orienting occurs faster when the same target repeats: priming of pop-out (PoP). While reaction times (RTs) can be important, PoP's real function could be to steer "where" to orient, a possibility underexposed in many current paradigms, as these predesignate a target to…

  3. Efficacy Trial of a Selective Prevention Program Targeting Both Eating Disorder Symptoms and Unhealthy Weight Gain among Female College Students

    Science.gov (United States)

    Stice, Eric; Rohde, Paul; Shaw, Heather; Marti, C. Nathan

    2012-01-01

    Objective: Evaluate a selective prevention program targeting both eating disorder symptoms and unhealthy weight gain in young women. Method: Female college students at high-risk for these outcomes by virtue of body image concerns (N = 398; M age = 18.4 years, SD = 0.6) were randomized to the Healthy Weight group-based 4-hr prevention program,…

  4. Automatic Target Recognition: Statistical Feature Selection of Non-Gaussian Distributed Target Classes

    Science.gov (United States)

    2011-06-01

    implementing, and evaluating many feature selection algorithms. Mucciardi and Gose compared seven different techniques for choosing subsets of pattern...122 THIS PAGE INTENTIONALLY LEFT BLANK 123 LIST OF REFERENCES [1] A. Mucciardi and E. Gose , “A comparison of seven techniques for

  5. Targeted Radionuclide Therapy

    Directory of Open Access Journals (Sweden)

    David Cheng

    2011-10-01

    Full Text Available Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  6. Targeted Radionuclide Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Ersahin, Devrim, E-mail: devrimersahin@yahoo.com; Doddamane, Indukala; Cheng, David [Department of Diagnostic Radiology, School of Medicine, Yale University, 333 Cedar St., New Haven, CT 06520 (United States)

    2011-10-11

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose.

  7. Targeted Radionuclide Therapy

    International Nuclear Information System (INIS)

    Ersahin, Devrim; Doddamane, Indukala; Cheng, David

    2011-01-01

    Targeted radiotherapy is an evolving and promising modality of cancer treatment. The killing of cancer cells is achieved with the use of biological vectors and appropriate radionuclides. Among the many advantages of this approach are its selectiveness in delivering the radiation to the target, relatively less severe and infrequent side effects, and the possibility of assessing the uptake by the tumor prior to the therapy. Several different radiopharmaceuticals are currently being used by various administration routes and targeting mechanisms. This article aims to briefly review the current status of targeted radiotherapy as well as to outline the advantages and disadvantages of radionuclides used for this purpose

  8. Signal Transduction and Molecular Targets of Selected Flavonoids

    Science.gov (United States)

    Bode, Ann M.

    2013-01-01

    Abstract Significance: Diet exerts a major influence on the risk for developing cancer and heart disease. Food factors such as flavonoids are alleged to protect cells from premature aging and disease by shielding DNA, proteins, and lipids from oxidative damage. Recent Advances: Our work has focused on clarifying the effects of dietary components on cancer cell proliferation and tumor growth, discovering mechanisms to explain the effects, and identifying the specific molecular targets of these compounds. Our strategy for identifying specific molecular targets of phytochemicals involves the use of supercomputer technology combined with protein crystallography, molecular biology, and experimental laboratory verification. Critical Issues: One of the greatest challenges for scientists is to reduce the accumulation of distortion and half truths reported in the popular media regarding the health benefits of certain foods or food supplements. The use of these is not new, but interest has increased dramatically because of perceived health benefits that are presumably acquired without unpleasant side effects. Flavonoids are touted to exert many beneficial effects in vitro. However, whether they can produce these effects in vivo is disputed. Future Directions: The World Health Organization indicates that one third of all cancer deaths are preventable and that diet is closely linked to prevention. Based on this idea and epidemiological findings, attention has centered on dietary phytochemicals as an effective intervention in cancer development. However, an unequivocal link between diet and cancer has not been established. Thus, identifying cancer preventive dietary agents with specific molecular targets is essential to move forward toward successful cancer prevention. Antioxid. Redox Signal. 19, 163–180. PMID:23458437

  9. Target-to-Target Repetition Cost and Location Negative Priming Are Dissociable: Evidence for Different Mechanisms

    Science.gov (United States)

    Chao, Hsuan-Fu

    2011-01-01

    In a location-selection task, the repetition of a prior distractor location as the target location would slow down the response. This effect is termed the location negative priming (NP) effect. Recently, it has been demonstrated that repetition of a prior target location as the current target location would also slow down response. Because such…

  10. Epigenetic Editing: targeted rewriting of epigenetic marks to modulate expression of selected target genes.

    NARCIS (Netherlands)

    de Groote, M.L.; Verschure, P.J.; Rots, M.G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  11. Epigenetic Editing : targeted rewriting of epigenetic marks to modulate expression of selected target genes

    NARCIS (Netherlands)

    de Groote, Marloes L.; Verschure, Pernette J.; Rots, Marianne G.

    2012-01-01

    Despite significant advances made in epigenetic research in recent decades, many questions remain unresolved, especially concerning cause and consequence of epigenetic marks with respect to gene expression modulation (GEM). Technologies allowing the targeting of epigenetic enzymes to predetermined

  12. GLUT1-mediated selective tumor targeting with fluorine containing platinum(II) glycoconjugates.

    Science.gov (United States)

    Liu, Ran; Fu, Zheng; Zhao, Meng; Gao, Xiangqian; Li, Hong; Mi, Qian; Liu, Pengxing; Yang, Jinna; Yao, Zhi; Gao, Qingzhi

    2017-06-13

    Increased glycolysis and overexpression of glucose transporters (GLUTs) are physiological characteristics of human malignancies. Based on the so-called Warburg effect, 18flurodeoxyglucose-positron emission tomography (FDG-PET) has successfully developed as clinical modality for the diagnosis and staging of many cancers. To leverage this glucose transporter mediated metabolic disparity between normal and malignant cells, in the current report, we focus on the fluorine substituted series of glucose, mannose and galactose-conjugated (trans-R,R-cyclohexane-1,2-diamine)-2-flouromalonato-platinum(II) complexes for a comprehensive evaluation on their selective tumor targeting. Besides highly improved water solubility, these sugar-conjugates presented improved cytotoxicity than oxaliplatin in glucose tranporters (GLUTs) overexpressing cancer cell lines and exhibited no cross-resistance to cisplatin. For the highly water soluble glucose-conjugated complex (5a), two novel in vivo assessments were conducted and the results revealed that 5a was more efficacious at a lower equitoxic dose (70% MTD) than oxaliplatin (100% MTD) in HT29 xenograft model, and it was significantly more potent than oxaliplatin in leukemia-bearing DBA/2 mice as well even at equimolar dose levels (18% vs 90% MTD). GLUT inhibitor mediated cell viability analysis, GLUT1 knockdown cell line-based cytotoxicity evaluation, and platinum accumulation study demonstrated that the cellular uptake of the sugar-conjugates was regulated by GLUT1. The higher intrinsic DNA reactivity of the sugar-conjugates was confirmed by kinetic study of platinum(II)-guanosine adduct formation. The mechanistic origin of the antitumor effect of the fluorine complexes was found to be forming the bifunctional Pt-guanine-guanine (Pt-GG) intrastrand cross-links with DNA. The results provide a rationale for Warburg effect targeted anticancer drug design.

  13. Automated selected reaction monitoring data analysis workflow for large-scale targeted proteomic studies.

    Science.gov (United States)

    Surinova, Silvia; Hüttenhain, Ruth; Chang, Ching-Yun; Espona, Lucia; Vitek, Olga; Aebersold, Ruedi

    2013-08-01

    Targeted proteomics based on selected reaction monitoring (SRM) mass spectrometry is commonly used for accurate and reproducible quantification of protein analytes in complex biological mixtures. Strictly hypothesis-driven, SRM assays quantify each targeted protein by collecting measurements on its peptide fragment ions, called transitions. To achieve sensitive and accurate quantitative results, experimental design and data analysis must consistently account for the variability of the quantified transitions. This consistency is especially important in large experiments, which increasingly require profiling up to hundreds of proteins over hundreds of samples. Here we describe a robust and automated workflow for the analysis of large quantitative SRM data sets that integrates data processing, statistical protein identification and quantification, and dissemination of the results. The integrated workflow combines three software tools: mProphet for peptide identification via probabilistic scoring; SRMstats for protein significance analysis with linear mixed-effect models; and PASSEL, a public repository for storage, retrieval and query of SRM data. The input requirements for the protocol are files with SRM traces in mzXML format, and a file with a list of transitions in a text tab-separated format. The protocol is especially suited for data with heavy isotope-labeled peptide internal standards. We demonstrate the protocol on a clinical data set in which the abundances of 35 biomarker candidates were profiled in 83 blood plasma samples of subjects with ovarian cancer or benign ovarian tumors. The time frame to realize the protocol is 1-2 weeks, depending on the number of replicates used in the experiment.

  14. Optimizing the Targeting of Mouse Parvovirus 1 to Murine Melanoma Selects for Recombinant Genomes and Novel Mutations in the Viral Capsid Gene

    Directory of Open Access Journals (Sweden)

    Matthew Marr

    2018-01-01

    Full Text Available Combining virus-enhanced immunogenicity with direct delivery of immunomodulatory molecules would represent a novel treatment modality for melanoma, and would require development of new viral vectors capable of targeting melanoma cells preferentially. Here we explore the use of rodent protoparvoviruses targeting cells of the murine melanoma model B16F10. An uncloned stock of mouse parvovirus 1 (MPV1 showed some efficacy, which was substantially enhanced following serial passage in the target cell. Molecular cloning of the genes of both starter and selected virus pools revealed considerable sequence diversity. Chimera analysis mapped the majority of the improved infectivity to the product of the major coat protein gene, VP2, in which linked blocks of amino acid changes and one or other of two apparently spontaneous mutations were selected. Intragenic chimeras showed that these represented separable components, both contributing to enhanced infection. Comparison of biochemical parameters of infection by clonal viruses indicated that the enhancement due to changes in VP2 operates after the virus has bound to the cell surface and penetrated into the cell. Construction of an in silico homology model for MPV1 allowed placement of these changes within the capsid shell, and revealed aspects of the capsid involved in infection initiation that had not been previously recognized.

  15. Design of hypoxia-targeting radiopharmaceuticals: selective uptake of copper-64 complexes in hypoxic cells in vitro

    International Nuclear Information System (INIS)

    Dearling, J.L.J.; Lewis, J.S.; Mullen, G.E.D.; Rae, M.T.; Zweit, J.; Blower, P.J.

    1998-01-01

    The well-known perfusion tracer CuPTSM, labelled with 62 Cu or 64 Cu, is believed to be trapped in cells non-selectively by a bioreductive mechanism. It is proposed that by modifying the ligand to increase its electron donor strength (for example by adding alkyl functionality or replacing sulphur ligands with oxygen ligands), the copper complexes will become less easily reduced and tracers with selectivity for hypoxic tissues could thus be developed. The aim of this work was to prepare 64 Cu-labelled complexes of two series of ligands, based on the bis(thiosemicarbazone) (13 ligands) and bis(salicylaldimine) (3 ligands) skeletons, and to evaluate the hypoxia dependence of their uptake in cells. The complexes were incubated with Chinese hamster ovary cells under normoxic and hypoxic conditions, and the cells isolated by centrifugation to determine radioactivity uptake at various time points up to 90 min. Several members of both series demonstrated significant (P 60 Cu, 61 Cu, 62 Cu, 64 Cu) and targeted radiotherapy ( 64 Cu, 67 Cu). (orig.)

  16. Quantitative PET Imaging with Novel HER3-Targeted Peptides Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression

    Science.gov (United States)

    2017-12-01

    Independent Prostate Cancer Progression PRINCIPAL INVESTIGATOR: Benjamin Larimer, PhD CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston...TYPE Final 3. DATES COVERED 1 Aug 2016 – 19 August 2017 Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression 5a...highly specific peptide that targets HER3 for prostate cancer imaging. The peptide was labeled with a PET imaging radionuclide and injected into mice

  17. Aptamers for Targeted Drug Delivery

    Directory of Open Access Journals (Sweden)

    Partha Ray

    2010-05-01

    Full Text Available Aptamers are a class of therapeutic oligonucleotides that form specific three-dimensional structures that are dictated by their sequences. They are typically generated by an iterative screening process of complex nucleic acid libraries employing a process termed Systemic Evolution of Ligands by Exponential Enrichment (SELEX. SELEX has traditionally been performed using purified proteins, and cell surface receptors may be challenging to purify in their properly folded and modified conformations. Therefore, relatively few aptamers have been generated that bind cell surface receptors. However, improvements in recombinant fusion protein technology have increased the availability of receptor extracellular domains as purified protein targets, and the development of cell-based selection techniques has allowed selection against surface proteins in their native configuration on the cell surface. With cell-based selection, a specific protein target is not always chosen, but selection is performed against a target cell type with the goal of letting the aptamer choose the target. Several studies have demonstrated that aptamers that bind cell surface receptors may have functions other than just blocking receptor-ligand interactions. All cell surface proteins cycle intracellularly to some extent, and many surface receptors are actively internalized in response to ligand binding. Therefore, aptamers that bind cell surface receptors have been exploited for the delivery of a variety of cargoes into cells. This review focuses on recent progress and current challenges in the field of aptamer-mediated delivery.

  18. Mixed methods evaluation of targeted selective anthelmintic treatment by resource-poor smallholder goat farmers in Botswana

    Science.gov (United States)

    Walker, Josephine G.; Ofithile, Mphoeng; Tavolaro, F. Marina; van Wyk, Jan A.; Evans, Kate; Morgan, Eric R.

    2015-01-01

    Due to the threat of anthelmintic resistance, livestock farmers worldwide are encouraged to selectively apply treatments against gastrointestinal nematodes (GINs). Targeted selective treatment (TST) of individual animals would be especially useful for smallholder farmers in low-income economies, where cost-effective and sustainable intervention strategies will improve livestock productivity and food security. Supporting research has focused mainly on refining technical indicators for treatment, and much less on factors influencing uptake and effectiveness. We used a mixed method approach, whereby qualitative and quantitative approaches are combined, to develop, implement and validate a TST system for GINs in small ruminants, most commonly goats, among smallholder farmers in the Makgadikgadi Pans region of Botswana, and to seek better understanding of system performance within a cultural context. After the first six months of the study, 42 out of 47 enrolled farmers were followed up; 52% had monitored their animals using the taught inspection criteria and 26% applied TST during this phase. Uptake level showed little correlation with farmer characteristics, such as literacy and size of farm. Herd health significantly improved in those herds where anthelmintic treatment was applied: anaemia, as assessed using the five-point FAMACHA© scale, was 0.44–0.69 points better (95% confidence interval) and body condition score was 0.18–0.36 points better (95% C.I., five-point scale) in treated compared with untreated herds. Only targeting individuals in greatest need led to similar health improvements compared to treating the entire herd, leading to dose savings ranging from 36% to 97%. This study demonstrates that TST against nematodes can be implemented effectively by resource-poor farmers using a community-led approach. The use of mixed methods provides a promising system to integrate technical and social aspects of TST programmes for maximum uptake and effect. PMID

  19. Literature-based discovery of diabetes- and ROS-related targets

    Directory of Open Access Journals (Sweden)

    Pande Manjusha

    2010-10-01

    Full Text Available Abstract Background Reactive oxygen species (ROS are known mediators of cellular damage in multiple diseases including diabetic complications. Despite its importance, no comprehensive database is currently available for the genes associated with ROS. Methods We present ROS- and diabetes-related targets (genes/proteins collected from the biomedical literature through a text mining technology. A web-based literature mining tool, SciMiner, was applied to 1,154 biomedical papers indexed with diabetes and ROS by PubMed to identify relevant targets. Over-represented targets in the ROS-diabetes literature were obtained through comparisons against randomly selected literature. The expression levels of nine genes, selected from the top ranked ROS-diabetes set, were measured in the dorsal root ganglia (DRG of diabetic and non-diabetic DBA/2J mice in order to evaluate the biological relevance of literature-derived targets in the pathogenesis of diabetic neuropathy. Results SciMiner identified 1,026 ROS- and diabetes-related targets from the 1,154 biomedical papers (http://jdrf.neurology.med.umich.edu/ROSDiabetes/. Fifty-three targets were significantly over-represented in the ROS-diabetes literature compared to randomly selected literature. These over-represented targets included well-known members of the oxidative stress response including catalase, the NADPH oxidase family, and the superoxide dismutase family of proteins. Eight of the nine selected genes exhibited significant differential expression between diabetic and non-diabetic mice. For six genes, the direction of expression change in diabetes paralleled enhanced oxidative stress in the DRG. Conclusions Literature mining compiled ROS-diabetes related targets from the biomedical literature and led us to evaluate the biological relevance of selected targets in the pathogenesis of diabetic neuropathy.

  20. Selection of focal earthworm species as non-target soil organisms for environmental risk assessment of genetically modified plants.

    Science.gov (United States)

    van Capelle, Christine; Schrader, Stefan; Arpaia, Salvatore

    2016-04-01

    By means of a literature survey, earthworm species of significant relevance for soil functions in different biogeographical regions of Europe (Atlantic, Boreal, Mediterranean) were identified. These focal earthworm species, defined here according to the EFSA Guidance Document on the environmental risk assessment (ERA) of genetically modified plants, are typical for arable soils under crop rotations with maize and/or potatoes within the three regions represented by Ireland, Sweden and Spain, respectively. Focal earthworm species were selected following a matrix of four steps: Identification of functional groups, categorization of non-target species, ranking species on ecological criteria, and final selection of focal species. They are recommended as appropriate non-target organisms to assess environmental risks of genetically modified (GM) crops; in this case maize and potatoes. In total, 44 literature sources on earthworms in arable cropping systems including maize or potato from Ireland, Sweden and Spain were collected, which present information on species diversity, individual density and specific relevance for soil functions. By means of condensed literature data, those species were identified which (i) play an important functional role in respective soil systems, (ii) are well adapted to the biogeographical regions, (iii) are expected to occur in high abundances under cultivation of maize or potato and (iv) fulfill the requirements for an ERA test system based on life-history traits. First, primary and secondary decomposers were identified as functional groups being exposed to the GM crops. In a second step, anecic and endogeic species were categorized as potential species. In step three, eight anecic and endogeic earthworm species belonging to the family Lumbricidae were ranked as relevant species: Aporrectodea caliginosa, Aporrectodea rosea, Aporrectodea longa, Allolobophora chlorotica, Lumbricus terrestris, Lumbricus friendi, Octodrilus complanatus and

  1. Quantitative PET Imaging with Novel HER3 Targeted Peptides Selected by Phage Display to Predict Androgen Independent Prostate Cancer Progression

    Science.gov (United States)

    2017-08-01

    Independent Prostate Cancer Progression PRINCIPAL INVESTIGATOR: Benjamin Larimer, PhD CONTRACTING ORGANIZATION: Massachusetts General Hospital Boston...3. DATES COVERED 1 Aug 2016 – 31 July 2017 4. TITLE AND SUBTITLE Cancer Progression 5a. CONTRACT NUMBER Quantitative PET Imaging with Novel HER3...Targeted Peptides Selected by Phage Display to Predict Androgen-Independent Prostate Cancer Progression 5b. GRANT NUMBER W81XWH-16-1-0447 5c

  2. TargetSpy: a supervised machine learning approach for microRNA target prediction.

    Science.gov (United States)

    Sturm, Martin; Hackenberg, Michael; Langenberger, David; Frishman, Dmitrij

    2010-05-28

    Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved) seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences.In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I) no seed match requirement, II) seed match requirement, and III) conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed) predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on mouse and performs well in human and drosophila

  3. TargetSpy: a supervised machine learning approach for microRNA target prediction

    Directory of Open Access Journals (Sweden)

    Langenberger David

    2010-05-01

    Full Text Available Abstract Background Virtually all currently available microRNA target site prediction algorithms require the presence of a (conserved seed match to the 5' end of the microRNA. Recently however, it has been shown that this requirement might be too stringent, leading to a substantial number of missed target sites. Results We developed TargetSpy, a novel computational approach for predicting target sites regardless of the presence of a seed match. It is based on machine learning and automatic feature selection using a wide spectrum of compositional, structural, and base pairing features covering current biological knowledge. Our model does not rely on evolutionary conservation, which allows the detection of species-specific interactions and makes TargetSpy suitable for analyzing unconserved genomic sequences. In order to allow for an unbiased comparison of TargetSpy to other methods, we classified all algorithms into three groups: I no seed match requirement, II seed match requirement, and III conserved seed match requirement. TargetSpy predictions for classes II and III are generated by appropriate postfiltering. On a human dataset revealing fold-change in protein production for five selected microRNAs our method shows superior performance in all classes. In Drosophila melanogaster not only our class II and III predictions are on par with other algorithms, but notably the class I (no-seed predictions are just marginally less accurate. We estimate that TargetSpy predicts between 26 and 112 functional target sites without a seed match per microRNA that are missed by all other currently available algorithms. Conclusion Only a few algorithms can predict target sites without demanding a seed match and TargetSpy demonstrates a substantial improvement in prediction accuracy in that class. Furthermore, when conservation and the presence of a seed match are required, the performance is comparable with state-of-the-art algorithms. TargetSpy was trained on

  4. Antimicrobial Peptide-PNA Conjugates Selectively Targeting Bacterial Genes

    Science.gov (United States)

    2013-07-22

    antibacterial therapy. Initial publications suggest that conjugates of cell penetrating peptides and PNA’s can overcome the barrier in transporting ...Zhou, Y., Hou, Z., Meng, J., and Luo, X. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin - resistant ... Staphylococcus aureus by antisense peptide nucleic acid. PLoS One. 2012; 7(1):e29886. 2. Good, L., Sandberg, R., Larsson, O., Nielsen, P.E., and Wahlestedt, C

  5. Selectivity of Inhibition of N-Succinyl-l,l-Diaminopimelic Acid Desuccinylase in Bacteria: The product of dapE-gene Is Not the Target of l-Captopril Antimicrobial Activity.

    Science.gov (United States)

    Uda, Narasimha Rao; Creus, Marc

    2011-01-01

    The emergence of bacterial strains that are resistant to virtually all currently available antibiotics underscores the importance of developing new antimicrobial compounds. N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a metallohydrolase involved in the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway necessary for lysine biosynthesis and for building the peptidoglycan cell wall. Because DapE is essential for Gram-negative and some Gram-positive bacteria, DapE has been proposed as a good target for antibiotic development. Recently, l-captopril has been suggested as a lead compound for inhibition of DapE, although its selectivity for this enzyme target in bacteria remains unclear (Gillner et al. (2009)). Here, we tested the selectivity of l-captopril against DapE in bacteria. Since DapE knockout strains of gram-negative bacteria are viable upon chemical supplementation with mDAP, we reasoned that the antimicrobial activity of compounds targeting DapE should be abolished in mDAP-containing media. Although l-captopril had modest antimicrobial activity in Escherichia coli and in Salmonella enterica, to our surprise, inhibition of bacterial growth was independent both of mDAP supplementation and DapE over-expression. We conclude that DapE is not the main target of l-captopril inhibition in these bacteria. The methods implemented here will be useful for screening DapE-selective antimicrobial compounds directly in bacterial cultures.

  6. TARGET Research Goals

    Science.gov (United States)

    TARGET researchers use various sequencing and array-based methods to examine the genomes, transcriptomes, and for some diseases epigenomes of select childhood cancers. This “multi-omic” approach generates a comprehensive profile of molecular alterations for each cancer type. Alterations are changes in DNA or RNA, such as rearrangements in chromosome structure or variations in gene expression, respectively. Through computational analyses and assays to validate biological function, TARGET researchers predict which alterations disrupt the function of a gene or pathway and promote cancer growth, progression, and/or survival. Researchers identify candidate therapeutic targets and/or prognostic markers from the cancer-associated alterations.

  7. Non-invasive brain stimulation targeting the right fusiform gyrus selectively increases working memory for faces.

    Science.gov (United States)

    Brunyé, Tad T; Moran, Joseph M; Holmes, Amanda; Mahoney, Caroline R; Taylor, Holly A

    2017-04-01

    The human extrastriate cortex contains a region critically involved in face detection and memory, the right fusiform gyrus. The present study evaluated whether transcranial direct current stimulation (tDCS) targeting this anatomical region would selectively influence memory for faces versus non-face objects (houses). Anodal tDCS targeted the right fusiform gyrus (Brodmann's Area 37), with the anode at electrode site PO10, and cathode at FP2. Two stimulation conditions were compared in a repeated-measures design: 0.5mA versus 1.5mA intensity; a separate control group received no stimulation. Participants completed a working memory task for face and house stimuli, varying in memory load from 1 to 4 items. Individual differences measures assessed trait-based differences in facial recognition skills. Results showed 1.5mA intensity stimulation (versus 0.5mA and control) increased performance at high memory loads, but only with faces. Lower overall working memory capacity predicted a positive impact of tDCS. Results provide support for the notion of functional specialization of the right fusiform regions for maintaining face (but not non-face object) stimuli in working memory, and further suggest that low intensity electrical stimulation of this region may enhance demanding face working memory performance particularly in those with relatively poor baseline working memory skills. Published by Elsevier Inc.

  8. Target assignment for security officers to K targets (TASK)

    International Nuclear Information System (INIS)

    Rowland, J.R.; Shelton, K.W.; Stunkel, C.B.

    1983-02-01

    A probabilistic algorithm is developed to provide an optimal Target Assignment for Security officers to K targets (TASK) using a maximin criterion. Under the assumption of only a limited number (N) of security officers, the TASK computer model determines deployment assignments which maximize the system protection against sabotage by an adversary who may select any link in the system, including the weakest, for the point of attack. Applying the TASK model to a hypothetical nuclear facility containing a nine-level building reveals that aggregate targets covering multiple vital areas should be utilized to reduce the number of possible target assignments to a value equal to or only slightly larger than N. The increased probability that a given aggregate target is covered by one or more security officers offsets the slight decrease in interruption probability due to its occurring earlier in the adversary's path. In brief, the TASK model determines the optimal maximin deployment strategy for limited numbers of security officers and calculates a quantitative measure of the resulting system protection

  9. Selective splenic targeting of In-114m by heat-treated red blood cells for the treatment of lymphoid cell malignancy

    International Nuclear Information System (INIS)

    Sharma, H.L.; Jackson, N.C.; Jackson, H.; Smith, A.M.; Shukla, S.K.

    1998-01-01

    Spleen targeted In-114m, using labelled autologous lymphocytes, has produced a significant antitumour effect in patients with chronic lymphocytic leukaemia and Non-Hodgkins lymphoma (Sharma et al, Anti-Cancer Research 17, 1815-1822,1997). Heat treated red blood cells could be used as alternative vectors for splenic targeting of In-114m, making the technique easier, more universally applicable and furthermore, may reduce the myelosuppression seen with labelled lymphocytes. Red blood cells from HO3T rats were labelled with In-114m-oxine, incubated at 49.5 deg. C for 15 minutes and their distribution investigated in the spleen, liver and blood or recipient animals. The splenic uptake in the spleen at 24h was 64.08%, remained unchanged at 7 days, cleared slowly after that, clearly demonstrating the specificity of HTRBC to target In-114m to the spleen. The depletion of peripheral blood lymphocytes was measured in two groups of HO3T rats following the administration of 1.6 and 3.2 MBq of In-114m-HTRBC respectively. Compared to the controls, ∼ 70% of lymphocytes were depleted in the treated animals within one week and remained unchanged for 6 weeks. Using a rat T-cell lymphocytic leukaemia model, with resemblance to the clinical disease, an anti-leukaemic effect of his method of treatment, was monitored. An average life span of the treated group (1.85 MBq of In-114m-HTRBC) was 17.1 days, compared to the 13.5 days for the untreated group. These results are similar to the ones reported by targeting In-114m with labelled lymphocytes. In summary, the project has shown that In-114m-HTRBC can be used to deposit the radioactivity, selectively in the spleen, which in turn, depletes the peripheral blood lymphocytes and produces an anti-leukaemic effect in terms of enhanced life span. The bone marrow toxicity from In-114m therapy is under investigation and a pharmacokinetic study in selected cancer patients is planned following which, a clinical trial will be considered. (author)

  10. Speech-language pathologists' practices regarding assessment, analysis, target selection, intervention, and service delivery for children with speech sound disorders.

    Science.gov (United States)

    Mcleod, Sharynne; Baker, Elise

    2014-01-01

    A survey of 231 Australian speech-language pathologists (SLPs) was undertaken to describe practices regarding assessment, analysis, target selection, intervention, and service delivery for children with speech sound disorders (SSD). The participants typically worked in private practice, education, or community health settings and 67.6% had a waiting list for services. For each child, most of the SLPs spent 10-40 min in pre-assessment activities, 30-60 min undertaking face-to-face assessments, and 30-60 min completing paperwork after assessments. During an assessment SLPs typically conducted a parent interview, single-word speech sampling, collected a connected speech sample, and used informal tests. They also determined children's stimulability and estimated intelligibility. With multilingual children, informal assessment procedures and English-only tests were commonly used and SLPs relied on family members or interpreters to assist. Common analysis techniques included determination of phonological processes, substitutions-omissions-distortions-additions (SODA), and phonetic inventory. Participants placed high priority on selecting target sounds that were stimulable, early developing, and in error across all word positions and 60.3% felt very confident or confident selecting an appropriate intervention approach. Eight intervention approaches were frequently used: auditory discrimination, minimal pairs, cued articulation, phonological awareness, traditional articulation therapy, auditory bombardment, Nuffield Centre Dyspraxia Programme, and core vocabulary. Children typically received individual therapy with an SLP in a clinic setting. Parents often observed and participated in sessions and SLPs typically included siblings and grandparents in intervention sessions. Parent training and home programs were more frequently used than the group therapy. Two-thirds kept up-to-date by reading journal articles monthly or every 6 months. There were many similarities with

  11. Bioinformatics for cancer immunotherapy target discovery

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Campos, Benito; Barnkob, Mike Stein

    2014-01-01

    therapy target discovery in a bioinformatics analysis pipeline. We describe specialized bioinformatics tools and databases for three main bottlenecks in immunotherapy target discovery: the cataloging of potentially antigenic proteins, the identification of potential HLA binders, and the selection epitopes...

  12. Targeted Learning

    CERN Document Server

    van der Laan, Mark J

    2011-01-01

    The statistics profession is at a unique point in history. The need for valid statistical tools is greater than ever; data sets are massive, often measuring hundreds of thousands of measurements for a single subject. The field is ready to move towards clear objective benchmarks under which tools can be evaluated. Targeted learning allows (1) the full generalization and utilization of cross-validation as an estimator selection tool so that the subjective choices made by humans are now made by the machine, and (2) targeting the fitting of the probability distribution of the data toward the targe

  13. Molecular dynamic simulation of the self-assembly of DAP12-NKG2C activating immunoreceptor complex.

    Directory of Open Access Journals (Sweden)

    Peng Wei

    Full Text Available The DAP12-NKG2C activating immunoreceptor complex is one of the multisubunit transmembrane protein complexes in which ligand-binding receptor chains assemble with dimeric signal-transducing modules through non-covalent associations in their transmembrane (TM domains. In this work, both coarse grained and atomistic molecular dynamic simulation methods were applied to investigate the self-assembly dynamics of the transmembrane domains of the DAP12-NKG2C activating immunoreceptor complex. Through simulating the dynamics of DAP12-NKG2C TM heterotrimer and point mutations, we demonstrated that a five-polar-residue motif including: 2 Asps and 2 Thrs in DAP12 dimer, as well as 1 Lys in NKG2C TM plays an important role in the assembly structure of the DAP12-NKG2C TM heterotrimer. Furthermore, we provided clear evidences to exclude the possibility that another NKG2C could stably associate with the DAP12-NKG2C heterotrimer. Based on the simulation results, we proposed a revised model for the self-assembly of DAP12-NKG2C activating immunoreceptor complex, along with a plausible explanation for the association of only one NKG2C with a DAP12 dimer.

  14. Uranium exploration target selection for proterozoic iron oxide/breccia complex type deposits in India

    International Nuclear Information System (INIS)

    Dwivedy, K.K.; Sinha, K.K.

    1997-01-01

    Multimetal iron oxide/breccia complex (IOBC) type deposits exemplified by Olympic Dam in Australia, fall under low grade, large tonnage deposits. A multidisciplinary integrated exploration programme consisting of airborne surveys, ground geological surveys, geophysical and geochemical investigations and exploratory drilling, supported adequately by the state of the art analytical facilities, data processing using various software and digital image processing has shown moderate success in the identification of target areas for this type of deposits in the Proterozoic terrains of India. Intracratonic, anorogenic, continental rift to continental margin environment have been identified in a very wide spectrum of rock associations. The genesis and evolution of such associations during the Middle Proterozoic period have been reviewed and applied for target selection in the (i) Son-Narmada rift valley zone; (ii) areas covered by Dongargarh Supergroup of rocks in Madhya Pradesh; (iii) areas exposing ferruginous breccia in the western part of the Singhbhum Shear Zone (SSZ) around Lotapahar; (iv) Siang Group of rocks in Arunachal Pradesh; (v) Crystalline rocks of Garo Hills around Anek; and (vi) Chhotanagpur Gneissic complex in the Bahia-Ulatutoli tract of Ranchi Plateau. Of theses six areas, the Son-Narmada rift area appears to be the most promising area for IOBC type deposits. Considering occurrences of the uranium anomalies near Meraraich, Kundabhati, Naktu and Kudar and positive favourability criteria observed in a wide variety of rocks spatially related to the rifts and shears, certain sectors in Son-Narmada rift zone have been identified as promising for intense subsurface exploration. 20 refs, 4 figs, 1 tab

  15. Drug-Target Kinetics in Drug Discovery.

    Science.gov (United States)

    Tonge, Peter J

    2018-01-17

    The development of therapies for the treatment of neurological cancer faces a number of major challenges including the synthesis of small molecule agents that can penetrate the blood-brain barrier (BBB). Given the likelihood that in many cases drug exposure will be lower in the CNS than in systemic circulation, it follows that strategies should be employed that can sustain target engagement at low drug concentration. Time dependent target occupancy is a function of both the drug and target concentration as well as the thermodynamic and kinetic parameters that describe the binding reaction coordinate, and sustained target occupancy can be achieved through structural modifications that increase target (re)binding and/or that decrease the rate of drug dissociation. The discovery and deployment of compounds with optimized kinetic effects requires information on the structure-kinetic relationships that modulate the kinetics of binding, and the molecular factors that control the translation of drug-target kinetics to time-dependent drug activity in the disease state. This Review first introduces the potential benefits of drug-target kinetics, such as the ability to delineate both thermodynamic and kinetic selectivity, and then describes factors, such as target vulnerability, that impact the utility of kinetic selectivity. The Review concludes with a description of a mechanistic PK/PD model that integrates drug-target kinetics into predictions of drug activity.

  16. The Long-Term Effectiveness of a Selective, Personality-Targeted Prevention Program in Reducing Alcohol Use and Related Harms: A Cluster Randomized Controlled Trial

    Science.gov (United States)

    Newton, Nicola C.; Conrod, Patricia J.; Slade, Tim; Carragher, Natacha; Champion, Katrina E.; Barrett, Emma L.; Kelly, Erin V.; Nair, Natasha K.; Stapinski, Lexine; Teesson, Maree

    2016-01-01

    Background: This study investigated the long-term effectiveness of Preventure, a selective personality-targeted prevention program, in reducing the uptake of alcohol, harmful use of alcohol, and alcohol-related harms over a 3-year period. Methods: A cluster randomized controlled trial was conducted to assess the effectiveness of Preventure.…

  17. Selective RNA targeting and regulated signaling by RIG-I is controlled by coordination of RNA and ATP binding.

    Science.gov (United States)

    Fitzgerald, Megan E; Rawling, David C; Potapova, Olga; Ren, Xiaoming; Kohlway, Andrew; Pyle, Anna Marie

    2017-02-17

    RIG-I is an innate immune receptor that detects and responds to infection by deadly RNA viruses such as influenza, and Hepatitis C. In the cytoplasm, RIG-I is faced with a difficult challenge: it must sensitively detect viral RNA while ignoring the abundance of host RNA. It has been suggested that RIG-I has a ‘proof-reading’ mechanism for rejecting host RNA targets, and that disruptions of this selectivity filter give rise to autoimmune diseases. Here, we directly monitor RNA proof-reading by RIG-I and we show that it is controlled by a set of conserved amino acids that couple RNA and ATP binding to the protein (Motif III). Mutations of this motif directly modulate proof-reading by eliminating or enhancing selectivity for viral RNA, with major implications for autoimmune disease and cancer. More broadly, the results provide a physical explanation for the ATP-gated behavior of SF2 RNA helicases and receptor proteins.

  18. TargetMine, an integrated data warehouse for candidate gene prioritisation and target discovery.

    Directory of Open Access Journals (Sweden)

    Yi-An Chen

    Full Text Available Prioritising candidate genes for further experimental characterisation is a non-trivial challenge in drug discovery and biomedical research in general. An integrated approach that combines results from multiple data types is best suited for optimal target selection. We developed TargetMine, a data warehouse for efficient target prioritisation. TargetMine utilises the InterMine framework, with new data models such as protein-DNA interactions integrated in a novel way. It enables complicated searches that are difficult to perform with existing tools and it also offers integration of custom annotations and in-house experimental data. We proposed an objective protocol for target prioritisation using TargetMine and set up a benchmarking procedure to evaluate its performance. The results show that the protocol can identify known disease-associated genes with high precision and coverage. A demonstration version of TargetMine is available at http://targetmine.nibio.go.jp/.

  19. Yersinia pestis targets neutrophils via complement receptor 3

    Science.gov (United States)

    Merritt, Peter M.; Nero, Thomas; Bohman, Lesley; Felek, Suleyman; Krukonis, Eric S.; Marketon, Melanie M.

