WorldWideScience

Sample records for heterotic string theory

  1. E(lementary) Strings in Six-Dimensional Heterotic F-Theory

    OpenAIRE

    Choi, Kang-Sin; Rey, Soo-Jong

    2017-01-01

    Using E-strings, we can analyze not only six-dimensional superconformal field theories but also probe vacua of non-perturabative heterotic string. We study strings made of D3-branes wrapped on various two-cycles in the global F-theory setup. We claim that E-strings are elementary in the sense that various combinations of E-strings can form M-strings as well as heterotic strings and new kind of strings, called G-strings. Using them, we show that emissions and combinations of heterotic small in...

  2. Heterotic string solutions and coset conformal field theories

    CERN Document Server

    Giveon, Amit; Tseytlin, Arkady A

    1993-01-01

    We discuss solutions of the heterotic string theory which are analogous to bosonic and superstring backgrounds related to coset conformal field theories. A class of exact `left-right symmetric' solutions is obtained by supplementing the metric, antisymmetric tensor and dilaton of the superstring solutions by the gauge field background equal to the generalised Lorentz connection with torsion. As in the superstring case, these backgrounds are $\\a'$-independent, i.e. have a `semiclassical' form. The corresponding heterotic string sigma model is obtained from the combination of the (1,0) supersymmetric gauged WZNW action with the action of internal fermions coupled to the target space gauge field. The pure (1,0) supersymmetric gauged WZNW theory is anomalous and does not describe a consistent heterotic string solution. We also find (to the order $\\alpha'^3$) a two-dimensional perturbative heterotic string solution with the trivial gauge field background. To the leading order in $\\alpha'$ it coincides with the kno...

  3. EFFECTIVE ACTIONS FOR HETEROTIC STRING THEORY

    NARCIS (Netherlands)

    SUELMANN, H

    Heterotic String Theory is an attempt to construct a description of nature that is more satisfying than the Standard Model. A major problem is that it is very difficult to do explicit calculations in string theory. Therefore, it is useful to construct a 'normal' field theory that approximates HST.

  4. Heterotic cosmic strings

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Krause, Axel

    2006-01-01

    We show that all three conditions for the cosmological relevance of heterotic cosmic strings, the right tension, stability and a production mechanism at the end of inflation, can be met in the strongly coupled M-theory regime. Whereas cosmic strings generated from weakly coupled heterotic strings have the well-known problems posed by Witten in 1985, we show that strings arising from M5-branes wrapped around 4-cycles (divisors) of a Calabi-Yau in heterotic M-theory compactifications solve these problems in an elegant fashion

  5. Heterotic String/F-theory Duality from Mirror Symmetry

    CERN Document Server

    Berglund, Per

    1998-01-01

    We use local mirror symmetry in type IIA string compactifications on Calabi-Yau n+1 folds $X_{n+1}$ to construct vector bundles on (possibly singular) elliptically fibered Calabi-Yau n-folds Z_n. The interpretation of these data as valid classical solutions of the heterotic string compactified on Z_n proves F-theory/heterotic duality at the classical level. Toric geometry is used to establish a systematic dictionary that assigns to each given toric n+1-fold $X_{n+1}$ a toric n fold Z_n together with a specific family of sheafs on it. This allows for a systematic construction of phenomenologically interesting d=4 N=1 heterotic vacua, e.g. on deformations of the tangent bundle, with grand unified and SU(3)\\times SU(2) gauge groups. As another application we find non-perturbative gauge enhancements of the heterotic string on singular Calabi-Yau manifolds and new non-perturbative dualities relating heterotic compactifications on different manifolds.

  6. sigma model approach to the heterotic string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1985-09-01

    Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in α', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs

  7. New infinite-dimensional hidden symmetries for heterotic string theory

    International Nuclear Information System (INIS)

    Gao Yajun

    2007-01-01

    The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected

  8. Amplitude relations in heterotic string theory and Einstein-Yang-Mills

    Energy Technology Data Exchange (ETDEWEB)

    Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut, Am Mühlenberg 1, D-14476 Potsdam (Germany)

    2016-11-11

    We present all-multiplicity evidence that the tree-level S-matrix of gluons and gravitons in heterotic string theory can be reduced to color-ordered single-trace amplitudes of the gauge multiplet. Explicit amplitude relations are derived for up to three gravitons, up to two color traces and an arbitrary number of gluons in each case. The results are valid to all orders in the inverse string tension α{sup ′} and generalize to the ten-dimensional superamplitudes which preserve 16 supercharges. Their field-theory limit results in an alternative proof of the recently discovered relations between Einstein-Yang-Mills amplitudes and those of pure Yang-Mills theory. Similarities and differences between the integrands of the Cachazo-He-Yuan formulae and the heterotic string are investigated.

  9. Confusing the heterotic string

    Science.gov (United States)

    Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.

    1986-10-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.

  10. Confusing the heterotic string

    International Nuclear Information System (INIS)

    Benett, D.L.; Mizrachi, L.

    1986-01-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8 's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model. (orig.)

  11. Confusing the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Benett, D.L.; Brene, N.; Nielsen, H.B.; Mizrachi, L.

    1986-10-02

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E/sub 8/'s of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E/sub 8/ only, thereby removing the shadow world from the original model.

  12. The heterotic string

    International Nuclear Information System (INIS)

    Gross, D.J.

    1986-01-01

    Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories

  13. On the cosmological constant in the heterotic string theory

    International Nuclear Information System (INIS)

    Gava, E.; Iengo, R.

    1987-01-01

    We examine the possible physical assumptions which can be made in the heterotic string theory in order to derive the vanishing of the cosmological constant within the theory of modular forms on the moduli space. It seems that more mathematical information is needed to reach a definite result. (author)

  14. Heterotic string construction

    International Nuclear Information System (INIS)

    Schellekens, A.N.

    1989-01-01

    In this paper an elementary introduction to the principles of four-dimensional string construction will be given. Although the emphasis is on lattice constructions, almost all results have further, and often quite straightforward generalizations to other constructions. Since heterotic strings look phenomenologically more promising than type-II theories the authors only consider the former, although everything can easily be generalized to type-II theories. Some additional aspects of lattice constructions are discussed, and an extensive review can be found

  15. Calabi-Yau compactifications of non-supersymmetric heterotic string theory

    International Nuclear Information System (INIS)

    Blaszczyk, Michael; Groot Nibbelink, Stefan

    2015-07-01

    Phenomenological explorations of heterotic strings have conventionally focused primarily on the E 8 x E 8 theory. We consider smooth compactifications of all three ten-dimensional heterotic theories to exhibit the many similarities between the non-supersymmetric SO(16) x SO(16) theory and the related supersymmetric E 8 x E 8 and SO(32) theories. In particular, we exploit these similarities to determine the bosonic and fermionic spectra of Calabi-Yau compactifications with line bundles of the nonsupersymmetric string. We use elements of four-dimensional supersymmetric effective field theory to characterize the non-supersymmetric action at leading order and determine the Green-Schwarz induced axion-couplings. Using these methods we construct a non-supersymmetric Standard Model(SM)-like theory. In addition, we show that it is possible to obtain SM-like models from the standard embedding using at least an order four Wilson line. Finally, we make a proposal of the states that live on five branes in the SO(16) x SO(16) theory and find under certain assumptions the surprising result that anomaly factorization only admits at most a single brane solution.

  16. Instantons, hypermultiplets and the heterotic string

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Melnikov, Ilarion V.; Sethi, Savdeep

    2007-01-01

    Hypermultiplet couplings in type IIA string theory on a Calabi-Yau space can be quantum corrected by D2-brane instantons wrapping special Lagrangian cycles. On the other hand, hypermultiplet couplings in the heterotic string on a K3 surface are corrected by world-sheet instantons wrapping curves. In a class of examples, we relate these two sets of instanton corrections. We first present an analogue of the c-map for the heterotic string via a dual flux compactification of M-theory. Using this duality, we propose two ways of capturing quantum corrections to hypermultiplets. We then use the orientifold limit of certain F-theory compactifications to relate curves in K3 to special Lagrangians in dual type IIA compactifications. We conclude with some results from perturbative string theory for hypermultiplet F-terms and a conjecture about the topology of brane instantons

  17. Exploring the web of heterotic string theories using anomalies

    International Nuclear Information System (INIS)

    Ruehle, Fabian

    2013-07-01

    We investigate how anomalies can be used to infer relations among different descriptions of heterotic string theory. Starting from the observation that the construction mechanism of heterotic orbifold compactifications considered up to now prevents them from being resolved into fully smooth Calabi-Yau compactification manifolds, we use a new mechanism to obtain an orbifold which does not suffer from the aforementioned limitations. We explain in general how to resolve orbifolds into smooth Calabi-Yau using toric geometry and gauged linear sigma models. The latter allow for studying the theory in various other regions of the string moduli space as well, which unveils interesting intermediate geometries. By following anomalies through the different regimes, we can match the orbifold theories to their smooth Calabi-Yau counterparts. In the process, we investigate discrete R and non-R orbifold symmetries and propose a mechanism for studying their fate in other regions of the moduli space. Finally, we introduce a novel anomaly cancelation mechanism in gauged linear sigma models, which manifests itself in target space as a description of compactification geometries with torsion and Neveu-Schwarz five branes.

  18. Exploring the web of heterotic string theories using anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Ruehle, Fabian

    2013-07-15

    We investigate how anomalies can be used to infer relations among different descriptions of heterotic string theory. Starting from the observation that the construction mechanism of heterotic orbifold compactifications considered up to now prevents them from being resolved into fully smooth Calabi-Yau compactification manifolds, we use a new mechanism to obtain an orbifold which does not suffer from the aforementioned limitations. We explain in general how to resolve orbifolds into smooth Calabi-Yau using toric geometry and gauged linear sigma models. The latter allow for studying the theory in various other regions of the string moduli space as well, which unveils interesting intermediate geometries. By following anomalies through the different regimes, we can match the orbifold theories to their smooth Calabi-Yau counterparts. In the process, we investigate discrete R and non-R orbifold symmetries and propose a mechanism for studying their fate in other regions of the moduli space. Finally, we introduce a novel anomaly cancelation mechanism in gauged linear sigma models, which manifests itself in target space as a description of compactification geometries with torsion and Neveu-Schwarz five branes.

  19. Non-supersymmetric flux compactifications of heterotic string- and M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Held, Johannes Georg Joseph

    2012-05-08

    This dissertation is concerned with non-supersymmetric vacua of string theory in the supergravity (SUGRA) approach. This approach is the effective description of string theory at low energies. The concrete field of research that is treated here is heterotic E{sub 8} x E{sub 8} string theory at weak and at strong coupling, respectively. In the strong coupling limit the theory is described by eleven-dimensional SUGRA with two ten-dimensional boundaries (heterotic M-Theory). The transition to the weak coupling limit is governed by the restricted space dimension, whose length tends to zero for weak coupling such that the two boundaries get identified with each other. The resulting theory is ten-dimensional E{sub 8} x E{sub 8} SUGRA. In the context of this heterotic SUGRA, at first six of the former nine space-dimensions are compactified, and then, in the presence of non-vanishing background flux, conditions for unbroken supersymmetry (SUSY) in four space-time dimensions are analyzed. Afterwards, a violation of one of the necessary SUSY conditions is allowed. An essential ingredient, necessary for this to work, is the presence of flux. This kind of SUSY-breaking leads to severe constraints on the compact six-dimensional manifold, which can be satisfied by fiber bundles with two-dimensional fiber and four-dimensional base. In simple examples one can stabilize the expectation value of the dilaton as well as the volume of the fiber, whereas the volume of the base remains undetermined. Furthermore, the effect of a fermionic condensate is analyzed. The expected additional SUSY-breaking can be observed, and it is shown that the breaking induced by the flux can not be canceled by the contributions from the condensate. The end of this thesis is concerned with the discussion of the strong coupling limit of the previously found examples. To analyze this, it is necessary to rewrite the action of heterotic M-theory as a sum of quadratic terms, which vanish once SUSY is imposed

  20. Constructing 5d orbifold grand unified theories from heterotic strings

    International Nuclear Information System (INIS)

    Kobayashi, Tatsuo; Raby, Stuart; Zhang Renjie

    2004-01-01

    A three-generation Pati-Salam model is constructed by compactifying the heterotic string on a particular T 6 /Z 6 Abelian symmetric orbifold with two discrete Wilson lines. The compactified space is taken to be the Lie algebra lattice G 2 -bar SU(3)-bar SO(4). When one dimension of the SO(4) lattice is large compared to the string scale, this model reproduces many features of a 5d SO(10) grand unified theory compactified on an S 1 /Z 2 orbifold. (Of course, with two large extra dimensions we can obtain a 6d SO(10) grand unified theory.) We identify the orbifold parities and other ingredients of the orbifold grand unified theories in the string model. Our construction provides a UV completion of orbifold grand unified theories, and gives new insights into both field theoretical and string theoretical constructions

  1. Connecting the ambitwistor and the sectorized heterotic strings

    Science.gov (United States)

    Azevedo, Thales; Jusinskas, Renann Lipinski

    2017-10-01

    The sectorized description of the (chiral) heterotic string using pure spinors has been misleadingly viewed as an infinite tension string. One evidence for this fact comes from the tree level 3-point graviton amplitude, which we show to contain the usual Einstein term plus a higher curvature contribution. After reintroducing a dimensionful parameter ℓ in the theory, we demonstrate that the heterotic model is in fact two-fold, depending on the choice of the supersymmetric sector, and that the spectrum also contains one massive (open string like) multiplet. By taking the limit ℓ → ∞, we finally show that the ambitwistor string is recovered, reproducing the unexpected heterotic state in Mason and Skinner's RNS description.

  2. Kahler stabilized, modular invariant heterotic string models

    International Nuclear Information System (INIS)

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-01-01

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Bintruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed

  3. Dyonic black hole in heterotic string theory

    International Nuclear Information System (INIS)

    Jatkar, D.P.; Mukherji, S.

    1997-01-01

    We study some features of the dyonic black hole solution in heterotic string theory on a six-torus. This solution has 58 parameters. Of these, 28 parameters denote the electric charge of the black hole, another 28 correspond to the magnetic charge, and the other two parameters are the mass and the angular momentum of the black hole. We discuss the extremal limit and show that in various limits it reduces to the known black hole solutions. The solutions saturating the Bogomolnyi bound are identified. An explicit solution is presented for the non-rotating dyonic black hole. (orig.)

  4. Discrete symmetries in the heterotic-string landscape

    International Nuclear Information System (INIS)

    Athanasopoulos, P

    2015-01-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ 2 × ℤ 2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories. (paper)

  5. Discrete symmetries in the heterotic-string landscape

    Science.gov (United States)

    Athanasopoulos, P.

    2015-07-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.

  6. One loop tadpole in heterotic string field theory

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian; Sachs, Ivo

    2017-11-01

    We compute the off-shell 1-loop tadpole amplitude in heterotic string field theory. With a special choice of cubic vertex, we show that this amplitude can be computed exactly. We obtain explicit and elementary expressions for the Feynman graph decomposition of the moduli space, the local coordinate map at the puncture as a function of the modulus, and the b-ghost insertions needed for the integration measure. Recently developed homotopy algebra methods provide a consistent configuration of picture changing operators. We discuss the consequences of spurious poles for the choice of picture changing operators.

  7. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  8. Massive neutral particles on heterotic string theory

    International Nuclear Information System (INIS)

    Olivares, Marco; Villanueva, J.R.

    2013-01-01

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter α, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic p-Weierstrass function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in α, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q s un ≅ 0.728 [Km]=0.493 M s un. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time. (orig.)

  9. Massive neutral particles on heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Olivares, Marco [Pontificia Universidad de Catolica de Valparaiso, Instituto de Fisica, Valparaiso (Chile); Villanueva, J.R. [Universidad de Valparaiso, Departamento de Fisica y Astronomia, Valparaiso (Chile); Centro de Astrofisica de Valparaiso, Valparaiso (Chile)

    2013-12-15

    The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter {alpha}, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic p-Weierstrass function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in {alpha}, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q{sub s}un {approx_equal} 0.728 [Km]=0.493 M{sub s}un. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time. (orig.)

  10. Cosmological constant versus free energy for heterotic strings

    International Nuclear Information System (INIS)

    Alvarez, E.; Osorio, M.A.R.

    1988-01-01

    A detailed analysis is made of the modular-invariant formulation of the free energy of heterotic strings. Several instances are pointed out in which a duality formula can be obtained, and its physical implications are discussed. The interplay between the free energy of a given heterotic string and the cosmological constant of the toroidal compactification of another heterotic string is emphasized. (orig.)

  11. (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories

    International Nuclear Information System (INIS)

    Groot Nibbelink, Stefan

    2015-09-01

    We perform model searches on smooth Calabi-Yau compactifications for both the supersymmetric E 8 x E 8 and SO(32) as well as for the non-supersymmetric SO(16) x SO(16) heterotic strings simultaneously. We consider line bundle backgrounds on both favorable CICYs with relatively small h 11 and the Schoen manifold. Using Gram matrices we systematically analyze the combined consequences of the Bianchi identities and the tree-level Donaldson-Uhlenbeck-Yau equations inside the Kaehler cone. In order to evaluate the model building potential of the three heterotic theories on the various geometries, we perform computer-aided scans. We have generated a large number of GUT-like models (up to over a few hundred thousand on the various geometries for the three heterotic theories) which become (MS)SM-like upon using a freely acting Wilson line. For all three heterotic theories we present tables and figures summarizing the potentially phenomenologically interesting models which were obtained during our model scans.

  12. Exophobic Quasi-Realistic Heterotic String Vacua

    CERN Document Server

    Assel, Benjamin; Faraggi, Alon E; Kounnas, Costas; Rizos, John

    2009-01-01

    We demonstrate the existence of heterotic-string vacua that are free of massless exotic fields. The need to break the non-Abelian GUT symmetries in k=1 heterotic-string models by Wilson lines, while preserving the GUT embedding of the weak-hypercharge and the GUT prediction sin^2\\theta_w(M(GUT))=3/8, necessarily implies that the models contain states with fractional electric charge. Such states are severely restricted by observations, and must be confined or sufficiently massive and diluted. We construct the first quasi-realistic heterotic-string models in which the exotic states do not appear in the massless spectrum, and only exist, as they must, in the massive spectrum. The SO(10) GUT symmetry is broken to the Pati-Salam subgroup. Our PS heterotic-string models contain adequate Higgs representations to break the GUT and electroweak symmetry, as well as colour Higgs triplets that can be used for the missing partner mechanism. By statistically sampling the space of Pati-Salam vacua we demonstrate the abundan...

  13. On the elliptic genus of three E-strings and heterotic strings

    International Nuclear Information System (INIS)

    Cai, Wenhe; Huang, Min-xin; Sun, Kaiwen

    2015-01-01

    A precise formula for the elliptic genus of three E-strings is presented. The related refined free energy coincides with the result calculated from topological string on local half K3 Calabi-Yau threefold up to genus twelve. The elliptic genus of three heterotic strings computed from M9 domain walls matches with the result from orbifold formula to high orders. This confirms the n=3 case of the recent conjecture that n pairs of E-strings can recombine into n heterotic strings.

  14. Heterotic strings on homogeneous spaces

    International Nuclear Information System (INIS)

    Israel, D.; Kounnas, C.; Orlando, D.; Petropoulos, P.M.

    2005-01-01

    We construct heterotic string backgrounds corresponding to families of homogeneous spaces as exact conformal field theories. They contain left cosets of compact groups by their maximal tori supported by NS-NS 2-forms and gauge field fluxes. We give the general formalism and modular-invariant partition functions, then we consider some examples such as SU(2)/U(1)∝S 2 (already described in a previous paper) and the SU(3)/U(1) 2 flag space. As an application we construct new supersymmetric string vacua with magnetic fluxes and a linear dilaton. (Abstract Copyright [2005], Wiley Periodicals, Inc.)

  15. Anomaly, fluxes and (2,0) heterotic-string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Joe; Papadopoulos, George; Tsimpis, Dimitrios [Department of Mathematics, King' s College London, Strand, London WC2R 2LS (United Kingdom)]. E-mail: tsimpis@fy.chalmers.se

    2003-06-01

    We compute the corrections to heterotic-string backgrounds with (2,0) world-sheet supersymmetry, up to two loops in sigma-model perturbation theory. We investigate the conditions for these backgrounds to preserve spacetime supersymmetry and we find that a sufficient requirement for consistency is the applicability of the {partial_derivative} {partial_derivative}-bar-lemma. In particular, we investigate the {alpha}' corrections to (2,0) heterotic-string compactifications and we find that the Calabi-Yau geometry of the internal space is deformed to a hermitean one. We show that at first order in {alpha}', the heterotic anomaly-cancellation mechanism does not induce any lifting of moduli. We explicitly compute the corrections to the conifold and to the U(n)-invariant Calabi-Yau metric at first order in {alpha}'. We also find a generalization of the gauge-field equations, compatible with the Donaldson equations on conformally-balanced hermitean manifolds. (author)

  16. Anomaly, fluxes and (2,0) heterotic-string compactifications

    International Nuclear Information System (INIS)

    Gillard, Joe; Papadopoulos, George; Tsimpis, Dimitrios

    2003-01-01

    We compute the corrections to heterotic-string backgrounds with (2,0) world-sheet supersymmetry, up to two loops in sigma-model perturbation theory. We investigate the conditions for these backgrounds to preserve spacetime supersymmetry and we find that a sufficient requirement for consistency is the applicability of the ∂ ∂-bar-lemma. In particular, we investigate the α' corrections to (2,0) heterotic-string compactifications and we find that the Calabi-Yau geometry of the internal space is deformed to a hermitean one. We show that at first order in α', the heterotic anomaly-cancellation mechanism does not induce any lifting of moduli. We explicitly compute the corrections to the conifold and to the U(n)-invariant Calabi-Yau metric at first order in α'. We also find a generalization of the gauge-field equations, compatible with the Donaldson equations on conformally-balanced hermitean manifolds. (author)

  17. Heterotic-type II string duality and the H-monopole problem

    CERN Document Server

    Girardello, L; Zaffaroni, A

    1996-01-01

    Since T-duality has been proved only perturbatively and most of the heterotic states map into solitonic, non-perturbative, type II states, the 6-dimensional string-string duality between the heterotic string and the type II string is not sufficient to prove the S-duality of the former, in terms of the known T-duality of the latter. We nevertheless show in detail that perturbative T-duality, together with the heterotic-type II duality, does imply the existence of heterotic H-monopoles, with the correct multiplicity and multiplet structure. This construction is valid at a generic point in the moduli space of heterotic toroidal compactifications.

  18. Lattice classification of the four-dimensional heterotic strings

    International Nuclear Information System (INIS)

    Balog, J.; Forgacs, P.; Vecsernyes, P.; Horvath, Z.

    1987-06-01

    A lattice slicing procedure is proposed which leads to the classification of all four-dimensional chiral heterotic strings based on Conway and Sloane's 22-dimensional self-dual Euclidean lattices. By reversing this procedure it is possible to construct all these theories. (author)

  19. Seesaw neutrinos from the heterotic string

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Ramos-Sanchez, S.; Ratz, M.

    2007-03-01

    We study the possibility of realizing the neutrino seesaw mechanism in the E 8 x E 8 heterotic string. In particular, we consider its Z 6 orbifold compactifications leading to the supersymmetric standard model gauge group and matter content. We find that these models possess all the necessary ingredients for the seesaw mechanism, including the required Dirac Yukawa couplings and large Majorana mass terms. We argue that this situation is quite common in heterotic orbifolds. In contrast to the conventional seesaw of grand unified theories (GUTs), no large GUT representations are needed to generate the Majorana mass terms. The total number of right-handed neutrinos can be very large, up to O(100). (orig.)

  20. A heterotic N=2 string with space-time supersymmetry

    International Nuclear Information System (INIS)

    Bellucci, S.; Galajinsky, A.; Lechtenfeld, O.

    2001-02-01

    It is reconsidered the issue of embedding space-time fermions into the four dimensional N=2 world-sheet supersymmetric string. A new heterotic theory is constructed, taking the right-movers from the N =4 topological extension of the conventional N=2 string but a c=0 conformal field theory supporting target-space supersymmetry for the left-moving sector. The global bosonic symmetry of the full formalism proves to be U(1,1), just as in the usual N=2 string. Quantization reveals a spectrum of only two physical states, one boson and one fermion, which fall in a multiplet of (1,0) supersymmetry

  1. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  2. Anomaly cancellation in effective supergravity theories from the heterotic string: Two simple examples

    Science.gov (United States)

    Gaillard, Mary K.; Leedom, Jacob

    2018-02-01

    We use Pauli-Villars regularization to evaluate the conformal and chiral anomalies in the effective field theories from Z3 and Z7 compactifications of the heterotic string without Wilson lines. We show that parameters for Pauli-Villars chiral multiplets can be chosen in such a way that the anomaly is universal in the sense that its coefficient depends only on a single holomorphic function of the three diagonal moduli. It is therefore possible to cancel the anomaly by a generalization of the four-dimensional Green-Schwarz mechanism. In particular we are able to reproduce the results of a string calculation of the four-dimensional chiral anomaly for these two models.

  3. The confusion mechanism and the heterotic string

    International Nuclear Information System (INIS)

    Bennett, D.L.; Mizrachi, L.; Nielsen, H.B.; Brene, N.

    1987-01-01

    The confusion mechanism introduced earlier in connection with the gauge glass model is here discussed in the context of field theories involving symmetry groups which have outer automorphisms. The heterotic string with an E 8 x E 8 symmetry may be influenced by confusion with the result that only one E 8 group survives and the shadow world disappears. (orig.)

  4. The confusion mechanism and the heterotic string

    International Nuclear Information System (INIS)

    Bennett, D.L.; Nielsen, H.B.; Brene, N.; Mizrachi, L.

    1986-01-01

    The confusion mechanism introduced earlier in connection with the gauge glass model is here discussed in the context of field theories involving symmetry groups which have outer automorphisms. The heterotic string with an E 8 8xE 8 symmetry may be influence by confusion with the result that only one E 8 group survives and the shadow world disappears. (author)

  5. Covariant heterotic strings and odd self-dual lattices

    International Nuclear Information System (INIS)

    Lerche, W.; Luest, D.

    1987-01-01

    We investigate the implications of modular invariance for covariantly formulated heterotic strings. It is shown that modular invariant heterotic strings are characterized by odd self-dual lorentzian lattices which include charges of the bosonized superconformal ghosts. The proof of modular invariance involves the anomaly in the ghost number current in a crucial way. (orig.)

  6. The crystallographic space groups and Heterotic string theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2009-01-01

    While the 17 planar crystallographic groups were shown to correspond to 17 two and three Stein spaces with a total dimension equal to DimE12=5α-bar o ≅685, the present work reveals that the corresponding 219 three dimensional groups leads to a total dimensionality equal to N o ≅8872 which happens to be the exact total number of massless states of the transfinite version of Heterotic super string spectrum.

  7. Anomaly cancellation in effective supergravity theories from the heterotic string: Two simple examples

    Directory of Open Access Journals (Sweden)

    Mary K. Gaillard

    2018-02-01

    Full Text Available We use Pauli–Villars regularization to evaluate the conformal and chiral anomalies in the effective field theories from Z3 and Z7 compactifications of the heterotic string without Wilson lines. We show that parameters for Pauli–Villars chiral multiplets can be chosen in such a way that the anomaly is universal in the sense that its coefficient depends only on a single holomorphic function of the three diagonal moduli. It is therefore possible to cancel the anomaly by a generalization of the four-dimensional Green–Schwarz mechanism. In particular we are able to reproduce the results of a string calculation of the four-dimensional chiral anomaly for these two models.

  8. Gauge coupling unification in heterotic string models with gauge mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Anandakrishnan, Archana; Raby, Stuart

    2011-01-01

    We calculate the weak scale minimal supersymmetric standard model spectrum starting from a heterotic string theory compactified on an anisotropic orbifold. Supersymmetry breaking is mediated by vectorlike exotics that arise naturally in heterotic string theories. The messengers that mediate supersymmetry breaking come in incomplete grand unified theory (GUT) multiplets and give rise to nonuniversal gaugino masses at the GUT scale. Models with nonuniversal gaugino masses at the GUT scale have the attractive feature of allowing for precision gauge coupling unification at the GUT scale with negligible contributions from threshold corrections near the unification scale. The unique features of this minimally supersymmetric standard model spectrum are light gluinos and also large mass differences between the lightest and the next-to-lightest neutralinos and charginos which could lead to interesting signatures at the colliders.

  9. Gravitational threshold corrections in non-supersymmetric heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-03-01

    Full Text Available We compute one-loop quantum corrections to gravitational couplings in the effective action of four-dimensional heterotic strings where supersymmetry is spontaneously broken by Scherk–Schwarz fluxes. We show that in both heterotic and type II theories of this class, no moduli dependent corrections to the Planck mass are generated. We explicitly compute the one-loop corrections to the R2 coupling and find that, despite the absence of supersymmetry, its contributions may still be organised into representations of subgroups of the modular group, and admit a universal form, determined uniquely by the multiplicities of the ground states of the theory. Moreover, similarly to the case of gauge couplings, also the gravitational sector may become strongly coupled in models which dynamically induce large volume for the extra dimensions.

  10. α'-Corrections to extremal dyonic black holes in heterotic string theory

    International Nuclear Information System (INIS)

    Sahoo, Bindusar; Sen, Ashoke

    2007-01-01

    We explicitly compute the entropy of an extremal dyonic black hole in heterotic string theory compactified on T 6 or K3 x T 2 by taking into account all the tree level four derivative corrections to the low energy effective action. For supersymmetric black holes the result agrees with the answer obtained earlier 1) by including only the Gauss-Bonnet corrections to the effective action 2) by including all terms related to the curvature squared terms via space-time supersymmetry transformation, and 3) by using general arguments based on the assumption of AdS 3 near horizon geometry and space-time supersymmetry. For non-supersymmetric extremal black holes the result agrees with the one based on the assumption of AdS 3 near horizon geometry and space-time supersymmetry of the underlying theory

  11. Introduction to string theory and string compactifications

    International Nuclear Information System (INIS)

    GarcIa-Compean, Hugo

    2005-01-01

    Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed

  12. Covarient quantization of heterotic strings in supersymmetric chiral boson formulation

    International Nuclear Information System (INIS)

    Yu, F.

    1992-01-01

    This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts

  13. Conformal symmetry and string theories

    International Nuclear Information System (INIS)

    Kumar, A.

    1987-01-01

    This thesis is devoted to the study of various aspects of the 2-dimensional conformal field theory and its applications to strings. We make a short review of the conformal field theory and its supersymmetric extension, called superconformal field theory. We present an elegant superspace formulation of these theories and solve the condition for the closure of the superconformal algebra. The we go on to classify the superconformal field theories according to these solutions. We prove that N ≥ 5 superconformal algebra, with N being the number of supersymmetries, does not have central charge. We find the primary representations of all the interesting superconformal algebra. We study the quantization of the superconformal theories and derive the constraints on the central charge of the algebra that has to be satisfied for a consistent quantum theory. This quantization process also determines the ground state energy of the system and the spectrum of the model. We study the global aspects of the conformal symmetry and its role in the construction of consistent heterotic string theories. We prove the uniqueness of heterotic superstring theories in 10 dimensions in the fermionic constructions. We show how the vertex operators are closely associated with the primary field representation of the conformal algebra. We utilize these vertex operator constructions to obtain tree amplitudes in the 10-dimensional heterotic string theory. We show by explicit calculation at the 3-point level that the scattering amplitudes derived from the heterotic superstring are same as the ones obtained from 10-dimensional supergravity theories

  14. Entropy Spectrum of Black Holes of Heterotic String Theory via Adiabatic Invariance

    Institute of Scientific and Technical Information of China (English)

    Alexis Larra? aga; Luis Cabarique; Manuel Londo? o

    2012-01-01

    Using adiabatic invariance and the Bohr-Sommerfeld quantization rule we investigate the entropy spectroscopy of two black holes of heterotic string theory,the charged GMGHS and the rotating Sen solutions.It is shown that the entropy spectrum is equally spaced in both cases,identically to the spectrum obtained before for Schwarzschild,Reissner-Nordstr?m and Kerr black holes.Since the adiabatic invariance method does not use quasinormal mode analysis,there is no need to impose the small charge or small angular momentum limits and there is no confusion on whether the real part or the imaginary part of the modes is responsible for the entropy spectrum.

  15. String Theory and M-Theory

    Science.gov (United States)

    Becker, Katrin; Becker, Melanie; Schwarz, John H.

    String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line

  16. Compactifications of heterotic strings on non-Kaehler complex manifolds II

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Dasgupta, Keshav; Green, Paul S.; Sharpe, Eric

    2004-01-01

    We continue our study of heterotic compactifications on non-Kaehler complex manifolds with torsion. We give further evidence of the consistency of the six-dimensional manifold presented earlier and discuss the anomaly cancellation and possible supergravity description for a generic non-Kaehler complex manifold using the newly proposed superpotential. The manifolds studied in our earlier papers had zero Euler characteristics. We construct new examples of non-Kaehler complex manifolds with torsion in lower dimensions, that have nonzero Euler characteristics. Some of these examples are constructed from consistent backgrounds in F-theory and therefore are solutions to the string equations of motion. We discuss consistency conditions for compactifications of the heterotic string on smooth non-Kaehler manifolds and illustrate how some results well known for Calabi-Yau compactifications, including counting the number of generations, apply to the non-Kaehler case. We briefly address various issues regarding possible phenomenological applications

  17. A solution to the decompactification problem in chiral heterotic strings

    Directory of Open Access Journals (Sweden)

    Ioannis Florakis

    2017-08-01

    Full Text Available We present a solution to the decompactification problem of gauge thresholds in chiral heterotic string theories with two large extra dimensions, where supersymmetry is spontaneously broken by the Scherk–Schwarz mechanism. Whenever the Kaluza–Klein scale that controls supersymmetry breaking is much lower than the string scale, the infinite towers of heavy states contribute non-trivially to the renormalisation of gauge couplings, which typically grow linearly with the large volume of the internal space and invalidate perturbation theory. We trace the origin of the decompactification problem to properties of the six dimensional theory obtained in the infinite volume limit and show that thresholds may instead exhibit logarithmic volume dependence and we provide the conditions for this to occur. We illustrate this mechanism with explicit string constructions where the decompactification problem does not occur.

  18. Background constraints in the infinite tension limit of the heterotic string

    Czech Academy of Sciences Publication Activity Database

    Azevedo, T.; Lipinski Jusinskas, Renann

    2016-01-01

    Roč. 2016, č. 8 (2016), s. 1-23, č. článku 133. ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : conformal field models in string theory * superstrings and heterotic strings Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  19. Low Energy Supersymmetry from the Heterotic String Landscape

    CERN Document Server

    Lebedev, O; Raby, S; Ramos-Sanchez, S; Ratz, M; Vaudrevange, P K S; Wingerter, A; Lebedev, Oleg; Nilles, Hans-Peter; Raby, Stuart; Ramos-Sanchez, Saul; Ratz, Michael; Vaudrevange, Patrick K. S.; Wingerter, Akin

    2007-01-01

    We study possible correlations between properties of the observable and hidden sectors in heterotic string theory. Specifically, we analyze the case of the Z6-II orbifold compactification which produces a significant number of models with the spectrum of the supersymmetric standard model. We find that requiring realistic features does affect the hidden sector such that hidden sector gauge group factors SU(4) and SO(8) are favoured. In the context of gaugino condensation, this implies low energy supersymmetry breaking.

  20. Supergravity duals of matrix string theory

    International Nuclear Information System (INIS)

    Morales, Jose F.; Samtleben, Henning

    2002-01-01

    We study holographic duals of type II and heterotic matrix string theories described by warped AdS 3 supergravities. By explicitly solving the linearized equations of motion around near horizon D-string geometries, we determine the spectrum of Kaluza-Klein primaries for type I, II supergravities on warped AdS 3 xS 7 . The results match those coming from the dual two-dimensional gauge theories living on the D-string worldvolumes. We briefly discuss the connections with the N=(8,8), N=(8,0) orbifold superconformal field theories to which type IIB/heterotic matrix strings flow in the infrared. In particular, we associate the dimension (h,h-bar) (32,32) twisted operator which brings the matrix string theories out from the conformal point (R; 8 ) N /S N with the dilaton profile in the supergravity background. The familiar dictionary between masses and 'scaling' dimensions of field and operators are modified by the presence of non-trivial warp factors and running dilatons. These modifications are worked out for the general case of domain wall/QFT correspondences between supergravities on warped AdS d+1 xS q geometries and super Yang-Mills theories with 16 supercharges. (author)

  1. Functional integral approach to string theories

    International Nuclear Information System (INIS)

    Sakita, B.

    1987-01-01

    Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory

  2. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  3. Heterotic M-theory, warped geometry and the cosmological constant problem

    International Nuclear Information System (INIS)

    Krause, A.

    2001-01-01

    The first part of this thesis analyzes whether a locally flat background represents a stable vacuum for the proposed heterotic M-theory. A calculation of the leading order supergravity exchange diagrams leads to the conclusion that the locally flat vacuum cannot be stable. Afterwards a comparison with the corresponding weakly coupled heterotic string amplitudes is made. Next, we consider compactifications of heterotic M-theory on a Calabi-Yau threefold, including a non-vanishing G-flux. The ensuing warped-geometry is determined completely and used to show that the variation of the Calabi-Yau volume along the orbifold direction varies quadratically with distance instead linearly as suggested by an earlier first order approximation. In the second part of this thesis we propose a mechanism for obtaining a small cosmological constant. This mechanism consists of the separation of two domain-walls, which together constitute our world, up to a distance 2l ≅1/M GUT . The resulting warped-geometry leads to an exponential suppression of the cosmological constant, which thereby can obtain its observed value without introducing a large hierarchy. An embedding of this set-up into IIB string-theory entails an SU(6) grand unified theory with a natural explanation of the Higgs doublet-triplet splitting. Finally, we examine to what extent the string-theory T-duality can influence curvature. To this aim we derive the full transformation of the curvature-tensor under T-duality. (orig.)

  4. Nonrelativistic closed string theory

    International Nuclear Information System (INIS)

    Gomis, Jaume; Ooguri, Hirosi

    2001-01-01

    We construct a Galilean invariant nongravitational closed string theory whose excitations satisfy a nonrelativistic dispersion relation. This theory can be obtained by taking a consistent low energy limit of any of the conventional string theories, including the heterotic string. We give a finite first order worldsheet Hamiltonian for this theory and show that this string theory has a sensible perturbative expansion, interesting high energy behavior of scattering amplitudes and a Hagedorn transition of the thermal ensemble. The strong coupling duals of the Galilean superstring theories are considered and are shown to be described by an eleven-dimensional Galilean invariant theory of light membrane fluctuations. A new class of Galilean invariant nongravitational theories of light-brane excitations are obtained. We exhibit dual formulations of the strong coupling limits of these Galilean invariant theories and show that they exhibit many of the conventional dualities of M theory in a nonrelativistic setting

  5. Fayet-Iliopoulos D terms in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, A.

    1987-06-01

    One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory are calculated directly in the heterotic string theory for an arbitrary compactification which preserves space-time supersymmetry at the string tree level. The result is shown to be a total derivative in the moduli space of a torus with two punctures, and hence receives contribution only from the boundary of this moduli space.