    2015-01-01

    Yersinia species display a tropism for lymphoid tissues during infection, and the bacteria select innate immune cells for delivery of cytotoxic effectors by the type III secretion system. Yet the mechanism for target cell selection remains a mystery. Here we investigate the interaction of Yersinia pestis with murine splenocytes to identify factors that participate in the targeting process. We find that interactions with primary immune cells rely on multiple factors. First, the bacterial adhesin Ail is required for efficient targeting of neutrophils in vivo. However, Ail does not appear to directly mediate binding to a specific cell type. Instead, we find that host serum factors direct Y. pestis to specific innate immune cells, particularly neutrophils. Importantly, specificity towards neutrophils was increased in the absence of bacterial adhesins due to reduced targeting of other cell types, but this phenotype was only visible in the presence of mouse serum. Addition of antibodies against complement receptor 3 and CD14 blocked target cell selection, suggesting that a combination of host factors participate in steering bacteria toward neutrophils during plague infection. PMID:25359083

  20. Conceptual design studies for the liquid metal target META:LIC

    International Nuclear Information System (INIS)

    Class, A.G.; Fazio, C.; Fetzer, J.R.; Gordeev, S.

    2014-01-01

    When the construction of ESS (European Spallation Source) in Sweden was initiated, the target station concept selection group decided to reevaluate a variety of target designs to respect new developments in their selection process. The META:LIC (MEgawatt TArget:Lead bIsmuth Cooled) target concept was developed following an extensive analysis of existing and new proposed designs and reached the level of proof of principle within only 2 years. ESS selected META:LIC as comparative target option for licensing purposes during the design update phase of ESS. The present work describes the design motivation of META:LIC referring to properties and design features of other targets. Therefore, META:LIC design is an evolutionary target which incorporates the extensive experience of liquid metal targets. The modular LBE (Lead Bismuth Eutectic) target concept with focus on the target module is introduced. Both, a window target option for the start of operation and a windowless option with extended lifetime are foreseen. Thermohydraulic simulations show that adequate window cooling can be realized. The stability of the free surface in the windowless option has been shown. Robust target module instrumentation based on free surface levels and the MEGAPIE experience is proposed for target control. Since the META:LIC concept foresees a horizontal extraction for both moderators and target from the monolith a safety concept based on the SNS and JSNS experience is proposed

  1. Targets for high power neutral beams

    International Nuclear Information System (INIS)

    Kim, J.

    1980-01-01

    Stopping high-power, long-pulse beams is fast becoming an engineering challenge, particularly in neutral beam injectors for heating magnetically confined plasmas. A brief review of neutral beam target technology is presented along with heat transfer calculations for some selected target designs

  2. New detection systems of bacteria using highly selective media designed by SMART: selective medium-design algorithm restricted by two constraints.

    Directory of Open Access Journals (Sweden)

    Takeshi Kawanishi

    Full Text Available Culturing is an indispensable technique in microbiological research, and culturing with selective media has played a crucial role in the detection of pathogenic microorganisms and the isolation of commercially useful microorganisms from environmental samples. Although numerous selective media have been developed in empirical studies, unintended microorganisms often grow on such media probably due to the enormous numbers of microorganisms in the environment. Here, we present a novel strategy for designing highly selective media based on two selective agents, a carbon source and antimicrobials. We named our strategy SMART for highly Selective Medium-design Algorithm Restricted by Two constraints. To test whether the SMART method is applicable to a wide range of microorganisms, we developed selective media for Burkholderia glumae, Acidovorax avenae, Pectobacterium carotovorum, Ralstonia solanacearum, and Xanthomonas campestris. The series of media developed by SMART specifically allowed growth of the targeted bacteria. Because these selective media exhibited high specificity for growth of the target bacteria compared to established selective media, we applied three notable detection technologies: paper-based, flow cytometry-based, and color change-based detection systems for target bacteria species. SMART facilitates not only the development of novel techniques for detecting specific bacteria, but also our understanding of the ecology and epidemiology of the targeted bacteria.

  3. Tyrosine kinase inhibitors: Multi-targeted or single-targeted?

    Science.gov (United States)

    Broekman, Fleur; Giovannetti, Elisa; Peters, Godefridus J

    2011-02-10

    Since in most tumors multiple signaling pathways are involved, many of the inhibitors in clinical development are designed to affect a wide range of targeted kinases. The most important tyrosine kinase families in the development of tyrosine kinase inhibitors are the ABL, SCR, platelet derived growth factor, vascular endothelial growth factor receptor and epidermal growth factor receptor families. Both multi-kinase inhibitors and single-kinase inhibitors have advantages and disadvantages, which are related to potential resistance mechanisms, pharmacokinetics, selectivity and tumor environment. In different malignancies various tyrosine kinases are mutated or overexpressed and several resistance mechanisms exist. Pharmacokinetics is influenced by interindividual differences and differs for two single targeted inhibitors or between patients treated by the same tyrosine kinase inhibitor. Different tyrosine kinase inhibitors have various mechanisms to achieve selectivity, while differences in gene expression exist between tumor and stromal cells. Considering these aspects, one type of inhibitor can generally not be preferred above the other, but will depend on the specific genetic constitution of the patient and the tumor, allowing personalized therapy. The most effective way of cancer treatment by using tyrosine kinase inhibitors is to consider each patient/tumor individually and to determine the strategy that specifically targets the consequences of altered (epi)genetics of the tumor. This strategy might result in treatment by a single multi kinase inhibitor for one patient, but in treatment by a couple of single kinase inhibitors for other patients.

  4. Repetition priming in selective attention

    DEFF Research Database (Denmark)

    Ásgeirsson, Árni Gunnar; Kristjánsson, Árni; Bundesen, Claus

    2015-01-01

    . Repeating target colors enhanced performance for all 12 observers. As predicted, this was only true under conditions that required selection of a target among distractors, but not when a target was presented alone. Model fits by TVA were obtained with a trial-by-trial maximum likelihood estimation procedure...

  5. Predominant alpha2/beta2/gamma3 AMPK activation during exercise in human skeletal muscle

    DEFF Research Database (Denmark)

    Birk, Jesper Bratz; Wojtaszewski, Jørgen

    2006-01-01

    -Thr-172 AMPK phosphorylation (r2 = 0.84, P important actor in exercise-regulated AMPK signalling in human skeletal muscle, probably mediating phosphorylation of ACCß.......5'AMP-activated protein kinase (AMPK) is a key regulator of cellular metabolism and is regulated in muscle during exercise. We have previously established that only three of 12 possible AMPK a/ß/¿-heterotrimers are present in human skeletal muscle. Previous studies describe discrepancies between...... total AMPK activity and regulation of its target acetyl-CoA-carboxylase (ACC)ß. Also, exercise training decreases expression of the regulatory ¿3 AMPK subunit and attenuates a2 AMPK activity during exercise. We hypothesize that these observations reflect a differential regulation of the AMPK...

  6. Visuospatial selective attention in chickens.

    Science.gov (United States)

    Sridharan, Devarajan; Ramamurthy, Deepa L; Schwarz, Jason S; Knudsen, Eric I

    2014-05-13

    Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.

  7. Selective Targeting of CTNBB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs.

    Directory of Open Access Journals (Sweden)

    Joost C M Uitdehaag

    Full Text Available The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin, KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines

  8. Selective Targeting of CTNNB1-, KRAS- or MYC-Driven Cell Growth by Combinations of Existing Drugs

    Science.gov (United States)

    Uitdehaag, Joost C. M.; de Roos, Jeroen A. D. M.; van Doornmalen, Antoon M.; Prinsen, Martine B. W.; Spijkers-Hagelstein, Jill A. P.; de Vetter, Judith R. F.; de Man, Jos; Buijsman, Rogier C.; Zaman, Guido J. R.

    2015-01-01

    The aim of combination drug treatment in cancer therapy is to improve response rate and to decrease the probability of the development of drug resistance. Preferably, drug combinations are synergistic rather than additive, and, ideally, drug combinations work synergistically only in cancer cells and not in non-malignant cells. We have developed a workflow to identify such targeted synergies, and applied this approach to selectively inhibit the proliferation of cell lines with mutations in genes that are difficult to modulate with small molecules. The approach is based on curve shift analysis, which we demonstrate is a more robust method of determining synergy than combination matrix screening with Bliss-scoring. We show that the MEK inhibitor trametinib is more synergistic in combination with the BRAF inhibitor dabrafenib than with vemurafenib, another BRAF inhibitor. In addition, we show that the combination of MEK and BRAF inhibitors is synergistic in BRAF-mutant melanoma cells, and additive or antagonistic in, respectively, BRAF-wild type melanoma cells and non-malignant fibroblasts. This combination exemplifies that synergistic action of drugs can depend on cancer genotype. Next, we used curve shift analysis to identify new drug combinations that specifically inhibit cancer cell proliferation driven by difficult-to-drug cancer genes. Combination studies were performed with compounds that as single agents showed preference for inhibition of cancer cells with mutations in either the CTNNB1 gene (coding for β-catenin), KRAS, or cancer cells expressing increased copy numbers of MYC. We demonstrate that the Wnt-pathway inhibitor ICG-001 and trametinib acted synergistically in Wnt-pathway-mutant cell lines. The ERBB2 inhibitor TAK-165 was synergistic with trametinib in KRAS-mutant cell lines. The EGFR/ERBB2 inhibitor neratinib acted synergistically with the spindle poison docetaxel and with the Aurora kinase inhibitor GSK-1070916 in cell lines with MYC amplification

  9. Dissociating the two faces of selective memory retrieval.

    Science.gov (United States)

    Dobler, Ina M; Bäuml, Karl-Heinz T

    2012-07-01

    Research in the past four decades has repeatedly shown that selective retrieval of some (non-target) memories can impair subsequent retrieval of other (target) information, a finding known as retrieval-induced forgetting. More recently, however, there is evidence that selective retrieval can both impair and enhance recall of related memories (K-H. T. Bäuml & Samenieh, 2010). To identify possible experimental dissociations between the detrimental and the beneficial effects of memory retrieval, we examined retrieval dynamics in listwise directed forgetting, varying the delay between preceding non-target and subsequent target recall. When target recall immediately followed non-target recall, we replicated the prior work and found detrimental effects of memory retrieval on to-be-remembered items but beneficial effects on to-be-forgotten items. In contrast, when a delay was introduced between non-target and target recall, the detrimental effects were present but the beneficial effects were absent. The results demonstrate a first experimental dissociation between the two effects of memory retrieval. They are consistent with a recent two-factor account of the two faces of selective memory retrieval.

  10. A Cryogenic Infrared Calibration Target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E., Jr.; Rinehart, S. A.

    2014-01-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to approx.4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials-Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder-are characterized and presented

  11. Optimization of in-target yields for RIB production: Part 1: direct targets

    International Nuclear Information System (INIS)

    Chabod, S.; Thiolliere, N.; David, J.Ch.; Dore, D.; Ene, D.; Rapp, B.; Ridikas, D.; Chabod, S.; Blideanu, V.

    2008-03-01

    In the framework of the EURISOL-DS project and within Task-11, we have performed in-target yield calculations for different configurations of thick direct targets. The target materials tested are Al 2 O 3 , SiC, Pb(molten), Ta and UC 3 . The target was irradiated with protons of 0.5, 1.0, 1.5 and 2.0 GeV. The production rates have been computed using the MCNPX transport/generation code, coupled with the CINDER-90 evolution program. The yield distributions as a function of charge number Z and mass number A have been evaluated. Their production rates have been optimized for 11 selected elements (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Hg, Sn and Fr) and 23 of their isotopes of interest. Finally, the isotopic distributions for each of these 11 elements have been optimized in terms of the target material, its geometry, and incident proton energy

  12. Dipeptidyl peptidase IV as a potential target for selective prodrug activation and chemotherapeutic action in cancers.

    Science.gov (United States)

    Dahan, Arik; Wolk, Omri; Yang, Peihua; Mittal, Sachin; Wu, Zhiqian; Landowski, Christopher P; Amidon, Gordon L

    2014-12-01

    The efficacy of chemotherapeutic drugs is often offset by severe side effects attributable to poor selectivity and toxicity to normal cells. Recently, the enzyme dipeptidyl peptidase IV (DPPIV) was considered as a potential target for the delivery of chemotherapeutic drugs. The purpose of this study was to investigate the feasibility of targeting chemotherapeutic drugs to DPPIV as a strategy to enhance their specificity. The expression profile of DPPIV was obtained for seven cancer cell lines using DNA microarray data from the DTP database, and was validated by RT-PCR. A prodrug was then synthesized by linking the cytotoxic drug melphalan to a proline-glycine dipeptide moiety, followed by hydrolysis studies in the seven cell lines with a standard substrate, as well as the glycyl-prolyl-melphalan (GP-Mel). Lastly, cell proliferation studies were carried out to demonstrate enzyme-dependent activation of the candidate prodrug. The relative RT-PCR expression levels of DPPIV in the cancer cell lines exhibited linear correlation with U95Av2 Affymetrix data (r(2) = 0.94), and with specific activity of a standard substrate, glycine-proline-p-nitroanilide (r(2) = 0.96). The significantly higher antiproliferative activity of GP-Mel in Caco-2 cells (GI₅₀ = 261 μM) compared to that in SK-MEL-5 cells (GI₅₀ = 807 μM) was consistent with the 9-fold higher specific activity of the prodrug in Caco-2 cells (5.14 pmol/min/μg protein) compared to SK-MEL-5 cells (0.68 pmol/min/μg protein) and with DPPIV expression levels in these cells. Our results demonstrate the great potential to exploit DPPIV as a prodrug activating enzyme for efficient chemotherapeutic drug targeting.

  13. Oculomotor selection underlies feature retention in visual working memory.

    Science.gov (United States)

    Hanning, Nina M; Jonikaitis, Donatas; Deubel, Heiner; Szinte, Martin

    2016-02-01

    Oculomotor selection, spatial task relevance, and visual working memory (WM) are described as three processes highly intertwined and sustained by similar cortical structures. However, because task-relevant locations always constitute potential saccade targets, no study so far has been able to distinguish between oculomotor selection and spatial task relevance. We designed an experiment that allowed us to dissociate in humans the contribution of task relevance, oculomotor selection, and oculomotor execution to the retention of feature representations in WM. We report that task relevance and oculomotor selection lead to dissociable effects on feature WM maintenance. In a first task, in which an object's location was encoded as a saccade target, its feature representations were successfully maintained in WM, whereas they declined at nonsaccade target locations. Likewise, we observed a similar WM benefit at the target of saccades that were prepared but never executed. In a second task, when an object's location was marked as task relevant but constituted a nonsaccade target (a location to avoid), feature representations maintained at that location did not benefit. Combined, our results demonstrate that oculomotor selection is consistently associated with WM, whereas task relevance is not. This provides evidence for an overlapping circuitry serving saccade target selection and feature-based WM that can be dissociated from processes encoding task-relevant locations. Copyright © 2016 the American Physiological Society.

  14. Vitamin C selectively kills KRAS and BRAF mutant colorectal cancer cells by targeting GAPDH.

    Science.gov (United States)

    Yun, Jihye; Mullarky, Edouard; Lu, Changyuan; Bosch, Kaitlyn N; Kavalier, Adam; Rivera, Keith; Roper, Jatin; Chio, Iok In Christine; Giannopoulou, Eugenia G; Rago, Carlo; Muley, Ashlesha; Asara, John M; Paik, Jihye; Elemento, Olivier; Chen, Zhengming; Pappin, Darryl J; Dow, Lukas E; Papadopoulos, Nickolas; Gross, Steven S; Cantley, Lewis C

    2015-12-11

    More than half of human colorectal cancers (CRCs) carry either KRAS or BRAF mutations and are often refractory to approved targeted therapies. We found that cultured human CRC cells harboring KRAS or BRAF mutations are selectively killed when exposed to high levels of vitamin C. This effect is due to increased uptake of the oxidized form of vitamin C, dehydroascorbate (DHA), via the GLUT1 glucose transporter. Increased DHA uptake causes oxidative stress as intracellular DHA is reduced to vitamin C, depleting glutathione. Thus, reactive oxygen species accumulate and inactivate glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Inhibition of GAPDH in highly glycolytic KRAS or BRAF mutant cells leads to an energetic crisis and cell death not seen in KRAS and BRAF wild-type cells. High-dose vitamin C impairs tumor growth in Apc/Kras(G12D) mutant mice. These results provide a mechanistic rationale for exploring the therapeutic use of vitamin C for CRCs with KRAS or BRAF mutations. Copyright © 2015, American Association for the Advancement of Science.

  15. Drug target identification in protozoan parasites.

    Science.gov (United States)

    Müller, Joachim; Hemphill, Andrew

    2016-08-01

    Despite the fact that diseases caused by protozoan parasites represent serious challenges for public health, animal production and welfare, only a limited panel of drugs has been marketed for clinical applications. Herein, the authors investigate two strategies, namely whole organism screening and target-based drug design. The present pharmacopoeia has resulted from whole organism screening, and the mode of action and targets of selected drugs are discussed. However, the more recent extensive genome sequencing efforts and the development of dry and wet lab genomics and proteomics that allow high-throughput screening of interactions between micromolecules and recombinant proteins has resulted in target-based drug design as the predominant focus in anti-parasitic drug development. Selected examples of target-based drug design studies are presented, and calcium-dependent protein kinases, important drug targets in apicomplexan parasites, are discussed in more detail. Despite the enormous efforts in target-based drug development, this approach has not yet generated market-ready antiprotozoal drugs. However, whole-organism screening approaches, comprising of both in vitro and in vivo investigations, should not be disregarded. The repurposing of already approved and marketed drugs could be a suitable strategy to avoid fastidious approval procedures, especially in the case of neglected or veterinary parasitoses.

  16. Attention Blinks for Selection, Not Perception or Memory: Reading Sentences and Reporting Targets

    Science.gov (United States)

    Potter, Mary C.; Wyble, Brad; Olejarczyk, Jennifer

    2011-01-01

    In whole report, a sentence presented sequentially at the rate of about 10 words/s can be recalled accurately, whereas if the task is to report only two target words (e.g., red words), the second target suffers an attentional blink if it appears shortly after the first target. If these two tasks are carried out simultaneously, is there an…

  17. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    Science.gov (United States)

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Using an in Silico Approach to Teach 3D Pharmacodynamics of the Drug-Target Interaction Process Focusing on Selective COX2 Inhibition by Celecoxib

    Science.gov (United States)

    Tavares, Maurício T.; Primi, Marina C.; Silva, Nuno A. T. F.; Carvalho, Camila F.; Cunha, Micael R.; Parise-Filho, Roberto

    2017-01-01

    Teaching the molecular aspects of drug-target interactions and selectivity is not always an easy task. In this context, the use of alternative and engaging approaches could help pharmacy and chemistry students better understand this important topic of medicinal chemistry. Herein a 4 h practical exercise that uses freely available software as a…

  19. Radioligand Recognition of Insecticide Targets.

    Science.gov (United States)

    Casida, John E

    2018-04-04

    Insecticide radioligands allow the direct recognition and analysis of the targets and mechanisms of toxic action critical to effective and safe pest control. These radioligands are either the insecticides themselves or analogs that bind at the same or coupled sites. Preferred radioligands and their targets, often in both insects and mammals, are trioxabicyclooctanes for the γ-aminobutyric acid (GABA) receptor, avermectin for the glutamate receptor, imidacloprid for the nicotinic receptor, ryanodine and chlorantraniliprole for the ryanodine receptor, and rotenone or pyridaben for NADH + ubiquinone oxidoreductase. Pyrethroids and other Na + channel modulator insecticides are generally poor radioligands due to lipophilicity and high nonspecific binding. For target site validation, the structure-activity relationships competing with the radioligand in the binding assays should be the same as that for insecticidal activity or toxicity except for rapidly detoxified or proinsecticide analogs. Once the radioligand assay is validated for relevance, it will often help define target site modifications on selection of resistant pest strains, selectivity between insects and mammals, and interaction with antidotes and other chemicals at modulator sites. Binding assays also serve for receptor isolation and photoaffinity labeling to characterize the interactions involved.

  20. Tetherin Suppresses Type I Interferon Signaling by Targeting MAVS for NDP52-Mediated Selective Autophagic Degradation in Human Cells.

    Science.gov (United States)

    Jin, Shouheng; Tian, Shuo; Luo, Man; Xie, Weihong; Liu, Tao; Duan, Tianhao; Wu, Yaoxing; Cui, Jun

    2017-10-19

    Tetherin (BST2/CD317) is an interferon-inducible antiviral factor known for its ability to block the release of enveloped viruses from infected cells. Yet its role in type I interferon (IFN) signaling remains poorly defined. Here, we demonstrate that Tetherin is a negative regulator of RIG-I like receptor (RLR)-mediated type I IFN signaling by targeting MAVS. The induction of Tetherin by type I IFN accelerates MAVS degradation via ubiquitin-dependent selective autophagy in human cells. Moreover, Tetherin recruits E3 ubiquitin ligase MARCH8 to catalyze K27-linked ubiquitin chains on MAVS at lysine 7, which serves as a recognition signal for NDP52-dependent autophagic degradation. Taken together, our findings reveal a negative feedback loop of RLR signaling generated by Tetherin-MARCH8-MAVS-NDP52 axis and provide insights into a better understanding of the crosstalk between selective autophagy and optimal deactivation of type I IFN signaling. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Targeting Antibacterial Agents by Using Drug-Carrying Filamentous Bacteriophages

    Science.gov (United States)

    Yacoby, Iftach; Shamis, Marina; Bar, Hagit; Shabat, Doron; Benhar, Itai

    2006-01-01

    Bacteriophages have been used for more than a century for (unconventional) therapy of bacterial infections, for half a century as tools in genetic research, for 2 decades as tools for discovery of specific target-binding proteins, and for nearly a decade as tools for vaccination or as gene delivery vehicles. Here we present a novel application of filamentous bacteriophages (phages) as targeted drug carriers for the eradication of (pathogenic) bacteria. The phages are genetically modified to display a targeting moiety on their surface and are used to deliver a large payload of a cytotoxic drug to the target bacteria. The drug is linked to the phages by means of chemical conjugation through a labile linker subject to controlled release. In the conjugated state, the drug is in fact a prodrug devoid of cytotoxic activity and is activated following its dissociation from the phage at the target site in a temporally and spatially controlled manner. Our model target was Staphylococcus aureus, and the model drug was the antibiotic chloramphenicol. We demonstrated the potential of using filamentous phages as universal drug carriers for targetable cells involved in disease. Our approach replaces the selectivity of the drug itself with target selectivity borne by the targeting moiety, which may allow the reintroduction of nonspecific drugs that have thus far been excluded from antibacterial use (because of toxicity or low selectivity). Reintroduction of such drugs into the arsenal of useful tools may help to combat emerging bacterial antibiotic resistance. PMID:16723570

  2. Physical measurements of inertial-fusion targets

    International Nuclear Information System (INIS)

    Weinstein, B.W.

    1981-01-01

    Measurement of inertial-fusion targets has stimulated the development of many new techniques and instruments. This paper reviews the basis for selected target measurement requirements and the development of optical interferometry, optical scattering, microradiography and scanning electron microscopy as applied to target measurement. We summarize the resolution and speed which have been achieved to date, and describe several systems in which these are traded off to fill specific measurement applications. We point out the extent to which present capabilities meet the requirements for target measurement and the key problems which remain to be solved

  3. A protein-targeting strategy used to develop a selective inhibitor of the E17K point mutation in the PH domain of Akt1

    Science.gov (United States)

    Deyle, Kaycie M.; Farrow, Blake; Qiao Hee, Ying; Work, Jeremy; Wong, Michelle; Lai, Bert; Umeda, Aiko; Millward, Steven W.; Nag, Arundhati; Das, Samir; Heath, James R.

    2015-05-01

    Ligands that can bind selectively to proteins with single amino-acid point mutations offer the potential to detect or treat an abnormal protein in the presence of the wild type (WT). However, it is difficult to develop a selective ligand if the point mutation is not associated with an addressable location, such as a binding pocket. Here we report an all-chemical synthetic epitope-targeting strategy that we used to discover a 5-mer peptide with selectivity for the E17K-transforming point mutation in the pleckstrin homology domain of the Akt1 oncoprotein. A fragment of Akt1 that contained the E17K mutation and an I19[propargylglycine] substitution was synthesized to form an addressable synthetic epitope. Azide-presenting peptides that clicked covalently onto this alkyne-presenting epitope were selected from a library using in situ screening. One peptide exhibits a 10:1 in vitro selectivity for the oncoprotein relative to the WT, with a similar selectivity in cells. This 5-mer peptide was expanded into a larger ligand that selectively blocks the E17K Akt1 interaction with its PIP3 (phosphatidylinositol (3,4,5)-trisphosphate) substrate.

  4. Development of targeted radiotherapy systems

    International Nuclear Information System (INIS)

    Ferro, Guillermina; Villarreal, Jose E.; Garcia, Laura; Tendilla, Jose I.; Paredes, Lydia; Murphy, Consuelo A.; Pedraza, Martha

    2001-01-01

    Conventional or external beam radiotherapy, has been a viable alternative for cancer treatment. Although this technique is effective, its use is limited if the patient has multiple malignant lesions (metastases). An alternative approach is based on the design of radiopharmaceuticals that, to be administered in the patient, are directed specifically toward the target cell producing a selective radiation delivery. This treatment is known as targeted radiotherapy. We have summarized and discussed some results related to our investigations on the development of targeted radiotherapy systems, including aspects of internal dosimetry

  5. Immunotherapy Targets in Pediatric Cancer

    International Nuclear Information System (INIS)

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal

    2012-01-01

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer.

  6. Immunotherapy Targets in Pediatric Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Orentas, Rimas J.; Lee, Daniel W.; Mackall, Crystal, E-mail: rimas.orentas@nih.gov, E-mail: mackallc@mail.nih.gov [Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD (United States)

    2012-01-30

    Immunotherapy for cancer has shown increasing success and there is ample evidence to expect that progress gleaned in immune targeting of adult cancers can be translated to pediatric oncology. This manuscript reviews principles that guide selection of targets for immunotherapy of cancer, emphasizing the similarities and distinctions between oncogene-inhibition targets and immune targets. It follows with a detailed review of molecules expressed by pediatric tumors that are already under study as immune targets or are good candidates for future studies of immune targeting. Distinctions are made between cell surface antigens that can be targeted in an MHC independent manner using antibodies, antibody derivatives, or chimeric antigen receptors versus intracellular antigens which must be targeted with MHC restricted T cell therapies. Among the most advanced immune targets for childhood cancer are CD19 and CD22 on hematologic malignancies, GD2 on solid tumors, and NY-ESO-1 expressed by a majority of synovial sarcomas, but several other molecules reviewed here also have properties which suggest that they too could serve as effective targets for immunotherapy of childhood cancer.

  7. Using Deep Learning for Targeted Data Selection, Improving Satellite Observation Utilization for Model Initialization

    Science.gov (United States)

    Lee, Y. J.; Bonfanti, C. E.; Trailovic, L.; Etherton, B.; Govett, M.; Stewart, J.

    2017-12-01

    At present, a fraction of all satellite observations are ultimately used for model assimilation. The satellite data assimilation process is computationally expensive and data are often reduced in resolution to allow timely incorporation into the forecast. This problem is only exacerbated by the recent launch of Geostationary Operational Environmental Satellite (GOES)-16 satellite and future satellites providing several order of magnitude increase in data volume. At the NOAA Earth System Research Laboratory (ESRL) we are researching the use of machine learning the improve the initial selection of satellite data to be used in the model assimilation process. In particular, we are investigating the use of deep learning. Deep learning is being applied to many image processing and computer vision problems with great success. Through our research, we are using convolutional neural network to find and mark regions of interest (ROI) to lead to intelligent extraction of observations from satellite observation systems. These targeted observations will be used to improve the quality of data selected for model assimilation and ultimately improve the impact of satellite data on weather forecasts. Our preliminary efforts to identify the ROI's are focused in two areas: applying and comparing state-of-art convolutional neural network models using the analysis data from the National Center for Environmental Prediction (NCEP) Global Forecast System (GFS) weather model, and using these results as a starting point to optimize convolution neural network model for pattern recognition on the higher resolution water vapor data from GOES-WEST and other satellite. This presentation will provide an introduction to our convolutional neural network model to identify and process these ROI's, along with the challenges of data preparation, training the model, and parameter optimization.

  8. Selective enhancement of orientation tuning before saccades.

    Science.gov (United States)

    Ohl, Sven; Kuper, Clara; Rolfs, Martin

    2017-11-01

    Saccadic eye movements cause a rapid sweep of the visual image across the retina and bring the saccade's target into high-acuity foveal vision. Even before saccade onset, visual processing is selectively prioritized at the saccade target. To determine how this presaccadic attention shift exerts its influence on visual selection, we compare the dynamics of perceptual tuning curves before movement onset at the saccade target and in the opposite hemifield. Participants monitored a 30-Hz sequence of randomly oriented gratings for a target orientation. Combining a reverse correlation technique previously used to study orientation tuning in neurons and general additive mixed modeling, we found that perceptual reports were tuned to the target orientation. The gain of orientation tuning increased markedly within the last 100 ms before saccade onset. In addition, we observed finer orientation tuning right before saccade onset. This increase in gain and tuning occurred at the saccade target location and was not observed at the incongruent location in the opposite hemifield. The present findings suggest, therefore, that presaccadic attention exerts its influence on vision in a spatially and feature-selective manner, enhancing performance and sharpening feature tuning at the future gaze location before the eyes start moving.

  9. The AEROPATH project targeting Pseudomonas aeruginosa: crystallographic studies for assessment of potential targets in early-stage drug discovery

    International Nuclear Information System (INIS)

    Moynie, Lucille; Schnell, Robert; McMahon, Stephen A.; Sandalova, Tatyana; Boulkerou, Wassila Abdelli; Schmidberger, Jason W.; Alphey, Magnus; Cukier, Cyprian; Duthie, Fraser; Kopec, Jolanta; Liu, Huanting; Jacewicz, Agata; Hunter, William N.; Naismith, James H.; Schneider, Gunter

    2012-01-01

    A focused strategy has been directed towards the structural characterization of selected proteins from the bacterial pathogen P. aeruginosa. The objective is to exploit the resulting structural data, in combination with ligand-binding studies, and to assess the potential of these proteins for early-stage antimicrobial drug discovery. Bacterial infections are increasingly difficult to treat owing to the spread of antibiotic resistance. A major concern is Gram-negative bacteria, for which the discovery of new antimicrobial drugs has been particularly scarce. In an effort to accelerate early steps in drug discovery, the EU-funded AEROPATH project aims to identify novel targets in the opportunistic pathogen Pseudomonas aeruginosa by applying a multidisciplinary approach encompassing target validation, structural characterization, assay development and hit identification from small-molecule libraries. Here, the strategies used for target selection are described and progress in protein production and structure analysis is reported. Of the 102 selected targets, 84 could be produced in soluble form and the de novo structures of 39 proteins have been determined. The crystal structures of eight of these targets, ranging from hypothetical unknown proteins to metabolic enzymes from different functional classes (PA1645, PA1648, PA2169, PA3770, PA4098, PA4485, PA4992 and PA5259), are reported here. The structural information is expected to provide a firm basis for the improvement of hit compounds identified from fragment-based and high-throughput screening campaigns

  10. Quality changes of pasteurised mango juice during storage. Part I: Selecting shelf-life markers by integration of a targeted and untargeted multivariate approach.

    Science.gov (United States)

    Wibowo, Scheling; Grauwet, Tara; Gedefa, Getnet Belete; Hendrickx, Marc; Van Loey, Ann

    2015-12-01

    For the first time, a multivariate approach combining targeted and untargeted data was used to obtain insight into quality changes in pasteurised mango juice (cv. 'Totapuri') as a function of storage (42°C for 8weeks). Mango juice samples were formulated with addition of different potential precursors for different quality-related chemical reactions: ascorbic acid, citric acid and sugars. Control (diluted mango puree with water), ascorbic acid-enriched (AA 250 and AA 500 ), citric acid-enriched (CA, CA+AA 250 and CA+AA 500 ) and sugar-enriched (S) samples were characterised for a range of targeted quality parameters as well as for a volatile fingerprint (untargeted). Selection of shelf-life markers or quality parameters significantly changing during shelf-life was performed over all formulations as well as per mango juice formulation. Our study showed that a common trend over all formulations was observed for colour values (VID>│0.90│), while specific shelf-life markers were selected for each formulation. In acidified mango juice samples (CA, CA+AA 250 , CA+AA 500 ), more terpene oxides were selected compared to other formulations. In ascorbic acid-enriched samples (AA 250 , AA 500 , CA+AA 250 , CA+AA 500 ), furfural and ascorbic acid were significantly changing during shelf-life. It seems that the reaction pathways for compounds being formed or degraded upon shelf-life are clearly affected by the acidity level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Fast cat-eye effect target recognition based on saliency extraction

    Science.gov (United States)

    Li, Li; Ren, Jianlin; Wang, Xingbin

    2015-09-01

    Background complexity is a main reason that results in false detection in cat-eye target recognition. Human vision has selective attention property which can help search the salient target from complex unknown scenes quickly and precisely. In the paper, we propose a novel cat-eye effect target recognition method named Multi-channel Saliency Processing before Fusion (MSPF). This method combines traditional cat-eye target recognition with the selective characters of visual attention. Furthermore, parallel processing enables it to achieve fast recognition. Experimental results show that the proposed method performs better in accuracy, robustness and speed compared to other methods.

  12. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement

    OpenAIRE

    Reneerkens, Olga A. H.; Rutten, Kris; Steinbusch, Harry W. M.; Blokland, Arjan; Prickaerts, Jos

    2008-01-01

    Rationale One of the major complaints most people face during aging is an impairment in cognitive functioning. This has a negative impact on the quality of daily life and is even more prominent in patients suffering from neurodegenerative and psychiatric disorders including Alzheimer?s disease, schizophrenia, and depression. So far, the majority of cognition enhancers are generally targeting one particular neurotransmitter system. However, recently phosphodiesterases (PDEs) have gained increa...

  13. Voyager 2 Uranus targeting strategy

    Science.gov (United States)

    Cesarone, R. J.; Gray, D. L.; Potts, C. L.; Francis, K.

    1986-01-01

    One of the major challenges involved in the Voyager 2 Uranus flyby is to deliver the spacecraft to an appropriate aimpoint at the optimum time, so as to maximize the science return of the mission, while yet keeping propellant expenditure low. An unusual targeting strategy has been devised to satisfy these requirements. Its complexity arises from the great distance of the planet Uranus and the limited performance capabilities of Voyager. This selected strategy is developed in relation to a set of candidate strategies, mission requirements and shifting science objectives. The analysis of these candidates is conducted via a Monte Carlo simulation, the results of which yield data for the comparative evaluation and eventual and selection of the actual targeting strategy to be employed.

  14. Lorazepam induces multiple disturbances in selective attention: attentional overload, decrement in target processing efficiency, and shifts in perceptual discrimination and response bias.

    Science.gov (United States)

    Michael, George Andrew; Bacon, Elisabeth; Offerlin-Meyer, Isabelle

    2007-09-01

    There is a general consensus that benzodiazepines affect attentional processes, yet only few studies have tried to investigate these impairments in detail. The purpose of the present study was to investigate the effects of a single dose of Lorazepam on performance in a target cancellation task with important time constraints. We measured correct target detections and correct distractor rejections, misses and false positives. The results show that Lorazepam produces multiple kinds of shifts in performance, which suggests that it impairs multipLe processes: (a) the evolution of performance over time was not the same between the placebo and the Lorazepam groups, with the Lorazepam affecting performance quite early after the beginning of the test. This is suggestive of a depletion of attentional resources during sequential attentional processing; (b) Lorazepam affected differently target and distractor processing, with target detection being the most impaired; (c) misses were more frequent under Lorazepam than under placebo, but no such difference was observed as far as false positives were concerned. Signal detection analyses showed that Lorazepam (d) decreased perceptual discrimination, and (e) reliably increased response bias. Our results bring new insights on the multiple effects of Lorazepam on selective attention which, when combined, may have deleterious effects on human performance.

  15. Directed evolution: selecting today's biocatalysts : selecting today's biocatalysts

    NARCIS (Netherlands)

    Otten, Linda; Quax, Wim

    2005-01-01

    Directed evolution has become a full-grown tool in molecular biology nowadays. The methods that are involved in creating a mutant library are extensive and can be divided into several categories according to their basic ideas. Furthermore, both screening and selection can be used to target the

  16. Gene silencing in Tribolium castaneum as a tool for the targeted identification of candidate RNAi targets in crop pests.

    Science.gov (United States)

    Knorr, Eileen; Fishilevich, Elane; Tenbusch, Linda; Frey, Meghan L F; Rangasamy, Murugesan; Billion, Andre; Worden, Sarah E; Gandra, Premchand; Arora, Kanika; Lo, Wendy; Schulenberg, Greg; Valverde-Garcia, Pablo; Vilcinskas, Andreas; Narva, Kenneth E

    2018-02-01

    RNAi shows potential as an agricultural technology for insect control, yet, a relatively low number of robust lethal RNAi targets have been demonstrated to control insects of agricultural interest. In the current study, a selection of lethal RNAi target genes from the iBeetle (Tribolium castaneum) screen were used to demonstrate efficacy of orthologous targets in the economically important coleopteran pests Diabrotica virgifera virgifera and Meligethes aeneus. Transcript orthologs of 50 selected genes were analyzed in D. v. virgifera diet-based RNAi bioassays; 21 of these RNAi targets showed mortality and 36 showed growth inhibition. Low dose injection- and diet-based dsRNA assays in T. castaneum and D. v. virgifera, respectively, enabled the identification of the four highly potent RNAi target genes: Rop, dre4, ncm, and RpII140. Maize was genetically engineered to express dsRNA directed against these prioritized candidate target genes. T 0 plants expressing Rop, dre4, or RpII140 RNA hairpins showed protection from D. v. virgifera larval feeding damage. dsRNA targeting Rop, dre4, ncm, and RpII140 in M. aeneus also caused high levels of mortality both by injection and feeding. In summary, high throughput systems for model organisms can be successfully used to identify potent RNA targets for difficult-to-work with agricultural insect pests.

  17. Cross-lingual parser selection for low-resource languages

    DEFF Research Database (Denmark)

    Agic, Zeljko

    2017-01-01

    In multilingual dependency parsing, transferring delexicalized models provides unmatched language coverage and competitive scores, with minimal requirements. Still, selecting the single best parser for any target language poses a challenge. Here, we propose a lean method for parser selection. It ....... It offers top performance, and it does so without disadvantaging the truly low-resource languages. We consistently select appropriate source parsers for our target languages in a realistic cross-lingual parsing experiment....

  18. Therapeutic Approaches to Target Cancer Stem Cells

    International Nuclear Information System (INIS)

    Diaz, Arlhee; Leon, Kalet

    2011-01-01

    The clinical relevance of cancer stem cells (CSC) remains a major challenge for current cancer therapies, but preliminary findings indicate that specific targeting may be possible. Recent studies have shown that these tumor subpopulations promote tumor angiogenesis through the increased production of VEGF, whereas the VEGF neutralizing antibody bevacizumab specifically inhibits CSC growth. Moreover, nimotuzumab, a monoclonal antibody against the epidermal growth factor receptor (EGFR) with a potent antiangiogenic activity, has been shown by our group to reduce the frequency of CSC-like subpopulations in mouse models of brain tumors when combined with ionizing radiation. These studies and subsequent reports from other groups support the relevance of approaches based on molecular-targeted therapies to selectively attack CSC. This review discusses the relevance of targeting both the EGFR and angiogenic pathways as valid approaches to this aim. We discuss the relevance of identifying better molecular markers to develop drug screening strategies that selectively target CSC

  19. Microbial metabolomics: Replacing trial-and-error by the unbiased selection and ranking of targets

    NARCIS (Netherlands)

    Werf, M.J. van der; Jellema, R.H.; Hankemeier, T.

    2005-01-01

    Microbial production strains are currently improved using a combination of random and targeted approaches. In the case of a targeted approach, potential bottlenecks, feed-back inhibition, and side-routes are removed, and other processes of interest are targeted by overexpressing or knocking-out the

  20. From Target Selection to Post-Stimulation Analysis: Example of an Unconventional Faulted Reservoir

    Science.gov (United States)

    LeCalvez, J. H.; Williams, M.; Xu, W.; Stokes, J.; Moros, H.; Maxwell, S. C.; Conners, S.

    2011-12-01

    As the global balance of supply and demand forces the hydrocarbon industry toward unconventional resources, technology- and economics-driven shale oil and gas production is gaining momentum throughout many basins worldwide. Production from such unconventional plays is facilitated by massive hydraulic fracturing treatments aimed at increasing permeability and reactivating natural fractures. Large-scale faulting and fracturing partly control stress distribution, hence stimulation-derived hydraulically-induced fracture systems development. Therefore, careful integrated approaches to target selection, treatment staging, and stimulation methods need to be used to economically maximize ultimate hydrocarbon recovery. We present a case study of a multistage, multilateral stimulation project in the Fort Worth Basin, Texas. Wells had to be drilled within city limits in a commercially developing building area. Well locations and trajectories were determined in and around large-scale faults using 3D surface seismic with throws varying from seven to thirty meters. As a result, three horizontal wells were drilled in the Lower Barnett Shale section, 150 m apart with the central well landed about 25 m shallower than the outside laterals. Surface seismic indicates that the surface locations are on top of a major fault complex with the lateral sections drilling away from the major fault system and through a smaller fault. Modeling of the borehole-based microseismic monitoring options led to the selection of an optimum set of configurations given the operational restrictions faced: monitoring would mainly take place using a horizontal array to be tractored downhole and moved according to the well and stage to be monitored. Wells were completed using a perf-and-plug approach allowing for each stimulation stage to obtain a precise orientation of the various three-component accelerometers of the monitoring array as well as the calibration of the velocity model used to process the

  1. New Molecules and Old Drugs as Emerging Approaches to Selectively Target Human Glioblastoma Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Roberto Würth

    2014-01-01

    Full Text Available Despite relevant progress obtained by multimodal treatment, glioblastoma (GBM, the most aggressive primary brain tumor, is still incurable. The most encouraging advancement of GBM drug research derives from the identification of cancer stem cells (CSCs, since these cells appear to represent the determinants of resistance to current standard therapies. The goal of most ongoing studies is to identify drugs able to affect CSCs biology, either inducing selective toxicity or differentiating this tumor cell population into nontumorigenic cells. Moreover, the therapeutic approach for GBM could be improved interfering with chemo- or radioresistance mechanisms, microenvironment signals, and the neoangiogenic process. During the last years, molecular targeted compounds such as sorafenib and old drugs, like metformin, displayed interesting efficacy in preclinical studies towards several tumors, including GBM, preferentially affecting CSC viability. In this review, the latest experimental results, controversies, and prospective application concerning these promising anticancer drugs will be discussed.

  2. Method for selecting hollow microspheres for use in laser fusion targets

    Science.gov (United States)

    Farnum, Eugene H.; Fries, R. Jay; Havenhill, Jerry W.; Smith, Maurice Lee; Stoltz, Daniel L.

    1976-01-01

    Hollow microspheres having thin and very uniform wall thickness are useful as containers for the deuterium and tritium gas mixture used as a fuel in laser fusion targets. Hollow microspheres are commercially available; however, in commercial lots only a very small number meet the rigid requirements for use in laser fusion targets. Those meeting these requirements may be separated from the unsuitable ones by subjecting the commercial lot to size and density separations and then by subjecting those hollow microspheres thus separated to an external pressurization at which those which are aspherical or which have nonuniform walls are broken and separating the sound hollow microspheres from the broken ones.

  3. HomoTarget: a new algorithm for prediction of microRNA targets in Homo sapiens.

    Science.gov (United States)

    Ahmadi, Hamed; Ahmadi, Ali; Azimzadeh-Jamalkandi, Sadegh; Shoorehdeli, Mahdi Aliyari; Salehzadeh-Yazdi, Ali; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-02-01

    MiRNAs play an essential role in the networks of gene regulation by inhibiting the translation of target mRNAs. Several computational approaches have been proposed for the prediction of miRNA target-genes. Reports reveal a large fraction of under-predicted or falsely predicted target genes. Thus, there is an imperative need to develop a computational method by which the target mRNAs of existing miRNAs can be correctly identified. In this study, combined pattern recognition neural network (PRNN) and principle component analysis (PCA) architecture has been proposed in order to model the complicated relationship between miRNAs and their target mRNAs in humans. The results of several types of intelligent classifiers and our proposed model were compared, showing that our algorithm outperformed them with higher sensitivity and specificity. Using the recent release of the mirBase database to find potential targets of miRNAs, this model incorporated twelve structural, thermodynamic and positional features of miRNA:mRNA binding sites to select target candidates. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Hypoxia targeting copper complexes

    International Nuclear Information System (INIS)

    Dearling, J.L.

    1998-11-01

    The importance and incidence of tumour hypoxia, its measurement and current treatments available, including pharmacological and radiopharmacological methods of targeting hypoxia, are discussed. A variety of in vitro and in vivo methods for imposing hypoxia have been developed and are reviewed. Copper, its chemistry, biochemistry and radiochemistry, the potential for use of copper radionuclides and its use to date in this field is considered with particular reference to the thiosemicarbazones. Their biological activity, metal chelation, in vitro and in vivo studies of their radiocopper complexes and the potential for their use as hypoxia targeting radiopharmaceuticals is described. The reduction of the copper(II) complex to copper(l), its pivotal importance in their biological behaviour, and the potential for manipulation of this to effect hypoxia selectivity are described. An in vitro method for assessing the hypoxia selectivity of radiopharmaceuticals is reported. The rapid deoxygenation and high viability of a mammalian cell culture in this system is discussed and factors which may affect the cellular uptake of a radiopharmaceutical are described. The design, synthesis and complexation with copper and radiocopper of a range of bis(thiosemicarbazones) is reported. Synthesis of these compounds is simple giving high yields of pure products. The characteristics of the radiocopper complexes ( 64 Cu) including lipophilicity and redox activity are reported (reduction potentials in the range -0.314 - -0.590 V). High cellular uptakes of the radiocopper complexes of the ligands, in hypoxic and normoxic EMT6 and CHO320 cells, were observed. Extremes of selectivity are shown ranging from the hypoxia selective 64 Cu(II)ATSM to normoxic cell selective 64 Cu(II)GTS. The selectivities observed are compared with the physico chemical characteristics of the complexes. A good correlation exists between selectivity of the complex and its Cu(II)/Cu(I) reduction potential, with hypoxia

  5. Optimal Target Stars in the Search for Life

    Science.gov (United States)

    Lingam, Manasvi; Loeb, Abraham

    2018-04-01

    The selection of optimal targets in the search for life represents a highly important strategic issue. In this Letter, we evaluate the benefits of searching for life around a potentially habitable planet orbiting a star of arbitrary mass relative to a similar planet around a Sun-like star. If recent physical arguments implying that the habitability of planets orbiting low-mass stars is selectively suppressed are correct, we find that planets around solar-type stars may represent the optimal targets.

  6. Different Neuroplasticity for Task Targets and Distractors

    Science.gov (United States)

    Spingath, Elsie Y.; Kang, Hyun Sug; Plummer, Thane; Blake, David T.

    2011-01-01

    Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from nonselective

  7. Different neuroplasticity for task targets and distractors.

    Directory of Open Access Journals (Sweden)

    Elsie Y Spingath

    2011-01-01

    Full Text Available Adult learning-induced sensory cortex plasticity results in enhanced action potential rates in neurons that have the most relevant information for the task, or those that respond strongly to one sensory stimulus but weakly to its comparison stimulus. Current theories suggest this plasticity is caused when target stimulus evoked activity is enhanced by reward signals from neuromodulatory nuclei. Prior work has found evidence suggestive of nonselective enhancement of neural responses, and suppression of responses to task distractors, but the differences in these effects between detection and discrimination have not been directly tested. Using cortical implants, we defined physiological responses in macaque somatosensory cortex during serial, matched, detection and discrimination tasks. Nonselective increases in neural responsiveness were observed during detection learning. Suppression of responses to task distractors was observed during discrimination learning, and this suppression was specific to cortical locations that sampled responses to the task distractor before learning. Changes in receptive field size were measured as the area of skin that had a significant response to a constant magnitude stimulus, and these areal changes paralleled changes in responsiveness. From before detection learning until after discrimination learning, the enduring changes were selective suppression of cortical locations responsive to task distractors, and nonselective enhancement of responsiveness at cortical locations selective for target and control skin sites. A comparison of observations in prior studies with the observed plasticity effects suggests that the non-selective response enhancement and selective suppression suffice to explain known plasticity phenomena in simple spatial tasks. This work suggests that differential responsiveness to task targets and distractors in primary sensory cortex for a simple spatial detection and discrimination task arise from

  8. Managing anthelmintic resistance-Variability in the dose of drug reaching the target worms influences selection for resistance?

    Science.gov (United States)

    Leathwick, Dave M; Luo, Dongwen

    2017-08-30

    The concentration profile of anthelmintic reaching the target worms in the host can vary between animals even when administered doses are tailored to individual liveweight at the manufacturer's recommended rate. Factors contributing to variation in drug concentration include weather, breed of animal, formulation and the route by which drugs are administered. The implications of this variability for the development of anthelmintic resistance was investigated using Monte-Carlo simulation. A model framework was established where 100 animals each received a single drug treatment. The 'dose' of drug allocated to each animal (i.e. the concentration-time profile of drug reaching the target worms) was sampled at random from a distribution of doses with mean m and standard deviation s. For each animal the dose of drug was used in conjunction with pre-determined dose-response relationships, representing single and poly-genetic inheritance, to calculate efficacy against susceptible and resistant genotypes. These data were then used to calculate the overall change in resistance gene frequency for the worm population as a result of the treatment. Values for m and s were varied to reflect differences in both mean dose and the variability in dose, and for each combination of these 100,000 simulations were run. The resistance gene frequency in the population after treatment increased as m decreased and as s increased. This occurred for both single and poly-gene models and for different levels of dominance (survival under treatment) of the heterozygote genotype(s). The results indicate that factors which result in lower and/or more variable concentrations of active reaching the target worms are more likely to select for resistance. The potential of different routes of anthelmintic administration to play a role in the development of anthelmintic resistance is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Exome sequencing generates high quality data in non-target regions

    Directory of Open Access Journals (Sweden)

    Guo Yan

    2012-05-01

    Full Text Available Abstract Background Exome sequencing using next-generation sequencing technologies is a cost efficient approach to selectively sequencing coding regions of human genome for detection of disease variants. A significant amount of DNA fragments from the capture process fall outside target regions, and sequence data for positions outside target regions have been mostly ignored after alignment. Result We performed whole exome sequencing on 22 subjects using Agilent SureSelect capture reagent and 6 subjects using Illumina TrueSeq capture reagent. We also downloaded sequencing data for 6 subjects from the 1000 Genomes Project Pilot 3 study. Using these data, we examined the quality of SNPs detected outside target regions by computing consistency rate with genotypes obtained from SNP chips or the Hapmap database, transition-transversion (Ti/Tv ratio, and percentage of SNPs inside dbSNP. For all three platforms, we obtained high-quality SNPs outside target regions, and some far from target regions. In our Agilent SureSelect data, we obtained 84,049 high-quality SNPs outside target regions compared to 65,231 SNPs inside target regions (a 129% increase. For our Illumina TrueSeq data, we obtained 222,171 high-quality SNPs outside target regions compared to 95,818 SNPs inside target regions (a 232% increase. For the data from the 1000 Genomes Project, we obtained 7,139 high-quality SNPs outside target regions compared to 1,548 SNPs inside target regions (a 461% increase. Conclusions These results demonstrate that a significant amount of high quality genotypes outside target regions can be obtained from exome sequencing data. These data should not be ignored in genetic epidemiology studies.

  10. Split and Splice Approach for Highly Selective Targeting of Human NSCLC Tumors

    Science.gov (United States)

    2014-10-01

    development and implementation of the “split-and- spice ” approach required optimization of many independent parameters, which were addressed in parallel...verify the feasibility of the “split and splice” approach for targeting human NSCLC tumor cell lines in culture and prepare the optimized toxins for...for cultured cells (months 2- 8). 2B. To test the efficiency of cell targeting by the toxin variants reconstituted in vitro (months 3-6). 2C. To

  11. Oligo-branched peptides for tumor targeting: from magic bullets to magic forks.

    Science.gov (United States)

    Falciani, Chiara; Pini, Alessandro; Bracci, Luisa

    2009-02-01

    Selective targeting of tumor cells is the final goal of research and drug discovery for cancer diagnosis, imaging and therapy. After the invention of hybridoma technology, the concept of magic bullet was introduced into the field of oncology, referring to selective killing of tumor cells, by specific antibodies. More recently, small molecules and peptides have also been proposed as selective targeting agents. We analyze the state of the art of tumor-selective agents that are presently available and tested in clinical settings. A novel approach based on 'armed' oligo-branched peptides as tumor targeting agents, is discussed and compared with existing tumor-selective therapies mediated by antibodies, small molecules or monomeric peptides. Oligo-branched peptides could be novel drugs that combine the advantages of antibodies and small molecules.

  12. Visual working memory modulates low-level saccade target selection: Evidence from rapidly generated saccades in the global effect paradigm

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J.

    2013-01-01

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience. PMID:24190909

  13. Visual working memory modulates low-level saccade target selection: evidence from rapidly generated saccades in the global effect paradigm.

    Science.gov (United States)

    Hollingworth, Andrew; Matsukura, Michi; Luck, Steven J

    2013-11-04

    In three experiments, we examined the influence of visual working memory (VWM) on the metrics of saccade landing position in a global effect paradigm. Participants executed a saccade to the more eccentric object in an object pair appearing on the horizontal midline, to the left or right of central fixation. While completing the saccade task, participants maintained a color in VWM for an unrelated memory task. Either the color of the saccade target matched the memory color (target match), the color of the distractor matched the memory color (distractor match), or the colors of neither object matched the memory color (no match). In the no-match condition, saccades tended to land at the midpoint between the two objects: the global, or averaging, effect. However, when one of the two objects matched VWM, the distribution of landing position shifted toward the matching object, both for target match and for distractor match. VWM modulation of landing position was observed even for the fastest quartile of saccades, with a mean latency as low as 112 ms. Effects of VWM on such rapidly generated saccades, with latencies in the express-saccade range, indicate that VWM interacts with the initial sweep of visual sensory processing, modulating perceptual input to oculomotor systems and thereby biasing oculomotor selection. As a result, differences in memory match produce effects on landing position similar to the effects generated by differences in physical salience.

  14. Antigen-targeting strategies using single-domain antibody fragments

    NARCIS (Netherlands)

    Duarte, Joao Nuno Silva

    2017-01-01

    Antibodies display high selectivity and affinity and have been the preferred platform for antigen targeting. Despite the development of antigen-delivery systems that enable T cell activation, targeting approaches that enhance antibody responses need improvement. This need specially applies to poorly

  15. Selective targeted delivery of the TNF-alpha receptor p75 and uteroglobin to the vasculature of inflamed tissues: a preliminary report

    Directory of Open Access Journals (Sweden)

    Ventura Elisa

    2011-11-01

    Full Text Available Abstract Background Ligand-targeted approaches have proven successful in improving the therapeutic index of a number of drugs. We hypothesized that the specific targeting of TNF-alpha antagonists to inflamed tissues could increase drug efficacy and reduce side effects. Results Using uteroglobin (UG, a potent anti-inflammatory protein, as a scaffold, we prepared a bispecific tetravalent molecule consisting of the extracellular ligand-binding portion of the human TNF-alpha receptor P75 (TNFRII and the scFv L19. L19 binds to the ED-B containing fibronectin isoform (B-FN, which is expressed only during angiogenesis processes and during tissue remodeling. B-FN has also been demonstrated in the pannus in rheumatoid arthritis. L19-UG-TNFRII is a stable, soluble homodimeric protein that maintains the activities of both moieties: the immuno-reactivity of L19 and the capability of TNFRII to inhibit TNF-alpha. In vivo bio-distribution studies demonstrated that the molecule selectively accumulated on B-FN containing tissues, showing a very fast clearance from the blood but a very long residence time on B-FN containing tissues. Despite the very fast clearance from the blood, this fusion protein was able to significantly improve the severe symptomatology of arthritis in collagen antibody-induced arthritis (CAIA mouse model. Conclusions The recombinant protein described here, able to selectively deliver the TNF-alpha antagonist TNFRII to inflamed tissues, could yield important contributions for the therapy of degenerative inflammatory diseases.

  16. Autonomous Target Ranging Techniques

    DEFF Research Database (Denmark)

    Jørgensen, Peter Siegbjørn; Jørgensen, John Leif; Denver, Troelz

    2003-01-01

    of this telescope, a fast determination of the range to and the motion of the detected targets are important. This is needed in order to prepare the future observation strategy for each target, i.e. when is the closest approach where imaging will be optimal. In order to quickly obtain such a determination two...... ranging strategies are presented. One is an improved laser ranger with an effective range with non-cooperative targets of at least 10,000 km, demonstrated in ground tests. The accuracy of the laser ranging will be approximately 1 m. The laser ranger may furthermore be used for trajectory determination...... of nano-gravity probes, which will perform direct mass measurements of selected targets. The other is triangulation from two spacecraft. For this method it is important to distinguish between detection and tracking range, which will be different for Bering since different instruments are used...

  17. Application of target costing in machining

    Science.gov (United States)

    Gopalakrishnan, Bhaskaran; Kokatnur, Ameet; Gupta, Deepak P.

    2004-11-01

    In today's intensely competitive and highly volatile business environment, consistent development of low cost and high quality products meeting the functionality requirements is a key to a company's survival. Companies continuously strive to reduce the costs while still producing quality products to stay ahead in the competition. Many companies have turned to target costing to achieve this objective. Target costing is a structured approach to determine the cost at which a proposed product, meeting the quality and functionality requirements, must be produced in order to generate the desired profits. It subtracts the desired profit margin from the company's selling price to establish the manufacturing cost of the product. Extensive literature review revealed that companies in automotive, electronic and process industries have reaped the benefits of target costing. However target costing approach has not been applied in the machining industry, but other techniques based on Geometric Programming, Goal Programming, and Lagrange Multiplier have been proposed for application in this industry. These models follow a forward approach, by first selecting a set of machining parameters, and then determining the machining cost. Hence in this study we have developed an algorithm to apply the concepts of target costing, which is a backward approach that selects the machining parameters based on the required machining costs, and is therefore more suitable for practical applications in process improvement and cost reduction. A target costing model was developed for turning operation and was successfully validated using practical data.

  18. About miRNAs, miRNA seeds, target genes and target pathways.

    Science.gov (United States)

    Kehl, Tim; Backes, Christina; Kern, Fabian; Fehlmann, Tobias; Ludwig, Nicole; Meese, Eckart; Lenhof, Hans-Peter; Keller, Andreas

    2017-12-05

    miRNAs are typically repressing gene expression by binding to the 3' UTR, leading to degradation of the mRNA. This process is dominated by the eight-base seed region of the miRNA. Further, miRNAs are known not only to target genes but also to target significant parts of pathways. A logical line of thoughts is: miRNAs with similar (seed) sequence target similar sets of genes and thus similar sets of pathways. By calculating similarity scores for all 3.25 million pairs of 2,550 human miRNAs, we found that this pattern frequently holds, while we also observed exceptions. Respective results were obtained for both, predicted target genes as well as experimentally validated targets. We note that miRNAs target gene set similarity follows a bimodal distribution, pointing at a set of 282 miRNAs that seems to target genes with very high specificity. Further, we discuss miRNAs with different (seed) sequences that nonetheless regulate similar gene sets or pathways. Most intriguingly, we found miRNA pairs that regulate different gene sets but similar pathways such as miR-6886-5p and miR-3529-5p. These are jointly targeting different parts of the MAPK signaling cascade. The main goal of this study is to provide a general overview on the results, to highlight a selection of relevant results on miRNAs, miRNA seeds, target genes and target pathways and to raise awareness for artifacts in respective comparisons. The full set of information that allows to infer detailed results on each miRNA has been included in miRPathDB, the miRNA target pathway database (https://mpd.bioinf.uni-sb.de).

  19. Dual targeting of gene delivery by genetic modification of adenovirus serotype 5 fibers and cell-selective transcriptional control.

    Science.gov (United States)

    Work, L M; Ritchie, N; Nicklin, S A; Reynolds, P N; Baker, A H

    2004-08-01

    Adenovirus (Ad)-mediated gene delivery is a promising approach for genetic manipulation of the vasculature and is being used in both preclinical models and clinical trials. However, safety concerns relating to infection of nontarget tissue and the poor infectivity of vascular cells compared to other cell types necessitates Ad vector refinement. Here, we combine a transductional targeting approach to improve vascular cell infectivity through RGD peptide insertion into adenovirus fibers, combined with transcriptional targeting to endothelial cells using a approximately 1 kb fragment of the fms-like tyrosine kinase receptor-1 (FLT-1) promoter. Single- and double-modified vectors were characterized in human cell lines that either support or have silenced FLT-1 expression. In rat hepatocytes and endothelial cells, the double modification substantially shifted transduction profiles toward vascular endothelial cells. Furthermore, in intact aortae derived from spontaneously hypertensive rats that display enhanced alphav integrin expression on dysfunctional endothelium, enhanced levels of transduction were observed using the double-modified vector but not in aortae derived from normotensive control rats. Our data indicate that Ad-mediated transduction can be beneficially modified in vitro and in vivo by combining fiber modification and a cell-selective promoter within a single-component vector system.

  20. Optimization of radiotherapy to target volumes with concave outlines: target-dose homogenization and selective sparing of critical structures by constrained matrix inversion

    Energy Technology Data Exchange (ETDEWEB)

    Colle, C; Van den Berge, D; De Wagter, C; Fortan, L; Van Duyse, B; De Neve, W

    1995-12-01

    The design of 3D-conformal dose distributions for targets with concave outlines is a technical challenge in conformal radiotherapy. For these targets, it is impossible to find beam incidences for which the target volume can be isolated from the tissues at risk. Commonly occurring examples are most thyroid cancers and the targets located at the lower neck and upper mediastinal levels related to some head and neck. A solution to this problem was developed, using beam intensity modulation executed with a multileaf collimator by applying a static beam-segmentation technique. The method includes the definition of beam incidences and beam segments of specific shape as well as the calculation of segment weights. Tests on Sherouse`s GRATISTM planning system allowed to escalate the dose to these targets to 65-70 Gy without exceeding spinal cord tolerance. Further optimization by constrained matrix inversion was investigated to explore the possibility of further dose escalation.

  1. Feature-based RNN target recognition

    Science.gov (United States)

    Bakircioglu, Hakan; Gelenbe, Erol

    1998-09-01

    Detection and recognition of target signatures in sensory data obtained by synthetic aperture radar (SAR), forward- looking infrared, or laser radar, have received considerable attention in the literature. In this paper, we propose a feature based target classification methodology to detect and classify targets in cluttered SAR images, that makes use of selective signature data from sensory data, together with a neural network technique which uses a set of trained networks based on the Random Neural Network (RNN) model (Gelenbe 89, 90, 91, 93) which is trained to act as a matched filter. We propose and investigate radial features of target shapes that are invariant to rotation, translation, and scale, to characterize target and clutter signatures. These features are then used to train a set of learning RNNs which can be used to detect targets within clutter with high accuracy, and to classify the targets or man-made objects from natural clutter. Experimental data from SAR imagery is used to illustrate and validate the proposed method, and to calculate Receiver Operating Characteristics which illustrate the performance of the proposed algorithm.

  2. PSMA-targeted bispecific Fab conjugates that engage T cells.

    Science.gov (United States)

    Patterson, James T; Isaacson, Jason; Kerwin, Lisa; Atassi, Ghazi; Duggal, Rohit; Bresson, Damien; Zhu, Tong; Zhou, Heyue; Fu, Yanwen; Kaufmann, Gunnar F

    2017-12-15

    Bioconjugate formats provide alternative strategies for antigen targeting with bispecific antibodies. Here, PSMA-targeted Fab conjugates were generated using different bispecific formats. Interchain disulfide bridging of an αCD3 Fab enabled installation of either the PSMA-targeting small molecule DUPA (SynFab) or the attachment of an αPSMA Fab (BisFab) by covalent linkage. Optimization of the reducing conditions was critical for selective interchain disulfide reduction and good bioconjugate yield. Activity of αPSMA/CD3 Fab conjugates was tested by in vitro cytotoxicity assays using prostate cancer cell lines. Both bispecific formats demonstrated excellent potency and antigen selectivity. Copyright © 2017. Published by Elsevier Ltd.

  3. [Segment analysis of the target market of physiotherapeutic services].

    Science.gov (United States)

    Babaskin, D V

    2010-01-01

    The objective of the present study was to demonstrate the possibilities to analyse selected segments of the target market of physiotherapeutic services provided by medical and preventive-facilities of two major types. The main features of a target segment, such as provision of therapeutic massage, are illustrated in terms of two characteristics, namely attractiveness to the users and the ability of a given medical facility to satisfy their requirements. Based on the analysis of portfolio of the available target segments the most promising ones (winner segments) were selected for further marketing studies. This choice does not exclude the possibility of involvement of other segments of medical services in marketing activities.

  4. Thioredoxin Selectivity for Thiol-based Redox Regulation of Target Proteins in Chloroplasts*

    Science.gov (United States)

    Yoshida, Keisuke; Hara, Satoshi; Hisabori, Toru

    2015-01-01

    Redox regulation based on the thioredoxin (Trx) system is believed to ensure light-responsive control of various functions in chloroplasts. Five Trx subtypes have been reported to reside in chloroplasts, but their functional diversity in the redox regulation of Trx target proteins remains poorly clarified. To directly address this issue, we studied the Trx-dependent redox shifts of several chloroplast thiol-modulated enzymes in vitro and in vivo. In vitro assays using a series of Arabidopsis recombinant proteins provided new insights into Trx selectivity for the redox regulation as well as the underpinning for previous suggestions. Most notably, by combining the discrimination of thiol status with mass spectrometry and activity measurement, we identified an uncharacterized aspect of the reductive activation of NADP-malate dehydrogenase; two redox-active Cys pairs harbored in this enzyme were reduced via distinct utilization of Trxs even within a single polypeptide. In our in vitro assays, Trx-f was effective in reducing all thiol-modulated enzymes analyzed here. We then investigated the in vivo physiological relevance of these in vitro findings, using Arabidopsis wild-type and Trx-f-deficient plants. Photoreduction of fructose-1,6-bisphosphatase was partially impaired in Trx-f-deficient plants, but the global impact of Trx-f deficiency on the redox behaviors of thiol-modulated enzymes was not as striking as expected from the in vitro data. Our results provide support for the in vivo functionality of the Trx system and also highlight the complexity and plasticity of the chloroplast redox network. PMID:25878252

  5. TargetMiner: microRNA target prediction with systematic identification of tissue-specific negative examples.

    Science.gov (United States)

    Bandyopadhyay, Sanghamitra; Mitra, Ramkrishna

    2009-10-15

    Prediction of microRNA (miRNA) target mRNAs using machine learning approaches is an important area of research. However, most of the methods suffer from either high false positive or false negative rates. One reason for this is the marked deficiency of negative examples or miRNA non-target pairs. Systematic identification of non-target mRNAs is still not addressed properly, and therefore, current machine learning approaches are compelled to rely on artificially generated negative examples for training. In this article, we have identified approximately 300 tissue-specific negative examples using a novel approach that involves expression profiling of both miRNAs and mRNAs, miRNA-mRNA structural interactions and seed-site conservation. The newly generated negative examples are validated with pSILAC dataset, which elucidate the fact that the identified non-targets are indeed non-targets.These high-throughput tissue-specific negative examples and a set of experimentally verified positive examples are then used to build a system called TargetMiner, a support vector machine (SVM)-based classifier. In addition to assessing the prediction accuracy on cross-validation experiments, TargetMiner has been validated with a completely independent experimental test dataset. Our method outperforms 10 existing target prediction algorithms and provides a good balance between sensitivity and specificity that is not reflected in the existing methods. We achieve a significantly higher sensitivity and specificity of 69% and 67.8% based on a pool of 90 feature set and 76.5% and 66.1% using a set of 30 selected feature set on the completely independent test dataset. In order to establish the effectiveness of the systematically generated negative examples, the SVM is trained using a different set of negative data generated using the method in Yousef et al. A significantly higher false positive rate (70.6%) is observed when tested on the independent set, while all other factors are kept the

  6. Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening

    Science.gov (United States)

    Abrahams, Garth L.; Kumar, Anuradha; Savvi, Suzana; Hung, Alvin W.; Wen, Shijun; Abell, Chris; Barry, Clifton E.; Sherman, David R.; Boshoff, Helena I.M.; Mizrahi, Valerie

    2012-01-01

    SUMMARY Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery but subsequent target elucidation often proves difficult. Conditional mutants that under-express essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA) and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered the mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery. PMID:22840772

  7. Effect of Biological Relatedness on Perfume Selection for Others: Preliminary Evidence.

    Science.gov (United States)

    Sobotková, Markéta; Fialová, Jitka; Roberts, S Craig; Havlíček, Jan

    2017-01-01

    People tend to choose perfumes to complement their body odour. As kin share some body odour qualities, their ability to select complementary perfumes for relatives might be higher compared with selection for nonrelatives. We tested this in two studies, comparing selection of a perfume for a target man by himself and by either a familiar but unrelated individual (girlfriend; Study 1) or a relative (sister; Study 2). Target men applied the two perfumes (own or other's choice) to their axillae and then wore cotton pads for 12 hr. Collected perfume-body odour blends and perfumes alone were assessed by rater panels. In Study 1, the blends were rated as nominally more pleasant when body odours were mixed with the perfumes selected by girlfriends compared with those selected by target men themselves. In Study 2, body odours mixed with perfumes selected by sisters were rated significantly more attractive than those mixed with perfumes selected by target men. No significant differences were found for attractiveness and pleasantness ratings when perfumes were rated alone, suggesting that it was the resulting blends that were uniquely different. Our results indicate that sisters might be particularly tuned to select suitable perfumes for their siblings.

  8. Target-ion source unit ionization efficiency measurement by method of stable ion beam implantation

    CERN Document Server

    Panteleev, V.N; Fedorov, D.V; Moroz, F.V; Orlov, S.Yu; Volkov, Yu.M

    The ionization efficiency is one of the most important parameters of an on-line used target-ion source system exploited for production of exotic radioactive beams. The ionization efficiency value determination as a characteristic of a target-ion source unit in the stage of its normalizing before on-line use is a very important step in the course of the preparation for an on-line experiment. At the IRIS facility (Petersburg Nuclear Physics Institute, Gatchina) a reliable and rather precise method of the target-ion source unit ionization efficiency measurement by the method of stable beam implantation has been developed. The method worked out exploits an off-line mass-separator for the implantation of the ion beams of selected stable isotopes of different elements into a tantalum foil placed inside the Faraday cup in the focal plane of the mass-separator. The amount of implanted ions has been measured with a high accuracy by the current integrator connected to the Faraday cup. After the implantation of needed a...

  9. 2-Azido-( sup 32 P)NAD+, a photoactivatable probe for G-protein structure: Evidence for holotransducin oligomers in which the ADP-ribosylated carboxyl terminus of alpha interacts with both alpha and gamma subunits

    Energy Technology Data Exchange (ETDEWEB)

    Vaillancourt, R.R.; Dhanasekaran, N.; Johnson, G.L.; Ruoho, A.E. (Univ. of Wisconsin Medical School, Madison (USA))

    1990-05-01

    A radioactive and photoactivatable derivative of NAD+, 2-azido-(adenylate-32P)NAD+, has been synthesized and used with pertussis toxin to ADP-ribosylate Cys347 of the alpha subunit (alpha T) of GT, the retinal guanine nucleotide-binding protein. ADP-ribosylation of alpha T followed by light activation of the azide moiety of 2-azido-(adenylate-32P)ADP-ribose produced four crosslinked species involving the alpha and gamma subunits of the GT heterotrimer: an alpha trimer (alpha-alpha-alpha), and alpha-alpha-gamma crosslink, an alpha dimer (alpha-alpha), and an alpha-gamma crosslink. The alpha trimer, alpha-alpha-gamma complex, alpha dimer, and alpha-gamma complexes were immunoreactive with alpha T antibodies. The alpha-alpha-gamma and the alpha-gamma complexes were immunoreactive with antisera recognizing gamma subunits. No evidence was found for crosslinking of alpha T to beta T subunits. Hydrolysis of the thioglycosidic bond between Cys347 and 2-azido-(adenylate-32P)ADP-ribose using mercuric acetate resulted in the transfer of radiolabel from Cys347 of alpha T in the crosslinked oligomers to alpha monomers, indicative of intermolecular photocrosslinking, and to gamma monomers, indicative of either intermolecular crosslinked complexes (between heterotrimers) or intramolecular crosslinked complexes (within the heterotrimer). These results demonstrate that GT exists as an oligomer and that ADP-ribosylated Cys347, which is four residues from the alpha T-carboxyl terminus, is oriented toward and in close proximity to the gamma subunit.

  10. Target Capture during Mos1 Transposition*

    Science.gov (United States)

    Pflieger, Aude; Jaillet, Jerôme; Petit, Agnès; Augé-Gouillou, Corinne; Renault, Sylvaine

    2014-01-01

    DNA transposition contributes to genomic plasticity. Target capture is a key step in the transposition process, because it contributes to the selection of new insertion sites. Nothing or little is known about how eukaryotic mariner DNA transposons trigger this step. In the case of Mos1, biochemistry and crystallography have deciphered several inverted terminal repeat-transposase complexes that are intermediates during transposition. However, the target capture complex is still unknown. Here, we show that the preintegration complex (i.e., the excised transposon) is the only complex able to capture a target DNA. Mos1 transposase does not support target commitment, which has been proposed to explain Mos1 random genomic integrations within host genomes. We demonstrate that the TA dinucleotide used as the target is crucial both to target recognition and in the chemistry of the strand transfer reaction. Bent DNA molecules are better targets for the capture when the target DNA is nicked two nucleotides apart from the TA. They improve strand transfer when the target DNA contains a mismatch near the TA dinucleotide. PMID:24269942

  11. Constrained treatment planning using sequential beam selection

    International Nuclear Information System (INIS)

    Woudstra, E.; Storchi, P.R.M.

    2000-01-01

    In this paper an algorithm is described for automated treatment plan generation. The algorithm aims at delivery of the prescribed dose to the target volume without violation of constraints for target, organs at risk and the surrounding normal tissue. Pre-calculated dose distributions for all candidate orientations are used as input. Treatment beams are selected in a sequential way. A score function designed for beam selection is used for the simultaneous selection of beam orientations and weights. In order to determine the optimum choice for the orientation and the corresponding weight of each new beam, the score function is first redefined to account for the dose distribution of the previously selected beams. Addition of more beams to the plan is stopped when the target dose is reached or when no additional dose can be delivered without violating a constraint. In the latter case the score function is modified by importance factor changes to enforce better sparing of the organ with the limiting constraint and the algorithm is run again. (author)

  12. Impact of target area selection in 125 Iodine seed brachytherapy on locoregional recurrence in patients with non-small cell lung cancer.

    Science.gov (United States)

    Yan, Wei-Liang; Lv, Jin-Shuang; Guan, Zhi-Yu; Wang, Li-Yang; Yang, Jing-Kui; Liang, Ji-Xiang

    2017-05-01

    Computed tomography (CT)-guided percutaneous implantation of 125 Iodine radioactive seeds requires the precise arrangement of seeds by tumor shape. We tested whether selecting target areas, including subclinical areas around tumors, can influence locoregional recurrence in patients with non-small cell lung cancer (NSCLC). We divided 82 patients with NSCLC into two groups. Target areas in group 1 (n = 40) were defined along tumor margins based on lung-window CT. Target areas in group 2 (n = 42) were extended by 0.5 cm in all dimensions outside tumor margins. Preoperative plans for both groups were based on a treatment plan system, which guided 125 I seed implantation. Six months later, patients underwent chest CT to evaluate treatment efficacy (per Response Evaluation Criteria in Solid Tumors version 1). We compared locoregional recurrences between the groups after a year of follow-up. We then used the treatment plan system to extend target areas for group 1 patients by 0.5 cm (defined as group 3 data) and compared these hypothetical group 3 planned seeds with the actual seed numbers used in group 1 patients. All patients successfully underwent implantation; none died during the follow-up period. Recurrence was significantly lower in group 2 than in group 1 ( P  area for 125 I seeds can decrease recurrence risk by eradicating cancerous lymph-duct blockades within the extended areas. © 2017 The Authors. Thoracic Cancer published by China Lung Oncology Group and John Wiley & Sons Australia, Ltd.