  6. Fayet-Iliopoulos D terms in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1987-06-01

    One loop scalar masses induced by Fayet-Ilipoulos D terms in string theory are calculated directly in the heterotic string theory for an arbitrary compactification which preserves space-time supersymmetry at the string tree level. The result is shown to be a total derivative in the moduli space of a torus with two punctures, and hence receives contribution only from the boundary of this moduli space

  7. Two-loop string theory on null compactifications

    International Nuclear Information System (INIS)

    Cove, Henry C.D.; Szabo, Richard J.

    2006-01-01

    We compute the two-loop contributions to the free energy in the null compactification of perturbative string theory at finite temperature. The cases of bosonic, type II and heterotic strings are all treated. The calculation exploits an explicit reductive parametrization of the moduli space of infinite-momentum frame string worldsheets in terms of branched cover instantons. Various arithmetic and physical properties of the instanton sums are described. Applications to symmetric product orbifold conformal field theories and to the matrix string theory conjecture are also briefly discussed

  8. Coset space compactification of the field theory limit of a heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.; Helayel-Neto, J.A.

    1986-07-01

    The D = 10 - E/sub 8/xE/sub 8/ field theory limit of the heterotic string is compactified on the non-symmetric coset space Sp(4)/SU(2) xU(1) that is known in the limit of decoupled gravity to give three standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D = 4. Allowing for non-vanishing fermion bilinear condensates, and assuming the conventional form of the supersymmetry transformations, the presence of a family of N = 1 supersymmetric background field configurations is proved. This requires the non-compact space to be flat: (Minkowski)/sup 4/, while the 3-form Hsub(MNP) is non-vanishing and proportional to the torsion on the internal manifold. All equations of motion, including that of the dilation, are satisfied.

  9. Towards low energy physics from the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, S.N.R.

    2008-06-15

    We investigate orbifold compactifications of the heterotic string, addressing in detail their construction, classification and phenomenological potential. Based on the insight gained from grand unification theories, we develop a successful strategy to search for models resembling the minimal supersymmetric extension of the standard model (MSSM) in Z{sub 6}-II orbifold compactifications. We find about 200 MSSM candidates with the gauge group and the exact spectrum of the MSSM, and supersymmetric vacua below the compactification scale. Among them, there are several models with the following realistic features: R-parity, seesaw suppressed neutrino masses, and intermediate scale of supersymmetry breakdown. (orig.)

  10. Sv-map between type I and heterotic sigma models

    Science.gov (United States)

    Fan, Wei; Fotopoulos, A.; Stieberger, S.; Taylor, T. R.

    2018-05-01

    The scattering amplitudes of gauge bosons in heterotic and open superstring theories are related by the single-valued projection which yields heterotic amplitudes by selecting a subset of multiple zeta value coefficients in the α‧ (string tension parameter) expansion of open string amplitudes. In the present work, we argue that this relation holds also at the level of low-energy expansions (or individual Feynman diagrams) of the respective effective actions, by investigating the beta functions of two-dimensional sigma models describing world-sheets of open and heterotic strings. We analyze the sigma model Feynman diagrams generating identical effective action terms in both theories and show that the heterotic coefficients are given by the single-valued projection of the open ones. The single-valued projection appears as a result of summing over all radial orderings of heterotic vertices on the complex plane representing string world-sheet.

  11. Anomalies and modular invariance in string theory

    International Nuclear Information System (INIS)

    Schellekens, A.N.; Warner, N.P.

    1986-01-01

    All known anomaly cancellations of heterotic string theories are derived directly from one-loop modular invariance, and are shown to be related to a property of modular functions of weight 2. Using modular invariance infinite classes of anomaly free field theories are constructed in (8m+2) dimensions for any m. A generating function is obtained for the anomalies of string-related field theories in (8m+2) dimensions. (orig.)

  12. A coset space compactification of the field theory limit of a heterotic string

    International Nuclear Information System (INIS)

    Foda, O.; Helayel-Neto, J.A.

    1986-01-01

    The D = 10 - E 8 xE 8 field theory limit of the heterotic string is compactified on the non-symmetric coset space Sp(4)/SU(2) xU(1) that is known in the limit of decoupled gravity to give three standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D = 4. Allowing for non-vanishing fermion bilinear condensates, and assuming the conventional form of the supersymmetry transformations, the presence of a family of N = 1 supersymmetric background field configurations is proved. This requires the non-compact space to be flat: (Minkowski) 4 , while the 3-form Hsub(MNP) is non-vanishing and proportional to the torsion on the internal manifold. All equations of motion, including that of the dilation, are satisfied. (author)

  13. A coset-space compactification of the field-theory limit of a heterotic string

    International Nuclear Information System (INIS)

    Foda, O.; Helayel-Neto, J.A.

    1985-06-01

    The D=10-E 8 xE 8 field-theory limit of the heterotic string is compactified on the non-symmetric coset-space Sp(4)/SU(2)xU(1), that is known - in the limit of decoupled gravity - to give 3 standard fermion generations, with SU(5)xSU(3)sub(F)xU(1)sub(F) as a gauge group in D=4. Allowing for non-vanishing fermion-bilinear condensates, and assuming the conventional form of the supersymmetry transformations, we prove the presence of a family of N=1 supersymmetric background field configurations. This requires the non-compact space to be flat: (Minkowski) 4 , while the 3-form Hsub(MNP) is non-vanishing, and proportional to the torsion on the internal manifold. All equations of motion - including that of the dilaton - are satisfied. (author)

  14. A note on flux induced superpotentials in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Melanie [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)]. E-mail: melanieb@physics.umd.edu; Constantin, Dragos [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)

    2003-08-01

    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction. (author)

  15. A note on flux induced superpotentials in string theory

    International Nuclear Information System (INIS)

    Becker, Melanie; Constantin, Dragos

    2003-01-01

    Non-vanishing fluxes in M-theory and string theory compactifications induce a superpotential in the lower dimensional theory. Gukov has conjectured the explicit form of this superpotential. We check this conjecture for the heterotic string compactified on a Calabi-Yau three-fold as well as for warped M-theory compactifications on Spin(7) holonomy manifolds, by performing a Kaluza-Klein reduction. (author)

  16. Heterotic α ’-corrections in Double Field Theory

    OpenAIRE

    Bedoya, OscarInstituto de Astronomía y Física del Espacio (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina; Marqués, Diego(Instituto de Astronomía y Física del Espacio (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina); Núñez, Carmen(Instituto de Astronomía y Física del Espacio (CONICET-UBA), Ciudad Universitaria, Buenos Aires, Argentina)

    2014-01-01

    We extend the generalized flux formulation of Double Field Theory to include all the first order bosonic contributions to the α′ expansion of the heterotic string low energy effective theory. The generalized tangent space and duality group are enhanced by α′ corrections, and the gauge symmetries are generated by the usual (gauged) generalized Lie derivative in the extended space. The generalized frame receives derivative corrections through the spin connection with torsion, which is incorpora...

  17. Topics in string theory

    Science.gov (United States)

    Gorbatov, Elie

    In the first part of the dissertation we study noncommutative field theories at finite temperature. We find evidence for winding states and observe the existence of a transition to a new phase where there is a reduction of the degrees of freedom in the non-planar sector of the theory. We emphasize that such a transition is generic and insensitive to the particulars of the UV definition of the theory. In the second part we investigate some aspects of M-theory compactifications on orbifolds. The heterotic E8 x E 8 string compactified on T4/ ZN has gauge group G x G˜ with massless states in the twisted sector charged under both factors. In the dual M-theory description on T4/ ZN x S1/Z 2 the two groups do not communicate with each other since they reside on the boundary of the eleven dimensional spacetime. This leads to a conundrum for the twisted states of the perturbative heterotic string for there does not seem to be local degrees of freedom which carry charges under both G and G˜. We propose a resolution of this apparent paradox by nonperturbative states in M-theory. In support of our argument we review the consideration of six-dimensional gauge couplings and verify the local anomaly cancellation. In order to understand the dynamical properties of these states we deform the orbifold geometry, find an equivalent string theory background, and brane engineer the low energy six-dimensional field theories. In the process we encounter many exotic and surprising phenomena which are intrinsically M-theoretic and completely invisible to the perturbative observer.

  18. Electric magnetic duality in string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1992-07-01

    The electric-magnetic duality transformation in four dimensional heterotic string theory discussed by Shapere, Trivedi and Wilczek is shown to be an exact symmetry of the equations of motion of low energy effective field theory even after including the scalar and the vector fields, arising due to compactification, in the effective field theory. Using this duality transformation we construct rotating black hole solutions in the effective field theory carrying both electric and magnetic charges. The spectrum of extremal magnetically charged black holes turn out to be similar to that of electrically charged elementary string excitations lying on the leading Regge trajectory. We also discuss the possibility that the duality symmetry is an exact symmetry of the full string theory under which electrically charged elementary string excitations get exchanged with magnetically charged soliton like solutions. This proposal might be made concrete following the suggestion of Dabholkar et. al. that fundamental strings may be regarded as soliton like classical solutions in the effective field theory. (author). 20 refs

  19. O(6,22) BPS configurations of the heterotic string

    International Nuclear Information System (INIS)

    Behrndt, K.; Kallosh, R.

    1996-01-01

    We present a static multicenter magnetic solution of toroidally compactified heterotic string theory, which is T-duality covariant. The space-time geometry depends on the mass M and on the O(6,22) norm N of the magnetic charges. For a different range of parameters the (M,N) solution includes (1) two-independent-positive-parameter extremal magnetic black holes with a nonsingular geometry in a stringy frame (a=1 black holes included), (2) a=√3 extremal black holes, and (3) singular massive and massless magnetic white holes (repulsons). The electric multicenter solution is also given in an O(6,22)-symmetric form. copyright 1996 The American Physical Society

  20. Non-linear σ-models and string theories

    International Nuclear Information System (INIS)

    Sen, A.

    1986-10-01

    The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs

  1. Topics in string theory

    International Nuclear Information System (INIS)

    Neveu, A.

    1986-01-01

    There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures

  2. Heterotic string in an arbitrary background field

    International Nuclear Information System (INIS)

    Sen, A.

    1985-01-01

    An expression for the light-cone gauge action for the first-quantized heterotic string in the presence of arbitrary background gauge, gravitational, and antisymmetric tensor fields is derived. The result is a two-dimensional local field theory with N = 1/2 supersymmetry. The constraints imposed on the background fields in order to make this theory one-loop finite are derived. These constraints are identical to the equations of motion for the massless fields at the linearized level. Finally, it is shown that if there is no background antisymmetric tensor field, and if the gauge connection is set equal to the spin connection, the effective action is that of an N = 1 supersymmetric nonlinear and N = 2 supersymmetric Georgi-Glashow models the occurrence of the fermion fractionization is the necessity; the ignorance of it results in the inconsistency in the perturbative calculation of the mass splittings among the members of the supermultiplets. The notable feature of our result is that the degeneracy due to the Jackiw-Rebbi zero mode is not independent of the one required by the supersymmetry, suggesting a nontrivial structure in embedding the topology of Higgs fields into supersymmetric gauge theories

  3. Holomorphic Yukawa couplings in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Blesneag, Stefan [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom); Buchbinder, Evgeny I. [The University of Western Australia,35 Stirling Highway, Crawley WA 6009 (Australia); Candelas, Philip [Mathematical Institute, University of Oxford,Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Lukas, Andre [Rudolf Peierls Centre for Theoretical Physics, Oxford University,1 Keble Road, Oxford, OX1 3NP (United Kingdom)

    2016-01-26

    We develop techniques, based on differential geometry, to compute holomorphic Yukawa couplings for heterotic line bundle models on Calabi-Yau manifolds defined as complete intersections in projective spaces. It is shown explicitly how these techniques relate to algebraic methods for computing holomorphic Yukawa couplings. We apply our methods to various examples and evaluate the holomorphic Yukawa couplings explicitly as functions of the complex structure moduli. It is shown that the rank of the Yukawa matrix can decrease at specific loci in complex structure moduli space. In particular, we compute the up Yukawa coupling and the singlet-Higgs-lepton trilinear coupling in the heterotic standard model described in ref. http://dx.doi.org/10.1007/JHEP06(2014)100.

  4. On the consistency and high-energy behavior of string theory

    International Nuclear Information System (INIS)

    Mende, P.F.

    1988-01-01

    In Part I, it is shown that the heterotic string is free of gauge and gravitational anomalies by showing that (a) unless the gauge group is E S x E S or Spin(32)/Z 2 or a subgroup, the internal sector partition function vanishes so there is no consistent theory; and (b) for E 8 x E 8 and Spin(32)/Z 2 compactifications, the longitudinal modes of the massless gauge particles decouple, as required by gauge invariance. We discuss the geometric interpretation for string theory when the action is invariant under a modular subgroup. In Part II, the high-energy behavior of string scattering amplitudes is studied to all orders in perturbation theory, with the aim of exploring the short-distance structure of string theory. It is shown that the sum over all Riemann surfaces is dominated by a saddle point. Consequently, the high-energy limit is universal and simple to calculate. In this limit the amplitudes fall off much faster than allowed by field theory. The dominant saddle points are identified as coming from world sheets which are Z G+1 symmetric algebraic curves, and their contribution to the scattering amplitude is evaluated for the bosonic to all orders and for the heterotic string to two-loop order. An interesting spacetime picture of the high-energy limit emerges. The issue of summing the perturbation expansion is addressed

  5. Generalized string theory mapping relations between gravity and gauge theory

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2003-01-01

    A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, linking diagrams in gravity and Yang-Mills theory, as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings

  6. String theory of Calabi-Yau compactifications

    International Nuclear Information System (INIS)

    Luetken, C.A.

    1989-01-01

    The conformal field theory description of Calabi-Yau compactifications of the heterotic superstring from 10 to 4 dimensions is outlined. The basic ideas of ordinary (bosonic) conformal field theory are explained before describing the exactly solvable N=2 superconformal minimal models which are needed in the tensor construction of certain particularly simple string vacua. Using a simple sigma-model construction of algebraic varieties and drawing on insight gained from the Landau-Ginzburg description of critical phenomena, it is explained how the critical behaviour of these 2-dimensional solvable quantum field theories with complex supersymmetry may be regarded as string compactification on a Calabi-Yau background. The virtue of this is to provide a tool for computing exact (tree level) results for strings in these highly non-trivial vacua, including all the Yukawa couplings needed in the construction of the low-energy effective field theory. (orig.)

  7. The operator formalism and contact terms in string theory

    International Nuclear Information System (INIS)

    Doyle, M.D.

    1992-01-01

    The operator formalism has proven to be a powerful tool in string theory. In particular, by making explicit the role of a choice of local coordinates (or, equivalently, a normal-ordering prescription) at vertex operator insertions, it provides a framework for understanding the insertion of very general states in both on-shell string theory and string field theory, for formulating a semirigid N = 2 geometry-based approach to topological gravity, for resolving ambiguities in fermionic string theory, and for analyzing contact interactions. The main focus of this thesis on this last application of the operator formalism, although it touches on each of the others. The first goal is the analysis of the dilaton contact terms required for the dilaton equation in the bosonic and heterotic strings. In the bosonic case, a coordinate family appropriate for a punctured sphere is given and is used to calculate dilaton two-point functions. This coordinate family is later generalized to a 'good' coordinate family appropriate for dilaton calculations on higher genus surfaces. It is found that dilaton-dilaton contact terms are improperly normalized resulting in the failure of the dilaton equation, suggesting that the zero-momentum dilaton is not the string coupling constant. This seems to be the result of a tachyon divergence. A similar calculation in the heterotic case, where there is no tachyon, shows that the dilaton contact terms are properly normalized, and that the dilaton equation and the interpretation of the dilaton as the string coupling constant goes through. The other major goal is re-examination of Green and Seiberg's work which showed that, in simple treatments of fermionic string theory, it is necessary to introduce contact interactions when vertex operators collide to avoid the failure of certain superconformal Ward identities

  8. Effective action and β-functions for the heterotic string

    International Nuclear Information System (INIS)

    Foakes, A.P.; Mohammedi, N.; Ross, D.A.

    1988-01-01

    The results of the calculation of the metric β-function for the heterotic string sigma model up to three loops are presented and it is shown that although this β-function is non vanishing it is compatible with an O((α') 2 ) effective action in which there are no terms cubic in the Riemann tensor or gauge field strength. (orig.)

  9. Heterotic brane world

    International Nuclear Information System (INIS)

    Nilles, H.-P.

    2004-01-01

    Heterotic E 8 x E 8 string theory is a promising source of grand unified model building. It can accommodate the successful aspects of grand unification while avoiding problems like doublet-triplet splitting in the Higgs sector and fast proton decay. We exploit the geometrical properties of the theory as a guideline for realistic model building. (author)

  10. Towards matter inflation in heterotic string theory

    International Nuclear Information System (INIS)

    Antusch, Stefan; Erdmenger, Johanna; Halter, Sebastian; Dutta, Koushik

    2011-02-01

    Recently, a class of inflation models in supergravity with gauge non-singlet matter fields as the inflaton has been proposed. It is based on a 'tribrid' structure in the superpotential and on a 'Heisenberg symmetry' for solving the η-problem. We suggest that a generalization of this model class may be suitable for realising inflation in heterotic orbifold compactifications, where the Heisenberg symmetry is a property of the tree-level Kaehler potential of untwisted matter fields. We discuss moduli stabilization in this setup and propose a mechanism to stabilize the modulus associated to the inflaton, which respects the symmetry in the large radius limit. Inflation ends via a waterfall phase transition, as in hybrid inflation. We give conditions which have to be satisfied for realising inflation along these lines in the matter sector of heterotic orbifolds. (orig.)

  11. Towards matter inflation in heterotic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antusch, Stefan; Erdmenger, Johanna; Halter, Sebastian [Max-Planck-Institut fuer Physik (Werner-Heisenberg-Institut), Muenchen (Germany); Dutta, Koushik [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-02-15

    Recently, a class of inflation models in supergravity with gauge non-singlet matter fields as the inflaton has been proposed. It is based on a 'tribrid' structure in the superpotential and on a 'Heisenberg symmetry' for solving the {eta}-problem. We suggest that a generalization of this model class may be suitable for realising inflation in heterotic orbifold compactifications, where the Heisenberg symmetry is a property of the tree-level Kaehler potential of untwisted matter fields. We discuss moduli stabilization in this setup and propose a mechanism to stabilize the modulus associated to the inflaton, which respects the symmetry in the large radius limit. Inflation ends via a waterfall phase transition, as in hybrid inflation. We give conditions which have to be satisfied for realising inflation along these lines in the matter sector of heterotic orbifolds. (orig.)

  12. The NMSSM and string theory

    International Nuclear Information System (INIS)

    Lebedev, Oleg; Ramos-Sanchez, Saul

    2009-12-01

    We study the possibility of constructing the NMSSM from the heterotic string. String derived NMSSMs are much more rare than MSSMs due to the extra requirement that there exist a light singlet which couples to the Higgs pairs. They share the common feature that the singlet self-interactions are typically suppressed, leading to either the ''decoupling'' or to the Peccei-Quinn limit of the NMSSM. In the latter case, the spectrum contains a light pseudoscalar which may be relevant to the MSSM fine-tuning problem.We provide a Z 6 heterotic orbifold example of the NMSSM with approximate Peccei-Quinn symmetry, whose origin lies in the string selection rules combined with our choice of the vacuum configuration. (orig.)

  13. De Sitter vacua from heterotic M-theory

    International Nuclear Information System (INIS)

    Becker, Melanie; Curio, Gottfried; Krause, Axel

    2004-01-01

    It is shown how metastable de Sitter vacua might arise from heterotic M-theory. The balancing of its two non-perturbative effects, open membrane instantons against gaugino condensation on the hidden boundary, which act with opposing forces on the interval length, is used to stabilize the orbifold modulus (dilaton) and other moduli. The non-perturbative effects break supersymmetry spontaneously through F-terms which leads to a positive vacuum energy density. In contrast to the situation for the weakly coupled heterotic string, the charged scalar matter fields receive non-vanishing vacuum expectation values and therefore masses in a phenomenologically relevant regime. It is important that in order to obtain these de Sitter vacua we are not relying on exotic effects or fine-tuning of parameters. Vacua with more realistic supersymmetry breaking scales and gravitino masses are obtained by breaking the hidden E 8 gauge group down to groups of smaller rank. Also small values for the open membrane instanton Pfaffian are favored in this respect. Finally we outline how the incorporation of additional flux superpotentials can be used to stabilize the remaining moduli

  14. An ambiguity in fermionic string perturbation theory

    International Nuclear Information System (INIS)

    Atick, J.J.; Rabin, J.M.

    1988-01-01

    Recent investigation by Verlinde and Verlinde has shown that the fermionic string loop amplitudes change by a total derivative term in the moduli space under a change of basis of the supermoduli. This ambiguity is addressed in the context of the heterotic string theory, and shown to be a consequence of an inherent ambiguity in defining integration over the variables of a Grassmann algebra - in this case the Grassmann-valued coordinates of the supermoduli space. A resolution of this ambiguity in genus-two within this formalism is also presented. (orig.)

  15. Unification of string dualities

    International Nuclear Information System (INIS)

    Sen, A.

    1997-01-01

    We argue that all conjectured dualities involving various string, M- and F-theory compactifications can be 'derived' from the conjectured duality between type I and SO(32) heterotic string theory, T-dualities and the definition of M-and F-theories. (orig.)

  16. Automorphic Forms and Mock Modular Forms in String Theory

    Science.gov (United States)

    Nazaroglu, Caner

    We study a variety of modular invariant objects in relation to string theory. First, we focus on Jacobi forms over generic rank lattices and Siegel forms that appear in N = 2, D = 4 compactifications of heterotic string with Wilson lines. Constraints from low energy spectrum and modularity are employed to deduce the relevant supersymmetric partition functions entirely. This procedure is applied on models that lead to Jacobi forms of index 3, 4, 5 as well as Jacobi forms over root lattices A2 and A3. These computations are then checked against an explicit orbifold model which can be Higgsed to the models under question. Models with a single Wilson line are then studied in detail with their relation to paramodular group Gammam as T-duality group made explicit. These results on the heterotic string side are then turned into predictions for geometric invariants using TypeII - Heterotic duality. Secondly, we study theta functions for indenite signature lattices of generic signature. Building on results in literature for signature (n-1,1) and (n-2,2) lattices, we work out the properties of generalized error functions which we call r-tuple error functions. We then use these functions to build such indenite theta functions and describe their modular completions.

  17. Four-flux and warped heterotic M-theory compactifications

    International Nuclear Information System (INIS)

    Curio, Gottfried; Krause, Axel

    2001-01-01

    In the framework of heterotic M-theory compactified on a Calabi-Yau threefold 'times' an interval, the relation between geometry and four-flux is derived beyond first order. Besides the case with general flux which cannot be described by a warped geometry one is naturally led to consider two special types of four-flux in detail. One choice shows how the M-theory relation between warped geometry and flux reproduces the analogous one of the weakly coupled heterotic string with torsion. The other one leads to a quadratic dependence of the Calabi-Yau volume with respect to the orbifold direction which avoids the problem with negative volume of the first order approximation. As in the first order analysis we still find that Newton's constant is bounded from below at just the phenomenologically relevant value. However, the bound does not require an ad hoc truncation of the orbifold-size any longer. Finally we demonstrate explicitly that to leading order in κ 2/3 no Cosmological constant is induced in the four-dimensional low-energy action. This is in accord with what one can expect from supersymmetry

  18. Supersymmetry and String Theory: Beyond the Standard Model

    International Nuclear Information System (INIS)

    Rocek, Martin

    2007-01-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review)

  19. Field redefinitions and Chern-Simons terms in the heterotic string

    International Nuclear Information System (INIS)

    Bern, Z.; Shimada, T.

    1987-07-01

    Field redefinitions in the low energy effective action of the heterotic string are discussed. A field redefinition is constructed which generates the local counterterm that transforms the Lorentz into the gravitational form of the anomaly. We also discuss the field redefinition which torsionizes the Lorentz Chern-Simons term and its relation to an amplitude matching study of the compatibility of torsion with the Gauss-Bonnet combination. (orig.)

  20. Nonperturbative flipped SU(5) vacua in heterotic M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, Alon E. E-mail: faraggi@thphys.ox.ac.uk; Garavuso, Richard E-mail: garavuso@thphys.ox.ac.uk; Isidro, Jose M. E-mail: isidro@thphys.ox.ac.uk

    2002-10-07

    The evidence for neutrino masses in atmospheric and solar neutrino experiments provides further support for the embedding of the Standard Model fermions in the chiral 16 SO(10) representation. Such an embedding is afforded by the realistic free fermionic heterotic-string models. In this paper we advance the study of these string models toward a nonperturbative analysis by generalizing the work of Donagi, Pantev, Ovrut and Waldram from the case of G=SU(2n+1) to G=SU(2n) stable holomorphic vector bundles on elliptically fibered Calabi-Yau manifolds with fundamental group Z{sub 2}. We demonstrate existence of G=SU(4) solutions with three generations and SO(10) observable gauge group over Hirzebruch base surface, whereas we show that certain classes of del Pezzo base surface do not admit such solutions. The SO(10) symmetry is broken to SU(5)xU(1) by a Wilson line. The overlap with the realistic free fermionic heterotic-string models is discussed.

  1. Super string field theory and the Wess-Zumino-Witten action

    Czech Academy of Sciences Publication Activity Database

    Erler, Theodore

    2017-01-01

    Roč. 2017, č. 10 (2017), s. 1-63, č. článku 057. ISSN 1029-8479 R&D Projects: GA MŠk EF15_003/0000437 Institutional support: RVO:68378271 Keywords : string field theory * superstrings and heterotic strings Subject RIV: BE - Theoretical Physics OBOR OECD: Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect) Impact factor: 6.063, year: 2016

  2. Thermodynamical aspect of black hole solutions in heteric string theory

    CERN Document Server

    Fujisaki, H

    2003-01-01

    Thermodynamical properties of charged rotating dilatonic black holes are discussed on the basis of the general solution of Sen in the heterotic string theory compactified on a six dimensional torus. The most probable microcanonical configuration of black holes is then described in the single-massive-mode dominance scenario.

  3. The non-minimal heterotic pure spinor string in a curved background

    Energy Technology Data Exchange (ETDEWEB)

    Chandia, Osvaldo [Facultad de Artes Liberales and Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez,Diagonal Las Torres 2640, Peñalolén, Santiago (Chile)

    2014-03-21

    We study the non-minimal pure spinor string in a curved background. We find that the minimal BRST invariance implies the existence of a non-trivial stress-energy tensor for the minimal and non-minimal variables in the heterotic curved background. We find constraint equations for the b ghost. We construct the b ghost as a solution of these constraints.

  4. N = 1 dual string pairs and their modular superpotentials

    International Nuclear Information System (INIS)

    Luest, D.

    1998-01-01

    We review the duality between heterotic and F-theory string vacua with N=1 space-time supersymmetry in eight, six and four dimensions. In particular, we discuss two chains of four-dimensional F-theory/heterotic dual string pairs, where F-theory is compactified on certain elliptic Calabi-Yau fourfolds, and the dual heterotic vacua are given by compactifications on elliptic Calabi-Yau threefolds plus the specification of the E 8 x E 8 gauge bundles. We show that the massless spectra of the dual pairs agree by using, for one chain of models, an index formula to count the heterotic bundle moduli and determine the dual F-theory spectra from the Hodge numbers of the fourfolds and of the type IIB base spaces. Moreover as a further check, we demonstrate that for one particular heterotic/F-theory dual pair the N=1 superpotentials are the same. (orig.)

  5. Field theory and strings

    International Nuclear Information System (INIS)

    Bonara, L.; Cotta-Ramusino, P.; Rinaldi, M.

    1987-01-01

    It is well-known that type I and heterotic superstring theories have a zero mass spectrum which correspond to the field content of N=1 supergravity theory coupled to supersymmetric Yang-Mills theory in 10-D. The authors study the field theory ''per se'', in the hope that simple consistency requirements will determine the theory completely once one knows the field content inherited from string theory. The simplest consistency requirements are: N=1 supersymmetry; and absence of chiral anomalies. This is what the authors discuss in this paper here leaving undetermined the question of the range of validity of the resulting field theory. As is known, a model of N=1 supergravity (SUGRA) coupled to supersymmetric Yang-Mills (SYM) theory was known in the form given by Chapline and Manton. The coupling of SUGRA to SYM was determined by the definition of the ''field strength'' 3-form H in this paper

  6. Spontaneous symmetry breaking in 4-dimensional heterotic string

    International Nuclear Information System (INIS)

    Maharana, J.

    1989-07-01

    The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs

  7. Exact string theory model of closed timelike curves and cosmological singularities

    International Nuclear Information System (INIS)

    Johnson, Clifford V.; Svendsen, Harald G.

    2004-01-01

    We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α ' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios

  8. Anomaly cancellation and smooth non-Kahler solutions in heterotic string theory

    International Nuclear Information System (INIS)

    Becker, Katrin; Becker, Melanie; Fu Jixiang; Tseng, L.-S.; Yau, S.-T.

    2006-01-01

    We show that six-dimensional backgrounds that are T 2 bundle over a Calabi-Yau two-fold base are consistent smooth solutions of heterotic flux compactifications. We emphasize the importance of the anomaly cancellation condition which can only be satisfied if the base is K3 while a T 4 base is excluded. The conditions imposed by anomaly cancellation for the T 2 bundle structure, the dilaton field, and the holomorphic stable bundles are analyzed and the solutions determined. Applying duality, we check the consistency of the anomaly cancellation constraints with those for flux backgrounds of M-theory on eight-manifolds

  9. Supersymmetric gauge theories from string theory

    International Nuclear Information System (INIS)

    Metzger, St.

    2005-12-01

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)

  10. $\\mathcal{N}=2^\\star$ from Topological Amplitudes in String Theory

    CERN Document Server

    Florakis, Ioannis

    2016-01-01

    In this paper, we explicitly construct string theory backgrounds that realise the so-called $\\mathcal N=2^\\star$ gauge theory. We prove the consistency of our models by calculating their partition function and obtaining the correct gauge theory spectrum. We further provide arguments in favour of the universality of our construction which covers a wide class of models all of which engineer the same gauge theory. We reproduce the corresponding Nekrasov partition function once the $\\Omega$-deformation is included and the appropriate field theory limit taken. This is achieved by calculating the topological amplitudes $F_g$ in the string models. In addition to heterotic and type II constructions, we also realise the mass deformation in type I theory, thus leading to a natural way of uplifting the result to the instanton sector.

  11. Heterotic moduli stabilization

    International Nuclear Information System (INIS)

    Cicoli, M.; De Alwis, S.; Colorado Univ., Boulder, CO; Westphal, A.

    2013-04-01

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of α' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10 16 GeV.

  12. Heterotic moduli stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, M. [Bologna Univ. (Italy). Dipt. Fisica ed Astronomia; INFN, Bologna (Italy); Adbus Salam ICTP, Trieste (Italy); De Alwis, S. [Adbus Salam ICTP, Trieste (Italy); Colorado Univ., Boulder, CO (United States). UCB 390 Physics Dept.; Westphal, A. [DESY Hamburg (Germany). Theory Group

    2013-04-15

    We perform a systematic analysis of moduli stabilization for weakly coupled heterotic string theory compactified on smooth Calabi-Yau three-folds. We focus on both supersymmetric and supersymmetry breaking vacua of generic (0,2) compactifications obtained by minimising the total (F+D)-term scalar potential. After reviewing how to stabilise all the geometric moduli in a supersymmetric way by including fractional fluxes, non-perturbative and threshold effects, we show that the inclusion of {alpha}' corrections leads to new de Sitter or nearly Minkowski vacua which break supersymmetry spontaneously. The minimum lies at moderately large volumes of all the geometric moduli, at perturbative values of the string coupling and at the right phenomenological value of the GUT gauge coupling. However the structure of the heterotic 3-form flux used for complex structure moduli stabilization does not contain enough freedom to tune the superpotential. This results in the generic prediction of high-scale supersymmetry breaking around the GUT scale. We finally provide a dynamical derivation of anisotropic compactifications with stabilized moduli which allow for perturbative gauge coupling unification around 10{sup 16} GeV.

  13. Entropy of non-extreme rotating black holes in string theories

    International Nuclear Information System (INIS)

    Youm, D.

    1998-01-01

    We formulate the Rindler space description of rotating black holes in string theories. We argue that the comoving frame is the natural frame for studying the thermodynamics of rotating black holes and the statistical analysis of rotating black holes gets simplified in this frame. We also calculate statistical entropies of a general class of rotating black holes in heterotic strings on tori by applying the D-brane description and the correspondence principle. We find at least a qualitative agreement between the Bekenstein-Hawking entropies and the statistical entropies of these black hole solutions. (orig.)

  14. Torsional heterotic geometries

    International Nuclear Information System (INIS)

    Becker, Katrin; Sethi, Savdeep

    2009-01-01

    We construct new examples of torsional heterotic backgrounds using duality with orientifold flux compactifications. We explain how duality provides a perturbative solution to the type I/heterotic string Bianchi identity. The choice of connection used in the Bianchi identity plays an important role in the construction. We propose the existence of a much larger landscape of compact torsional geometries using string duality. Finally, we present some quantum exact metrics that correspond to NS5-branes placed on an elliptic space. These metrics describe how torus isometries are broken by NS flux.

  15. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Traubenberg, M.R. de.

    1988-01-01

    We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt

  16. Five-brane superpotentials and heterotic/F-theory duality

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Ha, Tae-Won; Klemm, Albrecht; Klevers, Denis

    2010-01-01

    Under heterotic/F-theory duality it was argued that a wide class of heterotic five-branes is mapped into the geometry of an F-theory compactification manifold. In four-dimensional compactifications this identifies a five-brane wrapped on a curve in the base of an elliptically fibered Calabi-Yau threefold with a specific F-theory Calabi-Yau fourfold containing the blow-up of the five-brane curve. We argue that this duality can be reformulated by first constructing a non-Calabi-Yau heterotic threefold by blowing up the curve of the five-brane into a divisor with five-brane flux. Employing heterotic/F-theory duality this leads us to the construction of a Calabi-Yau fourfold and four-form flux. Moreover, we obtain an explicit map between the five-brane superpotential and an F-theory flux superpotential. The map of the open-closed deformation problem of a five-brane in a compact Calabi-Yau threefold into a deformation problem of complex structures on a dual Calabi-Yau fourfold with four-form flux provides a powerful tool to explicitly compute the five-brane superpotential.

  17. 1/4 BPS States and Non-Perturbative Couplings in N=4 String Theories

    CERN Document Server

    Lerche, W.

    1999-01-01

    We compute certain 2K+4-point one-loop couplings in the type IIA string compactified on K3 x T^2, which are related a topological index on this manifold. Their special feature is that they are sensitive to only short and intermediate BPS multiplets. The couplings derive from underlying prepotentials of the form G(T,U)=d^{2K}V ln[chi10(T,U,V)], where chi10(T,U,V) is the helicity partition function of 1/4 BPS states. In the dual heterotic string on T^6, the amplitudes describe non-perturbative gravitational corrections due to bound states of fivebrane instantons with heterotic world-sheet instantons. We argue, as a consequence, that our results give information about instanton configurations in six dimensional Sp(2k) gauge theories on T^6.

  18. Supersymmetry Constraints and String Theory on K3

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ying-Hsuan; Shao, Shu-Heng [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States); Wang, Yifan [Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Yin, Xi [Jefferson Physical Laboratory, Harvard University,Cambridge, MA 02138 (United States)

    2015-12-22

    We study supervertices in six dimensional (2,0) supergravity theories, and derive supersymmetry non-renormalization conditions on the 4- and 6-derivative four-point couplings of tensor multiplets. As an application, we obtain exact non-perturbative results of such effective couplings in type IIB string theory compactified on K3 surface, extending previous work on type II/heterotic duality. The weak coupling limit thereof, in particular, gives certain integrated four-point functions of half-BPS operators in the nonlinear sigma model on K3 surface, that depend nontrivially on the moduli, and capture worldsheet instanton contributions.

  19. Enhanced gauge symmetry in type II string theory

    International Nuclear Information System (INIS)

    Katz, S.; Ronen Plesser, M.

    1996-01-01

    We show how enhanced gauge symmetry in type II string theory compactified on a Calabi-Yau threefold arises from singularities in the geometry of the target space. When the target space of the type IIA string acquires a genus g curve C of A N-1 singularities, we find that an SU(N) gauge theory with g adjoint hypermultiplets appears at the singularity. The new massless states correspond to solitons wrapped about the collapsing cycles, and their dynamics is described by a twisted supersymmetric gauge theory on C x R 4 . We reproduce this result from an analysis of the S-dual D-manifold. We check that the predictions made by this model about the nature of the Higgs branch, the monodromy of period integrals, and the asymptotics of the one-loop topological amplitude are in agreement with geometrical computations. In one of our examples we find that the singularity occurs at strong coupling in the heterotic dual proposed by Kachru and Vafa. (orig.)

  20. Heterotic M2-branes

    Directory of Open Access Journals (Sweden)

    Neil Lambert

    2015-10-01

    Full Text Available We construct the action for N M2-branes on S1/Z2. The resulting theory has a gauge anomaly but this can be cancelled if the two fixed point planes each support 8 chiral Fermions in the fundamental of U(N. Taking the low energy limit leads to the worldsheet theory of N free heterotic strings whose quantization induces an E8 spacetime gauge symmetry on each fixed point plane. Thus this paper presents a non-abelian worldvolume analogue of the classic Hořava–Witten analysis.

  1. Classification of flipped SU(5) heterotic-string vacua

    Energy Technology Data Exchange (ETDEWEB)

    Faraggi, Alon E., E-mail: alon.faraggi@liv.ac.uk [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL (United Kingdom); Rizos, John, E-mail: irizos@uoi.gr [Department of Physics, University of Ioannina, GR45110 Ioannina (Greece); Sonmez, Hasan, E-mail: Hasan.Sonmez@liv.ac.uk [Department of Mathematical Sciences, University of Liverpool, Liverpool L69 7ZL (United Kingdom)

    2014-09-15

    We extend the classification of free fermionic heterotic-string vacua to models in which the SO(10) GUT symmetry is reduced at the string level to the flipped SU(5) subgroup. In our classification method the set of boundary condition basis vectors is fixed and the enumeration of string vacua is obtained in terms of the Generalised GSO (GGSO) projection coefficients entering the one-loop partition function. We derive algebraic expressions for the GGSO projections for all the physical states appearing in the sectors generated by the set of basis vectors. This enables the programming of the entire spectrum analysis in a computer code. For that purpose we developed two independent codes, based on FORTRAN95 and JAVA, and all results presented are confirmed by the two independent routines. We perform a statistical sampling in the space of 2{sup 44}∼10{sup 13} flipped SU(5) vacua, and scan up to 10{sup 12} GGSO configurations. Contrary to the corresponding Pati–Salam classification results, we do not find exophobic flipped SU(5) vacua with an odd number of generations. We study the structure of exotic states appearing in the three generation models, that additionally contain a viable Higgs spectrum, and demonstrate the existence of models in which all the exotic states are confined by a hidden sector non-Abelian gauge symmetry, as well as models that may admit the racetrack mechanism.

  2. Proceedings of the 14. Claude Itzykson Meeting-2009 recent advances in string theory

    International Nuclear Information System (INIS)

    Aharoni, O.; Arkani-Hamed, N.; Becker, K.; Berkovits, N.; Bern, Z.; De Boer, J.; Emparan, R.; Green, M.; Hartnoll, S.; Heckman, J.; Kachru, S.; Lambert, N.; Louis, J.; Marino, M.; Mathur, S.; McAllister, L.; McGreevy, J.; Polchinski, J.; Sen, A.; Weigand, T.

    2009-01-01

    This document is made up of the slides of the presentations. The titles of the 20 presentations are the following: 1) On d=3 Yang-Mills Chern-Simons theories with 'fractional branes' and their gravity duals; 2) Holography and the S-Matrix; 3) Torsional heterotic geometries; 4) Spin chains from the topological AdS 5 xS 5 string; 5) Harmony of Scattering Amplitudes: from N=4 Super-Yang-Mills Theory to N=8 Supergravity; 6) Quantum aspects of black holes; 7) Black-folds; 8) Supersymmetric String and Field Theory Scattering Amplitudes; 9) Quantum bosons for holographic superconductors; 10) The Point of E8 in F-theory GUTs; 11) Gauge/gravity duality and particle physics; 12) Coupling M2-branes to Background Fields; 13) Compactifications and Generalized Geometries; 14) Nonperturbative aspects of the topological string; 15) Lessons from the information paradox: 16) Inflation in String Theory; 17) Holographic descriptions of quantum liquids; 18) Holography from CFT; 19) Black hole hair removal; and 20) Type IIB GUT vacua and their F-theory uplift

  3. Origin of Abelian gauge symmetries in heterotic/F-theory duality

    International Nuclear Information System (INIS)

    Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m)×U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m)×ℤ_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required that the elliptic fibration on the heterotic side has a non-trivial Mordell-Weil group. While the number of geometrically massless U(1)’s is determined entirely by geometry on the F-theory side, on the heterotic side the correct number of U(1)’s is found by taking into account a Stückelberg mechanism in the lower-dimensional effective theory. In geometry, this corresponds to the condition that sections in the two half K3 surfaces that arise in the stable degeneration limit of F-theory can be glued together globally.

  4. Automated Systematic Generation and Exploration of Flat Direction Phenomenology in Free Fermionic Heterotic String Theory

    Science.gov (United States)

    Greenwald, Jared

    Any good physical theory must resolve current experimental data as well as offer predictions for potential searches in the future. The Standard Model of particle physics, Grand Unied Theories, Minimal Supersymmetric Models and Supergravity are all attempts to provide such a framework. However, they all lack the ability to predict many of the parameters that each of the theories utilize. String theory may yield a solution to this naturalness (or self-predictiveness) problem as well as offer a unifed theory of gravity. Studies in particle physics phenomenology based on perturbative low energy analysis of various string theories can help determine the candidacy of such models. After a review of principles and problems leading up to our current understanding of the universe, we will discuss some of the best particle physics model building techniques that have been developed using string theory. This will culminate in the introduction of a novel approach to a computational, systematic analysis of the various physical phenomena that arise from these string models. We focus on the necessary assumptions, complexity and open questions that arise while making a fully-automated at direction analysis program.

  5. Supersymmetric standard model from the heterotic string (II)

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.

    2006-06-01

    We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  6. The cosmological constant in the brane world of string theory on S{sup 1}/Z{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang Anzhong [GCAP-CASPER, Department of Physics, Baylor University, Waco, TX 76798-7316 (United States); Department of Theoretical Physics, State University of Rio de Janeiro, RJ (Brazil); LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris cedex 05 (France)], E-mail: anzhong_wang@baylor.edu; Santos, N.O. [LERMA/CNRS-FRE 2460, Universite Pierre et Marie Curie, ERGA, Boite 142, 4 Place Jussieu, 75005 Paris cedex 05 (France); School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil)

    2008-11-06

    Orbifold branes in string theory are investigated, and the general field equations both outside and on the branes are given explicitly for type II and heterotic string. The radion stability is studied using the Goldberger-Wise mechanism, and shown explicitly that it is stable. It is also found that the effective cosmological constant on each of the two branes can be easily lowered to its current observational value, using large extra dimensions. This is also true for type I string. Therefore, brane world of string theory provides a viable and built-in mechanism for solving the long-standing cosmological constant problem. Applying the formulas to cosmology, we obtain the generalized Friedmann equations on the branes.

  7. Complex world-sheets from N=2 strings

    International Nuclear Information System (INIS)

    Barbon, J.L.F.

    1996-01-01

    We study some properties of target space strings constructed from (2,1) heterotic strings. We argue that world-sheet complexification is a general property of the bosonic sector of such target world-sheets. We give a target space interpretation of this fact and relate it to the non-gaussian nature of free string field theory. We provide several one-loop calculations supporting the stringy construction of critical world-sheets in terms of (2,1) models. Using finite-temperature boundary conditions in the underlying (2,1) string we obtain non-chiral target space spin structures, and point out some of the problems arising for chiral spin structures, such as the heterotic world-sheet. To this end, we study the torus partition function of the corresponding asymmetric orbifold of the (2,1) string. (orig.)

  8. Dualities in five dimensions and charged string solutions

    International Nuclear Information System (INIS)

    Kar, S.; Maharana, J.

    1996-01-01

    We consider an eleven dimensional supergravity compactified on K3 x T 2 and show that the resulting five dimensional theory has identical massless states as that of a heterotic string compactified on a specific five torus T 5 . The strong-weak coupling duality of the five dimensional theory is argued to represent a ten dimensional Type IIA string compactified on K3 x S 1 , supporting the conjecture of string-string duality in six dimensions. In this perspective, we present a magnetically charged solution of the low energy heterotic string effective action in five dimensions with a charge defined on a three sphere S 3 due to the two form potential. We use the Poincare duality to replace the antisymmetric two form with a gauge field in the effective action and obtain a string solution with charge on a two sphere S 2 instead of that on a three sphere S 3 in the five dimensional spacetime. We note that the string-particle duality is accompanied by a change of topology from S 3 to S 2 and vice versa. (orig.)

  9. Origin of Abelian Gauge Symmetries in Heterotic/F-theory Duality

    CERN Document Server

    Cvetic, Mirjam; Klevers, Denis; Poretschkin, Maximilian; Song, Peng

    2016-01-01

    We study aspects of heterotic/F-theory duality for compactifications with Abelian gauge symmetries. We consider F-theory on general Calabi-Yau manifolds with a rank one Mordell-Weil group of rational sections. By rigorously performing the stable degeneration limit in a class of toric models, we derive both the Calabi-Yau geometry as well as the spectral cover describing the vector bundle in the heterotic dual theory. We carefully investigate the spectral cover employing the group law on the elliptic curve in the heterotic theory. We find in explicit examples that there are three different classes of heterotic duals that have U(1) factors in their low energy effective theories: split spectral covers describing bundles with S(U(m) x U(1)) structure group, spectral covers containing torsional sections that seem to give rise to bundles with SU(m) x Z_k structure group and bundles with purely non-Abelian structure groups having a centralizer in E_8 containing a U(1) factor. In the former two cases, it is required ...

  10. R-symmetries from the orbifolded heterotic string

    International Nuclear Information System (INIS)

    Schmitz, Matthias

    2014-08-01

    We examine the geometric origin of discrete R-symmetries in heterotic orbifold compactifications. By analysing the symmetries of the worldsheet instanton solutions and the underlying geometry, we obtain a scheme that allows us to systematically explore the R-symmetries arising in these compactifications. Applying this scheme to a classification of orbifold geometries, we are able to find all R-symmetries of heterotic orbifolds with Abelian point groups. We show that in the vast majority of cases, the R-symmetries found satisfy anomaly universality constraints, as required in heterotic orbifolds. Then we examine the implications of the presence of these R-symmetries on a class of phenomenologically attractive orbifold compactifications known as the heterotic mini-landscape. We use the technique of Hilbert bases in order to analyse the properties of a vacuum configuration. We find that phenomenologically viable models remain and the main attractive features of the mini-landscape are unaltered.

  11. Quantum no-scale regimes in string theory

    Science.gov (United States)

    Coudarchet, Thibaut; Fleming, Claude; Partouche, Hervé

    2018-05-01

    We show that in generic no-scale models in string theory, the flat, expanding cosmological evolutions found at the quantum level can be attracted to a "quantum no-scale regime", where the no-scale structure is restored asymptotically. In this regime, the quantum effective potential is dominated by the classical kinetic energies of the no-scale modulus and dilaton. We find that this natural preservation of the classical no-scale structure at the quantum level occurs when the initial conditions of the evolutions sit in a subcritical region of their space. On the contrary, supercritical initial conditions yield solutions that have no analogue at the classical level. The associated intrinsically quantum universes are sentenced to collapse and their histories last finite cosmic times. Our analysis is done at 1-loop, in perturbative heterotic string compactified on tori, with spontaneous supersymmetry breaking implemented by a stringy version of the Scherk-Schwarz mechanism.

  12. Heterotic particle models from various perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk, Michael I.

    2012-10-15

    We consider the compactification of heterotic string theory on toroidal orbifolds and their resolutions. In the framework of gauged linear sigma models we develop realizations of such spaces, allowing to continously vary the moduli and thus smoothly interpolate between different corners of the theory. This way all factorizable orbifold resolutions as well as some non-factorizable ones can be obtained. We find that for a given geometry there are many model which realize it as a target space, differing in their complexity. We explore regions of moduli space which otherwise would not be accessible. In particular we are interested in the orbifold regime, where exact string calculations are possible, and the large volume regime, where techniques of supergravity compactification can be applied. By comparing these two theories and matching the spectra we find evidence for non-perturbative effects which interpolate between these regimes.

  13. A Metric for Heterotic Moduli

    Science.gov (United States)

    Candelas, Philip; de la Ossa, Xenia; McOrist, Jock

    2017-12-01

    Heterotic vacua of string theory are realised, at large radius, by a compact threefold with vanishing first Chern class together with a choice of stable holomorphic vector bundle. These form a wide class of potentially realistic four-dimensional vacua of string theory. Despite all their phenomenological promise, there is little understanding of the metric on the moduli space of these. What is sought is the analogue of special geometry for these vacua. The metric on the moduli space is important in phenomenology as it normalises D-terms and Yukawa couplings. It is also of interest in mathematics, since it generalises the metric, first found by Kobayashi, on the space of gauge field connections, to a more general context. Here we construct this metric, correct to first order in {α^{\\backprime}}, in two ways: first by postulating a metric that is invariant under background gauge transformations of the gauge field, and also by dimensionally reducing heterotic supergravity. These methods agree and the resulting metric is Kähler, as is required by supersymmetry. Checking the metric is Kähler is intricate and the anomaly cancellation equation for the H field plays an essential role. The Kähler potential nevertheless takes a remarkably simple form: it is the Kähler potential of special geometry with the Kähler form replaced by the {α^{\\backprime}}-corrected hermitian form.

  14. String derived exophobic SU(6)×SU(2) GUTs

    International Nuclear Information System (INIS)

    Bernard, Laura; Faraggi, Alon E.; Glasser, Ivan; Rizos, John; Sonmez, Hasan

    2013-01-01

    With the apparent discovery of the Higgs boson, the Standard Model has been confirmed as the theory accounting for all sub-atomic phenomena. This observation lends further credence to the perturbative unification in Grand Unified Theories (GUTs) and string theories. The free fermionic formalism yielded fertile ground for the construction of quasi-realistic heterotic-string models, which correspond to toroidal Z 2 ×Z 2 orbifold compactifications. In this paper we study a new class of heterotic-string models in which the GUT group is SU(6)×SU(2) at the string level. We use our recently developed fishing algorithm to extract an example of a three generation SU(6)×SU(2) GUT model. We explore the phenomenology of the model and show that it contains the required symmetry breaking Higgs representations. We show that the model admits flat directions that produce a Yukawa coupling for a single family. The novel feature of the SU(6)×SU(2) string GUT models is that they produce an additional family universal anomaly free U(1) symmetry, and may remain unbroken below the string scale. The massless spectrum of the model is free of exotic states.

  15. Accidental symmetries and the effective Lagrangian of string theory

    International Nuclear Information System (INIS)

    Ovrut, B.A.

    1989-01-01

    In this paper the relationship between accidental worldsheet symmetries of the string generating functional and target space invariance groups is discussed. Accidental symmetries are used to derive the invariance groups and effective low energy Lagrangian for the bosonic string, and the heterotic string compactified to four-dimensions on Z N orbifolds. The necessity of a new type of Green-Schwarz mechanism, associated with the auxiliary vector field in the four-dimensional N = 1 supergravity multiplet, is shown using these methods

  16. String theory

    International Nuclear Information System (INIS)

    Chan Hongmo.

    1987-10-01

    The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)

  17. A one-loop test of string duality

    International Nuclear Information System (INIS)

    Vafa, C.

    1995-01-01

    We test Type IIA-heterotic string duality in six dimensions by showing that the sigma model anomaly of the heterotic string is generated by a combination of a tree level and a string one-loop correction on the Type IIA side. (orig.)

  18. Vanishing of the vacuum amplitude of heterotic string compactified on a tensor product of N=2 superconformal models

    International Nuclear Information System (INIS)

    Kei Ito.

    1988-07-01

    The vacuum amplitude of heterotic string compactified on a tensor product of nine copies of c=1, N=2 superconformal models is shown to vanish due to a generalized Riemann's theta identity associated with the 12x12 matrix identity t BB=6 2 I 12 , identity B ij =-5(i=j), 1(i≠j). (author). 4 refs

  19. Local grand unification in the heterotic landscape

    International Nuclear Information System (INIS)

    Schmidt, Jonas

    2009-06-01

    We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)

  20. Local grand unification in the heterotic landscape

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Jonas

    2009-07-15

    We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)

  1. N=2 type II - heterotic duality and higher derivative F-terms

    International Nuclear Information System (INIS)

    Antoniadis, I.; Narain, K.S.; Taylor, T.R.

    1995-07-01

    We test the recently conjectured duality between N-2 supersymmetric type II and heterotic string models by analyzing a class of higher dimensional interactions in the respective low-energy Lagrangians. These are F-terms of the form F g W 2g where W is the gravitational superfield. On the type II side these terms are generated at the g-loop level and in fact are given by topological partition functions of the twisted Calabi-Yan sigma model. We show that on the heterotic side these terms arise at the one-loop level. We study in detail a rank 3 example and show that the corresponding couplings, F g satisfy the same holomorphic anomaly equations as in the type II case. Moreover we study the leading singularities of F g 's on the heterotic side, near the enhanced symmetry point and show that they are universal poles of order 2g - 2 with coefficients that are given by the Euler number of the moduli space of genus-g Riemann surfaces. This confirms a recent conjecture that the physics near the conifold singularity is governed by c=1 string theory at the self-dual point. (author). 24 refs

  2. Heterotic/Type-II duality and its field theory avatars

    International Nuclear Information System (INIS)

    Kiritsis, Elias

    1999-01-01

    In these lecture notes, I will describe heterotic/type-II duality in six and four dimensions. When supersymmetry is the maximal N=4 it will be shown that the duality reduces in the field theory limit to the Montonen-Olive duality of N=4 Super Yang-Mills theory. We will consider further compactifications of type II theory on Calabi-Yau manifolds. We will understand the physical meaning of geometric conifold singularities and the dynamics of conifold transitions. When the CY manifold is a K3 fibration we will argue that the type-II ground-state is dual to the heterotic theory compactified on K3xT 2 . This allows an exact computation of the low effective action. Taking the field theory limit, α ' →0, we will recover the Seiberg-Witten non-perturbative solution of N=2 gauge theory

  3. Grand unification in the heterotic brane world

    International Nuclear Information System (INIS)

    Vaudrevange, Patrick Karl Simon

    2008-08-01

    String theory is known to be one of the most promising candidates for a uni ed description of all elementary particles and their interactions. Starting from the ten-dimensional heterotic string, we study its compactification on six-dimensional orbifolds. We clarify some important technical aspects of their construction and introduce new parameters, called generalized discrete torsion. We identify intrinsic new relations between orbifolds with and without (generalized) discrete torsion. Furthermore, we perform a systematic search for MSSM-like models in the context of Z 6 -II orbifolds. Using local GUTs, which naturally appear in the heterotic brane world, we construct about 200 MSSM candidates. We find that intermediate SUSY breaking through hidden sector gaugino condensation is preferred in this set of models. A specific model, the so-called benchmark model, is analyzed in detail addressing questions like the identification of a supersymmetric vacuum with a naturally small μ-term and proton decay. Furthermore, as vevs of twisted fields correspond to a resolution of orbifold singularities, we analyze the resolution of Z 3 singularities in the local and in the compact case. Finally, we exemplify this procedure with the resolution of a Z 3 MSSM candidate. (orig.)

  4. Grand unification in the heterotic brane world

    Energy Technology Data Exchange (ETDEWEB)

    Vaudrevange, Patrick Karl Simon

    2008-08-15

    String theory is known to be one of the most promising candidates for a uni ed description of all elementary particles and their interactions. Starting from the ten-dimensional heterotic string, we study its compactification on six-dimensional orbifolds. We clarify some important technical aspects of their construction and introduce new parameters, called generalized discrete torsion. We identify intrinsic new relations between orbifolds with and without (generalized) discrete torsion. Furthermore, we perform a systematic search for MSSM-like models in the context of Z{sub 6}-II orbifolds. Using local GUTs, which naturally appear in the heterotic brane world, we construct about 200 MSSM candidates. We find that intermediate SUSY breaking through hidden sector gaugino condensation is preferred in this set of models. A specific model, the so-called benchmark model, is analyzed in detail addressing questions like the identification of a supersymmetric vacuum with a naturally small {mu}-term and proton decay. Furthermore, as vevs of twisted fields correspond to a resolution of orbifold singularities, we analyze the resolution of Z{sub 3} singularities in the local and in the compact case. Finally, we exemplify this procedure with the resolution of a Z{sub 3} MSSM candidate. (orig.)

  5. Supersymmetric gauge theories from string theory; Theorie de jauge supersymetrique de la theorie des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Metzger, St

    2005-12-15

    This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G{sub 2}-manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G{sub 2}-manifold is known. Here we construct families of metrics on compact weak G{sub 2}-manifolds, which contain two conical singularities. Weak G{sub 2}-manifolds have properties that are similar to the ones of proper G{sub 2}-manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E{sub 8} x E{sub 8}-heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the

  6. The M theory five-brane

    International Nuclear Information System (INIS)

    Schwarz, J. H.

    1998-01-01

    BPS saturated p-branes play an important role in recent progress in understanding superstring theory and M theory. One approach to understanding the dynamics of p-branes is to formulate an effective (p+1) dimensional world-volume theory. The construction of such brane actions involves a number of interesting issues. One such issue is how to formulate the action for theories that contain chiral bosons. The two main examples, which are the M theory five-brane and the heterotic string, are described in this lecture. Also, double dimensional reduction of the M theory five-brane on K3 is shown to give the heterotic string. (Author). 32 refs

  7. M(atrix) theory on an orbifold and twisted membrane

    International Nuclear Information System (INIS)

    Kim, N.

    1997-01-01

    M(atrix) theory on an orbifold and classical two-branes therein are studied with particular emphasis on heterotic M(atrix) theory on S 1 / Z 2 relevant to strongly coupled heterotic and dual type IA string theories. By analyzing the orbifold condition on Chan-Paton factors, we show that three choices of gauge group are possible for heterotic M(atrix) theory: SO(2N), SO(2N+1) or USp(2N). By examining the area-preserving diffeomorphism that underlies the M(atrix) theory, we find that each choice of gauge group restricts the possible topologies of two-branes. The result suggests that only the choice of SO(2N) or SO(2N+1) allows open two-branes, and hence, is relevant to heterotic M(atrix) theory. We show that the requirement of both local vacuum energy cancellation and of world-sheet anomaly cancellation of the resulting heterotic string identifies supersymmetric twisted sector spectra with sixteen fundamental representation spinors from each of the two fixed points. Twisted open and closed two-brane configurations are obtained in the large N limit. (orig.)

  8. String field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1987-01-01

    In this article, the authors summarize the rapid progress in constructing string field theory actions, such as the development of the covariant BRST theory. They also present the newer geometric formulation of string field theory, from which the BRST theory and the older light cone theory can be derived from first principles. This geometric formulation allows us to derive the complete field theory of strings from two geometric principles, in the same way that general relativity and Yang-Mills theory can be derived from two principles based on global and local symmetry. The geometric formalism therefore reduces string field theory to a problem of finding an invariant under a new local gauge group they call the universal string group (USG). Thus, string field theory is the gauge theory of the universal string group in much the same way that Yang-Mills theory is the gauge theory of SU(N). The geometric formulation places superstring theory on the same rigorous group theoretical level as general relativity and gauge theory

  9. Heterotic Non-Kähler Geometries via Polystable Bundles on Calabi-Yau Threefolds

    DEFF Research Database (Denmark)

    Andreas, Bjorn; Garcia Fernandez, Mario

    2012-01-01

    In arXiv:1008.1018 it is shown that a given stable vector bundle V on a Calabi-Yau threefold X which satisfies c_2(X) = c_2(V ) can be deformed to a solution of the Strominger system and the equations of motion of heterotic string theory. In this note we extend this result to the polystable case...

  10. Flipped SU(5) from manifold compactification of the ten-dimensional heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, B.A.; Ellis, J.; Hagelin, J.S.; Ticciati, R.; Nanopoulos, D.V.

    1987-11-19

    We show that a recently proposed flipped SU(5) x U(1) GUT cannot be obtained from a conventional SO(10) GUT, nor from the heterotic string by Hosotani gauge symmetry breaking of E/sub 6/ on a manifold with (2,2) world-sheet supersymmetry. It can in principle be obtained by Hosotani gauge symmetry breaking of SO(10) on a manifold with (1,2) world-sheet supersymmetry. We identify the topological conditions under which the required chiral matter generations, Higgs multiplets, and gauge singlet fields can be light. In particular we show that non-perturbative world-sheet instanton effects neither destabilize the manifold nor give masses to the gauge singlets. The required Yukawa couplings are not forbidden by any known selection rules.

  11. Abelian gauge symmetries in F-theory and dual theories

    Science.gov (United States)

    Song, Peng

    In this dissertation, we focus on important physical and mathematical aspects, especially abelian gauge symmetries, of F-theory compactifications and its dual formulations within type IIB and heterotic string theory. F-theory is a non-perturbative formulation of type IIB string theory which enjoys important dualities with other string theories such as M-theory and E8 x E8 heterotic string theory. One of the main strengths of F-theory is its geometrization of many physical problems in the dual string theories. In particular, its study requires a lot of mathematical tools such as advanced techniques in algebraic geometry. Thus, it has also received a lot of interests among mathematicians, and is a vivid area of research within both the physics and the mathematics community. Although F-theory has been a long-standing theory, abelian gauge symmetry in Ftheory has been rarely studied, until recently. Within the mathematics community, in 2009, Grassi and Perduca first discovered the possibility of constructing elliptically fibered varieties with non-trivial toric Mordell-Weil group. In the physics community, in 2012, Morrison and Park first made a major advancement by constructing general F-theory compactifications with U(1) abelian gauge symmetry. They found that in such cases, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the blow-up of the weighted projective space P(1;1;2) at one point. Subsequent developments have been made by Cvetic, Klevers and Piragua extended the works of Morrison and Park and constructed general F-theory compactifications with U(1) x U(1) abelian gauge symmetry. They found that in the U(1) x U(1) abelian gauge symmetry case, the elliptically-fibered Calabi-Yau manifold that F-theory needs to be compactified on has its fiber being a generic elliptic curve in the del Pezzo surface dP2. In chapter 2 of this dissertation, I bring this a step further by

  12. Conformal techniques in string theory and string field theory

    International Nuclear Information System (INIS)

    Giddings, S.B.

    1987-01-01

    The application of some conformal and Riemann surface techniques to string theory and string field theory is described. First a brief review of Riemann surface techniques and of the Polyakov approach to string theory is presented. This is followed by a discussion of some features of string field theory and of its Feynman rules. Specifically, it is shown that the Feynman diagrams for Witten's string field theory respect modular invariance, and in particular give a triangulation of moduli space. The Polyakov formalism is then used to derive the Feynman rules that should follow from this theory upon gauge-fixing. It should also be possible to apply this derivation to deduce the Feynman rules for other gauge-fixed string field theories. Following this, Riemann surface techniques are turned to the problem of proving the equivalence of the Polyakov and light-cone formalisms. It is first shown that the light-cone diagrams triangulate moduli space. Then the Polyakov measure is worked out for these diagrams, and shown to equal that deduced from the light-cone gauge fixed formalism. Also presented is a short description of the comparison of physical states in the two formalisms. The equivalence of the two formalisms in particular constitutes a proof of the unitarity of the Polyakov framework for the closed bosonic string

  13. Torsion, supersymmetry, and the heterotic string

    International Nuclear Information System (INIS)

    Curtright, T.

    1985-01-01

    The dynamical effects of torsion are summarized for bosonic and supersymmetric sigma models in two spacetime dimensions. Analogous structure for the heterotic superstring is discussed, including the presence of nonlinear realizations of supersymmetry on the world-sheet. 27 refs

  14. Toward the realistic three-generation model in the (2,0) heterotic string compactification

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Murayama, A.

    1992-01-01

    In this paper, the three generation models with SUSY SO(10) or SU(5) GUTs derived from the (2,0) compactification of E 8 x E' 8 heterotic string, the massless matter field spectra at the GUT scale M X and the breaking directions of GUT symmetries are discussed. A pseudo-left-right symmetric Pati-Salam model is naturally deduced in the SUSY SO(10) GUT and shown to have an interesting property, M x ≅ M P1 , M R ≅ 10 10 GeV and M S ( the scale of superpartner masses) ≅ 10 4 GeV, as a result of the renormalization group equation analysis using the new precise LEP data

  15. Dynamical black holes in low-energy string theory

    Energy Technology Data Exchange (ETDEWEB)

    Aniceto, Pedro [Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa,Avenida Rovisco Pais 1, 1049 Lisboa (Portugal); Rocha, Jorge V. [Departament de Física Quàntica i Astrofísica, Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-05-08

    We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.

  16. Why string theory?

    CERN Document Server

    Conlon, Joseph

    2016-01-01

    Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.

  17. Multiple fibrations in Calabi-Yau geometry and string dualities

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Lara B.; Gao, Xin; Gray, James; Lee, Seung-Joo [Physics Department, Virginia Tech,Robeson Hall, Blacksburg, VA 24061 (United States)

    2016-10-19

    In this work we explore the physics associated to Calabi-Yau (CY) n-folds that can be described as a fibration in more than one way. Beginning with F-theory vacua in various dimensions, we consider limits/dualities with M-theory, type IIA, and heterotic string theories. Our results include many M-/F-theory correspondences in which distinct F-theory vacua — associated to different elliptic fibrations of the same CY n-fold — give rise to the same M-theory limit in one dimension lower. Examples include 5-dimensional correspondences between 6-dimensional theories with Abelian, non-Abelian and superconformal structure, as well as examples of higher rank Mordell-Weil geometries. In addition, in the context of heterotic/F-theory duality, we investigate the role played by multiple K3- and elliptic fibrations in known and novel string dualities in 8-, 6- and 4-dimensional theories. Here we systematically summarize nested fibration structures and comment on the roles they play in T-duality, mirror symmetry, and 4-dimensional compactifications of F-theory with G-flux. This investigation of duality structures is made possible by geometric tools developed in a companion paper http://arxiv.org/abs/1608.07554.

  18. Heterotic/type I duality and D-brane instantons

    Science.gov (United States)

    Bachas, C.; Fabre, C.; Kiritsis, E.; Obers, N. A.; Vanhove, P.

    1998-01-01

    We study heterotic/type I duality in d = 8, 9 uncompactified dimensions. We consider the special ("BPS-saturated") F4 and R4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type I side.

  19. Heterotic/type I duality and D-brane instantons

    International Nuclear Information System (INIS)

    Bachas, C.; Fabre, C.; Vanhove, P.

    1998-01-01

    We study heterotic/type I duality in d=8,9 uncompactified dimensions. We consider the special (''BPS-saturated'') F 4 and R 4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be motivated as arising from a D-brane instanton calculation on the type I side. (orig.)

  20. Heterotic / type-I duality and D-brane instantons

    CERN Document Server

    Bachas, C P; Kiritsis, Elias B; Obers, N A; Vanhove, P

    1998-01-01

    We study heterotic/type-I duality in d=8,9 uncompactified dimensions. We consider the special (``BPS saturated'') F^4 and R^4 terms in the effective one-loop heterotic action, which are expected to be non-perturbatively exact. Under the standard duality map these translate to tree-level, perturbative and non-perturbative contributions on the type I side. We check agreement with the one-loop open string calculation, and discuss the higher-order perturbative contributions, which arise because of the mild non-holomorphicities of the heterotic elliptic genus. We put the heterotic world-sheet instanton corrections in a form that can be recognized easily as arising from a D-brane instanton calculation on the type-I side.

  1. Classical and quantum aspects of BPS black holes in N=2,D=4 heterotic string compactifications

    International Nuclear Information System (INIS)

    Rey, S.-J.

    1997-01-01

    We study classical and quantum aspects of D=4, N=2 BPS black holes for T 2 compactification of D=6, N=1 heterotic string vacua. We extend dynamical relaxation phenomena of moduli fields to a background consisting of a BPS soliton or a black hole and provide a simpler but more general derivation of the Ferrara-Kallosh extremized black hole mass and entropy. We study quantum effects to the BPS black hole mass spectra and to their dynamical relaxation. We show that, despite non-renormalizability of string effective supergravity, the quantum effect modifies BPS mass spectra only through coupling constant and moduli field renormalizations. Based on target-space duality, we establish a perturbative non-renormalization theorem and obtain the exact BPS black hole mass and entropy in terms of the renormalized string loop-counting parameter and renormalized moduli fields. We show that a similar conclusion holds, in the large T 2 limit, for leading non-perturbative correction. We finally discuss implications to type-I and type-IIA Calabi-Yau black holes. (orig.)

  2. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, Andrei V

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of string theory in the modern picture of the physical world. Even though quantum field theory describes a wide range of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments which are our concern in this review. (reviews of topical problems)

  3. Covariant field theory of closed superstrings

    International Nuclear Information System (INIS)

    Siopsis, G.

    1989-01-01

    The authors construct covariant field theories of both type-II and heterotic strings. Toroidal compactification is also considered. The interaction vertices are based on Witten's vertex representing three strings interacting at the mid-point. For closed strings, the authors thus obtain a bilocal interaction

  4. Topological amplitudes in heterotic superstring theory

    International Nuclear Information System (INIS)

    Antoniadis, I.; Taylor, T.R.

    1996-06-01

    We show that certain heterotic string amplitudes are given in terms of correlators of the twisted topological (2,0) SCFT, corresponding to the internal sector of the N = 1 spacetime supersymmetric background. The genus g topological partition function F g corresponds to a term in the effective action of the form W 2g , where W is the gauge or gravitational superfield. We study also recursion relations related to holomorphic anomalies, showing that, contrary to the type II case, they involve correlators of anti-chiral superfields. The corresponding terms in the effective action are of the form W 2g II n , where II is a chiral superfield obtained by chiral projection of a general superfield. We observe that the structure of the recursion relations is that of N = 1 spacetime supersymmetry Ward identity. We give also a solution of the tree level recursion relations and discuss orbifold examples. (author). 23 refs, 2 figs

  5. String theory or field theory?

    International Nuclear Information System (INIS)

    Marshakov, A.V.

    2002-01-01

    The status of string theory is reviewed, and major recent developments - especially those in going beyond perturbation theory in the string theory and quantum field theory frameworks - are analyzed. This analysis helps better understand the role and place of experimental phenomena, it is emphasized that there are some insurmountable problems inherent in it - notably the impossibility to formulate the quantum theory of gravity on its basis - which prevent it from being a fundamental physical theory of the world of microscopic distances. It is this task, the creation of such a theory, which string theory, currently far from completion, is expected to solve. In spite of its somewhat vague current form, string theory has already led to a number of serious results and greatly contributed to progress in the understanding of quantum field theory. It is these developments, which are our concern in this review [ru

  6. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  7. Heterotic Mini-landscape in blow-up

    CERN Document Server

    Bizet, Nana Geraldine Cabo

    2013-01-01

    Localization properties of fields in compact extra dimensions are crucial ingredients for string model building, particularly in the framework of orbifold compactifications. Realistic models often require a slight deviation from the orbifold point, that can be analyzed using field theoretic methods considering (singlet) fields with nontrivial vacuum expectation values. Some of these fields correspond to blow-up modes that represent the resolution of orbifold singularities. Improving on previous analyses we give here an explicit example of the blow-up of a model from the heterotic Mini-landscape. An exact identification of the blow-up modes at various fixed points and fixed tori with orbifold twisted fields is given. We match the massless spectra and identify the blow-up modes as non-universal axions of compactified string theory. We stress the important role of the Green-Schwarz anomaly polynomial for the description of the resolution of orbifold singularities.

  8. Superstrings and the search for the theory of everything

    International Nuclear Information System (INIS)

    Peat, D.

    1988-01-01

    This book contains the following chapters: A Crisis in Physics; From Points to Strings; Nambu's String Theory; Grand Unification; Superstrings; Heterotic Strings: Two Dimensions in One; From Spinors to Twistors; Twistor Space; Twistor Gravity; and Into Deep Waters

  9. String dualities and superpotential

    International Nuclear Information System (INIS)

    Ha, Tae-Won

    2010-09-01

    The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)

  10. String dualities and superpotential

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Tae-Won

    2010-09-15

    The main objective of this thesis is the computation of the superpotential induced by D5- branes in the type IIB string theory and by five-branes in the heterotic string theory. Both superpotentials have the same functional form which is the chain integral of the holomorphic three-form. Using relative (co)homology we can unify the flux and brane superpotential. The chain integral can be seen as an example of the Abel-Jacobi map. We discuss many structures such as mixed Hodge structure which allows for the computation of Picard-Fuchs differential equations crucial for explicit computations. We blow up the Calabi-Yau threefold along the submanifold wrapped by the brane to obtain geometrically more appropriate configuration. The resulting geometry is non-Calabi-Yau and we have a canonically given divisor. This blown-up geometry makes it possible to restrict our attention to complex structure deformations. However, the direct computation is yet very difficult, thus the main tool for computation will be the lift of the brane configuration to a F-theory compactification. In F-theory, since complex structure, brane and, if present, bundlemoduli are all contained in the complex structure moduli space of the elliptic Calabi-Yau fourfold, the computation can be dramatically simplified. The heterotic/F-theory duality is extended to include the blow-up geometry and thereby used to give the blow-up geometry amore physical meaning. (orig.)

  11. Chains of N=2, D=4 heterotic type II duals

    CERN Document Server

    Aldazabal, G; Font, A; Quevedo, Fernando

    1996-01-01

    We report on a search for N=2 heterotic strings that are dual candidates of type II compactifications on Calabi-Yau threefolds described as K3 fibrations. We find many new heterotic duals by using standard orbifold techniques. The associated type II compactifications fall into chains in which the proposed duals are heterotic compactifications related one another by a sequential Higgs mechanism. This breaking in the heterotic side typically involves the sequence SU(4)\\rightarrow SU(3)\\rightarrow SU(2)\\rightarrow 0, while in the type II side the weights of the complex hypersurfaces and the structure of the K3 quotient singularities also follow specific patterns.

  12. The Infinitesimal Moduli Space of Heterotic G 2 Systems

    Science.gov (United States)

    de la Ossa, Xenia; Larfors, Magdalena; Svanes, Eirik E.

    2018-06-01

    Heterotic string compactifications on integrable G 2 structure manifolds Y with instanton bundles {(V,A), (TY,\\tilde{θ})} yield supersymmetric three-dimensional vacua that are of interest in physics. In this paper, we define a covariant exterior derivative D and show that it is equivalent to a heterotic G 2 system encoding the geometry of the heterotic string compactifications. This operator D acts on a bundle Q}=T^*Y \\oplus End(V) \\oplus End(TY)} and satisfies a nilpotency condition \\check{{D^2=0} , for an appropriate projection of D. Furthermore, we determine the infinitesimal moduli space of these systems and show that it corresponds to the finite-dimensional cohomology group H^1_{D}(Q). We comment on the similarities and differences of our result with Atiyah's well-known analysis of deformations of holomorphic vector bundles over complex manifolds. Our analysis leads to results that are of relevance to all orders in the {α'} expansion.

  13. Holomorphic couplings in non-perturbative string compactifications

    International Nuclear Information System (INIS)

    Klevers, Denis Marco

    2011-06-01

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z 3 , that is canonically constructed from the original five-brane and Calabi-Yau threefold Z 3 via a blow-up. We exploit the use of the blow-up threefold Z 3 as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z 3 as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z 3 , that is generated dynamically by the five-brane backreaction. (orig.)

  14. BPS algebras, genus zero and the heterotic Monster

    Science.gov (United States)

    Paquette, Natalie M.; Persson, Daniel; Volpato, Roberto

    2017-10-01

    In this note, we expand on some technical issues raised in (Paquette et al 2016 Commun. Number Theory Phys. 10 433-526) by the authors, as well as providing a friendly introduction to and summary of our previous work. We construct a set of heterotic string compactifications to 0  +  1 dimensions intimately related to the Monstrous moonshine module of Frenkel, Lepowsky, and Meurman (and orbifolds thereof). Using this model, we review our physical interpretation of the genus zero property of Monstrous moonshine. Furthermore, we show that the space of (second-quantized) BPS-states forms a module over the Monstrous Lie algebras mg —some of the first and most prominent examples of Generalized Kac-Moody algebras—constructed by Borcherds and Carnahan. In particular, we clarify the structure of the module present in the second-quantized string theory. We also sketch a proof of our methods in the language of vertex operator algebras, for the interested mathematician.

  15. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  16. Phenomenological aspects of heterotic orbifold models at one loop

    International Nuclear Information System (INIS)

    Birkedal-Hansen, A.; Binetruy, P.; Mambrini, Y.; Nelson, B.

    2003-01-01

    We provide a detailed study of the phenomenology of orbifold compactifications of the heterotic string within the context of supergravity effective theories. Our investigation focuses on those models where the soft Lagrangian is dominated by loop contributions to the various soft supersymmetry breaking parameters. Such models typically predict non-universal soft masses and are thus significantly different from minimal supergravity and other universal models. We consider the pattern of masses that are governed by these soft terms and investigate the implications of certain indirect constraints on supersymmetric models, such as flavor-changing neutral currents, the anomalous magnetic moment of the muon and the density of thermal relic neutralinos. These string-motivated models show novel behavior that interpolates between the phenomenology of unified supergravity models and models dominated by the superconformal anomaly

  17. Hyperbolic strings

    International Nuclear Information System (INIS)

    Popov, A.D.