  13. Improved training for target detection using Fukunaga-Koontz transform and distance classifier correlation filter

    Science.gov (United States)

    Elbakary, M. I.; Alam, M. S.; Aslan, M. S.

    2008-03-01

    In a FLIR image sequence, a target may disappear permanently or may reappear after some frames and crucial information such as direction, position and size related to the target are lost. If the target reappears at a later frame, it may not be tracked again because the 3D orientation, size and location of the target might be changed. To obtain information about the target before disappearing and to detect the target after reappearing, distance classifier correlation filter (DCCF) is trained manualy by selecting a number of chips randomly. This paper introduces a novel idea to eliminates the manual intervention in training phase of DCCF. Instead of selecting the training chips manually and selecting the number of the training chips randomly, we adopted the K-means algorithm to cluster the training frames and based on the number of clusters we select the training chips such that a training chip for each cluster. To detect and track the target after reappearing in the field-ofview ,TBF and DCCF are employed. The contduced experiemnts using real FLIR sequences show results similar to the traditional agorithm but eleminating the manual intervention is the advantage of the proposed algorithm.

  14. Effect of Ca2+ on the promiscuous target-protein binding of calmodulin.

    Directory of Open Access Journals (Sweden)

    Annie M Westerlund

    2018-04-01

    Full Text Available Calmodulin (CaM is a calcium sensing protein that regulates the function of a large number of proteins, thus playing a crucial part in many cell signaling pathways. CaM has the ability to bind more than 300 different target peptides in a Ca2+-dependent manner, mainly through the exposure of hydrophobic residues. How CaM can bind a large number of targets while retaining some selectivity is a fascinating open question. Here, we explore the mechanism of CaM selective promiscuity for selected target proteins. Analyzing enhanced sampling molecular dynamics simulations of Ca2+-bound and Ca2+-free CaM via spectral clustering has allowed us to identify distinct conformational states, characterized by interhelical angles, secondary structure determinants and the solvent exposure of specific residues. We searched for indicators of conformational selection by mapping solvent exposure of residues in these conformational states to contacts in structures of CaM/target peptide complexes. We thereby identified CaM states involved in various binding classes arranged along a depth binding gradient. Binding Ca2+ modifies the accessible hydrophobic surface of the two lobes and allows for deeper binding. Apo CaM indeed shows shallow binding involving predominantly polar and charged residues. Furthermore, binding to the C-terminal lobe of CaM appears selective and involves specific conformational states that can facilitate deep binding to target proteins, while binding to the N-terminal lobe appears to happen through a more flexible mechanism. Thus the long-ranged electrostatic interactions of the charged residues of the N-terminal lobe of CaM may initiate binding, while the short-ranged interactions of hydrophobic residues in the C-terminal lobe of CaM may account for selectivity. This work furthers our understanding of the mechanism of CaM binding and selectivity to different target proteins and paves the way towards a comprehensive model of CaM selectivity.

  15. Carriers with functional null mutations in LAMA3 have localized enamel abnormalities due to haploinsufficiency

    NARCIS (Netherlands)

    Gostynska, Katarzyna B.; Yuen, Wing Yan; Pasmooij, Anna Maria Gerdina; Stellingsma, Cornelius; Pas, Hendri H.; Lemmink, Henny; Jonkman, Marcel F.

    2017-01-01

    The hereditary blistering disease junctional epidermolysis bullosa (JEB) is always accompanied by structural enamel abnormalities of primary and secondary dentition, characterized as amelogenesis imperfecta. Autosomal recessive mutations in LAMA3, LAMB3 and LAMC2 encoding the heterotrimer laminin

  16. Mutation of miRNA target sequences during human evolution

    DEFF Research Database (Denmark)

    Gardner, Paul P; Vinther, Jeppe

    2008-01-01

    It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes...... containing such deletions are more highly expressed than their mouse orthologs. Our findings indicate that some miRNA target mutations are fixed by positive selection and might have been involved in the evolution of human-specific traits....

  17. Probe Selection for DNA Microarrays using OligoWiz

    DEFF Research Database (Denmark)

    Wernersson, Rasmus; Juncker, Agnieszka; Nielsen, Henrik Bjørn

    2007-01-01

    Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client-server appl......Nucleotide abundance measurements using DNA microarray technology are possible only if appropriate probes complementary to the target nucleotides can be identified. Here we present a protocol for selecting DNA probes for microarrays using the OligoWiz application. OligoWiz is a client......-server application that offers a detailed graphical interface and real-time user interaction on the client side, and massive computer power and a large collection of species databases (400, summer 2007) on the server side. Probes are selected according to five weighted scores: cross-hybridization, deltaT(m), folding...... computer skills and can be executed from any Internet-connected computer. The probe selection procedure for a standard microarray design targeting all yeast transcripts can be completed in 1 h....

  18. Targeting cancer cells using 3-bromopyruvate for selective cancer treatment

    Directory of Open Access Journals (Sweden)

    Hussam H Baghdadi

    2017-01-01

    Full Text Available Cancer treatment deserves more research efforts despite intensive conventional treatment modalities for many types of malignancies. Metastasis and resistance to chemotherapy and radiotherapy receive a lot of global research efforts. The current advances in cancer biology may improve targeting the critical metabolic differences that distinguish cancer cells from normal cells. Cancer cells are highly glycolytic for energy production, exhibit the Warburg effect, establish aggressive acidic microenvironment, maintain cancer stem cells, exhibit resistance to chemotherapy, have low antioxidant systems but different ΔΨm (delta psi, mitochondrial transmembrane potential, express P-glycoprotein for multidrug resistance, upregulate glucose transporters and monocarboxylate transporters and are under high steady-state reactive oxygen species conditions. Normal cells differ in all these aspects. Lactate produced through the Warburg effect helps cancer metastasis. Targeting glycolysis reactions for energy production in cancer cells seems promising in decreasing the proliferation and metastasis of cancer cells. 3-bromopyruvate makes use of cancer biology in treating cancer cells, cancer stem cells and preventing metastasis in human cancer as discussed in this review. Updated advances are analyzed here, which include research analysis of background, experience, readings in the field of cancer biology, oncology and biochemistry.

  19. Modelling the impacts of pasture contamination and stocking rate for the development of targeted selective treatment strategies for Ostertagia ostertagi infection in calves

    OpenAIRE

    Berk, Zoe; Laurenson, Yan C.S.M.; Forbes, Andrew B.; Kyriazakis, Ilias

    2017-01-01

    A simulation study was carried out to assess whether variation in pasture contamination or stocking rate impact upon the optimal design of targeted selective treatment (TST) strategies. Two methods of TST implementation were considered: 1) treatment of a fixed percentage of a herd according to a given phenotypic trait, or 2) treatment of individuals that exceeded a threshold value for a given phenotypic trait. Four phenotypic traits, on which to base treatment were considered: 1) average dail...

  20. The Research Progress of Targeted Drug Delivery Systems

    Science.gov (United States)

    Zhan, Jiayin; Ting, Xizi Liang; Zhu, Junjie

    2017-06-01

    Targeted drug delivery system (DDS) means to selectively transport drugs to targeted tissues, organs, and cells through a variety of drugs carrier. It is usually designed to improve the pharmacological and therapeutic properties of conventional drugs and to overcome problems such as limited solubility, drug aggregation, poor bio distribution and lack of selectivity, controlling drug release carrier and to reduce normal tissue damage. With the characteristics of nontoxic and biodegradable, it can increase the retention of drug in lesion site and the permeability, improve the concentration of the drug in lesion site. at present, there are some kinds of DDS using at test phase, such as slow controlled release drug delivery system, targeted drug delivery systems, transdermal drug delivery system, adhesion dosing system and so on. This paper makes a review for DDS.

  1. Selection and characterization of DNA aptamers

    NARCIS (Netherlands)

    Ruigrok, V.J.B.

    2013-01-01

    This thesis focusses on the selection and characterisation of DNA aptamers and the various aspects related to their selection from large pools of randomized oligonucleotides. Aptamers are affinity tools that can specifically recognize and bind predefined target molecules; this ability, however,

  2. Skin-targeted inhibition of PPAR β/δ by selective antagonists to treat PPAR β/δ-mediated psoriasis-like skin disease in vivo.

    Directory of Open Access Journals (Sweden)

    Katrin Hack

    Full Text Available We have previously shown that peroxisome proliferator activating receptor ß/δ (PPAR β/δ is overexpressed in psoriasis. PPAR β/δ is not present in adult epidermis of mice. Targeted expression of PPAR β/δ and activation by a selective synthetic agonist is sufficient to induce an inflammatory skin disease resembling psoriasis. Several signalling pathways dysregulated in psoriasis are replicated in this model, suggesting that PPAR β/δ activation contributes to psoriasis pathogenesis. Thus, inhibition of PPAR β/δ might harbour therapeutical potential. Since PPAR β/δ has pleiotropic functions in metabolism, skin-targeted inhibition offer the potential of reducing systemic adverse effects. Here, we report that three selective PPAR β/δ antagonists, GSK0660, compound 3 h, and GSK3787 can be formulated for topical application to the skin and that their skin concentration can be accurately quantified using ultra-high performance liquid chromatography (UPLC/mass spectrometry. These antagonists show efficacy in our transgenic mouse model in reducing psoriasis-like changes triggered by activation of PPAR β/δ. PPAR β/δ antagonists GSK0660 and compound 3 do not exhibit systemic drug accumulation after prolonged application to the skin, nor do they induce inflammatory or irritant changes. Significantly, the irreversible PPAR β/δ antagonist (GSK3787 retains efficacy when applied topically only three times per week which could be of practical clinical usefulness. Our data suggest that topical inhibition of PPAR β/δ to treat psoriasis may warrant further exploration.

  3. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under "Cocktail-Party" Listening Conditions.

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated "cocktail-party" listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the "cocktail-party" listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process.

  4. A programmable method for massively parallel targeted sequencing

    Science.gov (United States)

    Hopmans, Erik S.; Natsoulis, Georges; Bell, John M.; Grimes, Susan M.; Sieh, Weiva; Ji, Hanlee P.

    2014-01-01

    We have developed a targeted resequencing approach referred to as Oligonucleotide-Selective Sequencing. In this study, we report a series of significant improvements and novel applications of this method whereby the surface of a sequencing flow cell is modified in situ to capture specific genomic regions of interest from a sample and then sequenced. These improvements include a fully automated targeted sequencing platform through the use of a standard Illumina cBot fluidics station. Targeting optimization increased the yield of total on-target sequencing data 2-fold compared to the previous iteration, while simultaneously increasing the percentage of reads that could be mapped to the human genome. The described assays cover up to 1421 genes with a total coverage of 5.5 Megabases (Mb). We demonstrate a 10-fold abundance uniformity of greater than 90% in 1 log distance from the median and a targeting rate of up to 95%. We also sequenced continuous genomic loci up to 1.5 Mb while simultaneously genotyping SNPs and genes. Variants with low minor allele fraction were sensitively detected at levels of 5%. Finally, we determined the exact breakpoint sequence of cancer rearrangements. Overall, this approach has high performance for selective sequencing of genome targets, configuration flexibility and variant calling accuracy. PMID:24782526

  5. Mesoscale Assessment of CO2 Storage Potential and Geological Suitability for Target Area Selection in the Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Yujie Diao

    2017-01-01

    Full Text Available In China, south of the Yangtze River, there are a large number of carbon sources, while the Sichuan Basin is the largest sedimentary basin; it makes sense to select the targets for CO2 geological storage (CGUS early demonstration. For CO2 enhanced oil and gas, coal bed methane recovery (CO2-EOR, EGR, and ECBM, or storage in these depleted fields, the existing oil, gas fields, or coal seams could be the target areas in the mesoscale. This paper proposed a methodology of GIS superimposed multisource information assessment of geological suitability for CO2 enhanced water recovery (CO2-EWR or only storage in deep saline aquifers. The potential per unit area of deep saline aquifers CO2 storage in Central Sichuan is generally greater than 50 × 104 t/km2 at P50 probability level, with Xujiahe group being the main reservoir. CO2 storage potential of depleted gas fields is 53.73 × 108 t, while it is 33.85 × 108 t by using CO2-EGR technology. This paper recommended that early implementation of CGUS could be carried out in the deep saline aquifers and depleted gas fields in the Sichuan Basin, especially that of the latter because of excellent traps, rich geological data, and well-run infrastructures.

  6. Hybrid value foraging: How the value of targets shapes human foraging behavior.

    Science.gov (United States)

    Wolfe, Jeremy M; Cain, Matthew S; Alaoui-Soce, Abla

    2018-04-01

    In hybrid foraging, observers search visual displays for multiple instances of multiple target types. In previous hybrid foraging experiments, although there were multiple types of target, all instances of all targets had the same value. Under such conditions, behavior was well described by the marginal value theorem (MVT). Foragers left the current "patch" for the next patch when the instantaneous rate of collection dropped below their average rate of collection. An observer's specific target selections were shaped by previous target selections. Observers were biased toward picking another instance of the same target. In the present work, observers forage for instances of four target types whose value and prevalence can vary. If value is kept constant and prevalence manipulated, participants consistently show a preference for the most common targets. Patch-leaving behavior follows MVT. When value is manipulated, observers favor more valuable targets, though individual foraging strategies become more diverse, with some observers favoring the most valuable target types very strongly, sometimes moving to the next patch without collecting any of the less valuable targets.

  7. Targeted degradomics in protein terminomics and protease substrate discovery

    DEFF Research Database (Denmark)

    Savickas, Simonas; auf dem Keller, Ulrich

    2017-01-01

    extensive degradomics target lists that now can be tested with help of selected and parallel reaction monitoring (S/PRM) in complex biological systems, where proteases act in physiological environments. In this minireview, we describe the general principles of targeted degradomics, outline the generic...

  8. Attentional selection and suppression in children and adults.

    Science.gov (United States)

    Sun, Meirong; Wang, Encong; Huang, Jing; Zhao, Chenguang; Guo, Jialiang; Li, Dongwei; Sun, Li; Du, Boqi; Ding, Yulong; Song, Yan

    2018-05-15

    The fundamental role of covert spatial attention is to enhance the processing of attended items while simultaneously ignoring irrelevant items. However, relatively little is known about how brain electrophysiological activities associated with target selection and distractor suppression are involved as they develop and become fully functional. The current study aimed to identify the neurophysiological bases of the development of covert spatial attention, focusing on electroencephalographic (EEG) markers of attentional selection (N2pc) and suppression (P D ). EEG data were collected from healthy young adults and typically developing children (9-15 years old) as they searched for a shape singleton target in either the absence or the presence of a salient-but-irrelevant color singleton distractor. The ERP results showed that a lateral shape target elicited a smaller N2pc in children compared with adults regardless of whether a distractor was present or not. Moreover, the target-elicited N2pc was always followed by a similar positivity in both age groups. Counterintuitively, a lateral salient-but-irrelevant distractor elicited a large P D in children with low behavioral accuracy, whereas high-accuracy children exhibited a small and "adult-like" P D . More importantly, we found no evidence for a correlation between the target-elicited N2pc and the distractor-elicited P D in either age group. Our results provide neurophysiological evidence for the developmental differences between target selection and distractor suppression. Compared with adults, 9-15-year-old children deploy insufficient attentional selection resources to targets but use "adult-like" or even more attentional suppression resources to resist irrelevant distractors. A video abstract of this article can be viewed at: https://www.youtube.com/watch?v=NhWapx0d75I. © 2018 John Wiley & Sons Ltd.

  9. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies.

    Science.gov (United States)

    Lefranc, M; Monet, P; Desenclos, C; Peltier, J; Fichten, A; Toussaint, P; Sevestre, H; Deramond, H; Le Gars, D

    2012-01-01

    Stereotactic biopsies are subject to sampling errors (essentially due to target selection). The presence of contrast enhancement is not a reliable marker of malignancy. The goal of the present study was to determine whether perfusion-weighted imaging can improve target selection in stereotactic biopsies. We studied 21 consecutive stereotactic biopsies between June 2009 and March 2010. Perfusion-weighted magnetic resonance imaging (MRI) was integrated into our neuronavigator. Perfusion-weighted imaging was used as an adjunct to conventional MRI data for target determination. Conventional MRI alone was used to determine the trajectory. We found a linear correlation between regional cerebral blood volume (rCBV) and vessel density (number of vessels per mm(2); R = 0.64; p < 0.001). Perfusion-weighted imaging facilitated target determination in 11 cases (52.4%), all of which were histopathologically diagnosed as glial tumors. For glial tumors, which presented with contrast enhancement, perfusion-weighted imaging identified a more precisely delimited target in 9 cases, a different target in 1 case, and exactly the same target in 1 other case. In all cases, perfusion-selected sampling provided information on cellular features and tumor grading. rCBV was significantly associated with grading (p < 0.01), endothelial proliferation (p < 0.01), and vessel density (p < 0.01). For lesions with rCBV values ≤1, perfusion-weighted MRI did not help to determine the target but was useful for surgical management. For stereotactic biopsies, targeting based on perfusion-weighted imaging is a feasible method for reducing the sampling error and improving target selection in the histopathological diagnosis of tumors with high rCBVs. Copyright © 2012 S. Karger AG, Basel.

  10. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  11. Reversible targeting of noncatalytic cysteines with chemically tuned electrophiles

    DEFF Research Database (Denmark)

    Serafimova, Iana M; Pufall, Miles A; Krishnan, Shyam

    2012-01-01

    Targeting noncatalytic cysteine residues with irreversible acrylamide-based inhibitors is a powerful approach for enhancing pharmacological potency and selectivity. Nevertheless, concerns about off-target modification motivate the development of reversible cysteine-targeting strategies. Here we...... of these electrophiles into a noncovalent kinase-recognition scaffold produced slowly dissociating, covalent inhibitors of the p90 ribosomal protein S6 kinase RSK2. A cocrystal structure revealed specific noncovalent interactions that stabilize the complex by positioning the electrophilic carbon near the targeted...

  12. Selection, Identification, and Binding Mechanism Studies of an ssDNA Aptamer Targeted to Different Stages of E. coli O157:H7.

    Science.gov (United States)

    Zou, Ying; Duan, Nuo; Wu, Shijia; Shen, Mofei; Wang, Zhouping

    2018-06-06

    Enterohemorrhagic Escherichia coli O157:H7 ( E. coli O157:H7) is known as an important food-borne pathogen related to public health. In this study, aptamers which could bind to different stages of E. coli O157:H7 (adjustment phase, log phase, and stationary phase) with high affinity and specificity were obtained by the whole cell-SELEX method through 14 selection rounds including three counter-selection rounds. Altogether, 32 sequences were obtained, and nine families were classified to select the optimal aptamer. To analyze affinity and specificity by flow cytometer, an ssDNA aptamer named Apt-5 was picked out as the optimal aptamer that recognizes different stages of E. coli O157:H7 specifically with the K d value of 9.04 ± 2.80 nM. In addition, in order to study the binding mechanism, target bacteria were treated by proteinase K and trypsin, indicating that the specific binding site is not protein on the cell membrane. Furthermore, when we treated E. coli O157:H7 with EDTA, the result showed that the binding site might be lipopolysaccharide (LPS) on the outer membrane of E. coli O157:H7.

  13. TARPIPE: TARget Prototype Irradiations at PSI for EURISOL

    CERN Document Server

    E. Bouquerel1, R. Catherall1, S. Fernandes1, I. Guenther-Leopold2, F. Groeschel2, A. Kalt2, J.

    The selection of target materials for the production of radioactive nuclear beams is made on thebasis of several criteria that include the production cross-sections for isotopes of interest,diffusion, effusion, ageing and heat dissipation. Optimal target materials are often the result ofcompromises between these properties, which must be preserved under damaging operationconditions...

  14. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy.

    Science.gov (United States)

    Shayestehpour, Mohammad; Moghim, Sharareh; Salimi, Vahid; Jalilvand, Somayeh; Yavarian, Jila; Romani, Bizhan; Mokhtari-Azad, Talat

    2017-08-15

    MicroRNA-targeting strategy is a promising approach that enables oncolytic viruses to replicate in tumor cells but not in normal cells. In this study, we targeted adenoviral replication toward breast cancer cells by inserting ten complementary binding sites for miR-145-5p downstream of E1A gene. In addition, we evaluated the effect of increasing miR-145 binding sites on inhibition of virus replication. Ad5-control and adenoviruses carrying five or ten copies of miR145-5p target sites (Ad5-5miR145T, Ad5-10miR145T) were generated and inoculated into MDA-MB-453, BT-20, MCF-7 breast cancer cell lines and human mammary epithelial cells (HMEpC). Titer of Ad5-10miR145T in HMEpC was significantly lower than Ad5-control titer. Difference between the titer of these two viruses at 12, 24, 36, and 48h after infection was 1.25, 2.96, 3.06, and 3.77 log TCID 50 . No significant difference was observed between the titer of both adenoviruses in MDA-MB-453, BT-20 and MCF-7 cells. The infectious titer of adenovirus containing 10 miR-145 binding sites in HMEpC cells at 24, 36, and 48h post-infection was 1.7, 2.08, and 4-fold, respectively, lower than the titer of adenovirus carrying 5 miR-145 targets. Our results suggest that miR-145-targeting strategy provides selectivity for adenovirus replication in breast cancer cells. Increasing the number of miRNA binding sites within the adenoviral genome confers more selectivity for viral replication in cancer cells. Copyright © 2017. Published by Elsevier B.V.

  15. Cell Density Affects the Detection of Chk1 Target Engagement by the Selective Inhibitor V158411.

    Science.gov (United States)

    Geneste, Clara C; Massey, Andrew J

    2018-02-01

    Understanding drug target engagement and the relationship to downstream pharmacology is critical for drug discovery. Here we have evaluated target engagement of Chk1 by the small-molecule inhibitor V158411 using two different target engagement methods (autophosphorylation and cellular thermal shift assay [CETSA]). Target engagement measured by these methods was subsequently related to Chk1 inhibitor-dependent pharmacology. Inhibition of autophosphorylation was a robust method for measuring V158411 Chk1 target engagement. In comparison, while target engagement determined using CETSA appeared robust, the V158411 CETSA target engagement EC 50 values were 43- and 19-fold greater than the autophosphorylation IC 50 values. This difference was attributed to the higher cell density in the CETSA assay configuration. pChk1 (S296) IC 50 values determined using the CETSA assay conditions were 54- and 33-fold greater than those determined under standard conditions and were equivalent to the CETSA EC 50 values. Cellular conditions, especially cell density, influenced the target engagement of V158411 for Chk1. The effects of high cell density on apparent compound target engagement potency should be evaluated when using target engagement assays that necessitate high cell densities (such as the CETSA conditions used in this study). In such cases, the subsequent relation of these data to downstream pharmacological changes should therefore be interpreted with care.

  16. Targets for ion sources for RIB generation at the Holifield Radioactive Ion Beam Facility

    International Nuclear Information System (INIS)

    Alton, G.D.

    1995-01-01

    The Holifield Radioactive Ion Beam Facility (HRIBF), now under construction at the Oak Ridge National Laboratory, is based on the use of the well-known on-line isotope separator (ISOL) technique in which radioactive nuclei are produced by fusion type reactions in selectively chosen target materials by high-energy proton, deuteron, or He ion beams from the Oak Ridge Isochronous Cyclotron (ORIC). Among several major challenges posed by generating and accelerating adequate intensities of radioactive ion beams (RIBs), selection of the most appropriate target material for production of the species of interest is, perhaps, the most difficult. In this report, we briefly review present efforts to select target materials and to design composite target matrix/heat-sink systems that simultaneously incorporate the short diffusion lengths, high permeabilities, and controllable temperatures required to effect maximum diffusion release rates of the short-lived species that can be realized at the temperature limits of specific target materials. We also describe the performance characteristics for a selected number of target ion sources that will be employed for initial use at the HRIBF as well as prototype ion sources that show promise for future use for RIB applications

  17. Regulation of neurite morphogenesis by interaction between R7 regulator of G protein signaling complexes and G protein subunit Gα13.

    Science.gov (United States)

    Scherer, Stephanie L; Cain, Matthew D; Kanai, Stanley M; Kaltenbronn, Kevin M; Blumer, Kendall J

    2017-06-16

    The R7 regulator of G protein signaling family (R7-RGS) critically regulates nervous system development and function. Mice lacking all R7-RGS subtypes exhibit diverse neurological phenotypes, and humans bearing mutations in the retinal R7-RGS isoform RGS9-1 have vision deficits. Although each R7-RGS subtype forms heterotrimeric complexes with Gβ 5 and R7-RGS-binding protein (R7BP) that regulate G protein-coupled receptor signaling by accelerating deactivation of G i/o α-subunits, several neurological phenotypes of R7-RGS knock-out mice are not readily explained by dysregulated G i/o signaling. Accordingly, we used tandem affinity purification and LC-MS/MS to search for novel proteins that interact with R7-RGS heterotrimers in the mouse brain. Among several proteins detected, we focused on Gα 13 because it had not been linked to R7-RGS complexes before. Split-luciferase complementation assays indicated that Gα 13 in its active or inactive state interacts with R7-RGS heterotrimers containing any R7-RGS isoform. LARG (leukemia-associated Rho guanine nucleotide exchange factor (GEF)), PDZ-RhoGEF, and p115RhoGEF augmented interaction between activated Gα 13 and R7-RGS heterotrimers, indicating that these effector RhoGEFs can engage Gα 13 ·R7-RGS complexes. Because Gα 13 /R7-RGS interaction required R7BP, we analyzed phenotypes of neuronal cell lines expressing RGS7 and Gβ 5 with or without R7BP. We found that neurite retraction evoked by Gα 12/13 -dependent lysophosphatidic acid receptors was augmented in R7BP-expressing cells. R7BP expression blunted neurite formation evoked by serum starvation by signaling mechanisms involving Gα 12/13 but not Gα i/o These findings provide the first evidence that R7-RGS heterotrimers interact with Gα 13 to augment signaling pathways that regulate neurite morphogenesis. This mechanism expands the diversity of functions whereby R7-RGS complexes regulate critical aspects of nervous system development and function. © 2017 by

  18. M3 muscarinic receptor interaction with phospholipase C beta3 determines its signaling efficiency

    NARCIS (Netherlands)

    Kan, W.; Adjobo-Hermans, M.J.; Burroughs, M.; Faibis, G.; Malik, S.; Tall, G.G.; Smrcka, A.V.

    2014-01-01

    Phospholipase Cbeta (PLCbeta) enzymes are activated by G protein-coupled receptors through receptor-catalyzed guanine nucleotide exchange on Galphabetagamma heterotrimers containing Gq family G proteins. Here we report evidence for a direct interaction between M3 muscarinic receptor (M3R) and

  19. Aptamer Selection Express: A Novel Method for Rapid Single-Step Selection and Sensing of Aptamers

    National Research Council Canada - National Science Library

    Fan, Maomian; Roper, Shelly; Andrews, Carrie; Allman, Amity; Bruno, John; Kiel, Jonathan

    2008-01-01

    ...). This process has been used to select aptamers against different types of targets (Bacillus anthracis spores, Bacillus thuringiensis spores, MS-2 bacteriophage, ovalbumin, and botulinum neurotoxin...

  20. Genes under positive selection in Escherichia coli

    DEFF Research Database (Denmark)

    Petersen, Lise; Bollback, Jonathan P; Dimmic, Matt

    2007-01-01

    We used a comparative genomics approach to identify genes that are under positive selection in six strains of Escherichia coli and Shigella flexneri, including five strains that are human pathogens. We find that positive selection targets a wide range of different functions in the E. coli genome......, including cell surface proteins such as beta barrel porins, presumably because of the involvement of these genes in evolutionary arms races with other bacteria, phages, and/or the host immune system. Structural mapping of positively selected sites on trans-membrane beta barrel porins reveals...... that the residues under positive selection occur almost exclusively in the extracellular region of the proteins that are enriched with sites known to be targets of phages, colicins, or the host immune system. More surprisingly, we also find a number of other categories of genes that show very strong evidence...

  1. Selective targeting of tumour neovasculature by a radiohalogenated human antibody fragment specific for the ED-B domain of fibronectin

    International Nuclear Information System (INIS)

    Demartis, S.; Tarli, L.; Neri, D.; Borsi, L.; Zardi, L.

    2001-01-01

    Angiogenesis is a characteristic feature of many aggressive tumours and other disorders. Antibodies capable of binding to new blood vessels, but not to mature vessels, could be used as selective targeting agents for immunoscintigraphic and radioimmunotherapeutic applications. Here we show that scFv(L19), a recombinant human antibody fragment with sub-nanomolar affinity for the ED-B domain of fibronectin, a marker of angiogenesis, can be stably labelled with iodine-125 and astatine-211 with full retention of immunoreactivity, using a trimethyl-stannyl benzoate bifunctional derivative. Biodistribution studies in mice bearing two different types of tumour grafted subcutaneously, followed by ex vivo micro-autoradiographic analysis, revealed that scFv(L19) rapidly localises around tumour blood vessels, but not around normal vessels. Four hours after intravenous injection of the stably radioiodinated scFv(L19), tumour to blood ratios were 6:1 in mice bearing the F9 murine teratocarcinoma and 9:1 in mice bearing an FE8 rat sarcoma. As expected, all other organs (including kidney) contained significantly less radioactivity than the tumour. Since the ED-B domain of fibronectin has an identical sequence in mouse and man, scFv(L19) is a pan-species antibody and the results presented here suggest clinical utility of radiolabelled scFv(L19) for the scintigraphic detection of angiogenesis in vivo. Furthermore, it should now be possible to investigate scFv(L19) for the selective delivery of 211 At to the tumour neovasculature, causing the selective death of tumour endothelial cells and tumour collapse. (orig.)

  2. Investigation of targeted pyrrolizidine alkaloids in traditional Chinese medicines and selected herbal teas sourced in Ireland using LC-ESI-MS/MS.

    Science.gov (United States)

    Griffin, Caroline T; Gosetto, Francesca; Danaher, Martin; Sabatini, Stefano; Furey, Ambrose

    2014-01-01

    Publications linking hepatotoxicity to the use of herbal preparations are escalating. Herbal teas, traditional Chinese medicines (TCMs) and dietary supplements have been shown to contain pyrrolizidine alkaloids (PAs). Acute PA toxicosis of the liver can result in sinusoidal-obstruction syndrome, also known as veno-occlusive disease (VOD). This paper describes a sensitive and robust method for the detection of targeted PAs and their N-oxides (PANOs) in herbal products (selected herbal teas and TCMs) sourced within Ireland. The sample preparation includes a simple acidic extraction with clean-up via solid-phase extraction (SPE). Sample extracts were accurately analysed by using LC-ESI-MS/MS applying for the first time a pentafluorophenyl (PFP) core-shell column to the chromatographic separation of PAs and PANOs. The method was validated for selectivity, taking into consideration matrix effects, specificity, linearity, precision and trueness. Limits of detection (LOD) and limits of quantitation (LOQ) were quantified for all PAs and PANOs ranging from 0.4 to 1.9 µg kg⁻¹ and from 1.3 to 6.3 µg kg⁻¹, respectively. In this study 10 PAs and four PANOs were targeted because they are commercially available as reference standards. Therefore, this study can only report the levels of these PAs and PANOs analysed in the herbal teas and TCMs. The results reported represent the minimum levels of PAs and PANOs present in the samples analysed; commercially available herbal teas (n = 18) and TCMs (n = 54). A total of 50% herbal teas and 78% Chinese medicines tested positive for one or more PAs and/or PANOs included within this study, ranging from 10 to 1733 and from 13 to 3668 µg kg⁻¹, respectively.

  3. Selective Attention Enhances Beta-Band Cortical Oscillation to Speech under “Cocktail-Party” Listening Conditions

    Science.gov (United States)

    Gao, Yayue; Wang, Qian; Ding, Yu; Wang, Changming; Li, Haifeng; Wu, Xihong; Qu, Tianshu; Li, Liang

    2017-01-01

    Human listeners are able to selectively attend to target speech in a noisy environment with multiple-people talking. Using recordings of scalp electroencephalogram (EEG), this study investigated how selective attention facilitates the cortical representation of target speech under a simulated “cocktail-party” listening condition with speech-on-speech masking. The result shows that the cortical representation of target-speech signals under the multiple-people talking condition was specifically improved by selective attention relative to the non-selective-attention listening condition, and the beta-band activity was most strongly modulated by selective attention. Moreover, measured with the Granger Causality value, selective attention to the single target speech in the mixed-speech complex enhanced the following four causal connectivities for the beta-band oscillation: the ones (1) from site FT7 to the right motor area, (2) from the left frontal area to the right motor area, (3) from the central frontal area to the right motor area, and (4) from the central frontal area to the right frontal area. However, the selective-attention-induced change in beta-band causal connectivity from the central frontal area to the right motor area, but not other beta-band causal connectivities, was significantly correlated with the selective-attention-induced change in the cortical beta-band representation of target speech. These findings suggest that under the “cocktail-party” listening condition, the beta-band oscillation in EEGs to target speech is specifically facilitated by selective attention to the target speech that is embedded in the mixed-speech complex. The selective attention-induced unmasking of target speech may be associated with the improved beta-band functional connectivity from the central frontal area to the right motor area, suggesting a top-down attentional modulation of the speech-motor process. PMID:28239344

  4. Targeted training of the decision rule benefits rule-guided behavior in Parkinson's disease.

    Science.gov (United States)

    Ell, Shawn W

    2013-12-01

    The impact of Parkinson's disease (PD) on rule-guided behavior has received considerable attention in cognitive neuroscience. The majority of research has used PD as a model of dysfunction in frontostriatal networks, but very few attempts have been made to investigate the possibility of adapting common experimental techniques in an effort to identify the conditions that are most likely to facilitate successful performance. The present study investigated a targeted training paradigm designed to facilitate rule learning and application using rule-based categorization as a model task. Participants received targeted training in which there was no selective-attention demand (i.e., stimuli varied along a single, relevant dimension) or nontargeted training in which there was selective-attention demand (i.e., stimuli varied along a relevant dimension as well as an irrelevant dimension). Following training, all participants were tested on a rule-based task with selective-attention demand. During the test phase, PD patients who received targeted training performed similarly to control participants and outperformed patients who did not receive targeted training. As a preliminary test of the generalizability of the benefit of targeted training, a subset of the PD patients were tested on the Wisconsin card sorting task (WCST). PD patients who received targeted training outperformed PD patients who did not receive targeted training on several WCST performance measures. These data further characterize the contribution of frontostriatal circuitry to rule-guided behavior. Importantly, these data also suggest that PD patient impairment, on selective-attention-demanding tasks of rule-guided behavior, is not inevitable and highlight the potential benefit of targeted training.

  5. Preferential lentiviral targeting of astrocytes in the central nervous system.

    Directory of Open Access Journals (Sweden)

    Michael Fassler

    Full Text Available The ability to visualize and genetically manipulate specific cell populations of the central nervous system (CNS is fundamental to a better understanding of brain functions at the cellular and molecular levels. Tools to selectively target cells of the CNS include molecular genetics, imaging, and use of transgenic animals. However, these approaches are technically challenging, time consuming, and difficult to control. Viral-mediated targeting of cells in the CNS can be highly beneficial for studying and treating neurodegenerative diseases. Yet, despite specific marking of numerous cell types in the CNS, in vivo selective targeting of astrocytes has not been optimized. In this study, preferential targeting of astrocytes in the CNS was demonstrated using engineered lentiviruses that were pseudotyped with a modified Sindbis envelope and displayed anti-GLAST IgG on their surfaces as an attachment moiety. Viral tropism for astrocytes was initially verified in vitro in primary mixed glia cultures. When injected into the brains of mice, lentiviruses that displayed GLAST IgG on their surface, exhibited preferential astrocyte targeting, compared to pseudotyped lentiviruses that did not incorporate any IgG or that expressed a control isotype IgG. Overall, this approach is highly flexible and can be exploited to selectively target astrocytes or other cell types of the CNS. As such, it can open a window to visualize and genetically manipulate astrocytes or other cells of the CNS as means of research and treatment.

  6. Object-based target templates guide attention during visual search.

    Science.gov (United States)

    Berggren, Nick; Eimer, Martin

    2018-05-03

    During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (sustained posterior contralateral negativity; SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target features (incorrect conjunction objects, e.g., blue squares). Because feature-based guidance cannot distinguish these objects from targets, any selective bias for targets will reflect object-based attentional control. In Experiment 1, where search displays always contained only one object with target-matching features, targets and incorrect conjunction objects elicited identical N2pc and SPCN components, demonstrating that attentional guidance was entirely feature-based. In Experiment 2, where targets and incorrect conjunction objects could appear in the same display, clear evidence for object-based attentional control was found. The target N2pc became larger than the N2pc to incorrect conjunction objects from 250 ms poststimulus, and only targets elicited SPCN components. This demonstrates that after an initial feature-based guidance phase, object-based templates are activated when they are required to distinguish target and nontarget objects. These templates modulate visual processing and control access to working memory, and their activation may coincide with the start of feature integration processes. Results also suggest that while multiple feature templates can be activated concurrently, only a single object-based target template can guide attention at any given time. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  7. Selecting aesthetic gynecologic procedures for plastic surgeons: a review of target methodology.