    1991-01-01

    We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)

  18. Holomorphic couplings in non-perturbative string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Klevers, Denis Marco

    2011-06-15

    In this thesis we present an analysis of several aspects of four-dimensional, non-perturbative N = 1 compactifications of string theory. Our focus is on the study of brane dynamics and their effective physics as encoded in the holomorphic couplings of the low-energy N=1 effective action, most prominently the superpotential W. The thesis is divided into three parts. In part one we derive the effective action of a spacetime-filling D5-brane in generic Type IIB Calabi-Yau orientifold compactifications. In the second part we invoke tools from string dualities, namely from F-theory, heterotic/F-theory duality and mirror symmetry, for a more elaborate study of the dynamics of (p, q) 7-branes and heterotic five-branes. In this context we demonstrate exact computations of the complete perturbative effective superpotential, both due to branes and background fluxes. Finally, in the third part we present a novel geometric description of five-branes in Type IIB and heterotic M-theory Calabi-Yau compactifications via a non-Calabi-Yau threefold Z{sub 3}, that is canonically constructed from the original five-brane and Calabi-Yau threefold Z{sub 3} via a blow-up. We exploit the use of the blow-up threefold Z{sub 3} as a tool to derive open-closed Picard-Fuchs differential equations, that govern the complete effective brane and flux superpotential. In addition, we present first evidence to interpret Z{sub 3} as a flux compactification dual to the original five-brane by defining an SU(3)-structure on Z{sub 3}, that is generated dynamically by the five-brane backreaction. (orig.)

  19. AdS strings with torsion: Noncomplex heterotic compactifications

    International Nuclear Information System (INIS)

    Frey, Andrew R.; Lippert, Matthew

    2005-01-01

    Combining the effects of fluxes and gaugino condensation in heterotic supergravity, we use a ten-dimensional approach to find a new class of four-dimensional supersymmetric AdS 4 compactifications on almost-Hermitian manifolds of SU(3) structure. Computation of the torsion allows a classification of the internal geometry, which for a particular combination of fluxes and condensate, is nearly Kaehler. We argue that all moduli are fixed, and we show that the Kaehler potential and superpotential proposed in the literature yield the correct AdS 4 radius. In the nearly Kaehler case, we are able to solve the H Bianchi identity using a nonstandard embedding. Finally, we point out subtleties in deriving the effective superpotential and understanding the heterotic supergravity in the presence of a gaugino condensate

  20. Inflationary string theory?

    Indian Academy of Sciences (India)

    strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.

  1. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  2. Deriving the four-string and open-closed string interactions from geometric string field theory

    International Nuclear Information System (INIS)

    Kaku, M.

    1990-01-01

    One of the questions concerning the covariant open string field theory is why there are two distinct BRST theories and why the four-string interaction appears in one version but not the other. The authors solve this mystery by showing that both theories are gauge-fixed versions of a higher gauge theory, called the geometric string field theory, with a new field, a string verbein e μσ νρ , which allows us to gauge the string length and σ parametrization. By fixing the gauge, the authors can derive the endpoint gauge (the covariantized light cone gauge), the midpoint gauge of Witten, or the interpolating gauge with arbitrary string length. The authors show explicitly that the four-string interaction is a gauge artifact of the geometric theory (the counterpart of the four-fermion instantaneous Coulomb term of QED). By choosing the interpolating gauge, they produce a new class of four-string interactions which smoothly interpolate between the endpoint gauge and the midpoint gauge (where it vanishes). Similarly, they can extract the closed string as a bound state of the open string, which appears in the endpoint gauge but vanishes in the midpoint gauge. Thus, the four-string and open-closed string interactions do not have to be added to the action as long as the string vierbein is included

  3. Boson-fermion mass splittings in four-dimensional heterotic string models with anomalous U(1) gauge groups

    International Nuclear Information System (INIS)

    Yamaguchi, Masahiro; Yamamoto, Hisashi; Onogi, Tetsuya

    1989-01-01

    In four-dimensional heterotic string models with anomalous U(1) gauge groups, space-time supersymmetry (SUSY) breaks down spontaneously at one loop. In this paper, the Ward-Takahashi identity of broken SUSY in one-loop two-point amplitudes is investigated in all generalities. The boson-fermion mass splitting of any supersymmetric pair in an arbitrary model is proportional to the product of the D-term expectation value (the sum of (chirality)x(U(1) charge) of massless fermions in the model) and the U(1) charge of the external particle. In order to give a better understanding of the results, we present some examples of the mass splittings in a simple Z 3 orbifold model. (orig.)

  4. From anomalies of finite symmetries to heterotic GUTs

    Science.gov (United States)

    Vaudrevange, Patrick K. S.

    2017-11-01

    We review the role of finite symmetries for particle physics with special emphasis on discrete anomalies and on their possible origin from extra dimensions. Then, we apply our knowledge on finite symmetries to the problematic proton decay operators of various mass-dimensions, focusing on ℤ4R , i.e. a special R-symmetry of order 4. We show that this ℤ4R symmetry can naturally originate from extra dimensions as a discrete remnant of higher-dimensional Lorentz symmetry. Finally, in order to obtain a unified picture from the heterotic string theory we discuss grand unified theories (GUTs) in extra dimensions compactified on ℤ2 × ℤ2 orbifolds and show how proton decay operators can be suppressed in a certain class of orbifolds.

  5. String theory as a quantum theory of gravity

    International Nuclear Information System (INIS)

    Horowitz, G.T.

    1990-01-01

    First, the connection between string theory and gravity is discussed - at first sight the theory of strings seem to have nothing to do with gravity but an intimate connection is shown. Then the quantum perturbation expansion is discussed. Thirdly, string theory is considered as a classical theory of gravity and finally recent speculation about a phase of string theory which is independent of a spacetime metric is discussed. (author)

  6. Quantum supergravity, supergravity anomalies and string phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K., E-mail: mkgaillard@lbl.gov

    2016-11-15

    I discuss the role of quantum effects in the phenomenology of effective supergravity theories from compactification of the weakly coupled heterotic string. An accurate incorporation of these effects requires a regularization procedure that respects local supersymmetry and BRST invariance and that retains information associated with the cut-off scale, which has physical meaning in an effective theory. I briefly outline the Pauli–Villars regularization procedure, describe some applications, and comment on what remains to be done to fully define the effective quantum field theory.

  7. Renormalization-group flows and charge transmutation in string theory

    International Nuclear Information System (INIS)

    Orlando, D.; Petropoulos, P.M.; Sfetsos, K.

    2006-01-01

    We analyze the behaviour of heterotic squashed-Wess-Zumino-Witten backgrounds under renormalization-group flow. The flows we consider are driven by perturbation creating extra gauge fluxes. We show how the conformal point acts as an attractor from both the target-space and world-sheet points of view. We also address the question of instabilities created by the presence of closed time-like curves in string backgrounds. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  8. Chern-Simons couplings for dielectric F-strings in matrix string theory

    International Nuclear Information System (INIS)

    Brecher, Dominic; Janssen, Bert; Lozano, Yolanda

    2002-01-01

    We compute the non-abelian couplings in the Chern-Simons action for a set of coinciding fundamental strings in both the type IIA and type IIB Matrix string theories. Starting from Matrix theory in a weakly curved background, we construct the linear couplings of closed string fields to type IIA Matrix strings. Further dualities give a type IIB Matrix string theory and a type IIA theory of Matrix strings with winding. (Abstract Copyright[2002], Wiley Periodicals, Inc.)

  9. Interpolating string field theories

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1992-01-01

    This paper reports that a minimal area problem imposing different length conditions on open and closed curves is shown to define a one-parameter family of covariant open-closed quantum string field theories. These interpolate from a recently proposed factorizable open-closed theory up to an extended version of Witten's open string field theory capable of incorporating on shell closed strings. The string diagrams of the latter define a new decomposition of the moduli spaces of Riemann surfaces with punctures and boundaries based on quadratic differentials with both first order and second order poles

  10. Oriented open-closed string theory revisited

    International Nuclear Information System (INIS)

    Zwiebach, B.

    1998-01-01

    String theory on D-brane backgrounds is open-closed string theory. Given the relevance of this fact, we give details and elaborate upon our earlier construction of oriented open-closed string field theory. In order to incorporate explicitly closed strings, the classical sector of this theory is open strings with a homotopy associative A ∞ algebraic structure. We build a suitable Batalin-Vilkovisky algebra on moduli spaces of bordered Ricmann surfaces, the construction of which involves a few subtleties arising from the open string punctures and cyclicity conditions. All vertices coupling open and closed strings through disks are described explicitly. Subalgebras of the algebra of surfaces with boundaries are used to discuss symmetries of classical open string theory induced by the closed string sector, and to write classical open string field theory on general closed string backgrounds. We give a preliminary analysis of the ghost-dilaton theorem. copyright 1998 Academic Press, Inc

  11. String Theory in a Nutshell

    CERN Document Server

    Kiritsis, Elias

    2007-01-01

    This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin

  12. Charged string solutions with dilaton and modulus fields

    CERN Document Server

    Cvetic, M

    1994-01-01

    We find charged, abelian, spherically symmetric solutions (in flat space-time) corresponding to the effective action of $D=4$ heterotic string theory with scale-dependent dilaton $\\p$ and modulus $\\vp$ fields. We take into account perturbative (genus-one), moduli-dependent `threshold' corrections to the coupling function $f(\\p,\\vp)$ in the gauge field kinetic term $f(\\p,\\vp) F^2_{\\m\

  13. The theta-structure in string theories - 1: bosonic strings

    International Nuclear Information System (INIS)

    Li Miao.

    1985-09-01

    We explored the theta-structures in bosonic string theories which are similar to those in gauge field theories. The theta-structure of string is due to the multiply connected spatial compact subspace of space-time. The work of this paper shows that there is an energy band E(theta) in the string theory and one may move the tachyon out in theory by choosing some proper theta parameters. (author)

  14. String theory and water waves

    International Nuclear Information System (INIS)

    Iyer, Ramakrishnan; Johnson, Clifford V; Pennington, Jeffrey S

    2011-01-01

    We uncover a remarkable role that an infinite hierarchy of nonlinear differential equations plays in organizing and connecting certain c-hat <1 string theories non-perturbatively. We are able to embed the type 0A and 0B (A, A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We observe that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A, D) minimal string backgrounds. We explain how these and several string-like special points arise and are connected. In some cases, the framework endows the theories with a non-perturbative definition for the first time. Notably, we discover that the Painleve IV equation plays a key role in organizing the string theory physics, joining its siblings, Painleve I and II, whose roles have previously been identified in this minimal string context.

  15. String theory in four dimensions

    International Nuclear Information System (INIS)

    Dine, M.

    1988-01-01

    A representative sample of current ideas about how one might develop a string phenomenology is presented. Some of the obstacles which lie in between string theory and contact with experiment are described. It is hoped that this volume will provide the reader with ways of thinking about string theory in four dimensions and provide tools for asking questions about string theory and ordinary physics. 102 refs

  16. Quantum backreaction in string theory

    International Nuclear Information System (INIS)

    Evnin, O.

    2012-01-01

    There are situations in string theory when a finite number of string quanta induce a significant backreaction upon the background and render the perturbation theory infrared-divergent. The simplest example is D0-brane recoil under an impact by closed strings. A more physically interesting case is backreaction on the evolution of a totally compact universe due to closed string gas. Such situations necessitate qualitative amendments to the traditional formulation of string theory in a fixed classical background. In this contribution to the proceedings of the XVII European Workshop on String Theory in Padua, I review solved problems and current investigations in relation to this kind of quantum backreaction effects. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Flat directions in left-right symmetric string derived models

    International Nuclear Information System (INIS)

    Cleaver, Gerald B.; Clements, David J.; Faraggi, Alon E.

    2002-01-01

    The only string models known to reproduce the minimal supersymmetric standard model in the low energy effective field theory are those constructed in the free fermionic formulation. We demonstrate the existence of quasirealistic free fermionic heterotic string models in which supersymmetric singlet flat directions do not exist. This raises the possibility that supersymmetry is broken perturbatively in such models by the one-loop Fayet-Iliopoulos term. We show, however, that supersymmetric flat directions that utilize vacuum expectation values of some non-Abelian fields in the massless string spectrum do exist in the model. We argue that hidden sector condensates lift the flat directions and break supersymmetry hierarchically

  18. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  19. String flipped SO(10) model from Z4 orbifold

    International Nuclear Information System (INIS)

    Sato, H.; Shimojo, M.

    1993-01-01

    We search all possible string grand-unified-theory models obtained from heterotic superstrings compactified on a Z 4 orbifold with one Wilson line. It is shown that there is an essentially unique anomaly-free flipped SO(10) model with three generations plus one mirror conjugate generation of matter fields. We derive effective Yukawa interactions and examine the structure of mass matrices as well as a possible scenario of string coupling unification. The four-generation Z 4 orbifold model is a phenomenologically viable model beyond the minimal supersymmetric standard one

  20. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  1. On Field Theory of Open Strings, Tachyon Condensation and Closed Strings

    OpenAIRE

    Shatashvili, Samson L.

    2001-01-01

    I review the physical properties of different vacua in the background independent open string field theory. Talk presented at Strings 2001, Mumbai, India, http://theory.theory.tifr.res.in/strings/Proceedings/#sha-s.

  2. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  3. LHC di-photon excess and gauge coupling unification in extra Z{sup '} heterotic-string derived models

    Energy Technology Data Exchange (ETDEWEB)

    Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)

    2016-10-15

    A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)

  4. Testing string theory at LHC?

    CERN Multimedia

    CERN. Geneva

    2002-01-01

    A theory with such mathematical beauty cannot be wrong: this is one of the main arguments in favour of string theory, which unifies all known physical theories of fundamental interactions in a single coherent description of the universe. But no one has ever observed strings, not even indirectly, nor the space of extra dimensions where they live. However there are good reasons to believe that the 'hidden' dimensions of string theory may be much larger than what we thought in the past and that they may be within experimental reach in the near future - together with the strings themselves. In my talk, I will give an elementary introduction of string theory and describe the main experimental predictions.Organiser(s): Jasper Kirkby / EP DivisionNote: Tea & coffee will be served at 16.00 hrs.

  5. Universality in radiative corrections for non-supersymmetric heterotic vacua

    CERN Document Server

    Angelantonj, C; Tsulaia, Mirian

    2016-01-01

    Properties of moduli-dependent gauge threshold corrections in non-supersymmetric heterotic vacua are reviewed. In the absence of space-time supersymmetry these amplitudes are no longer protected and receive contributions from the whole tower of string states, BPS and not. Never-theless, the difference of gauge thresholds for non-Abelian gauge groups displays a remarkable universality property, even when supersymmetry is absent. We present a simple heterotic construction that shares this universal behaviour and expose the necessary conditions on the super-symmetry breaking mechanism for universality to occur.

  6. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  7. String theory in four dimensions

    CERN Document Server

    1988-01-01

    ``String Theory in Four Dimensions'' contains a representative collection of papers dealing with various aspects of string phenomenology, including compactifications on smooth manifolds and more general conformal field theories. Together with the lucid introduction by M. Dine, this material gives the reader a good working knowledge of our present ideas for connecting string theory to nature.

  8. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  9. N=2 heterotic string compactifications on orbifolds of K3×T{sup 2}

    Energy Technology Data Exchange (ETDEWEB)

    Chattopadhyaya, Aradhita; David, Justin R. [Centre for High Energy Physics, Indian Institute of Science,C.V. Raman Avenue, Bangalore 560012 (India)

    2017-01-10

    We study N=2 compactifications of E{sub 8}×E{sub 8} heterotic string theory on orbifolds of K3×T{sup 2} by g{sup ′} which acts as an ℤ{sub N} automorphism of K3 together with a 1/N shift on a circle of T{sup 2}. The orbifold action g{sup ′} corresponds to the 26 conjugacy classes of the Mathieu group M{sub 24}. We show that for the standard embedding the new supersymmetric index for these compactifications can always be decomposed into the elliptic genus of K3 twisted by g{sup ′}. The difference in one-loop corrections to the gauge couplings are captured by automorphic forms obtained by the theta lifts of the elliptic genus of K3 twisted by g{sup ′}. We work out in detail the case for which g{sup ′} belongs to the equivalence class 2B. We then investigate all the non-standard embeddings for K3 realized as a T{sup 4}/ℤ{sub ν} orbifold with ν=2,4 and g{sup ′} the 2A involution. We show that for non-standard embeddings the new supersymmetric index as well as the difference in one-loop corrections to the gauge couplings are completely characterized by the instanton numbers of the embeddings together with the difference in number of hypermultiplets and vector multiplets in the spectrum.

  10. Is the string theory doomed?

    International Nuclear Information System (INIS)

    Le Meur, H.; Daninos, F.; Bachas, C.

    2007-01-01

    Since its beginning, in the sixties, the string theory has succeeded in overcoming a lot of theoretical difficulties but now the complete absence of experimental validation entertains doubts about its ability to represent the real world and questions its hegemony in today's theoretical physics. Other space-time theories like the twistors, or the non-commutative geometry, or the loop quantum gravity, or the causal dynamics triangulation might begin receiving more attention. Despite all that, the string theory can be given credit for 4 achievements. First, the string theory has provided a consistent quantum description of gravity. Secondly, the string theory has built a theoretical frame that has allowed the unification of the 4 basic interactions. Thirdly, the string theory applied to astrophysics issues has demonstrated that the evaporation of a black hole does not necessarily lead to a loss of information which comforts the universality of the conservation of the quantity of information in any system and as a consequence put a fatal blow to the so-called paradox observed in black holes. Fourthly, the string theory has given a new and original meaning on the true nature of space-time. (A.C.)

  11. A primer on string theory

    CERN Document Server

    Schomerus, Volker

    2017-01-01

    Since its conception in the 1960s, string theory has been hailed as one of the most promising routes we have to unify quantum mechanics and general relativity. This book provides a concise introduction to string theory explaining central concepts, mathematical tools and covering recent developments in physics including compactifications and gauge/string dualities. With string theory being a multidisciplinary field interfacing with high energy physics, mathematics and quantum field theory, this book is ideal for both students with no previous knowledge of the field and scholars from other disciplines who are looking for an introduction to basic concepts.

  12. Aspects of some dualities in string theory

    Science.gov (United States)

    Kim, Bom Soo

    AdS/CFT correspondence in string theory has changed landscape of the theoretical physics. Through this celebrated duality between gravity theory and field theory, one can investigate analytically strongly coupled gauge theories such as Quantum Chromodynamics (QCD) in terms of weakly coupled string theory such as supergravity theory and vice versa. In the first part of this thesis we used this duality to construct a new type of nonlocal field theory, called Puff Field Theory, in terms of D3 branes in type IIB string theory with a geometric twist. In addition to the strong-weak duality of AdS/CFT, there also exists a weak-weak duality, called Twistor String Theory. Twistor technique is successfully used to calculate the SYM scattering amplitude in an elegant fashion. Yet, the progress in the string theory side was hindered by a non-unitary conformal gravity. We extend the Twistor string theory by introducing mass terms, in the second part of the thesis. A chiral mass term is identified as a vacuum expectation value of a conformal supergravity field and is tied with the breaking of the conformal symmetry of gravity. As a prime candidate for a quantum theory of gravity, string theory revealed many promising successes such as counting the number of microstates in supersymmetric Black Holes thermodynamics and resolution of timelike and null singularities, to name a few. Yet, the fundamental string and M-theroy formulations are not yet available. Various string theories without gravity, such as Non-Commutative Open String (NCOS) and Open Membrane (OM) theories, are very nice playground to investigate the fundamental structure of string and M-theory without the complication of gravity. In the last part of the thesis, simpler Non-Relativistic String Theories are constructed and investigated. One important motivation for those theories is related to the connection between Non-Relativistic String Theories and Non-critical String Theories through the bosonization of betagamma

  13. The superpotential in heterotic orbifold GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Kappl, Rolf

    2011-12-08

    We study in this work the phenomenology of heterotic orbifold compactifications. Exact and approximate R symmetries of the superpotential in the context of supersymmetric field theories are discussed. We further study symmetries, phenomenological implications and Yukawa couplings from superpotential contributions in extra dimensional theories. We apply the developed methods to models, which base on heterotic orbifolds.

  14. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  15. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  16. Strings - Links between conformal field theory, gauge theory and gravity

    International Nuclear Information System (INIS)

    Troost, J.

    2009-05-01

    String theory is a candidate framework for unifying the gauge theories of interacting elementary particles with a quantum theory of gravity. The last years we have made considerable progress in understanding non-perturbative aspects of string theory, and in bringing string theory closer to experiment, via the search for the Standard Model within string theory, but also via phenomenological models inspired by the physics of strings. Despite these advances, many deep problems remain, amongst which a non-perturbative definition of string theory, a better understanding of holography, and the cosmological constant problem. My research has concentrated on various theoretical aspects of quantum theories of gravity, including holography, black holes physics and cosmology. In this Habilitation thesis I have laid bare many more links between conformal field theory, gauge theory and gravity. Most contributions were motivated by string theory, like the analysis of supersymmetry preserving states in compactified gauge theories and their relation to affine algebras, time-dependent aspects of the holographic map between quantum gravity in anti-de-Sitter space and conformal field theories in the bulk, the direct quantization of strings on black hole backgrounds, the embedding of the no-boundary proposal for a wave-function of the universe in string theory, a non-rational Verlinde formula and the construction of non-geometric solutions to supergravity

  17. Introduction to string theory

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit

    2002-01-01

    I will present a simple and non-technical overview of string theory, aimed for non-experts who like to get some idea what string theory is about. Besides introductory material, I intend to cover also some of the more recent developments.

  18. String theory as a Lilliputian world

    International Nuclear Information System (INIS)

    Ambjørn, J.; Makeenko, Y.

    2016-01-01

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  19. String theory as a Lilliputian world

    Energy Technology Data Exchange (ETDEWEB)

    Ambjørn, J., E-mail: ambjorn@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); IMAPP, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen (Netherlands); Makeenko, Y., E-mail: makeenko@nbi.dk [The Niels Bohr Institute, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Institute of Theoretical and Experimental Physics, B. Cheremushkinskaya 25, 117218 Moscow (Russian Federation)

    2016-05-10

    Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.

  20. Introduction to field theory of strings

    International Nuclear Information System (INIS)

    Kikkawa, K.

    1987-01-01

    The field theory of bosonic string is reviewed. First, theory is treated in a light-cone gauge. After a brief survey of the first quantized theory of free string, the second quantization is discussed. All possible interactions of strings are introduced based on a smoothness condition of work sheets swept out by strings. Perturbation theory is developed. Finally a possible way to the manifest covariant formalism is discussed

  1. A Note on Tensionless Strings in M-Theory

    OpenAIRE

    Davis, K.

    1996-01-01

    In this article we examine the appearance of tensionless strings in M-Theory. We subsequently interpret these tensionless strings in a String Theory context. In particular, we examine tensionless strings appearing in M-Theory on $S^{1}$, M-Theory on $S^{1} / {\\bf Z}_{2}$, and M-Theory on $T^{2}$; we then interpret the appearance of such strings in a String Theory context. Then we reverse this process and examine the appearance of some tensionless strings in String Theory. Subsequently we inte...

  2. String theory and quantum gravity '92

    International Nuclear Information System (INIS)

    Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.

    1993-01-01

    These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs

  3. Charting the Landscape of Supercritical String Theory

    International Nuclear Information System (INIS)

    Hellerman, Simeon; Swanson, Ian

    2007-01-01

    Special solutions of string theory in supercritical dimensions can interpolate in time between theories with different numbers of spacetime dimensions and different amounts of world sheet supersymmetry. These solutions connect supercritical string theories to the more familiar string duality web in ten dimensions and provide a precise link between supersymmetric and purely bosonic string theories. Dimension quenching and c duality appear to be natural concepts in string theory, giving rise to large networks of interconnected theories

  4. Hosotani model in closed string theory

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-11-01

    Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)

  5. Open-closed string correspondence in open string field theory

    International Nuclear Information System (INIS)

    Baumgartl, M.; Sachs, I.

    2008-01-01

    We address the problem of describing different closed string backgrounds in background independent open string field theory: A shift in the closed string background corresponds to a collective excitation of open strings. As an illustration we apply the formalism to the case where the closed string background is a group manifold. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  6. Boundary string field theory and an open string one-loop

    International Nuclear Information System (INIS)

    Lee, Tae Jin; Viswanathan, K. S.; Yang, Yi

    2003-01-01

    We discuss the open string one-loop partition function in the tachyon condensation background of an unstable D-brane system. We evaluate the partition function by using the boundary-state formulation and find that it is in complete agreement with the result obtained in the boundary string field theory. This suggests that the open string higher loop diagrams may be produced consistently by using a closed string field theory, where the D-brane plays the role of a source for the closed string field

  7. String theory flux vacua on twisted tori and generalized complex geometry

    International Nuclear Information System (INIS)

    Andriot, David

    2010-01-01

    This thesis is devoted to the study of flux vacua of string theory, with the ten-dimensional space-time split into a four-dimensional maximally symmetric space-time, and a six-dimensional internal manifold M, taken to be a solv-manifold (twisted torus). Such vacua are of particular interest when trying to relate string theory to supersymmetric (SUSY) extensions of the standard model of particles, or to cosmological models. For SUSY solutions of type II supergravities, allowing for fluxes on M helps to solve the moduli problem. Then, a broader class of manifolds than just the Calabi-Yau can be considered for M, and a general characterization is given in terms of Generalized Complex Geometry: M has to be a Generalized Calabi-Yau (GCY). A subclass of solv-manifolds have been proven to be GCY, so we look for solutions with such M. To do so, we use an algorithmic resolution method. Then we focus on specific new solutions: those admitting an intermediate SU(2) structure. A transformation named the twist is then discussed. It relates solutions on torus to solutions on solv-manifolds. Working out constraints on the twist to generate solutions, we can relate known solutions, and find a new one. We also use the twist to relate flux vacua of heterotic string. Finally we consider ten-dimensional de Sitter solutions. Looking for such solutions is difficult, because of several problems among which the breaking of SUSY. We propose an Ansatz for SUSY breaking sources which helps to overcome these difficulties. We give an explicit solution on a solv-manifold, and discuss partially its four-dimensional stability. (author)

  8. Spin(7) compactifications and 1/4-BPS vacua in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Stephen [Center for Theoretical Physics of the Universe, Institute for Basic Science (IBS),Daejeon, 34051 Republic of (Korea, Republic of); Matti, Cyril [Department of Mathematics, City University, Northampton Square, London, EC1V 0HB (United Kingdom); Mandelstam Institute for Theoretical Physics, NITheP, andSchool of Physics, University of the Witwatersrand,Johannesburg, WITS 2050 South Africa (South Africa); Svanes, Eirik E. [Sorbonne Universités, UPMC Univ Paris 06, UMR 7589, LPTHE,Paris, F-75005 (France); CNRS, UMR 7589, LPTHE,Paris, F-75005 (France); Sorbonne Universités, Institut Lagrange de Paris,98 bis Bd Arago, Paris, 75014 (France)

    2016-03-25

    We continue the investigation into non-maximally symmetric compactifications of the heterotic string. In particular, we consider compactifications where the internal space is allowed to depend on two or more external directions. For preservation of supersymmetry, this implies that the internal space must in general be that of a Spin(7) manifold, which leads to a 1/4-BPS four-dimensional supersymmetric perturbative vacuum breaking all but one supercharge. We find that these solutions allow for internal geometries previously excluded by the domain-wall-type solutions, and hence the resulting four-dimensional superpotential is more generic. In particular, we find an interesting resemblance to the superpotentials that appear in non-geometric flux compactifications of type II string theory. If the vacua are to be used for phenomenological applications, they must be lifted to maximal symmetry by some non-perturbative or higher-order effect.

  9. Cosmological horizons, quintessence and string theory

    International Nuclear Information System (INIS)

    Kaloper, Nemanja

    2003-01-01

    String theory is presently the best candidate for a quantum theory of gravity unified with other forces. It is natural to hope that applications of string theory to cosmology may shed new light on the cosmological conundra, such as singularities, initial conditions, cosmological constant problem and the origin of inflation. Before we can apply string theory to cosmology, there are important conceptual and practical problems which must be addressed. We have reviewed here some of these problems, related to how one defines string theory in a cosmological setting. (author)

  10. Spin chains and string theory.

    Science.gov (United States)

    Kruczenski, Martin

    2004-10-15

    Recently, an important test of the anti de Sitter/conformal field theory correspondence has been done using rotating strings with two angular momenta. We show that such a test can be described more generally as the agreement between two actions: one a low energy description of a spin chain appearing in the field theory side, and the other a limit of the string action in AdS5xS5. This gives a map between the mean value of the spin in the boundary theory and the position of the string in the bulk, and shows how a string action can emerge from a gauge theory in the large-N limit.

  11. N =1 supergravitational heterotic galileons

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt

    2017-11-01

    Heterotic M -theory consists of a five-dimensional manifold of the form S 1 / Z 2 × M 4. It has been shown that one of the two orbifold planes, the "observable" sector, can have a low energy particle spectrum which is precisely the N = 1 super-symmetric standard model with three right-handed neutrino chiral supermultiplets. The other orbifold plane constitutes a "hidden" sector which, since its communication with the observable sector is suppressed, will be ignored in this paper. However, the finite fifth-dimension allows for the existence of three-brane solitons which, in order to render the vacuum anomaly free, must appear. That is, heterotic M -theory provides a natural framework for brane-world cosmological scenarios coupled to realistic particle physics. The complete worldvolume action of such three-branes is unknown. Here, treating these solitons as probe branes, we construct their scalar worldvolume Lagrangian as a derivative expansion of the heterotic DBI action. In analogy with similar calculations in the M 5 and AdS 5 context, this leads to the construction of "heterotic Galileons". However, realistic vacua of heterotic M -theory are necessarily N = 1 supersymmetric in four dimensions. Hence, we proceed to supersymmetrize the three-brane worldvolume action, first in flat superspace and then extend the results to N = 1 supergravity. Such a worldvolume action may lead to interesting cosmology, such as "bouncing" universe models, by allowing for the violation of the Null Energy Condition (NEC).

  12. Gauge theories as string theories: the first results

    International Nuclear Information System (INIS)

    Gorsky, Aleksandr S

    2005-01-01

    The gauge/string theory duality in curved space is discussed mainly using a non-Abelian conformal N = 4 supersymmetric gauge theory and the theory of a closed superstring in the AdS 5 x S 5 metric as an example. It is shown that in the supergravity approximation, string duality yields the characteristics of a strong-coupling gauge theory. For a special shape of the contour, a Wilson loop expression is derived in the classical superstring approximation. The role of the hidden integrability in lower-loop calculations in gauge theory and in different approximations of string theory is discussed. It is demonstrated that in the large quantum-number limit, gauge theory operators can be described in terms of the dual string picture. Examples of metrics providing the dual description of gauge theories with broken conformal symmetry are presented, and formulations of the vacuum structure of such theories in terms of gravity are discussed. (reviews of topical problems)

  13. String flipped SO(10) model from [ital Z][sub 4] orbifold

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H. (Department of Physics, Hyogo University of Education, Yashiro-cho, Hyogo 673-14 (Japan)); Shimojo, M. (Department of Electronics and Information Engineering, Fukui National College of Technology, Sabae, Fukui 916 (Japan))

    1993-12-15

    We search all possible string grand-unified-theory models obtained from heterotic superstrings compactified on a [ital Z][sub 4] orbifold with one Wilson line. It is shown that there is an essentially unique anomaly-free flipped SO(10) model with three generations plus one mirror conjugate generation of matter fields. We derive effective Yukawa interactions and examine the structure of mass matrices as well as a possible scenario of string coupling unification. The four-generation [ital Z][sub 4] orbifold model is a phenomenologically viable model beyond the minimal supersymmetric standard one.

  14. Basic concepts of string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  15. Supersymmetric sigma models and the heterotic string

    International Nuclear Information System (INIS)

    Hull, C.M.; Witten, E.

    1989-01-01

    The authors define the (1 + 1)-dimensional supersymmetry algebra of type (p, q) to be that generated by p right-handed Majorana-Weyl supercharges and q left-handed ones. They construct the non-linear sigma models with supersymmetry of type (1, 0) and (2, 0) and discuss their geometry and their relevance to compactifications of the heterotic superstring. The sigma-model anomalies can be canceled by a mechanism closely related to that used by Green and Schwarz to cancel gravitational and Yang-Mills anomalies for the superstring

  16. Heterotic model building: 16 special manifolds

    International Nuclear Information System (INIS)

    He, Yang-Hui; Lee, Seung-Joo; Lukas, Andre; Sun, Chuang

    2014-01-01

    We study heterotic model building on 16 specific Calabi-Yau manifolds constructed as hypersurfaces in toric four-folds. These 16 manifolds are the only ones among the more than half a billion manifolds in the Kreuzer-Skarke list with a non-trivial first fundamental group. We classify the line bundle models on these manifolds, both for SU(5) and SO(10) GUTs, which lead to consistent supersymmetric string vacua and have three chiral families. A total of about 29000 models is found, most of them corresponding to SO(10) GUTs. These models constitute a starting point for detailed heterotic model building on Calabi-Yau manifolds in the Kreuzer-Skarke list. The data for these models can be downloaded http://www-thphys.physics.ox.ac.uk/projects/CalabiYau/toricdata/index.html.

  17. 2-Dim. gravity and string theory

    International Nuclear Information System (INIS)

    Narain, K.S.

    1991-01-01

    The role of 2-dim. gravity in string theory is discussed. In particular d=25 string theory coupled to 2-d. gravity is described and shown to give rise to the physics of the usual 26-dim. string theory (where one does not quantise 2-d. gravity. (orig.)

  18. The status and future prospects of string theory

    International Nuclear Information System (INIS)

    Gross, D.J.

    1990-01-01

    After a general introduction to the description of the fundamental forces by gauge theories and the difficulties occurring in the attemps of unifying these theories with gravity the reasons for the introduction of string theory are explained. After a description of the construction of a string theory the string theory of gravity is considered. Then the problems of string theory are described. Thereafter elastic scattering in string theory at energies comparable with the Planck mass is considered. Finally some prospects for string theory are discussed. (HSI)

  19. Basic Concepts of String Theory

    CERN Document Server

    Blumenhagen, Ralph; Theisen, Stefan

    2013-01-01

    The purpose of this book is to thoroughly prepare the reader for research in string theory. It is intended as a textbook in the sense that, starting from the basics, the material is presented in a pedagogical and self-contained fashion. The emphasis is on the world-sheet perspective of closed strings and of open strings ending on D-branes, where two-dimensional conformal field theory is the main tool. Compactifications of string theory, with and without fluxes, and string dualities are also discussed from the space-time point of view, i.e. in geometric language. End-of-chapter references have been added to guide the reader intending to pursue further studies or to start research in the topics covered by this book.

  20. On background-independent open-string field theory

    International Nuclear Information System (INIS)

    Witten, E.

    1992-01-01

    A framework for background-independent open-string field theory is proposed. The approach involves using the Batalin-Vilkovisky formalism, in a way suggested by recent developments in closed-string field theory, to implicitly define a gauge-invariant Lagrangian in a hypothetical ''space of all open-string world-sheet theories.'' It is built into the formalism that classical solutions of the string field theory are Becchi-Rouet-Stora-Tyutin- (BRST-) invariant open-string world-sheet theories and that, when expanding around a classical solution, the infinitesimal gauge transformations are generated by the world-sheet BRST operator

  1. String theory on the edge

    International Nuclear Information System (INIS)

    Thorlacius, L.

    1989-01-01

    Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors

  2. Remarks on entanglement entropy in string theory

    Science.gov (United States)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  3. Lie algebra lattices and strings on T-folds

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Yuji [Institute of Physics, University of Tsukuba,Ibaraki 305-8571 (Japan); Sugawara, Yuji [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)

    2017-02-06

    We study the world-sheet conformal field theories for T-folds systematically based on the Lie algebra lattices representing the momenta of strings. The fixed point condition required for the T-duality twist restricts the possible Lie algebras. When the T-duality acts as a simple chiral reflection, one is left with the four cases, A{sub 1},D{sub 2r},E{sub 7},E{sub 8}, among the simple simply-laced algebras. From the corresponding Englert-Neveu lattices, we construct the modular invariant partition functions for the T-fold CFTs in bosonic string theory. Similar construction is possible also by using Euclidean even self-dual lattices. We then apply our formulation to the T-folds in the E{sub 8}×E{sub 8} heterotic string theory. Incorporating non-trivial phases for the T-duality twist, we obtain, as simple examples, a class of modular invariant partition functions parametrized by three integers. Our construction includes the cases which are not reduced to the free fermion construction.

  4. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  5. String-coupling constant and dilaton vacuum expectation value in string field theory

    International Nuclear Information System (INIS)

    Yoneya, Tamiaki

    1987-01-01

    In the first quantized approaches to strings, it is well known that the string-coupling constant is determined by the vacuum expectation value of the dilaton field. This property, however, has never been demonstrated within the framework of string field theory. An explicit reparametrization of the string field associated with the shifts of the dilaton vacuum expectation value and the string-coupling constant is constructed exhibiting the above property in the light-cone field theory of the closed bosonic string. (orig.)

  6. Unified string theories

    International Nuclear Information System (INIS)

    Gross, D.J.

    1985-01-01

    String theories offer a way of realizing the potential of supersymmetry, Kaluza-Klein and much more. They represent a radical departure from ordinary quantum field theory, but in the direction of increased symmetry and structure. They are based on an enormous increase in the number of degrees of freedom, since in addition to fermionic coordinates and extra dimensions, the basic entities are extended one dimensional objects instead of points. Correspondingly the symmetry group is greatly enlarged, in a way that we are only beginning to comprehend. At the very least this extended symmetry contains the largest group of symmetries that can be contemplated within the framework of point field theories-those of ten-dimensional supergravity and super Yang-Mills theory. Types of string theories and the phenomenology to be expected from them are reviewed

  7. Differential formulation in string theories

    International Nuclear Information System (INIS)

    Guzzo, M.M.

    1987-01-01

    The equations of gauge invariance motion for theories of boson open strings and Neveu-Schwarz and Ramond superstring are derived. A construction for string theories using differential formalism, is introduced. The importance of BRST charge for constructing such theories and the necessity of introduction of auxiliary fields are verified. (M.C.K.) [pt

  8. International conference on string theory

    CERN Document Server

    2017-01-01

    The Strings 2017 conference is part of the "Strings" series of annual conferences, that bring the entire string theory community together. It will include reviews of major developments in the field, and specialized talks on specific topics. There will also be several public lectures given by conference participants, a pre-Strings school at the Technion, and a post-Strings workshop at the Weizmann Institute.

  9. Heterotic non-Abelian orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Maximilian [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Ramos-Sanchez, Saul [UNAM, Mexico (Mexico). Dept. of Theoretical Physics; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-04-15

    We perform the first systematic analysis of particle spectra obtained from heterotic string compactifications on non-Abelian toroidal orbifolds. After developing a new technique to compute the particle spectrum in the case of standard embedding based on higher dimensional supersymmetry, we compute the Hodge numbers for all recently classified 331 non-Abelian orbifold geometries which yield N=1 supersymmetry for heterotic compactifications. Surprisingly, most Hodge numbers follow the empiric pattern h{sup (1,1)}-h{sup (2,1)}=0 mod 6, which might be related to the number of three standard model generations. Furthermore, we study the fundamental groups in order to identify the possibilities for non-local gauge symmetry breaking. Three examples are discussed in detail: the simplest non-Abelian orbifold S{sub 3} and two more elaborated examples, T{sub 7} and {Delta}(27), which have only one untwisted Kaehler and no untwisted complex structure modulus. Such models might be especially interesting in the context of no-scale supergravity. Finally, we briefly discuss the case of orbifolds with vanishing Euler numbers in the context of enhanced (spontaneously broken) supersymmetry.

  10. String duality and novel theories without gravity

    International Nuclear Information System (INIS)

    Kachru, Shamit

    1998-01-01

    We describe some of the novel 6d quantum field theories which have been discovered in studies of string duality. The role these theories (and their 4d descendants) may play in alleviating the vacuum degeneracy problem in string theory is reviewed. The DLCQ of these field theories is presented as one concrete way of formulating them, independent of string theory

  11. String Theory in a Nutshell

    International Nuclear Information System (INIS)

    Skenderis, Kostas

    2007-01-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  12. A Yang-Mills structure for string field theory

    International Nuclear Information System (INIS)

    Tsousheung Tsun

    1990-01-01

    String theorists believe that one way to achieve a fully quantized theory of string is through string field theory. The other way is to study conformal field theory on Riemann surfaces of different genera, which is the subject of many of the talks at this Conference. In a way, string field theory is the more conservative approach, since it aims just to replace the spacetime points of conventional quantum field theory by string, which are extended objects. However, from this point of view string theory has one rather unsatisfactory aspect, in the sense that although it has been very well developed and minutely studied, we are still rather unclear about its basic structure. We can contrast this to both general relativity, which is based on the geometry of spacetime, and to gauge theory, which is about the structure of various natural bundles over spacetime. And yet string theory is supposed to embody both these two essentially geometric theories. To paraphrase Witten, in string theory we seem to have to work backwards to get at the still unknown basic structure. Some joint work with Chan Hong-Mo is reported in an attempt to gain some understanding in that general direction. It seems that one could in some sense consider string field theory as a generalized Yang-Mills theory. This idea is explored. (author)

  13. Introduction to the theory of strings

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1985-10-01

    These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs

  14. Hermiticity and CPT in string theory

    International Nuclear Information System (INIS)

    Sonoda, Hidenori

    1989-01-01

    In the application of conformal field theory to string theory S-matrix elements are obtained from correlation functions of vertex operators. By studying the relation between the vertex operators for the incoming states and those for the outgoing states we obtain two results: First we show that hermiticity of the string vertices is equivalent to the CPT invariance of the corresponding conformal field theory. Secondly we prove that the S-matrix elements in any string theory in flat space-time background are invariant under CPT. (orig.)

  15. Heterotic free fermionic and symmetric toroidal orbifold models

    Energy Technology Data Exchange (ETDEWEB)

    Athanasopoulos, P.; Faraggi, A.E. [Department of Mathematical Sciences, University of Liverpool,Liverpool L69 7ZL (United Kingdom); Nibbelink, S. Groot [Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München,80333 München (Germany); Mehta, V.M. [Institute for Theoretical Physics, University of Heidelberg,69120 Heidelberg (Germany)

    2016-04-07

    Free fermionic models and symmetric heterotic toroidal orbifolds both constitute exact backgrounds that can be used effectively for phenomenological explorations within string theory. Even though it is widely believed that for ℤ{sub 2}×ℤ{sub 2} orbifolds the two descriptions should be equivalent, a detailed dictionary between both formulations is still lacking. This paper aims to fill this gap: we give a detailed account of how the input data of both descriptions can be related to each other. In particular, we show that the generalized GSO phases of the free fermionic model correspond to generalized torsion phases used in orbifold model building. We illustrate our translation methods by providing free fermionic realizations for all ℤ{sub 2}×ℤ{sub 2} orbifold geometries in six dimensions.

  16. Prepotential, Mirror Map and F-Theory on K3

    CERN Document Server

    Lerche, W.

    1998-01-01

    We compute certain one-loop corrections to F^4 couplings of the heterotic string compactified on T^2, and show that they can be characterized by holomorphic prepotentials. We then discuss how some of these couplings can be obtained in F-theory, or more precisely from 7-brane geometry in type IIB language. We in particular study theories with E_8 x E_8 and SO(8)^4 gauge symmetry, on certain one-dimensional sub-spaces of the moduli space that correspond to constant IIB coupling. For these theories, the relevant geometry can be mapped to Riemann surfaces. Physically, the computations amount to non-trivial tests of the basic F-theory -- heterotic duality in eight dimensions. Mathematically, they mean to associate holomorphic 5-point couplings of the form (del_t)^5 G = sum[ g_l l^5 q^l/(1-q^l) ] to K3 surfaces. This can be seen as a novel manifestation of the mirror map, acting here between open and closed string sectors.

  17. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  18. Regularization of finite temperature string theories

    International Nuclear Information System (INIS)

    Leblanc, Y.; Knecht, M.; Wallet, J.C.

    1990-01-01

    The tachyonic divergences occurring in the free energy of various string theories at finite temperature are eliminated through the use of regularization schemes and analytic continuations. For closed strings, we obtain finite expressions which, however, develop an imaginary part above the Hagedorn temperature, whereas open string theories are still plagued with dilatonic divergences. (orig.)

  19. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  20. On integrable c < 1 open-closed string theory

    International Nuclear Information System (INIS)

    Johnson, C.V.

    1994-01-01

    The integrable structure of open-closed string theories in the (p, q) conformal minimal model backgrounds is presented. The relation between the τ-function of the closed string theory and that of the open-closed string theory is uncovered. The resulting description of the open-closed string theory is shown to fit very naturally into the framework of the sl(q, C) KdV hierarchies. In particular, the twisted bosons which underlie and organise the structure of the closed string theory play a similar role here and may be employed to derive loop equations and correlation function recursion relations for the open-closed strings in a simple way. (orig.)

  1. Symmetry breaking in string theory

    International Nuclear Information System (INIS)

    Potting, R.

    1998-01-01

    A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed

  2. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Carlip, S [Department of Physics, University of California, Davis, CA 95616 (United States)

    2006-10-21

    The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2{pi}, and while this is briefly mentioned in the text

  3. On novel string theories from 4d gauge theories

    Directory of Open Access Journals (Sweden)

    Kiritsis Elias

    2014-04-01

    Full Text Available We investigate strings theories as defined from four dimensional gauge theories. It is argued that novel (superstring theories exist up to 26 dimensions. Some of them may support weakly curved geometries. A proposal is outlined to link their local conformal invariance to the dynamics of the bulk string theory.

  4. Cosmological string theory with thermal energy

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-09-01

    An attempt to construct a cosmological scenario directly from string theory is made. Cosmological string theory was presented by Antoniadis, Bachas, Ellis and Nanopoulos. They also expect loop effects on cosmological string theory. In this paper, we point out the other importance of the one-loop effect, the finite temperature effect. The equations of motion for background geometry at finite temperature is given. We address a problem on derivation of the effective action at non-zero temperature. (author)

  5. Lectures on string theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    Several topics are discussed in string theory presented as three lectures to the Spring School on Superstrings at the ICTP at Trieste, Italy, in April, 1988. The first lecture is devoted to some general aspects of conformal invariance and duality. The second sketches methods for carrying out perturbative calculations in string field theory. The final lecture presents an alternative lattice approach to a nonperturbative formulation of the sum over world surfaces. 35 refs., 12 figs

  6. An introduction to string theory

    OpenAIRE

    West, Peter C

    1989-01-01

    These notes are based on lectures given by Michael Green during Part III of the Mathematics Tripos (the Certificate for Advanced Study in Mathematics) in the Spring of 2003. The course provided an introduction to string theory, focussing on the Bosonic string, but treating the superstring as well. A background in quantum field theory and general relativity is assumed. Some background in particle physics, group theory and conformal field theory is useful, though not essential. A number of appe...

  7. String Theory Volume 1: An Introduction to the Bosonic String and Volume 2: Superstring Theory and Beyond

    International Nuclear Information System (INIS)

    Carlip, S

    2006-01-01

    The early 1980s, when I first learned theory, were desperate times for graduate students. We searched frantically for coherent introductions, passing tattered copies of review articles around like samizdat, struggling over obscure references to ancient models of strong interactions, and flocking to lectures-not least those by Joe Polchinski-that promised to really explain what was going on. If only this book had been around, it would have saved much grief. Volume I, The Bosonic String, offers a clear and well organized introduction to bosonic string theory. Topics range from the 'classical' (spectra, vertex operators, consistency conditions, etc.) to the 'modern' (D-branes first appear in an exercise at the end of chapter 1, noncommutative geometry shows up in chapter 8). Polchinski does not hesitate to discuss sophisticated matters-path integral measures, BRST symmetries, etc.-but his approach is pedagogical, and his writing is lucid, if sometimes a bit terse. Chapters end with problems that are sometimes difficult but never impossible. A very useful annotated bibliography directs readers to resources for further study, and a nearly 30-page glossary provides short but clear definitions of key terms. There is much here that will appeal to relativists. Polchinski uses the covariant Polyakov path integral approach to quantization from early on; he clearly distinguishes Weyl invariance from conformal invariance; he is appropriately careful about using complex coordinates on topologically nontrivial manifolds; he keeps the string world sheet metric explicit at the start instead of immediately hiding it by a gauge choice. Volume II includes an elegant introduction to anticommuting coordinates and superconformal transformations. A few conventions may cause confusion-%, Polchinski's stress-energy tensor, for instance, differs from the standard general relativistic definition by a factor of -2π, and while this is briefly mentioned in the text, it could easily be missed

  8. Cosmic strings in unified gauge theories

    International Nuclear Information System (INIS)

    Everett, A.E.

    1981-01-01

    Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not important in the case of grand unified strings, although it can be important for lighter strings

  9. Deformation of the cubic open string field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Taejin, E-mail: taejin@kangwon.ac.kr

    2017-05-10

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  10. Deformation of the cubic open string field theory

    International Nuclear Information System (INIS)

    Lee, Taejin

    2017-01-01

    We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  11. Deformation of the cubic open string field theory

    Directory of Open Access Journals (Sweden)

    Taejin Lee

    2017-05-01

    Full Text Available We study a consistent deformation of the cubic open bosonic string theory in such a way that the non-planar world sheet diagrams of the perturbative string theory are mapped onto their equivalent planar diagrams of the light-cone string field theory with some length parameters fixed. An explicit evaluation of the cubic string vertex in the zero-slope limit yields the correct relationship between the string coupling constant and the Yang–Mills coupling constant. The deformed cubic open string field theory is shown to produce the non-Abelian Yang–Mills action in the zero-slope limit if it is defined on multiple D-branes. Applying the consistent deformation systematically to multi-string world sheet diagrams, we may be able to calculate scattering amplitudes with an arbitrary number of external open strings.

  12. Quantum field theory of point particles and strings

    CERN Document Server

    Hatfield, Brian

    1992-01-01

    The purpose of this book is to introduce string theory without assuming any background in quantum field theory. Part I of this book follows the development of quantum field theory for point particles, while Part II introduces strings. All of the tools and concepts that are needed to quantize strings are developed first for point particles. Thus, Part I presents the main framework of quantum field theory and provides for a coherent development of the generalization and application of quantum field theory for point particles to strings.Part II emphasizes the quantization of the bosonic string.

  13. Big bang models in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-11-07

    These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.

  14. Hagedorn Behavior of Little String Theories from string corrections to NS5-branes

    DEFF Research Database (Denmark)

    Harmark, Troels; Obers, N. A.

    2000-01-01

    We examine the Hagedorn behavior of little string theory using its conjectured duality with near-horizon NS5-branes. In particular, by studying the string-corrected NS5-brane supergravity solution, it is shown that tree-level corrections to the temperature vanish, while the leading one-loop string...... correction generates the correct temperature dependence of the entropy near the Hagedorn temperature. Finally, the Hagedorn behavior of ODp-brane theories, which are deformed versions of little string theory, is considered via their supergravity duals....

  15. Vacuum degeneracy in four-dimensional string theories

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1988-01-01

    I present results obtained in collaboration with A. Font, L. Ibanez and F. Quevedo using a method that links explicit string constructions with the techniques of supergravity field theories. We make use of the fact that the supersymmetric vacua of the field theory limit of d=4 N=1 superstring theories are all degenerate. Given a particular string theory we can then test for new 'nearby' string theories by an examination of flat directions in the scalar potential of the underlying field theory. As input from string theory we need the knowledge of the Yukawa couplings (i.e., the superpotential) for any number of fields. In the language of conformal field theory, this amounts to a search for exactly marginal operators and the classification of multicritical points. (orig./HSI)

  16. Abstraction/Representation Theory for heterotic physical computing.

    Science.gov (United States)

    Horsman, D C

    2015-07-28

    We give a rigorous framework for the interaction of physical computing devices with abstract computation. Device and program are mediated by the non-logical representation relation; we give the conditions under which representation and device theory give rise to commuting diagrams between logical and physical domains, and the conditions for computation to occur. We give the interface of this new framework with currently existing formal methods, showing in particular its close relationship to refinement theory, and the implications for questions of meaning and reference in theoretical computer science. The case of hybrid computing is considered in detail, addressing in particular the example of an Internet-mediated social machine, and the abstraction/representation framework used to provide a formal distinction between heterotic and hybrid computing. This forms the basis for future use of the framework in formal treatments of non-standard physical computers. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Quantum consistency of open string theories

    International Nuclear Information System (INIS)

    Govaerts, J.

    1989-01-01

    We discuss how Virasoro anomalies in open string theories uniquely select the gauge group SO(2 D/2 ) independently of any regularisation, although the cancellation of these anomalies does not occur in tachyonic theories, and regulators can always be chosen to make these theories (one-loop) finite for any SO(n) and USp(n) gauge group. The discussion is mainly restricted to open bosonic strings. These results open new perspectives for the recent suggestion made by Sagnotti, the generalisations of which allow for the construction of new open string theories in less than ten dimensions. (orig.)

  18. Heterotic computing: past, present and future.

    Science.gov (United States)

    Kendon, Viv; Sebald, Angelika; Stepney, Susan

    2015-07-28

    We introduce and define 'heterotic computing' as a combination of two or more computational systems such that they provide an advantage over either substrate used separately. This first requires a definition of physical computation. We take the framework in Horsman et al. (Horsman et al. 2014 Proc. R. Soc. A 470, 20140182. (doi:10.1098/rspa.2014.0182)), now known as abstract-representation theory, then outline how to compose such computational systems. We use examples to illustrate the ubiquity of heterotic computing, and to discuss the issues raised when one or more of the substrates is not a conventional silicon-based computer. We briefly outline the requirements for a proper theoretical treatment of heterotic computational systems, and the advantages such a theory would provide. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Tensor constructions of open string theories. I. Foundations

    International Nuclear Information System (INIS)

    Gaberdiel, M.R.; Zwiebach, B.

    1997-01-01

    The possible tensor constructions of open string theories are analyzed from first principles. To this end the algebraic framework of open string field theory is clarified, including the role of the homotopy associative A ∞ algebra, the odd symplectic structure, cyclicity, star conjugation, and twist. It is also shown that two string theories are off-shell equivalent if the corresponding homotopy associative algebras are homotopy equivalent in a strict sense. It is demonstrated that a homotopy associative star algebra with a compatible even bilinear form can be attached to an open string theory. If this algebra does not have a space-time interpretation, positivity and the existence of a conserved ghost number require that its cohomology is at degree zero, and that it has the structure of a direct sum of full matrix algebras. The resulting string theory is shown to be physically equivalent to a string theory with a familiar open string gauge group. (orig.)

  20. Geometry, topology, and string theory

    Energy Technology Data Exchange (ETDEWEB)

    Varadarajan, Uday [Univ. of California, Berkeley, CA (United States)

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.

  1. Geometry, topology, and string theory

    International Nuclear Information System (INIS)

    Varadarajan, Uday

    2003-01-01

    A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated

  2. Unity from duality: gravity, gauge theory and strings

    International Nuclear Information System (INIS)

    Bachas, C.; Bilal, A.; Douglas, M.; Nekrasov, N.; David, F.

    2002-01-01

    The 76. session of the summer school in theoretical physics was devoted to recent developments in string theory, gauge theories and quantum gravity. Superstring theory is the leading candidate for a unified theory of all fundamental physical forces and elementary particles. The discovery of dualities and of important tools such as D-branes, has greatly reinforced this point of view. This document gathers the papers of 9 lectures: 1) supergravity, 2) supersymmetric gauge theories, 3) an introduction to duality symmetries, 4) large N field theories and gravity, 5) D-branes on the conifold and N = 1 gauge/gravity dualities, 6) de Sitter space, 7) string compactification with N = 1 supersymmetry, 8) open strings and non-commutative gauge theories, and 9) condensates near the Argyres-Douglas point in SU(2) gauge theory with broken N = 2 supersymmetry, and of 8 seminars: 1) quantum field theory with extra dimensions, 2) special holonomy spaces and M-theory, 3) four dimensional non-critical strings, 4) U-opportunities: why ten equal to ten?, 5) exact answers to approximate questions - non-commutative dipoles, open Wilson lines and UV-IR duality, 6) open-string models with broken supersymmetry, 7) on a field theory of open strings, tachyon condensation and closed strings, and 8) exceptional magic. (A.C.)

  3. String amplitudes: from field theories to number theory

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    In a variety of recent developments, scattering amplitudes hint at new symmetries of and unexpected connections between physical theories which are otherwise invisible in their conventional description via Feynman diagrams or Lagrangians. Yet, many of these hidden structures are conveniently accessible to string theory where gauge interactions and gravity arise as the low-energy excitations of open and closed strings. In this talk, I will give an intuitive picture of gravity as a double copy of gauge interactions and extend the web of relations to scalar field theories including chiral Lagrangians for Goldstone bosons. The string corrections to gauge and gravity amplitudes beyond their point-particle limit exhibit elegant mathematical structures and offer a convenient laboratory to explore modern number-theoretic concepts in a simple context. As a common theme with Feynman integrals, string amplitudes introduce a variety of periods and special functions including multiple zeta values and polylogarithms, orga...

  4. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  5. Δ(54) flavor phenomenology and strings

    Energy Technology Data Exchange (ETDEWEB)

    Carballo-Pérez, Brenda [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico); HEBA Ideas S.A. de C.V.,Calculistas 37, Cd. Mx. 09400 (Mexico); Peinado, Eduardo; Ramos-Sánchez, Saúl [Instituto de Física, Universidad Nacional Autónoma de México,Apartado Postal 20-364, Ciudad de México 01000 (Mexico)

    2016-12-23

    Δ(54) can serve as a flavor symmetry in particle physics, but remains almost unexplored. We show that in a classification of semi-realistic ℤ{sub 3}×ℤ{sub 3} heterotic string orbifolds, Δ(54) turns out to be the most natural flavor symmetry, providing additional motivation for its study. We revisit its phenomenological potential from a low-energy perspective and subject to the constraints of string models. We find a model with Δ(54) arising from heterotic orbifolds that leads to the Gatto-Sartori-Tonin relation for quarks and charged-leptons. Additionally, in the neutrino sector, it leads to a normal hierarchy for neutrino masses and a correlation between the reactor and the atmospheric mixing angles, the latter taking values in the second octant and being compatible at three sigmas with experimental data.

  6. Supersymmetrical dual string theories and their field theory limits: A review

    International Nuclear Information System (INIS)

    Green, M.B.

    1985-01-01

    This paper outlines the construction and properties of supersymmetric string theories. Such theories, which describe the quantum mechanics of relativistic strings in ten-space time dimensions contain both N=4 Yang-Mills and N=8 supergravity field theories as special limits in which the string tension becomes infinite. Calculations of one-loop S-matrix elements reveal remarkable finiteness properties

  7. Introduction to conformal field theory. With applications to string theory

    International Nuclear Information System (INIS)

    Blumenhagen, Ralph; Plauschinn, Erik

    2009-01-01

    Based on class-tested notes, this text offers an introduction to Conformal Field Theory with a special emphasis on computational techniques of relevance for String Theory. It introduces Conformal Field Theory at a basic level, Kac-Moody algebras, one-loop partition functions, Superconformal Field Theories, Gepner Models and Boundary Conformal Field Theory. Eventually, the concept of orientifold constructions is explained in detail for the example of the bosonic string. In providing many detailed CFT calculations, this book is ideal for students and scientists intending to become acquainted with CFT techniques relevant for string theory but also for students and non-specialists from related fields. (orig.)

  8. From N=2 strings to M-theory

    International Nuclear Information System (INIS)

    Ketov, S.V.

    1997-01-01

    Taking the N=2 strings as the starting point, we discuss the equivalent self-dual field theories and analyze their symmetry structure in 2 + 2 dimensions. Restoring the full 'Lorentz' invariance in the target space necessarily leads to an extension of the N=2 string theory to a theory of 2 + 2 dimensional supermembranes propagating in 2 + 10 dimensional target space. The supermembrane requires maximal conformal supersymmetry in 2 + 2 dimensions, in the way advocated by Siegel, and it leads to the self-dual N=4 super-Yang-Mills theory and the self-dual N=8 (gauged) supergravity in 2+2 dimensions. The N=2 strings now appear on equal footing with the other string models as particular limits of the M-theory. (orig.)

  9. Geometric derivation of string field theory from first principles: Closed strings and modular invariance

    International Nuclear Information System (INIS)

    Kaku, M.

    1988-01-01

    We present an entirely new approach to closed-string field theory, called Igeometric string field theory R, which avoids the complications found in Becchi-Rouet-Stora-Tyutin string field theory (e.g., ghost counting, infinite overcounting of diagrams, midpoints, lack of modular invariance). Following the analogy with general relativity and Yang-Mills theory, we define a new infinite-dimensional local gauge group, called the unified string group, which uniquely specifies the connection fields, the curvature tensor, the measure and tensor calculus, and finally the action itself. Geometric field theory, when gauge fixed, yields an entirely new class of gauges called the interpolating gauge which allows us to smoothly interpolate between the midpoint gauge and the end-point gauge (''covariantized light-cone gauge''). We can show that geometric string field theory reproduces one copy of the Shapiro-Virasoro model. Surprisingly, after the gauge is broken, a new Iclosed four-string interactionR emerges as the counterpart of the instantaneous four-fermion Coulomb term in QED. This term restores modular invariance and precisely fills the missing region of the complex plane

  10. Perturbative string thermodynamics near black hole horizons

    International Nuclear Information System (INIS)

    Mertens, Thomas G.; Verschelde, Henri; Zakharov, Valentin I.

    2015-01-01

    We provide further computations and ideas to the problem of near-Hagedorn string thermodynamics near (uncharged) black hole horizons, building upon our earlier work http://dx.doi.org/10.1007/JHEP03(2014)086. The relevance of long strings to one-loop black hole thermodynamics is emphasized. We then provide an argument in favor of the absence of α ′ -corrections for the (quadratic) heterotic thermal scalar action in Rindler space. We also compute the large k limit of the cigar orbifold partition functions (for both bosonic and type II superstrings) which allows a better comparison between the flat cones and the cigar cones. A discussion is made on the general McClain-Roth-O’Brien-Tan theorem and on the fact that different torus embeddings lead to different aspects of string thermodynamics. The black hole/string correspondence principle for the 2d black hole is discussed in terms of the thermal scalar. Finally, we present an argument to deal with arbitrary higher genus partition functions, suggesting the breakdown of string perturbation theory (in g s ) to compute thermodynamical quantities in black hole spacetimes.

  11. String theory and the scientific method

    CERN Document Server

    Dawid, Richard

    2013-01-01

    String theory has played a highly influential role in theoretical physics for nearly three decades and has substantially altered our view of the elementary building principles of the Universe. However, the theory remains empirically unconfirmed, and is expected to remain so for the foreseeable future. So why do string theorists have such a strong belief in their theory? This book explores this question, offering a novel insight into the nature of theory assessment itself. Dawid approaches the topic from a unique position, having extensive experience in both philosophy and high-energy physics. He argues that string theory is just the most conspicuous example of a number of theories in high-energy physics where non-empirical theory assessment has an important part to play. Aimed at physicists and philosophers of science, the book does not use mathematical formalism and explains most technical terms.

  12. Orbifolds of M-theory and type II string theories in two dimensions

    International Nuclear Information System (INIS)

    Roy, S.

    1997-01-01

    We consider several orbifold compactifications of M-theory and theircorresponding type II duals in two space-time dimensions. In particular, we show that while the orbifold compactification of M-theory on T 9 /J 9 is dual to the orbifold compactification of type IIB string theory on T 8 /I 8 , the same orbifold T 8 /I 8 of type IIA string theory is dual to M-theory compactified on a smooth product manifold K3 x T 5 . Similarly, while the orbifold compactification of M-theory on (K3 x T 5 )/σ. J 5 is dual to the orbifold compactification of type IIB string theory on (K3 x T 4 )/σ.I 4 , the same orbifold of type IIA string theory is dual to the orbifold T 4 x (K3 x S 1 )/σ.J 1 of M-theory. The spectrum of various orbifold compactifications of M-theory and type II string theories on both sides are compared giving evidence in favor of these duality conjectures. We also comment on a connection between the Dasgupta-Mukhi-Witten conjecture and the Dabholkar-Park-Sen conjecture for the six-dimensional orbifold models of type IIB string theory and M-theory. (orig.)

  13. String field theory. Algebraic structure, deformation properties and superstrings

    International Nuclear Information System (INIS)

    Muenster, Korbinian

    2013-01-01

    This thesis discusses several aspects of string field theory. The first issue is bosonic open-closed string field theory and its associated algebraic structure - the quantum open-closed homotopy algebra. We describe the quantum open-closed homotopy algebra in the framework of homotopy involutive Lie bialgebras, as a morphism from the loop homotopy Lie algebra of closed string to the involutive Lie bialgebra on the Hochschild complex of open strings. The formulation of the classical/quantum open-closed homotopy algebra in terms of a morphism from the closed string algebra to the open string Hochschild complex reveals deformation properties of closed strings on open string field theory. In particular, we show that inequivalent classical open string field theories are parametrized by closed string backgrounds up to gauge transformations. At the quantum level the correspondence is obstructed, but for other realizations such as the topological string, a non-trivial correspondence persists. Furthermore, we proof the decomposition theorem for the loop homotopy Lie algebra of closed string field theory, which implies uniqueness of closed string field theory on a fixed conformal background. Second, the construction of string field theory can be rephrased in terms of operads. In particular, we show that the formulation of string field theory splits into two parts: The first part is based solely on the moduli space of world sheets and ensures that the perturbative string amplitudes are recovered via Feynman rules. The second part requires a choice of background and determines the real string field theory vertices. Each of these parts can be described equivalently as a morphism between appropriate cyclic and modular operads, at the classical and quantum level respectively. The algebraic structure of string field theory is then encoded in the composition of these two morphisms. Finally, we outline the construction of type II superstring field theory. Specific features of the

  14. Large N field theories, string theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Maldacena, J [Lyman Laboratory of Physics, Harvard University, Cambridge (United States)

    2002-05-15

    We describe the holographic correspondence between field theories and string/M theory, focusing on the relation between compactifications of string/ M theory on Anti-de Sitter spaces and conformal field theories. We review the background for this correspondence and discuss its motivations and the evidence for its correctness. We describe the main results that have been derived from the correspondence in the regime that the field theory is approximated by classical or semiclassical gravity. We focus on the case of the N = 4 supersymmetric gauge theory in four dimensions. These lecture notes are based on the Review written by O. Aharony, S. Gubser, J. Maldacena, H. Ooguri and Y. Oz. (author)

  15. Solution of the dilaton problem in open bosonic string theories

    Energy Technology Data Exchange (ETDEWEB)

    Bern, Z. (Los Alamos National Lab., NM (United States)); Dunbar, D.C. (Liverpool Univ. (United Kingdom))

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.

  16. Solution of the dilaton problem in open bosonic string theories

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1991-01-01

    One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories

  17. String Theory for Pedestrians (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  18. String Theory for Pedestrians (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  19. String Theory for Pedestrians (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  20. Inflation from field theory and string theory perspectives. Matter inflation and slow-walking inflation

    International Nuclear Information System (INIS)

    Halter, Sebastian

    2012-01-01

    This thesis is concerned with aspects of inflation both from a field theory and a string theory perspective. It aims at exploring new approaches to address the problem of moduli destabilization and the η-problem and to realize inflation in the matter sector. The first part is devoted to studying models of inflation in the framework of four-dimensional N=1 supergravity. We begin with investigating a new proposal to solve the problem of moduli destabilization, which seems to force us to choose between low-energy supersymmetry and high-scale inflation. This new approach is based on a particular way to couple the modulus to the F-term driving inflation. Using chaotic inflation with a shift symmetry as an example, we show that we can successfully combine low-energy supersymmetry and high-scale inflation. We construct a class of inflation models in N=1 supergravity where the inflaton resides in gauge non-singlet matter fields. These are extensions of a special class of hybrid inflation models, so-called tribrid inflation, where the η-problem can be solved by a Heisenberg symmetry. Compared to previously studied models, we have generalized our models with some inspiration from string theory. We investigate moduli stabilization during inflation and identify situations in which the inflaton slope is dominated by radiative corrections. We outline under which conditions this class of matter inflation models could be embedded into heterotic orbifold compactifications. In doing so, we suggest a new mechanism to stabilize some Kaehler moduli by F-terms for matter fields. In the second part, we consider models of warped D-brane inflation on a family of ten-dimensional supergravity backgrounds. We consider inflation along the radial direction near the tip of the warped throat and show that generically an inflection point arises for the inflaton potential, which is related to an inflection point of the dilaton profile. A universal scaling behaviour with the parameters of the

  1. Inflation from field theory and string theory perspectives. Matter inflation and slow-walking inflation

    Energy Technology Data Exchange (ETDEWEB)

    Halter, Sebastian

    2012-07-09

    This thesis is concerned with aspects of inflation both from a field theory and a string theory perspective. It aims at exploring new approaches to address the problem of moduli destabilization and the η-problem and to realize inflation in the matter sector. The first part is devoted to studying models of inflation in the framework of four-dimensional N=1 supergravity. We begin with investigating a new proposal to solve the problem of moduli destabilization, which seems to force us to choose between low-energy supersymmetry and high-scale inflation. This new approach is based on a particular way to couple the modulus to the F-term driving inflation. Using chaotic inflation with a shift symmetry as an example, we show that we can successfully combine low-energy supersymmetry and high-scale inflation. We construct a class of inflation models in N=1 supergravity where the inflaton resides in gauge non-singlet matter fields. These are extensions of a special class of hybrid inflation models, so-called tribrid inflation, where the η-problem can be solved by a Heisenberg symmetry. Compared to previously studied models, we have generalized our models with some inspiration from string theory. We investigate moduli stabilization during inflation and identify situations in which the inflaton slope is dominated by radiative corrections. We outline under which conditions this class of matter inflation models could be embedded into heterotic orbifold compactifications. In doing so, we suggest a new mechanism to stabilize some Kaehler moduli by F-terms for matter fields. In the second part, we consider models of warped D-brane inflation on a family of ten-dimensional supergravity backgrounds. We consider inflation along the radial direction near the tip of the warped throat and show that generically an inflection point arises for the inflaton potential, which is related to an inflection point of the dilaton profile. A universal scaling behaviour with the parameters of the

  2. σ-models and string theories

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1987-01-01

    The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix

  3. On noncommutative open string theories

    International Nuclear Information System (INIS)

    Russo, J.G.; Sheikh-Jabbari, M.M.

    2000-08-01

    We investigate new compactifications of OM theory giving rise to a 3+1 dimensional open string theory with noncommutative x 0 -x 1 and x 2 -x 3 coordinates. The theory can be directly obtained by starting with a D3 brane with parallel (near critical) electric and magnetic field components, in the presence of a RR scalar field. The magnetic parameter permits to interpolate continuously between the x 0 -x 1 noncommutative open string theory and the x 2 -x 3 spatial noncommutative U(N) super Yang-Mills theory. We discuss SL(2, Z) transformations of this theory. Using the supergravity description of the large N limit, we also compute corrections to the quark-antiquark Coulomb potential arising in the NCOS theory. (author)

  4. Noncompact symmetries in string theory

    International Nuclear Information System (INIS)

    Maharana, J.; Schwarz, J.H.

    1993-01-01

    Noncompact groups, similar to those that appeared in various supergravity theories in the 1970's have been turning up in recent studies of string theory. First it was discovered that moduli spaces of toroidal compactification are given by noncompact groups modded out by their maximal compact subgroups and discrete duality groups. Then it was found that many other moduli spaces have analogous descriptions. More recently, noncompact group symmetries have turned up in effective actions used to study string cosmology and other classical configurations. This paper explores these noncompact groups in the case of toroidal compactification both from the viewpoint of low-energy effective field theory, using the method of dimensional reduction, and from the viewpoint of the string theory world-sheet. The conclusion is that all these symmetries are intimately related. In particular, we find that Chern-Simons terms in the three-form field strength H μνρ play a crucial role. (orig.)

  5. A classification of open string models

    International Nuclear Information System (INIS)

    Nahm, W.

    1985-12-01

    Open string models are classified using modular invariance. No good candidates for new models are found, though the existence of an E 8 invariant model in Rsup(17,1), a similar one in Rsup(5,1) and of a supersymmetric model in Rsup(2,1) cannot be excluded by this technique. An intriguing relation between the left moving and right moving sectors of the heterotic string emerges. (orig.)

  6. Non-renormalisation theorems in string theory

    International Nuclear Information System (INIS)

    Vanhove, P.

    2007-10-01

    In this thesis we describe various non renormalisation theorems for the string effective action. These results are derived in the context of the M theory conjecture allowing to connect the four gravitons string theory S matrix elements with that of eleven dimensional supergravity. These theorems imply that N = 8 supergravity theory has the same UV behaviour as the N = 4 supersymmetric Yang Mills theory at least up to three loops, and could be UV finite in four dimensions. (author)

  7. Reconciling grand unification with strings by anisotropic compactifications

    International Nuclear Information System (INIS)

    Dundee, Ben; Raby, Stuart; Wingerter, Akin

    2008-01-01

    We analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective five-dimensional orbifold grand unified theory field theories. Our analysis assumes three fundamental scales: the string scale M S , a compactification scale M C , and a mass scale for some of the vectorlike exotics M EX ; the other exotics are assumed to get mass at M S . In the particular models analyzed, we show that gauge coupling unification is not possible with M EX =M C , and in fact we require M EX C ∼3x10 16 GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension six gauge exchange) 10 33 yr 0 e + ) 36 yr. The other 80% of the parameter space gives proton lifetimes below Super-Kamiokande bounds. The next generation of proton decay experiments should be sensitive to the remaining parameter space.

  8. Higgs versus matter in the heterotic landscape

    International Nuclear Information System (INIS)

    Buchmueller, W.; Schmidt, J.

    2009-01-01

    In supersymmetric extensions of the standard model there is no basic difference between Higgs and matter fields, which leads to the well-known problem of potentially large baryon and lepton number violating interactions. Although these unwanted couplings can be forbidden by continuous or discrete global symmetries, a theoretical guiding principle for their choice is missing. We examine this problem for a class of vacua of the heterotic string compactified on an orbifold. As expected, in general there is no difference between Higgs and matter. However, certain vacua happen to possess unbroken matter parity and discrete R-symmetries which single out Higgs fields in the low energy effective field theory. We present a method how to identify maximal vacua in which the perturbative contribution to the μ-term and the expectation value of the superpotential vanish. Two vacua are studied in detail, one with two pairs of Higgs doublets and one with partial gauge-Higgs unification

  9. Physics is in trouble, the string theory has failed

    International Nuclear Information System (INIS)

    Smolin, L.

    2007-01-01

    The popularity of the string theory is based on its claim to explain both the very big and the very small: gravity and elementary particles. The string theory assumes that the real world contains dimensions that have not yet been observed and that any elementary particle is a vibration of a unique entity called string that obeys simple and elegant laws. Most theoretical physicists and mathematicians have focused their attention on this theory for the last 25 years and the diagnosis is clear: string theory fails to cope with the standard model and to explain the existence of dark matter or the mass of neutrinos. The string theory is hailed for its beauty or elegancy but this theory has never been backed by experimental data. While science has made significant progress in numerous domains, particle physics seems to have reached a dead-end. It is high time we officially questioned the string theory and opened the gate for alternative theories. (A.C.)

  10. A non-supersymmetric open-string theory and S-duality

    International Nuclear Information System (INIS)

    Bergman, O.; Gaberdiel, M.R.

    1997-01-01

    A non-supersymmetric ten-dimensional open-string theory is constructed as an orbifold of type I string theory, and as an orientifold of the bosonic type B theory. It is purely bosonic, and cancellation of massless tadpoles requires the gauge group to be SO(32) x SO(32). The spectrum of the theory contains a closed-string tachyon, and open-string tachyons in the (32,32) multiplet. The D-branes of this theory are analyzed, and it is found that the massless excitations of one of the 1-branes coincide with the world-sheet degrees of freedom of the D=26 bosonic string theory compactified on the SO(32) lattice. This suggests that the two theories are related by S-duality. (orig.)

  11. D-strings in unconventional type I vacuum configurations

    International Nuclear Information System (INIS)

    Bianchi, M.; Gava, E.; Morales, F.; Narain, K.S.

    1998-11-01

    We determine the spectrum of D-string bound states in various classes of generalized type I vacuum configurations with sixteen and eight supercharges. The precise matching of the BPS spectra confirms the duality between unconventional type IIB orientfolds with quantized NS-NS antisymmetric tensor and heterotic CHL models in D=8. A similar analysis puts the duality between type II (4,0) models and type I strings without open strings on a firmer ground. The analysis can be extended to type II (2,0) asymmetric orbifolds and their type I duals that correspond to unconventional K3 compactifications. Finally we discuss BPS-saturated threshold corrections to the corresponding low-energy effective lagrangians. In particular we show how the exact moduli dependence of some F 4 terms in the eight-dimensional type II (4,0) orbifold is reproduced by the infinite sum of D-instanton contributions in the dual type I theory. (author)

  12. The tension as perturbative parameter in string theory

    International Nuclear Information System (INIS)

    Gamboa, J.

    1990-01-01

    We propose an approach to string theory where the zero theory is the null string. We find an explicit form of the propagator for the null string in the momentum space. We show that considering the tension as perturbative parameter, the perturbative series is completely summable and we find the propagator of the bosonic open string with tension T. (author) [pt

  13. Calculations in perturbative string field theory

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1987-01-01

    The author discusses methods for evaluating the Feynman diagrams of string field theory, with particular emphasis on Witten's version of open string field theory. It is explained in some detail how the rules states by Giddings and Martinec for relating a given diagram to a Polyakov path integral emerge from the Feynman rules

  14. Perturbative and global anomalies in supergravity theories

    International Nuclear Information System (INIS)

    Sezgin, E.