    Science.gov (United States)

    Ostrzenski, Adam

    2013-04-01

    The objective of this article was to assist cosmetic-plastic surgeons in selecting aesthetic cosmetic gynecologic-plastic surgical interventions. Target methodological analyses of pertinent evidence-based scientific papers and anecdotal information linked to surgical techniques for cosmetic-plastic female external genitalia were examined. A search of the existing literature from 1900 through June 2011 was performed by utilizing electronic and manual databases. A total of 87 articles related to cosmetic-plastic gynecologic surgeries were identified in peer-review journals. Anecdotal information was identified in three sources (Barwijuk, Obstet Gynecol J 9(3):2178-2179, 2011; Benson, 5th annual congress on aesthetic vaginal surgery, Tucson, AZ, USA, November 14-15, 2010; Scheinberg, Obstet Gynecol J 9(3):2191, 2011). Among those articles on cosmetic-plastic gynecologic surgical technique that were reviewed, three articles met the criteria for evidence-based medicine level II, one article was level II-1 and two papers were level II-2. The remaining papers were classified as level III. The pertinent 25 papers met the inclusion criteria and were analyzed. There was no documentation on the safety and effectiveness of cosmetic-plastic gynecologic procedures in the scientific literature. All published surgical interventions are not suitable for a cosmetic-plastic practice. The absence of documentation on safety and effectiveness related to cosmetic-plastic gynecologic procedures prevents the establishment of a standard of practice. Traditional gynecologic surgical procedures cannot be labeled and used as cosmetic-plastic procedures, it is a deceptive practice. Obtaining legal trademarks on traditional gynecologic procedures and creating a business model that tries to control clinical-scientific knowledge dissemination is unethical. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings

  8. Tumor-targeted nanomedicines for cancer theranostics

    Science.gov (United States)

    Lammers, Twan; Shi, Yang

    2017-01-01

    Chemotherapeutic drugs have multiple drawbacks, including severe side effects and suboptimal therapeutic efficacy. Nanomedicines assist in improving the biodistribution and the target accumulation of chemotherapeutic drugs, and are therefore able to enhance the balance between efficacy and toxicity. Multiple different types of nanomedicines have been evaluated over the years, including liposomes, polymer-drug conjugates and polymeric micelles, which rely on strategies such as passive targeting, active targeting and triggered release for improved tumor-directed drug delivery. Based on the notion that tumors and metastases are highly heterogeneous, it is important to integrate imaging properties in nanomedicine formulations in order to enable non-invasive and quantitative assessment of targeting efficiency. By allowing for patient pre-selection, such next generation nanotheranostics are useful for facilitating clinical translation and personalizing nanomedicine treatments. PMID:27865762

  9. Revealing kinetics and state-dependent binding properties of IKur-targeting drugs that maximize atrial fibrillation selectivity

    Science.gov (United States)

    Ellinwood, Nicholas; Dobrev, Dobromir; Morotti, Stefano; Grandi, Eleonora

    2017-09-01

    The KV1.5 potassium channel, which underlies the ultra-rapid delayed-rectifier current (IKur) and is predominantly expressed in atria vs. ventricles, has emerged as a promising target to treat atrial fibrillation (AF). However, while numerous KV1.5-selective compounds have been screened, characterized, and tested in various animal models of AF, evidence of antiarrhythmic efficacy in humans is still lacking. Moreover, current guidelines for pre-clinical assessment of candidate drugs heavily rely on steady-state concentration-response curves or IC50 values, which can overlook adverse cardiotoxic effects. We sought to investigate the effects of kinetics and state-dependent binding of IKur-targeting drugs on atrial electrophysiology in silico and reveal the ideal properties of IKur blockers that maximize anti-AF efficacy and minimize pro-arrhythmic risk. To this aim, we developed a new Markov model of IKur that describes KV1.5 gating based on experimental voltage-clamp data in atrial myocytes from patient right-atrial samples in normal sinus rhythm. We extended the IKur formulation to account for state-specificity and kinetics of KV1.5-drug interactions and incorporated it into our human atrial cell model. We simulated 1- and 3-Hz pacing protocols in drug-free conditions and with a [drug] equal to the IC50 value. The effects of binding and unbinding kinetics were determined by examining permutations of the forward (kon) and reverse (koff) binding rates to the closed, open, and inactivated states of the KV1.5 channel. We identified a subset of ideal drugs exhibiting anti-AF electrophysiological parameter changes at fast pacing rates (effective refractory period prolongation), while having little effect on normal sinus rhythm (limited action potential prolongation). Our results highlight that accurately accounting for channel interactions with drugs, including kinetics and state-dependent binding, is critical for developing safer and more effective pharmacological anti

  10. Optimizing drilling performance using a selected drilling fluid

    Science.gov (United States)

    Judzis, Arnis [Salt Lake City, UT; Black, Alan D [Coral Springs, FL; Green, Sidney J [Salt Lake City, UT; Robertson, Homer A [West Jordan, UT; Bland, Ronald G [Houston, TX; Curry, David Alexander [The Woodlands, TX; Ledgerwood, III, Leroy W.

    2011-04-19

    To improve drilling performance, a drilling fluid is selected based on one or more criteria and to have at least one target characteristic. Drilling equipment is used to drill a wellbore, and the selected drilling fluid is provided into the wellbore during drilling with the drilling equipment. The at least one target characteristic of the drilling fluid includes an ability of the drilling fluid to penetrate into formation cuttings during drilling to weaken the formation cuttings.

  11. A lightweight target-tracking scheme using wireless sensor network

    International Nuclear Information System (INIS)

    Kuang, Xing-hong; Shao, Hui-he; Feng, Rui

    2008-01-01

    This paper describes a lightweight target-tracking scheme using wireless sensor network, where randomly distributed sensor nodes take responsibility for tracking the moving target based on the acoustic sensing signal. At every localization interval, a backoff timer algorithm is performed to elect the leader node and determine the transmission order of the localization nodes. An adaptive active region size algorithm based on the node density is proposed to select the optimal nodes taking part in localization. An improved particle filter algorithm performed by the leader node estimates the target state based on the selected nodes' acoustic energy measurements. Some refinements such as optimal linear combination algorithm, residual resampling algorithm, Markov chain Monte Carlo method are introduced in the scheme to improve the tracking performance. Simulation results validate the efficiency of the proposed tracking scheme

  12. Targeted Drug-Carrying Bacteriophages as Antibacterial Nanomedicines▿

    OpenAIRE

    Yacoby, Iftach; Bar, Hagit; Benhar, Itai

    2007-01-01

    While the resistance of bacteria to traditional antibiotics is a major public health concern, the use of extremely potent antibacterial agents is limited by their lack of selectivity. As in cancer therapy, antibacterial targeted therapy could provide an opportunity to reintroduce toxic substances to the antibacterial arsenal. A desirable targeted antibacterial agent should combine binding specificity, a large drug payload per binding event, and a programmed drug release mechanism. Recently, w...

  13. Targeting of follicle stimulating hormone peptide-conjugated dendrimers to ovarian cancer cells

    Science.gov (United States)

    Modi, Dimple A.; Sunoqrot, Suhair; Bugno, Jason; Lantvit, Daniel D.; Hong, Seungpyo; Burdette, Joanna E.

    2014-02-01

    Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side effects. To address these issues, we have designed poly(amidoamine) (PAMAM) dendrimers to selectively target the follicle stimulating hormone receptor (FSHR), which is overexpressed by tumorigenic ovarian cancer cells but not by immature primordial follicles and other non-tumorigenic cells. Fluorescein-labeled generation 5 (G5) PAMAM dendrimers were conjugated with the binding peptide domain of FSH (FSH33) that has a high affinity to FSHR. The targeted dendrimers exhibited high receptor selectivity to FSHR-expressing OVCAR-3 cells, resulting in significant uptake and downregulation of an anti-apoptotic protein survivin, while showing minimal interactions with SKOV-3 cells that do not express FSHR. The selectivity of the FSH33-targeted dendrimers was further validated in 3D organ cultures of normal mouse ovaries. Immunostaining of the conjugates revealed their selective binding and uptake by ovarian surface epithelium (OSE) cells that express FSHR, while sparing the immature primordial follicles. In addition, an in vivo study monitoring tissue accumulation following a single intraperitoneal (i.p.) injection of the conjugates showed significantly higher accumulation of FSH33-targeted dendrimers in the ovary and oviduct compared to the non-targeted conjugates. These proof-of-concept findings highlight the potential of these FSH33-targeted dendrimers to serve as a delivery platform for anti-ovarian cancer drugs, while reducing their systemic side effects by preventing nonspecific uptake by the primordial follicles.Ovarian cancer is the most lethal gynecological malignancy. Current treatment modalities include a combination of surgery and chemotherapy, which often lead to loss of fertility in premenopausal women and a myriad of systemic side

  14. Selective Photothermolysis to target Sebaceous Glands: Theoretical Estimation of Parameters and Preliminary Results Using a Free Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Fernanda Sakamoto, Apostolos Doukas, William Farinelli, Zeina Tannous, Michelle D. Shinn, Stephen Benson, Gwyn P. Williams, H. Dylla, Richard Anderson

    2011-12-01

    The success of permanent laser hair removal suggests that selective photothermolysis (SP) of sebaceous glands, another part of hair follicles, may also have merit. About 30% of sebum consists of fats with copious CH2 bond content. SP was studied in vitro, using free electron laser (FEL) pulses at an infrared CH2 vibrational absorption wavelength band. Absorption spectra of natural and artificially prepared sebum were measured from 200 nm to 3000 nm, to determine wavelengths potentially able to target sebaceous glands. The Jefferson National Accelerator superconducting FEL was used to measure photothermal excitation of aqueous gels, artificial sebum, pig skin, human scalp and forehead skin (sebaceous sites). In vitro skin samples were exposed to FEL pulses from 1620 to 1720 nm, spot diameter 7-9.5 mm with exposure through a cold 4C sapphire window in contact with the skin. Exposed and control tissue samples were stained using H and E, and nitroblue tetrazolium chloride staining (NBTC) was used to detect thermal denaturation. Natural and artificial sebum both had absorption peaks near 1210, 1728, 1760, 2306 and 2346 nm. Laser-induced heating of artificial sebum was approximately twice that of water at 1710 and 1720 nm, and about 1.5x higher in human sebaceous glands than in water. Thermal camera imaging showed transient focal heating near sebaceous hair follicles. Histologically, skin samples exposed to {approx}1700 nm, {approx}100-125 ms pulses showed evidence of selective thermal damage to sebaceous glands. Sebaceous glands were positive for NBTC staining, without evidence of selective loss in samples exposed to the laser. Epidermis was undamaged in all samples. Conclusions: SP of sebaceous glands appears to be feasible. Potentially, optical pulses at {approx}1720 nm or {approx}1210 nm delivered with large beam diameter and appropriate skin cooling in approximately 0.1 s may provide an alternative treatment for acne.

  15. Relations between 18-month-olds' gaze pattern and target action performance: a deferred imitation study with eye tracking.

    Science.gov (United States)

    Óturai, Gabriella; Kolling, Thorsten; Knopf, Monika

    2013-12-01

    Deferred imitation studies are used to assess infants' declarative memory performance. These studies have found that deferred imitation performance improves with age, which is usually attributed to advancing memory capabilities. Imitation studies, however, are also used to assess infants' action understanding. In this second research program it has been observed that infants around the age of one year imitate selectively, i.e., they imitate certain kinds of target actions and omit others. In contrast to this, two-year-olds usually imitate the model's exact actions. 18-month-olds imitate more exactly than one-year-olds, but more selectively than two-year-olds, a fact which makes this age group especially interesting, since the processes underlying selective vs. exact imitation are largely debated. The question, for example, if selective attention to certain kinds of target actions accounts for preferential imitation of these actions in young infants is still open. Additionally, relations between memory capabilities and selective imitation processes, as well as their role in shaping 18-month-olds' neither completely selective, nor completely exact imitation have not been thoroughly investigated yet. The present study, therefore, assessed 18-month-olds' gaze toward two types of actions (functional vs. arbitrary target actions) and the model's face during target action demonstration, as well as infants' deferred imitation performance. Although infants' fixation times to functional target actions were not longer than to arbitrary target actions, they imitated the functional target actions more frequently than the arbitrary ones. This suggests that selective imitation does not rely on selective gaze toward functional target actions during the demonstration phase. In addition, a post hoc analysis of interindividual differences suggested that infants' attention to the model's social-communicative cues might play an important role in exact imitation, meaning the imitation

  16. A simplified laminin nomenclature

    DEFF Research Database (Denmark)

    Aumailley, Monique; Bruckner-Tudermann, Leena; Carter, William G.

    2005-01-01

    A simplification of the laminin nomenclature is presented. Laminins are multidomain heterotrimers composed of alpha, beta and gamma chains. Previously, laminin trimers were numbered with Arabic numerals in the order discovered, that is laminins-1 to -5. We introduce a new identification system fo...

  17. RoboTAP: Target priorities for robotic microlensing observations

    Science.gov (United States)

    Hundertmark, M.; Street, R. A.; Tsapras, Y.; Bachelet, E.; Dominik, M.; Horne, K.; Bozza, V.; Bramich, D. M.; Cassan, A.; D'Ago, G.; Figuera Jaimes, R.; Kains, N.; Ranc, C.; Schmidt, R. W.; Snodgrass, C.; Wambsganss, J.; Steele, I. A.; Mao, S.; Ment, K.; Menzies, J.; Li, Z.; Cross, S.; Maoz, D.; Shvartzvald, Y.

    2018-01-01

    Context. The ability to automatically select scientifically-important transient events from an alert stream of many such events, and to conduct follow-up observations in response, will become increasingly important in astronomy. With wide-angle time domain surveys pushing to fainter limiting magnitudes, the capability to follow-up on transient alerts far exceeds our follow-up telescope resources, and effective target prioritization becomes essential. The RoboNet-II microlensing program is a pathfinder project, which has developed an automated target selection process (RoboTAP) for gravitational microlensing events, which are observed in real time using the Las Cumbres Observatory telescope network. Aims: Follow-up telescopes typically have a much smaller field of view compared to surveys, therefore the most promising microlensing events must be automatically selected at any given time from an annual sample exceeding 2000 events. The main challenge is to select between events with a high planet detection sensitivity, with the aim of detecting many planets and characterizing planetary anomalies. Methods: Our target selection algorithm is a hybrid system based on estimates of the planet detection zones around a microlens. It follows automatic anomaly alerts and respects the expected survey coverage of specific events. Results: We introduce the RoboTAP algorithm, whose purpose is to select and prioritize microlensing events with high sensitivity to planetary companions. In this work, we determine the planet sensitivity of the RoboNet follow-up program and provide a working example of how a broker can be designed for a real-life transient science program conducting follow-up observations in response to alerts; we explore the issues that will confront similar programs being developed for the Large Synoptic Survey Telescope (LSST) and other time domain surveys.

  18. A targeted ferritin-microplasmin based thrombolytic nanocage selectively dissolves blood clots.

    Science.gov (United States)

    Seo, Junyoung; Al-Hilal, Taslim A; Jee, Jun-Goo; Kim, Yong-Lim; Kim, Ha-Jeong; Lee, Byung-Heon; Kim, Soyoun; Kim, In-San

    2018-04-01

    The use of thrombolytic therapies is limited by an increased risk of systemic hemorrhage due to lysis of hemostatic clots. We sought to develop a plasmin-based thrombolytic nanocage that efficiently dissolves the clot without causing systemic fibrinolysis or disrupting hemostatic clots. Here, we generated a double chambered short-length ferritin (sFt) construct that has an N-terminal region fused to multivalent clot targeting peptides (CLT: CNAGESSKNC) and a C-terminal end fused to a microplasmin (μPn); CLT recognizes fibrin-fibronectin complexes in clots, μPn efficiently dissolves clots, and the assembly of double chambered sFt (CLT-sFt-μPn) into nanocage structure protects the activated-μPn from its circulating inhibitors. Importantly, activated CLT-sFt-μPn thrombolytic nanocage showed a prolonged circulatory life over activated-μPn and efficiently lysed the preexisting clots in both arterial and venous thromboses models. Thus, CLT-sFt-μPn thrombolytic nanocage platform represents the prototype of a targeted clot-busting agent with high efficacy and safety over existing thrombolytic therapies. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Selective inhibition of distracting input.

    Science.gov (United States)

    Noonan, MaryAnn P; Crittenden, Ben M; Jensen, Ole; Stokes, Mark G

    2017-10-16

    We review a series of studies exploring distractor suppression. It is often assumed that preparatory distractor suppression is controlled via top-down mechanisms of attention akin to those that prepare brain areas for target enhancement. Here, we consider two alternative mechanisms: secondary inhibition and expectation suppression within a predictive coding framework. We draw on behavioural studies, evidence from neuroimaging and some animal studies. We conclude that there is very limited evidence for selective top-down control of preparatory inhibition. By contrast, we argue that distractor suppression often relies secondary inhibition of non-target items (relatively non-selective inhibition) and on statistical regularities of the environment, learned through direct experience. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  20. A quick reality check for microRNA target prediction.

    Science.gov (United States)

    Kast, Juergen

    2011-04-01

    The regulation of protein abundance by microRNA (miRNA)-mediated repression of mRNA translation is a rapidly growing area of interest in biochemical research. In animal cells, the miRNA seed sequence does not perfectly match that of the mRNA it targets, resulting in a large number of possible miRNA targets and varied extents of repression. Several software tools are available for the prediction of miRNA targets, yet the overlap between them is limited. Jovanovic et al. have developed and applied a targeted, quantitative approach to validate predicted miRNA target proteins. Using a proteome database, they have set up and tested selected reaction monitoring assays for approximately 20% of more than 800 predicted let-7 targets, as well as control genes in Caenorhabditis elegans. Their results demonstrate that such assays can be developed quickly and with relative ease, and applied in a high-throughput setup to verify known and identify novel miRNA targets. They also show, however, that the choice of the biological system and material has a noticeable influence on the frequency, extent and direction of the observed changes. Nonetheless, selected reaction monitoring assays, such as those developed by Jovanovic et al., represent an attractive new tool in the study of miRNA function at the organism level.

  1. MicroRNA target finding by comparative genomics.

    Science.gov (United States)

    Friedman, Robin C; Burge, Christopher B

    2014-01-01

    MicroRNAs (miRNAs) have been implicated in virtually every metazoan biological process, exerting a widespread impact on gene expression. MicroRNA repression is conferred by relatively short "seed match" sequences, although the degree of repression varies widely for individual target sites. The factors controlling whether, and to what extent, a target site is repressed are not fully understood. As an alternative to target prediction based on sequence alone, comparative genomics has emerged as an invaluable tool for identifying miRNA targets that are conserved by natural selection, and hence likely effective and important. Here we present a general method for quantifying conservation of miRNA seed match sites, separating it from background conservation, controlling for various biases, and predicting miRNA targets. This method is useful not only for generating predictions but also as a tool for empirically evaluating the importance of various target prediction criteria.

  2. Computational design of high efficiency release targets for use at ISOL facilities

    CERN Document Server

    Liu, Y

    1999-01-01

    This report describes efforts made at the Oak Ridge National Laboratory to design high-efficiency-release targets that simultaneously incorporate the short diffusion lengths, high permeabilities, controllable temperatures, and heat-removal properties required for the generation of useful radioactive ion beam (RIB) intensities for nuclear physics and astrophysics research using the isotope separation on-line (ISOL) technique. Short diffusion lengths are achieved either by using thin fibrous target materials or by coating thin layers of selected target material onto low-density carbon fibers such as reticulated-vitreous-carbon fiber (RVCF) or carbon-bonded-carbon fiber (CBCF) to form highly permeable composite target matrices. Computational studies that simulate the generation and removal of primary beam deposited heat from target materials have been conducted to optimize the design of target/heat-sink systems for generating RIBs. The results derived from diffusion release-rate simulation studies for selected t...

  3. Targeting the PDGF-B/PDGFR-β Interface with Destruxin A5 to Selectively Block PDGF-BB/PDGFR-ββ Signaling and Attenuate Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Xingqi Wang

    2016-05-01

    Full Text Available PDGF-BB/PDGFR-ββ signaling plays very crucial roles in the process of many diseases such as liver fibrosis. However, drug candidates with selective affinities for PDGF-B/PDGFR-β remain deficient. Here, we identified a natural cyclopeptide termed destruxin A5 that effectively inhibits PDGF-BB-induced PDGFR-β signaling. Interestingly and importantly, the inhibitory mechanism is distinct from the mechanism of tyrosine kinase inhibitors because destruxin A5 does not have the ability to bind to the ATP-binding pocket of PDGFR-β. Using Biacore T200 technology, thermal shift technology, microscale thermophoresis technology and computational analysis, we confirmed that destruxin A5 selectively targets the PDGF-B/PDGFR-β interaction interface to block this signaling. Additionally, the inhibitory effect of destruxin A5 on PDGF-BB/PDGFR-ββ signaling was verified using in vitro, ex vivo and in vivo models, in which the extent of liver fibrosis was effectively alleviated by destruxin A5. In summary, destruxin A5 may represent an efficacious and more selective inhibitor of PDGF-BB/PDGFR-ββ signaling.

  4. Projectile rapidity dependence in target fragmentation

    International Nuclear Information System (INIS)

    Haustein, P.E.; Cumming, J.B.; Hseuh, H.C.

    1979-01-01

    The thick-target, thick-catcher technique was used to determine mean kinetic properties of selected products of the fragmentation of Cu by 1 H, 4 He, and 12 C ions (180 to 28,000 MeV/amu). Momentum transfer, as inferred from F/B ratios, is ovserved to occur most efficiently for the lower velocity projectiles. Recoil properties of target fragments vary strongly with product mass, but show only a weak dependence on projectile type. The projectile's rapidity is shown to be a useful variable for quantitative intercomparison of different reactions. These results indicate that E/sub proj//A/sub proj/ is the dominant parameter which governs the mean recoil behavior of target fragments. 20 references

  5. Targeting Epidermal Growth Factor Receptor-Related Signaling Pathways in Pancreatic Cancer.

    Science.gov (United States)

    Philip, Philip A; Lutz, Manfred P

    2015-10-01

    Pancreatic cancer is aggressive, chemoresistant, and characterized by complex and poorly understood molecular biology. The epidermal growth factor receptor (EGFR) pathway is frequently activated in pancreatic cancer; therefore, it is a rational target for new treatments. However, the EGFR tyrosine kinase inhibitor erlotinib is currently the only targeted therapy to demonstrate a very modest survival benefit when added to gemcitabine in the treatment of patients with advanced pancreatic cancer. There is no molecular biomarker to predict the outcome of erlotinib treatment, although rash may be predictive of improved survival; EGFR expression does not predict the biologic activity of anti-EGFR drugs in pancreatic cancer, and no EGFR mutations are identified as enabling the selection of patients likely to benefit from treatment. Here, we review clinical studies of EGFR-targeted therapies in combination with conventional cytotoxic regimens or multitargeted strategies in advanced pancreatic cancer, as well as research directed at molecules downstream of EGFR as alternatives or adjuncts to receptor targeting. Limitations of preclinical models, patient selection, and trial design, as well as the complex mechanisms underlying resistance to EGFR-targeted agents, are discussed. Future clinical trials must incorporate translational research end points to aid patient selection and circumvent resistance to EGFR inhibitors.

  6. Object-based target templates guide attention during visual search

    OpenAIRE

    Berggren, Nick; Eimer, Martin

    2018-01-01

    During visual search, attention is believed to be controlled in a strictly feature-based fashion, without any guidance by object-based target representations. To challenge this received view, we measured electrophysiological markers of attentional selection (N2pc component) and working memory (SPCN) in search tasks where two possible targets were defined by feature conjunctions (e.g., blue circles and green squares). Critically, some search displays also contained nontargets with two target f...

  7. Selective targeting of brain tumors with gold nanoparticle-induced radiosensitization.

    Directory of Open Access Journals (Sweden)

    Daniel Y Joh

    Full Text Available Successful treatment of brain tumors such as glioblastoma multiforme (GBM is limited in large part by the cumulative dose of Radiation Therapy (RT that can be safely given and the blood-brain barrier (BBB, which limits the delivery of systemic anticancer agents into tumor tissue. Consequently, the overall prognosis remains grim. Herein, we report our pilot studies in cell culture experiments and in an animal model of GBM in which RT is complemented by PEGylated-gold nanoparticles (GNPs. GNPs significantly increased cellular DNA damage inflicted by ionizing radiation in human GBM-derived cell lines and resulted in reduced clonogenic survival (with dose-enhancement ratio of ~1.3. Intriguingly, combined GNP and RT also resulted in markedly increased DNA damage to brain blood vessels. Follow-up in vitro experiments confirmed that the combination of GNP and RT resulted in considerably increased DNA damage in brain-derived endothelial cells. Finally, the combination of GNP and RT increased survival of mice with orthotopic GBM tumors. Prior treatment of mice with brain tumors resulted in increased extravasation and in-tumor deposition of GNP, suggesting that RT-induced BBB disruption can be leveraged to improve the tumor-tissue targeting of GNP and thus further optimize the radiosensitization of brain tumors by GNP. These exciting results together suggest that GNP may be usefully integrated into the RT treatment of brain tumors, with potential benefits resulting from increased tumor cell radiosensitization to preferential targeting of tumor-associated vasculature.

  8. Criteria for Selecting Suitable Infectious Diseases for Phage Therapy.

    Science.gov (United States)

    Harper, David R

    2018-04-05

    One of the main issues with phage therapy from its earliest days has been the selection of appropriate disease targets. In early work, when the nature of bacteriophages was unknown, many inappropriate targets were selected, including some now known to have no bacterial involvement whatsoever. More recently, with greatly increased understanding of the highly specific nature of bacteriophages and of their mechanisms of action, it has been possible to select indications with an increased chance of a successful therapeutic outcome. The factors to be considered include the characteristics of the infection to be treated, the characteristics of the bacteria involved, and the characteristics of the bacteriophages themselves. At a later stage all of this information then informs trial design and regulatory considerations. Where the work is undertaken towards the development of a commercial product it is also necessary to consider the planned market, protection of intellectual property, and the sourcing of funding to support the work. It is clear that bacteriophages are not a "magic bullet". However, with careful and appropriate selection of a limited set of initial targets, it should be possible to obtain proof of concept for the many elements required for the success of phage therapy. In time, success with these initial targets could then support more widespread use.

  9. An approach to the construction of tailor-made amphiphilic peptides that strongly and selectively bind to hairpin RNA targets.

    Science.gov (United States)

    Lee, Su Jin; Hyun, Soonsil; Kieft, Jeffrey S; Yu, Jaehoon

    2009-02-18

    strategies that can be used to prepare peptides that both strongly and selectively target hairpin RNAs. Specifically, the findings indicate that tailor-made amphiphilic peptide ligands against certain hairpin RNAs can be obtained if the RNA target possesses a deep groove in which both the hydrophobic and hydrophilic spheres of the peptide interact.

  10. Targeting solid tumors with non-pathogenic obligate anaerobic bacteria.

    Science.gov (United States)

    Taniguchi, Shun'ichiro; Fujimori, Minoru; Sasaki, Takayuki; Tsutsui, Hiroko; Shimatani, Yuko; Seki, Keiichi; Amano, Jun

    2010-09-01

    Molecular-targeting drugs with fewer severe adverse effects are attracting great attention as the next wave of cancer treatment. There exist, however, populations of cancer cells resistant to these drugs that stem from the instability of tumor cells and/or the existence of cancer stem cells, and thus specific toxicity is required to destroy them. If such selectivity is not available, these targets may be sought out not by the cancer cell types themselves, but rather in their adjacent cancer microenvironments by means of hypoxia, low pH, and so on. The anaerobic conditions present in malignant tumor tissues have previously been regarded as a source of resistance in cancer cells against conventional therapy. However, there now appears to be a way to make use of these limiting factors as a selective target. In this review, we will refer to several trials, including our own, to direct attention to the utilizable anaerobic conditions present in malignant tumor tissues and the use of bacteria as carriers to target them. Specifically, we have been developing a method to attack solid cancers using the non-pathogenic obligate anaerobic bacterium Bifidobacterium longum as a vehicle to selectively recognize and target the anaerobic conditions in solid cancer tissues. We will also discuss the existence of low oxygen pressure in tumor masses in spite of generally enhanced angiogenesis, overview current cancer therapies, especially the history and present situation of bacterial utility to treat solid tumors, and discuss the rationality and future possibilities of this novel mode of cancer treatment. © 2010 Japanese Cancer Association.

  11. Nanostructure sensor of presence and concentration of a target molecule

    Science.gov (United States)

    Schipper, John F. (Inventor)

    2009-01-01

    Method and system (i) to determine when a selected target molecule is present or absent in a fluid, (2) to estimate concentration of the target molecule in the fluid and (3) estimate possible presence of a second (different) target molecule in the fluid, by analyzing differences in resonant frequencies of vibration of a thin beam suspended in the fluid, after the fluid has moved across the beam.

  12. Flux-Enabled Exploration of the Role of Sip1 in galactose yeast metabolism

    DEFF Research Database (Denmark)

    Shymansky, Christopher M.; Wang, George; Baidoo, Edward E. K.

    2017-01-01

    13C metabolic flux analysis (13C MFA) is an important systems biology technique that has been used to investigate microbial metabolism for decades. The heterotrimer Snf1 kinase complex plays a key role in the preference Saccharomyces cerevisiae exhibits for glucose over galactose, a phenomenon kn...

  13. The SPES High Power ISOL production target

    Science.gov (United States)

    Andrighetto, A.; Corradetti, S.; Ballan, M.; Borgna, F.; Manzolaro, M.; Scarpa, D.; Monetti, A.; Rossignoli, M.; Silingardi, R.; Mozzi, A.; Vivian, G.; Boratto, E.; De Ruvo, L.; Sattin, N.; Meneghetti, G.; Oboe, R.; Guerzoni, M.; Margotti, A.; Ferrari, M.; Zenoni, A.; Prete, G.

    2016-11-01

    SPES (Selective Production of Exotic Species) is a facility under construction at INFN-LNL (Istituto Nazionale di Fisica Nucleare - Laboratori Nazionali di Legnaro), aimed to produce intense neutron-rich radioactive ion beams (RIBs). These will be obtained using the ISOL (Isotope Separation On-Line) method, bombarding a uranium carbide target with a proton beam of 40MeV energy and currents up to 200μA. The target configuration was designed to obtain a high number of fissions, up to 1013 per second, low power deposition and fast release of the produced isotopes. The exotic isotopes generated in the target are ionized, mass separated and re-accelerated by the ALPI superconducting LINAC at energies of 10AMeV and higher, for masses in the region of A = 130 amu , with an expected rate on the secondary target up to 109 particles per second. In this work, recent results on the R&D activities regarding the SPES RIB production target-ion source system are reported.

  14. Molecular Signatures of Natural Selection

    DEFF Research Database (Denmark)

    Nielsen, Rasmus

    2005-01-01

    provide important functional information. This review provides a nonmathematical description of the issues involved in detecting selection from DNA sequences and SNP data and is intended for readers who are not familiar with population genetic theory. Particular attention is placed on issues relating......There is an increasing interest in detecting genes, or genomic regions, that have been targeted by natural selection. The interest stems from a basic desire to learn more about evolutionary processes in humans and other organisms, and from the realization that inferences regarding selection may...

  15. Quantitative modeling of selective lysosomal targeting for drug design

    DEFF Research Database (Denmark)

    Trapp, Stefan; Rosania, G.; Horobin, R.W.

    2008-01-01

    log K ow. These findings were validated with experimental results and by a comparison to the properties of antimalarial drugs in clinical use. For ten active compounds, nine were predicted to accumulate to a greater extent in lysosomes than in other organelles, six of these were in the optimum range...... predicted by the model and three were close. Five of the antimalarial drugs were lipophilic weak dibasic compounds. The predicted optimum properties for a selective accumulation of weak bivalent bases in lysosomes are consistent with experimental values and are more accurate than any prior calculation...

  16. NSAIDs: Old Drugs Reveal New Anticancer Targets

    Directory of Open Access Journals (Sweden)

    Gary A. Piazza

    2010-05-01

    Full Text Available There is compelling evidence that nonsteroidal anti-inflammatory drugs (NSAIDs and cyclooxygenase-2 selective inhibitors have antineoplastic activity, but toxicity from cyclooxygenase (COX inhibition and the suppression of physiologically important prostaglandins limits their use for cancer chemoprevention. Previous studies as reviewed here suggest that the mechanism for their anticancer properties does not require COX inhibition, but instead involves an off-target effect. In support of this possibility, recent molecular modeling studies have shown that the NSAID sulindac can be chemically modified to selectively design out its COX-1 and COX-2 inhibitory activity. Unexpectedly, certain derivatives that were synthesized based on in silico modeling displayed increased potency to inhibit tumor cell growth. Other experiments have shown that sulindac can inhibit phosphodiesterase to increase intracellular cyclic GMP levels and that this activity is closely associated with its ability to selectively induce apoptosis of tumor cells. Together, these studies suggest that COX-independent mechanisms can be targeted to develop safer and more efficacious drugs for cancer chemoprevention.

  17. Remote sensing image ship target detection method based on visual attention model

    Science.gov (United States)

    Sun, Yuejiao; Lei, Wuhu; Ren, Xiaodong

    2017-11-01

    The traditional methods of detecting ship targets in remote sensing images mostly use sliding window to search the whole image comprehensively. However, the target usually occupies only a small fraction of the image. This method has high computational complexity for large format visible image data. The bottom-up selective attention mechanism can selectively allocate computing resources according to visual stimuli, thus improving the computational efficiency and reducing the difficulty of analysis. Considering of that, a method of ship target detection in remote sensing images based on visual attention model was proposed in this paper. The experimental results show that the proposed method can reduce the computational complexity while improving the detection accuracy, and improve the detection efficiency of ship targets in remote sensing images.

  18. Tailoring of targets for a tandem accelerator laboratory

    International Nuclear Information System (INIS)

    Sletten, G.

    1976-01-01

    The organization of a target laboratory serving the nuclear physics research at a tandem van de graaff accelerator is described. Emphasis is put on the layout of the laboratory and the mode of operation. The working force is about 40 h per week shared by two technical assistants, and they are supervised by a physicist who on the average spends about 1/3 of his time on target-related problems. Selected topics like heavy ion sputtering of actinides and the preparation of multilayer targets are described in detail. (author)

  19. Broad target cell selectivity of Kaposi's sarcoma-associated herpesvirus glycoprotein-mediated cell fusion and virion entry

    International Nuclear Information System (INIS)

    Kaleeba, Johnan A.R.; Berger, Edward A.

    2006-01-01

    The molecular mechanism of Kaposi's sarcoma-associated herpesvirus (KSHV, human herpesvirus 8) entry is poorly understood. We tested a broad variety of cell types of diverse species and tissue origin for their ability to function as targets in a quantitative reporter gene assay for KSHV-glycoprotein-mediated cell fusion. Several human, non-human primate, and rabbit cell lines were efficient targets, whereas rodent and all human lymphoblastoid cell lines were weak targets. Parallel findings were obtained with a virion entry assay using a recombinant KSHV encoding a reporter gene. No correlation was observed between target cell activity and surface expression of α3β1 integrin, a proposed KSHV receptor. We hypothesize that target cell permissiveness in both the cell fusion and virion entry assays reflects the presence of a putative KSHV fusion-entry receptor

  20. Targeted Therapies for Myeloma and Metastatic Bone Cancers

    Science.gov (United States)

    2010-09-01

    Cancer J Clin 2003; 53:5. Kasugai S, Fujisawa R, Waki Y, Miyamoto K, Ohya K 2000 Selective drug delivery system to bone: small peptide (Asp)6...page. Bone targeted nanoparticles , bone cancer myeloma, mice studies, PLGA , Biodegradable materials. Targeted Therapies for Myeloma and Metastatic Bone...present results from this program at talk at the Particles 2006 –Medical/Biochemical Diagnostic , Pharmaceutical, and Drug Delivery . 3

  1. Targeting ticks for control of selected hemoparasitic diseases of cattle.

    Science.gov (United States)

    Kocan, K M

    1995-03-01

    Development in and transmission of hemoparasites by tick vectors are phenomena closely synchronized with the tick feeding cycle. In all known life cycles, initial infection of tick tissues occurs in midgut epithelial cells and transmission is effected as ticks feed after parasites have developed and multiplied in salivary glands. Many factors reviewed affect development and transmission of hemoparasites by ticks including age of ticks, artificial temperature, climate and/or season, tick stage or sex, hemoparasite variation, concurrent infection of ticks with other pathogens, host cell susceptibility, transovarial transmission, effect of hemoparasites on tick biology, and the effect of infecting parasitemia level in cattle on infection rates in ticks. Four hemoparasites of cattle, Anaplasma marginale, Cowdria ruminantium, Theileria parva, and Babesia spp., are all dependent on ticks for biological transmission. Babesia is transmitted transovarially whereas the other three are transmitted transstadially. Mechanical transfer of infective blood via fomites and mouthparts of biting arthropods is also a major means of transmission for Anaplasma marginale but not of the others. Potential control methods for hemoparasites that target parasites as they are developing in their respective tick hosts include tick control, vaccines (against ticks and parasites), and drugs (against ticks and parasites). Successful application of control strategies will be dependent upon thorough understanding of parasite developmental cycles, biology of the tick vectors and the immune response of cattle to ticks and to hemoparasites. The most effective control measures will be those that are targeted against both ticks and the hemoparasites they vector.

  2. Future technological developments to fulfill AG2020 targets

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne; Borch, Kristian

    2010-01-01

    This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... as the threats for development of the technology in the respective images. Finally policies for promoting and spreading technologies are proposed.......This report constitute an analysis of selected technologies that are anticipated to underpin the images described in Giaoutzi et al (2008) and it proposes policy measures to promote these technologies. It builds on Borch et al (2008) where a more detailed description of technologies can be found....... Based on the technological narratives and imperatives, we select a set of present available technologies that are able to support the society in reaching the targets set up by AG2020. For each of these technologies, we evaluate the strengths and weaknesses of the technology to reach the target as well...

  3. In silico design of targeted SRM-based experiments

    Directory of Open Access Journals (Sweden)

    Nahnsen Sven

    2012-11-01

    Full Text Available Abstract Selected reaction monitoring (SRM-based proteomics approaches enable highly sensitive and reproducible assays for profiling of thousands of peptides in one experiment. The development of such assays involves the determination of retention time, detectability and fragmentation properties of peptides, followed by an optimal selection of transitions. If those properties have to be identified experimentally, the assay development becomes a time-consuming task. We introduce a computational framework for the optimal selection of transitions for a given set of proteins based on their sequence information alone or in conjunction with already existing transition databases. The presented method enables the rapid and fully automated initial development of assays for targeted proteomics. We introduce the relevant methods, report and discuss a step-wise and generic protocol and we also show that we can reach an ad hoc coverage of 80 % of the targeted proteins. The presented algorithmic procedure is implemented in the open-source software package OpenMS/TOPP.