    1986-09-01

    Perturbative and global anomalies in supergravity theories are reviewed. The existence of a matter and gauge coupled supergravity theory in six dimensions with E 6 xE 7 xU(1) symmetry and highly nontrivial anomaly cancellations is emphasised. The possible string origin of this theory is posed as an open problem, study of which may lead to discovery of new ways to construct/compactify heterotic superstrings. (author)

  15. A brief history of string theory. From dual models to M-theory

    International Nuclear Information System (INIS)

    Rickles, Dean

    2014-01-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  16. String Theory: Big Problem for Small Size

    Science.gov (United States)

    Sahoo, S.

    2009-01-01

    String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…

  17. New twistor string theories revisited

    International Nuclear Information System (INIS)

    Broedel, Johannes; Wurm, Bernhard

    2009-01-01

    A gauged version of Berkovits twistor string theory featuring the particle content of N=8 supergravity was suggested by Abou-Zeid, Hull and Mason. The equations of motion for a particular multiplet in the modified theory are examined on the level of basic twistor fields and thereby shown to imply the vanishing of the negative helicity graviton on-shell. Additionally, the restrictions emerging from the equation of motion for the new gauge field B-bar reveal the chiral nature of interactions in theories constructed in this manner. Moreover, a particular amplitude in Berkovits open string theory is shown to be in agreement with the corresponding result in Einstein gravity.

  18. Nonassociativity, Malcev algebras and string theory

    International Nuclear Information System (INIS)

    Guenaydin, M.; Minic, D.

    2013-01-01

    Nonassociative structures have appeared in the study of D-branes in curved backgrounds. In recent work, string theory backgrounds involving three-form fluxes, where such structures show up, have been studied in more detail. We point out that under certain assumptions these nonassociative structures coincide with nonassociative Malcev algebras which had appeared in the quantum mechanics of systems with non-vanishing three-cocycles, such as a point particle moving in the field of a magnetic charge. We generalize the corresponding Malcev algebras to include electric as well as magnetic charges. These structures find their classical counterpart in the theory of Poisson-Malcev algebras and their generalizations. We also study their connection to Stueckelberg's generalized Poisson brackets that do not obey the Jacobi identity and point out that nonassociative string theory with a fundamental length corresponds to a realization of his goal to find a non-linear extension of quantum mechanics with a fundamental length. Similar nonassociative structures are also known to appear in the cubic formulation of closed string field theory in terms of open string fields, leading us to conjecture a natural string-field theoretic generalization of the AdS/CFT-like (holographic) duality. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Notes on entanglement entropy in string theory

    International Nuclear Information System (INIS)

    He, Song; Numasawa, Tokiro; Takayanagi, Tadashi; Watanabe, Kento

    2015-01-01

    In this paper, we study the conical entropy in string theory in the simplest setup of dividing the nine dimensional space into two halves. This corresponds to the leading quantum correction to the horizon entropy in string theory on the Rindler space. This entropy is also called the conical entropy and includes surface term contributions. We first derive a new simple formula of the conical entropy for any free higher spin fields. Then we apply this formula to computations of conical entropy in open and closed superstring. In our analysis of closed string, we study the twisted conical entropy defined by making use of string theory on Melvin backgrounds. This quantity is easier to calculate owing to the folding trick. Our analysis shows that the conical entropy in closed superstring is UV finite owing to the string scale cutoff.

  20. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    International Nuclear Information System (INIS)

    Chuang, Wu-yen

    2007-01-01

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism

  1. Geometric Transitions, Topological Strings, and Generalized Complex Geometry

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, Wu-yen; /SLAC /Stanford U., Phys. Dept.

    2007-06-29

    Mirror symmetry is one of the most beautiful symmetries in string theory. It helps us very effectively gain insights into non-perturbative worldsheet instanton effects. It was also shown that the study of mirror symmetry for Calabi-Yau flux compactification leads us to the territory of ''Non-Kaehlerity''. In this thesis we demonstrate how to construct a new class of symplectic non-Kaehler and complex non-Kaehler string theory vacua via generalized geometric transitions. The class admits a mirror pairing by construction. From a variety of sources, including super-gravity analysis and KK reduction on SU(3) structure manifolds, we conclude that string theory connects Calabi-Yau spaces to both complex non-Kaehler and symplectic non-Kaehler manifolds and the resulting manifolds lie in generalized complex geometry. We go on to study the topological twisted models on a class of generalized complex geometry, bi-Hermitian geometry, which is the most general target space for (2, 2) world-sheet theory with non-trivial H flux turned on. We show that the usual Kaehler A and B models are generalized in a natural way. Since the gauged supergravity is the low energy effective theory for the compactifications on generalized geometries, we study the fate of flux-induced isometry gauging in N = 2 IIA and heterotic strings under non-perturbative instanton effects. Interestingly, we find we have protection mechanisms preventing the corrections to the hyper moduli spaces. Besides generalized geometries, we also discuss the possibility of new NS-NS fluxes in a new doubled formalism.

  2. String Theory Rocks!

    CERN Multimedia

    2008-01-01

    String Theory supporters argue that the universe we live in has eleven dimensions, out of which three spacial dimensions and a temporal one, which define the void and the space-time environment we experience daily.

  3. A string theory which isn't about strings

    Science.gov (United States)

    Lee, Kanghoon; Rey, Soo-Jong; Rosabal, J. A.

    2017-11-01

    Quantization of closed string proceeds with a suitable choice of worldsheet vacuum. A priori, the vacuum may be chosen independently for left-moving and right-moving sectors. We construct ab initio quantized bosonic string theory with left-right asymmetric worldsheet vacuum and explore its consequences and implications. We critically examine the validity of new vacuum and carry out first-quantization using standard operator formalism. Remarkably, the string spectrum consists only of a finite number of degrees of freedom: string gravity (massless spin-two, Kalb-Ramond and dilaton fields) and two massive spin-two Fierz-Pauli fields. The massive spin-two fields have negative norm, opposite mass-squared, and provides a Lee-Wick type extension of string gravity. We compute two physical observables: tree-level scattering amplitudes and one-loop cosmological constant. Scattering amplitude of four dilatons is shown to be a rational function of kinematic invariants, and in D = 26 factorizes into contributions of massless spin-two and a pair of massive spin-two fields. The string one loop partition function is shown to perfectly agree with one loop Feynman diagram of string gravity and two massive spin-two fields. In particular, it does not exhibit modular invariance. We critically compare our construction with recent studies and contrast differences.

  4. Exotic configurations for gauge theory strings

    International Nuclear Information System (INIS)

    Yajnik, U.A.

    1987-01-01

    This paper discusses a class of string configurations occuring in nonabelian gauge theories, which are such that a component of the charged scalar field responsible for the string has a nonvanishing expectation value in the core of the string. A systematic procedure is given for setting up the ansatz for such configurations. (orig.)

  5. String theory of the Regge intercept.

    Science.gov (United States)

    Hellerman, S; Swanson, I

    2015-03-20

    Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons.

  6. Boundary operators in effective string theory

    Energy Technology Data Exchange (ETDEWEB)

    Hellerman, Simeon [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan); Swanson, Ian [Kavli Institute for the Physics and Mathematics of the Universe, The University of Tokyo,Kashiwa, Chiba 277-8582 (Japan)

    2017-04-13

    Various universal features of relativistic rotating strings depend on the organization of allowed local operators on the worldsheet. In this paper, we study the set of Neumann boundary operators in effective string theory, which are relevant for the controlled study of open relativistic strings with freely moving endpoints. Relativistic open strings are thought to encode the dynamics of confined quark-antiquark pairs in gauge theories in the planar approximation. Neumann boundary operators can be organized by their behavior under scaling of the target space coordinates X{sup μ}, and the set of allowed X-scaling exponents is bounded above by +1/2 and unbounded below. Negative contributions to X-scalings come from powers of a single invariant, or “dressing' operator, which is bilinear in the embedding coordinates. In particular, we show that all Neumann boundary operators are dressed by quarter-integer powers of this invariant, and we demonstrate how this rule arises from various ways of regulating the short-distance singularities of the effective theory.

  7. A brief history of string theory. From dual models to M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Rickles, Dean [Sydney Univ. (Australia). Unit for History and Philosophy of Science

    2014-04-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  8. Perturbation theory for quantized string fields

    International Nuclear Information System (INIS)

    Thorn, C.B.; Florida Univ., Gainesville

    1987-01-01

    We discuss the problem of gauge fixing in string field theory. We show that BRST invariance requires the gauge-fixed action to contain terms cubic in the ghost... of ghost of ghost fields. The final BRST invariant gauge-fixed action for the gauge b 0 A=0 is extremely simple: with the proper interpretation (as given in this article), it is essentially the one anticipated earlier in the work of Giddings, Martinec, and Witten in their analysis of the BRST invariant world-sheet approach to string theory. We derive the Feynman rules from this action and explain in detail how the sum over sufaces of the BRST first-quantized string is reproduced. This result depends crucially on the correct assignment for the Grassmann character of the string field and its ghost... of ghost of ghost string fields. If all these fields are unified in a single string field Φ containing all ghost numbers, the requirements is that Φ be uniformly Grassmann odd. Finally, we do some sample calculations which provide some simple checks on our general results. (orig.)

  9. Classical theory of radiating strings

    Science.gov (United States)

    Copeland, Edmund J.; Haws, D.; Hindmarsh, M.

    1990-01-01

    The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.

  10. Dynamics of Strings in Noncommutative Gauge Theory

    International Nuclear Information System (INIS)

    Gross, David J.; Nekrasov, Nikia A.

    2000-01-01

    We continue our study of solitons in noncommutative gauge theories and present an extremely simple BPS solution of N=4 U(1) noncommutative gauge theory in 4 dimensions, which describes N infinite D1 strings that pierce a D3 brane at various points, in the presence of a background B-field in the Seiberg-Witten limit. We call this solution the N-fluxon. For N=1 we calculate the complete spectrum of small fluctuations about the fluxon and find three kinds of modes: the fluctuations of the superstring in 10 dimensions arising from fundamental strings attached to the D1 strings, the ordinary particles of the gauge theory in 4 dimensions and a set of states with discrete spectrum, localized at the intersection point - corresponding to fundamental strings stretched between the D1 string and the D3 brane. We discuss the fluctuations about the N-fluxon as well and derive explicit expressions for the amplitudes of interactions between these various modes. We show that translations in noncommutative gauge theories are equivalent to gauge transformations (plus a constant shift of the gauge field) and discuss the implications for the translational zeromodes of our solitons. We also find the dyonic versions of N-fluxon, as well as of our previous string-monopole solution. (author)

  11. D-branes in little string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Pakman, Ari; Troost, Jan

    2005-01-01

    We analyze in detail the D-branes in the near-horizon limit of NS5-branes on a circle, the holographic dual of little string theory in a double scaling limit. We emphasize their geometry in the background of the NS5-branes and show the relation with D-branes in coset models. The exact one-point functions giving the coupling of the closed string states with the D-branes and the spectrum of open strings are computed. Using these results, we analyze several aspects of Hanany-Witten setups, using exact CFT analysis. In particular we identify the open string spectrum on the D-branes stretched between NS5-branes which confirms the low-energy analysis in brane constructions, and that allows to go to higher energy scales. As an application we show the emergence of the beta-function of the N=2 gauge theory on D4-branes stretching between NS5-branes from the boundary states describing the D4-branes. We also speculate on the possibility of getting a matrix model description of little string theory from the effective theory on the D1-branes. By considering D3-branes orthogonal to the NS5-branes we find a CFT incarnation of the Hanany-Witten effect of anomalous creation of D-branes. Finally we give an brief description of some non-BPS D-branes

  12. On the background independence of string field theory

    International Nuclear Information System (INIS)

    Sen, A.

    1990-01-01

    Given a solution Ψ cl of the classical equations of motion in either closed or open string field theory formulated around a given conformal field theory background, we can construct a new operator Q B in the corresponding two-dimensional field theory such that (Q B ) 2 =0. It is shown that in the limit when the background field Ψ cl is weak, Q B can be identified with the BRST charge of a new local conformal field theory. This indicates that the string field theories formulated around these two different conformal field theories are actually the same theory, and that these two conformal field theories may be regarded as different classical solutions of this string field theory. (orig.)

  13. Comparing double string theory actions

    International Nuclear Information System (INIS)

    De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.

    2014-01-01

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed

  14. Comparing double string theory actions

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)

    2014-04-28

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.

  15. Tree-level stability without spacetime fermions: novel examples in string theory

    International Nuclear Information System (INIS)

    Israel, Dan; Niarchos, Vasilis

    2007-01-01

    Is perturbative stability intimately tied with the existence of spacetime fermions in string theory in more than two dimensions? Type 0'B string theory in ten-dimensional flat space is a rare example of a non-tachyonic, non-supersymmetric string theory with a purely bosonic closed string spectrum. However, all known type 0' constructions exhibit massless NSNS tadpoles signaling the fact that we are not expanding around a true vacuum of the theory. In this note, we are searching for perturbatively stable examples of type 0' string theory without massless tadpoles in backgrounds with a spatially varying dilaton. We present two examples with this property in non-critical string theories that exhibit four- and six-dimensional Poincare invariance. We discuss the D-branes that can be embedded in this context and the type of gauge theories that can be constructed in this manner. We also comment on the embedding of these non-critical models in critical string theories and their holographic (Little String Theory) interpretation and propose a general conjecture for the role of asymptotic supersymmetry in perturbative string theory

  16. The monster sporadic group and a theory underlying superstring models

    International Nuclear Information System (INIS)

    Chapline, G.

    1996-09-01

    The pattern of duality symmetries acting on the states of compactified superstring models reinforces an earlier suggestion that the Monster sporadic group is a hidden symmetry for superstring models. This in turn points to a supersymmetric theory of self-dual and anti-self-dual K3 manifolds joined by Dirac strings and evolving in a 13 dimensional spacetime as the fundamental theory. In addition to the usual graviton and dilaton this theory contains matter-like degrees of freedom resembling the massless states of the heterotic string, thus providing a completely geometric interpretation for ordinary matter. 25 refs

  17. Open and Closed String field theory interpreted in classical Algebraic Topology

    OpenAIRE

    Sullivan, Dennis

    2003-01-01

    There is an interpretation of open string field theory in algebraic topology. An interpretation of closed string field theory can be deduced from this open string theory to obtain as well the interpretation of open and closed string field theory combined.

  18. Ubiquity of non-geometry in heterotic compactifications

    Energy Technology Data Exchange (ETDEWEB)

    García-Etxebarria, Iñaki [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany); Lüst, Dieter [Max Planck Institute for Physics,Föhringer Ring 6, 80805 Munich (Germany); Arnold Sommerfeld Center for Theoretical Physics,Theresienstraße 37, 80333 Munich (Germany); Massai, Stefano [Enrico Fermi Institute, University of Chicago,5640 S Ellis Ave, Chicago, IL 60637 (United States); Arnold Sommerfeld Center for Theoretical Physics,Theresienstraße 37, 80333 Munich (Germany); Mayrhofer, Christoph [Arnold Sommerfeld Center for Theoretical Physics,Theresienstraße 37, 80333 Munich (Germany)

    2017-03-08

    We study the effect of quantum corrections on heterotic compactifications on elliptic fibrations away from the stable degeneration limit, elaborating on a recent observation by Malmendier and Morrison. We show that already for the simplest non-trivial elliptic fibration the effect is quite dramatic: the I{sub 1} degeneration with trivial gauge background dynamically splits into two T-fects with monodromy around each T-fect being (conjugate to) T-duality along one of the legs of the T{sup 2}. This implies that almost every elliptic heterotic compactification becomes a non-geometric T-fold away from the stable degeneration limit. We also point out a subtlety due to this non-geometric splitting at finite fiber size. It arises when determining, via heterotic/F-theory duality, the SCFTs associated to a small number of pointlike instantons probing heterotic ADE singularities. Along the way we resolve various puzzles in the literature.

  19. Hidden gravity in open-string field theory

    International Nuclear Information System (INIS)

    Siegel, W.

    1994-01-01

    We clarify the nature of the graviton as a bound state in open-string field theory: The flat metric in the action appears as the vacuum value of an open string field. The bound state appears as a composite field in the free field theory

  20. Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua

    Science.gov (United States)

    Rizos, J.

    2014-06-01

    The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about Standard Model compatible models that can be fully classified.

  1. Marginal deformations of heterotic G 2 sigma models

    Science.gov (United States)

    Fiset, Marc-Antoine; Quigley, Callum; Svanes, Eirik Eik

    2018-02-01

    Recently, the infinitesimal moduli space of heterotic G 2 compactifications was described in supergravity and related to the cohomology of a target space differential. In this paper we identify the marginal deformations of the corresponding heterotic nonlinear sigma model with cohomology classes of a worldsheet BRST operator. This BRST operator is nilpotent if and only if the target space geometry satisfies the heterotic supersymmetry conditions. We relate this to the supergravity approach by showing that the corresponding cohomologies are indeed isomorphic. We work at tree-level in α' perturbation theory and study general geometries, in particular with non-vanishing torsion.

  2. Yang-Mills theory - a string theory in disguise

    International Nuclear Information System (INIS)

    Foerster, D.

    1979-01-01

    An examination of the Schwinger-Dyson equations of U(N) lattice Yang-Mills theory shows that this theory is exactly equivalent to a theory of strings that interact with one another only through their topology. (Auth.)

  3. Gauge unification in highly anisotropic string compactifications

    International Nuclear Information System (INIS)

    Hebecker, A.; Trapletti, M.

    2005-01-01

    It is well known that heterotic string compactifications have, in spite of their conceptual simplicity and aesthetic appeal, a serious problem with precision gauge coupling unification in the perturbative regime of string theory. Using both a duality-based and a field-theoretic definition of the boundary of the perturbative regime, we reevaluate the situation in a quantitative manner. We conclude that the simplest and most promising situations are those where some of the compactification radii are exceptionally large, corresponding to highly anisotropic orbifold models. Thus, one is led to consider constructions which are known to the effective field-theorist as higher-dimensional or orbifold grand unified theories (orbifold GUTs). In particular, if the discrete symmetry used to break the GUT group acts freely, a non-local breaking in the larger compact dimensions can be realized, leading to a precise gauge coupling unification as expected on the basis of the MSSM particle spectrum. Furthermore, a somewhat more model dependent but nevertheless very promising scenario arises if the GUT breaking is restricted to certain singular points within the manifold spanned by the larger compactification radii

  4. A Chern-Simons-like action for closed-string field theory

    International Nuclear Information System (INIS)

    Taylor, C.C.

    1989-01-01

    A Chern-Simons-like action is proposed for closed-string field theory. The action involves auxiliary fields of arbitrary ghost number and is defined in terms of the closed-string operations ∫, Q and *, analogous to those introduced by Witten in the construction of open-string field theory. The action is an extension of one proposed for free closed strings and bears a formal relationship to 2 + 1 gravity analogous to that between open-string field theory and (2 + 1)-dimensional Yang-Mills theory. (author)

  5. Asymmetric Gepner models II. Heterotic weight lifting

    International Nuclear Information System (INIS)

    Gato-Rivera, B.; Schellekens, A.N.

    2011-01-01

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E 8 factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  6. Open string theory in 1+1 dimensions

    International Nuclear Information System (INIS)

    Bershadsky, M.; Kutasov, D.

    1992-01-01

    We show that tree level open two dimensional string theory is exactly solvable; the solution exhibits some unusual features, and is qualitatively different from the closed case. The open string 'tachyon' S-matrix describes free fermions, which can be interpreted as the quarks at the ends of the string. These 'quarks' live naturally on a lattice in space-time. We also find an exact vacuum solution of the theory, corresponding to a charged black hole. (orig.)

  7. Introduction to string and superstring theory II

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs

  8. Introduction to string and superstring theory II

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1987-03-01

    Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)

  9. General relativity invariance and string field theory

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Volovich, I.V.

    1987-04-01

    The general covariance principle in the string field theory is considered. The algebraic properties of the string Lie derivative are discussed. The string vielbein and spin connection are introduced and an action invariant under general co-ordinate transformation is proposed. (author). 18 refs

  10. Multiple-Trace Operators and Non-Local String Theories

    International Nuclear Information System (INIS)

    Silverstein, Eva M.

    2001-01-01

    We propose that a novel deformation of string perturbation theory, involving non-local interactions between strings, is required to describe the gravity duals of field theories deformed by multiple-trace operators. The new perturbative expansion involves a new parameter, which is neither the string coupling nor the coefficient of a vertex operator on the worldsheet. We explore some of the properties of this deformation, focusing on a special case where the deformation in the field theory is exactly marginal

  11. Conformal field theory and its application to strings

    International Nuclear Information System (INIS)

    Verlinde, E.P.

    1988-01-01

    Conformal field theories on Riemann surfaces are considered and the result is applied to study the loop amplitudes for bosonic strings. It is shown that there is a close resemblance between the loop amplitudes for φ 3 -theory and the expressions for string multi-loop amplitudes. The similarity between φ 3 -amplitudes in curved backgrounds and the analytic structure of string amplitudes in backgrounds described by conformal field theories is also pointed out. 60 refs.; 5 figs.; 200 schemes

  12. Covariant amplitudes in Polyakov string theory

    International Nuclear Information System (INIS)

    Aoyama, H.; Dhar, A.; Namazie, M.A.

    1986-01-01

    A manifestly Lorentz-covariant and reparametrization-invariant procedure for computing string amplitudes using Polyakov's formulation is described. Both bosonic and superstring theories are dealt with. The computation of string amplitudes is greatly facilitated by this formalism. (orig.)

  13. Discrete field theories and spatial properties of strings

    International Nuclear Information System (INIS)

    Klebanov, I.; Susskind, L.

    1988-10-01

    We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs

  14. The strings connection: MSSM-like models from strings

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bethe Center for Theoretical Physics (BCTP) and Physikalisches Institut der Universitaet Bonn, Bonn (Germany)

    2014-05-15

    String theory constructions towards the MSSM allow us to identify some general properties that could be relevant for tests at the LHC. They originate from the geometric structure of compactification and the location of fields in extra-dimensional space. Within the framework of the heterotic MiniLandscape we extract some generic lessons for supersymmetric model building. Among them is a specific pattern of SUSY breakdown based on mirage mediation and remnants of extended supersymmetry. This leads to a split spectrum with heavy scalars of the first two families of quarks and leptons and suppressed masses for gauginos, top partners and Higgs bosons. The models exhibit some specific form of hidden supersymmetry consistent with the high mass of the Higgs boson and all presently available experimental constraints. The most compelling picture is based on precision gauge coupling unification that might be in the kinematic reach of the LHC. (orig.)

  15. Warped models in string theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Benini, F.; Valandro, R.

    2006-12-01

    Warped models, originating with the ideas of Randall and Sundrum, provide a fascinating extension of the standard model with interesting consequences for the LHC. We investigate in detail how string theory realises such models, with emphasis on fermion localisation and the computation of Yukawa couplings. We find, in contrast to the 5d models, that fermions can be localised anywhere in the extra dimension, and that there are new mechanisms to generate exponential hierarchies amongst the Yukawa couplings. We also suggest a way to distinguish these string theory models with data from the LHC. (author)

  16. Corners in M-theory

    Science.gov (United States)

    Sati, Hisham

    2011-06-01

    M-theory can be defined on closed manifolds as well as on manifolds with boundary. As an extension, we show that manifolds with corners appear naturally in M-theory. We illustrate this with four situations: the lift to bounding 12 dimensions of M-theory on anti-de Sitter spaces, ten-dimensional heterotic string theory in relation to 12 dimensions, and the two M-branes within M-theory in the presence of a boundary. The M2-brane is taken with (or as) a boundary and the worldvolume of the M5-brane is viewed as a tubular neighborhood. We then concentrate on the (variant) of the heterotic theory as a corner and explore analytical and geometric consequences. In particular, we formulate and study the phase of the partition function in this setting and identify the corrections due to the corner(s). The analysis involves considering M-theory on disconnected manifolds and makes use of the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners and the b-calculus of Melrose.

  17. Corners in M-theory

    International Nuclear Information System (INIS)

    Sati, Hisham

    2011-01-01

    M-theory can be defined on closed manifolds as well as on manifolds with boundary. As an extension, we show that manifolds with corners appear naturally in M-theory. We illustrate this with four situations: the lift to bounding 12 dimensions of M-theory on anti-de Sitter spaces, ten-dimensional heterotic string theory in relation to 12 dimensions, and the two M-branes within M-theory in the presence of a boundary. The M2-brane is taken with (or as) a boundary and the worldvolume of the M5-brane is viewed as a tubular neighborhood. We then concentrate on the (variant) of the heterotic theory as a corner and explore analytical and geometric consequences. In particular, we formulate and study the phase of the partition function in this setting and identify the corrections due to the corner(s). The analysis involves considering M-theory on disconnected manifolds and makes use of the extension of the Atiyah-Patodi-Singer index theorem to manifolds with corners and the b-calculus of Melrose.

  18. String creation, D-branes and effective field theory

    International Nuclear Information System (INIS)

    Hung Lingyan

    2008-01-01

    This paper addresses several unsettled issues associated with string creation in systems of orthogonal Dp-D(8-p) branes. The interaction between the branes can be understood either from the closed string or open string picture. In the closed string picture it has been noted that the DBI action fails to capture an extra RR exchange between the branes. We demonstrate how this problem persists upon lifting to M-theory. These D-brane systems are analysed in the closed string picture by using gauge-fixed boundary states in a non-standard lightcone gauge, in which RR exchange can be analysed precisely. The missing piece in the DBI action also manifests itself in the open string picture as a mismatch between the Coleman-Weinberg potential obtained from the effective field theory and the corresponding open string calculation. We show that this difference can be reconciled by taking into account the superghosts in the (0+1) effective theory of the chiral fermion, that arises from gauge fixing the spontaneously broken world-line local supersymmetries

  19. An exact bosonization rule for c = 1 noncritical string theory

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Yamaguchi, Atsushi

    2007-01-01

    We construct a string field theory for c = 1 noncritical strings using the loop variables as the string field. We show how one can express the nonrelativistic free fermions which describes the theory, in terms of these string fields

  20. Big bang and big crunch in matrix string theory

    OpenAIRE

    Bedford, J; Papageorgakis, C; Rodríguez-Gómez, D; Ward, J

    2007-01-01

    Following the holographic description of linear dilaton null Cosmologies with a Big Bang in terms of Matrix String Theory put forward by Craps, Sethi and Verlinde, we propose an extended background describing a Universe including both Big Bang and Big Crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using Matrix String Theory. We provide a simple theory capable of...

  1. The space-time operator product expansion in string theory duals of field theories

    International Nuclear Information System (INIS)

    Aharony, Ofer; Komargodski, Zohar

    2008-01-01

    We study the operator product expansion (OPE) limit of correlation functions in field theories which possess string theory duals, from the point of view of the string worldsheet. We show how the interesting ('single-trace') terms in the OPE of the field theory arise in this limit from the OPE of the worldsheet theory of the string dual, using a dominant saddle point which appears in computations of worldsheet correlation functions in the space-time OPE limit. The worldsheet OPE generically contains only non-physical operators, but all the non-physical contributions are resummed by the saddle point to a contribution similar to that of a physical operator, which exactly matches the field theory expectations. We verify that the OPE limit of the worldsheet theory does not have any other contributions to the OPE limit of space-time correlation functions. Our discussion is completely general and applies to any local field theory (conformal at high energies) that has a weakly coupled string theory dual (with arbitrary curvature). As a first application, we compare our results to a proposal of R. Gopakumar for the string theory dual of free gauge theories

  2. Kac-Moody algebras and string theory

    International Nuclear Information System (INIS)

    Cleaver, G.B.

    1993-01-01

    The focus of this thesis is on (1) the role of Kac-Moody algebras in string theory and the development of techniques for systematically building string theory models based on a higher level (K ≥ 2) KM algebras and (2) fractional superstrings, a new class of solutions based on SU(2) K /U(1) conformal field theories. The content of this thesis is as follows. In chapter two they review KM algebras and their role in string theory. In the next chapter they present two results concerning the construction of modular invariant partition functions for conformal field theories build by tensoring together other conformal field theories. First they show how the possible modular invariants for the tensor product theory are constrained if the allowed modular invariants of the individuals conformal field theory factors have been classified. They illustrate the use of these constraints for theories of the type SU(2) KA direct-product SU(2) KB , finding all consistent theories for K A and K B odd. Second they show how known diagonal modular invariants can be used to construct inherently asymmetric invariants where the holomorphic and anti-holomorphic theories do not share the same chiral algebra. Explicit examples are given. Next, in chapter four they investigate some issues relating to recently proposed fractional superstring theories with D critical K/4 K/4 , as source of spacetime fermions, is demonstrated

  3. Open superstring field theory I: gauge fixing, ghost structure, and propagator

    Czech Academy of Sciences Publication Activity Database

    Kroyter, M.; Okawa, Y.; Schnabl, Martin; Torii, S.; Zwiebach, B.

    2012-01-01

    Roč. 2012, č. 3 (2012), 1-34 ISSN 1126-6708 R&D Projects: GA MŠk(CZ) LH11106 Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : superstrings and heterotic strings * string field theory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.618, year: 2012 http://link.springer.com/article/10.1007%2FJHEP03%282012%29030

  4. Little String Theory at a TeV

    CERN Document Server

    Antoniadis, Ignatios; Giveon, Amit; Antoniadis, Ignatios; Dimopoulos, Savas; Giveon, Amit

    2001-01-01

    We propose a framework where the string scale as well as all compact dimensions are at the electroweak scale $\\sim$ TeV$^{-1}$. The weakness of gravity is attributed to the small value of the string coupling $g_s \\sim 10^{-16}$, presumably a remnant of the dilaton's runaway behavior, suggesting the possibility of a common solution to the hierarchy and dilaton-runaway problems. In spite of the small $g_s$, in type II string theories with gauge interactions localized in the vicinity of NS5-branes, the standard model gauge couplings are of order one and are associated with the sizes of compact dimensions. At a TeV these theories exhibit higher dimensional and stringy behavior. The models are holographically dual to a higher dimensional non-critical string theory and this can be used to compute the experimentally accessible spectrum and self-couplings of the little strings. In spite of the stringy behavior, gravity remains weak and can be ignored at collider energies. The Damour-Polyakov mechanism is an automatic...

  5. Classical open-string field theory: A∞-algebra, renormalization group and boundary states

    International Nuclear Information System (INIS)

    Nakatsu, Toshio

    2002-01-01

    We investigate classical bosonic open-string field theory from the perspective of the Wilson renormalization group of world-sheet theory. The microscopic action is identified with Witten's covariant cubic action and the short-distance cut-off scale is introduced by length of open-string strip which appears in the Schwinger representation of open-string propagator. Classical open-string field theory in the title means open-string field theory governed by a classical part of the low energy action. It is obtained by integrating out suitable tree interactions of open-strings and is of non-polynomial type. We study this theory by using the BV formalism. It turns out to be deeply related with deformation theory of A ∞ -algebra. We introduce renormalization group equation of this theory and discuss it from several aspects. It is also discussed that this theory is interpreted as a boundary open-string field theory. Closed-string BRST charge and boundary states of closed-string field theory in the presence of open-string field play important roles

  6. On low rank classical groups in string theory, gauge theory and matrix models

    International Nuclear Information System (INIS)

    Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun

    2004-01-01

    We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature

  7. MHV, CSW and BCFW: field theory structures in string theory amplitudes

    International Nuclear Information System (INIS)

    Boels, Rutger; Larsen, Kasper Jens; Obers, Niels A.; Vonk, Marcel

    2008-01-01

    Motivated by recent progress in calculating field theory amplitudes, we study applications of the basic ideas in these developments to the calculation of amplitudes in string theory. We consider in particular both non-Abelian and Abelian open superstring disk amplitudes in a flat space background, focusing mainly on the four-dimensional case. The basic field theory ideas under consideration split into three separate categories. In the first, we argue that the calculation of α'-corrections to MHV open string disk amplitudes reduces to the determination of certain classes of polynomials. This line of reasoning is then used to determine the α' 3 -correction to the MHV amplitude for all multiplicities. A second line of attack concerns the existence of an analog of CSW rules derived from the Abelian Dirac-Born-Infeld action in four dimensions. We show explicitly that the CSW-like perturbation series of this action is surprisingly trivial: only helicity conserving amplitudes are non-zero. Last but not least, we initiate the study of BCFW on-shell recursion relations in string theory. These should appear very naturally as the UV properties of the string theory are excellent. We show that all open four-point string amplitudes in a flat background at the disk level obey BCFW recursion relations. Based on the naturalness of the proof and some explicit results for the five-point gluon amplitude, it is expected that this pattern persists for all higher point amplitudes and for the closed string.

  8. M-Theory Model-Building and Proton Stability

    CERN Document Server

    Ellis, Jonathan Richard; Nanopoulos, Dimitri V; Ellis, John; Faraggi, Alon E.

    1998-01-01

    We study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. We exhibit the underlying geometric (bosonic) interpretation of these models, which have a $Z_2 \\times Z_2$ orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory.

  9. M-theory model-building and proton stability

    International Nuclear Information System (INIS)

    Ellis, J.; Faraggi, A.E.; Nanopoulos, D.V.; Houston Advanced Research Center, The Woodlands, TX; Academy of Athens

    1997-09-01

    The authors study the problem of baryon stability in M theory, starting from realistic four-dimensional string models constructed using the free-fermion formulation of the weakly-coupled heterotic string. Suitable variants of these models manifest an enhanced custodial gauge symmetry that forbids to all orders the appearance of dangerous dimension-five baryon-decay operators. The authors exhibit the underlying geometric (bosonic) interpretation of these models, which have a Z 2 x Z 2 orbifold structure similar, but not identical, to the class of Calabi-Yau threefold compactifications of M and F theory investigated by Voisin and Borcea. A related generalization of their work may provide a solution to the problem of proton stability in M theory

  10. Wilsonian effective action of superstring theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India); Homi Bhabha National Institute,Training School Complex, Anushakti Nagar, Mumbai 400085 (India)

    2017-01-25

    By integrating out the heavy fields in type II or heterotic string field theory one can construct the effective action for the light fields. This effective theory inherits all the algebraic structures of the parent theory and the effective action automatically satisfies the Batalin-Vilkovisky quantum master equation. This theory is manifestly ultraviolet finite, has only light fields as its explicit degrees of freedom, and the Feynman diagrams of this theory reproduce the exact scattering amplitudes of light states in string theory to any arbitrary order in perturbation theory. Furthermore in this theory the degrees of freedom of light fields above certain energy scale are also implicitly integrated out. This energy scale is determined by a particular parameter labelling a family of equivalent actions, and can be made arbitrarily low, leading to the interpretation of the effective action as the Wilsonian effective action.

  11. The orbifolder: A tool to study the low energy effective theory of heterotic orbifolds

    International Nuclear Information System (INIS)

    Nilles, H.P.; Wingerter, A.

    2011-10-01

    The orbifolder is a program developed in C ++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum-configurations. (orig.)

  12. Cosmic strings in a braneworld theory with metastable gravitons

    International Nuclear Information System (INIS)

    Lue, Arthur

    2002-01-01

    If the graviton possesses an arbitrarily small (but nonvanishing) mass, perturbation theory implies that cosmic strings have a nonzero Newtonian potential. Nevertheless in Einstein gravity, where the graviton is strictly massless, the Newtonian potential of a cosmic string vanishes. This discrepancy is an example of the van Dam-Veltman-Zakharov (VDVZ) discontinuity. We present a solution for the metric around a cosmic string in a braneworld theory with a graviton metastable on the brane. This theory possesses those features that yield a VDVZ discontinuity in massive gravity, but nevertheless is generally covariant and classically self-consistent. Although the cosmic string in this theory supports a nontrivial Newtonian potential far from the source, one can recover the Einstein solution in a region near the cosmic string. That latter region grows as the graviton's effective linewidth vanishes (analogous to a vanishing graviton mass), suggesting the lack of a VDVZ discontinuity in this theory. Moreover, the presence of scale dependent structure in the metric may have consequences for the search for cosmic strings through gravitational lensing techniques

  13. Effective string theory and QCD scattering amplitudes

    International Nuclear Information System (INIS)

    Makeenko, Yuri

    2011-01-01

    QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.

  14. Big bang and big crunch in matrix string theory

    International Nuclear Information System (INIS)

    Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.

    2007-01-01

    Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe

  15. BPS limit of multi- D- and DF-strings in boundary string field theory

    International Nuclear Information System (INIS)

    Go, Gyungchoon; Ishida, Akira; Kim, Yoonbai

    2007-01-01

    A BPS limit is systematically derived for straight multi- D- and DF-strings from the D3D-bar3 system in the context of boundary superstring field theory. The BPS limit is obtained in the limit of thin D(F)-strings, where the Bogomolny equation supports singular static multi-D(F)-string solutions. For the BPS multi-string configurations with arbitrary separations, BPS sum rule is fulfilled under a Gaussian type tachyon potential and reproduces exactly the descent relation. For the DF-strings ((p,q)-strings), the distribution of fundamental string charge density coincides with its energy density and the Hamiltonian density takes the BPS formula of square-root form

  16. Spin chain and duality between string theory and gauge theories

    International Nuclear Information System (INIS)

    Gorskij, A.S.

    2005-01-01

    One discusses a string pattern hidden by the integrable spin chains describing the evolution equations in the Yang- Mills theory. It is shown that the single-loop correction to the dilatation operator in N = 4 theory may be expressed in terms of two-point correlation functions at two-dimensional world surface of a string. Correspondence between the Neumann integrable systems and the spin chains leads us to believe that passing to the finite values of the coupling constants in the gauge theory corresponds to the quantization of the world surface. The model of string bits for the digitized world surface is assumed to be in line with representation of the integrable spin chains in terms of the separable variables [ru

  17. On tadpoles and vacuum redefinitions in String Theory

    International Nuclear Information System (INIS)

    Dudas, E.; Nicolosi, M.; Pradisi, G.; Sagnotti, A.

    2005-01-01

    Tadpoles accompany, in one form or another, all attempts to realize supersymmetry breaking in String Theory, making the present constructions at best incomplete. Whereas these tadpoles are typically large, a closer look at the problem from a perturbative viewpoint has the potential of illuminating at least some of its qualitative features in String Theory. A possible scheme to this effect was proposed long ago by Fischler and Susskind, but incorporating background redefinitions in string amplitudes in a systematic fashion has long proved very difficult. In the first part of this paper, drawing from field theory examples, we thus begin to explore what one can learn by working perturbatively in a 'wrong' vacuum. While unnatural in Field Theory, this procedure presents evident advantages in String Theory, whose definition in curved backgrounds is mostly beyond reach at the present time. At the field theory level, we also identify and characterize some special choices of vacua where tadpole resummations terminate after a few contributions. In the second part we present a notable example where vacuum redefinitions can be dealt with to some extent at the full string level, providing some evidence for a new link between IIB and 0B orientifolds. We finally show that NS-NS tadpoles do not manifest themselves to lowest order in certain classes of string constructions with broken supersymmetry and parallel branes, including brane-antibrane pairs and brane supersymmetry breaking models, that therefore have UV-finite threshold corrections at one loop

  18. Does string theory lead to extended inflation?

    Science.gov (United States)

    Campbell, Bruce A.; Linde, Andrei; Olive, Keith A.

    1991-05-01

    We consider the relationship between string theory and currently proposed models of extended inflation. In doing so, we discuss the conformal actions in string theory and in Jordan-Brans-Dicke gravity. We show explicitly the equivalence of pictures in which either gauge or gravitational couplings are changing with time. We demonstrate that the existence of the dilation in string theory does not naturally lead to extended inflation as currently discussed. We also discuss the resolution of the graceful exit problem of old inflation in Einstein gravity using either power-law inflation, or exponential inflation with a changing bubble formation rate. On leave of absence from School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA.

  19. Tensor modes on the string theory landscape

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2012-06-01

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  20. Tensor modes on the string theory landscape

    Energy Technology Data Exchange (ETDEWEB)

    Westphal, Alexander

    2012-06-15

    We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.

  1. String perturbation theory diverges

    International Nuclear Information System (INIS)

    Gross, D.J.; Periwal, V.

    1988-01-01

    We prove that perturbation theory for the bosonic string diverges for arbitrary values of the coupling constant and is not Borel summable. This divergence is independent of the existence of the infinities that occur in the theory due to the presence of tachyons and dilaton tadpoles. We discuss the physical implications of such a divergence

  2. Chronology protection in string theory

    International Nuclear Information System (INIS)

    Dyson, Lisa

    2004-01-01

    Many solutions of General Relativity appear to allow the possibility of time travel. This was initially a fascinating discovery, but geometries of this type violate causality, a basic physical law which is believed to be fundamental. Although string theory is a proposed fundamental theory of quantum gravity, geometries with closed timelike curves have resurfaced as solutions to its low energy equations of motion. In this paper, we will study the class of solutions to low energy effective supergravity theories related to the BMPV black hole and the rotating wave-D1-D5-brane system. Time travel appears to be possible in these geometries. We will attempt to build the causality violating regions and propose that stringy effects prohibit their construction. The proposed chronology protection agent for these geometries mirrors a mechanism string theory employs to resolve a class of naked singularities. (author)

  3. CP and other gauge symmetries in string theory

    International Nuclear Information System (INIS)

    Dine, M.; Leigh, R.G.; MacIntire, D.A.

    1992-01-01

    We argue that CP is a gauge symmetry in string theory. As a consequence, CP cannot be explicitly broken either perturbatively or nonperturbatively; there can be no nonperturbative CP-violating parameters. String theory is thus an example of a theory where all θ angles arise due to spontaneous CP violation, and are in principle calculable

  4. The orbifolder. A tool to study the low energy effective theory of heterotic orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, H P [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, S [Universidad Nacional Autonoma de Mexico (UNAM), Mexico City (Mexico). Dept. of Theoretical Physics; Vaudrevange, P K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Technische Univ. Muenchen, Garching (Germany). Physik-Department; Arnold-Sommerfeld-Center for Theoretical Physics, Muenchen (Germany); Wingerter, A [CNRS/IN2P3, INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie

    2011-10-15

    The orbifolder is a program developed in C{sup ++} that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum-configurations. (orig.)

  5. Asymmetric Gepner models II. Heterotic weight lifting

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N., E-mail: t58@nikhef.n [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)

    2011-05-21

    A systematic study of 'lifted' Gepner models is presented. Lifted Gepner models are obtained from standard Gepner models by replacing one of the N=2 building blocks and the E{sub 8} factor by a modular isomorphic N=0 model on the bosonic side of the heterotic string. The main result is that after this change three family models occur abundantly, in sharp contrast to ordinary Gepner models. In particular, more than 250 new and unrelated moduli spaces of three family models are identified. We discuss the occurrence of fractionally charged particles in these spectra.

  6. Functional determinants in gauge theory and string theory

    International Nuclear Information System (INIS)

    Della Pietra, V.J.

    1988-01-01

    Determinants arise whenever Gaussian functional integrals are evaluated. As a result, they are pervasive in physics. In this thesis the author studied, in a mathematically precise fashion, some questions concerning functional determinants in Quantum Field Theory and String Theory. The emphasis is on deriving explicit general identities which can be applied to physical problems. In Chapters 1-3, he studies determinants of families of Weyl operators on compact manifolds. The motivation for this work comes from Chiral Gauge Theory. In a theory containing chiral Fermions coupled to Bosons y, a partial integration in the functional integral over the Fermi fields yields terms involving determinants of Weyl operators ∂y. In Chapter 4 he turns his attention to a problem in String Theory. In the Polyakov formulation of string perturbation theory, the partition function and scattering amplitudes are calculated as sums of contributions from different world sheet topologies. The contribution from surfaces of a particular topology is given by a functional integral, which, after gauge-fixing, can be expressed as an integral of a certain measure over an appropriate moduli space. For an arbitrary finite group acting on a compact manifold, he defines an analytic torsion for the invariant subcomplex of the de Rham complex, generalizing the definition given by Ray and Singer in the absence of a group action. Motivated by the work of Quillen, he uses this torsion to define a natural norm on the determinant line of the invariant cohomology

  7. Deconfinement and the Hagedorn transition in string theory.

    Science.gov (United States)

    Chaudhuri, S

    2001-03-05

    We introduce a new definition of the thermal partition function in string theory. With this new definition, the thermal partition functions of all of the string theories obey thermal duality relations with self-dual Hagedorn temperature beta(2)(H) = 4pi(2)alpha('). A beta-->beta(2)(H)/beta transformation maps the type I theory into a new string theory (type I) with thermal D p-branes, spatial hypersurfaces supporting a p-dimensional finite temperature non-Abelian Higgs-gauge theory for p< or =9. We demonstrate a continuous phase transition in the behavior of the static heavy quark-antiquark potential for small separations r(2)(*)

  8. The effective supergravity of little string theory

    Science.gov (United States)

    Antoniadis, Ignatios; Delgado, Antonio; Markou, Chrysoula; Pokorski, Stefan

    2018-02-01

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N=2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N=1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory.

  9. The effective supergravity of little string theory

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, Ignatios [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); University of Bern, Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern (Switzerland); Delgado, Antonio [University of Notre Dame, Department of Physics, Notre Dame, IN (United States); Markou, Chrysoula [Sorbonne Universite, CNRS, Laboratoire de Physique Theorique et Hautes Energies, LPTHE, Paris (France); Pokorski, Stefan [University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland)

    2018-02-15

    In this work we present the minimal supersymmetric extension of the five-dimensional dilaton-gravity theory that captures the main properties of the holographic dual of little string theory. It is described by a particular gauging of N = 2 supergravity coupled with one vector multiplet associated with the string dilaton, along the U(1) subgroup of SU(2) R-symmetry. The linear dilaton in the fifth coordinate solution of the equations of motion (with flat string frame metric) breaks half of the supersymmetries to N = 1 in four dimensions. Interest in the linear dilaton model has lately been revived in the context of the clockwork mechanism, which has recently been proposed as a new source of exponential scale separation in field theory. (orig.)

  10. The universal wave function interpretation of string theory

    International Nuclear Information System (INIS)

    Gang, Dr. Sha Zhi; Xiu, Rulin

    2016-01-01

    In this work, we will show that a deeper understanding of space-time provided by both quantum physics and general relativity can lead to a new way to understand string theory. This new way of understanding and applying string theory, the universal wave function interpretation of string theory (UWFIST), may yield to a more powerful string theory and testable prediction. We will show how to derive UWFIST and what new result we can obtain from UWFIST. We will demonstrate that UWFIST indicates that the observed space-time and all phenomena are the projections from the world-sheet hologram. UWFIST provides the possible source for dark energy and dark matter and the explanation about why the dark energy and dark matter is beyond the detection of our current detector. We will show that UWFIST may also yield correct prediction of the cosmological constant to be of the order 10-121 in the unit of Planck scale. It may also help us understand and derive the energy source for inflation and the flatness of our observed 4-dimensional universe. UWFIST may also make other testable predictions that may be detected by interferometers. We conclude that UWFIST has the potential to make string theory a more powerful physics theory that can yield testable predictions. It is worth further investigation by more physicists

  11. An introduction to conformal field theory in two dimensions and string theory

    International Nuclear Information System (INIS)

    Wadia, S.R.

    1989-01-01

    This paper provides information on The S-Matrix; Elements of conformally invariant field theory in 2-dim.; The Virasoro gauge conditions; Some representations of the Virasoro algebra; The S-matrix of the Bosonic string theory; Super conformal field theory; Superstring; superstring spectrum and GSO projection; The (β,γ) ghost system; BRST formulation; and String propagation in background fields

  12. Little string theory from double-scaling limits of field theories

    International Nuclear Information System (INIS)

    Ling, Henry; Shieh, H.-H.; Anders, Greg van

    2007-01-01

    We show that little string theory on S 5 can be obtained as double-scaling limits of the maximally supersymmetric Yang-Mills theories on R x S 2 and R x S 3 /Z k . By matching the gauge theory parameters with those in the dual supergravity solutions found by Lin and Maldacena, we determine the limits in the gauge theories that correspond to decoupling of NS5-brane degrees of freedom. We find that for the theory on R x S 2 , the 't Hooft coupling must be scaled like ln 3 N, and on R x S 3 /Z k , like ln 2 N. Accordingly, taking these limits in these field theories gives Lagrangian definitions of little string theory on S 5

  13. On multibrane solutions in open string field theory

    Czech Academy of Sciences Publication Activity Database

    Murata, Masaki; Schnabl, Martin

    2011-01-01

    Roč. 2011, č. 188 (2011), s. 50-55 ISSN 0375-9687. [International Conference on String Field Theory and Related Aspects (SFT2010). Kyoto, 18.10.2010-22.10.2010] Grant - others:EUROHORC and ESF(XE) EYI/07/E010 Institutional research plan: CEZ:AV0Z10100502 Keywords : string field theory * D-branes * open strings Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.063, year: 2011 http://ptp.ipap.jp/link?PTPS/188/50/

  14. Supertwistor orbifolds: gauge theory amplitudes and topological strings

    International Nuclear Information System (INIS)

    Park, Jaemo; Rey, Soojong

    2004-01-01

    Witten established correspondence between multiparton amplitudes in four-dimensional maximally supersymmetric gauge theory and topological string theory on supertwistor space CP 3verticalbar4 . We extend Witten's correspondence to gauge theories with lower supersymmetries, product gauge groups, and fermions and scalars in complex representations. Such gauge theories arise in high-energy limit of the Standard Model of strong and electroweak interactions. We construct such theories by orbifolding prescription. Much like gauge and string theories, such prescription is applicable equally well to topological string theories on supertwistor space. We work out several examples of orbifolds of CP 3verticalbar4 that are dual to N=2,1,0 quiver gauge theories. We study gauged sigma model describing topological B-model on the superorbifolds, and explore mirror pairs with particular attention to the parity symmetry. We check the orbifold construction by studying multiparton amplitudes in these theories with particular attention to those involving fermions in bifundamental representations and interactions involving U(1) subgroups. (author)

  15. On the S-matrix of type-0 string theory

    International Nuclear Information System (INIS)

    DeWolfe, Oliver; Roiban, Radu; Spradlin, Marcus; Volovich, Anastasia; Walcher, Johannes

    2003-01-01

    The recent discovery of non-perturbatively stable two-dimensional string back-grounds and their dual matrix models allows the study of complete scattering matrices in string theory. In this note we adapt work of Moore, Plesser, and Ramgoolam on the bosonic string to compute the exact S-matrices of 0A and 0B string theory in two dimensions. Unitarity of the 0B theory requires the inclusion of massless soliton sectors carrying RR scalar charge as asymptotic states. We propose a regularization of IR divergences and find transition probabilities that distinguish the otherwise energetically degenerate soliton sectors. Unstable D-branes can decay into distinct soliton sectors. (author)

  16. Constraints on modular inflation in supergravity and string theory

    International Nuclear Information System (INIS)

    Covi, L.; Palma, G.A.; Gomez-Reino, M.; Gross, C.; Louis, J.; Hamburg Univ.; Scrucca, C.A.

    2008-05-01

    We perform a general algebraic analysis on the possibility of realising slow-roll inflation in the moduli sector of string models. This problem turns out to be very closely related to the characterisation of models admitting metastable vacua with non-negative cosmological constant. In fact, we show that the condition for the existence of viable inflationary trajectories is a deformation of the condition for the existence of metastable de Sitter vacua. This condition depends on the ratio between the scale of inflation and the gravitino mass and becomes stronger as this parameter grows. After performing a general study within arbitrary supergravity models, we analyse the implications of our results in several examples. More concretely, in the case of heterotic and orientifold string compactifications on a Calabi-Yau in the large volume limit we show that there may exist fully viable models, allowing both for inflation and stabilisation. Additionally, we show that subleading corrections breaking the no-scale property shared by these models always allow for slow-roll inflation but with an inflationary scale suppressed with respect to the gravitino scale. A scale of inflation larger than the gravitino scale can also be achieved under more restrictive circumstances and only for certain types of compactifications. (orig.)

  17. Kac-Moody Eisenstein series in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Fleig, Philipp

    2013-12-19

    Understanding nature on its very smallest 'physical-length' scale has always been a central goal of physics. Theoretical investigations into this problem over the last fifty years or so were largely driven by the aim of reconciling the theory of general relativity, the theory which describes the fundamental force of gravity and therefore the dynamics of space-time, with the theory of quantum mechanics, which dominates the physical phenomena on very small (sub-atomic) scales, within one big framework, referred to as the theory of quantum gravity. One candidate for such a theory is string theory. The fundamental assumption of this theory is that the smallest constituents of nature are not given by point particles, but rather by one dimensional strings the size of the Planck length. Through their different vibrational modes, strings are thought to produce the different properties of the observed spectrum of particles in nature. With this basic idea, string theory is not only predicted to describe the gravitational force, but also all other known forces of nature, and therefore extends far beyond the concept of only being a theory of quantised gravity. Since its initial proposal, the theory has developed into a vast and complex mathematical web of different theories, which all seem to be part of a larger, all-encompassing theory. Key to understanding the complicated mathematical structure of this theory is the concept of symmetries. Such symmetries, which are also known as duality relations, for instance manifest themselves in special mathematical functions, contained in the amplitudes that capture information about the interaction processes of strings with one another. A particularly relevant example of such a function is given by the so-called Eisenstein series, which display invariance under certain discrete duality groups. The central goal of this thesis is to study the properties of Eisenstein series invariant under special, particularly large (in fact

  18. Kac-Moody Eisenstein series in string theory

    International Nuclear Information System (INIS)

    Fleig, Philipp

    2013-01-01

    Understanding nature on its very smallest 'physical-length' scale has always been a central goal of physics. Theoretical investigations into this problem over the last fifty years or so were largely driven by the aim of reconciling the theory of general relativity, the theory which describes the fundamental force of gravity and therefore the dynamics of space-time, with the theory of quantum mechanics, which dominates the physical phenomena on very small (sub-atomic) scales, within one big framework, referred to as the theory of quantum gravity. One candidate for such a theory is string theory. The fundamental assumption of this theory is that the smallest constituents of nature are not given by point particles, but rather by one dimensional strings the size of the Planck length. Through their different vibrational modes, strings are thought to produce the different properties of the observed spectrum of particles in nature. With this basic idea, string theory is not only predicted to describe the gravitational force, but also all other known forces of nature, and therefore extends far beyond the concept of only being a theory of quantised gravity. Since its initial proposal, the theory has developed into a vast and complex mathematical web of different theories, which all seem to be part of a larger, all-encompassing theory. Key to understanding the complicated mathematical structure of this theory is the concept of symmetries. Such symmetries, which are also known as duality relations, for instance manifest themselves in special mathematical functions, contained in the amplitudes that capture information about the interaction processes of strings with one another. A particularly relevant example of such a function is given by the so-called Eisenstein series, which display invariance under certain discrete duality groups. The central goal of this thesis is to study the properties of Eisenstein series invariant under special, particularly large (in fact infinite

  19. Universal moduli space and string theory

    International Nuclear Information System (INIS)

    Schwarz, A.S.

    1989-09-01

    The construction of the universal supermoduli space is given. The super-Mumford form (the holomorphic square root from the string measure) is extended to the universal supermoduli space and expressed through the superanalog of Sato's τ-function. The hidden N=2 superconformal symmetry in the string theory is considered. (author). 13 refs

  20. On topological string theory with Calabi-Yau backgrounds

    International Nuclear Information System (INIS)

    Haghighat, Babak

    2009-01-01

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  1. On topological string theory with Calabi-Yau backgrounds

    International Nuclear Information System (INIS)

    Haghighat, Babak

    2010-06-01

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  2. On topological string theory with Calabi-Yau backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Haghighat, Babak

    2010-06-15

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the veri cation of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  3. On topological string theory with Calabi-Yau backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Haghighat, Babak

    2009-10-29

    String theory represents a unifying framework for quantum field theory as well as for general relativity combining them into a theory of quantum gravity. The topological string is a subsector of the full string theory capturing physical amplitudes which only depend on the topology of the compactification manifold. Starting with a review of the physical applications of topological string theory we go on to give a detailed description of its theoretical framework and mathematical principles. Having this way provided the grounding for concrete calculations we proceed to solve the theory on three major types of Calabi-Yau manifolds, namely Grassmannian Calabi-Yau manifolds, local Calabi-Yau manifolds, and K3 fibrations. Our method of solution is the integration of the holomorphic anomaly equations and fixing the holomorphic ambiguity by physical boundary conditions. We determine the correct parameterization of the ambiguity and new boundary conditions at various singularity loci in moduli space. Among the main results of this thesis are the tables of degeneracies of BPS states in the appendices and the verification of the correct microscopic entropy interpretation for five dimensional extremal black holes arising from compactifications on Grassmannian Calabi-Yau manifolds. (orig.)

  4. Top-quark mass coupling and classification of weakly coupled heterotic superstring vacua

    International Nuclear Information System (INIS)

    Rizos, J.

    2014-01-01

    The quest for the Standard Model among the huge number of string vacua is usually based on a set of phenomenological criteria related to the massless spectrum of string models. In this work we study criteria associated with interactions in the effective low energy theory and in particular with the presence of the coupling that provides mass to the top quark. Working in the context of the free-fermionic formulation of the heterotic superstring, we demonstrate that, in a big class of phenomenologically promising Z 2 x Z 2 compactifications, these criteria can be expressed entirely in terms of the generalised GSO projection coefficients entering the definition of the models. They are shown to be very efficient in identifying phenomenologically viable vacua, especially in the framework of computer-based search, as they are met by approximately one every 10 4 models. We apply our results in the investigation of a class of supersymmetric Pati-Salam vacua, comprising 10 16 configurations, and we show that when combined with other phenomenological requirements they lead to a relatively small set of about 10 7 Standard Model compatible models that can be fully classified. (orig.)

  5. D-term Spectroscopy in Realistic Heterotic-String Models

    CERN Document Server

    Dedes, Athanasios

    2000-01-01

    The emergence of free fermionic string models with solely the MSSM charged spectrum below the string scale provides further evidence to the assertion that the true string vacuum is connected to the Z_2 x Z_2 orbifold in the vicinity of the free fermionic point in the Narain moduli space. An important property of the Z_2 x Z_2 orbifold is the cyclic permutation symmetry between the three twisted sectors. If preserved in the three generations models the cyclic permutation symmetry results in a family universal anomalous U(1)_A, which is instrumental in explaining squark degeneracy, provided that the dominant component of supersymmetry breaking arises from the U(1)_A D-term. Interestingly, the contribution of the family--universal D_A-term to the squark masses may be intra-family non-universal, and may differ from the usual (universal) boundary conditions assumed in the MSSM. We contemplate how D_A--term spectroscopy may be instrumental in studying superstring models irrespective of our ignorance of the details ...

  6. String field theory-inspired algebraic structures in gauge theories

    International Nuclear Information System (INIS)

    Zeitlin, Anton M.

    2009-01-01

    We consider gauge theories in a string field theory-inspired formalism. The constructed algebraic operations lead, in particular, to homotopy algebras of the related Batalin-Vilkovisky theories. We discuss an invariant description of the gauge fixing procedure and special algebraic features of gauge theories coupled to matter fields.

  7. String tensions in deformed Yang-Mills theory

    Science.gov (United States)

    Poppitz, Erich; Shalchian T., M. Erfan

    2018-01-01

    We study k-strings in deformed Yang-Mills (dYM) with SU(N) gauge group in the semiclassically calculable regime on R^3× S^1 . Their tensions Tk are computed in two ways: numerically, for 2 ≤ N ≤ 10, and via an analytic approach using a re-summed perturbative expansion. The latter serves both as a consistency check on the numerical results and as a tool to analytically study the large-N limit. We find that dYM k-string ratios Tk/T1 do not obey the well-known sine- or Casimir-scaling laws. Instead, we show that the ratios Tk/T1 are bound above by a square root of Casimir scaling, previously found to hold for stringlike solutions of the MIT Bag Model. The reason behind this similarity is that dYM dynamically realizes, in a theoretically controlled setting, the main model assumptions of the Bag Model. We also compare confining strings in dYM and in other four-dimensional theories with abelian confinement, notably Seiberg-Witten theory, and show that the unbroken Z_N center symmetry in dYM leads to different properties of k-strings in the two theories; for example, a "baryon vertex" exists in dYM but not in softly-broken Seiberg-Witten theory. Our results also indicate that, at large values of N, k-strings in dYM do not become free.

  8. Heterotic SO(32) model building in four dimensions

    International Nuclear Information System (INIS)

    Choi, K.S.; Groot Nibbelink, S.; Minnesota Univ., Minneapolis, MN; Trapletti, M.

    2004-10-01

    Four dimensional heterotic SO(32) orbifold models are classified systematically with model building applications in mind. We obtain all Z 3 , Z 7 and Z 2N models based on vectorial gauge shifts. The resulting gauge groups are reminiscent of those of type-I model building, as they always take the form SO(2n 0 ) x U(n 1 ) x.. x U(n N-1 ) x SO(2n N ). The complete twisted spectrum is determined simultaneously for all orbifold models in a parametric way depending on n 0 ,.., n N , rather than on a model by model basis. This reveals interesting patterns in the twisted states: They are always built out of vectors and anti-symmetric tensors of the U(n) groups, and either vectors or spinors of the SO(2n) groups. Our results may shed additional light on the S-duality between heterotic and type-I strings in four dimensions. As a spin-off we obtain an SO(10) GUT model with four generations from the Z 4 orbifold. (orig.)

  9. Higher-dimensional string theory in Lyra geometry

    Indian Academy of Sciences (India)

    Cosmic strings as source of gravitational field in general relativity was discussed by ... tensor theory of gravitation and constructed an analog of Einstein field ... As string concept is useful before the particle creation and can explain galaxy for-.

  10. Born reciprocity in string theory and the nature of spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Freidel, Laurent, E-mail: lfreidel@perimeterinstitute.ca [Perimeter Institute for Theoretical Physics, 31 Caroline St., N, Ontario N2L 2Y5, Waterloo (Canada); Leigh, Robert G., E-mail: rgleigh@uiuc.edu [Department of Physics, University of Illinois, 1110 West Green St., Urbana, IL 61801 (United States); Minic, Djordje, E-mail: dminic@vt.edu [Department of Physics, Virginia Tech, Blacksburg, VA 24061 (United States)

    2014-03-07

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  11. Born reciprocity in string theory and the nature of spacetime

    International Nuclear Information System (INIS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2014-01-01

    After many years, the deep nature of spacetime in string theory remains an enigma. In this Letter we incorporate the concept of Born reciprocity in order to provide a new point of view on string theory in which spacetime is a derived dynamical concept. This viewpoint may be thought of as a dynamical chiral phase space formulation of string theory, in which Born reciprocity is implemented as a choice of a Lagrangian submanifold of the phase space, and amounts to a generalization of T-duality. In this approach the fundamental symmetry of string theory contains phase space diffeomorphism invariance and the underlying string geometry should be understood in terms of dynamical bi-Lagrangian manifolds and an apparently new geometric structure, somewhat reminiscent of para-quaternionic geometry, which we call Born geometry.

  12. Construction of closed fermionic string models in four dimensions

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1987-01-01

    It is possible to construct consistent closed string models directly in four space-time dimensions if reparametrization invariance, conformal invariance and world sheet supersymmetry are properly accounted for. In the context of string models whose internal degrees of freedom are represented by free world sheet fermions, it is possible to completely solve for the above requirements, providing a simple set of rules for constructing string models. N = 1 supersymmetric and non-supersymmetric heterotic type string models with chiral fermions and realistic gauge groups, as well as generalized type II models with realistic gauge groups, can easily be constructed. Many other string models can be constructed using similar methods based on free world sheet bosons

  13. Introduction to bosonic string theory

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Carmen [Instituto de Astronomia y Fisica del Espacio, Buenos Aires (Argentina)], e-mail: carmen@iafe.uba.ar

    2009-07-01

    This is an introductory set of five lectures on bosonic string theory. The first one deals with the classical theory of bosonic strings. The second and third lectures cover quantization. Three basic quantization methods are sketched: the old covariant formalism, the light-cone gauge quantization, where the spectrum is derived and the Polyakov path integral formalism and in particular the partition function at one loop. Finally, the last lecture covers interactions, low energy effective action, the general idea of compactification and in particular toroidal compactification. The notes are based on books by Green, Schwarz and Witten, Polchinski, Lust and Theissen and Kaku and review papers by D'Hocker and Phong and O. Alvarez. (author)

  14. Perturbative string theory in BRST invariant formalism

    International Nuclear Information System (INIS)

    Di Vecchia, P.; Hornfeck, K.; Frau, M.; Lerda, A.

    1988-01-01

    In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)

  15. Introduction to string theory

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1987-10-01

    These notes are based on a set of six introductory lectures given jointly by the authors. After developing the canonical methods we discuss the covariant quantization of the bosonic as well as the fermionic string. Conformal field theory methods are also introduced and used to calculate the anomaly coefficient, c, as well as the critical dimensions for bosonic and superstrings. We briefly sketch the BRS quantization and then offer an elementary derivation of the anomaly in the ghost number current. Finally, we address the one-loop partition function of the bosonic string and the question of SL(2,Z) invariance. (author). 15 refs

  16. Open branes in space-time non-commutative little string theory

    International Nuclear Information System (INIS)

    Harmark, T.

    2001-01-01

    We conjecture the existence of two new non-gravitational six-dimensional string theories, defined as the decoupling limit of NS5-branes in the background of near-critical electrical two- and three-form RR fields. These theories are space-time non-commutative Little String Theories with open branes. The theory with (2,0) supersymmetry has an open membrane in the spectrum and reduces to OM theory at low energies. The theory with (1,1) supersymmetry has an open string in the spectrum and reduces to (5+1)-dimensional NCOS theory for weak NCOS coupling and low energies. The theories are shown to be T-dual with the open membrane being T-dual to the open string. The theories therefore provide a connection between (5+1)-dimensional NCOS theory and OM theory. We study the supergravity duals of these theories and we consider a chain of dualities that shows how the T-duality between the two theories is connected with the S-duality between (4+1)-dimensional NCOS theory and OM theory

  17. From fractals to wormholes via string theory

    International Nuclear Information System (INIS)

    Felce, A.G.

    1992-01-01

    The thesis is in two parts. The first part is devoted to a study of the definition of mass for soliton solutions in string theory. In the context of the low-energy effective field theory, there are three distinct quantities from which one can extract the mass of a soliton: the ADM mass, the static action and the kinetic energy. The three corresponding masses are carefully defined and shown to be equal for a representative class of string solitons, the so-called 'black fivebranes'. Along the way a potential confusion in the definition of the action is cleared up, and it is shown that the kinetic energy of a moving soliton is given in terms of a surface integral at spacelike infinity. This result for the kinetic energy is used to motivate a conjecture about the exact value of soliton masses in string theory: That in conformal field theory the kinetic mass is realized as the norm of the (1,1) deformation induced by the collective coordinate. Such deformations are usually treated as unphysical because they appear to be pure gauge and have zero norm. In a soliton conformal field theory, a finite number of these gauge transformations become physical because of a subtlety involving the boundary at spatial infinity. Some proposals for concrete exploration of this phenomenon are discussed. The second part of the thesis concerns the connection between string theory and an important problem in condensed matter physics. It has recently been shown that the dissipative Hofstadter model (dissipative quantum mechanics of an electron subject to uniform magnetic field and periodic potential in two dimensions) exhibit critical behavior on a network of lines in the dissipation/magnetic field plane. Apart from their obvious condensed matter interest, the corresponding critical theories represent non-trivial solutions of open string field theory containing a tachyon and gauge field background. A detailed account of their properties would be interesting from several points of view

  18. The orbifolder: A tool to study the low-energy effective theory of heterotic orbifolds

    Science.gov (United States)

    Nilles, H. P.; Ramos-Sánchez, S.; Vaudrevange, P. K. S.; Wingerter, A.

    2012-06-01

    The orbifolder is a program developed in C++ that computes and analyzes the low-energy effective theory of heterotic orbifold compactifications. The program includes routines to compute the massless spectrum, to identify the allowed couplings in the superpotential, to automatically generate large sets of orbifold models, to identify phenomenologically interesting models (e.g. MSSM-like models) and to analyze their vacuum configurations. Program summaryProgram title: orbifolder Catalogue identifier: AELR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELR_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 145 572 No. of bytes in distributed program, including test data, etc.: 930 517 Distribution format: tar.gz Programming language:C++ Computer: Personal computer Operating system: Tested on Linux (Fedora 15, Ubuntu 11, SuSE 11) Word size: 32 bits or 64 bits Classification: 11.1 External routines: Boost (http://www.boost.org/), GSL (http://www.gnu.org/software/gsl/) Nature of problem: Calculating the low-energy spectrum of heterotic orbifold compactifications. Solution method: Quadratic equations on a lattice; representation theory; polynomial algebra. Running time: Less than a second per model.

  19. Developments in superstring field theory

    International Nuclear Information System (INIS)

    Green, M.B.

    1987-01-01

    In this article the structure of superstring theories is outlined. The one-loop quantum superstring gauge anomalies are then described and it is shown that their absence leads to an interesting theory with gauge group SO(32). The one-loop infinities also cancel for this gauge group. The anomaly cancellation can be understood in terms of the low-energy effective supergravity-Yang-Mills field theory, from which it is shown that E 8 x E 8 is an equally good gauge group, which suggests that there should also be an interesting E 8 x E 8 superstring theory. A new type of superstring theory, known as the 'heterotic' string theory, which only describes strings with gauge groups E 8 x E 8 or SO(32) is described. Finally some very exciting prospects for obtaining a sensible description of four-dimensional physics from a ten-dimensional superstring theory with gauge group E 8 x E 8 is outlined. (author)

  20. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  1. Fuzzy knot theory interpretation of Yang-Mills instantons and Witten's 5-Brane model

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2008-01-01

    A knot theory interpretation of 'tHooft's instanton based on hyperbolic volume, crossing numbers and exceptional Lie symmetry groups is given. Subsequently it is shown that although instantons and particle-like states of Heterotic super strings may appear to be different concepts, on a very deep fuzzy level they are not

  2. Anatomy of zero-norm states in string theory

    International Nuclear Information System (INIS)

    Chan, C.-T.; Lee, J.-C.; Yi Yang

    2005-01-01

    We calculate and identify the counterparts of zero-norm states in the old covariant first quantized (OCFQ) spectrum of open bosonic string in two other quantization schemes of string theory, namely, the light-cone Del Giudice-Di Vecchia-Fubine zero-norm states and the off-shell Becchi-Rouet-Stora-Tyutin (BRST) zero-norm states (with ghost) in the Witten string field theory (WSFT). In particular, special attention is paid to the interparticle zero-norm states in all quantization schemes. For the case of the off-shell BRST zero-norm states, we impose the no-ghost conditions and recover exactly two types of on-shell zero-norm states in the OCFQ string spectrum for the first few low-lying mass levels. We then show that off-shell gauge transformations of WSFT are identical to the on-shell stringy gauge symmetries generated by two types of zero-norm states in the generalized massive σ-model approach of string theory. The high-energy limit of these stringy gauge symmetries was recently used to calculate the proportionality constants, conjectured by Gross, among high-energy scattering amplitudes of different string states. Based on these zero-norm state calculations, we have thus related gauge symmetry of WSFT to the high-energy stringy symmetry of Gross

  3. Nuclear force from string theory

    International Nuclear Information System (INIS)

    Hashimoto, Koji; Sakai, Tadakatsu; Sugimoto, Shigeki

    2009-01-01

    We compute the nuclear force in a holographic model of QCD on the basis of a D4-D8 brane configuration in type IIA string theory. The repulsive core of nucleons is important in nuclear physics, but its origin has not been well understood in strongly coupled QCD. We find that the string theory via gauge/string duality deduces this repulsive core at a short distance between nucleons. Since baryons in the model are realized as solitons given by Yang-Mills instanton configuration on flavor D8-branes, ADHM construction of two instantons probes well the nucleon interaction at short scale, which provides the nuclear force quantitatively. We obtain a central force, as well as a tensor force, which is strongly repulsive as suggested in experiments and lattice results. In particular, the nucleon-nucleon potential V(r) (as a function of the distance) scales as r -2 , which is peculiar to the holographic model. We compare our results with the one-boson exchange model using the nucleon-nucleon-meson coupling obtained in our previous paper. (author)

  4. Geometrical theory of the relativistic string in t=tau gauge

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1982-01-01

    Using the co-moving frame method and the exterior differential forms in the surface theory the classical theory of the relativistic string in the gauge is constructed. The moving frame on the string world-sheet is chosen in a special form. As a result, the theory of the free relativistic string in the four-dimensional space-time is reduced to the D'Alembert equation for one scalar function

  5. Solving the open bosonic string in perturbation theory

    International Nuclear Information System (INIS)

    Samuel, S.

    1990-01-01

    The integrand and integration region for the N-point amplitude in the open oriented bosonic string are obtained to all orders in perturbation theory. The result is derived from the Witten covariant string field theory by using on-shell and off-shell conformal methods and Riemann surface mathematics. Although only the off-shell g-loop tachyon amplitudes are computed explicitly, the methods generalize to other external states. We derive the g-loop ghost-Jacobi identity in which the ghost correlation function cancels the jacobian factor in changing from second-quantized to first-quantized variables. Moduli space is discussed from several viewpoints and it is shown that string field theory provides an algorithm for its determination. (orig.)

  6. The Rise and Fall of the Cosmic String Theory for Cosmological Perturbations

    International Nuclear Information System (INIS)

    Perivolaropoulos, L.

    2005-01-01

    The cosmic string theory for cosmological fluctuations is a good example of healthy scientific progress in cosmology. It is a well defined physically motivated model that has been tested by cosmological observations and has been ruled out as a primary source of primordial fluctuations. Until about fifteen years ago, the cosmic string theory of cosmological perturbations provided one of the two physically motivated candidate theories for the generation of primordial perturbations. The cosmological data that appeared during the last decade have been compared with the well defined predictions of the theory and have ruled out cosmic strings as a primary source of primordial cosmological perturbations. Since cosmic strings are predicted to form after inflation in a wide range of microphysical theories (including supersymmetric and fundamental string theories) their observational bounds may serve a source of serious constraints for these theories. This is a pedagogical review of the historical development, the main predictions of the cosmic string theory and the constraints that have been imposed on it by cosmological observations. Recent lensing events that could be attributed to lighter cosmic strings are also discussed

  7. Towards a Theory of the QCD String

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    I will review recent progress in understanding the dynamics of confining strings in non-supersymmetric gluodynamics in 3 and 4 space time dimensions. I will argue that the present lattice data allows to formulate a non-trivial straw man Ansatz for the worldsheet theory of long confining strings. According to this Ansatz, pure gluodynamics in 3D is described by a non-critical bosonic string theory without any extra local worldsheet degrees of freedom. I argue that the Ansatz allows to fix quantum numbers of (almost) all glueball states. I confront the resulting predictions with the properties of approximately 39 lightest glueball states observed on a lattice and find a good agreement.

  8. An equivalence between momentum and charge in string theory

    International Nuclear Information System (INIS)

    Horne, J.H.; Horowitz, G.T.; Steif, A.R.

    1992-01-01

    It is shown that for a translationally invariant solution to string theory, spacetime duality interchanges the momentum in the symmetry direction and the axion charge per unit length. As one application, we show explicitly that charged black strings are equivalent to boosted (uncharged) black strings. The extremal black strings (which correspond to the field outside of a fundamental macroscopic string) are equivalent to plane-fronted waves describing strings moving at the speed of light

  9. String tensions for lattice gauge theories in 2+1 dimensions

    International Nuclear Information System (INIS)

    Ambjoern, J.; Hey, A.J.G.; Otto, S.

    1982-01-01

    Compact U(1) and SU(2) lattice gauge theories in 3 euclidean dimensions are studied by standard Monte Carlo techniques. The question of extracting reliable string tensions from these theories is examined in detail, including a comparison of the Monte Carlo Wilson loop data with weak coupling predictions and a careful error analysis: our conclusions are rather different from those of previous investigations of these theories. In the case of U(1) theory, we find that only a tiny range of β values can possibly be relevant for extracting a string tension and we are unable to convincingly demonstrate the expected exponential dependence of the string tension on β. For the SU(2) theory we are able to determine, albeit with rather large errors, a string tension from a study of Wilson loops. (orig.)

  10. Regge behavior saves string theory from causality violations

    DEFF Research Database (Denmark)

    di Vecchia, Paolo; Giuseppe, D'Appollonio; Russo, Rodolfo

    2015-01-01

    Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b....... Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account....... ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the Dp-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector...

  11. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  12. Topological defects in open string field theory

    Science.gov (United States)

    Kojita, Toshiko; Maccaferri, Carlo; Masuda, Toru; Schnabl, Martin

    2018-04-01

    We show how conformal field theory topological defects can relate solutions of open string field theory for different boundary conditions. To this end we generalize the results of Graham and Watts to include the action of defects on boundary condition changing fields. Special care is devoted to the general case when nontrivial multiplicities arise upon defect action. Surprisingly the fusion algebra of defects is realized on open string fields only up to a (star algebra) isomorphism.

  13. Introductory lectures on conformal field theory and strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. The are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these lectures

  14. Introductory lectures on Conformal Field Theory and Strings

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.; Strathdee, J.

    1990-01-01

    The aim of these lectures is to provide an introduction to a first quantized formulation of string theory. This amounts to developing a consistent set of prescriptions for the perturbative computation of on-shell string amplitudes. The principal tool in this development is 2-dimensional conformal field theory on oriented manifolds of finite genus without boundaries (we treat only closed strings). This class of theory is much simpler than 4-dimensional quantum gravity with which it has many similarities. The geometry is not dynamical in this case, and the matter fields are not sensitive to local features of the geometry but only to global properties which can be characterized by a finite set of parameters (moduli). This can be formulated as field theory on a Riemann surface. We specialize mainly to free field theories for which the quantization problem can be completely solved by elementary means. An introduction to the general case will be given in Lectures II and III where the algebraic approach is discussed. The mathematics of Riemann surfaces is a well developed subject whose formalism is reviewed along with some of the principal theorems in Lecture IV. Physical string states are realized in the Hilbert space of a conformal field theory by the action of so-called ''vertex operators'' on the field theory vacuum state. Correlation functions of these vertex operators serve as ingredients for the computation of string amplitudes. They are to be integrated so as to include the contributions of all conformally inequivalent geometries, and a further manipulation (the GSO projection) is to be performed. These steps are to be regarded as part of the string prescription. They are introduced ad hoc to meet invariance and unitarity requirements. However, in these introductory lectures we give a description only of the integration over geometries (Lecture VII). The GSO projection, and related questions of modular invariance and unitarity are beyond the scope of these

  15. Two field formulation of closed string field theory

    International Nuclear Information System (INIS)

    Bogojevic, A.R.