  4. Progress and Challenges in Developing Aptamer-Functionalized Targeted Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Feng Jiang

    2015-10-01

    Full Text Available Aptamers, which can be screened via systematic evolution of ligands by exponential enrichment (SELEX, are superior ligands for molecular recognition due to their high selectivity and affinity. The interest in the use of aptamers as ligands for targeted drug delivery has been increasing due to their unique advantages. Based on their different compositions and preparation methods, aptamer-functionalized targeted drug delivery systems can be divided into two main categories: aptamer-small molecule conjugated systems and aptamer-nanomaterial conjugated systems. In this review, we not only summarize recent progress in aptamer selection and the application of aptamers in these targeted drug delivery systems but also discuss the advantages, challenges and new perspectives associated with these delivery systems.

  5. Selection of Optimal Adjuvant Chemotherapy and Targeted Therapy for Early Breast Cancer: ASCO Clinical Practice Guideline Focused Update.

    Science.gov (United States)

    Denduluri, Neelima; Chavez-MacGregor, Mariana; Telli, Melinda L; Eisen, Andrea; Graff, Stephanie L; Hassett, Michael J; Holloway, Jamie N; Hurria, Arti; King, Tari A; Lyman, Gary H; Partridge, Ann H; Somerfield, Mark R; Trudeau, Maureen E; Wolff, Antonio C; Giordano, Sharon H

    2018-05-22

    Purpose To update key recommendations of the ASCO guideline adaptation of the Cancer Care Ontario guideline on the selection of optimal adjuvant chemotherapy regimens for early breast cancer and adjuvant targeted therapy for breast cancer. Methods An Expert Panel conducted targeted systematic literature reviews guided by a signals approach to identify new, potentially practice-changing data that might translate to revised practice recommendations. Results The Expert Panel reviewed phase III trials that evaluated adjuvant capecitabine after completion of standard preoperative anthracycline- and taxane-based combination chemotherapy by patients with early-stage breast cancer HER2-negative breast cancer with residual invasive disease at surgery; the addition of 1 year of adjuvant pertuzumab to combination chemotherapy and trastuzumab for patients with early-stage, HER2-positive breast cancer; and the use of neratinib as extended adjuvant therapy for patients after combination chemotherapy and trastuzumab-based adjuvant therapy with early-stage, HER2-positive breast cancer. Recommendations Patients with early-stage HER2-negative breast cancer with pathologic, invasive residual disease at surgery following standard anthracycline- and taxane-based preoperative therapy may be offered up to six to eight cycles of adjuvant capecitabine. Clinicians may add 1 year of adjuvant pertuzumab to trastuzumab-based combination chemotherapy in patients with high-risk, early-stage, HER2-positive breast cancer. Clinicians may use extended adjuvant therapy with neratinib to follow trastuzumab in patients with early-stage, HER2-positive breast cancer. Neratinib causes substantial diarrhea, and diarrhea prophylaxis must be used. Additional information can be found at www.asco.org/breast-cancer-guidelines .

  6. Anticancer efficacy of the metabolic blocker 3-bromopyruvate: specific molecular targeting.

    Science.gov (United States)

    Ganapathy-Kanniappan, Shanmugasundaram; Kunjithapatham, Rani; Geschwind, Jean-Francois

    2013-01-01

    The anticancer efficacy of the pyruvate analog 3-bromopyruvate has been demonstrated in multiple tumor models. The chief principle underlying the antitumor effects of 3-bromopyruvate is its ability to effectively target the energy metabolism of cancer cells. Biochemically, the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been identified as the primary target of 3-bromopyruvate. Its inhibition results in the depletion of intracellular ATP, causing cell death. Several reports have also demonstrated that in addition to GAPDH inhibition, the induction of cellular stress also contributes to 3-bromopyruvate treatment-dependent apoptosis. Furthermore, recent evidence shows that 3-bromopyruvate is taken up selectively by tumor cells via the monocarboxylate transporters (MCTs) that are frequently overexpressed in cancer cells (for the export of lactate produced during aerobic glycolysis). The preferential uptake of 3-bromopyruvate via MCTs facilitates selective targeting of tumor cells while leaving healthy and non-malignant tissue untouched. Taken together, the specificity of molecular (GAPDH) targeting and selective uptake by tumor cells, underscore the potential of 3-bromopyruvate as a potent and promising anticancer agent. In this review, we highlight the mechanistic characteristics of 3-bromopyruvate and discuss its potential for translation into the clinic.

  7. Targeted proteomics as a tool for porcine acute phase proteins measurements

    DEFF Research Database (Denmark)

    Marco-Ramell, Anna; Bassols, Anna; Bislev, Stine Lønnerup

    2013-01-01

    . Selected reaction monitoring (SRM), a targeted quantitative proteomic technique, may be used as an alternative to commercial kits for the measurement and validation of target proteins. Acute phase proteins (APPs) are widely recognized inflammation and infection biomarkers (Eckersall, 2010...

  8. Source selection for analogical reasoning an empirical approach

    Energy Technology Data Exchange (ETDEWEB)

    Stubblefield, W.A. [Sandia National Labs., Albuquerque, NM (United States); Luger, G.F. [Univ. of New Mexico, Albuquerque, NM (United States)

    1996-12-31

    The effectiveness of an analogical reasoner depends upon its ability to select a relevant analogical source. In many problem domains, however, too little is known about target problems to support effective source selection. This paper describes the design and evaluation of SCAVENGER, an analogical reasoner that applies two techniques to this problem: (1) An assumption-based approach to matching that allows properties of candidate sources to match unknown target properties in the absence of evidence to the contrary. (2) The use of empirical learning to improve memory organization based on problem solving experience.

  9. Targeted endothelial nanomedicine for common acute pathological conditions.

    Science.gov (United States)

    Shuvaev, Vladimir V; Brenner, Jacob S; Muzykantov, Vladimir R

    2015-12-10

    Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is the key regulatory interface between blood and tissues. Endothelial abnormalities are implicated in many diseases, including common acute conditions with high morbidity and mortality lacking therapy, in part because drugs and drug carriers have no natural endothelial affinity. Precise endothelial drug delivery may improve management of these conditions. Using ligands of molecules exposed to the bloodstream on the endothelial surface enables design of diverse targeted endothelial nanomedicine agents. Target molecules and binding epitopes must be accessible to drug carriers, carriers must be free of harmful effects, and targeting should provide desirable sub-cellular addressing of the drug cargo. The roster of current candidate target molecules for endothelial nanomedicine includes peptidases and other enzymes, cell adhesion molecules and integrins, localized in different domains of the endothelial plasmalemma and differentially distributed throughout the vasculature. Endowing carriers with an affinity to specific endothelial epitopes enables an unprecedented level of precision of control of drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and duration of therapeutic effects. Features of nanocarrier design such as choice of epitope and ligand control delivery and effect of targeted endothelial nanomedicine agents. Pathological factors modulate endothelial targeting and uptake of nanocarriers. Selection of optimal binding sites and design features of nanocarriers are key controllable factors that can be iteratively engineered based on their performance from in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable by non-targeted counterparts in animal models of common acute severe human disease conditions. The results of animal

  10. Targeting MED1 LxxLL Motifs for Tissue-Selective Treatment of Human Breast Cancer

    Science.gov (United States)

    2014-09-01

    microRNA, antisense oligonucleotides, and RNA aptamers, has long been extensively studied (Guo 2010; Keefe et al. 2010; Levy-Nissenbaum et al. 2008; Que...targeted drug delivery when compared with DNA aptamers, protein aptamers, and antibodies (Guo 2010; Keefe et al. 2010; Que-Gewirth and Sullenger...or even organisms (Dua et al. 2011; Keefe et al. 2010; Levy-Nissenbaum et al. 2008; Thiel and Giangrande 2010). Those that do not bind to the target

  11. Active colloids as mobile microelectrodes for unified label-free selective cargo transport.

    Science.gov (United States)

    Boymelgreen, Alicia M; Balli, Tov; Miloh, Touvia; Yossifon, Gilad

    2018-02-22

    Utilization of active colloids to transport both biological and inorganic cargo has been widely examined in the context of applications ranging from targeted drug delivery to sample analysis. In general, carriers are customized to load one specific target via a mechanism distinct from that driving the transport. Here we unify these tasks and extend loading capabilities to include on-demand selection of multiple nano/micro-sized targets without the need for pre-labelling or surface functionalization. An externally applied electric field is singularly used to drive the active cargo carrier and transform it into a mobile floating electrode that can attract (trap) or repel specific targets from its surface by dielectrophoresis, enabling dynamic control of target selection, loading and rate of transport via the electric field parameters. In the future, dynamic selectivity could be combined with directed motion to develop building blocks for bottom-up fabrication in applications such as additive manufacturing and soft robotics.

  12. Selective high-affinity polydentate ligands and methods of making such

    Energy Technology Data Exchange (ETDEWEB)

    Denardo, Sally J.; Denardo, Gerald L.; Balhorn, Rodney L.

    2018-02-06

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  13. The structure of the protein phosphatase 2A PR65/A subunit reveals the conformation of its 15 tandemly repeated HEAT motifs

    NARCIS (Netherlands)

    Groves, M R; Hanlon, N; Turowski, P; Hemmings, B A; Barford, D

    1999-01-01

    The PR65/A subunit of protein phosphatase 2A serves as a scaffolding molecule to coordinate the assembly of the catalytic subunit and a variable regulatory B subunit, generating functionally diverse heterotrimers. Mutations of the beta isoform of PR65 are associated with lung and colon tumors. The

  14. Benzimidazole derivative small-molecule 991 enhances AMPK activity and glucose uptake induced by AICAR or contraction in skeletal muscle

    DEFF Research Database (Denmark)

    Bultot, Laurent; Jensen, Thomas Elbenhardt; Lai, Yu-Chiang

    2016-01-01

    AMP-activated protein kinase (AMPK) plays diverse roles and coordinates complex metabolic pathways for maintenance of energy homeostasis. This could be explained by the fact that AMPK exists as multiple heterotrimer complexes comprising a catalytic α-subunit (α1 and α2) and regulatory β (β1 and β...

  15. Criteria for Selecting Suitable Infectious Diseases for Phage Therapy

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2018-04-01

    Full Text Available One of the main issues with phage therapy from its earliest days has been the selection of appropriate disease targets. In early work, when the nature of bacteriophages was unknown, many inappropriate targets were selected, including some now known to have no bacterial involvement whatsoever. More recently, with greatly increased understanding of the highly specific nature of bacteriophages and of their mechanisms of action, it has been possible to select indications with an increased chance of a successful therapeutic outcome. The factors to be considered include the characteristics of the infection to be treated, the characteristics of the bacteria involved, and the characteristics of the bacteriophages themselves. At a later stage all of this information then informs trial design and regulatory considerations. Where the work is undertaken towards the development of a commercial product it is also necessary to consider the planned market, protection of intellectual property, and the sourcing of funding to support the work. It is clear that bacteriophages are not a “magic bullet”. However, with careful and appropriate selection of a limited set of initial targets, it should be possible to obtain proof of concept for the many elements required for the success of phage therapy. In time, success with these initial targets could then support more widespread use.

  16. ERP markers of target selection discriminate children with high vs. low working memory capacity

    Directory of Open Access Journals (Sweden)

    Andria eShimi

    2015-11-01

    Full Text Available Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults’ selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children’s selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults’ selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc. However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the adult time-window related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children’s neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM

  17. ERP markers of target selection discriminate children with high vs. low working memory capacity.

    Science.gov (United States)

    Shimi, Andria; Nobre, Anna Christina; Scerif, Gaia

    2015-01-01

    Selective attention enables enhancing a subset out of multiple competing items to maximize the capacity of our limited visual working memory (VWM) system. Multiple behavioral and electrophysiological studies have revealed the cognitive and neural mechanisms supporting adults' selective attention of visual percepts for encoding in VWM. However, research on children is more limited. What are the neural mechanisms involved in children's selection of incoming percepts in service of VWM? Do these differ from the ones subserving adults' selection? Ten-year-olds and adults used a spatial arrow cue to select a colored item for later recognition from an array of four colored items. The temporal dynamics of selection were investigated through EEG signals locked to the onset of the memory array. Both children and adults elicited significantly more negative activity over posterior scalp locations contralateral to the item to-be-selected for encoding (N2pc). However, this activity was elicited later and for longer in children compared to adults. Furthermore, although children as a group did not elicit a significant N2pc during the time-window in which N2pc was elicited in adults, the magnitude of N2pc during the "adult time-window" related to their behavioral performance during the later recognition phase of the task. This in turn highlights how children's neural activity subserving attention during encoding relates to better subsequent VWM performance. Significant differences were observed when children were divided into groups of high vs. low VWM capacity as a function of cueing benefit. Children with large cue benefits in VWM capacity elicited an adult-like contralateral negativity following attentional selection of the to-be-encoded item, whereas children with low VWM capacity did not. These results corroborate the close coupling between selective attention and VWM from childhood and elucidate further the attentional mechanisms constraining VWM performance in children.

  18. Urea transporter proteins as targets for small-molecule diuretics.

    Science.gov (United States)

    Esteva-Font, Cristina; Anderson, Marc O; Verkman, Alan S

    2015-02-01

    Conventional diuretics such as furosemide and thiazides target salt transporters in kidney tubules, but urea transporters (UTs) have emerged as alternative targets. UTs are a family of transmembrane channels expressed in a variety of mammalian tissues, in particular the kidney. UT knockout mice and humans with UT mutations exhibit reduced maximal urinary osmolality, demonstrating that UTs are necessary for the concentration of urine. Small-molecule screening has identified potent and selective inhibitors of UT-A, the UT protein expressed in renal tubule epithelial cells, and UT-B, the UT protein expressed in vasa recta endothelial cells. Data from UT knockout mice and from rodents administered UT inhibitors support the diuretic action of UT inhibition. The kidney-specific expression of UT-A1, together with high selectivity of the small-molecule inhibitors, means that off-target effects of such small-molecule drugs should be minimal. This Review summarizes the structure, expression and function of UTs, and looks at the evidence supporting the validity of UTs as targets for the development of salt-sparing diuretics with a unique mechanism of action. UT-targeted inhibitors may be useful alone or in combination with conventional diuretics for therapy of various oedemas and hyponatraemias, potentially including those refractory to treatment with current diuretics.

  19. A target recognition method for maritime surveillance radars based on hybrid ensemble selection

    Science.gov (United States)

    Fan, Xueman; Hu, Shengliang; He, Jingbo

    2017-11-01

    In order to improve the generalisation ability of the maritime surveillance radar, a novel ensemble selection technique, termed Optimisation and Dynamic Selection (ODS), is proposed. During the optimisation phase, the non-dominated sorting genetic algorithm II for multi-objective optimisation is used to find the Pareto front, i.e. a set of ensembles of classifiers representing different tradeoffs between the classification error and diversity. During the dynamic selection phase, the meta-learning method is used to predict whether a candidate ensemble is competent enough to classify a query instance based on three different aspects, namely, feature space, decision space and the extent of consensus. The classification performance and time complexity of ODS are compared against nine other ensemble methods using a self-built full polarimetric high resolution range profile data-set. The experimental results clearly show the effectiveness of ODS. In addition, the influence of the selection of diversity measures is studied concurrently.

  20. Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures

    Science.gov (United States)

    Thomas, William D.; Golomb, Miriam; Smith, George P.

    2010-01-01

    Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225

  1. Algal bioremediation of waste waters from land-based aquaculture using ulva: selecting target species and strains.

    Directory of Open Access Journals (Sweden)

    Rebecca J Lawton

    Full Text Available The optimised reduction of dissolved nutrient loads in aquaculture effluents through bioremediation requires selection of appropriate algal species and strains. The objective of the current study was to identify target species and strains from the macroalgal genus Ulva for bioremediation of land-based aquaculture facilities in Eastern Australia. We surveyed land-based aquaculture facilities and natural coastal environments across three geographic locations in Eastern Australia to determine which species of Ulva occur naturally in this region and conducted growth trials at three temperature treatments on a subset of samples from each location to determine whether local strains had superior performance under local environmental conditions. DNA barcoding using the markers ITS and tufA identified six species of Ulva, with U. ohnoi being the most common blade species and U. sp. 3 the most common filamentous species. Both species occurred at multiple land-based aquaculture facilities in Townsville and Brisbane and multiple strains of each species grew well in culture. Specific growth rates of U. ohnoi and U. sp. 3 were high (over 9% and 15% day(-1 respectively across temperature treatments. Within species, strains of U. ohnoi had higher growth in temperatures corresponding to local conditions, suggesting that strains may be locally adapted. However, across all temperature treatments Townsville strains had the highest growth rates (11.2-20.4% day(-1 and Sydney strains had the lowest growth rates (2.5-8.3% day(-1. We also found significant differences in growth between strains of U. ohnoi collected from the same geographic location, highlighting the potential to isolate and cultivate fast growing strains. In contrast, there was no clearly identifiable competitive strain of filamentous Ulva, with multiple species and strains having variable performance. The fast growth rates and broad geographical distribution of U. ohnoi make this an ideal species to

  2. Pharmacological targeting of valosin containing protein (VCP) induces DNA damage and selectively kills canine lymphoma cells

    International Nuclear Information System (INIS)

    Nadeau, Marie-Ève; Rico, Charlène; Tsoi, Mayra; Vivancos, Mélanie; Filimon, Sabin; Paquet, Marilène; Boerboom, Derek

    2015-01-01

    lymphoma. The selective activity of EER-1 against lymphoma cells suggests that VCP will represent a clinically useful therapeutic target for the treatment of lymphoma. We further suggest a mechanism of EER-1 action centered on the DNA repair response that may be of central importance for the design and characterization of VCP inhibitory compounds for therapeutic use. The online version of this article (doi:10.1186/s12885-015-1489-1) contains supplementary material, which is available to authorized users

  3. Nanobody-photosensitizer conjugates for targeted photodynamic therapy

    NARCIS (Netherlands)

    Heukers, Raimond; van Bergen en Henegouwen, P; Oliveira, Sabrina

    2014-01-01

    Photodynamic therapy (PDT) induces cell death through light activation of a photosensitizer (PS). Targeted delivery of PS via monoclonal antibodies has improved tumor selectivity. However, these conjugates have long half-lives, leading to relatively long photosensitivity in patients. In an attempt

  4. [Selective attention and schizophrenia before the administration of neuroleptics].

    Science.gov (United States)

    Lussier, I; Stip, E

    1999-01-01

    In recent years, the presence of attention deficits has been recognized as a key feature of schizophrenia. Past studies reveal that selective attention, or the ability to select relevant information while ignoring simultaneously irrelevant information, is disturbed in schizophrenic patients. According to Treisman feature-integration theory of selective attention, visual search for conjunctive targets (e.g., shape and color) requires controlled processes, that necessitate attention and operate in a serial manner. Reaction times (RTs) are therefore function of the number of stimuli in the display. When subjects are asked to detect the presence or absence of a target in an array of a variable number of stimuli, different performance patterns are expected for positive (present target) and negative trials (absent target). For positive trials, a self-terminating search is triggered, that is, the search is ended when the target is encountered. For negative trials, an exhaustive search strategy is displayed, where each stimulus is examined before the search can end; the RT slope pattern is thus double that of the positive trials. To assess the integrity of these processes, thirteen drug naive schizophrenic patients were compared to twenty normal control subjects. Neuroleptic naive patients were chosen as subjects to avoid the potential influence of medication and chronicity-related factors on performance. The subjects had to specify as fast as possible the presence or absence of the target in an array of a variable number of stimuli presented in a circular display, and comprising or not the target. Results showed that the patients can use self-terminating search strategies as well as normal control subjects. However, their ability to trigger exhaustive search strategies is impaired. Not only were patients slower than controls, but their pattern of RT results was different. These results argue in favor of an early impairment in selective attention capacities in

  5. Restoration for the future: Setting endpoints and targets and selecting indicators of progress and success

    Science.gov (United States)

    Daniel C. Dey; Callie Jo Schweitzer; John M. Kabrick

    2014-01-01

    Setting endpoints and targets in forest restoration is a complicated task that is best accomplished in cooperative partnerships that account for the ecology of the system, production of desired ecosystem goods and services, economics and well-being of society, and future environments. Clearly written and quantitative endpoints and intermediary targets need to be...

  6. Offensive Counterterrorism Targeted killing in eliminating terrorist target: the case of the USA and Israel

    Directory of Open Access Journals (Sweden)

    Hermínio Matos

    2012-01-01

    Full Text Available Due to the "global terrorism project", some States have adopted offensive counterterrorism measures which, though within national strategies on security and defense, contemplate the use of military power and the use of lethal force against non-state actors - individuals, groups or terrorist organizations - beyond their national borders. Reformulating the security paradigm has led, in these cases, to policies against terrorism. This is the case of targeted killing - the killing of selected targets - by the USA and Israel. Targeted killing actions - using essentially but not only drones - in Pakistan and Yemen by the American administration, a well as the Israeli response to Palestinian terrorism, are under heated debate in terms of their efficiency and legality. Thus, this paper aims to not only provide an analytical framework on this theme but also analyze the scope and impact of these counter terrorist strategies by the two countries.

  7. Self-Assembled Smart Nanocarriers for Targeted Drug Delivery.

    Science.gov (United States)

    Cui, Wei; Li, Junbai; Decher, Gero

    2016-02-10

    Nanostructured drug-carrier systems promise numerous benefits for drug delivery. They can be engineered to precisely control drug-release rates or to target specific sites within the body with a specific amount of therapeutic agent. However, to achieve the best therapeutic effects, the systems should be designed for carrying the optimum amount of a drug to the desired target where it should be released at the optimum rate for a specified time. Despite numerous attempts, fulfilling all of these requirements in a synergistic way remains a huge challenge. The trend in drug delivery is consequently directed toward integrated multifunctional carrier systems, providing selective recognition in combination with sustained or triggered release. Capsules as vesicular systems enable drugs to be confined for controlled release. Furthermore, carriers modified with recognition groups can enhance the capability of encapsulated drug efficacy. Here, recent advances are reviewed regarding designing and preparing assembled capsules with targeting ligands or size controllable for selective recognition in drug delivery. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Target-site resistance to neonicotinoids.

    Science.gov (United States)

    Crossthwaite, Andrew J; Rendine, Stefano; Stenta, Marco; Slater, Russell

    2014-10-01

    Neonicotinoid insecticides selectively target the invertebrate nicotinic acetylcholine receptor and disrupt excitatory cholinergic neurotransmission. First launched over 20 years ago, their broad pest spectrum, variety of application methods and relatively low risk to nontarget organisms have resulted in this class dominating the insecticide market with global annual sales in excess of $3.5 bn. This remarkable commercial success brings with it conditions in the field that favour selection of resistant phenotypes. A number of important pest species have been identified with mutations at the nicotinic acetylcholine receptor associated with insensitivity to neonicotinoids. The detailed characterization of these mutations has facilitated a greater understanding of the invertebrate nicotinic acetylcholine receptor.

  9. Targeting therapeutics to the glomerulus with nanoparticles.

    Science.gov (United States)

    Zuckerman, Jonathan E; Davis, Mark E

    2013-11-01

    Nanoparticles are an enabling technology for the creation of tissue-/cell-specific therapeutics that have been investigated extensively as targeted therapeutics for cancer. The kidney, specifically the glomerulus, is another accessible site for nanoparticle delivery that has been relatively overlooked as a target organ. Given the medical need for the development of more potent, kidney-targeted therapies, the use of nanoparticle-based therapeutics may be one such solution to this problem. Here, we review the literature on nanoparticle targeting of the glomerulus. Specifically, we provide a broad overview of nanoparticle-based therapeutics and how the unique structural characteristics of the glomerulus allow for selective, nanoparticle targeting of this area of the kidney. We then summarize literature examples of nanoparticle delivery to the glomerulus and elaborate on the appropriate nanoparticle design criteria for glomerular targeting. Finally, we discuss the behavior of nanoparticles in animal models of diseased glomeruli and review examples of nanoparticle therapeutic approaches that have shown promise in animal models of glomerulonephritic disease. Copyright © 2013 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  10. Target oriented dimensionality reduction of hyperspectral data by Kernel Fukunaga-Koontz Transform

    Science.gov (United States)

    Binol, Hamidullah; Ochilov, Shuhrat; Alam, Mohammad S.; Bal, Abdullah

    2017-02-01

    Principal component analysis (PCA) is a popular technique in remote sensing for dimensionality reduction. While PCA is suitable for data compression, it is not necessarily an optimal technique for feature extraction, particularly when the features are exploited in supervised learning applications (Cheriyadat and Bruce, 2003) [1]. Preserving features belonging to the target is very crucial to the performance of target detection/recognition techniques. Fukunaga-Koontz Transform (FKT) based supervised band reduction technique can be used to provide this requirement. FKT achieves feature selection by transforming into a new space in where feature classes have complimentary eigenvectors. Analysis of these eigenvectors under two classes, target and background clutter, can be utilized for target oriented band reduction since each basis functions best represent target class while carrying least information of the background class. By selecting few eigenvectors which are the most relevant to the target class, dimension of hyperspectral data can be reduced and thus, it presents significant advantages for near real time target detection applications. The nonlinear properties of the data can be extracted by kernel approach which provides better target features. Thus, we propose constructing kernel FKT (KFKT) to present target oriented band reduction. The performance of the proposed KFKT based target oriented dimensionality reduction algorithm has been tested employing two real-world hyperspectral data and results have been reported consequently.

  11. Acquisitions as lotteries? : The selection of target-firm risk and its impact on merger outcomes

    NARCIS (Netherlands)

    Schneider, C.A.R.; Spalt, Oliver

    2017-01-01

    From 1987 to 2008, riskier firms were more likely to be taken over. Yet, on average, the acquirer declined in value by 2.8% when it bought a "risky target" (the third tercile, having an annualized idiosyncratic volatility of 61% or more), but only by 0.6% when it bought a "safe target" (the first

  12. Targeting as the basis for pre-test market of lithium-ion battery

    Science.gov (United States)

    Yuniaristanto, Zakaria, R.; Saputri, V. H. L.; Sutopo, W.; Kadir, E. A.

    2017-11-01

    This article discusses about market segmentation and targeting as a first step in pre-test market of a new technology. The benefits of targeting towards pre-test market are pre-test market can be conducted to focus on selected target markets so there is no bias during the pre-test market. In determining the target market then do some surveys to identify the state of market in the future, so that the marketing process is not misplaced. Lithium ion battery which is commercialized through start-up companies is the case study. This start-up companies must be able to respond the changes and bring in customers as well as maintain them so that companies can survive and evolve to achieve its objectives. The research aims to determine market segments and target market effectively. Marketing strategy (segmentation and targeting) is used to make questionnaire and cluster analysis in data processing. Respondents were selected by purposive sampling and have obtained data as many as 80 samples. As the results study, there are three segments for lithium ion battery with their own distinguished characteristics and there are two segments that can be used as the target market for the company.

  13. Target prioritization and strategy selection for active case-finding of pulmonary tuberculosis: a tool to support country-level project planning.

    Science.gov (United States)

    Nishikiori, Nobuyuki; Van Weezenbeek, Catharina

    2013-02-02

    Despite the progress made in the past decade, tuberculosis (TB) control still faces significant challenges. In many countries with declining TB incidence, the disease tends to concentrate in vulnerable populations that often have limited access to health care. In light of the limitations of the current case-finding approach and the global urgency to improve case detection, active case-finding (ACF) has been suggested as an important complementary strategy to accelerate tuberculosis control especially among high-risk populations. The present exercise aims to develop a model that can be used for county-level project planning. A simple deterministic model was developed to calculate the number of estimated TB cases diagnosed and the associated costs of diagnosis. The model was designed to compare cost-effectiveness parameters, such as the cost per case detected, for different diagnostic algorithms when they are applied to different risk populations. The model was transformed into a web-based tool that can support national TB programmes and civil society partners in designing ACF activities. According to the model output, tuberculosis active case-finding can be a costly endeavor, depending on the target population and the diagnostic strategy. The analysis suggests the following: (1) Active case-finding activities are cost-effective only if the tuberculosis prevalence among the target population is high. (2) Extensive diagnostic methods (e.g. X-ray screening for the entire group, use of sputum culture or molecular diagnostics) can be applied only to very high-risk groups such as TB contacts, prisoners or people living with human immunodeficiency virus (HIV) infection. (3) Basic diagnostic approaches such as TB symptom screening are always applicable although the diagnostic yield is very limited. The cost-effectiveness parameter was sensitive to local diagnostic costs and the tuberculosis prevalence of target populations. The prioritization of appropriate target

  14. Unified approach to catechin hetero-oligomers: first total synthesis of trimer EZ-EG-CA isolated from Ziziphus jujuba.

    Science.gov (United States)

    Yano, Takahisa; Ohmori, Ken; Takahashi, Haruko; Kusumi, Takenori; Suzuki, Keisuke

    2012-10-14

    A catechin hetero-trimer isolated from Ziziphus jujuba has been synthesized. Among three constituent monomers, (-)-epiafzelechin and (-)-epigallocatechin were prepared by de novo synthesis. Trimer formation relied on the unified approach to oligomers based on the bromo-capping and the orthogonal activation, reaching the reported structure of the natural product.

  15. Targeting Biological Sensing with Commercial SERS Substrates

    Science.gov (United States)

    2012-09-01

    substrate substrate. Sl x 4 mm waf urement to re ossible contam substrates, fiv resented as an e being used f tigated, and nam eived in an ac cations...targeted nanotechnology-based inhalation co-delivery of anticancer drugs and siRNA," Journal of Drug Targeting, 900-914 (2011). [35] Jong , H.J., Na...J.H., Jin, B.S., Lee, W.K., Lee, W.H., Jung, H.J., Kim , S.C., Lim, S.H., Yu, Y.G., "Identification of Dinitrotoluene Selective Peptides by Phage

  16. Selective Radiofrequency Stimulation of the Dorsal Root Ganglion (DRG) as a Method for Predicting Targets for Neuromodulation in Patients With Post Amputation Pain: A Case Series.

    Science.gov (United States)

    Hunter, Corey W; Yang, Ajax; Davis, Tim

    2017-10-01

    While spinal cord stimulation (SCS) has established itself as an accepted and validated treatment for neuropathic pain, there are a number of conditions where it has experienced less, long-term success: post amputee pain (PAP) being one of them. Dorsal root ganglion (DRG) stimulation has shown great promise, particularly in conditions where traditional SCS has fallen short. One major difference between DRG stimulation and traditional SCS is the ability to provide focal stimulation over targeted areas. While this may be a contributing factor to its superiority, it can also be a limitation insofar stimulating the wrong DRG(s) can lead to failure. This is particularly relevant in conditions like PAP where neuroplastic maladaptation occurs causing the pain to deviate from expected patterns, thus creating uncertainty and variability in predicting targets for stimulation. We propose selective radiofrequency (RF) stimulation of the DRG as a method for preoperatively predicting targets for neuromodulation in patients with PAP. We present four patients with PAP of the lower extremities. RF stimulation was used to selectively stimulate individual DRG's, creating areas of paresthesias to see which most closely correlated/overlapped with the painful area(s). RF stimulation to the DRG's that resulted in the desirable paresthesia coverage in the residual or the missing limb(s) was recorded as "positive." Trial DRG leads were placed based on the positive RF stimulation findings. In each patient, stimulating one or more DRG(s) produced paresthesias patterns that were contradictory to know dermatomal patterns. Upon completion of a one-week trial all four patients reported 60-90% pain relief, with coverage over the painful areas, and opted for permanent implant. Mapping the DRG via RF stimulation appears to provide improved accuracy for determining lead placement in the setting of PAP where pain patterns are known to deviate from conventional dermatomal mapping. © 2017

  17. Mining predicted essential genes of Brugia malayi for nematode drug targets.

    Directory of Open Access Journals (Sweden)

    Sanjay Kumar

    Full Text Available We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms, predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in nematode biology such as central metabolism, molting and regulation of gene expression.

  18. Preliminary analysis of a target factory for laser fusion

    International Nuclear Information System (INIS)

    Sherohman, J.W.; Hendricks, C.D.

    1980-01-01

    An analysis of a target factory leading to the determination of production expressions has provided for the basis of a parametric study. Parameters involving the input and output rate of a process system, processing yield factors, and multiple processing steps and production lines have been used to develop an understanding of their dependence on the rate of target injection for laser fusion. Preliminary results have indicated that a parametric study of this type will be important in the selection of processing methods to be used in the final production scheme of a target factory

  19. THE TIME DOMAIN SPECTROSCOPIC SURVEY: VARIABLE SELECTION AND ANTICIPATED RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Morganson, Eric; Green, Paul J. [Harvard Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Anderson, Scott F.; Ruan, John J. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Myers, Adam D. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY 82071 (United States); Eracleous, Michael; Brandt, William Nielsen [Department of Astronomy and Astrophysics, 525 Davey Laboratory, The Pennsylvania State University, University Park, PA 16802 (United States); Kelly, Brandon [Department of Physics, Broida Hall, University of California, Santa Barbara, CA 93106-9530 (United States); Badenes, Carlos [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara St, Pittsburgh, PA 15260 (United States); Bañados, Eduardo [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Blanton, Michael R. [Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin, 475 N. Charter St., Madison, WI 53706 (United States); Borissova, Jura [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Playa Ancha, Casilla 5030, and Millennium Institute of Astrophysics (MAS), Santiago (Chile); Burgett, William S. [GMTO Corp, Suite 300, 251 S. Lake Ave, Pasadena, CA 91101 (United States); Chambers, Kenneth, E-mail: emorganson@cfa.harvard.edu [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); and others

    2015-06-20

    We present the selection algorithm and anticipated results for the Time Domain Spectroscopic Survey (TDSS). TDSS is an Sloan Digital Sky Survey (SDSS)-IV Extended Baryon Oscillation Spectroscopic Survey (eBOSS) subproject that will provide initial identification spectra of approximately 220,000 luminosity-variable objects (variable stars and active galactic nuclei across 7500 deg{sup 2} selected from a combination of SDSS and multi-epoch Pan-STARRS1 photometry. TDSS will be the largest spectroscopic survey to explicitly target variable objects, avoiding pre-selection on the basis of colors or detailed modeling of specific variability characteristics. Kernel Density Estimate analysis of our target population performed on SDSS Stripe 82 data suggests our target sample will be 95% pure (meaning 95% of objects we select have genuine luminosity variability of a few magnitudes or more). Our final spectroscopic sample will contain roughly 135,000 quasars and 85,000 stellar variables, approximately 4000 of which will be RR Lyrae stars which may be used as outer Milky Way probes. The variability-selected quasar population has a smoother redshift distribution than a color-selected sample, and variability measurements similar to those we develop here may be used to make more uniform quasar samples in large surveys. The stellar variable targets are distributed fairly uniformly across color space, indicating that TDSS will obtain spectra for a wide variety of stellar variables including pulsating variables, stars with significant chromospheric activity, cataclysmic variables, and eclipsing binaries. TDSS will serve as a pathfinder mission to identify and characterize the multitude of variable objects that will be detected photometrically in even larger variability surveys such as Large Synoptic Survey Telescope.

  20. Effectiveness of a selective alcohol prevention program targeting personality risk factors: Results of interaction analyses.

    Science.gov (United States)

    Lammers, Jeroen; Goossens, Ferry; Conrod, Patricia; Engels, Rutger; Wiers, Reinout W; Kleinjan, Marloes

    2017-08-01

    To explore whether specific groups of adolescents (i.e., scoring high on personality risk traits, having a lower education level, or being male) benefit more from the Preventure intervention with regard to curbing their drinking behaviour. A clustered randomized controlled trial, with participants randomly assigned to a 2-session coping skills intervention or a control no-intervention condition. Fifteen secondary schools throughout The Netherlands; 7 schools in the intervention and 8 schools in the control condition. 699 adolescents aged 13-15; 343 allocated to the intervention and 356 to the control condition; with drinking experience and elevated scores in either negative thinking, anxiety sensitivity, impulsivity or sensation seeking. Differential effectiveness of the Preventure program was examined for the personality traits group, education level and gender on past-month binge drinking (main outcome), binge frequency, alcohol use, alcohol frequency and problem drinking, at 12months post-intervention. Preventure is a selective school-based alcohol prevention programme targeting personality risk factors. The comparator was a no-intervention control. Intervention effects were moderated by the personality traits group and by education level. More specifically, significant intervention effects were found on reducing alcohol use within the anxiety sensitivity group (OR=2.14, CI=1.40, 3.29) and reducing binge drinking (OR=1.76, CI=1.38, 2.24) and binge drinking frequency (β=0.24, p=0.04) within the sensation seeking group at 12months post-intervention. Also, lower educated young adolescents reduced binge drinking (OR=1.47, CI=1.14, 1.88), binge drinking frequency (β=0.25, p=0.04), alcohol use (OR=1.32, CI=1.06, 1.65) and alcohol use frequency (β=0.47, p=0.01), but not those in the higher education group. Post hoc latent-growth analyses revealed significant effects on the development of binge drinking (β=-0.19, p=0.02) and binge drinking frequency (β=-0.10, p=0

  1. A BRDF-BPDF database for the analysis of Earth target reflectances

    Science.gov (United States)

    Breon, Francois-Marie; Maignan, Fabienne

    2017-01-01

    Land surface reflectance is not isotropic. It varies with the observation geometry that is defined by the sun, view zenith angles, and the relative azimuth. In addition, the reflectance is linearly polarized. The reflectance anisotropy is quantified by the bidirectional reflectance distribution function (BRDF), while its polarization properties are defined by the bidirectional polarization distribution function (BPDF). The POLDER radiometer that flew onboard the PARASOL microsatellite remains the only space instrument that measured numerous samples of the BRDF and BPDF of Earth targets. Here, we describe a database of representative BRDFs and BPDFs derived from the POLDER measurements. From the huge number of data acquired by the spaceborne instrument over a period of 7 years, we selected a set of targets with high-quality observations. The selection aimed for a large number of observations, free of significant cloud or aerosol contamination, acquired in diverse observation geometries with a focus on the backscatter direction that shows the specific hot spot signature. The targets are sorted according to the 16-class International Geosphere-Biosphere Programme (IGBP) land cover classification system, and the target selection aims at a spatial representativeness within the class. The database thus provides a set of high-quality BRDF and BPDF samples that can be used to assess the typical variability of natural surface reflectances or to evaluate models. It is available freely from the PANGAEA website (PANGAEA.864090" target="_blank">doi:10.1594/PANGAEA.864090). In addition to the database, we provide a visualization and analysis tool based on the Interactive Data Language (IDL). It allows an interactive analysis of the measurements and a comparison against various BRDF and BPDF analytical models. The present paper describes the input data, the selection principles, the database format, and the analysis tool

  2. A cryogenic infrared calibration target

    Science.gov (United States)

    Wollack, E. J.; Kinzer, R. E.; Rinehart, S. A.