    1990-09-01

    A formulation of closed string field theory is presented that is based on a two field action. It represents a generalization of Witten's Chern-Simons formulation of 3d gravity. The action contains only 3 string interactions and no string field truncations, unlike the previous non-polynomial action of Zwiebach. The two field action is found to follow from a purely cubic, background independent action similar to the one for open strings. (orig.)

  16. Open string Regge trajectory and its field theory limit

    International Nuclear Information System (INIS)

    Rojas, Francisco; Thorn, Charles B.

    2011-01-01

    We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the 't Hooft limit N→∞ with Ng s 2 fixed. Our motivation is to improve the understanding of open string theory at finite α ' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α ' t+Σ(t) can be extracted, through order g 2 , from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)∼-Cg 2 (-α ' t) (D-4)/2 /(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α ' t). We also study Σ(t) in the limit t→-∞ and show that, when D ' t/(ln(-α ' t)) γ , where γ>0 depends on D and the number of massless scalars. Thus, as long as 4 ' t arbitrarily large. Finally we present the results of numerical calculations of Σ(t) for all negative t.

  17. On the field/string theory approach to theta dependence in large N Yang-Mills theory

    International Nuclear Information System (INIS)

    Gabadadze, Gregory

    1999-01-01

    The theta dependence of the vacuum energy in large N Yang-Mills theory has been studied some time ago by Witten using a duality of large N gauge theories with the string theory compactified on a certain space-time. We show that within the field theory context vacuum fluctuations of the topological charge give rise to the vacuum energy consistent with the string theory computation. Furthermore, we calculate 1/N suppressed corrections to the string theory result. The reconciliation of the string and field theory approaches is based on the fact that the gauge theory instantons carry zerobrane charge in the corresponding D-brane construction of Yang-Mills theory. Given the formula for the vacuum energy we study certain aspects of stability of the false vacua of the model for different realizations of the initial conditions. The vacuum structure appears to be different depending on whether N is infinite or, alternatively, large but finite

  18. Noncritical String Liouville Theory and Geometric Bootstrap Hypothesis

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The applications of the existing Liouville theories for the description of the longitudinal dynamics of noncritical Nambu-Goto string are analyzed. We show that the recently developed DOZZ solution to the Liouville theory leads to the cut singularities in tree string amplitudes. We propose a new version of the Polyakov geometric approach to Liouville theory and formulate its basic consistency condition — the geometric bootstrap equation. Also in this approach the tree amplitudes develop cut singularities.

  19. The search for higher symmetry in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Witten, E [Institute for Advanced Study, Princeton, NJ (USA)

    1989-11-17

    Some remarks are made about the nature and role of the search for higher symmetry in string theory. These symmetries are most likely to be uncovered in a mysterious 'unbroken phase', for which (2+1)-dimensional gravity provides an interesting and soluble model. New insights about conformal field theory, in which one gets 'out of flatland' to see a wider symmetry from a higher-dimensional vantage point, may offer clues to the unbroken phase of string theory. (author).

  20. De Sitter vacua and inflation in no-scale string models

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Christian

    2009-09-15

    This thesis studies the question of how de Sitter vacua and slow-roll inflation may be realized in string-motivated models. More specifically, we consider 4d N = 1 supergravity theories (without vector multiplets) with Kaehler potentials which are 'no-scale' at leading order. Such theories frequently arise in the moduli sector of string compactifications. We discuss a condition on the scalar geometry (defined by the Kaehler potential) and on the direction of supersymmetry breaking in the scalar manifold, which has to be met in order for the average of the masses of the sGoldstinos to be positive, and hence for metastable vacua to be possible. This condition also turns out to be necessary for the existence of trajectories admitting slow-roll inflation. Its implications for certain scalar manifolds which arise from Calabi-Yau string compactifications are discussed. In particular, for two-moduli models arising from compactifications of heterotic- and type IIB string theory, a simple criterion on the intersection numbers needs to be satisfied for possible de Sitter phases to exist. In addition, we show that subleading corrections breaking the no-scale property may allow the condition on the scalar geometry to be fulfilled, even when it is violated at leading order. Finally, we develop a procedure to construct superpotentials for a given viable Kaehler potential, such that the scalar potential has a realistic local minimum. We propose two-moduli models, with superpotentials which could arise from flux backgrounds and non-perturbative effects, which have a viable vacuum without employing subleading corrections or an uplifting sector. (orig.)

  1. Zk string fluxes and monopole confinement in non-Abelian theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.; Centro Brasileiro de Pesquisas Fisicas

    2002-11-01

    Recently we considered N = 2 Super Yang-Mills with a mass breaking term and showed the existence of BPS Z k -string solutions for arbitrary simple gauge groups which are spontaneously broken to non-Abelian residual gauge groups. We also calculated their string tensions exactly. In doing so, we have considered in particular the hyper multiplet in the representation of a diquark condensate. In the present work we shall analyze some of the different phases of the theory and find that the magnetic fluxes of the monopoles and Z k strings of the theory are proportional to one another, allowing for monopole confinement in one of the phase transitions of the theory. Then we will calculate the threshold length for a string to break in a new pair of monopole-anti monopole. We will further show that some of the resulting confining theories can obtained by adding a deformation term to N 2 or N = 4 superconformal theories and, as such, may satisfy a gauge/string correspondence. (author)

  2. Minimal string theory is logarithmic

    International Nuclear Information System (INIS)

    Ishimoto, Yukitaka; Yamaguchi, Shun-ichi

    2005-01-01

    We study the simplest examples of minimal string theory whose worldsheet description is the unitary (p,q) minimal model coupled to two-dimensional gravity ( Liouville field theory). In the Liouville sector, we show that four-point correlation functions of 'tachyons' exhibit logarithmic singularities, and that the theory turns out to be logarithmic. The relation with Zamolodchikov's logarithmic degenerate fields is also discussed. Our result holds for generic values of (p,q)

  3. Aspects of type $0$ string theory

    CERN Document Server

    Blumenhagen, R; Kumar, A; Lüst, Dieter

    2000-01-01

    A construction of compact tachyon-free orientifolds of the non-supersymmetric Type 0B string theory is presented. Moreover, we study effective non-supersymmetric gauge theories arising on self-dual D3-branes in Type 0B orbifolds and orientifolds.

  4. The enhancon mechanism in string theory

    International Nuclear Information System (INIS)

    Jarv, Laur

    2002-01-01

    The enhancon mechanism is a specific phenomenon in string theory which resolves a certain naked spacetime singularity arising in the supergravity description related to N = 2 supersymmetric pure gauge theory. After reviewing the problem of singularities in general relativity as well as in string theory, and discussing the prototypical enhancon example constructed by wrapping D6-branes on a K3 surface, the thesis presents three generalisations to this static spherically symmetric case pertaining to large N SU(N) gauge theory. First we will use orientifolds to show how the enhancon mechanism also works in similar situations related to SO(2N+1), USp(2N) and SO(2N) gauge theories. Second we will wrap D-brane distributions on K3 to obtain the enhancon in oblate, toroidal and prolate shapes. Third we will study a rotating enhancon configuration and consider its implications for the black hole entropy and the second law of thermodynamics. (author)

  5. Conformal tension in string theories and M-theory

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Lucas, Pascual

    2000-01-01

    This paper deals with string theories and M-theories on backgrounds of the form AdSxM,M being a compact principal U(1)-bundle. These configurations are the natural settings to study Hopf T-dualities (Duff et al., Nucl. Phys. B 544 (1999) 145), and so to define duality chains connecting different string theories and M-theories. There is an increasing great interest in studying those properties (physical or geometrical) which are preserved along the duality chains. For example, it is known that Hopf T-dualities preserve the black hole entropies (Duff et al., Nucl. Phys. B 544 (1999) 145). In this paper we consider a two-parameter family of actions which constitutes a natural variation of the conformal total tension action (also known as Willmore-Chen functional in differential geometry). Then, we show that the existence of wide families of solutions (in particular compact solutions) for the corresponding motion equations is preserved along those duality chains. In particular, we exhibit ample classes of Willmore-Chen submanifolds with a reasonable degree of symmetry in a wide variety of conformal string theories and conformal M-theories, that in addition are solutions of a second variational problem known as the area-volume isoperimetric problem. These are good reasons to refer those submanifolds as the best worlds one can find in a conformal universe. The method we use to obtain this invariant under Hopf T-dualities is based on the principle of symmetric criticality. However, it is used in a two-fold sense. First to break symmetry and so to reduce variables. Second to gain rigidity in direct approaches to integrate the Euler-Lagrange equations. The existence of generalized elastic curves is also important in the explicit exhibition of those configurations. The relationship between solutions and elasticae can be regarded as a holographic property

  6. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  7. Zamolodchikov's c-theorem and string effective actions

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Miramontes, J.L.

    1988-01-01

    Zamolodchikov's c-theorem for 2D renormalisable field theories is presented in a way which allows for a straightforward application to the case of bosonic σ-models. As a consistency check in the latter case, the Curci-Paffuti relation is rederived. It is also shown that the 'metric' in coupling constant space in this case is a c-number function of the backgrounds. Attempts to derive off-shell functional relations between the Weyl anomaly coefficients and field variations of string effective actions, compatible with the c-theorem, are discussed by emphasising the necessity of performing explicit perturbative calculations in order to arrive at definite conclusions. Comments concerning the extension of the c-theorem to the case of supersymmetric and heterotic σ-models are also made. (orig.)

  8. Introduction to conformal field theory and string theory

    International Nuclear Information System (INIS)

    Dixon, L.J.

    1989-12-01

    These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs

  9. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  10. On the geometrical approach to the relativistic string theory

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1978-01-01

    In a geometrical approach to the string theory in the four-dimensional Minkowski space the relativistic invariant gauge proposed earlier for the string moving in three-dimensional space-time is used. In contrast to the results of previous paper the system of equations for the coefficients of the fundamental forms of the string model world sheet can be reduced now to one nonlinear Lionville equation again but for a complex valued function u. It is shown that in the case of space-time with arbitrary dimension there are such string motions which are described by one non-linear equation with a real function u. And as a consequence the soliton solutions investigated earlier take place in a geometrical approach to the string theory in any dimensional space-time

  11. Developing the covariant Batalin-Vilkovisky approach to string theory

    International Nuclear Information System (INIS)

    Hata, H.; Zwiebach, B.

    1994-01-01

    In this work the authors investigate the variation of the string field action under changes of the string field vertices giving rise to different decompositions of the moduli spaces of Riemann surfaces. The authors establish that any such change in the string action arises from a field transformation canonical with respect to the Batalin-Vilkovisky (BV) antibracket and find the explicit form of the generator of the infinitesimal transformations. Two theories using different decompositions of moduli space are shown to yield the same gauge-fixed action upon use of different gauge-fixing conditions. The authors also elaborate on recent work on the covariant BV formalism, and emphasize the necessity of a measure in the space of two-dimensional field theories in order to extend a recent analysis of background independence to quantum string field theory. 22 refs., 2 figs

  12. One-loop masses of open-string scalar fields in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    In phenomenological models with D-branes, there are in general open-string massless scalar fields, in addition to closed-string massless moduli fields corresponding to the compactification. It is interesting to focus on the fate of such scalar fields in models with broken supersymmetry, because no symmetry forbids their masses. The one-loop effect may give non-zero masses to them, and in some cases mass squared may become negative, which means the radiative gauge symmetry breaking. In this article we investigate and propose a simple method for calculating the one-loop corrections using the boundary state formalism. There are two categories of massless open-string scalar fields. One consists the gauge potential fields corresponding to compactified directions, which can be understood as scalar fields in uncompactified space-time (related with Wilson line degrees of freedom). The other consists 'gauge potential fields' corresponding to transverse directions of D-brane, which emerge as scalar fields in D-brane world-volume (related with brane moduli fields). The D-brane boundary states with constant backgrounds of these scalar fields are constructed, and one-loop scalar masses are calculated in the closed string picture. Explicit calculations are given in the following four concrete models: one D25-brane with a circle compactification in bosonic string theory, one D9-brane with a circle compactification in superstring theory, D3-branes at a supersymmetric C 3 /Z 3 orbifold singularity, and a model of brane supersymmetry breaking with D3-branes and anti-D7-branes at a supersymmetric C 3 /Z 3 orbifold singularity. We show that the sign of the mass squared has a strong correlation with the sign of the related open-string one-loop vacuum amplitude.

  13. Exact solutions and singularities in string theory

    International Nuclear Information System (INIS)

    Horowitz, G.T.; Tseytlin, A.A.

    1994-01-01

    We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail

  14. High-energy symmetries of string theory

    International Nuclear Information System (INIS)

    Lee Jenchi.

    1990-01-01

    The author studies the high-energy symmetry structure of string theory corresponding to the massive excitations of the string. These enlarged gauge symmetries are closely related to the existence of zero-norm states in the string spectrum. He has derived these symmetries in the framework of the Hamiltonian version of the first-quantized generalized σ-model formalism. It is conjectured that these infinite space-time symmetry structures could shed light on the finiteness of string perturbation theory. Two interesting phenomena were discovered for these massive states symmetries. One is the inter-'spin' symmetry for the different 'spin' states at each fixed mass level. Specifically, the four physical propagating states with 'spins' up to six of the second massive level of the closed bosonic string are found to form a large gauge multiplet. This is demonstrated by the existence of gauge transformations induced by the type II zero-norm states at this mass level. It is argued that this is a σ-model three loop result for the second massive level and is a general feature for higher massive levels at each fixed mass. The other one is the decoupling of some degenerate positive-norm states. As an example, he explicitly demonstrates that the 'spin' two and scalar physical propagating fields of the third massive level of the open bosonic string are mere gauge artifacts of the higher 'spin' fields at the same mass level. It is conjectured that this phenomenon comes from the well-known ambiguity in defining the positive-norm states due to the existence of zero-norm states in the same Young representation

  15. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  16. String theory and applications to phenomenology and cosmology

    International Nuclear Information System (INIS)

    Florakis, I.G.

    2011-07-01

    This thesis treats applications of String Theory to problems of cosmology and high energy phenomenology. In particular, we investigate problems related to the description of the initial state of the universe, using the methods of perturbative String Theory. After a review of the string-theoretic tools that will be employed, we discuss a novel degeneracy symmetry between the bosonic and fermionic massive towers of states (MSDS symmetry), living at particular points of moduli space. We study the marginal deformations of MSDS vacua and exhibit their natural thermal interpretation, in connection with the resolution of the Hagedorn divergences of string thermodynamics. The cosmological evolution of a special, 2-dimensional thermal 'Hybrid' model is presented and the correct implementation of the full stringy degrees of freedom leads to the absence of gravitational singularities, within a fully perturbative treatment. (author)

  17. Wilson loops in 3-dimensional N = 6 supersymmetric Chern-Simons theory and their string theory duals

    International Nuclear Information System (INIS)

    Drukker, Nadav; Plefka, Jan; Young, Donovan

    2008-01-01

    We study Wilson loops in the three-dimensional N = 6 supersymmetric Chern-Simons theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjectured to be dual to type IIA string theory on AdS 4 x CP 3 . We construct loop operators in the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expectation value up to 2-loop order at weak coupling. The expectation value at strong coupling is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.

  18. New gauge symmetries in Witten's Ramond string field theory

    International Nuclear Information System (INIS)

    Kugo, Taichiro; Terao, Haruhiko

    1988-01-01

    Witten's Raymond string field theory is observed to possess new gauge symmetries, which guarantee the consistency and the equivalence of Witten's theory to the other formulation based on the constrained string field. The projection operator into the gauge-invariant sector is explicitly constructed using an operator similar to the picture changing operator. (orig.)

  19. New Higgs transitions between dual N=2 string models

    International Nuclear Information System (INIS)

    Berglund, P.; Katz, S.; Klemm, A.; Mayr, P.

    1997-01-01

    We describe a new kind of transition between topologically distinct N=2 type II Calabi-Yau vacua through points with enhanced non-abelian gauge symmetries together with fundamental charged matter hyper multiplets. We connect the appearance of matter to the local geometry of the singularity and discuss the relation between the instanton numbers of the Calabi-Yau manifolds taking part in the transition. In a dual heterotic string theory on K3 x T 2 the process corresponds to Higgsing a semi-classical gauge group or equivalently to a variation of the gauge bundle. In special cases the situation reduces to simple conifold transitions in the Coulomb phase of the non-abelian gauge symmetries. (orig.)

  20. P-adic space-time and string theory

    International Nuclear Information System (INIS)

    Volovich, I.V.

    1987-01-01

    Arguments for the possibility of a p-adic structure of space-time are advanced. The p-adic analog of the Veneziano amplitude is proposed, and this permits a start to be made on the construction of the theory of p-adic strings. The same questions are considered over Galois fields, for which the analog of the Veneziano amplitude is a Jacobi sum that can be expressed in terms of p-adic cohomologies of Fermat curves. An explicit expression for the vertex operator of the corresponding string theory is given

  1. Butterfly tachyons in vacuum string field theory

    International Nuclear Information System (INIS)

    Matlock, Peter

    2003-01-01

    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in vacuum string field theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation

  2. CP violation and moduli stabilization in heterotic models

    International Nuclear Information System (INIS)

    Giedt, Joel

    2002-01-01

    The role of moduli stabilization in predictions for CP violation is examined in the context of four-dimensional effective supergravity models obtained from the weakly coupled heterotic string. They point out that while stabilization of compactification moduli has been studied extensively, the determination of background values for other scalar by dynamical means has not been subjected to the same degree of scrutiny. These other complex scalars are important potential sources of CP violation and they show in a simple model how their background values (including complex phases) may be determined from the minimization of the supergravity scalar potential, subject to the constraint of vanishing cosmological constant

  3. Description of hadrons using string theory

    International Nuclear Information System (INIS)

    Sugimoto, Shigeki

    2013-01-01

    We give a brief overview of 'holographic QCD' for JPS members. Applying the idea of gauge/string duality to QCD, We obtain a description of hadrons based on string theory. Using this description, a lot of properties of hadrons can be analyzed and the results are in reasonable agreement with the observations. We try to explain the basic idea and some of the interesting results in a way accessible to non-experts. (author)

  4. A brief history of string theory from dual models to M-theory

    CERN Document Server

    Rickles, Dean

    2014-01-01

    During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  5. String theory constructions and conformal invariance

    International Nuclear Information System (INIS)

    Govaerts, J.

    1990-01-01

    This paper reports that as is rather well known, string theories are regarded nowadays by theoretical physicists as a possible framework for the Theory of Everything, or more correctly, for a consistent unified quantum theory of all particles and all their interactions, including gravity. One of the many fascinating facets of these theories is that they could make a centuries old dream come true in a most unique way. Indeed, string theories could well provide the ultimate unification of Nature: the Universe and all that it contains being made of only one fundamental object, with dynamics so rich that it leads to this infinitely large variety of physical phenomena that we observe at all energy scales in our Universe. Moreover, the mathematical structures involved in these theories are so profound and beautiful that they bring together so far unrelated fields in pure mathematics, and have led to important developments in other fields of physics as well. All of physics and all of mathematics coming together in our understanding of the world: was that not the ultimate dream of the Ancient Greeks? But, what are string theories? In the first qualitative approach of this introduction, it may be useful to contrast these theories against the more familiar description of relativistic point-particles. When a single particle propagates freely in space-time, it describes a one- dimensional manifold: its world line. In a quantum description, we associate to this process a quantum amplitude: the Feynman propagator. It is also possible to describe interactions between such particles, by defining probability amplitudes for the splitting and joining of the corresponding world-lines (a priori, the number of particles involved in any such single interaction could be arbitrary but finite)

  6. Energy momentum tensor and marginal deformations in open string field theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2004-01-01

    Marginal boundary deformations in a two dimensional conformal field theory correspond to a family of classical solutions of the equations of motion of open string field theory. In this paper we develop a systematic method for relating the parameter labelling the marginal boundary deformation in the conformal field theory to the parameter labelling the classical solution in open string field theory. This is done by first constructing the energy-momentum tensor associated with the classical solution in open string field theory using Noether method, and then comparing this to the answer obtained in the conformal field theory by analysing the boundary state. We also use this method to demonstrate that in open string field theory the tachyon lump solution on a circle of radius larger than one has vanishing pressure along the circle direction, as is expected for a co-dimension one D-brane. (author)

  7. Topological conformal algebra and BRST algebra in non-critical string theories

    International Nuclear Information System (INIS)

    Fujikawa, Kazuo; Suzuki, Hiroshi.

    1991-03-01

    The operator algebra in non-critical string theories is studied by treating the cosmological term as a perturbation. The algebra of covariantly regularized BRST and related currents contains a twisted N = 2 superconformal algebra only at d = -2 in bosonic strings, and a twisted N = 3 superconformal algebra only at d = ±∞ in spinning strings. The bosonic string at d = -2 is examined by replacing the string coordinate by a fermionic matter with c = -2. The resulting bc-βγ system accommodates various forms of BRST cohomology, and the ghost number assignment and BRST cohomology are different in the c = -2 string theory and two-dimensional topological gravity. (author)

  8. Symmetry breaking in superstring theories: applications in cosmology and particle physics

    International Nuclear Information System (INIS)

    Catelin-Julien, T.

    2008-10-01

    This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)

  9. Z2 vortex strings in grand unified theories

    International Nuclear Information System (INIS)

    Olive, D.; Turok, N.

    1982-01-01

    Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)

  10. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    recent times, string theory is providing new perspectives of such singularities which .... holes appear as stacks of a large number of D-branes wrapped in internal .... results into a well-known measure factor which makes the wave function into a.

  11. Twisted tachyon condensation in closed string field theory

    International Nuclear Information System (INIS)

    Okawa, Yuji; Zwiebach, Barton

    2004-01-01

    We consider twisted tachyons on C/Z N orbifolds of bosonic closed string theory. It has been conjectured that these tachyonic instabilities correspond to decays of the orbifolds into flat space or into orbifolds with smaller deficit angles. We examine this conjecture using closed string field theory, with the string field truncated to low-level tachyons. We compute the tachyon potentials for C/Z 2 and C/Z 3 orbifolds and find critical points at depths that generate about 70% of the expected change in the deficit angle. We find that both twisted fields and untwisted modes localized near the apex of the cone acquire vacuum expectation values and contribute to the potential. (author)

  12. Light hidden-sector U(1)s in string compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Goodsell, Mark; Ringwald, Andreas

    2010-02-15

    We review the case for light U(1) gauge bosons in the hidden-sector of heterotic and type II string compactifications, present estimates of the size of their kinetic mixing with the visible-sector hypercharge U(1), and discuss their possibly very interesting phenomenological consequences in particle physics and cosmology. (orig.)

  13. Light hidden-sector U(1)s in string compactifications

    International Nuclear Information System (INIS)

    Goodsell, Mark; Ringwald, Andreas

    2010-02-01

    We review the case for light U(1) gauge bosons in the hidden-sector of heterotic and type II string compactifications, present estimates of the size of their kinetic mixing with the visible-sector hypercharge U(1), and discuss their possibly very interesting phenomenological consequences in particle physics and cosmology. (orig.)

  14. Story of the string theory. From hadrons to Planck scale

    International Nuclear Information System (INIS)

    Petropoulos, P.M.

    2010-01-01

    Originally the string theory was devised to describe the scattering between hadron particles but was quickly put aside by the success of the quantum chromodynamics. Now string theory appears in the quantum gravity theory and has been involved in almost all attempts to define a physics beyond the standard model and to unify basic interactions. (A.C.)

  15. Space-time versus world-sheet renormalization group equation in string theory

    International Nuclear Information System (INIS)

    Brustein, R.; Roland, K.

    1991-05-01

    We discuss the relation between space-time renormalization group equation for closed string field theory and world-sheet renormalization group equation for first-quantized strings. Restricting our attention to massless states we argue that there is a one-to-one correspondence between the fixed point solutions of the two renormalization group equations. In particular, we show how to extract the Fischler-Susskind mechanism from the string field theory equation in the case of the bosonic string. (orig.)

  16. String perturbation theory and effective Lagrangians

    International Nuclear Information System (INIS)

    Klebanov, I.

    1987-09-01

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to β-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string

  17. Persistent homology and string vacua

    Energy Technology Data Exchange (ETDEWEB)

    Cirafici, Michele [Center for Mathematical Analysis, Geometry and Dynamical Systems,Instituto Superior Técnico, Universidade de Lisboa,Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Institut des Hautes Études Scientifiques,Le Bois-Marie, 35 route de Chartres, F-91440 Bures-sur-Yvette (France)

    2016-03-08

    We use methods from topological data analysis to study the topological features of certain distributions of string vacua. Topological data analysis is a multi-scale approach used to analyze the topological features of a dataset by identifying which homological characteristics persist over a long range of scales. We apply these techniques in several contexts. We analyze N=2 vacua by focusing on certain distributions of Calabi-Yau varieties and Landau-Ginzburg models. We then turn to flux compactifications and discuss how we can use topological data analysis to extract physical information. Finally we apply these techniques to certain phenomenologically realistic heterotic models. We discuss the possibility of characterizing string vacua using the topological properties of their distributions.

  18. Hawking radiation in string theories

    International Nuclear Information System (INIS)

    Sakai, N.

    1986-01-01

    String theories in a uniform gravitational field are studied to examine the Hawking radiation. An upper limit is found for the strength of the possible gravitational field: the corresponding Hawking temperature cannot be larger than the Hagedorn limiting temperature divided by π

  19. String Theory on AdS Spaces

    NARCIS (Netherlands)

    de Boer, J.

    2000-01-01

    In these notes we discuss various aspects of string theory in AdS spaces. We briefly review the formulation in terms of Green-Schwarz, NSR, and Berkovits variables, as well as the construction of exact conformal field theories with AdS backgrounds. Based on lectures given at the Kyoto YITP Workshop

  20. On deformations and quantization in topological string theory

    International Nuclear Information System (INIS)

    Kay, Michael

    2014-01-01

    The study of moduli spaces of N=(2,2) superconformal field theories and more generally of N=(2,2) supersymmetric quantum field theories, has been a longstanding, multifaceted area of research. In this thesis we focus on certain selected general aspects of this study and develop general techniques within the framework of topological string theory. This work is naturally divided into two parts. The first is concerned with aspects of closed topological string theory, and culminates with a theory, where the geometrical structure of the topological anti-topological moduli spaces of N=(2,2) superconformal field theories with central charge c=9 is rediscovered in the light of quantization, within a general framework. The second part is concerned with aspects of the study of the open and closed moduli space of topological conformal field theories at genus zero. In particular, it contains an exposition of a paper, where general results on the classification and computation of bulk-induced deformations of open topological conformal field theories were obtained from a coherent algebraic approach, drawing from the defining L ∞ and A ∞ structures involved. In part, the latter investigation is restricted to arbitrary affine B-twisted Landau Ginzburg models. Subsequently, further original work is presented that completes the topological string field theory structure of B-twisted Landau Ginzburg models.

  1. On the short distance behavior of string theories

    International Nuclear Information System (INIS)

    Guida, R.; Konishi, K.; Provero, P.

    1991-01-01

    Short distance behavior of string theories is investigated by the use of the discretized path-integral formulation. In particular, the minimum physical length and the generalized uncertainty relation are re-derived from a set of Ward-Takahashi identities. In this paper several issues related to the form of the generalized uncertainty relation and to its implications are discussed. A consistent qualitative picture of short distance behavior of string theory seems to emerge from such a study

  2. Consistent superstrings as solutions of the D=26 bosonic string theory

    International Nuclear Information System (INIS)

    Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.

    1985-01-01

    Consistent closed ten-dimensional superstrings, i.e. the two N=2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory. (orig.)

  3. Novel string field theory with also negative energy constituents/objects gives Veneziano amplitude

    Science.gov (United States)

    Nielsen, H. B.; Ninomiya, M.

    2018-02-01

    We have proposed a new type of string field theory. The main point of the present article is to cure some technical troubles: missing two out three terms in Veneziano amplitude. Our novel string field theory, describes a theory with many strings in terms of "objects", which are not exactly, but close to Charles Thorn's string bits. The new point is that the objects in terms of which the universe states are constructed, and which have an essentially 26-momentum variable called J μ , can have the energy J 0 be also negative as well as positive. We get a long way in deriving in this model the Veneziano model and obtain all the three terms needed for a four point amplitude. This result strongly indicates that our novel string field theory is indeed string theory.

  4. Bosonic Liouville string theory in conformal gauge

    International Nuclear Information System (INIS)

    Schnittger, J.

    1990-01-01

    The object of the present thesis are the so-called Liouville theories as possibilities for the consistent formulation of string theories beyond the critical dimension. First we discuss the general framework for the quantum theory and explain common properties and differences of different approaches. These considerations lead us to the main demand of the thesis, the formulation of a unified quantum theory for open and closed strings. Of central importance is thereby the construction of the field operator for the Weyl degree of freedom on a suitably defined Hilbert space, so that also in the quantum theory locality and Hermiticity of the Energy-Momentum tensor are respected. In the study of the allowed ground states of the Hilbert space an interesting particularity in comparison to the structure of usual conformal field theories comes across, the importance and consequences of which we intensively study. In the last section we enter the consistence of the theory on the 1-loop level and come then to the final consideration, where we indicate some still open questions of the Liouville theory. (orig.) [de

  5. Vacua and inflation in string theory and supergravity

    International Nuclear Information System (INIS)

    Rummel, Markus

    2013-07-01

    We study the connection between the early and late accelerated expansion of the universe and string theory. In Part I of this thesis, the observational degeneracy between single field models of inflation with canonical kinetic terms and noncanonical kinetic terms, in particular string theory inspired models, is discussed. The 2-point function observables of a given non-canonical theory and its canonical transform that is obtained by matching the inflationary trajectories in phase space are found to match in the case of Dirac-Born-Infeld (DBI) inflation. At the level of the 3-point function observables (non-Gaussianities), we find degeneracy between non-canonical inflation and canonical inflation with a potential that includes a sum of modulated terms. In Part II, we present explicit examples for de Sitter vacua in type IIB string theory. After deriving a sufficient condition for de Sitter vacua in the Kahler uplifting scenario, we show that a globally consistent de Sitter model can be realized on a certain Calabi-Yau manifold. All geometric moduli are stabilized and all known consistency constraints are fulfilled. The complex structure moduli stabilization by fluxes is studied explicitly for a small number of cycles. Extrapolating to a larger number of flux carrying cycles, we verify statistical studies in the literature which show that, in principle, the string landscape can account for a universe with an extremely small cosmological constant.

  6. Vacua and inflation in string theory and supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Rummel, Markus

    2013-07-15

    We study the connection between the early and late accelerated expansion of the universe and string theory. In Part I of this thesis, the observational degeneracy between single field models of inflation with canonical kinetic terms and noncanonical kinetic terms, in particular string theory inspired models, is discussed. The 2-point function observables of a given non-canonical theory and its canonical transform that is obtained by matching the inflationary trajectories in phase space are found to match in the case of Dirac-Born-Infeld (DBI) inflation. At the level of the 3-point function observables (non-Gaussianities), we find degeneracy between non-canonical inflation and canonical inflation with a potential that includes a sum of modulated terms. In Part II, we present explicit examples for de Sitter vacua in type IIB string theory. After deriving a sufficient condition for de Sitter vacua in the Kahler uplifting scenario, we show that a globally consistent de Sitter model can be realized on a certain Calabi-Yau manifold. All geometric moduli are stabilized and all known consistency constraints are fulfilled. The complex structure moduli stabilization by fluxes is studied explicitly for a small number of cycles. Extrapolating to a larger number of flux carrying cycles, we verify statistical studies in the literature which show that, in principle, the string landscape can account for a universe with an extremely small cosmological constant.

  7. Neutrino Majorana masses from string theory instanton effects

    International Nuclear Information System (INIS)

    Ibanez, Luis E.; Uranga, Angel M.

    2007-01-01

    Finding a plausible origin for right-handed neutrino Majorana masses in semirealistic compactifications of string theory remains one of the most difficult problems in string phenomenology. We argue that right-handed neutrino Majorana masses are induced by non-perturbative instanton effects in certain classes of string compactifications in which the U(1) B-L gauge boson has a Stueckelberg mass. The induced operators are of the form e -U ν R ν R where U is a closed string modulus whose imaginary part transforms appropriately under B-L. This mass term may be quite large since this is not a gauge instanton and Re U is not directly related to SM gauge couplings. Thus the size of the induced right-handed neutrino masses could be a few orders of magnitude below the string scale, as phenomenologically required. It is also argued that this origin for neutrino masses would predict the existence of R-parity in SUSY versions of the SM. Finally we comment on other phenomenological applications of similar instanton effects, like the generation of a μ-term, or of Yukawa couplings forbidden in perturbation theory

  8. Symmetries of string, M- and F-theories

    NARCIS (Netherlands)

    Bergshoeff, Eric; Proeyen, Antoine Van

    2001-01-01

    The d = 10 type II string theories, d = 11 M-theory and d = 12 F-theory have the same symmetry group. It can be viewed either as a subgroup of a conformal group OSp(1|64) or as a contraction of OSp(1|32). The theories are related by different identifications of their symmetry operators as generators

  9. Superstring spectroscopy

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1986-12-01

    The basic elements of string theory are presented after a brief review of the main properties of string theories, particularly the supersymmetric version. Lessons are provided on the basic quantized string, zero-point energy, the bosonic string, compactification on a torus, the superstring, the heterotic string, field compactification on an orbifold, and string compactification on an orbifold. 35 refs., 17 figs

  10. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    International Nuclear Information System (INIS)

    Vacaru, Sergiu I.; Irwin, Klee

    2017-01-01

    Geometric methods for constructing exact solutions of equations of motion with first order α ' corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  11. Off-diagonal deformations of Kerr metrics and black ellipsoids in heterotic supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al. I. Cuza' ' , Project IDEI, Iasi (Romania); Irwin, Klee [Quantum Gravity Research, Topanga, CA (United States)

    2017-01-15

    Geometric methods for constructing exact solutions of equations of motion with first order α{sup '} corrections to the heterotic supergravity action implying a nontrivial Yang-Mills sector and six-dimensional, 6-d, almost-Kaehler internal spaces are studied. In 10-d spacetimes, general parametrizations for generic off-diagonal metrics, nonlinear and linear connections, and matter sources, when the equations of motion decouple in very general forms are considered. This allows us to construct a variety of exact solutions when the coefficients of fundamental geometric/physical objects depend on all higher-dimensional spacetime coordinates via corresponding classes of generating and integration functions, generalized effective sources and integration constants. Such generalized solutions are determined by generic off-diagonal metrics and nonlinear and/or linear connections; in particular, as configurations which are warped/compactified to lower dimensions and for Levi-Civita connections. The corresponding metrics can have (non-) Killing and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain wall configurations, with possible warping nearly almost-Kaehler manifolds, with gravitational and gauge instantons for nonlinear vacuum configurations and effective polarizations of cosmological and interaction constants encoding string gravity effects. A series of examples of exact solutions describing generic off-diagonal supergravity modifications to black hole/ellipsoid and solitonic configurations are provided and analyzed. We prove that it is possible to reproduce the Kerr and other type black solutions in general relativity (with certain types of string corrections) in the 4-d case and to generalize the solutions to non-vacuum configurations in (super-) gravity/string theories. (orig.)

  12. Heterotic computing: exploiting hybrid computational devices.

    Science.gov (United States)

    Kendon, Viv; Sebald, Angelika; Stepney, Susan

    2015-07-28

    Current computational theory deals almost exclusively with single models: classical, neural, analogue, quantum, etc. In practice, researchers use ad hoc combinations, realizing only recently that they can be fundamentally more powerful than the individual parts. A Theo Murphy meeting brought together theorists and practitioners of various types of computing, to engage in combining the individual strengths to produce powerful new heterotic devices. 'Heterotic computing' is defined as a combination of two or more computational systems such that they provide an advantage over either substrate used separately. This post-meeting collection of articles provides a wide-ranging survey of the state of the art in diverse computational paradigms, together with reflections on their future combination into powerful and practical applications. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Monads, strings, and M theory

    NARCIS (Netherlands)

    Hofman, C.; Park, J.-S.

    1997-01-01

    The recent developmen ts in string theory suggest that the space-time coordinates should be generalized to non-comm uting matrices. P ostulating this suggestion as the fun- damen tal geometrical principle, w e form ulate a candidate for covariant second quantized RNS superstrings as a topological

  14. Bosonization methods in string theory

    International Nuclear Information System (INIS)

    Abdalla, E.

    1988-02-01

    The use of bosonization/fermionization techniques to convert non-linear operators of the dual, is discussed. Non abelian bosonization to the case where the central charge of the Kac-Moody algebra is not unity, is generalized. In particular, using this generalization of non-abelian bosonization, the bosonic string vertex of the compactified theory; turns out to be fundamental field of thre fermionic theory, or bound states of it thus permiting explicit computations easily. (author) [pt

  15. The tachyon potential in string theory

    International Nuclear Information System (INIS)

    Banks, T.

    1991-01-01

    We argue that the tachyon potential in string theory is exactly given by the unstable quadratic mass term calculated perturbatively around the critical string. The argument is given in terms of the sigma model formulation. The same result follows from the exact Wilson renormalization group equations. The discrepancy with previous calculations of the tachyon potential is explained by the fact that other authors worked near the tachyon mass shell where it is impossible to distinguish a potential from derivative terms in the effective action. (orig.)

  16. Lectures on interacting string field theory

    International Nuclear Information System (INIS)

    Jevicki, A.

    1986-09-01

    We give a detailed review of the current formulations of interacting string field theory. The historical development of the subject is taken beginning with the old dual resonance model theory. The light cone approach is reviewed in some detail with emphasis on conformal mapping techniques. Witten's covariant approach is presented. The main body of the lectures concentrates on developing the operator formulation of Witten's theory. 38 refs., 22 figs., 5 tabs

  17. Differential geometry of groups in string theory

    International Nuclear Information System (INIS)

    Schmidke, W.B. Jr.

    1990-09-01

    Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1|1). The quantum group GL q (1|1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL q (1|1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S 1 )/S 1 . We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs

  18. String Theory and Pre-big bang Cosmology

    CERN Document Server

    Gasperini, M.

    In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe "bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a "hot big bounce" in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its si...

  19. Counting dyons in N=4 string theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    We present a microscopic index formula for the degeneracy of dyons in four-dimensional N=4 string theory. This counting formula is manifestly symmetric under the duality group, and its asymptotic growth reproduces the macroscopic Bekenstein-Hawking entropy. We give a derivation of this result in terms of the type II five-brane compactified on K3, by assuming that its fluctuations are described by a closed string theory on its world-volume. We find that the degeneracies are given in terms of the denominator of a generalized super Kac-Moody algebra. We also discuss the correspondence of this result with the counting of D-brane states.

  20. String theory and cosmological singularities

    Indian Academy of Sciences (India)

    Well-known examples are singularities inside black holes and initial or final singularities in expanding or contracting universes. In recent times, string theory is providing new perspectives of such singularities which may lead to an understanding of these in the standard framework of time evolution in quantum mechanics.