    2014-04-01

    A compact cryogenic calibration target is presented that has a peak diffuse reflectance, R ⩽ 0.003, from 800 to 4800 cm-1 (12 - 2 μm). Upon expanding the spectral range under consideration to 400-10 000 cm-1 (25 - 1 μm) the observed performance gracefully degrades to R ⩽ 0.02 at the band edges. In the implementation described, a high-thermal-conductivity metallic substrate is textured with a pyramidal tiling and subsequently coated with a thin lossy dielectric coating that enables high absorption and thermal uniformity across the target. The resulting target assembly is lightweight, has a low-geometric profile, and has survived repeated thermal cycling from room temperature to ˜4 K. Basic design considerations, governing equations, and test data for realizing the structure described are provided. The optical properties of selected absorptive materials—Acktar Fractal Black, Aeroglaze Z306, and Stycast 2850 FT epoxy loaded with stainless steel powder—are characterized and presented.

  3. Targeting Micrornas With Small Molecules: A Novel Approach to Treating Breast Cancer

    Science.gov (United States)

    2010-10-01

    DNAzyme, or deoxyribozyme, is a catalytic DNA that site-specifically cleaves the target RNA Watson – Crick base pairing to a complementary target...conserved antiparallel RNA A-helix fold among the selected pre- miRNA targets (Fig. 1a). Furthermore, 3D characteristics including Watson - Crick base pairs... Watson – Crick binding, leading to RNAse-H- mediated cleavage of the mRNA of the target gene. The ASOs also inhibit transcription, splicing, and

  4. Distinct neural networks for target feature versus dimension changes in visual search, as revealed by EEG and fMRI.

    Science.gov (United States)

    Becker, Stefanie I; Grubert, Anna; Dux, Paul E

    2014-11-15

    In visual search, responses are slowed, from one trial to the next, both when the target dimension changes (e.g., from a color target to a size target) and when the target feature changes (e.g., from a red target to a green target) relative to being repeated across trials. The present study examined whether such feature and dimension switch costs can be attributed to the same underlying mechanism(s). Contrary to this contention, an EEG study showed that feature changes influenced visual selection of the target (i.e., delayed N2pc onset), whereas dimension changes influenced the later process of response selection (i.e., delayed s-LRP onset). An fMRI study provided convergent evidence for the two-system view: Compared with repetitions, feature changes led to increased activation in the occipital cortex, and superior and inferior parietal lobules, which have been implicated in spatial attention. By contrast, dimension changes led to activation of a fronto-posterior network that is primarily linked with response selection (i.e., pre-motor cortex, supplementary motor area and frontal areas). Taken together, the results suggest that feature and dimension switch costs are based on different processes. Specifically, whereas target feature changes delay attention shifts to the target, target dimension changes interfere with later response selection operations. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  5. Getting a Handle on Neuropharmacology by Targeting Receptor-Associated Proteins.

    Science.gov (United States)

    Maher, Michael P; Matta, Jose A; Gu, Shenyan; Seierstad, Mark; Bredt, David S

    2017-12-06

    Targeted therapy for neuropsychiatric disorders requires selective modulation of dysfunctional neuronal pathways. Receptors relevant to CNS disorders typically have associated proteins discretely expressed in specific neuronal pathways; these accessory proteins provide a new dimension for drug discovery. Recent studies show that targeting a TARP auxiliary subunit of AMPA receptors selectively modulates neuronal excitability in specific forebrain pathways relevant to epilepsy. Other medicinally important ion channels, gated by glutamate, γ-aminobutyric acid (GABA), and acetylcholine, also have associated proteins, which may be druggable. This emerging pharmacology of receptor-associated proteins provides a new approach for improving drug efficacy while mitigating side effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. A Novel, Highly Selective Inhibitor of Pestivirus Replication That Targets the Viral RNA-Dependent RNA Polymerase

    Science.gov (United States)

    Paeshuyse, Jan; Leyssen, Pieter; Mabery, Eric; Boddeker, Nina; Vrancken, Robert; Froeyen, Matheus; Ansari, Israrul H.; Dutartre, Hélène; Rozenski, Jef; Gil, Laura H. V. G.; Letellier, Carine; Lanford, Robert; Canard, Bruno; Koenen, Frank; Kerkhofs, Pierre; Donis, Ruben O.; Herdewijn, Piet; Watson, Julia; De Clercq, Erik; Puerstinger, Gerhard; Neyts, Johan

    2006-01-01

    We report on the highly potent and selective antipestivirus activity of 5-[(4-bromophenyl)methyl]-2-phenyl-5H-imidazo[4,5-c]pyridine (BPIP). The 50% effective concentration (EC50) for inhibition of bovine viral diarrhea virus (BVDV)-induced cytopathic effect formation was 0.04 ± 0.01 μM. Comparable reduction of viral RNA synthesis (EC50 = 0.12 ± 0.02 μM) and production of infectious virus (EC50 = 0.074 ± 0.003 μM) were observed. The selectivity index (ratio of 50% cytostatic concentration/EC50) of BPIP was ∼2,000. BPIP was inactive against the hepatitis C virus subgenomic replicon and yellow fever virus but demonstrated weak activity against GB virus. Drug-resistant mutants were at least 300-fold less susceptible to BPIP than wild-type virus; showed cross-resistance to N-propyl-N-[2-(2H-1,2,4-triazino[5,6-b]indol-3-ylthio)ethyl]-1-propanamine (VP32947), and carried the F224S mutation in the viral RNA-dependent RNA polymerase (RdRp). When the F224S mutation was introduced into an infectious clone, the drug-resistant phenotype was obtained. BPIP did not inhibit the in vitro activity of recombinant BVDV RdRp, but did inhibit the activity of replication complexes (RCs). Computational docking revealed that F224 is located at the top of the finger domain of the polymerase. Docking of BPIP in the crystal structure of the BVDV RdRp revealed aromatic ring stacking, some hydrophobic contacts, and a hydrogen bond. Since two structurally unrelated compounds, i.e., BPIP and VP32947, target the same region of the BVDV RdRp, this position may be expected to be critical in the functioning of the polymerase or assembly of the RC. The potential of BPIP for the treatment of pestivirus and hepacivirus infections is discussed. PMID:16352539

  7. Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.

    Science.gov (United States)

    Thomas, William D; Golomb, Miriam; Smith, George P

    2010-12-15

    Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Building Cell Selectivity into CPP-Mediated Strategies

    Directory of Open Access Journals (Sweden)

    Irene Martín

    2010-05-01

    Full Text Available There is a pressing need for more effective and selective therapies for cancer and other diseases. Consequently, much effort is being devoted to the development of alternative experimental approaches based on selective systems, which are designed to be specifically directed against target cells. In addition, a large number of highly potent therapeutic molecules are being discovered. However, they do not reach clinical trials because of their low delivery, poor specificity or their incapacity to bypass the plasma membrane. Cell-penetrating peptides (CPPs are an open door for cell-impermeable compounds to reach intracellular targets. Putting all these together, research is sailing in the direction of the design of systems with the capacity to transport new drugs into a target cell. Some CPPs show cell type specificity while others require modifications or form part of more sophisticated drug delivery systems. In this review article we summarize several strategies for directed drug delivery involving CPPs that have been reported in the literature.

  9. Distractor Inhibition: Principles of Operation during Selective Attention

    Science.gov (United States)

    Wyatt, Natalie; Machado, Liana

    2013-01-01

    Research suggests that although target amplification acts as the main determinant of the efficacy of selective attention, distractor inhibition contributes under some circumstances. Here we aimed to gain insight into the operating principles that regulate the use of distractor inhibition during selective attention. The results suggest that, in…

  10. Developing a multi-pollutant conceptual framework for the selection and targeting of interventions in water industry catchment management schemes.

    Science.gov (United States)

    Bloodworth, J W; Holman, I P; Burgess, P J; Gillman, S; Frogbrook, Z; Brown, P

    2015-09-15

    In recent years water companies have started to adopt catchment management to reduce diffuse pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can disaggregate the components of pollutant risk and help water companies make decisions about where to target interventions in their catchments to maximum effect. This paper demonstrates the concept of generalising pollutants in the same framework by reviewing key pollutant processes within a source-mobilisation-delivery context. From this, criteria are developed (with input from water industry professionals involved in catchment management) which highlights the need for a new water industry specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes permits the main components of risk to be ascertained so that appropriate interventions can be selected. The generic structure also allows for the outputs from different pollutants to be compared so that potential multiple benefits can be identified. CaRPow provides a transferable framework that can be used by water companies to cost-effectively target interventions under current conditions or under scenarios of land use or climate change. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Selection of Highly Expressed Gene Variants in Escherichia coli Using Translationally Coupled Antibiotic Selection Markers

    DEFF Research Database (Denmark)

    Rennig, Maja; Daley, Daniel O.; Nørholm, Morten H. H.

    2018-01-01

    Strategies to select highly expressed variants of a protein coding sequence are usually based on trial-and-error approaches, which are time-consuming and expensive. We address this problem using translationally coupled antibiotic resistance markers. The system requires that the target gene can...

  12. Metformin selectively targets redox control of complex I energy transduction

    Directory of Open Access Journals (Sweden)

    Amy R. Cameron

    2018-04-01

    Full Text Available Many guanide-containing drugs are antihyperglycaemic but most exhibit toxicity, to the extent that only the biguanide metformin has enjoyed sustained clinical use. Here, we have isolated unique mitochondrial redox control properties of metformin that are likely to account for this difference. In primary hepatocytes and H4IIE hepatoma cells we found that antihyperglycaemic diguanides DG5-DG10 and the biguanide phenformin were up to 1000-fold more potent than metformin on cell signalling responses, gluconeogenic promoter expression and hepatocyte glucose production. Each drug inhibited cellular oxygen consumption similarly but there were marked differences in other respects. All diguanides and phenformin but not metformin inhibited NADH oxidation in submitochondrial particles, indicative of complex I inhibition, which also corresponded closely with dehydrogenase activity in living cells measured by WST-1. Consistent with these findings, in isolated mitochondria, DG8 but not metformin caused the NADH/NAD+ couple to become more reduced over time and mitochondrial deterioration ensued, suggesting direct inhibition of complex I and mitochondrial toxicity of DG8. In contrast, metformin exerted a selective oxidation of the mitochondrial NADH/NAD+ couple, without triggering mitochondrial deterioration. Together, our results suggest that metformin suppresses energy transduction by selectively inducing a state in complex I where redox and proton transfer domains are no longer efficiently coupled. Keywords: Diabetes, Metformin, Mitochondria, NADH, NAD+

  13. Cell-Selective Biological Activity of Rhodium Metalloinsertors Correlates with Subcellular Localization

    Science.gov (United States)

    Komor, Alexis C.; Schneider, Curtis J.; Weidmann, Alyson G.; Barton, Jacqueline K.

    2013-01-01

    Deficiencies in the mismatch repair (MMR) pathway are associated with several types of cancers, as well as resistance to commonly used chemotherapeutics. Rhodium metalloinsertors have been found to bind DNA mismatches with high affinity and specificity in vitro, and also exhibit cell-selective cytotoxicity, targeting MMR-deficient cells over MMR-proficient cells. Ten distinct metalloinsertors with varying lipophilicities have been synthesized and their mismatch binding affinities and biological activities determined. Although DNA photocleavage experiments demonstrate that their binding affinities are quite similar, their cell-selective antiproliferative and cytotoxic activities vary significantly. Inductively coupled plasma mass spectrometry (ICP-MS) experiments have uncovered a relationship between the subcellular distribution of these metalloinsertors and their biological activities. Specifically, we find that all of our metalloinsertors localize in the nucleus at sufficient concentrations for binding to DNA mismatches. However, the metalloinsertors with high rhodium localization in the mitochondria show toxicity that is not selective for MMR-deficient cells, whereas metalloinsertors with less mitochondrial rhodium show activity that is highly selective for MMR-deficient versus proficient cells. This work supports the notion that specific targeting of the metalloinsertors to nuclear DNA gives rise to their cell-selective cytotoxic and antiproliferative activities. The selectivity in cellular targeting depends upon binding to mismatches in genomic DNA. PMID:23137296

  14. Event-related potentials during visual selective attention in children of alcoholics.

    Science.gov (United States)

    van der Stelt, O; Gunning, W B; Snel, J; Kok, A

    1998-12-01

    Event-related potentials were recorded from 7- to 18-year-old children of alcoholics (COAs, n = 50) and age- and sex-matched control children (n = 50) while they performed a visual selective attention task. The task was to attend selectively to stimuli with a specified color (red or blue) in an attempt to detect the occurrence of target stimuli. COAs manifested a smaller P3b amplitude to attended-target stimuli over the parietal and occipital scalp than did the controls. A more specific analysis indicated that both the attentional relevance and the target properties of the eliciting stimulus determined the observed P3b amplitude differences between COAs and controls. In contrast, no significant group differences were observed in attention-related earlier occurring event-related potential components, referred to as frontal selection positivity, selection negativity, and N2b. These results represent neurophysiological evidence that COAs suffer from deficits at a late (semantic) level of visual selective information processing that are unlikely a consequence of deficits at earlier (sensory) levels of selective processing. The findings support the notion that a reduced visual P3b amplitude in COAs represents a high-level processing dysfunction indicating their increased vulnerability to alcoholism.

  15. Drug-target residence time--a case for G protein-coupled receptors.

    Science.gov (United States)

    Guo, Dong; Hillger, Julia M; IJzerman, Adriaan P; Heitman, Laura H

    2014-07-01

    A vast number of marketed drugs act on G protein-coupled receptors (GPCRs), the most successful category of drug targets to date. These drugs usually possess high target affinity and selectivity, and such combined features have been the driving force in the early phases of drug discovery. However, attrition has also been high. Many investigational new drugs eventually fail in clinical trials due to a demonstrated lack of efficacy. A retrospective assessment of successfully launched drugs revealed that their beneficial effects in patients may be attributed to their long drug-target residence times (RTs). Likewise, for some other GPCR drugs short RT could be beneficial to reduce the potential for on-target side effects. Hence, the compounds' kinetics behavior might in fact be the guiding principle to obtain a desired and durable effect in vivo. We therefore propose that drug-target RT should be taken into account as an additional parameter in the lead selection and optimization process. This should ultimately lead to an increased number of candidate drugs moving to the preclinical development phase and on to the market. This review contains examples of the kinetics behavior of GPCR ligands with improved in vivo efficacy and summarizes methods for assessing drug-target RT. © 2014 Wiley Periodicals, Inc.

  16. Patch-based visual tracking with online representative sample selection

    Science.gov (United States)

    Ou, Weihua; Yuan, Di; Li, Donghao; Liu, Bin; Xia, Daoxun; Zeng, Wu

    2017-05-01

    Occlusion is one of the most challenging problems in visual object tracking. Recently, a lot of discriminative methods have been proposed to deal with this problem. For the discriminative methods, it is difficult to select the representative samples for the target template updating. In general, the holistic bounding boxes that contain tracked results are selected as the positive samples. However, when the objects are occluded, this simple strategy easily introduces the noises into the training data set and the target template and then leads the tracker to drift away from the target seriously. To address this problem, we propose a robust patch-based visual tracker with online representative sample selection. Different from previous works, we divide the object and the candidates into several patches uniformly and propose a score function to calculate the score of each patch independently. Then, the average score is adopted to determine the optimal candidate. Finally, we utilize the non-negative least square method to find the representative samples, which are used to update the target template. The experimental results on the object tracking benchmark 2013 and on the 13 challenging sequences show that the proposed method is robust to the occlusion and achieves promising results.

  17. Cell targeting peptides as smart ligands for targeting of therapeutic or diagnostic agents: a systematic review.

    Science.gov (United States)

    Mousavizadeh, Ali; Jabbari, Ali; Akrami, Mohammad; Bardania, Hassan

    2017-10-01

    Cell targeting peptides (CTP) are small peptides which have high affinity and specificity to a cell or tissue targets. They are typically identified by using phage display and chemical synthetic peptide library methods. CTPs have attracted considerable attention as a new class of ligands to delivery specifically therapeutic and diagnostic agents, because of the fact they have several advantages including easy synthesis, smaller physical sizes, lower immunogenicity and cytotoxicity and their simple and better conjugation to nano-carriers and therapeutic or diagnostic agents compared to conventional antibodies. In this systematic review, we will focus on the basic concepts concerning the use of cell-targeting peptides (CTPs), following the approaches of selecting them from peptide libraries. We discuss several developed strategies for cell-specific delivery of different cargos by CTPs, which are designed for drug delivery and diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Proteolysis targeting peptide (PROTAP) strategy for protein ubiquitination and degradation.

    Science.gov (United States)

    Zheng, Jing; Tan, Chunyan; Xue, Pengcheng; Cao, Jiakun; Liu, Feng; Tan, Ying; Jiang, Yuyang

    2016-02-19

    Ubiquitination proteasome pathway (UPP) is the most important and selective way to degrade proteins in vivo. Here, a novel proteolysis targeting peptide (PROTAP) strategy, composed of a target protein binding peptide, a linker and a ubiquitin E3 ligase recognition peptide, was designed to recruit both target protein and E3 ligase and then induce polyubiquitination and degradation of the target protein through UPP. In our study, the PROTAP strategy was proved to be a general method with high specificity using Bcl-xL protein as model target in vitro and in cells, which indicates that the strategy has great potential for in vivo application. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Targeted enzyme prodrug therapies.

    Science.gov (United States)

    Schellmann, N; Deckert, P M; Bachran, D; Fuchs, H; Bachran, C

    2010-09-01

    The cure of cancer is still a formidable challenge in medical science. Long-known modalities including surgery, chemotherapy and radiotherapy are successful in a number of cases; however, invasive, metastasized and inaccessible tumors still pose an unresolved and ongoing problem. Targeted therapies designed to locate, detect and specifically kill tumor cells have been developed in the past three decades as an alternative to treat troublesome cancers. Most of these therapies are either based on antibody-dependent cellular cytotoxicity, targeted delivery of cytotoxic drugs or tumor site-specific activation of prodrugs. The latter is a two-step procedure. In the first step, a selected enzyme is accumulated in the tumor by guiding the enzyme or its gene to the neoplastic cells. In the second step, a harmless prodrug is applied and specifically converted by this enzyme into a cytotoxic drug only at the tumor site. A number of targeting systems, enzymes and prodrugs were investigated and improved since the concept was first envisioned in 1974. This review presents a concise overview on the history and latest developments in targeted therapies for cancer treatment. We cover the relevant technologies such as antibody-directed enzyme prodrug therapy (ADEPT), gene-directed enzyme prodrug therapy (GDEPT) as well as related therapies such as clostridial- (CDEPT) and polymer-directed enzyme prodrug therapy (PDEPT) with emphasis on prodrug-converting enzymes, prodrugs and drugs.

  20. Mars 2020 Rover SHERLOC Calibration Target

    Science.gov (United States)

    Graff, Trevor; Fries, Marc; Burton, Aaron; Ross, Amy; Larson, Kristine; Garrison, Dan; Calaway, Mike; Tran, Vinh; Bhartia, Roh; Beegle, Luther

    2016-01-01

    The Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals (SHERLOC) instrument is a deep ultraviolet (UV) Raman Fluorescence instrument selected as part of the Mars 2020 rover instrument suite. SHERLOC will be mounted on the rover arm and its primary role is to identify carbonaceous species in martian samples. The SHERLOC instrument requires a calibration target which is being designed and fabricated at JSC as part of our continued science participation in Mars robotic missions. The SHERLOC calibration target will address a wide range of NASA goals to include basic science of interest to both the Science Mission Directorate and Human Exploration and Operations Mission Directorate.

  1. Understanding and Targeting Indonesian Young Adult Internet Users

    Directory of Open Access Journals (Sweden)

    Andreas Chang

    2010-11-01

    Full Text Available As the number of global internet users increases, companies’ online advertisement expenditure also grows rapidly. Companies face challenges in targeting the right customers. Understanding which websites are often visited by target users and what they do on the internet will help companies direct their online advertisement to the right target. Using questionnaires, this study examines which sites are most often visited by Indonesian young adult internet users and what they do on the internet. It aims to understand the patterns of behavior of these users. The findings of this study provide some understanding to the marketers. Of consequence, such understanding would help them to select where and what to do with their advertisements when they are targeting the young adult internet users in Indonesia. 

  2. A New Spectral Shape-Based Record Selection Approach Using Np and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Edén Bojórquez

    2013-01-01

    Full Text Available With the aim to improve code-based real records selection criteria, an approach inspired in a parameter proxy of spectral shape, named Np, is analyzed. The procedure is based on several objectives aimed to minimize the record-to-record variability of the ground motions selected for seismic structural assessment. In order to select the best ground motion set of records to be used as an input for nonlinear dynamic analysis, an optimization approach is applied using genetic algorithms focuse on finding the set of records more compatible with a target spectrum and target Np values. The results of the new Np-based approach suggest that the real accelerograms obtained with this procedure, reduce the scatter of the response spectra as compared with the traditional approach; furthermore, the mean spectrum of the set of records is very similar to the target seismic design spectrum in the range of interest periods, and at the same time, similar Np values are obtained for the selected records and the target spectrum.

  3. The application of carbon nanotubes in target drug delivery systems for cancer therapies

    Science.gov (United States)

    Zhang, Wuxu; Zhang, Zhenzhong; Zhang, Yingge

    2011-10-01

    Among all cancer treatment options, chemotherapy continues to play a major role in killing free cancer cells and removing undetectable tumor micro-focuses. Although chemotherapies are successful in some cases, systemic toxicity may develop at the same time due to lack of selectivity of the drugs for cancer tissues and cells, which often leads to the failure of chemotherapies. Obviously, the therapeutic effects will be revolutionarily improved if human can deliver the anticancer drugs with high selectivity to cancer cells or cancer tissues. This selective delivery of the drugs has been called target treatment. To realize target treatment, the first step of the strategies is to build up effective target drug delivery systems. Generally speaking, such a system is often made up of the carriers and drugs, of which the carriers play the roles of target delivery. An ideal carrier for target drug delivery systems should have three pre-requisites for their functions: (1) they themselves have target effects; (2) they have sufficiently strong adsorptive effects for anticancer drugs to ensure they can transport the drugs to the effect-relevant sites; and (3) they can release the drugs from them in the effect-relevant sites, and only in this way can the treatment effects develop. The transporting capabilities of carbon nanotubes combined with appropriate surface modifications and their unique physicochemical properties show great promise to meet the three pre-requisites. Here, we review the progress in the study on the application of carbon nanotubes as target carriers in drug delivery systems for cancer therapies.

  4. On the existence and function of galanin receptor heteromers in the Central Nervous System

    Directory of Open Access Journals (Sweden)

    Kjell eFuxe

    2012-10-01

    Full Text Available Galanin receptor (GalR subtypes1-3 linked to central galanin neurons may form heteromers with each other and other types of G protein coupled receptors (GPCRs in the Central Nervous System (CNS. These heteromers may be one molecular mechanism for galanin peptides and their N-terminal fragments (gal 1-15 to modulate the function of different types of glia-neuronal networks in the CNS, especially the emotional and the cardiovascular networks. GalR-5-HT1A heteromers likely exist with antagonistic GalR-5-HT1A receptor-receptor interactions in the ascending midbrain raphe 5-HT neuron systems and their target regions. They represent a novel target for antidepressant drugs. Evidence is given for the existence of GalR1-5-HT1A heteromers in cellular models with transinhibition of the protomer signaling. A GalR1-GalR2 heteromer is proposed to be a galanin N-terminal fragment preferring receptor (1-15 in the CNS. Furthermore, a GalR1-GalR2-5-HT1A heterotrimer is postulated to explain why only galanin (1-15 but not galanin (1-29 can antagonistically modulate the 5-HT1A receptors in the dorsal hippocampus rich in gal fragment binding sites. The results underline a putative role of different types of GalR-5-HT1A heteroreceptor complexes in depression. GalR antagonists may also have therapeutic actions in depression by blocking the antagonistic GalR-NPYY1 receptor interactions in putative GalR-NPYY1 receptor heteromers in the CNS resulting in increases in NPYY1 transmission and antidepressant effects. In contrast the galanin fragment receptor (a postulated GalR1-GalR2 heteromer appears to be linked to the NPYY2 receptor enhancing the affinity of the NPYY2 binding sites in a putative GalR1-GalR2-NPYY2 heterotrimer. Finally, putative GalR-α2-adrenoreceptor heteromers with antagonistic receptor-receptor interactions may be a widespread mechanism in the CNS for integration of galanin and noradrenaline signals also of likely relevance for depression.

  5. Co-factors necessary for PPAR mediated transactivation of endogenous target genes

    DEFF Research Database (Denmark)

    Grøntved, Lars; Nielsen, Ronni; Stunnenberg, Henk

    of endogenous target gene in different cell types are elusive. To mutually compare the ability of the PPAR subtypes to activate endogenous target genes in a given cell, PPARa, PPARb/d and PPARg2 were HA tagged and rapidly, equally and synchronously expressed using adenoviral delivery. Within a few hours after...... subtype specific activation of target genes. Accumulating evidence suggests that transcriptional co-factors can function as master regulators for nuclear receptors and impose promoter selectivity. To study co-factor necessity for PPAR mediated transactivation of endogenous target genes, specific co...

  6. Colorectal cancer chemoprevention: the potential of a selective approach.

    Science.gov (United States)

    Ben-Amotz, Oded; Arber, Nadir; Kraus, Sarah

    2010-10-01

    Colorectal cancer (CRC) is a leading cause of cancer death, and therefore demands special attention. Novel recent approaches for the chemoprevention of CRC focus on selective targeting of key pathways. We review the study by Zhang and colleagues, evaluating a selective approach targeting APC-deficient premalignant cells using retinoid-based therapy and TNF-related apoptosis-inducing ligand (TRAIL). This study demonstrates that induction of TRAIL-mediated death signaling contributes to the chemopreventive value of all-trans-retinyl acetate (RAc) by sensitizing premalignant adenoma cells for apoptosis without affecting normal cells. We discuss these important findings, raise few points that deserve consideration, and may further contribute to the development of RAc-based combination therapies with improved efficacy. The authors clearly demonstrate a synergistic interaction between TRAIL, RAc and APC, which leads to the specific cell death of premalignant target cells. The study adds to the growing body of literature related to CRC chemoprevention, and provides solid data supporting a potentially selective approach for preventing CRC using RAc and TRAIL.

  7. Characteristics of spectro-temporal modulation frequency selectivity in humans.

    Science.gov (United States)

    Oetjen, Arne; Verhey, Jesko L

    2017-03-01

    There is increasing evidence that the auditory system shows frequency selectivity for spectro-temporal modulations. A recent study of the authors has shown spectro-temporal modulation masking patterns that were in agreement with the hypothesis of spectro-temporal modulation filters in the human auditory system [Oetjen and Verhey (2015). J. Acoust. Soc. Am. 137(2), 714-723]. In the present study, that experimental data and additional data were used to model this spectro-temporal frequency selectivity. The additional data were collected to investigate to what extent the spectro-temporal modulation-frequency selectivity results from a combination of a purely temporal amplitude-modulation filter and a purely spectral amplitude-modulation filter. In contrast to the previous study, thresholds were measured for masker and target modulations with opposite directions, i.e., an upward pointing target modulation and a downward pointing masker modulation. The comparison of this data set with previous corresponding data with the same direction from target and masker modulations indicate that a specific spectro-temporal modulation filter is required to simulate all aspects of spectro-temporal modulation frequency selectivity. A model using a modified Gabor filter with a purely temporal and a purely spectral filter predicts the spectro-temporal modulation masking data.

  8. State-selective electron capture

    International Nuclear Information System (INIS)

    Dunford, R.W.; Liu, C.J.; Berry, H.G.; Pardo, R.C.; Raphaelian, M.L.A.

    1988-01-01

    We report results from a new atomic physics program using the Argonne PII ECR ion source which is being built as part of the upgrade of the Argonne Tandem-Linear Accelerator (ATLAS). Our initial experiments have been aimed at studying state-selective electron capture in ion-atom collisions using the technique of Photon Emission Spectroscopy. We are extending existing cross section measurements at low energy ( 6+ and O 7+ on He and H 2 targets in the energy range from 1-105 keV/amu. We also present uv spectra obtained in collisions of O 6+ , O 5+ and N 5+ on a sodium target. 4 refs., 2 figs., 1 tab

  9. Targeted gene insertion for molecular medicine.

    Science.gov (United States)

    Voigt, Katrin; Izsvák, Zsuzsanna; Ivics, Zoltán

    2008-11-01

    Genomic insertion of a functional gene together with suitable transcriptional regulatory elements is often required for long-term therapeutical benefit in gene therapy for several genetic diseases. A variety of integrating vectors for gene delivery exist. Some of them exhibit random genomic integration, whereas others have integration preferences based on attributes of the targeted site, such as primary DNA sequence and physical structure of the DNA, or through tethering to certain DNA sequences by host-encoded cellular factors. Uncontrolled genomic insertion bears the risk of the transgene being silenced due to chromosomal position effects, and can lead to genotoxic effects due to mutagenesis of cellular genes. None of the vector systems currently used in either preclinical experiments or clinical trials displays sufficient preferences for target DNA sequences that would ensure appropriate and reliable expression of the transgene and simultaneously prevent hazardous side effects. We review in this paper the advantages and disadvantages of both viral and non-viral gene delivery technologies, discuss mechanisms of target site selection of integrating genetic elements (viruses and transposons), and suggest distinct molecular strategies for targeted gene delivery.

  10. Target-specific delivery of doxorubicin to human glioblastoma cell ...

    Indian Academy of Sciences (India)

    Abdullah Tahir Bayraç

    2018-01-29

    Jan 29, 2018 ... was previously selected for specific recognition of glioblastoma and represented many advantageous ... antigens, receptors or any 3-D structure on the target cells ..... both PSMA (?) and PSMA (-) prostate cancers.

  11. Individual Differences in Temporal Selective Attention as Reflected in Pupil Dilation

    NARCIS (Netherlands)

    Willems, Charlotte; Herdzin, Johannes; Martens, Sander

    2015-01-01

    Background Attention is restricted for the second of two targets when it is presented within 200-500 ms of the first target. This attentional blink (AB) phenomenon allows one to study the dynamics of temporal selective attention by varying the interval between the two targets (T1 and T2). Whereas

  12. Domain Adaptation for Machine Translation with Instance Selection

    Directory of Open Access Journals (Sweden)

    Biçici Ergun

    2015-04-01

    Full Text Available Domain adaptation for machine translation (MT can be achieved by selecting training instances close to the test set from a larger set of instances. We consider 7 different domain adaptation strategies and answer 7 research questions, which give us a recipe for domain adaptation in MT. We perform English to German statistical MT (SMT experiments in a setting where test and training sentences can come from different corpora and one of our goals is to learn the parameters of the sampling process. Domain adaptation with training instance selection can obtain 22% increase in target 2-gram recall and can gain up to 3:55 BLEU points compared with random selection. Domain adaptation with feature decay algorithm (FDA not only achieves the highest target 2-gram recall and BLEU performance but also perfectly learns the test sample distribution parameter with correlation 0:99. Moses SMT systems built with FDA selected 10K training sentences is able to obtain F1 results as good as the baselines that use up to 2M sentences. Moses SMT systems built with FDA selected 50K training sentences is able to obtain F1 point better results than the baselines.

  13. Automatic target validation based on neuroscientific literature mining for tractography

    Directory of Open Access Journals (Sweden)

    Xavier eVasques

    2015-05-01

    Full Text Available Target identification for tractography studies requires solid anatomical knowledge validated by an extensive literature review across species for each seed structure to be studied. Manual literature review to identify targets for a given seed region is tedious and potentially subjective. Therefore, complementary approaches would be useful. We propose to use text-mining models to automatically suggest potential targets from the neuroscientific literature, full-text articles and abstracts, so that they can be used for anatomical connection studies and more specifically for tractography. We applied text-mining models to three structures: two well studied structures, since validated deep brain stimulation targets, the internal globus pallidus and the subthalamic nucleus and, the nucleus accumbens, an exploratory target for treating psychiatric disorders. We performed a systematic review of the literature to document the projections of the three selected structures and compared it with the targets proposed by text-mining models, both in rat and primate (including human. We ran probabilistic tractography on the nucleus accumbens and compared the output with the results of the text-mining models and literature review. Overall, text-mining the literature could find three times as many targets as two man-weeks of curation could. The overall efficiency of the text-mining against literature review in our study was 98% recall (at 36% precision, meaning that over all the targets for the three selected seeds, only one target has been missed by text-mining. We demonstrate that connectivity for a structure of interest can be extracted from a very large amount of publications and abstracts. We believe this tool will be useful in helping the neuroscience community to facilitate connectivity studies of particular brain regions. The text mining tools used for the study are part of the HBP Neuroinformatics Platform, publicly available at http://connectivity-brainer.rhcloud.com/.

  14. High purity materials as targets for radioisotope production: Needs ...

    Indian Academy of Sciences (India)

    Unknown

    lity of high purity target materials, natural or enriched, are crucial for any successful radioisotope pro- gramme. Selection ... and blockages detection in buried pipelines are rendered ..... from reputed international suppliers with analysis report.

  15. How consumers pick a hotel strategic segmentation and target marketing

    CERN Document Server

    Winston, William

    2013-01-01

    Venture through the pages of How Consumers Pick a Hotel to learn the steps of selecting a target and using consumer behavior applications to segment the market to reach your target. Much as a consumer goes through the process of selecting a satisfying hotel, you can choose to use the information provided to make your hospitality career relaxing and satisfying. When you finish this fantastic reading journey, you'll be prepared to offer services that meet the public's demands, and you'll possess the prerequisite knowledge and skills for developing your own strategic approach to a target market. As the many methods of segmentation are discussed in detail, you will also learn effective strategies for communicating with multiple segments. Ideal as a supplementary text for marketing and hospitality marketing courses, How Consumers Pick a Hotel provides a concise overview of consumer behavior and intertwines marketing theory with sound ways in which to implement the theory. This will both orient you and give you a s...

  16. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  17. Seasonal influenza vaccination coverage rate of target groups in selected cities and provinces in China by season (2009/10 to 2011/12.

    Directory of Open Access Journals (Sweden)

    Lei Zhou

    Full Text Available BACKGROUND: The objectives of the survey were to identify the level of influenza vaccination coverage in China in three influenza seasons 2009/10 to 2011/12, and to find out potential predictors for seasonal influenza vaccination. METHODS: In September and October 2011, representative urban household telephone surveys were conducted in five provinces in China with a response rate of 6%. Four target groups were defined for analysis: 1 children ≤ 5 years old; 2 elderly persons aged ≥ 60 years old; 3 health care workers (persons working in the medical field and 4 chronically ill persons. RESULTS: The overall mean vaccination rate was 9.0%. Among the four target groups, the rate of vaccination of children aged ≤ 5 years old (mean = 26% was highest and the rate of elderly people aged ≥ 60 years old (mean = 7.4% was the lowest, while the rates of persons who suffer from a chronic illness (mean = 9.4% and health care workers (9.5% were similar. A subsidy for influenza vaccination, age group, health care workers, suffering from a chronic illness and living in Eastern China were independent significant predictors for influenza vaccination. CONCLUSIONS: The seasonal influenza vaccination coverage rates among urban populations in selected cities and provinces in China were far below previously reported rates in developed countries. Influenza vaccination coverage rates differed widely between different target groups and provinces in China. Subsidy policy might have a positive effect on influenza vaccination rate, but further cost-effectiveness studies, as well as the vaccination rate associated factors studies are still needed to inform strategies to increase coverage.

  18. International market selection and subsidiary performance : A neural network approach

    NARCIS (Netherlands)

    Brouthers, L.E.; Wilkinson, T.; Mukhopadhyay, S.; Brouthers, K.D.

    2009-01-01

    How should multinational enterprises (MNEs) select international markets? We develop a model of international market selection that adds firm-specific advantages and transaction cost considerations to previously explored target market factors based on Dunning's Eclectic Framework. Results obtained

  19. Sequence-selective single-molecule alkylation with a pyrrole-imidazole polyamide visualized in a DNA nanoscaffold.

    Science.gov (United States)

    Yoshidome, Tomofumi; Endo, Masayuki; Kashiwazaki, Gengo; Hidaka, Kumi; Bando, Toshikazu; Sugiyama, Hiroshi

    2012-03-14

    We demonstrate a novel strategy for visualizing sequence-selective alkylation of target double-stranded DNA (dsDNA) using a synthetic pyrrole-imidazole (PI) polyamide in a designed DNA origami scaffold. Doubly functionalized PI polyamide was designed by introduction of an alkylating agent 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI) and biotin for sequence-selective alkylation at the target sequence and subsequent streptavidin labeling, respectively. Selective alkylation of the target site in the substrate DNA was observed by analysis using sequencing gel electrophoresis. For the single-molecule observation of the alkylation by functionalized PI polyamide using atomic force microscopy (AFM), the target position in the dsDNA (∼200 base pairs) was alkylated and then visualized by labeling with streptavidin. Newly designed DNA origami scaffold named "five-well DNA frame" carrying five different dsDNA sequences in its cavities was used for the detailed analysis of the sequence-selectivity and alkylation. The 64-mer dsDNAs were introduced to five individual wells, in which target sequence AGTXCCA/TGGYACT (XY = AT, TA, GC, CG) was employed as fully matched (X = G) and one-base mismatched (X = A, T, C) sequences. The fully matched sequence was alkylated with 88% selectivity over other mismatched sequences. In addition, the PI polyamide failed to attach to the target sequence lacking the alkylation site after washing and streptavidin treatment. Therefore, the PI polyamide discriminated the one mismatched nucleotide at the single-molecule level, and alkylation anchored the PI polyamide to the target dsDNA.

  20. Four levels of hierarchical organization, including noncovalent chainmail, brace the mature tumor herpesvirus capsid against pressurization.

    Science.gov (United States)

    Zhou, Z Hong; Hui, Wong Hoi; Shah, Sanket; Jih, Jonathan; O'Connor, Christine M; Sherman, Michael B; Kedes, Dean H; Schein, Stan

    2014-10-07

    Like many double-stranded DNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved noncovalently in the much larger gammaherpesvirus capsid is unknown. Our cryoelectron microscopy structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1,378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (∼280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) One hundred sixty-two belts concatenate to form noncovalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Preparation of 199Tl using the electroplating gold targets on the internal target installation of cyclotron

    International Nuclear Information System (INIS)

    Zhou Dehai; Xie Degao; Chao Yangshu; Liao Fuquan; Zhang Youfa; Wang Zefu

    1992-01-01

    The separative conditions of 199 Tl from Cu, Au and Ga by reaction 197 Au(α, 2n) 199 Tl on the internal target installation of cyclotron is studied. The α-particle energy is selected in the range of 24-15 MeV. The cumulative current intensities of such α-particle beams bombarding the gold target at 150-200 μA are 1200 μA · h and 1500 μA · h respectively. The radiochemical separation of 199 Tl is carried out with isopropyl ether extraction and anions exchange from the irradiated gold targets. The radioactivities of 199 Tl and 200 Tl are 2.3 x 10 5 Bq and 7.1 x 10 2 Bq, and 200 Tl makes up 0.29% of the total radioactivity. The impurity elements contained 1 ml of 199 TlCl injection solution are Au 199 TlCl has been used in clinical experiments in vivo and relatively good results have been obtained

  2. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    International Nuclear Information System (INIS)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-01-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  3. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Science.gov (United States)

    Xia, Hui; Tong, Ruijie; Song, Yanling; Xiong, Fang; Li, Jiman; Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei; Wu, Jiang

    2017-04-01

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  4. Prodrug strategy for cancer cell-specific targeting: A recent overview.

    Science.gov (United States)

    Zhang, Xian; Li, Xiang; You, Qidong; Zhang, Xiaojin

    2017-10-20

    The increasing development of targeted cancer therapy provides extensive possibilities in clinical trials, and numerous strategies have been explored. The prodrug is one of the most promising strategies in targeted cancer therapy to improve the selectivity and efficacy of cytotoxic compounds. Compared with normal tissues, cancer cells are characterized by unique aberrant markers, thus inactive prodrugs targeting these markers are excellent therapeutics to release active drugs, killing cancer cells without damaging normal tissues. In this review, we explore an integrated view of potential prodrugs applied in targeted cancer therapy based on aberrant cancer specific markers and some examples are provided for inspiring new ideas of prodrug strategy for cancer cell-specific targeting. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Synthesis and bio-applications of targeted magnetic-fluorescent composite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Hui; Tong, Ruijie [Sichuan University, West China Medical Center (China); Song, Yanling [Shenyang University of Chemical Technology, College of Pharmaceutical and Biological Engineering (China); Xiong, Fang [Sichuan University, West China College of Stomatology (China); Li, Jiman [Sichuan Cancer Hospital, Pathology Department (China); Wang, Shichao; Fu, Huihui; Wen, Jirui; Li, Dongze; Zeng, Ye; Zhao, Zhiwei, E-mail: zzw2002400@126.com; Wu, Jiang, E-mail: jw@scu.edu.cn [Sichuan University, West China Medical Center (China)

    2017-04-15

    Magnetic-fluorescent nanoparticles have a tremendous potential in biology. As the benefits of these materials gained recognition, increasing attention has been given to the conjugation of magnetic-fluorescent nanoparticles with targeting ligands. The magnetic and fluorescent properties of nanoparticles offer several functionalities, including imaging, separation, and visualization, while the presence of a targeting ligand allows for selective cell and tissue targeting. In this review, methods for the synthesis of targeted magnetic-fluorescent nanoparticles are explored, and recent applications of these nanocomposites to the detection and separation of biomolecules, fluorescent and magnetic resonance imaging, and cancer diagnosis and treatment will be summarized. As these materials are further optimized, targeted magnetic-fluorescent nanoparticles hold great promise for the diagnosis and treatment of some diseases.

  6. Targeting the Thioredoxin System for Cancer Therapy.

    Science.gov (United States)

    Zhang, Junmin; Li, Xinming; Han, Xiao; Liu, Ruijuan; Fang, Jianguo

    2017-09-01

    Thioredoxin (Trx) and thioredoxin reductase (TrxR) are essential components of the Trx system which plays pivotal roles in regulating multiple cellular redox signaling pathways. In recent years TrxR/Trx have been increasingly recognized as an important modulator of tumor development, and hence targeting TrxR/Trx is a promising strategy for cancer treatment. In this review we first discuss the structural details of TrxR, the functions of the Trx system, and the rational of targeting TrxR/Trx for cancer treatment. We also highlight small-molecule TrxR/Trx inhibitors that have potential anticancer activity and review their mechanisms of action. Finally, we examine the challenges of developing TrxR/Trx inhibitors as anticancer agents and perspectives for selectively targeting TrxR/Trx. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Targeted Delivery of Protein Drugs by Nanocarriers

    Directory of Open Access Journals (Sweden)

    Antonella Battisti

    2010-03-01

    Full Text Available Recent advances in biotechnology demonstrate that peptides and proteins are the basis of a new generation of drugs. However, the transportation of protein drugs in the body is limited by their high molecular weight, which prevents the crossing of tissue barriers, and by their short lifetime due to immuno response and enzymatic degradation. Moreover, the ability to selectively deliver drugs to target organs, tissues or cells is a major challenge in the treatment of several human diseases, including cancer. Indeed, targeted delivery can be much more efficient than systemic application, while improving bioavailability and limiting undesirable side effects. This review describes how the use of targeted nanocarriers such as nanoparticles and liposomes can improve the pharmacokinetic properties of protein drugs, thus increasing their safety and maximizing the therapeutic effect.

  8. MEGAPIE analytical support task : characterization of lead-bismuth eutectic and sodium-cooled tungsten target materials for accelerator driven systems

    International Nuclear Information System (INIS)

    Gohar, Y.

    2002-01-01

    Lead-Bismuth Eutectic and Tungsten are under consideration as target materials with high-energy protons for generating neutrons to drive actinide and fission product transmuters. A detailed characterization has been performed to study the performance of these target materials as a function of the main variables and the design selections. The characterization includes the neutron yield, the spatial energy deposition, the neutron spectrum, the beam window performance, and the target buffer impact on the target performance. The characterization has also considered high-energy deuteron particles to study the impact on the target neutronic performance. The obtained results quantify the performance of the Lead-Bismuth Eutectic and Tungsten target materials as a function of the target variables and design selections

  9. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics

    Energy Technology Data Exchange (ETDEWEB)

    Charlton, Adrian J. [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)], E-mail: adrian.charlton@csl.gov.uk; Robb, Paul; Donarski, James A.; Godward, John [Department for Environment, Food and Rural Affairs, Central Science Laboratory, Sand Hutton, York YO41 1LZ (United Kingdom)

    2008-06-23

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined {sup 1}H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare {sup 1}H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications.

  10. Non-targeted detection of chemical contamination in carbonated soft drinks using NMR spectroscopy, variable selection and chemometrics

    International Nuclear Information System (INIS)

    Charlton, Adrian J.; Robb, Paul; Donarski, James A.; Godward, John

    2008-01-01

    An efficient method for detecting malicious and accidental contamination of foods has been developed using a combined 1 H nuclear magnetic resonance (NMR) and chemometrics approach. The method has been demonstrated using a commercially available carbonated soft drink, as being capable of identifying atypical products and to identify contaminant resonances. Soft-independent modelling of class analogy (SIMCA) was used to compare 1 H NMR profiles of genuine products (obtained from the manufacturer) against retail products spiked in the laboratory with impurities. The benefits of using feature selection for extracting contaminant NMR frequencies were also assessed. Using example impurities (paraquat, p-cresol and glyphosate) NMR spectra were analysed using multivariate methods resulting in detection limits of approximately 0.075, 0.2, and 0.06 mM for p-cresol, paraquat and glyphosate, respectively. These detection limits are shown to be approximately 100-fold lower than the minimum lethal dose for paraquat. The methodology presented here is used to assess the composition of complex matrices for the presence of contaminating molecules without a priori knowledge of the nature of potential contaminants. The ability to detect if a sample does not fit into the expected profile without recourse to multiple targeted analyses is a valuable tool for incident detection and forensic applications

  11. Therapeutic Potential of Selectively Targeting the α2C-Adrenoceptor in Cognition, Depression, and Schizophrenia—New Developments and Future Perspective

    Directory of Open Access Journals (Sweden)

    Madeleine Monique Uys

    2017-08-01

    Full Text Available α2A- and α2C-adrenoceptors (ARs are the primary α2-AR subtypes involved in central nervous system (CNS function. These receptors are implicated in the pathophysiology of psychiatric illness, particularly those associated with affective, psychotic, and cognitive symptoms. Indeed, non-selective α2-AR blockade is proposed to contribute toward antidepressant (e.g., mirtazapine and atypical antipsychotic (e.g., clozapine drug action. Both α2C- and α2A-AR share autoreceptor functions to exert negative feedback control on noradrenaline (NA release, with α2C-AR heteroreceptors regulating non-noradrenergic transmission (e.g., serotonin, dopamine. While the α2A-AR is widely distributed throughout the CNS, α2C-AR expression is more restricted, suggesting the possibility of significant differences in how these two receptor subtypes modulate regional neurotransmission. However, the α2C-AR plays a more prominent role during states of low endogenous NA activity, while the α2A-AR is relatively more engaged during states of high noradrenergic tone. Although augmentation of conventional antidepressant and antipsychotic therapy with non-selective α2-AR antagonists may improve therapeutic outcome, animal studies report distinct yet often opposing roles for the α2A- and α2C-ARs on behavioral markers of mood and cognition, implying that non-selective α2-AR antagonism may compromise therapeutic utility both in terms of efficacy and side-effect liability. Recently, several highly selective α2C-AR antagonists have been identified that have allowed deeper investigation into the function and utility of the α2C-AR. ORM-13070 is a useful positron emission tomography ligand, ORM-10921 has demonstrated antipsychotic, antidepressant, and pro-cognitive actions in animals, while ORM-12741 is in clinical development for the treatment of cognitive dysfunction and neuropsychiatric symptoms in Alzheimer’s disease. This review will emphasize the importance and

  12. Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy

    Directory of Open Access Journals (Sweden)

    Paul A. Dayton

    2006-07-01

    Full Text Available Lipid-coated perfluorocarbon nanodroplets are submicrometer-diameter liquid-filled droplets with proposed applications in molecularly targeted therapeutics and ultrasound (US imaging. Ultrasonic molecular imaging is unique in that the optimal application of these agents depends not only on the surface chemistry, but also on the applied US field, which can increase receptor-ligand binding and membrane fusion. Theory and experiments are combined to demonstrate the displacement of perfluorocarbon nanoparticles in the direction of US propagation, where a traveling US wave with a peak pressure on the order of megapascals and frequency in the megahertz range produces a particle translational velocity that is proportional to acoustic intensity and increases with increasing center frequency. Within a vessel with a diameter on the order of hundreds of micrometers or larger, particle velocity on the order of hundreds of micrometers per second is produced and the dominant mechanism for droplet displacement is shown to be bulk fluid streaming. A model for radiation force displacement of particles is developed and demonstrates that effective particle displacement should be feasible in the microvasculature. In a flowing system, acoustic manipulation of targeted droplets increases droplet retention. Additionally, we demonstrate the feasibility of US-enhanced particle internalization and therapeutic delivery.

  13. Targeted Capture and High-Throughput Sequencing Using Molecular Inversion Probes (MIPs).

    Science.gov (United States)

    Cantsilieris, Stuart; Stessman, Holly A; Shendure, Jay; Eichler, Evan E

    2017-01-01

    Molecular inversion probes (MIPs) in combination with massively parallel DNA sequencing represent a versatile, yet economical tool for targeted sequencing of genomic DNA. Several thousand genomic targets can be selectively captured using long oligonucleotides containing unique targeting arms and universal linkers. The ability to append sequencing adaptors and sample-specific barcodes allows large-scale pooling and subsequent high-throughput sequencing at relatively low cost per sample. Here, we describe a "wet bench" protocol detailing the capture and subsequent sequencing of >2000 genomic targets from 192 samples, representative of a single lane on the Illumina HiSeq 2000 platform.

  14. Cortical Activation during Landmark-Centered vs. Gaze-Centered Memory of Saccade Targets in the Human: An FMRI Study

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2017-06-01

    Full Text Available A remembered saccade target could be encoded in egocentric coordinates such as gaze-centered, or relative to some external allocentric landmark that is independent of the target or gaze (landmark-centered. In comparison to egocentric mechanisms, very little is known about such a landmark-centered representation. Here, we used an event-related fMRI design to identify brain areas supporting these two types of spatial coding (i.e., landmark-centered vs. gaze-centered for target memory during the Delay phase where only target location, not saccade direction, was specified. The paradigm included three tasks with identical display of visual stimuli but different auditory instructions: Landmark Saccade (remember target location relative to a visual landmark, independent of gaze, Control Saccade (remember original target location relative to gaze fixation, independent of the landmark, and a non-spatial control, Color Report (report target color. During the Delay phase, the Control and Landmark Saccade tasks activated overlapping areas in posterior parietal cortex (PPC and frontal cortex as compared to the color control, but with higher activation in PPC for target coding in the Control Saccade task and higher activation in temporal and occipital cortex for target coding in Landmark Saccade task. Gaze-centered directional selectivity was observed in superior occipital gyrus and inferior occipital gyrus, whereas landmark-centered directional selectivity was observed in precuneus and midposterior intraparietal sulcus. During the Response phase after saccade direction was specified, the parietofrontal network in the left hemisphere showed higher activation for rightward than leftward saccades. Our results suggest that cortical activation for coding saccade target direction relative to a visual landmark differs from gaze-centered directional selectivity for target memory, from the mechanisms for other types of allocentric tasks, and from the directionally

  15. Challenges of the Targeting Approach to Social Protection: An ...

    African Journals Online (AJOL)

    2017-05-01

    May 1, 2017 ... they devoted their entire consumption budget to food. ... The programme is funded from general tax revenue, donations from the Department ..... challenges of LEAP as a selective targeted approach to social protection in ...

  16. Domain-Specific Control of Selective Attention

    Science.gov (United States)

    Lin, Szu-Hung; Yeh, Yei-Yu

    2014-01-01

    Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources. PMID:24866977

  17. First- and Second-Line Targeted Systemic Therapy in Hepatocellular Carcinoma—An Update on Patient Selection and Response Evaluation

    Directory of Open Access Journals (Sweden)

    Johann von Felden

    2016-11-01

    Full Text Available Advanced hepatocellular carcinoma (HCC with vascular invasion and/or extrahepatic spread and preserved liver function, according to stage C of the Barcelona Clinic Liver Cancer (BCLC classification, has a dismal prognosis. The multi-targeted tyrosine-kinase receptor inhibitor (TKI sorafenib is the only proven active substance in systemic HCC therapy for first-line treatment. In this review, we summarize current aspects in patient selection and management of side effects, and provide an update on response evaluation during first-line sorafenib therapy. Since second-line treatment options have been improved with the successful completion of the RESORCE trial, demonstrating a survival benefit for second-line treatment with the TKI regorafenib, response monitoring during first-line therapy will be critical to deliver optimal systemic therapy in HCC. To this regard, specific side effects, in particular worsening of arterial hypertension and diarrhea, might suggest treatment response during first-line sorafenib therapy; however, clear predictive clinical markers, as well as laboratory test or serum markers, are not established. Assessment of radiologic response according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST is helpful to identify patients who do not benefit from sorafenib treatment.

  18. Supramolecular Chemistry of Selective Anion Recognition for Anions of Environmental Relevance

    International Nuclear Information System (INIS)

    Bowman-James, K.; Wilson, G.; Moyer, B. A.

    2004-01-01

    This project involves the design and synthesis of receptors for oxoanions of environmental importance, including emphasis on high level and low activity waste. Target anions have included primarily oxoanions and a study of the basic concepts behind selective binding of target anions. A primary target has been sulfate because of its deleterious influence on the vitrification of tank wastes

  19. A computational method for identification of vaccine targets from protein regions of conserved human leukocyte antigen binding

    DEFF Research Database (Denmark)

    Olsen, Lars Rønn; Simon, Christian; Kudahl, Ulrich J.

    2015-01-01

    Background: Computational methods for T cell-based vaccine target discovery focus on selection of highly conserved peptides identified across pathogen variants, followed by prediction of their binding of human leukocyte antigen molecules. However, experimental studies have shown that T cells often...... target diverse regions in highly variable viral pathogens and this diversity may need to be addressed through redefinition of suitable peptide targets. Methods: We have developed a method for antigen assessment and target selection for polyvalent vaccines, with which we identified immune epitopes from...... variable regions, where all variants bind HLA. These regions, although variable, can thus be considered stable in terms of HLA binding and represent valuable vaccine targets. Results: We applied this method to predict CD8+ T-cell targets in influenza A H7N9 hemagglutinin and significantly increased...

  20. Novel β-lactamase-random peptide fusion libraries for phage display selection of cancer cell-targeting agents suitable for enzyme prodrug therapy

    Science.gov (United States)

    Shukla, Girja S.; Krag, David N.

    2010-01-01

    Novel phage-displayed random linear dodecapeptide (X12) and cysteine-constrained decapeptide (CX10C) libraries constructed in fusion to the amino-terminus of P99 β-lactamase molecules were used for identifying β-lactamase-linked cancer cell-specific ligands. The size and quality of both libraries were comparable to the standards of other reported phage display systems. Using the single-round panning method based on phage DNA recovery, we identified severalβ-lactamase fusion peptides that specifically bind to live human breast cancer MDA-MB-361 cells. The β-lactamase fusion to the peptides helped in conducting the enzyme activity-based clone normalization and cell-binding screening in a very time- and cost-efficient manner. The methods were suitable for 96-well readout as well as microscopic imaging. The success of the biopanning was indicated by the presence of ~40% cancer cell-specific clones among recovered phages. One of the binding clones appeared multiple times. The cancer cell-binding fusion peptides also shared several significant motifs. This opens a new way of preparing and selecting phage display libraries. The cancer cell-specific β-lactamase-linked affinity reagents selected from these libraries can be used for any application that requires a reporter for tracking the ligand molecules. Furthermore, these affinity reagents have also a potential for their direct use in the targeted enzyme prodrug therapy of cancer. PMID:19751096

  1. Evolution of boldness and life-history in response to selective harvesting

    DEFF Research Database (Denmark)

    Andersen, Ken Haste; Marty, Lise; Arlinghaus, Robert

    2018-01-01

    Whether intensive harvesting alters the behavioral repertoire of exploited fishes is currently unknown, but plausible. We extend a fish life-history model to account for boldness as a personality trait that affects foraging intensity, which affects energy intake and risk from predation and fishing...... gear. We systematically investigate life-history and behavioral trait evolution along the boldness–timidity axis in response to the full range of common selectivity and exploitation patterns in fisheries. In agreement with previous studies, we find that any type of harvesting selects for fast life...... histories and that merely elevated, yet unselective, fishing mortality favors boldness. We also find that timid-selective fishing (which can be expected in species targeted by active gear types) selects for increased boldness. By contrast, increased timidity is predicted when fishing targets bolder...

  2. Role of Fabrication on Materials Compatibility in APT Target/Blanket

    International Nuclear Information System (INIS)

    Iyer, N.; Louthan, M.R. Jr.; Dunn, K.; Fisher, D.L.

    1998-09-01

    This paper summarizes several of the options associated with the fabrication of selected target/blanket components. In addition, the materials characterization technologies required to validate these components performance is presented

  3. Selection-for-action in visual search

    NARCIS (Netherlands)

    Hannus, A; Cornelissen, FW; Lindemann, O; Bekkering, H

    2005-01-01

    Grasping an object rather than pointing to it enhances processing of its orientation but not its color. Apparently, visual discrimination is selectively enhanced for a behaviorally relevant feature. In two experiments we investigated the limitations and targets of this bias. Specifically, in

  4. The development of molecularly targeted anticancer therapies: an Eli Lilly and Company perspective.

    Science.gov (United States)

    Perry, William L; Weitzman, Aaron

    2005-03-01

    The ability to identify activated pathways that drive the growth and progression of cancer and to develop specific and potent inhibitors of key proteins in these pathways promises to dramatically change the treatment of cancer: A patient's cancer could be characterized at the molecular level and the information used to select the best treatment options. The development of successful therapies not only requires extensive target validation, but also new approaches to evaluating drug efficacy in animal models and in the clinic compared to the development of traditional cytotoxic agents. This article highlights Eli Lilly and Company's approach to developing targeted therapies, from target identification and validation through evaluation in the clinic. A selection of drugs in the Lilly Oncology pipeline is also discussed.

  5. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  6. Categorization difficulty modulates the mediated route for response selection in task switching.

    Science.gov (United States)

    Schneider, Darryl W

    2017-12-22

    Conflict during response selection in task switching is indicated by the response congruency effect: worse performance for incongruent targets (requiring different responses across tasks) than for congruent targets (requiring the same response). The effect can be explained by dual-task processing in a mediated route for response selection, whereby targets are categorized with respect to both tasks. In the present study, the author tested predictions for the modulation of response congruency effects by categorization difficulty derived from a relative-speed-of-processing hypothesis. Categorization difficulty was manipulated for the relevant and irrelevant task dimensions in a novel spatial task-switching paradigm that involved judging the locations of target dots in a grid, without repetition of dot configurations. Response congruency effects were observed and they varied systematically with categorization difficulty (e.g., being larger when irrelevant categorization was easy than when it was hard). These results are consistent with the relative-speed-of-processing hypothesis and suggest that task-switching models that implement variations of the mediated route for response selection need to address the time course of categorization.

  7. Identification of recently selected mutations driven by artificial selection in hanwoo (korean cattle).

    Science.gov (United States)

    Lim, Dajeong; Gondro, Cedric; Park, Hye Sun; Cho, Yong Min; Chai, Han Ha; Seong, Hwan Hoo; Yang, Bo Suk; Hong, Seong Koo; Chang, Won Kyung; Lee, Seung Hwan

    2013-05-01

    Hanwoo have been subjected over the last seventy years to intensive artificial selection with the aim of improving meat production traits such as marbling and carcass weight. In this study, we performed a signature of selection analysis to identify recent positive selected regions driven by a long-term artificial selection process called a breeding program using whole genome SNP data. In order to investigate homozygous regions across the genome, we estimated iES (integrated Extended Haplotype Homozygosity SNP) for the each SNPs. As a result, we identified two highly homozygous regions that seem to be strong and/or recent positive selection. Five genes (DPH5, OLFM3, S1PR1, LRRN1 and CRBN) were included in this region. To go further in the interpretation of the observed signatures of selection, we subsequently concentrated on the annotation of differentiated genes defined according to the iES value of SNPs localized close or within them. We also described the detection of the adaptive evolution at the molecular level for the genes of interest. As a result, this analysis also led to the identification of OLFM3 as having a strong signal of selection in bovine lineage. The results of this study indicate that artificial selection which might have targeted most of these genes was mainly oriented towards improvement of meat production.

  8. Identification of Recently Selected Mutations Driven by Artificial Selection in Hanwoo (Korean Cattle

    Directory of Open Access Journals (Sweden)

    Dajeong Lim

    2013-05-01

    Full Text Available Hanwoo have been subjected over the last seventy years to intensive artificial selection with the aim of improving meat production traits such as marbling and carcass weight. In this study, we performed a signature of selection analysis to identify recent positive selected regions driven by a long-term artificial selection process called a breeding program using whole genome SNP data. In order to investigate homozygous regions across the genome, we estimated iES (integrated Extended Haplotype Homozygosity SNP for the each SNPs. As a result, we identified two highly homozygous regions that seem to be strong and/or recent positive selection. Five genes (DPH5, OLFM3, S1PR1, LRRN1 and CRBN were included in this region. To go further in the interpretation of the observed signatures of selection, we subsequently concentrated on the annotation of differentiated genes defined according to the iES value of SNPs localized close or within them. We also described the detection of the adaptive evolution at the molecular level for the genes of interest. As a result, this analysis also led to the identification of OLFM3 as having a strong signal of selection in bovine lineage. The results of this study indicate that artificial selection which might have targeted most of these genes was mainly oriented towards improvement of meat production.

  9. Analysis of phage Mu DNA transposition by whole-genome Escherichia coli tiling arrays reveals a complex relationship to distribution of target selection protein B, transcription and chromosome architectural elements.

    Science.gov (United States)

    Ge, Jun; Lou, Zheng; Cui, Hong; Shang, Lei; Harshey, Rasika M

    2011-09-01

    Of all known transposable elements, phage Mu exhibits the highest transposition efficiency and the lowest target specificity. In vitro, MuB protein is responsible for target choice. In this work, we provide a comprehensive assessment of the genome-wide distribution of MuB and its relationship to Mu target selection using high-resolution Escherichia coli tiling DNA arrays. We have also assessed how MuB binding and Mu transposition are influenced by chromosome-organizing elements such as AT-rich DNA signatures, or the binding of the nucleoid-associated protein Fis, or processes such as transcription. The results confirm and extend previous biochemical and lower resolution in vivo data. Despite the generally random nature of Mu transposition and MuB binding, there were hot and cold insertion sites and MuB binding sites in the genome, and differences between the hottest and coldest sites were large. The new data also suggest that MuB distribution and subsequent Mu integration is responsive to DNA sequences that contribute to the structural organization of the chromosome.

  10. GAP1, a novel selection and counter-selection marker for multiple gene disruptions in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Hansen, J.

    2000-01-01

    the GAP1 gene. This is caused by recombination between two Salmonella typuimurium hisG direct repeats embracing GAP1, and will result in a sub-population of gap1 cells. Such cells are selected on a medium containing D-histidine, and may subsequently be used for a second gene disruption. Hence, multiple...... flanked by short (60 bp) stretches of the gene in question. Through homologous recombination, the cassette will integrate into the target gene, which is thus replaced by GAP1, and mutants are selected for on minimal L-citrulline medium. When propagated under non-selective conditions, some cells will lose...... gene disruptions can be made fast, cheaply and easily in a gap1 strain, with two positive selection steps for each disruption. Copyright (C) 2000 John Wiley & Sons, Ltd....

  11. Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality.

    Science.gov (United States)

    Hussain, Netha; Alt Murphy, Margit; Sunnerhagen, Katharina S

    2018-01-01

    Kinematic analysis using virtual reality (VR) environment provides quantitative assessment of upper limb movements. This technique has rarely been used in evaluating motor function in stroke despite its availability in stroke rehabilitation. To determine the discriminative validity of VR-based kinematics during target-to-target pointing task in individuals with mild or moderate arm impairment following stroke and in healthy controls. Sixty-seven participants with moderate (32-57 points) or mild (58-65 points) stroke impairment as assessed with Fugl-Meyer Assessment for Upper Extremity were included from the Stroke Arm Longitudinal study at the University of Gothenburg-SALGOT cohort of non-selected individuals within the first year of stroke. The stroke groups and 43 healthy controls performed the target-to-target pointing task, where 32 circular targets appear one after the other and disappear when pointed at by the haptic handheld stylus in a three-dimensional VR environment. The kinematic parameters captured by the stylus included movement time, velocities, and smoothness of movement. The movement time, mean velocity, and peak velocity were discriminative between groups with moderate and mild stroke impairment and healthy controls. The movement time was longer and mean and peak velocity were lower for individuals with stroke. The number of velocity peaks, representing smoothness, was also discriminative and significantly higher in both stroke groups (mild, moderate) compared to controls. Movement trajectories in stroke more frequently showed clustering (spider's web) close to the target indicating deficits in movement precision. The target-to-target pointing task can provide valuable and specific information about sensorimotor impairment of the upper limb following stroke that might not be captured using traditional clinical scale. The trial was registered with register number NCT01115348 at clinicaltrials.gov, on May 4, 2010. URL: https://clinicaltrials.gov/ct2

  12. Upper Limb Kinematics in Stroke and Healthy Controls Using Target-to-Target Task in Virtual Reality

    Directory of Open Access Journals (Sweden)

    Netha Hussain

    2018-05-01

    Full Text Available BackgroundKinematic analysis using virtual reality (VR environment provides quantitative assessment of upper limb movements. This technique has rarely been used in evaluating motor function in stroke despite its availability in stroke rehabilitation.ObjectiveTo determine the discriminative validity of VR-based kinematics during target-to-target pointing task in individuals with mild or moderate arm impairment following stroke and in healthy controls.MethodsSixty-seven participants with moderate (32–57 points or mild (58–65 points stroke impairment as assessed with Fugl-Meyer Assessment for Upper Extremity were included from the Stroke Arm Longitudinal study at the University of Gothenburg—SALGOT cohort of non-selected individuals within the first year of stroke. The stroke groups and 43 healthy controls performed the target-to-target pointing task, where 32 circular targets appear one after the other and disappear when pointed at by the haptic handheld stylus in a three-dimensional VR environment. The kinematic parameters captured by the stylus included movement time, velocities, and smoothness of movement.ResultsThe movement time, mean velocity, and peak velocity were discriminative between groups with moderate and mild stroke impairment and healthy controls. The movement time was longer and mean and peak velocity were lower for individuals with stroke. The number of velocity peaks, representing smoothness, was also discriminative and significantly higher in both stroke groups (mild, moderate compared to controls. Movement trajectories in stroke more frequently showed clustering (spider’s web close to the target indicating deficits in movement precision.ConclusionThe target-to-target pointing task can provide valuable and specific information about sensorimotor impairment of the upper limb following stroke that might not be captured using traditional clinical scale.Trial registration detailsThe trial was registered with register number

  13. Effects of Target Attributes on Children's Patterns of Referential Under- and Overspecification

    Science.gov (United States)

    Charest, Monique; Johnston, Judith R.

    2016-01-01

    We examined the effects of object attributes on children's descriptive patterns in a referential communication task. Thirty preschoolers described object pairs that were selected by the experimenter. The targets were defined by shared size or colour, and differed on the non-target dimension in half of the trials. The children also completed a…

  14. Decoys Selection in Benchmarking Datasets: Overview and Perspectives

    Science.gov (United States)

    Réau, Manon; Langenfeld, Florent; Zagury, Jean-François; Lagarde, Nathalie; Montes, Matthieu

    2018-01-01

    Virtual Screening (VS) is designed to prospectively help identifying potential hits, i.e., compounds capable of interacting with a given target and potentially modulate its activity, out of large compound collections. Among the variety of methodologies, it is crucial to select the protocol that is the most adapted to the query/target system under study and that yields the most reliable output. To this aim, the performance of VS methods is commonly evaluated and compared by computing their ability to retrieve active compounds in benchmarking datasets. The benchmarking datasets contain a subset of known active compounds together with a subset of decoys, i.e., assumed non-active molecules. The composition of both the active and the decoy compounds subsets is critical to limit the biases in the evaluation of the VS methods. In this review, we focus on the selection of decoy compounds that has considerably changed over the years, from randomly selected compounds to highly customized or experimentally validated negative compounds. We first outline the evolution of decoys selection in benchmarking databases as well as current benchmarking databases that tend to minimize the introduction of biases, and secondly, we propose recommendations for the selection and the design of benchmarking datasets. PMID:29416509

  15. Artificial neural network study on organ-targeting peptides

    Science.gov (United States)

    Jung, Eunkyoung; Kim, Junhyoung; Choi, Seung-Hoon; Kim, Minkyoung; Rhee, Hokyoung; Shin, Jae-Min; Choi, Kihang; Kang, Sang-Kee; Lee, Nam Kyung; Choi, Yun-Jaie; Jung, Dong Hyun

    2010-01-01

    We report a new approach to studying organ targeting of peptides on the basis of peptide sequence information. The positive control data sets consist of organ-targeting peptide sequences identified by the peroral phage-display technique for four organs, and the negative control data are prepared from random sequences. The capacity of our models to make appropriate predictions is validated by statistical indicators including sensitivity, specificity, enrichment curve, and the area under the receiver operating characteristic (ROC) curve (the ROC score). VHSE descriptor produces statistically significant training models and the models with simple neural network architectures show slightly greater predictive power than those with complex ones. The training and test set statistics indicate that our models could discriminate between organ-targeting and random sequences. We anticipate that our models will be applicable to the selection of organ-targeting peptides for generating peptide drugs or peptidomimetics.

  16. Contextual cueing effects despite spatially cued target locations.

    Science.gov (United States)

    Schankin, Andrea; Schubö, Anna

    2010-07-01

    Reaction times (RT) to targets are faster in repeated displays relative to novel ones when the spatial arrangement of the distracting items predicts the target location (contextual cueing). It is assumed that visual-spatial attention is guided more efficiently to the target resulting in reduced RTs. In the present experiment, contextual cueing even occurred when the target location was previously peripherally cued. Electrophysiologically, repeated displays elicited an enhanced N2pc component in both conditions and resulted in an earlier onset of the stimulus-locked lateralized readiness potential (s-LRP) in the cued condition and in an enhanced P3 in the uncued condition relative to novel displays. These results indicate that attentional guidance is less important than previously assumed but that other cognitive processes, such as attentional selection (N2pc) and response-related processes (s-LRP, P3) are facilitated by context familiarity.

  17. A novel heterogeneous training sample selection method on space-time adaptive processing

    Science.gov (United States)

    Wang, Qiang; Zhang, Yongshun; Guo, Yiduo

    2018-04-01

    The performance of ground target detection about space-time adaptive processing (STAP) decreases when non-homogeneity of clutter power is caused because of training samples contaminated by target-like signals. In order to solve this problem, a novel nonhomogeneous training sample selection method based on sample similarity is proposed, which converts the training sample selection into a convex optimization problem. Firstly, the existing deficiencies on the sample selection using generalized inner product (GIP) are analyzed. Secondly, the similarities of different training samples are obtained by calculating mean-hausdorff distance so as to reject the contaminated training samples. Thirdly, cell under test (CUT) and the residual training samples are projected into the orthogonal subspace of the target in the CUT, and mean-hausdorff distances between the projected CUT and training samples are calculated. Fourthly, the distances are sorted in order of value and the training samples which have the bigger value are selective preference to realize the reduced-dimension. Finally, simulation results with Mountain-Top data verify the effectiveness of the proposed method.

  18. A Dynamic and Adaptive Selection Radar Tracking Method Based on Information Entropy

    Directory of Open Access Journals (Sweden)

    Ge Jianjun

    2017-12-01

    Full Text Available Nowadays, the battlefield environment has become much more complex and variable. This paper presents a quantitative method and lower bound for the amount of target information acquired from multiple radar observations to adaptively and dynamically organize the detection of battlefield resources based on the principle of information entropy. Furthermore, for minimizing the given information entropy’s lower bound for target measurement at every moment, a method to dynamically and adaptively select radars with a high amount of information for target tracking is proposed. The simulation results indicate that the proposed method has higher tracking accuracy than that of tracking without adaptive radar selection based on entropy.

  19. Novel Mitochondria-Targeted Furocoumarin Derivatives as Possible Anti-Cancer Agents

    Directory of Open Access Journals (Sweden)

    Andrea Mattarei

    2018-04-01

    Full Text Available Targeting small molecules to appropriate subcellular compartments is a way to increase their selectivity and effectiveness while minimizing side effects. This can be accomplished either by stably incorporating specific “homing” properties into the structure of the active principle, or by attaching to it a targeting moiety via a labile linker, i.e., by producing a “targeting pro-drug.” Mitochondria are a recognized therapeutic target in oncology, and blocking the population of the potassium channel Kv1.3 residing in the inner mitochondrial membrane (mtKv1.3 has been shown to cause apoptosis of cancerous cells expressing it. These concepts have led us to devise novel, mitochondria-targeted, membrane-permeant drug candidates containing the furocoumarin (psoralenic ring system and the triphenylphosphonium (TPP lipophilic cation. The strategy has proven effective in various cancer models, including pancreatic ductal adenocarcinoma, melanoma, and glioblastoma, stimulating us to devise further novel molecules to extend and diversify the range of available drugs of this type. New compounds were synthesized and tested in vitro; one of them—a prodrug in which the coumarinic moiety and the TPP group are linked by a bridge comprising a labile carbonate bond system—proved quite effective in in vitro cytotoxicity assays. Selective death induction is attributed to inhibition of mtKv1.3. This results in oxidative stress, which is fatal for the already-stressed malignant cells. This compound may thus be a candidate drug for the mtKv1.3-targeting therapeutic approach.

  20. Defining the Role of BTLA in Breast Cancer Immunosurveillance and Selective Targeting of the BTLA-HVEM-LIGHT Constimulatory System

    Science.gov (United States)

    2011-05-01

    noted below. Briefly, allogeneic P815 (H-2Kd) or syngeneic EL4 (H-2Kb) target cells were labeled with 1 M CFSE. Target cells were suspended in...not observed toward syngeneic (H-2Kb) EL4 cell targets (data not shown). The mean SEM of three mice per group is shown. Table I. Global gene...noted below. Briefly, allogeneic P815 (H-2Kd) or syngeneic EL4 (H-2Kb) target cells were labeled with 1 M CFSE. Target cells were suspended in medium at